1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/evacuationInfo.hpp"
  29 #include "gc/g1/g1BarrierSet.hpp"
  30 #include "gc/g1/g1BiasedArray.hpp"
  31 #include "gc/g1/g1CardTable.hpp"
  32 #include "gc/g1/g1CollectionSet.hpp"
  33 #include "gc/g1/g1CollectorState.hpp"
  34 #include "gc/g1/g1ConcurrentMark.hpp"
  35 #include "gc/g1/g1EdenRegions.hpp"
  36 #include "gc/g1/g1EvacFailure.hpp"
  37 #include "gc/g1/g1EvacStats.hpp"
  38 #include "gc/g1/g1HeapTransition.hpp"
  39 #include "gc/g1/g1HeapVerifier.hpp"
  40 #include "gc/g1/g1HRPrinter.hpp"
  41 #include "gc/g1/g1InCSetState.hpp"
  42 #include "gc/g1/g1MonitoringSupport.hpp"
  43 #include "gc/g1/g1SurvivorRegions.hpp"
  44 #include "gc/g1/g1YCTypes.hpp"
  45 #include "gc/g1/heapRegionManager.hpp"
  46 #include "gc/g1/heapRegionSet.hpp"
  47 #include "gc/shared/barrierSet.hpp"
  48 #include "gc/shared/collectedHeap.hpp"
  49 #include "gc/shared/gcHeapSummary.hpp"
  50 #include "gc/shared/plab.hpp"
  51 #include "gc/shared/preservedMarks.hpp"
  52 #include "gc/shared/softRefPolicy.hpp"
  53 #include "memory/memRegion.hpp"
  54 #include "services/memoryManager.hpp"
  55 #include "utilities/stack.hpp"
  56 
  57 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  58 // It uses the "Garbage First" heap organization and algorithm, which
  59 // may combine concurrent marking with parallel, incremental compaction of
  60 // heap subsets that will yield large amounts of garbage.
  61 
  62 // Forward declarations
  63 class HeapRegion;
  64 class HRRSCleanupTask;
  65 class GenerationSpec;
  66 class G1ParScanThreadState;
  67 class G1ParScanThreadStateSet;
  68 class G1ParScanThreadState;
  69 class MemoryPool;
  70 class ObjectClosure;
  71 class SpaceClosure;
  72 class CompactibleSpaceClosure;
  73 class Space;
  74 class G1CollectionSet;
  75 class G1CollectorPolicy;
  76 class G1Policy;
  77 class G1HotCardCache;
  78 class G1RemSet;
  79 class G1YoungRemSetSamplingThread;
  80 class HeapRegionRemSetIterator;
  81 class G1ConcurrentMark;
  82 class ConcurrentMarkThread;
  83 class G1ConcurrentRefine;
  84 class GenerationCounters;
  85 class STWGCTimer;
  86 class G1NewTracer;
  87 class EvacuationFailedInfo;
  88 class nmethod;
  89 class Ticks;
  90 class WorkGang;
  91 class G1Allocator;
  92 class G1ArchiveAllocator;
  93 class G1FullGCScope;
  94 class G1HeapVerifier;
  95 class G1HeapSizingPolicy;
  96 class G1HeapSummary;
  97 class G1EvacSummary;
  98 
  99 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
 100 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
 101 
 102 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
 103 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 104 
 105 // The G1 STW is alive closure.
 106 // An instance is embedded into the G1CH and used as the
 107 // (optional) _is_alive_non_header closure in the STW
 108 // reference processor. It is also extensively used during
 109 // reference processing during STW evacuation pauses.
 110 class G1STWIsAliveClosure: public BoolObjectClosure {
 111   G1CollectedHeap* _g1h;
 112 public:
 113   G1STWIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 114   bool do_object_b(oop p);
 115 };
 116 
 117 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 118  private:
 119   void reset_from_card_cache(uint start_idx, size_t num_regions);
 120  public:
 121   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 122 };
 123 
 124 class G1CollectedHeap : public CollectedHeap {
 125   friend class G1FreeCollectionSetTask;
 126   friend class VM_CollectForMetadataAllocation;
 127   friend class VM_G1CollectForAllocation;
 128   friend class VM_G1CollectFull;
 129   friend class VMStructs;
 130   friend class MutatorAllocRegion;
 131   friend class G1FullCollector;
 132   friend class G1GCAllocRegion;
 133   friend class G1HeapVerifier;
 134 
 135   // Closures used in implementation.
 136   friend class G1ParScanThreadState;
 137   friend class G1ParScanThreadStateSet;
 138   friend class G1ParTask;
 139   friend class G1PLABAllocator;
 140   friend class G1PrepareCompactClosure;
 141 
 142   // Other related classes.
 143   friend class HeapRegionClaimer;
 144 
 145   // Testing classes.
 146   friend class G1CheckCSetFastTableClosure;
 147 
 148 private:
 149   G1YoungRemSetSamplingThread* _young_gen_sampling_thread;
 150 
 151   WorkGang* _workers;
 152   G1CollectorPolicy* _collector_policy;
 153   G1CardTable* _card_table;
 154 
 155   SoftRefPolicy      _soft_ref_policy;
 156 
 157   GCMemoryManager _memory_manager;
 158   GCMemoryManager _full_gc_memory_manager;
 159 
 160   MemoryPool* _eden_pool;
 161   MemoryPool* _survivor_pool;
 162   MemoryPool* _old_pool;
 163 
 164   static size_t _humongous_object_threshold_in_words;
 165 
 166   // It keeps track of the old regions.
 167   HeapRegionSet _old_set;
 168 
 169   // It keeps track of the humongous regions.
 170   HeapRegionSet _humongous_set;
 171 
 172   virtual void initialize_serviceability();
 173 
 174   void eagerly_reclaim_humongous_regions();
 175   // Start a new incremental collection set for the next pause.
 176   void start_new_collection_set();
 177 
 178   // The number of regions we could create by expansion.
 179   uint _expansion_regions;
 180 
 181   // The block offset table for the G1 heap.
 182   G1BlockOffsetTable* _bot;
 183 
 184   // Tears down the region sets / lists so that they are empty and the
 185   // regions on the heap do not belong to a region set / list. The
 186   // only exception is the humongous set which we leave unaltered. If
 187   // free_list_only is true, it will only tear down the master free
 188   // list. It is called before a Full GC (free_list_only == false) or
 189   // before heap shrinking (free_list_only == true).
 190   void tear_down_region_sets(bool free_list_only);
 191 
 192   // Rebuilds the region sets / lists so that they are repopulated to
 193   // reflect the contents of the heap. The only exception is the
 194   // humongous set which was not torn down in the first place. If
 195   // free_list_only is true, it will only rebuild the master free
 196   // list. It is called after a Full GC (free_list_only == false) or
 197   // after heap shrinking (free_list_only == true).
 198   void rebuild_region_sets(bool free_list_only);
 199 
 200   // Callback for region mapping changed events.
 201   G1RegionMappingChangedListener _listener;
 202 
 203   // The sequence of all heap regions in the heap.
 204   HeapRegionManager _hrm;
 205 
 206   // Manages all allocations with regions except humongous object allocations.
 207   G1Allocator* _allocator;
 208 
 209   // Manages all heap verification.
 210   G1HeapVerifier* _verifier;
 211 
 212   // Outside of GC pauses, the number of bytes used in all regions other
 213   // than the current allocation region(s).
 214   size_t _summary_bytes_used;
 215 
 216   void increase_used(size_t bytes);
 217   void decrease_used(size_t bytes);
 218 
 219   void set_used(size_t bytes);
 220 
 221   // Class that handles archive allocation ranges.
 222   G1ArchiveAllocator* _archive_allocator;
 223 
 224   // GC allocation statistics policy for survivors.
 225   G1EvacStats _survivor_evac_stats;
 226 
 227   // GC allocation statistics policy for tenured objects.
 228   G1EvacStats _old_evac_stats;
 229 
 230   // It specifies whether we should attempt to expand the heap after a
 231   // region allocation failure. If heap expansion fails we set this to
 232   // false so that we don't re-attempt the heap expansion (it's likely
 233   // that subsequent expansion attempts will also fail if one fails).
 234   // Currently, it is only consulted during GC and it's reset at the
 235   // start of each GC.
 236   bool _expand_heap_after_alloc_failure;
 237 
 238   // Helper for monitoring and management support.
 239   G1MonitoringSupport* _g1mm;
 240 
 241   // Records whether the region at the given index is (still) a
 242   // candidate for eager reclaim.  Only valid for humongous start
 243   // regions; other regions have unspecified values.  Humongous start
 244   // regions are initialized at start of collection pause, with
 245   // candidates removed from the set as they are found reachable from
 246   // roots or the young generation.
 247   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 248    protected:
 249     bool default_value() const { return false; }
 250    public:
 251     void clear() { G1BiasedMappedArray<bool>::clear(); }
 252     void set_candidate(uint region, bool value) {
 253       set_by_index(region, value);
 254     }
 255     bool is_candidate(uint region) {
 256       return get_by_index(region);
 257     }
 258   };
 259 
 260   HumongousReclaimCandidates _humongous_reclaim_candidates;
 261   // Stores whether during humongous object registration we found candidate regions.
 262   // If not, we can skip a few steps.
 263   bool _has_humongous_reclaim_candidates;
 264 
 265   G1HRPrinter _hr_printer;
 266 
 267   // It decides whether an explicit GC should start a concurrent cycle
 268   // instead of doing a STW GC. Currently, a concurrent cycle is
 269   // explicitly started if:
 270   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 271   // (b) cause == _g1_humongous_allocation
 272   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 273   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 274   // (e) cause == _wb_conc_mark
 275   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 276 
 277   // indicates whether we are in young or mixed GC mode
 278   G1CollectorState _collector_state;
 279 
 280   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 281   // concurrent cycles) we have started.
 282   volatile uint _old_marking_cycles_started;
 283 
 284   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 285   // concurrent cycles) we have completed.
 286   volatile uint _old_marking_cycles_completed;
 287 
 288   // This is a non-product method that is helpful for testing. It is
 289   // called at the end of a GC and artificially expands the heap by
 290   // allocating a number of dead regions. This way we can induce very
 291   // frequent marking cycles and stress the cleanup / concurrent
 292   // cleanup code more (as all the regions that will be allocated by
 293   // this method will be found dead by the marking cycle).
 294   void allocate_dummy_regions() PRODUCT_RETURN;
 295 
 296   // If the HR printer is active, dump the state of the regions in the
 297   // heap after a compaction.
 298   void print_hrm_post_compaction();
 299 
 300   // Create a memory mapper for auxiliary data structures of the given size and
 301   // translation factor.
 302   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 303                                                          size_t size,
 304                                                          size_t translation_factor);
 305 
 306   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 307 
 308   // These are macros so that, if the assert fires, we get the correct
 309   // line number, file, etc.
 310 
 311 #define heap_locking_asserts_params(_extra_message_)                          \
 312   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 313   (_extra_message_),                                                          \
 314   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 315   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 316   BOOL_TO_STR(Thread::current()->is_VM_thread())
 317 
 318 #define assert_heap_locked()                                                  \
 319   do {                                                                        \
 320     assert(Heap_lock->owned_by_self(),                                        \
 321            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 322   } while (0)
 323 
 324 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 325   do {                                                                        \
 326     assert(Heap_lock->owned_by_self() ||                                      \
 327            (SafepointSynchronize::is_at_safepoint() &&                        \
 328              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 329            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 330                                         "should be at a safepoint"));         \
 331   } while (0)
 332 
 333 #define assert_heap_locked_and_not_at_safepoint()                             \
 334   do {                                                                        \
 335     assert(Heap_lock->owned_by_self() &&                                      \
 336                                     !SafepointSynchronize::is_at_safepoint(), \
 337           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 338                                        "should not be at a safepoint"));      \
 339   } while (0)
 340 
 341 #define assert_heap_not_locked()                                              \
 342   do {                                                                        \
 343     assert(!Heap_lock->owned_by_self(),                                       \
 344         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 345   } while (0)
 346 
 347 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 348   do {                                                                        \
 349     assert(!Heap_lock->owned_by_self() &&                                     \
 350                                     !SafepointSynchronize::is_at_safepoint(), \
 351       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 352                                    "should not be at a safepoint"));          \
 353   } while (0)
 354 
 355 #define assert_at_safepoint_on_vm_thread()                                    \
 356   do {                                                                        \
 357     assert_at_safepoint();                                                    \
 358     assert(Thread::current_or_null() != NULL, "no current thread");           \
 359     assert(Thread::current()->is_VM_thread(), "current thread is not VM thread"); \
 360   } while (0)
 361 
 362   // The young region list.
 363   G1EdenRegions _eden;
 364   G1SurvivorRegions _survivor;
 365 
 366   STWGCTimer* _gc_timer_stw;
 367 
 368   G1NewTracer* _gc_tracer_stw;
 369 
 370   // The current policy object for the collector.
 371   G1Policy* _g1_policy;
 372   G1HeapSizingPolicy* _heap_sizing_policy;
 373 
 374   G1CollectionSet _collection_set;
 375 
 376   // Try to allocate a single non-humongous HeapRegion sufficient for
 377   // an allocation of the given word_size. If do_expand is true,
 378   // attempt to expand the heap if necessary to satisfy the allocation
 379   // request. If the region is to be used as an old region or for a
 380   // humongous object, set is_old to true. If not, to false.
 381   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 382 
 383   // Initialize a contiguous set of free regions of length num_regions
 384   // and starting at index first so that they appear as a single
 385   // humongous region.
 386   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 387                                                       uint num_regions,
 388                                                       size_t word_size);
 389 
 390   // Attempt to allocate a humongous object of the given size. Return
 391   // NULL if unsuccessful.
 392   HeapWord* humongous_obj_allocate(size_t word_size);
 393 
 394   // The following two methods, allocate_new_tlab() and
 395   // mem_allocate(), are the two main entry points from the runtime
 396   // into the G1's allocation routines. They have the following
 397   // assumptions:
 398   //
 399   // * They should both be called outside safepoints.
 400   //
 401   // * They should both be called without holding the Heap_lock.
 402   //
 403   // * All allocation requests for new TLABs should go to
 404   //   allocate_new_tlab().
 405   //
 406   // * All non-TLAB allocation requests should go to mem_allocate().
 407   //
 408   // * If either call cannot satisfy the allocation request using the
 409   //   current allocating region, they will try to get a new one. If
 410   //   this fails, they will attempt to do an evacuation pause and
 411   //   retry the allocation.
 412   //
 413   // * If all allocation attempts fail, even after trying to schedule
 414   //   an evacuation pause, allocate_new_tlab() will return NULL,
 415   //   whereas mem_allocate() will attempt a heap expansion and/or
 416   //   schedule a Full GC.
 417   //
 418   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 419   //   should never be called with word_size being humongous. All
 420   //   humongous allocation requests should go to mem_allocate() which
 421   //   will satisfy them with a special path.
 422 
 423   virtual HeapWord* allocate_new_tlab(size_t word_size);
 424 
 425   virtual HeapWord* mem_allocate(size_t word_size,
 426                                  bool*  gc_overhead_limit_was_exceeded);
 427 
 428   // First-level mutator allocation attempt: try to allocate out of
 429   // the mutator alloc region without taking the Heap_lock. This
 430   // should only be used for non-humongous allocations.
 431   inline HeapWord* attempt_allocation(size_t word_size);
 432 
 433   // Second-level mutator allocation attempt: take the Heap_lock and
 434   // retry the allocation attempt, potentially scheduling a GC
 435   // pause. This should only be used for non-humongous allocations.
 436   HeapWord* attempt_allocation_slow(size_t word_size);
 437 
 438   // Takes the Heap_lock and attempts a humongous allocation. It can
 439   // potentially schedule a GC pause.
 440   HeapWord* attempt_allocation_humongous(size_t word_size);
 441 
 442   // Allocation attempt that should be called during safepoints (e.g.,
 443   // at the end of a successful GC). expect_null_mutator_alloc_region
 444   // specifies whether the mutator alloc region is expected to be NULL
 445   // or not.
 446   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 447                                             bool expect_null_mutator_alloc_region);
 448 
 449   // These methods are the "callbacks" from the G1AllocRegion class.
 450 
 451   // For mutator alloc regions.
 452   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 453   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 454                                    size_t allocated_bytes);
 455 
 456   // For GC alloc regions.
 457   bool has_more_regions(InCSetState dest);
 458   HeapRegion* new_gc_alloc_region(size_t word_size, InCSetState dest);
 459   void retire_gc_alloc_region(HeapRegion* alloc_region,
 460                               size_t allocated_bytes, InCSetState dest);
 461 
 462   // - if explicit_gc is true, the GC is for a System.gc() etc,
 463   //   otherwise it's for a failed allocation.
 464   // - if clear_all_soft_refs is true, all soft references should be
 465   //   cleared during the GC.
 466   // - it returns false if it is unable to do the collection due to the
 467   //   GC locker being active, true otherwise.
 468   bool do_full_collection(bool explicit_gc,
 469                           bool clear_all_soft_refs);
 470 
 471   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 472   virtual void do_full_collection(bool clear_all_soft_refs);
 473 
 474   // Resize the heap if necessary after a full collection.
 475   void resize_if_necessary_after_full_collection();
 476 
 477   // Callback from VM_G1CollectForAllocation operation.
 478   // This function does everything necessary/possible to satisfy a
 479   // failed allocation request (including collection, expansion, etc.)
 480   HeapWord* satisfy_failed_allocation(size_t word_size,
 481                                       bool* succeeded);
 482   // Internal helpers used during full GC to split it up to
 483   // increase readability.
 484   void abort_concurrent_cycle();
 485   void verify_before_full_collection(bool explicit_gc);
 486   void prepare_heap_for_full_collection();
 487   void prepare_heap_for_mutators();
 488   void abort_refinement();
 489   void verify_after_full_collection();
 490   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 491 
 492   // Helper method for satisfy_failed_allocation()
 493   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 494                                              bool do_gc,
 495                                              bool clear_all_soft_refs,
 496                                              bool expect_null_mutator_alloc_region,
 497                                              bool* gc_succeeded);
 498 
 499   // Attempting to expand the heap sufficiently
 500   // to support an allocation of the given "word_size".  If
 501   // successful, perform the allocation and return the address of the
 502   // allocated block, or else "NULL".
 503   HeapWord* expand_and_allocate(size_t word_size);
 504 
 505   // Preserve any referents discovered by concurrent marking that have not yet been
 506   // copied by the STW pause.
 507   void preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states);
 508   // Process any reference objects discovered during
 509   // an incremental evacuation pause.
 510   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 511 
 512   // Enqueue any remaining discovered references
 513   // after processing.
 514   void enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 515 
 516   // Merges the information gathered on a per-thread basis for all worker threads
 517   // during GC into global variables.
 518   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 519 public:
 520   G1YoungRemSetSamplingThread* sampling_thread() const { return _young_gen_sampling_thread; }
 521 
 522   WorkGang* workers() const { return _workers; }
 523 
 524   G1Allocator* allocator() {
 525     return _allocator;
 526   }
 527 
 528   G1HeapVerifier* verifier() {
 529     return _verifier;
 530   }
 531 
 532   G1MonitoringSupport* g1mm() {
 533     assert(_g1mm != NULL, "should have been initialized");
 534     return _g1mm;
 535   }
 536 
 537   // Expand the garbage-first heap by at least the given size (in bytes!).
 538   // Returns true if the heap was expanded by the requested amount;
 539   // false otherwise.
 540   // (Rounds up to a HeapRegion boundary.)
 541   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 542 
 543   // Returns the PLAB statistics for a given destination.
 544   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 545 
 546   // Determines PLAB size for a given destination.
 547   inline size_t desired_plab_sz(InCSetState dest);
 548 
 549   // Do anything common to GC's.
 550   void gc_prologue(bool full);
 551   void gc_epilogue(bool full);
 552 
 553   // Does the given region fulfill remembered set based eager reclaim candidate requirements?
 554   bool is_potential_eager_reclaim_candidate(HeapRegion* r) const;
 555 
 556   // Modify the reclaim candidate set and test for presence.
 557   // These are only valid for starts_humongous regions.
 558   inline void set_humongous_reclaim_candidate(uint region, bool value);
 559   inline bool is_humongous_reclaim_candidate(uint region);
 560 
 561   // Remove from the reclaim candidate set.  Also remove from the
 562   // collection set so that later encounters avoid the slow path.
 563   inline void set_humongous_is_live(oop obj);
 564 
 565   // Register the given region to be part of the collection set.
 566   inline void register_humongous_region_with_cset(uint index);
 567   // Register regions with humongous objects (actually on the start region) in
 568   // the in_cset_fast_test table.
 569   void register_humongous_regions_with_cset();
 570   // We register a region with the fast "in collection set" test. We
 571   // simply set to true the array slot corresponding to this region.
 572   void register_young_region_with_cset(HeapRegion* r) {
 573     _in_cset_fast_test.set_in_young(r->hrm_index());
 574   }
 575   void register_old_region_with_cset(HeapRegion* r) {
 576     _in_cset_fast_test.set_in_old(r->hrm_index());
 577   }
 578   void clear_in_cset(const HeapRegion* hr) {
 579     _in_cset_fast_test.clear(hr);
 580   }
 581 
 582   void clear_cset_fast_test() {
 583     _in_cset_fast_test.clear();
 584   }
 585 
 586   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 587 
 588   // This is called at the start of either a concurrent cycle or a Full
 589   // GC to update the number of old marking cycles started.
 590   void increment_old_marking_cycles_started();
 591 
 592   // This is called at the end of either a concurrent cycle or a Full
 593   // GC to update the number of old marking cycles completed. Those two
 594   // can happen in a nested fashion, i.e., we start a concurrent
 595   // cycle, a Full GC happens half-way through it which ends first,
 596   // and then the cycle notices that a Full GC happened and ends
 597   // too. The concurrent parameter is a boolean to help us do a bit
 598   // tighter consistency checking in the method. If concurrent is
 599   // false, the caller is the inner caller in the nesting (i.e., the
 600   // Full GC). If concurrent is true, the caller is the outer caller
 601   // in this nesting (i.e., the concurrent cycle). Further nesting is
 602   // not currently supported. The end of this call also notifies
 603   // the FullGCCount_lock in case a Java thread is waiting for a full
 604   // GC to happen (e.g., it called System.gc() with
 605   // +ExplicitGCInvokesConcurrent).
 606   void increment_old_marking_cycles_completed(bool concurrent);
 607 
 608   uint old_marking_cycles_completed() {
 609     return _old_marking_cycles_completed;
 610   }
 611 
 612   G1HRPrinter* hr_printer() { return &_hr_printer; }
 613 
 614   // Allocates a new heap region instance.
 615   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 616 
 617   // Allocate the highest free region in the reserved heap. This will commit
 618   // regions as necessary.
 619   HeapRegion* alloc_highest_free_region();
 620 
 621   // Frees a non-humongous region by initializing its contents and
 622   // adding it to the free list that's passed as a parameter (this is
 623   // usually a local list which will be appended to the master free
 624   // list later). The used bytes of freed regions are accumulated in
 625   // pre_used. If skip_remset is true, the region's RSet will not be freed
 626   // up. If skip_hot_card_cache is true, the region's hot card cache will not
 627   // be freed up. The assumption is that this will be done later.
 628   // The locked parameter indicates if the caller has already taken
 629   // care of proper synchronization. This may allow some optimizations.
 630   void free_region(HeapRegion* hr,
 631                    FreeRegionList* free_list,
 632                    bool skip_remset,
 633                    bool skip_hot_card_cache = false,
 634                    bool locked = false);
 635 
 636   // It dirties the cards that cover the block so that the post
 637   // write barrier never queues anything when updating objects on this
 638   // block. It is assumed (and in fact we assert) that the block
 639   // belongs to a young region.
 640   inline void dirty_young_block(HeapWord* start, size_t word_size);
 641 
 642   // Frees a humongous region by collapsing it into individual regions
 643   // and calling free_region() for each of them. The freed regions
 644   // will be added to the free list that's passed as a parameter (this
 645   // is usually a local list which will be appended to the master free
 646   // list later).
 647   // The method assumes that only a single thread is ever calling
 648   // this for a particular region at once.
 649   void free_humongous_region(HeapRegion* hr,
 650                              FreeRegionList* free_list);
 651 
 652   // Facility for allocating in 'archive' regions in high heap memory and
 653   // recording the allocated ranges. These should all be called from the
 654   // VM thread at safepoints, without the heap lock held. They can be used
 655   // to create and archive a set of heap regions which can be mapped at the
 656   // same fixed addresses in a subsequent JVM invocation.
 657   void begin_archive_alloc_range(bool open = false);
 658 
 659   // Check if the requested size would be too large for an archive allocation.
 660   bool is_archive_alloc_too_large(size_t word_size);
 661 
 662   // Allocate memory of the requested size from the archive region. This will
 663   // return NULL if the size is too large or if no memory is available. It
 664   // does not trigger a garbage collection.
 665   HeapWord* archive_mem_allocate(size_t word_size);
 666 
 667   // Optionally aligns the end address and returns the allocated ranges in
 668   // an array of MemRegions in order of ascending addresses.
 669   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 670                                size_t end_alignment_in_bytes = 0);
 671 
 672   // Facility for allocating a fixed range within the heap and marking
 673   // the containing regions as 'archive'. For use at JVM init time, when the
 674   // caller may mmap archived heap data at the specified range(s).
 675   // Verify that the MemRegions specified in the argument array are within the
 676   // reserved heap.
 677   bool check_archive_addresses(MemRegion* range, size_t count);
 678 
 679   // Commit the appropriate G1 regions containing the specified MemRegions
 680   // and mark them as 'archive' regions. The regions in the array must be
 681   // non-overlapping and in order of ascending address.
 682   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 683 
 684   // Insert any required filler objects in the G1 regions around the specified
 685   // ranges to make the regions parseable. This must be called after
 686   // alloc_archive_regions, and after class loading has occurred.
 687   void fill_archive_regions(MemRegion* range, size_t count);
 688 
 689   // For each of the specified MemRegions, uncommit the containing G1 regions
 690   // which had been allocated by alloc_archive_regions. This should be called
 691   // rather than fill_archive_regions at JVM init time if the archive file
 692   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 693   void dealloc_archive_regions(MemRegion* range, size_t count);
 694 
 695 private:
 696 
 697   // Shrink the garbage-first heap by at most the given size (in bytes!).
 698   // (Rounds down to a HeapRegion boundary.)
 699   void shrink(size_t expand_bytes);
 700   void shrink_helper(size_t expand_bytes);
 701 
 702   #if TASKQUEUE_STATS
 703   static void print_taskqueue_stats_hdr(outputStream* const st);
 704   void print_taskqueue_stats() const;
 705   void reset_taskqueue_stats();
 706   #endif // TASKQUEUE_STATS
 707 
 708   // Schedule the VM operation that will do an evacuation pause to
 709   // satisfy an allocation request of word_size. *succeeded will
 710   // return whether the VM operation was successful (it did do an
 711   // evacuation pause) or not (another thread beat us to it or the GC
 712   // locker was active). Given that we should not be holding the
 713   // Heap_lock when we enter this method, we will pass the
 714   // gc_count_before (i.e., total_collections()) as a parameter since
 715   // it has to be read while holding the Heap_lock. Currently, both
 716   // methods that call do_collection_pause() release the Heap_lock
 717   // before the call, so it's easy to read gc_count_before just before.
 718   HeapWord* do_collection_pause(size_t         word_size,
 719                                 uint           gc_count_before,
 720                                 bool*          succeeded,
 721                                 GCCause::Cause gc_cause);
 722 
 723   void wait_for_root_region_scanning();
 724 
 725   // The guts of the incremental collection pause, executed by the vm
 726   // thread. It returns false if it is unable to do the collection due
 727   // to the GC locker being active, true otherwise
 728   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 729 
 730   // Actually do the work of evacuating the collection set.
 731   void evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states);
 732 
 733   void pre_evacuate_collection_set();
 734   void post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 735 
 736   // Print the header for the per-thread termination statistics.
 737   static void print_termination_stats_hdr();
 738   // Print actual per-thread termination statistics.
 739   void print_termination_stats(uint worker_id,
 740                                double elapsed_ms,
 741                                double strong_roots_ms,
 742                                double term_ms,
 743                                size_t term_attempts,
 744                                size_t alloc_buffer_waste,
 745                                size_t undo_waste) const;
 746   // Update object copying statistics.
 747   void record_obj_copy_mem_stats();
 748 
 749   // The hot card cache for remembered set insertion optimization.
 750   G1HotCardCache* _hot_card_cache;
 751 
 752   // The g1 remembered set of the heap.
 753   G1RemSet* _g1_rem_set;
 754 
 755   // A set of cards that cover the objects for which the Rsets should be updated
 756   // concurrently after the collection.
 757   DirtyCardQueueSet _dirty_card_queue_set;
 758 
 759   // After a collection pause, convert the regions in the collection set into free
 760   // regions.
 761   void free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 762 
 763   // Abandon the current collection set without recording policy
 764   // statistics or updating free lists.
 765   void abandon_collection_set(G1CollectionSet* collection_set);
 766 
 767   // The concurrent marker (and the thread it runs in.)
 768   G1ConcurrentMark* _cm;
 769   ConcurrentMarkThread* _cmThread;
 770 
 771   // The concurrent refiner.
 772   G1ConcurrentRefine* _cr;
 773 
 774   // The parallel task queues
 775   RefToScanQueueSet *_task_queues;
 776 
 777   // True iff a evacuation has failed in the current collection.
 778   bool _evacuation_failed;
 779 
 780   EvacuationFailedInfo* _evacuation_failed_info_array;
 781 
 782   // Failed evacuations cause some logical from-space objects to have
 783   // forwarding pointers to themselves.  Reset them.
 784   void remove_self_forwarding_pointers();
 785 
 786   // Restore the objects in the regions in the collection set after an
 787   // evacuation failure.
 788   void restore_after_evac_failure();
 789 
 790   PreservedMarksSet _preserved_marks_set;
 791 
 792   // Preserve the mark of "obj", if necessary, in preparation for its mark
 793   // word being overwritten with a self-forwarding-pointer.
 794   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 795 
 796 #ifndef PRODUCT
 797   // Support for forcing evacuation failures. Analogous to
 798   // PromotionFailureALot for the other collectors.
 799 
 800   // Records whether G1EvacuationFailureALot should be in effect
 801   // for the current GC
 802   bool _evacuation_failure_alot_for_current_gc;
 803 
 804   // Used to record the GC number for interval checking when
 805   // determining whether G1EvaucationFailureALot is in effect
 806   // for the current GC.
 807   size_t _evacuation_failure_alot_gc_number;
 808 
 809   // Count of the number of evacuations between failures.
 810   volatile size_t _evacuation_failure_alot_count;
 811 
 812   // Set whether G1EvacuationFailureALot should be in effect
 813   // for the current GC (based upon the type of GC and which
 814   // command line flags are set);
 815   inline bool evacuation_failure_alot_for_gc_type(bool for_young_gc,
 816                                                   bool during_initial_mark,
 817                                                   bool mark_or_rebuild_in_progress);
 818 
 819   inline void set_evacuation_failure_alot_for_current_gc();
 820 
 821   // Return true if it's time to cause an evacuation failure.
 822   inline bool evacuation_should_fail();
 823 
 824   // Reset the G1EvacuationFailureALot counters.  Should be called at
 825   // the end of an evacuation pause in which an evacuation failure occurred.
 826   inline void reset_evacuation_should_fail();
 827 #endif // !PRODUCT
 828 
 829   // ("Weak") Reference processing support.
 830   //
 831   // G1 has 2 instances of the reference processor class. One
 832   // (_ref_processor_cm) handles reference object discovery
 833   // and subsequent processing during concurrent marking cycles.
 834   //
 835   // The other (_ref_processor_stw) handles reference object
 836   // discovery and processing during full GCs and incremental
 837   // evacuation pauses.
 838   //
 839   // During an incremental pause, reference discovery will be
 840   // temporarily disabled for _ref_processor_cm and will be
 841   // enabled for _ref_processor_stw. At the end of the evacuation
 842   // pause references discovered by _ref_processor_stw will be
 843   // processed and discovery will be disabled. The previous
 844   // setting for reference object discovery for _ref_processor_cm
 845   // will be re-instated.
 846   //
 847   // At the start of marking:
 848   //  * Discovery by the CM ref processor is verified to be inactive
 849   //    and it's discovered lists are empty.
 850   //  * Discovery by the CM ref processor is then enabled.
 851   //
 852   // At the end of marking:
 853   //  * Any references on the CM ref processor's discovered
 854   //    lists are processed (possibly MT).
 855   //
 856   // At the start of full GC we:
 857   //  * Disable discovery by the CM ref processor and
 858   //    empty CM ref processor's discovered lists
 859   //    (without processing any entries).
 860   //  * Verify that the STW ref processor is inactive and it's
 861   //    discovered lists are empty.
 862   //  * Temporarily set STW ref processor discovery as single threaded.
 863   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 864   //    field.
 865   //  * Finally enable discovery by the STW ref processor.
 866   //
 867   // The STW ref processor is used to record any discovered
 868   // references during the full GC.
 869   //
 870   // At the end of a full GC we:
 871   //  * Enqueue any reference objects discovered by the STW ref processor
 872   //    that have non-live referents. This has the side-effect of
 873   //    making the STW ref processor inactive by disabling discovery.
 874   //  * Verify that the CM ref processor is still inactive
 875   //    and no references have been placed on it's discovered
 876   //    lists (also checked as a precondition during initial marking).
 877 
 878   // The (stw) reference processor...
 879   ReferenceProcessor* _ref_processor_stw;
 880 
 881   // During reference object discovery, the _is_alive_non_header
 882   // closure (if non-null) is applied to the referent object to
 883   // determine whether the referent is live. If so then the
 884   // reference object does not need to be 'discovered' and can
 885   // be treated as a regular oop. This has the benefit of reducing
 886   // the number of 'discovered' reference objects that need to
 887   // be processed.
 888   //
 889   // Instance of the is_alive closure for embedding into the
 890   // STW reference processor as the _is_alive_non_header field.
 891   // Supplying a value for the _is_alive_non_header field is
 892   // optional but doing so prevents unnecessary additions to
 893   // the discovered lists during reference discovery.
 894   G1STWIsAliveClosure _is_alive_closure_stw;
 895 
 896   // The (concurrent marking) reference processor...
 897   ReferenceProcessor* _ref_processor_cm;
 898 
 899   // Instance of the concurrent mark is_alive closure for embedding
 900   // into the Concurrent Marking reference processor as the
 901   // _is_alive_non_header field. Supplying a value for the
 902   // _is_alive_non_header field is optional but doing so prevents
 903   // unnecessary additions to the discovered lists during reference
 904   // discovery.
 905   G1CMIsAliveClosure _is_alive_closure_cm;
 906 
 907 public:
 908 
 909   RefToScanQueue *task_queue(uint i) const;
 910 
 911   uint num_task_queues() const;
 912 
 913   // A set of cards where updates happened during the GC
 914   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 915 
 916   // Create a G1CollectedHeap with the specified policy.
 917   // Must call the initialize method afterwards.
 918   // May not return if something goes wrong.
 919   G1CollectedHeap(G1CollectorPolicy* policy);
 920 
 921 private:
 922   jint initialize_concurrent_refinement();
 923   jint initialize_young_gen_sampling_thread();
 924 public:
 925   // Initialize the G1CollectedHeap to have the initial and
 926   // maximum sizes and remembered and barrier sets
 927   // specified by the policy object.
 928   jint initialize();
 929 
 930   virtual void stop();
 931   virtual void safepoint_synchronize_begin();
 932   virtual void safepoint_synchronize_end();
 933 
 934   // Return the (conservative) maximum heap alignment for any G1 heap
 935   static size_t conservative_max_heap_alignment();
 936 
 937   // Does operations required after initialization has been done.
 938   void post_initialize();
 939 
 940   // Initialize weak reference processing.
 941   void ref_processing_init();
 942 
 943   virtual Name kind() const {
 944     return CollectedHeap::G1;
 945   }
 946 
 947   virtual const char* name() const {
 948     return "G1";
 949   }
 950 
 951   const G1CollectorState* collector_state() const { return &_collector_state; }
 952   G1CollectorState* collector_state() { return &_collector_state; }
 953 
 954   // The current policy object for the collector.
 955   G1Policy* g1_policy() const { return _g1_policy; }
 956 
 957   const G1CollectionSet* collection_set() const { return &_collection_set; }
 958   G1CollectionSet* collection_set() { return &_collection_set; }
 959 
 960   virtual CollectorPolicy* collector_policy() const;
 961 
 962   virtual SoftRefPolicy* soft_ref_policy();
 963 
 964   virtual GrowableArray<GCMemoryManager*> memory_managers();
 965   virtual GrowableArray<MemoryPool*> memory_pools();
 966 
 967   // The rem set and barrier set.
 968   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
 969 
 970   // Try to minimize the remembered set.
 971   void scrub_rem_set();
 972 
 973   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
 974   void iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i);
 975 
 976   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
 977   void iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i);
 978 
 979   // The shared block offset table array.
 980   G1BlockOffsetTable* bot() const { return _bot; }
 981 
 982   // Reference Processing accessors
 983 
 984   // The STW reference processor....
 985   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
 986 
 987   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
 988 
 989   // The Concurrent Marking reference processor...
 990   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
 991 
 992   size_t unused_committed_regions_in_bytes() const;
 993   virtual size_t capacity() const;
 994   virtual size_t used() const;
 995   // This should be called when we're not holding the heap lock. The
 996   // result might be a bit inaccurate.
 997   size_t used_unlocked() const;
 998   size_t recalculate_used() const;
 999 
1000   // These virtual functions do the actual allocation.
1001   // Some heaps may offer a contiguous region for shared non-blocking
1002   // allocation, via inlined code (by exporting the address of the top and
1003   // end fields defining the extent of the contiguous allocation region.)
1004   // But G1CollectedHeap doesn't yet support this.
1005 
1006   virtual bool is_maximal_no_gc() const {
1007     return _hrm.available() == 0;
1008   }
1009 
1010   // Returns whether there are any regions left in the heap for allocation.
1011   bool has_regions_left_for_allocation() const {
1012     return !is_maximal_no_gc() || num_free_regions() != 0;
1013   }
1014 
1015   // The current number of regions in the heap.
1016   uint num_regions() const { return _hrm.length(); }
1017 
1018   // The max number of regions in the heap.
1019   uint max_regions() const { return _hrm.max_length(); }
1020 
1021   // The number of regions that are completely free.
1022   uint num_free_regions() const { return _hrm.num_free_regions(); }
1023 
1024   MemoryUsage get_auxiliary_data_memory_usage() const {
1025     return _hrm.get_auxiliary_data_memory_usage();
1026   }
1027 
1028   // The number of regions that are not completely free.
1029   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1030 
1031 #ifdef ASSERT
1032   bool is_on_master_free_list(HeapRegion* hr) {
1033     return _hrm.is_free(hr);
1034   }
1035 #endif // ASSERT
1036 
1037   inline void old_set_add(HeapRegion* hr);
1038   inline void old_set_remove(HeapRegion* hr);
1039 
1040   size_t non_young_capacity_bytes() {
1041     return (_old_set.length() + _humongous_set.length()) * HeapRegion::GrainBytes;
1042   }
1043 
1044   // Determine whether the given region is one that we are using as an
1045   // old GC alloc region.
1046   bool is_old_gc_alloc_region(HeapRegion* hr);
1047 
1048   // Perform a collection of the heap; intended for use in implementing
1049   // "System.gc".  This probably implies as full a collection as the
1050   // "CollectedHeap" supports.
1051   virtual void collect(GCCause::Cause cause);
1052 
1053   // True iff an evacuation has failed in the most-recent collection.
1054   bool evacuation_failed() { return _evacuation_failed; }
1055 
1056   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1057   void prepend_to_freelist(FreeRegionList* list);
1058   void decrement_summary_bytes(size_t bytes);
1059 
1060   virtual bool is_in(const void* p) const;
1061 #ifdef ASSERT
1062   // Returns whether p is in one of the available areas of the heap. Slow but
1063   // extensive version.
1064   bool is_in_exact(const void* p) const;
1065 #endif
1066 
1067   // Return "TRUE" iff the given object address is within the collection
1068   // set. Assumes that the reference points into the heap.
1069   inline bool is_in_cset(const HeapRegion *hr);
1070   inline bool is_in_cset(oop obj);
1071   inline bool is_in_cset(HeapWord* addr);
1072 
1073   inline bool is_in_cset_or_humongous(const oop obj);
1074 
1075  private:
1076   // This array is used for a quick test on whether a reference points into
1077   // the collection set or not. Each of the array's elements denotes whether the
1078   // corresponding region is in the collection set or not.
1079   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1080 
1081  public:
1082 
1083   inline InCSetState in_cset_state(const oop obj);
1084 
1085   // Return "TRUE" iff the given object address is in the reserved
1086   // region of g1.
1087   bool is_in_g1_reserved(const void* p) const {
1088     return _hrm.reserved().contains(p);
1089   }
1090 
1091   // Returns a MemRegion that corresponds to the space that has been
1092   // reserved for the heap
1093   MemRegion g1_reserved() const {
1094     return _hrm.reserved();
1095   }
1096 
1097   virtual bool is_in_closed_subset(const void* p) const;
1098 
1099   G1HotCardCache* g1_hot_card_cache() const { return _hot_card_cache; }
1100 
1101   G1CardTable* card_table() const {
1102     return _card_table;
1103   }
1104 
1105   // Iteration functions.
1106 
1107   // Iterate over all objects, calling "cl.do_object" on each.
1108   virtual void object_iterate(ObjectClosure* cl);
1109 
1110   virtual void safe_object_iterate(ObjectClosure* cl) {
1111     object_iterate(cl);
1112   }
1113 
1114   // Iterate over heap regions, in address order, terminating the
1115   // iteration early if the "do_heap_region" method returns "true".
1116   void heap_region_iterate(HeapRegionClosure* blk) const;
1117 
1118   // Return the region with the given index. It assumes the index is valid.
1119   inline HeapRegion* region_at(uint index) const;
1120 
1121   // Return the next region (by index) that is part of the same
1122   // humongous object that hr is part of.
1123   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1124 
1125   // Calculate the region index of the given address. Given address must be
1126   // within the heap.
1127   inline uint addr_to_region(HeapWord* addr) const;
1128 
1129   inline HeapWord* bottom_addr_for_region(uint index) const;
1130 
1131   // Two functions to iterate over the heap regions in parallel. Threads
1132   // compete using the HeapRegionClaimer to claim the regions before
1133   // applying the closure on them.
1134   // The _from_worker_offset version uses the HeapRegionClaimer and
1135   // the worker id to calculate a start offset to prevent all workers to
1136   // start from the point.
1137   void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
1138                                                   HeapRegionClaimer* hrclaimer,
1139                                                   uint worker_id) const;
1140 
1141   void heap_region_par_iterate_from_start(HeapRegionClosure* cl,
1142                                           HeapRegionClaimer* hrclaimer) const;
1143 
1144   // Iterate over the regions (if any) in the current collection set.
1145   void collection_set_iterate(HeapRegionClosure* blk);
1146 
1147   // Iterate over the regions (if any) in the current collection set. Starts the
1148   // iteration over the entire collection set so that the start regions of a given
1149   // worker id over the set active_workers are evenly spread across the set of
1150   // collection set regions.
1151   void collection_set_iterate_from(HeapRegionClosure *blk, uint worker_id);
1152 
1153   // Returns the HeapRegion that contains addr. addr must not be NULL.
1154   template <class T>
1155   inline HeapRegion* heap_region_containing(const T addr) const;
1156 
1157   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1158   // each address in the (reserved) heap is a member of exactly
1159   // one block.  The defining characteristic of a block is that it is
1160   // possible to find its size, and thus to progress forward to the next
1161   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1162   // represent Java objects, or they might be free blocks in a
1163   // free-list-based heap (or subheap), as long as the two kinds are
1164   // distinguishable and the size of each is determinable.
1165 
1166   // Returns the address of the start of the "block" that contains the
1167   // address "addr".  We say "blocks" instead of "object" since some heaps
1168   // may not pack objects densely; a chunk may either be an object or a
1169   // non-object.
1170   virtual HeapWord* block_start(const void* addr) const;
1171 
1172   // Requires "addr" to be the start of a chunk, and returns its size.
1173   // "addr + size" is required to be the start of a new chunk, or the end
1174   // of the active area of the heap.
1175   virtual size_t block_size(const HeapWord* addr) const;
1176 
1177   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1178   // the block is an object.
1179   virtual bool block_is_obj(const HeapWord* addr) const;
1180 
1181   // Section on thread-local allocation buffers (TLABs)
1182   // See CollectedHeap for semantics.
1183 
1184   bool supports_tlab_allocation() const;
1185   size_t tlab_capacity(Thread* ignored) const;
1186   size_t tlab_used(Thread* ignored) const;
1187   size_t max_tlab_size() const;
1188   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1189 
1190   inline bool is_in_young(const oop obj);
1191 
1192   // Returns "true" iff the given word_size is "very large".
1193   static bool is_humongous(size_t word_size) {
1194     // Note this has to be strictly greater-than as the TLABs
1195     // are capped at the humongous threshold and we want to
1196     // ensure that we don't try to allocate a TLAB as
1197     // humongous and that we don't allocate a humongous
1198     // object in a TLAB.
1199     return word_size > _humongous_object_threshold_in_words;
1200   }
1201 
1202   // Returns the humongous threshold for a specific region size
1203   static size_t humongous_threshold_for(size_t region_size) {
1204     return (region_size / 2);
1205   }
1206 
1207   // Returns the number of regions the humongous object of the given word size
1208   // requires.
1209   static size_t humongous_obj_size_in_regions(size_t word_size);
1210 
1211   // Print the maximum heap capacity.
1212   virtual size_t max_capacity() const;
1213 
1214   virtual jlong millis_since_last_gc();
1215 
1216 
1217   // Convenience function to be used in situations where the heap type can be
1218   // asserted to be this type.
1219   static G1CollectedHeap* heap();
1220 
1221   void set_region_short_lived_locked(HeapRegion* hr);
1222   // add appropriate methods for any other surv rate groups
1223 
1224   const G1SurvivorRegions* survivor() const { return &_survivor; }
1225 
1226   uint survivor_regions_count() const {
1227     return _survivor.length();
1228   }
1229 
1230   uint eden_regions_count() const {
1231     return _eden.length();
1232   }
1233 
1234   uint young_regions_count() const {
1235     return _eden.length() + _survivor.length();
1236   }
1237 
1238   uint old_regions_count() const { return _old_set.length(); }
1239 
1240   uint humongous_regions_count() const { return _humongous_set.length(); }
1241 
1242 #ifdef ASSERT
1243   bool check_young_list_empty();
1244 #endif
1245 
1246   // *** Stuff related to concurrent marking.  It's not clear to me that so
1247   // many of these need to be public.
1248 
1249   // The functions below are helper functions that a subclass of
1250   // "CollectedHeap" can use in the implementation of its virtual
1251   // functions.
1252   // This performs a concurrent marking of the live objects in a
1253   // bitmap off to the side.
1254   void do_concurrent_mark();
1255 
1256   bool isMarkedNext(oop obj) const;
1257 
1258   // Determine if an object is dead, given the object and also
1259   // the region to which the object belongs. An object is dead
1260   // iff a) it was not allocated since the last mark, b) it
1261   // is not marked, and c) it is not in an archive region.
1262   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1263     return
1264       hr->is_obj_dead(obj, _cm->prev_mark_bitmap()) &&
1265       !hr->is_archive();
1266   }
1267 
1268   // This function returns true when an object has been
1269   // around since the previous marking and hasn't yet
1270   // been marked during this marking, and is not in an archive region.
1271   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1272     return
1273       !hr->obj_allocated_since_next_marking(obj) &&
1274       !isMarkedNext(obj) &&
1275       !hr->is_archive();
1276   }
1277 
1278   // Determine if an object is dead, given only the object itself.
1279   // This will find the region to which the object belongs and
1280   // then call the region version of the same function.
1281 
1282   // Added if it is NULL it isn't dead.
1283 
1284   inline bool is_obj_dead(const oop obj) const;
1285 
1286   inline bool is_obj_ill(const oop obj) const;
1287 
1288   inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const;
1289   inline bool is_obj_dead_full(const oop obj) const;
1290 
1291   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1292 
1293   // Refinement
1294 
1295   G1ConcurrentRefine* concurrent_refine() const { return _cr; }
1296 
1297   // Optimized nmethod scanning support routines
1298 
1299   // Is an oop scavengeable
1300   virtual bool is_scavengable(oop obj);
1301 
1302   // Register the given nmethod with the G1 heap.
1303   virtual void register_nmethod(nmethod* nm);
1304 
1305   // Unregister the given nmethod from the G1 heap.
1306   virtual void unregister_nmethod(nmethod* nm);
1307 
1308   // Free up superfluous code root memory.
1309   void purge_code_root_memory();
1310 
1311   // Rebuild the strong code root lists for each region
1312   // after a full GC.
1313   void rebuild_strong_code_roots();
1314 
1315   // Partial cleaning used when class unloading is disabled.
1316   // Let the caller choose what structures to clean out:
1317   // - StringTable
1318   // - SymbolTable
1319   // - StringDeduplication structures
1320   void partial_cleaning(BoolObjectClosure* is_alive, bool unlink_strings, bool unlink_symbols, bool unlink_string_dedup);
1321 
1322   // Complete cleaning used when class unloading is enabled.
1323   // Cleans out all structures handled by partial_cleaning and also the CodeCache.
1324   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1325 
1326   // Redirty logged cards in the refinement queue.
1327   void redirty_logged_cards();
1328   // Verification
1329 
1330   // Perform any cleanup actions necessary before allowing a verification.
1331   virtual void prepare_for_verify();
1332 
1333   // Perform verification.
1334 
1335   // vo == UsePrevMarking -> use "prev" marking information,
1336   // vo == UseNextMarking -> use "next" marking information
1337   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
1338   //
1339   // NOTE: Only the "prev" marking information is guaranteed to be
1340   // consistent most of the time, so most calls to this should use
1341   // vo == UsePrevMarking.
1342   // Currently, there is only one case where this is called with
1343   // vo == UseNextMarking, which is to verify the "next" marking
1344   // information at the end of remark.
1345   // Currently there is only one place where this is called with
1346   // vo == UseFullMarking, which is to verify the marking during a
1347   // full GC.
1348   void verify(VerifyOption vo);
1349 
1350   // WhiteBox testing support.
1351   virtual bool supports_concurrent_phase_control() const;
1352   virtual const char* const* concurrent_phases() const;
1353   virtual bool request_concurrent_phase(const char* phase);
1354 
1355   // The methods below are here for convenience and dispatch the
1356   // appropriate method depending on value of the given VerifyOption
1357   // parameter. The values for that parameter, and their meanings,
1358   // are the same as those above.
1359 
1360   bool is_obj_dead_cond(const oop obj,
1361                         const HeapRegion* hr,
1362                         const VerifyOption vo) const;
1363 
1364   bool is_obj_dead_cond(const oop obj,
1365                         const VerifyOption vo) const;
1366 
1367   G1HeapSummary create_g1_heap_summary();
1368   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1369 
1370   // Printing
1371 private:
1372   void print_heap_regions() const;
1373   void print_regions_on(outputStream* st) const;
1374 
1375 public:
1376   virtual void print_on(outputStream* st) const;
1377   virtual void print_extended_on(outputStream* st) const;
1378   virtual void print_on_error(outputStream* st) const;
1379 
1380   virtual void print_gc_threads_on(outputStream* st) const;
1381   virtual void gc_threads_do(ThreadClosure* tc) const;
1382 
1383   // Override
1384   void print_tracing_info() const;
1385 
1386   // The following two methods are helpful for debugging RSet issues.
1387   void print_cset_rsets() PRODUCT_RETURN;
1388   void print_all_rsets() PRODUCT_RETURN;
1389 
1390 public:
1391   size_t pending_card_num();
1392 
1393 private:
1394   size_t _max_heap_capacity;
1395 };
1396 
1397 class G1ParEvacuateFollowersClosure : public VoidClosure {
1398 private:
1399   double _start_term;
1400   double _term_time;
1401   size_t _term_attempts;
1402 
1403   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1404   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
1405 protected:
1406   G1CollectedHeap*              _g1h;
1407   G1ParScanThreadState*         _par_scan_state;
1408   RefToScanQueueSet*            _queues;
1409   ParallelTaskTerminator*       _terminator;
1410 
1411   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1412   RefToScanQueueSet*      queues()         { return _queues; }
1413   ParallelTaskTerminator* terminator()     { return _terminator; }
1414 
1415 public:
1416   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1417                                 G1ParScanThreadState* par_scan_state,
1418                                 RefToScanQueueSet* queues,
1419                                 ParallelTaskTerminator* terminator)
1420     : _g1h(g1h), _par_scan_state(par_scan_state),
1421       _queues(queues), _terminator(terminator),
1422       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
1423 
1424   void do_void();
1425 
1426   double term_time() const { return _term_time; }
1427   size_t term_attempts() const { return _term_attempts; }
1428 
1429 private:
1430   inline bool offer_termination();
1431 };
1432 
1433 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP