/* * Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1CollectedHeap.hpp" #include "gc/g1/g1CollectionSet.hpp" #include "gc/g1/g1CollectorState.hpp" #include "gc/g1/g1Policy.hpp" #include "gc/g1/heapRegion.inline.hpp" #include "gc/g1/heapRegionRemSet.hpp" #include "gc/g1/heapRegionSet.hpp" #include "logging/logStream.hpp" #include "utilities/debug.hpp" #include "utilities/quickSort.hpp" G1CollectorState* G1CollectionSet::collector_state() { return _g1h->collector_state(); } G1GCPhaseTimes* G1CollectionSet::phase_times() { return _policy->phase_times(); } CollectionSetChooser* G1CollectionSet::cset_chooser() { return _cset_chooser; } double G1CollectionSet::predict_region_elapsed_time_ms(HeapRegion* hr) { return _policy->predict_region_elapsed_time_ms(hr, collector_state()->in_young_only_phase()); } G1CollectionSet::G1CollectionSet(G1CollectedHeap* g1h, G1Policy* policy) : _g1h(g1h), _policy(policy), _cset_chooser(new CollectionSetChooser()), _eden_region_length(0), _survivor_region_length(0), _old_region_length(0), _bytes_used_before(0), _recorded_rs_lengths(0), _collection_set_regions(NULL), _collection_set_cur_length(0), _collection_set_max_length(0), // Incremental CSet attributes _inc_build_state(Inactive), _inc_bytes_used_before(0), _inc_recorded_rs_lengths(0), _inc_recorded_rs_lengths_diffs(0), _inc_predicted_elapsed_time_ms(0.0), _inc_predicted_elapsed_time_ms_diffs(0.0) { } G1CollectionSet::~G1CollectionSet() { if (_collection_set_regions != NULL) { FREE_C_HEAP_ARRAY(uint, _collection_set_regions); } delete _cset_chooser; } void G1CollectionSet::init_region_lengths(uint eden_cset_region_length, uint survivor_cset_region_length) { assert_at_safepoint_on_vm_thread(); _eden_region_length = eden_cset_region_length; _survivor_region_length = survivor_cset_region_length; assert((size_t) young_region_length() == _collection_set_cur_length, "Young region length %u should match collection set length " SIZE_FORMAT, young_region_length(), _collection_set_cur_length); _old_region_length = 0; } void G1CollectionSet::initialize(uint max_region_length) { guarantee(_collection_set_regions == NULL, "Must only initialize once."); _collection_set_max_length = max_region_length; _collection_set_regions = NEW_C_HEAP_ARRAY(uint, max_region_length, mtGC); } void G1CollectionSet::set_recorded_rs_lengths(size_t rs_lengths) { _recorded_rs_lengths = rs_lengths; } // Add the heap region at the head of the non-incremental collection set void G1CollectionSet::add_old_region(HeapRegion* hr) { assert_at_safepoint_on_vm_thread(); assert(_inc_build_state == Active, "Precondition"); assert(hr->is_old(), "the region should be old"); assert(!hr->in_collection_set(), "should not already be in the CSet"); _g1h->register_old_region_with_cset(hr); _collection_set_regions[_collection_set_cur_length++] = hr->hrm_index(); assert(_collection_set_cur_length <= _collection_set_max_length, "Collection set now larger than maximum size."); _bytes_used_before += hr->used(); size_t rs_length = hr->rem_set()->occupied(); _recorded_rs_lengths += rs_length; _old_region_length += 1; } // Initialize the per-collection-set information void G1CollectionSet::start_incremental_building() { assert(_collection_set_cur_length == 0, "Collection set must be empty before starting a new collection set."); assert(_inc_build_state == Inactive, "Precondition"); _inc_bytes_used_before = 0; _inc_recorded_rs_lengths = 0; _inc_recorded_rs_lengths_diffs = 0; _inc_predicted_elapsed_time_ms = 0.0; _inc_predicted_elapsed_time_ms_diffs = 0.0; _inc_build_state = Active; } void G1CollectionSet::finalize_incremental_building() { assert(_inc_build_state == Active, "Precondition"); assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint"); // The two "main" fields, _inc_recorded_rs_lengths and // _inc_predicted_elapsed_time_ms, are updated by the thread // that adds a new region to the CSet. Further updates by the // concurrent refinement thread that samples the young RSet lengths // are accumulated in the *_diffs fields. Here we add the diffs to // the "main" fields. if (_inc_recorded_rs_lengths_diffs >= 0) { _inc_recorded_rs_lengths += _inc_recorded_rs_lengths_diffs; } else { // This is defensive. The diff should in theory be always positive // as RSets can only grow between GCs. However, given that we // sample their size concurrently with other threads updating them // it's possible that we might get the wrong size back, which // could make the calculations somewhat inaccurate. size_t diffs = (size_t) (-_inc_recorded_rs_lengths_diffs); if (_inc_recorded_rs_lengths >= diffs) { _inc_recorded_rs_lengths -= diffs; } else { _inc_recorded_rs_lengths = 0; } } _inc_predicted_elapsed_time_ms += _inc_predicted_elapsed_time_ms_diffs; _inc_recorded_rs_lengths_diffs = 0; _inc_predicted_elapsed_time_ms_diffs = 0.0; } void G1CollectionSet::clear() { assert_at_safepoint_on_vm_thread(); _collection_set_cur_length = 0; } void G1CollectionSet::iterate(HeapRegionClosure* cl) const { iterate_from(cl, 0, 1); } void G1CollectionSet::iterate_from(HeapRegionClosure* cl, uint worker_id, uint total_workers) const { size_t len = _collection_set_cur_length; OrderAccess::loadload(); if (len == 0) { return; } size_t start_pos = (worker_id * len) / total_workers; size_t cur_pos = start_pos; do { HeapRegion* r = _g1h->region_at(_collection_set_regions[cur_pos]); bool result = cl->do_heap_region(r); if (result) { cl->set_incomplete(); return; } cur_pos++; if (cur_pos == len) { cur_pos = 0; } } while (cur_pos != start_pos); } void G1CollectionSet::update_young_region_prediction(HeapRegion* hr, size_t new_rs_length) { // Update the CSet information that is dependent on the new RS length assert(hr->is_young(), "Precondition"); assert(!SafepointSynchronize::is_at_safepoint(), "should not be at a safepoint"); // We could have updated _inc_recorded_rs_lengths and // _inc_predicted_elapsed_time_ms directly but we'd need to do // that atomically, as this code is executed by a concurrent // refinement thread, potentially concurrently with a mutator thread // allocating a new region and also updating the same fields. To // avoid the atomic operations we accumulate these updates on two // separate fields (*_diffs) and we'll just add them to the "main" // fields at the start of a GC. ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length(); ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length; _inc_recorded_rs_lengths_diffs += rs_lengths_diff; double old_elapsed_time_ms = hr->predicted_elapsed_time_ms(); double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr); double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms; _inc_predicted_elapsed_time_ms_diffs += elapsed_ms_diff; hr->set_recorded_rs_length(new_rs_length); hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms); } void G1CollectionSet::add_young_region_common(HeapRegion* hr) { assert(hr->is_young(), "invariant"); assert(_inc_build_state == Active, "Precondition"); size_t collection_set_length = _collection_set_cur_length; assert(collection_set_length <= INT_MAX, "Collection set is too large with %d entries", (int)collection_set_length); hr->set_young_index_in_cset((int)collection_set_length); _collection_set_regions[collection_set_length] = hr->hrm_index(); // Concurrent readers must observe the store of the value in the array before an // update to the length field. OrderAccess::storestore(); _collection_set_cur_length++; assert(_collection_set_cur_length <= _collection_set_max_length, "Collection set larger than maximum allowed."); // This routine is used when: // * adding survivor regions to the incremental cset at the end of an // evacuation pause or // * adding the current allocation region to the incremental cset // when it is retired. // Therefore this routine may be called at a safepoint by the // VM thread, or in-between safepoints by mutator threads (when // retiring the current allocation region) // We need to clear and set the cached recorded/cached collection set // information in the heap region here (before the region gets added // to the collection set). An individual heap region's cached values // are calculated, aggregated with the policy collection set info, // and cached in the heap region here (initially) and (subsequently) // by the Young List sampling code. // Ignore calls to this due to retirement during full gc. if (!_g1h->collector_state()->in_full_gc()) { size_t rs_length = hr->rem_set()->occupied(); double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr); // Cache the values we have added to the aggregated information // in the heap region in case we have to remove this region from // the incremental collection set, or it is updated by the // rset sampling code hr->set_recorded_rs_length(rs_length); hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms); _inc_recorded_rs_lengths += rs_length; _inc_predicted_elapsed_time_ms += region_elapsed_time_ms; _inc_bytes_used_before += hr->used(); } assert(!hr->in_collection_set(), "invariant"); _g1h->register_young_region_with_cset(hr); } void G1CollectionSet::add_survivor_regions(HeapRegion* hr) { assert(hr->is_survivor(), "Must only add survivor regions, but is %s", hr->get_type_str()); add_young_region_common(hr); } void G1CollectionSet::add_eden_region(HeapRegion* hr) { assert(hr->is_eden(), "Must only add eden regions, but is %s", hr->get_type_str()); add_young_region_common(hr); } #ifndef PRODUCT class G1VerifyYoungAgesClosure : public HeapRegionClosure { public: bool _valid; public: G1VerifyYoungAgesClosure() : HeapRegionClosure(), _valid(true) { } virtual bool do_heap_region(HeapRegion* r) { guarantee(r->is_young(), "Region must be young but is %s", r->get_type_str()); SurvRateGroup* group = r->surv_rate_group(); if (group == NULL) { log_error(gc, verify)("## encountered NULL surv_rate_group in young region"); _valid = false; } if (r->age_in_surv_rate_group() < 0) { log_error(gc, verify)("## encountered negative age in young region"); _valid = false; } return false; } bool valid() const { return _valid; } }; bool G1CollectionSet::verify_young_ages() { assert_at_safepoint_on_vm_thread(); G1VerifyYoungAgesClosure cl; iterate(&cl); if (!cl.valid()) { LogStreamHandle(Error, gc, verify) log; print(&log); } return cl.valid(); } class G1PrintCollectionSetClosure : public HeapRegionClosure { outputStream* _st; public: G1PrintCollectionSetClosure(outputStream* st) : HeapRegionClosure(), _st(st) { } virtual bool do_heap_region(HeapRegion* r) { assert(r->in_collection_set(), "Region %u should be in collection set", r->hrm_index()); _st->print_cr(" " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d", HR_FORMAT_PARAMS(r), p2i(r->prev_top_at_mark_start()), p2i(r->next_top_at_mark_start()), r->age_in_surv_rate_group_cond()); return false; } }; void G1CollectionSet::print(outputStream* st) { st->print_cr("\nCollection_set:"); G1PrintCollectionSetClosure cl(st); iterate(&cl); } #endif // !PRODUCT double G1CollectionSet::finalize_young_part(double target_pause_time_ms, G1SurvivorRegions* survivors) { double young_start_time_sec = os::elapsedTime(); finalize_incremental_building(); guarantee(target_pause_time_ms > 0.0, "target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms); size_t pending_cards = _policy->pending_cards(); double base_time_ms = _policy->predict_base_elapsed_time_ms(pending_cards); double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0); log_trace(gc, ergo, cset)("Start choosing CSet. pending cards: " SIZE_FORMAT " predicted base time: %1.2fms remaining time: %1.2fms target pause time: %1.2fms", pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms); // The young list is laid with the survivor regions from the previous // pause are appended to the RHS of the young list, i.e. // [Newly Young Regions ++ Survivors from last pause]. uint survivor_region_length = survivors->length(); uint eden_region_length = _g1h->eden_regions_count(); init_region_lengths(eden_region_length, survivor_region_length); verify_young_cset_indices(); // Clear the fields that point to the survivor list - they are all young now. survivors->convert_to_eden(); _bytes_used_before = _inc_bytes_used_before; time_remaining_ms = MAX2(time_remaining_ms - _inc_predicted_elapsed_time_ms, 0.0); log_trace(gc, ergo, cset)("Add young regions to CSet. eden: %u regions, survivors: %u regions, predicted young region time: %1.2fms, target pause time: %1.2fms", eden_region_length, survivor_region_length, _inc_predicted_elapsed_time_ms, target_pause_time_ms); // The number of recorded young regions is the incremental // collection set's current size set_recorded_rs_lengths(_inc_recorded_rs_lengths); double young_end_time_sec = os::elapsedTime(); phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0); return time_remaining_ms; } static int compare_region_idx(const uint a, const uint b) { if (a > b) { return 1; } else if (a == b) { return 0; } else { return -1; } } void G1CollectionSet::finalize_old_part(double time_remaining_ms) { double non_young_start_time_sec = os::elapsedTime(); double predicted_old_time_ms = 0.0; if (collector_state()->in_mixed_phase()) { cset_chooser()->verify(); const uint min_old_cset_length = _policy->calc_min_old_cset_length(); const uint max_old_cset_length = _policy->calc_max_old_cset_length(); uint expensive_region_num = 0; bool check_time_remaining = _policy->adaptive_young_list_length(); HeapRegion* hr = cset_chooser()->peek(); while (hr != NULL) { if (old_region_length() >= max_old_cset_length) { // Added maximum number of old regions to the CSet. log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached max). old %u regions, max %u regions", old_region_length(), max_old_cset_length); break; } // Stop adding regions if the remaining reclaimable space is // not above G1HeapWastePercent. size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes(); double reclaimable_percent = _policy->reclaimable_bytes_percent(reclaimable_bytes); double threshold = (double) G1HeapWastePercent; if (reclaimable_percent <= threshold) { // We've added enough old regions that the amount of uncollected // reclaimable space is at or below the waste threshold. Stop // adding old regions to the CSet. log_debug(gc, ergo, cset)("Finish adding old regions to CSet (reclaimable percentage not over threshold). " "old %u regions, max %u regions, reclaimable: " SIZE_FORMAT "B (%1.2f%%) threshold: " UINTX_FORMAT "%%", old_region_length(), max_old_cset_length, reclaimable_bytes, reclaimable_percent, G1HeapWastePercent); break; } double predicted_time_ms = predict_region_elapsed_time_ms(hr); if (check_time_remaining) { if (predicted_time_ms > time_remaining_ms) { // Too expensive for the current CSet. if (old_region_length() >= min_old_cset_length) { // We have added the minimum number of old regions to the CSet, // we are done with this CSet. log_debug(gc, ergo, cset)("Finish adding old regions to CSet (predicted time is too high). " "predicted time: %1.2fms, remaining time: %1.2fms old %u regions, min %u regions", predicted_time_ms, time_remaining_ms, old_region_length(), min_old_cset_length); break; } // We'll add it anyway given that we haven't reached the // minimum number of old regions. expensive_region_num += 1; } } else { if (old_region_length() >= min_old_cset_length) { // In the non-auto-tuning case, we'll finish adding regions // to the CSet if we reach the minimum. log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached min). old %u regions, min %u regions", old_region_length(), min_old_cset_length); break; } } // We will add this region to the CSet. time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0); predicted_old_time_ms += predicted_time_ms; cset_chooser()->pop(); // already have region via peek() _g1h->old_set_remove(hr); add_old_region(hr); hr = cset_chooser()->peek(); } if (hr == NULL) { log_debug(gc, ergo, cset)("Finish adding old regions to CSet (candidate old regions not available)"); } if (expensive_region_num > 0) { // We print the information once here at the end, predicated on // whether we added any apparently expensive regions or not, to // avoid generating output per region. log_debug(gc, ergo, cset)("Added expensive regions to CSet (old CSet region num not reached min)." "old: %u regions, expensive: %u regions, min: %u regions, remaining time: %1.2fms", old_region_length(), expensive_region_num, min_old_cset_length, time_remaining_ms); } cset_chooser()->verify(); } stop_incremental_building(); log_debug(gc, ergo, cset)("Finish choosing CSet. old: %u regions, predicted old region time: %1.2fms, time remaining: %1.2f", old_region_length(), predicted_old_time_ms, time_remaining_ms); double non_young_end_time_sec = os::elapsedTime(); phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0); QuickSort::sort(_collection_set_regions, _collection_set_cur_length, compare_region_idx, true); } #ifdef ASSERT class G1VerifyYoungCSetIndicesClosure : public HeapRegionClosure { private: size_t _young_length; int* _heap_region_indices; public: G1VerifyYoungCSetIndicesClosure(size_t young_length) : HeapRegionClosure(), _young_length(young_length) { _heap_region_indices = NEW_C_HEAP_ARRAY(int, young_length, mtGC); for (size_t i = 0; i < young_length; i++) { _heap_region_indices[i] = -1; } } ~G1VerifyYoungCSetIndicesClosure() { FREE_C_HEAP_ARRAY(int, _heap_region_indices); } virtual bool do_heap_region(HeapRegion* r) { const int idx = r->young_index_in_cset(); assert(idx > -1, "Young index must be set for all regions in the incremental collection set but is not for region %u.", r->hrm_index()); assert((size_t)idx < _young_length, "Young cset index too large for region %u", r->hrm_index()); assert(_heap_region_indices[idx] == -1, "Index %d used by multiple regions, first use by region %u, second by region %u", idx, _heap_region_indices[idx], r->hrm_index()); _heap_region_indices[idx] = r->hrm_index(); return false; } }; void G1CollectionSet::verify_young_cset_indices() const { assert_at_safepoint_on_vm_thread(); G1VerifyYoungCSetIndicesClosure cl(_collection_set_cur_length); iterate(&cl); } #endif