/* * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_INLINE_HPP #define SHARE_VM_GC_G1_G1CONCURRENTMARK_INLINE_HPP #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1ConcurrentMark.hpp" #include "gc/g1/g1ConcurrentMarkBitMap.inline.hpp" #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.inline.hpp" #include "gc/g1/g1Policy.hpp" #include "gc/g1/g1RegionMarkStatsCache.inline.hpp" #include "gc/g1/g1RemSetTrackingPolicy.hpp" #include "gc/g1/heapRegionRemSet.hpp" #include "gc/g1/heapRegion.hpp" #include "gc/shared/suspendibleThreadSet.hpp" #include "gc/shared/taskqueue.inline.hpp" #include "utilities/bitMap.inline.hpp" inline bool G1ConcurrentMark::mark_in_next_bitmap(uint const worker_id, oop const obj, size_t const obj_size) { HeapRegion* const hr = _g1h->heap_region_containing(obj); return mark_in_next_bitmap(worker_id, hr, obj, obj_size); } inline bool G1ConcurrentMark::mark_in_next_bitmap(uint const worker_id, HeapRegion* const hr, oop const obj, size_t const obj_size) { assert(hr != NULL, "just checking"); assert(hr->is_in_reserved(obj), "Attempting to mark object at " PTR_FORMAT " that is not contained in the given region %u", p2i(obj), hr->hrm_index()); if (hr->obj_allocated_since_next_marking(obj)) { return false; } // Some callers may have stale objects to mark above nTAMS after humongous reclaim. // Can't assert that this is a valid object at this point, since it might be in the process of being copied by another thread. assert(!hr->is_continues_humongous(), "Should not try to mark object " PTR_FORMAT " in Humongous continues region %u above nTAMS " PTR_FORMAT, p2i(obj), hr->hrm_index(), p2i(hr->next_top_at_mark_start())); HeapWord* const obj_addr = (HeapWord*)obj; bool success = _next_mark_bitmap->par_mark(obj_addr); if (success) { add_to_liveness(worker_id, obj, obj_size == 0 ? obj->size() : obj_size); } return success; } #ifndef PRODUCT template inline void G1CMMarkStack::iterate(Fn fn) const { assert_at_safepoint_on_vm_thread(); size_t num_chunks = 0; TaskQueueEntryChunk* cur = _chunk_list; while (cur != NULL) { guarantee(num_chunks <= _chunks_in_chunk_list, "Found " SIZE_FORMAT " oop chunks which is more than there should be", num_chunks); for (size_t i = 0; i < EntriesPerChunk; ++i) { if (cur->data[i].is_null()) { break; } fn(cur->data[i]); } cur = cur->next; num_chunks++; } } #endif // It scans an object and visits its children. inline void G1CMTask::scan_task_entry(G1TaskQueueEntry task_entry) { process_grey_task_entry(task_entry); } inline void G1CMTask::push(G1TaskQueueEntry task_entry) { assert(task_entry.is_array_slice() || _g1h->is_in_g1_reserved(task_entry.obj()), "invariant"); assert(task_entry.is_array_slice() || !_g1h->is_on_master_free_list( _g1h->heap_region_containing(task_entry.obj())), "invariant"); assert(task_entry.is_array_slice() || !_g1h->is_obj_ill(task_entry.obj()), "invariant"); // FIXME!!! assert(task_entry.is_array_slice() || _next_mark_bitmap->is_marked((HeapWord*)task_entry.obj()), "invariant"); if (!_task_queue->push(task_entry)) { // The local task queue looks full. We need to push some entries // to the global stack. move_entries_to_global_stack(); // this should succeed since, even if we overflow the global // stack, we should have definitely removed some entries from the // local queue. So, there must be space on it. bool success = _task_queue->push(task_entry); assert(success, "invariant"); } } inline bool G1CMTask::is_below_finger(oop obj, HeapWord* global_finger) const { // If obj is above the global finger, then the mark bitmap scan // will find it later, and no push is needed. Similarly, if we have // a current region and obj is between the local finger and the // end of the current region, then no push is needed. The tradeoff // of checking both vs only checking the global finger is that the // local check will be more accurate and so result in fewer pushes, // but may also be a little slower. HeapWord* objAddr = (HeapWord*)obj; if (_finger != NULL) { // We have a current region. // Finger and region values are all NULL or all non-NULL. We // use _finger to check since we immediately use its value. assert(_curr_region != NULL, "invariant"); assert(_region_limit != NULL, "invariant"); assert(_region_limit <= global_finger, "invariant"); // True if obj is less than the local finger, or is between // the region limit and the global finger. if (objAddr < _finger) { return true; } else if (objAddr < _region_limit) { return false; } // Else check global finger. } // Check global finger. return objAddr < global_finger; } template inline void G1CMTask::process_grey_task_entry(G1TaskQueueEntry task_entry) { assert(scan || (task_entry.is_oop() && task_entry.obj()->is_typeArray()), "Skipping scan of grey non-typeArray"); assert(task_entry.is_array_slice() || _next_mark_bitmap->is_marked((HeapWord*)task_entry.obj()), "Any stolen object should be a slice or marked"); if (scan) { if (task_entry.is_array_slice()) { _words_scanned += _objArray_processor.process_slice(task_entry.slice()); } else { oop obj = task_entry.obj(); if (G1CMObjArrayProcessor::should_be_sliced(obj)) { _words_scanned += _objArray_processor.process_obj(obj); } else { _words_scanned += obj->oop_iterate_size(_cm_oop_closure);; } } } check_limits(); } inline size_t G1CMTask::scan_objArray(objArrayOop obj, MemRegion mr) { obj->oop_iterate(_cm_oop_closure, mr); return mr.word_size(); } inline HeapWord* G1ConcurrentMark::top_at_rebuild_start(uint region) const { assert(region < _g1h->max_regions(), "Tried to access TARS for region %u out of bounds", region); return _top_at_rebuild_starts[region]; } inline void G1ConcurrentMark::update_top_at_rebuild_start(HeapRegion* r) { uint const region = r->hrm_index(); assert(region < _g1h->max_regions(), "Tried to access TARS for region %u out of bounds", region); assert(_top_at_rebuild_starts[region] == NULL, "TARS for region %u has already been set to " PTR_FORMAT " should be NULL", region, p2i(_top_at_rebuild_starts[region])); G1RemSetTrackingPolicy* tracker = _g1h->g1_policy()->remset_tracker(); if (tracker->needs_scan_for_rebuild(r)) { _top_at_rebuild_starts[region] = r->top(); } else { // Leave TARS at NULL. } } inline void G1CMTask::update_liveness(oop const obj, const size_t obj_size) { _mark_stats_cache.add_live_words(_g1h->addr_to_region((HeapWord*)obj), obj_size); } inline void G1ConcurrentMark::add_to_liveness(uint worker_id, oop const obj, size_t size) { task(worker_id)->update_liveness(obj, size); } inline bool G1CMTask::make_reference_grey(oop obj) { if (!_cm->mark_in_next_bitmap(_worker_id, obj)) { return false; } // No OrderAccess:store_load() is needed. It is implicit in the // CAS done in G1CMBitMap::parMark() call in the routine above. HeapWord* global_finger = _cm->finger(); // We only need to push a newly grey object on the mark // stack if it is in a section of memory the mark bitmap // scan has already examined. Mark bitmap scanning // maintains progress "fingers" for determining that. // // Notice that the global finger might be moving forward // concurrently. This is not a problem. In the worst case, we // mark the object while it is above the global finger and, by // the time we read the global finger, it has moved forward // past this object. In this case, the object will probably // be visited when a task is scanning the region and will also // be pushed on the stack. So, some duplicate work, but no // correctness problems. if (is_below_finger(obj, global_finger)) { G1TaskQueueEntry entry = G1TaskQueueEntry::from_oop(obj); if (obj->is_typeArray()) { // Immediately process arrays of primitive types, rather // than pushing on the mark stack. This keeps us from // adding humongous objects to the mark stack that might // be reclaimed before the entry is processed - see // selection of candidates for eager reclaim of humongous // objects. The cost of the additional type test is // mitigated by avoiding a trip through the mark stack, // by only doing a bookkeeping update and avoiding the // actual scan of the object - a typeArray contains no // references, and the metadata is built-in. process_grey_task_entry(entry); } else { push(entry); } } return true; } template inline bool G1CMTask::deal_with_reference(T* p) { increment_refs_reached(); oop const obj = RawAccess::oop_load(p); if (obj == NULL) { return false; } return make_reference_grey(obj); } inline void G1ConcurrentMark::mark_in_prev_bitmap(oop p) { assert(!_prev_mark_bitmap->is_marked((HeapWord*) p), "sanity"); _prev_mark_bitmap->mark((HeapWord*) p); } bool G1ConcurrentMark::is_marked_in_prev_bitmap(oop p) const { assert(p != NULL && oopDesc::is_oop(p), "expected an oop"); return _prev_mark_bitmap->is_marked((HeapWord*)p); } bool G1ConcurrentMark::is_marked_in_next_bitmap(oop p) const { assert(p != NULL && oopDesc::is_oop(p), "expected an oop"); return _next_mark_bitmap->is_marked((HeapWord*)p); } inline bool G1ConcurrentMark::do_yield_check() { if (SuspendibleThreadSet::should_yield()) { SuspendibleThreadSet::yield(); return true; } else { return false; } } #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_INLINE_HPP