1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_INLINE_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_INLINE_HPP
  27 
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1CollectedHeap.hpp"
  30 #include "gc/g1/g1CollectorState.hpp"
  31 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  32 #include "gc/g1/heapRegionManager.inline.hpp"
  33 #include "gc/g1/heapRegionSet.inline.hpp"
  34 #include "gc/shared/taskqueue.hpp"
  35 #include "runtime/orderAccess.inline.hpp"
  36 
  37 G1EvacStats* G1CollectedHeap::alloc_buffer_stats(InCSetState dest) {
  38   switch (dest.value()) {
  39     case InCSetState::Young:
  40       return &_survivor_evac_stats;
  41     case InCSetState::Old:
  42       return &_old_evac_stats;
  43     default:
  44       ShouldNotReachHere();
  45       return NULL; // Keep some compilers happy
  46   }
  47 }
  48 
  49 size_t G1CollectedHeap::desired_plab_sz(InCSetState dest) {
  50   size_t gclab_word_size = alloc_buffer_stats(dest)->desired_plab_sz(workers()->active_workers());
  51   // Prevent humongous PLAB sizes for two reasons:
  52   // * PLABs are allocated using a similar paths as oops, but should
  53   //   never be in a humongous region
  54   // * Allowing humongous PLABs needlessly churns the region free lists
  55   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
  56 }
  57 
  58 // Inline functions for G1CollectedHeap
  59 
  60 // Return the region with the given index. It assumes the index is valid.
  61 inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrm.at(index); }
  62 
  63 inline HeapRegion* G1CollectedHeap::next_region_in_humongous(HeapRegion* hr) const {
  64   return _hrm.next_region_in_humongous(hr);
  65 }
  66 
  67 inline uint G1CollectedHeap::addr_to_region(HeapWord* addr) const {
  68   assert(is_in_reserved(addr),
  69          "Cannot calculate region index for address " PTR_FORMAT " that is outside of the heap [" PTR_FORMAT ", " PTR_FORMAT ")",
  70          p2i(addr), p2i(reserved_region().start()), p2i(reserved_region().end()));
  71   return (uint)(pointer_delta(addr, reserved_region().start(), sizeof(uint8_t)) >> HeapRegion::LogOfHRGrainBytes);
  72 }
  73 
  74 inline HeapWord* G1CollectedHeap::bottom_addr_for_region(uint index) const {
  75   return _hrm.reserved().start() + index * HeapRegion::GrainWords;
  76 }
  77 
  78 template <class T>
  79 inline HeapRegion* G1CollectedHeap::heap_region_containing(const T addr) const {
  80   assert(addr != NULL, "invariant");
  81   assert(is_in_g1_reserved((const void*) addr),
  82          "Address " PTR_FORMAT " is outside of the heap ranging from [" PTR_FORMAT " to " PTR_FORMAT ")",
  83          p2i((void*)addr), p2i(g1_reserved().start()), p2i(g1_reserved().end()));
  84   return _hrm.addr_to_region((HeapWord*) addr);
  85 }
  86 
  87 inline void G1CollectedHeap::old_set_add(HeapRegion* hr) {
  88   _old_set.add(hr);
  89 }
  90 
  91 inline void G1CollectedHeap::old_set_remove(HeapRegion* hr) {
  92   _old_set.remove(hr);
  93 }
  94 
  95 // It dirties the cards that cover the block so that the post
  96 // write barrier never queues anything when updating objects on this
  97 // block. It is assumed (and in fact we assert) that the block
  98 // belongs to a young region.
  99 inline void
 100 G1CollectedHeap::dirty_young_block(HeapWord* start, size_t word_size) {
 101   assert_heap_not_locked();
 102 
 103   // Assign the containing region to containing_hr so that we don't
 104   // have to keep calling heap_region_containing() in the
 105   // asserts below.
 106   DEBUG_ONLY(HeapRegion* containing_hr = heap_region_containing(start);)
 107   assert(word_size > 0, "pre-condition");
 108   assert(containing_hr->is_in(start), "it should contain start");
 109   assert(containing_hr->is_young(), "it should be young");
 110   assert(!containing_hr->is_humongous(), "it should not be humongous");
 111 
 112   HeapWord* end = start + word_size;
 113   assert(containing_hr->is_in(end - 1), "it should also contain end - 1");
 114 
 115   MemRegion mr(start, end);
 116   card_table()->g1_mark_as_young(mr);
 117 }
 118 
 119 inline RefToScanQueue* G1CollectedHeap::task_queue(uint i) const {
 120   return _task_queues->queue(i);
 121 }
 122 
 123 inline bool G1CollectedHeap::isMarkedNext(oop obj) const {
 124   return _cm->next_mark_bitmap()->is_marked((HeapWord*)obj);
 125 }
 126 
 127 inline bool G1CollectedHeap::is_in_cset(oop obj) {
 128   return is_in_cset((HeapWord*)obj);
 129 }
 130 
 131 inline bool G1CollectedHeap::is_in_cset(HeapWord* addr) {
 132   return _in_cset_fast_test.is_in_cset(addr);
 133 }
 134 
 135 bool G1CollectedHeap::is_in_cset(const HeapRegion* hr) {
 136   return _in_cset_fast_test.is_in_cset(hr);
 137 }
 138 
 139 bool G1CollectedHeap::is_in_cset_or_humongous(const oop obj) {
 140   return _in_cset_fast_test.is_in_cset_or_humongous((HeapWord*)obj);
 141 }
 142 
 143 InCSetState G1CollectedHeap::in_cset_state(const oop obj) {
 144   return _in_cset_fast_test.at((HeapWord*)obj);
 145 }
 146 
 147 void G1CollectedHeap::register_humongous_region_with_cset(uint index) {
 148   _in_cset_fast_test.set_humongous(index);
 149 }
 150 
 151 #ifndef PRODUCT
 152 // Support for G1EvacuationFailureALot
 153 
 154 inline bool
 155 G1CollectedHeap::evacuation_failure_alot_for_gc_type(bool for_young_gc,
 156                                                      bool during_initial_mark,
 157                                                      bool mark_or_rebuild_in_progress) {
 158   bool res = false;
 159   if (mark_or_rebuild_in_progress) {
 160     res |= G1EvacuationFailureALotDuringConcMark;
 161   }
 162   if (during_initial_mark) {
 163     res |= G1EvacuationFailureALotDuringInitialMark;
 164   }
 165   if (for_young_gc) {
 166     res |= G1EvacuationFailureALotDuringYoungGC;
 167   } else {
 168     // GCs are mixed
 169     res |= G1EvacuationFailureALotDuringMixedGC;
 170   }
 171   return res;
 172 }
 173 
 174 inline void
 175 G1CollectedHeap::set_evacuation_failure_alot_for_current_gc() {
 176   if (G1EvacuationFailureALot) {
 177     // Note we can't assert that _evacuation_failure_alot_for_current_gc
 178     // is clear here. It may have been set during a previous GC but that GC
 179     // did not copy enough objects (i.e. G1EvacuationFailureALotCount) to
 180     // trigger an evacuation failure and clear the flags and and counts.
 181 
 182     // Check if we have gone over the interval.
 183     const size_t gc_num = total_collections();
 184     const size_t elapsed_gcs = gc_num - _evacuation_failure_alot_gc_number;
 185 
 186     _evacuation_failure_alot_for_current_gc = (elapsed_gcs >= G1EvacuationFailureALotInterval);
 187 
 188     // Now check if G1EvacuationFailureALot is enabled for the current GC type.
 189     const bool in_young_only_phase = collector_state()->in_young_only_phase();
 190     const bool in_initial_mark_gc = collector_state()->in_initial_mark_gc();
 191     const bool mark_or_rebuild_in_progress = collector_state()->mark_or_rebuild_in_progress();
 192 
 193     _evacuation_failure_alot_for_current_gc &=
 194       evacuation_failure_alot_for_gc_type(in_young_only_phase,
 195                                           in_initial_mark_gc,
 196                                           mark_or_rebuild_in_progress);
 197   }
 198 }
 199 
 200 inline bool G1CollectedHeap::evacuation_should_fail() {
 201   if (!G1EvacuationFailureALot || !_evacuation_failure_alot_for_current_gc) {
 202     return false;
 203   }
 204   // G1EvacuationFailureALot is in effect for current GC
 205   // Access to _evacuation_failure_alot_count is not atomic;
 206   // the value does not have to be exact.
 207   if (++_evacuation_failure_alot_count < G1EvacuationFailureALotCount) {
 208     return false;
 209   }
 210   _evacuation_failure_alot_count = 0;
 211   return true;
 212 }
 213 
 214 inline void G1CollectedHeap::reset_evacuation_should_fail() {
 215   if (G1EvacuationFailureALot) {
 216     _evacuation_failure_alot_gc_number = total_collections();
 217     _evacuation_failure_alot_count = 0;
 218     _evacuation_failure_alot_for_current_gc = false;
 219   }
 220 }
 221 #endif  // #ifndef PRODUCT
 222 
 223 inline bool G1CollectedHeap::is_in_young(const oop obj) {
 224   if (obj == NULL) {
 225     return false;
 226   }
 227   return heap_region_containing(obj)->is_young();
 228 }
 229 
 230 inline bool G1CollectedHeap::is_obj_dead(const oop obj) const {
 231   if (obj == NULL) {
 232     return false;
 233   }
 234   return is_obj_dead(obj, heap_region_containing(obj));
 235 }
 236 
 237 inline bool G1CollectedHeap::is_obj_ill(const oop obj) const {
 238   if (obj == NULL) {
 239     return false;
 240   }
 241   return is_obj_ill(obj, heap_region_containing(obj));
 242 }
 243 
 244 inline bool G1CollectedHeap::is_obj_dead_full(const oop obj, const HeapRegion* hr) const {
 245    return !isMarkedNext(obj) && !hr->is_archive();
 246 }
 247 
 248 inline bool G1CollectedHeap::is_obj_dead_full(const oop obj) const {
 249     return is_obj_dead_full(obj, heap_region_containing(obj));
 250 }
 251 
 252 inline void G1CollectedHeap::set_humongous_reclaim_candidate(uint region, bool value) {
 253   assert(_hrm.at(region)->is_starts_humongous(), "Must start a humongous object");
 254   _humongous_reclaim_candidates.set_candidate(region, value);
 255 }
 256 
 257 inline bool G1CollectedHeap::is_humongous_reclaim_candidate(uint region) {
 258   assert(_hrm.at(region)->is_starts_humongous(), "Must start a humongous object");
 259   return _humongous_reclaim_candidates.is_candidate(region);
 260 }
 261 
 262 inline void G1CollectedHeap::set_humongous_is_live(oop obj) {
 263   uint region = addr_to_region((HeapWord*)obj);
 264   // Clear the flag in the humongous_reclaim_candidates table.  Also
 265   // reset the entry in the _in_cset_fast_test table so that subsequent references
 266   // to the same humongous object do not go into the slow path again.
 267   // This is racy, as multiple threads may at the same time enter here, but this
 268   // is benign.
 269   // During collection we only ever clear the "candidate" flag, and only ever clear the
 270   // entry in the in_cset_fast_table.
 271   // We only ever evaluate the contents of these tables (in the VM thread) after
 272   // having synchronized the worker threads with the VM thread, or in the same
 273   // thread (i.e. within the VM thread).
 274   if (is_humongous_reclaim_candidate(region)) {
 275     set_humongous_reclaim_candidate(region, false);
 276     _in_cset_fast_test.clear_humongous(region);
 277   }
 278 }
 279 
 280 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_INLINE_HPP