1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
  26 #define SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
  27 
  28 #include "gc/shared/referenceDiscoverer.hpp"
  29 #include "gc/shared/referencePolicy.hpp"
  30 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  31 #include "gc/shared/referenceProcessorStats.hpp"
  32 #include "memory/referenceType.hpp"
  33 #include "oops/instanceRefKlass.hpp"
  34 
  35 class GCTimer;
  36 
  37 // ReferenceProcessor class encapsulates the per-"collector" processing
  38 // of java.lang.Reference objects for GC. The interface is useful for supporting
  39 // a generational abstraction, in particular when there are multiple
  40 // generations that are being independently collected -- possibly
  41 // concurrently and/or incrementally.
  42 // ReferenceProcessor class abstracts away from a generational setting
  43 // by using a closure that determines whether a given reference or referent are
  44 // subject to this ReferenceProcessor's discovery, thus allowing its use in a
  45 // straightforward manner in a general, non-generational, non-contiguous generation
  46 // (or heap) setting.
  47 //
  48 
  49 // forward references
  50 class ReferencePolicy;
  51 class AbstractRefProcTaskExecutor;
  52 
  53 // List of discovered references.
  54 class DiscoveredList {
  55 public:
  56   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  57   inline oop head() const;
  58   HeapWord* adr_head() {
  59     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  60                                (HeapWord*)&_oop_head;
  61   }
  62   inline void set_head(oop o);
  63   inline bool is_empty() const;
  64   size_t length()               { return _len; }
  65   void   set_length(size_t len) { _len = len;  }
  66   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  67   void   dec_length(size_t dec) { _len -= dec; }
  68 private:
  69   // Set value depending on UseCompressedOops. This could be a template class
  70   // but then we have to fix all the instantiations and declarations that use this class.
  71   oop       _oop_head;
  72   narrowOop _compressed_head;
  73   size_t _len;
  74 };
  75 
  76 // Iterator for the list of discovered references.
  77 class DiscoveredListIterator {
  78 private:
  79   DiscoveredList&    _refs_list;
  80   HeapWord*          _prev_next;
  81   oop                _prev;
  82   oop                _ref;
  83   HeapWord*          _discovered_addr;
  84   oop                _next;
  85   HeapWord*          _referent_addr;
  86   oop                _referent;
  87   OopClosure*        _keep_alive;
  88   BoolObjectClosure* _is_alive;
  89 
  90   DEBUG_ONLY(
  91   oop                _first_seen; // cyclic linked list check
  92   )
  93 
  94   NOT_PRODUCT(
  95   size_t             _processed;
  96   size_t             _removed;
  97   )
  98 
  99 public:
 100   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 101                                 OopClosure*        keep_alive,
 102                                 BoolObjectClosure* is_alive);
 103 
 104   // End Of List.
 105   inline bool has_next() const { return _ref != NULL; }
 106 
 107   // Get oop to the Reference object.
 108   inline oop obj() const { return _ref; }
 109 
 110   // Get oop to the referent object.
 111   inline oop referent() const { return _referent; }
 112 
 113   // Returns true if referent is alive.
 114   inline bool is_referent_alive() const {
 115     return _is_alive->do_object_b(_referent);
 116   }
 117 
 118   // Loads data for the current reference.
 119   // The "allow_null_referent" argument tells us to allow for the possibility
 120   // of a NULL referent in the discovered Reference object. This typically
 121   // happens in the case of concurrent collectors that may have done the
 122   // discovery concurrently, or interleaved, with mutator execution.
 123   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 124 
 125   // Move to the next discovered reference.
 126   inline void next() {
 127     _prev_next = _discovered_addr;
 128     _prev = _ref;
 129     move_to_next();
 130   }
 131 
 132   // Remove the current reference from the list
 133   void remove();
 134 
 135   // Make the referent alive.
 136   inline void make_referent_alive() {
 137     if (UseCompressedOops) {
 138       _keep_alive->do_oop((narrowOop*)_referent_addr);
 139     } else {
 140       _keep_alive->do_oop((oop*)_referent_addr);
 141     }
 142   }
 143 
 144   // NULL out referent pointer.
 145   void clear_referent();
 146 
 147   // Statistics
 148   NOT_PRODUCT(
 149   inline size_t processed() const { return _processed; }
 150   inline size_t removed() const   { return _removed; }
 151   )
 152 
 153   inline void move_to_next() {
 154     if (_ref == _next) {
 155       // End of the list.
 156       _ref = NULL;
 157     } else {
 158       _ref = _next;
 159     }
 160     assert(_ref != _first_seen, "cyclic ref_list found");
 161     NOT_PRODUCT(_processed++);
 162   }
 163 };
 164 
 165 class ReferenceProcessor : public ReferenceDiscoverer {
 166   size_t total_count(DiscoveredList lists[]) const;
 167 
 168   // The SoftReference master timestamp clock
 169   static jlong _soft_ref_timestamp_clock;
 170 
 171   BoolObjectClosure* _is_subject_to_discovery; // determines whether a given oop is subject
 172                                                // to this ReferenceProcessor's discovery
 173                                                // (and further processing).
 174 
 175   bool        _discovering_refs;        // true when discovery enabled
 176   bool        _discovery_is_atomic;     // if discovery is atomic wrt
 177                                         // other collectors in configuration
 178   bool        _discovery_is_mt;         // true if reference discovery is MT.
 179 
 180   bool        _enqueuing_is_done;       // true if all weak references enqueued
 181   bool        _processing_is_mt;        // true during phases when
 182                                         // reference processing is MT.
 183   uint        _next_id;                 // round-robin mod _num_q counter in
 184                                         // support of work distribution
 185 
 186   // For collectors that do not keep GC liveness information
 187   // in the object header, this field holds a closure that
 188   // helps the reference processor determine the reachability
 189   // of an oop. It is currently initialized to NULL for all
 190   // collectors except for CMS and G1.
 191   BoolObjectClosure* _is_alive_non_header;
 192 
 193   // Soft ref clearing policies
 194   // . the default policy
 195   static ReferencePolicy*   _default_soft_ref_policy;
 196   // . the "clear all" policy
 197   static ReferencePolicy*   _always_clear_soft_ref_policy;
 198   // . the current policy below is either one of the above
 199   ReferencePolicy*          _current_soft_ref_policy;
 200 
 201   // The discovered ref lists themselves
 202 
 203   // The active MT'ness degree of the queues below
 204   uint             _num_q;
 205   // The maximum MT'ness degree of the queues below
 206   uint             _max_num_q;
 207 
 208   // Master array of discovered oops
 209   DiscoveredList* _discovered_refs;
 210 
 211   // Arrays of lists of oops, one per thread (pointers into master array above)
 212   DiscoveredList* _discoveredSoftRefs;
 213   DiscoveredList* _discoveredWeakRefs;
 214   DiscoveredList* _discoveredFinalRefs;
 215   DiscoveredList* _discoveredPhantomRefs;
 216 
 217  public:
 218   static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
 219 
 220   uint num_q()                             { return _num_q; }
 221   uint max_num_q()                         { return _max_num_q; }
 222   void set_active_mt_degree(uint v);
 223 
 224   DiscoveredList* discovered_refs()        { return _discovered_refs; }
 225 
 226   ReferencePolicy* setup_policy(bool always_clear) {
 227     _current_soft_ref_policy = always_clear ?
 228       _always_clear_soft_ref_policy : _default_soft_ref_policy;
 229     _current_soft_ref_policy->setup();   // snapshot the policy threshold
 230     return _current_soft_ref_policy;
 231   }
 232 
 233   // Process references with a certain reachability level.
 234   void process_discovered_reflist(DiscoveredList                refs_lists[],
 235                                   ReferencePolicy*              policy,
 236                                   bool                          clear_referent,
 237                                   BoolObjectClosure*            is_alive,
 238                                   OopClosure*                   keep_alive,
 239                                   VoidClosure*                  complete_gc,
 240                                   AbstractRefProcTaskExecutor*  task_executor,
 241                                   ReferenceProcessorPhaseTimes* phase_times);
 242 
 243   // Work methods used by the method process_discovered_reflist
 244   // Phase1: keep alive all those referents that are otherwise
 245   // dead but which must be kept alive by policy (and their closure).
 246   void process_phase1(DiscoveredList&     refs_list,
 247                       ReferencePolicy*    policy,
 248                       BoolObjectClosure*  is_alive,
 249                       OopClosure*         keep_alive,
 250                       VoidClosure*        complete_gc);
 251   // Phase2: remove all those references whose referents are
 252   // reachable.
 253   void process_phase2(DiscoveredList&    refs_list,
 254                       BoolObjectClosure* is_alive,
 255                       OopClosure*        keep_alive,
 256                       VoidClosure*       complete_gc);
 257   // Work methods in support of process_phase2
 258   void pp2_work(DiscoveredList&    refs_list,
 259                 BoolObjectClosure* is_alive,
 260                 OopClosure*        keep_alive);
 261   void pp2_work_concurrent_discovery(
 262                 DiscoveredList&    refs_list,
 263                 BoolObjectClosure* is_alive,
 264                 OopClosure*        keep_alive,
 265                 VoidClosure*       complete_gc);
 266   // Phase3: process the referents by either clearing them
 267   // or keeping them alive (and their closure)
 268   void process_phase3(DiscoveredList&    refs_list,
 269                       bool               clear_referent,
 270                       BoolObjectClosure* is_alive,
 271                       OopClosure*        keep_alive,
 272                       VoidClosure*       complete_gc);
 273 
 274   // Enqueue references with a certain reachability level
 275   void enqueue_discovered_reflist(DiscoveredList& refs_list);
 276 
 277   // "Preclean" all the discovered reference lists
 278   // by removing references with strongly reachable referents.
 279   // The first argument is a predicate on an oop that indicates
 280   // its (strong) reachability and the second is a closure that
 281   // may be used to incrementalize or abort the precleaning process.
 282   // The caller is responsible for taking care of potential
 283   // interference with concurrent operations on these lists
 284   // (or predicates involved) by other threads. Currently
 285   // only used by the CMS collector.
 286   void preclean_discovered_references(BoolObjectClosure* is_alive,
 287                                       OopClosure*        keep_alive,
 288                                       VoidClosure*       complete_gc,
 289                                       YieldClosure*      yield,
 290                                       GCTimer*           gc_timer);
 291 
 292   // Returns the name of the discovered reference list
 293   // occupying the i / _num_q slot.
 294   const char* list_name(uint i);
 295 
 296   void enqueue_discovered_reflists(AbstractRefProcTaskExecutor* task_executor,
 297                                    ReferenceProcessorPhaseTimes* phase_times);
 298 
 299   // "Preclean" the given discovered reference list
 300   // by removing references with strongly reachable referents.
 301   // Currently used in support of CMS only.
 302   void preclean_discovered_reflist(DiscoveredList&    refs_list,
 303                                    BoolObjectClosure* is_alive,
 304                                    OopClosure*        keep_alive,
 305                                    VoidClosure*       complete_gc,
 306                                    YieldClosure*      yield);
 307 private:
 308   // round-robin mod _num_q (not: _not_ mode _max_num_q)
 309   uint next_id() {
 310     uint id = _next_id;
 311     assert(!_discovery_is_mt, "Round robin should only be used in serial discovery");
 312     if (++_next_id == _num_q) {
 313       _next_id = 0;
 314     }
 315     assert(_next_id < _num_q, "_next_id %u _num_q %u _max_num_q %u", _next_id, _num_q, _max_num_q);
 316     return id;
 317   }
 318   DiscoveredList* get_discovered_list(ReferenceType rt);
 319   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
 320                                         HeapWord* discovered_addr);
 321 
 322   void clear_discovered_references(DiscoveredList& refs_list);
 323 
 324   void log_reflist_counts(DiscoveredList ref_lists[], uint active_length, size_t total_count) PRODUCT_RETURN;
 325 
 326   // Balances reference queues.
 327   void balance_queues(DiscoveredList ref_lists[]);
 328 
 329   // Update (advance) the soft ref master clock field.
 330   void update_soft_ref_master_clock();
 331 
 332   template <class T>
 333   bool is_subject_to_discovery(T const obj) const;
 334 public:
 335   // Default parameters give you a vanilla reference processor.
 336   ReferenceProcessor(BoolObjectClosure* is_subject_to_discovery,
 337                      bool mt_processing = false, uint mt_processing_degree = 1,
 338                      bool mt_discovery  = false, uint mt_discovery_degree  = 1,
 339                      bool atomic_discovery = true,
 340                      BoolObjectClosure* is_alive_non_header = NULL);
 341 
 342   // RefDiscoveryPolicy values
 343   enum DiscoveryPolicy {
 344     ReferenceBasedDiscovery = 0,
 345     ReferentBasedDiscovery  = 1,
 346     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
 347     DiscoveryPolicyMax      = ReferentBasedDiscovery
 348   };
 349 
 350   static void init_statics();
 351 
 352  public:
 353   // get and set "is_alive_non_header" field
 354   BoolObjectClosure* is_alive_non_header() {
 355     return _is_alive_non_header;
 356   }
 357   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
 358     _is_alive_non_header = is_alive_non_header;
 359   }
 360 
 361   BoolObjectClosure* is_subject_to_discovery_closure() const { return _is_subject_to_discovery; }
 362   void set_is_subject_to_discovery_closure(BoolObjectClosure* cl) { _is_subject_to_discovery = cl; }
 363 
 364   // start and stop weak ref discovery
 365   void enable_discovery(bool check_no_refs = true);
 366   void disable_discovery()  { _discovering_refs = false; }
 367   bool discovery_enabled()  { return _discovering_refs;  }
 368 
 369   // whether discovery is atomic wrt other collectors
 370   bool discovery_is_atomic() const { return _discovery_is_atomic; }
 371   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
 372 
 373   // whether discovery is done by multiple threads same-old-timeously
 374   bool discovery_is_mt() const { return _discovery_is_mt; }
 375   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
 376 
 377   // Whether we are in a phase when _processing_ is MT.
 378   bool processing_is_mt() const { return _processing_is_mt; }
 379   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
 380 
 381   // whether all enqueueing of weak references is complete
 382   bool enqueuing_is_done()  { return _enqueuing_is_done; }
 383   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
 384 
 385   // iterate over oops
 386   void weak_oops_do(OopClosure* f);       // weak roots
 387 
 388   // Balance each of the discovered lists.
 389   void balance_all_queues();
 390   void verify_list(DiscoveredList& ref_list);
 391 
 392   // Discover a Reference object, using appropriate discovery criteria
 393   virtual bool discover_reference(oop obj, ReferenceType rt);
 394 
 395   // Has discovered references that need handling
 396   bool has_discovered_references();
 397 
 398   // Process references found during GC (called by the garbage collector)
 399   ReferenceProcessorStats
 400   process_discovered_references(BoolObjectClosure*            is_alive,
 401                                 OopClosure*                   keep_alive,
 402                                 VoidClosure*                  complete_gc,
 403                                 AbstractRefProcTaskExecutor*  task_executor,
 404                                 ReferenceProcessorPhaseTimes* phase_times);
 405 
 406   // Enqueue references at end of GC (called by the garbage collector)
 407   void enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor,
 408                                      ReferenceProcessorPhaseTimes* phase_times);
 409 
 410   // If a discovery is in process that is being superceded, abandon it: all
 411   // the discovered lists will be empty, and all the objects on them will
 412   // have NULL discovered fields.  Must be called only at a safepoint.
 413   void abandon_partial_discovery();
 414 
 415   size_t total_reference_count(ReferenceType rt) const;
 416 
 417   // debugging
 418   void verify_no_references_recorded() PRODUCT_RETURN;
 419   void verify_referent(oop obj)        PRODUCT_RETURN;
 420 };
 421 
 422 // A reference processor that uses a single memory span to determine the area that
 423 // is subject to discovery. Useful for collectors which have contiguous generations.
 424 class SpanReferenceProcessor : public ReferenceProcessor {
 425   class SpanBasedDiscoverer : public BoolObjectClosure {
 426   public:
 427     MemRegion _span;
 428 
 429     SpanBasedDiscoverer(MemRegion span) : BoolObjectClosure(), _span(span) { }
 430 
 431     virtual bool do_object_b(oop obj) {
 432       return _span.contains(obj);
 433     }
 434   };
 435 
 436   SpanBasedDiscoverer _span_based_discoverer;
 437 public:
 438   SpanReferenceProcessor(MemRegion span,
 439                               bool mt_processing = false, uint mt_processing_degree = 1,
 440                               bool mt_discovery  = false, uint mt_discovery_degree  = 1,
 441                               bool atomic_discovery = true,
 442                               BoolObjectClosure* is_alive_non_header = NULL);
 443 
 444   // get and set span
 445   MemRegion span()                   { return _span_based_discoverer._span; }
 446   void      set_span(MemRegion span) { _span_based_discoverer._span = span; }
 447 };
 448 
 449 // A utility class to disable reference discovery in
 450 // the scope which contains it, for given ReferenceProcessor.
 451 class NoRefDiscovery: StackObj {
 452  private:
 453   ReferenceProcessor* _rp;
 454   bool _was_discovering_refs;
 455  public:
 456   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
 457     _was_discovering_refs = _rp->discovery_enabled();
 458     if (_was_discovering_refs) {
 459       _rp->disable_discovery();
 460     }
 461   }
 462 
 463   ~NoRefDiscovery() {
 464     if (_was_discovering_refs) {
 465       _rp->enable_discovery(false /*check_no_refs*/);
 466     }
 467   }
 468 };
 469 
 470 // A utility class to temporarily mutate the subject discovery closure of the
 471 // given ReferenceProcessor in the scope that contains it.
 472 class ReferenceProcessorSubjectToDiscoveryMutator : StackObj {
 473  private:
 474   ReferenceProcessor* _rp;
 475   BoolObjectClosure* _saved_cl;
 476 
 477  public:
 478   ReferenceProcessorSubjectToDiscoveryMutator(ReferenceProcessor* rp, BoolObjectClosure* cl):
 479     _rp(rp) {
 480     _saved_cl = _rp->is_subject_to_discovery_closure();
 481     _rp->set_is_subject_to_discovery_closure(cl);
 482   }
 483 
 484   ~ReferenceProcessorSubjectToDiscoveryMutator() {
 485     _rp->set_is_subject_to_discovery_closure(_saved_cl);
 486   }
 487 };
 488 
 489 // A utility class to temporarily mutate the span of the
 490 // given ReferenceProcessor in the scope that contains it.
 491 class ReferenceProcessorSpanMutator: StackObj {
 492  private:
 493   SpanReferenceProcessor* _rp;
 494   MemRegion _saved_span;
 495 
 496  public:
 497   ReferenceProcessorSpanMutator(SpanReferenceProcessor* rp,
 498                                 MemRegion span):
 499     _rp(rp) {
 500     _saved_span = _rp->span();
 501     _rp->set_span(span);
 502   }
 503 
 504   ~ReferenceProcessorSpanMutator() {
 505     _rp->set_span(_saved_span);
 506   }
 507 };
 508 
 509 // A utility class to temporarily change the MT'ness of
 510 // reference discovery for the given ReferenceProcessor
 511 // in the scope that contains it.
 512 class ReferenceProcessorMTDiscoveryMutator: StackObj {
 513  private:
 514   ReferenceProcessor* _rp;
 515   bool                _saved_mt;
 516 
 517  public:
 518   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
 519                                        bool mt):
 520     _rp(rp) {
 521     _saved_mt = _rp->discovery_is_mt();
 522     _rp->set_mt_discovery(mt);
 523   }
 524 
 525   ~ReferenceProcessorMTDiscoveryMutator() {
 526     _rp->set_mt_discovery(_saved_mt);
 527   }
 528 };
 529 
 530 // A utility class to temporarily change the disposition
 531 // of the "is_alive_non_header" closure field of the
 532 // given ReferenceProcessor in the scope that contains it.
 533 class ReferenceProcessorIsAliveMutator: StackObj {
 534  private:
 535   ReferenceProcessor* _rp;
 536   BoolObjectClosure*  _saved_cl;
 537 
 538  public:
 539   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
 540                                    BoolObjectClosure*  cl):
 541     _rp(rp) {
 542     _saved_cl = _rp->is_alive_non_header();
 543     _rp->set_is_alive_non_header(cl);
 544   }
 545 
 546   ~ReferenceProcessorIsAliveMutator() {
 547     _rp->set_is_alive_non_header(_saved_cl);
 548   }
 549 };
 550 
 551 // A utility class to temporarily change the disposition
 552 // of the "discovery_is_atomic" field of the
 553 // given ReferenceProcessor in the scope that contains it.
 554 class ReferenceProcessorAtomicMutator: StackObj {
 555  private:
 556   ReferenceProcessor* _rp;
 557   bool                _saved_atomic_discovery;
 558 
 559  public:
 560   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
 561                                   bool atomic):
 562     _rp(rp) {
 563     _saved_atomic_discovery = _rp->discovery_is_atomic();
 564     _rp->set_atomic_discovery(atomic);
 565   }
 566 
 567   ~ReferenceProcessorAtomicMutator() {
 568     _rp->set_atomic_discovery(_saved_atomic_discovery);
 569   }
 570 };
 571 
 572 
 573 // A utility class to temporarily change the MT processing
 574 // disposition of the given ReferenceProcessor instance
 575 // in the scope that contains it.
 576 class ReferenceProcessorMTProcMutator: StackObj {
 577  private:
 578   ReferenceProcessor* _rp;
 579   bool  _saved_mt;
 580 
 581  public:
 582   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
 583                                   bool mt):
 584     _rp(rp) {
 585     _saved_mt = _rp->processing_is_mt();
 586     _rp->set_mt_processing(mt);
 587   }
 588 
 589   ~ReferenceProcessorMTProcMutator() {
 590     _rp->set_mt_processing(_saved_mt);
 591   }
 592 };
 593 
 594 
 595 // This class is an interface used to implement task execution for the
 596 // reference processing.
 597 class AbstractRefProcTaskExecutor {
 598 public:
 599 
 600   // Abstract tasks to execute.
 601   class ProcessTask;
 602   class EnqueueTask;
 603 
 604   // Executes a task using worker threads.
 605   virtual void execute(ProcessTask& task) = 0;
 606   virtual void execute(EnqueueTask& task) = 0;
 607 
 608   // Switch to single threaded mode.
 609   virtual void set_single_threaded_mode() { };
 610 };
 611 
 612 // Abstract reference processing task to execute.
 613 class AbstractRefProcTaskExecutor::ProcessTask {
 614 protected:
 615   ProcessTask(ReferenceProcessor&           ref_processor,
 616               DiscoveredList                refs_lists[],
 617               bool                          marks_oops_alive,
 618               ReferenceProcessorPhaseTimes* phase_times)
 619     : _ref_processor(ref_processor),
 620       _refs_lists(refs_lists),
 621       _phase_times(phase_times),
 622       _marks_oops_alive(marks_oops_alive)
 623   { }
 624 
 625 public:
 626   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
 627                     OopClosure& keep_alive,
 628                     VoidClosure& complete_gc) = 0;
 629 
 630   // Returns true if a task marks some oops as alive.
 631   bool marks_oops_alive() const
 632   { return _marks_oops_alive; }
 633 
 634 protected:
 635   ReferenceProcessor&           _ref_processor;
 636   DiscoveredList*               _refs_lists;
 637   ReferenceProcessorPhaseTimes* _phase_times;
 638   const bool                    _marks_oops_alive;
 639 };
 640 
 641 // Abstract reference processing task to execute.
 642 class AbstractRefProcTaskExecutor::EnqueueTask {
 643 protected:
 644   EnqueueTask(ReferenceProcessor&           ref_processor,
 645               DiscoveredList                refs_lists[],
 646               int                           n_queues,
 647               ReferenceProcessorPhaseTimes* phase_times)
 648     : _ref_processor(ref_processor),
 649       _refs_lists(refs_lists),
 650       _n_queues(n_queues),
 651       _phase_times(phase_times)
 652   { }
 653 
 654 public:
 655   virtual void work(unsigned int work_id) = 0;
 656 
 657 protected:
 658   ReferenceProcessor&           _ref_processor;
 659   DiscoveredList*               _refs_lists;
 660   ReferenceProcessorPhaseTimes* _phase_times;
 661   int                           _n_queues;
 662 };
 663 
 664 #endif // SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP