1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/g1BarrierSet.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorState.hpp"
  32 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  33 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1HeapVerifier.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
  38 #include "gc/g1/g1StringDedup.hpp"
  39 #include "gc/g1/g1ThreadLocalData.hpp"
  40 #include "gc/g1/heapRegion.inline.hpp"
  41 #include "gc/g1/heapRegionRemSet.hpp"
  42 #include "gc/g1/heapRegionSet.inline.hpp"
  43 #include "gc/shared/adaptiveSizePolicy.hpp"
  44 #include "gc/shared/gcId.hpp"
  45 #include "gc/shared/gcTimer.hpp"
  46 #include "gc/shared/gcTrace.hpp"
  47 #include "gc/shared/gcTraceTime.inline.hpp"
  48 #include "gc/shared/genOopClosures.inline.hpp"
  49 #include "gc/shared/referencePolicy.hpp"
  50 #include "gc/shared/strongRootsScope.hpp"
  51 #include "gc/shared/suspendibleThreadSet.hpp"
  52 #include "gc/shared/taskqueue.inline.hpp"
  53 #include "gc/shared/vmGCOperations.hpp"
  54 #include "gc/shared/weakProcessor.hpp"
  55 #include "include/jvm.h"
  56 #include "logging/log.hpp"
  57 #include "memory/allocation.hpp"
  58 #include "memory/resourceArea.hpp"
  59 #include "oops/access.inline.hpp"
  60 #include "oops/oop.inline.hpp"
  61 #include "runtime/atomic.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/java.hpp"
  64 #include "runtime/prefetch.inline.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "utilities/align.hpp"
  67 #include "utilities/growableArray.hpp"
  68 
  69 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  70   assert(addr < _cm->finger(), "invariant");
  71   assert(addr >= _task->finger(), "invariant");
  72 
  73   // We move that task's local finger along.
  74   _task->move_finger_to(addr);
  75 
  76   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  77   // we only partially drain the local queue and global stack
  78   _task->drain_local_queue(true);
  79   _task->drain_global_stack(true);
  80 
  81   // if the has_aborted flag has been raised, we need to bail out of
  82   // the iteration
  83   return !_task->has_aborted();
  84 }
  85 
  86 G1CMMarkStack::G1CMMarkStack() :
  87   _max_chunk_capacity(0),
  88   _base(NULL),
  89   _chunk_capacity(0) {
  90   set_empty();
  91 }
  92 
  93 bool G1CMMarkStack::resize(size_t new_capacity) {
  94   assert(is_empty(), "Only resize when stack is empty.");
  95   assert(new_capacity <= _max_chunk_capacity,
  96          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
  97 
  98   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
  99 
 100   if (new_base == NULL) {
 101     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
 102     return false;
 103   }
 104   // Release old mapping.
 105   if (_base != NULL) {
 106     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 107   }
 108 
 109   _base = new_base;
 110   _chunk_capacity = new_capacity;
 111   set_empty();
 112 
 113   return true;
 114 }
 115 
 116 size_t G1CMMarkStack::capacity_alignment() {
 117   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 118 }
 119 
 120 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 121   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 122 
 123   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 124 
 125   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 126   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 127 
 128   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 129             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 130             _max_chunk_capacity,
 131             initial_chunk_capacity);
 132 
 133   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 134                 initial_chunk_capacity, _max_chunk_capacity);
 135 
 136   return resize(initial_chunk_capacity);
 137 }
 138 
 139 void G1CMMarkStack::expand() {
 140   if (_chunk_capacity == _max_chunk_capacity) {
 141     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 142     return;
 143   }
 144   size_t old_capacity = _chunk_capacity;
 145   // Double capacity if possible
 146   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 147 
 148   if (resize(new_capacity)) {
 149     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 150                   old_capacity, new_capacity);
 151   } else {
 152     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 153                     old_capacity, new_capacity);
 154   }
 155 }
 156 
 157 G1CMMarkStack::~G1CMMarkStack() {
 158   if (_base != NULL) {
 159     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 160   }
 161 }
 162 
 163 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 164   elem->next = *list;
 165   *list = elem;
 166 }
 167 
 168 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 169   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 170   add_chunk_to_list(&_chunk_list, elem);
 171   _chunks_in_chunk_list++;
 172 }
 173 
 174 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 175   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 176   add_chunk_to_list(&_free_list, elem);
 177 }
 178 
 179 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 180   TaskQueueEntryChunk* result = *list;
 181   if (result != NULL) {
 182     *list = (*list)->next;
 183   }
 184   return result;
 185 }
 186 
 187 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 188   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 189   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 190   if (result != NULL) {
 191     _chunks_in_chunk_list--;
 192   }
 193   return result;
 194 }
 195 
 196 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 197   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 198   return remove_chunk_from_list(&_free_list);
 199 }
 200 
 201 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 202   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 203   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 204   // wraparound of _hwm.
 205   if (_hwm >= _chunk_capacity) {
 206     return NULL;
 207   }
 208 
 209   size_t cur_idx = Atomic::add(1u, &_hwm) - 1;
 210   if (cur_idx >= _chunk_capacity) {
 211     return NULL;
 212   }
 213 
 214   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 215   result->next = NULL;
 216   return result;
 217 }
 218 
 219 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 220   // Get a new chunk.
 221   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 222 
 223   if (new_chunk == NULL) {
 224     // Did not get a chunk from the free list. Allocate from backing memory.
 225     new_chunk = allocate_new_chunk();
 226 
 227     if (new_chunk == NULL) {
 228       return false;
 229     }
 230   }
 231 
 232   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 233 
 234   add_chunk_to_chunk_list(new_chunk);
 235 
 236   return true;
 237 }
 238 
 239 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 240   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 241 
 242   if (cur == NULL) {
 243     return false;
 244   }
 245 
 246   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 247 
 248   add_chunk_to_free_list(cur);
 249   return true;
 250 }
 251 
 252 void G1CMMarkStack::set_empty() {
 253   _chunks_in_chunk_list = 0;
 254   _hwm = 0;
 255   _chunk_list = NULL;
 256   _free_list = NULL;
 257 }
 258 
 259 G1CMRootRegions::G1CMRootRegions() :
 260   _survivors(NULL), _cm(NULL), _scan_in_progress(false),
 261   _should_abort(false), _claimed_survivor_index(0) { }
 262 
 263 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 264   _survivors = survivors;
 265   _cm = cm;
 266 }
 267 
 268 void G1CMRootRegions::prepare_for_scan() {
 269   assert(!scan_in_progress(), "pre-condition");
 270 
 271   // Currently, only survivors can be root regions.
 272   _claimed_survivor_index = 0;
 273   _scan_in_progress = _survivors->regions()->is_nonempty();
 274   _should_abort = false;
 275 }
 276 
 277 HeapRegion* G1CMRootRegions::claim_next() {
 278   if (_should_abort) {
 279     // If someone has set the should_abort flag, we return NULL to
 280     // force the caller to bail out of their loop.
 281     return NULL;
 282   }
 283 
 284   // Currently, only survivors can be root regions.
 285   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 286 
 287   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 288   if (claimed_index < survivor_regions->length()) {
 289     return survivor_regions->at(claimed_index);
 290   }
 291   return NULL;
 292 }
 293 
 294 uint G1CMRootRegions::num_root_regions() const {
 295   return (uint)_survivors->regions()->length();
 296 }
 297 
 298 void G1CMRootRegions::notify_scan_done() {
 299   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 300   _scan_in_progress = false;
 301   RootRegionScan_lock->notify_all();
 302 }
 303 
 304 void G1CMRootRegions::cancel_scan() {
 305   notify_scan_done();
 306 }
 307 
 308 void G1CMRootRegions::scan_finished() {
 309   assert(scan_in_progress(), "pre-condition");
 310 
 311   // Currently, only survivors can be root regions.
 312   if (!_should_abort) {
 313     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 314     assert((uint)_claimed_survivor_index >= _survivors->length(),
 315            "we should have claimed all survivors, claimed index = %u, length = %u",
 316            (uint)_claimed_survivor_index, _survivors->length());
 317   }
 318 
 319   notify_scan_done();
 320 }
 321 
 322 bool G1CMRootRegions::wait_until_scan_finished() {
 323   if (!scan_in_progress()) {
 324     return false;
 325   }
 326 
 327   {
 328     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 329     while (scan_in_progress()) {
 330       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 331     }
 332   }
 333   return true;
 334 }
 335 
 336 // Returns the maximum number of workers to be used in a concurrent
 337 // phase based on the number of GC workers being used in a STW
 338 // phase.
 339 static uint scale_concurrent_worker_threads(uint num_gc_workers) {
 340   return MAX2((num_gc_workers + 2) / 4, 1U);
 341 }
 342 
 343 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 344                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 345                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 346   // _cm_thread set inside the constructor
 347   _g1h(g1h),
 348   _completed_initialization(false),
 349 
 350   _mark_bitmap_1(),
 351   _mark_bitmap_2(),
 352   _prev_mark_bitmap(&_mark_bitmap_1),
 353   _next_mark_bitmap(&_mark_bitmap_2),
 354 
 355   _heap(_g1h->reserved_region()),
 356 
 357   _root_regions(),
 358 
 359   _global_mark_stack(),
 360 
 361   // _finger set in set_non_marking_state
 362 
 363   _worker_id_offset(DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads),
 364   _max_num_tasks(ParallelGCThreads),
 365   // _num_active_tasks set in set_non_marking_state()
 366   // _tasks set inside the constructor
 367 
 368   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 369   _terminator(ParallelTaskTerminator((int) _max_num_tasks, _task_queues)),
 370 
 371   _first_overflow_barrier_sync(),
 372   _second_overflow_barrier_sync(),
 373 
 374   _has_overflown(false),
 375   _concurrent(false),
 376   _has_aborted(false),
 377   _restart_for_overflow(false),
 378   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 379   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 380 
 381   // _verbose_level set below
 382 
 383   _init_times(),
 384   _remark_times(),
 385   _remark_mark_times(),
 386   _remark_weak_ref_times(),
 387   _cleanup_times(),
 388   _total_cleanup_time(0.0),
 389 
 390   _accum_task_vtime(NULL),
 391 
 392   _concurrent_workers(NULL),
 393   _num_concurrent_workers(0),
 394   _max_concurrent_workers(0),
 395 
 396   _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)),
 397   _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC))
 398 {
 399   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 400   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 401 
 402   // Create & start ConcurrentMark thread.
 403   _cm_thread = new G1ConcurrentMarkThread(this);
 404   if (_cm_thread->osthread() == NULL) {
 405     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 406   }
 407 
 408   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 409 
 410   SATBMarkQueueSet& satb_qs = G1BarrierSet::satb_mark_queue_set();
 411   satb_qs.set_buffer_size(G1SATBBufferSize);
 412 
 413   _root_regions.init(_g1h->survivor(), this);
 414 
 415   if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) {
 416     // Calculate the number of concurrent worker threads by scaling
 417     // the number of parallel GC threads.
 418     uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads);
 419     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 420   }
 421 
 422   assert(ConcGCThreads > 0, "ConcGCThreads have been set.");
 423   if (ConcGCThreads > ParallelGCThreads) {
 424     log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).",
 425                     ConcGCThreads, ParallelGCThreads);
 426     return;
 427   }
 428 
 429   log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset);
 430   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 431 
 432   _num_concurrent_workers = ConcGCThreads;
 433   _max_concurrent_workers = _num_concurrent_workers;
 434 
 435   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 436   _concurrent_workers->initialize_workers();
 437 
 438   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 439     size_t mark_stack_size =
 440       MIN2(MarkStackSizeMax,
 441           MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE)));
 442     // Verify that the calculated value for MarkStackSize is in range.
 443     // It would be nice to use the private utility routine from Arguments.
 444     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 445       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 446                       "must be between 1 and " SIZE_FORMAT,
 447                       mark_stack_size, MarkStackSizeMax);
 448       return;
 449     }
 450     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 451   } else {
 452     // Verify MarkStackSize is in range.
 453     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 454       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 455         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 456           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 457                           "must be between 1 and " SIZE_FORMAT,
 458                           MarkStackSize, MarkStackSizeMax);
 459           return;
 460         }
 461       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 462         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 463           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 464                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 465                           MarkStackSize, MarkStackSizeMax);
 466           return;
 467         }
 468       }
 469     }
 470   }
 471 
 472   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 473     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 474   }
 475 
 476   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 477   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 478 
 479   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 480   _num_active_tasks = _max_num_tasks;
 481 
 482   for (uint i = 0; i < _max_num_tasks; ++i) {
 483     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 484     task_queue->initialize();
 485     _task_queues->register_queue(i, task_queue);
 486 
 487     _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions());
 488 
 489     _accum_task_vtime[i] = 0.0;
 490   }
 491 
 492   reset_at_marking_complete();
 493   _completed_initialization = true;
 494 }
 495 
 496 void G1ConcurrentMark::reset() {
 497   _has_aborted = false;
 498 
 499   reset_marking_for_restart();
 500 
 501   // Reset all tasks, since different phases will use different number of active
 502   // threads. So, it's easiest to have all of them ready.
 503   for (uint i = 0; i < _max_num_tasks; ++i) {
 504     _tasks[i]->reset(_next_mark_bitmap);
 505   }
 506 
 507   uint max_regions = _g1h->max_regions();
 508   for (uint i = 0; i < max_regions; i++) {
 509     _top_at_rebuild_starts[i] = NULL;
 510     _region_mark_stats[i].clear();
 511   }
 512 }
 513 
 514 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) {
 515   for (uint j = 0; j < _max_num_tasks; ++j) {
 516     _tasks[j]->clear_mark_stats_cache(region_idx);
 517   }
 518   _top_at_rebuild_starts[region_idx] = NULL;
 519   _region_mark_stats[region_idx].clear();
 520 }
 521 
 522 void G1ConcurrentMark::clear_statistics(HeapRegion* r) {
 523   uint const region_idx = r->hrm_index();
 524   if (r->is_humongous()) {
 525     assert(r->is_starts_humongous(), "Got humongous continues region here");
 526     uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size());
 527     for (uint j = region_idx; j < (region_idx + size_in_regions); j++) {
 528       clear_statistics_in_region(j);
 529     }
 530   } else {
 531     clear_statistics_in_region(region_idx);
 532   }
 533 }
 534 
 535 static void clear_mark_if_set(G1CMBitMap* bitmap, HeapWord* addr) {
 536   if (bitmap->is_marked(addr)) {
 537     bitmap->clear(addr);
 538   }
 539 }
 540 
 541 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) {
 542   assert_at_safepoint_on_vm_thread();
 543 
 544   // Need to clear all mark bits of the humongous object.
 545   clear_mark_if_set(_prev_mark_bitmap, r->bottom());
 546   clear_mark_if_set(_next_mark_bitmap, r->bottom());
 547 
 548   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
 549     return;
 550   }
 551 
 552   // Clear any statistics about the region gathered so far.
 553   clear_statistics(r);
 554 }
 555 
 556 void G1ConcurrentMark::reset_marking_for_restart() {
 557   _global_mark_stack.set_empty();
 558 
 559   // Expand the marking stack, if we have to and if we can.
 560   if (has_overflown()) {
 561     _global_mark_stack.expand();
 562 
 563     uint max_regions = _g1h->max_regions();
 564     for (uint i = 0; i < max_regions; i++) {
 565       _region_mark_stats[i].clear_during_overflow();
 566     }
 567   }
 568 
 569   clear_has_overflown();
 570   _finger = _heap.start();
 571 
 572   for (uint i = 0; i < _max_num_tasks; ++i) {
 573     G1CMTaskQueue* queue = _task_queues->queue(i);
 574     queue->set_empty();
 575   }
 576 }
 577 
 578 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 579   assert(active_tasks <= _max_num_tasks, "we should not have more");
 580 
 581   _num_active_tasks = active_tasks;
 582   // Need to update the three data structures below according to the
 583   // number of active threads for this phase.
 584   _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
 585   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 586   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 587 }
 588 
 589 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 590   set_concurrency(active_tasks);
 591 
 592   _concurrent = concurrent;
 593 
 594   if (!concurrent) {
 595     // At this point we should be in a STW phase, and completed marking.
 596     assert_at_safepoint_on_vm_thread();
 597     assert(out_of_regions(),
 598            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 599            p2i(_finger), p2i(_heap.end()));
 600   }
 601 }
 602 
 603 void G1ConcurrentMark::reset_at_marking_complete() {
 604   // We set the global marking state to some default values when we're
 605   // not doing marking.
 606   reset_marking_for_restart();
 607   _num_active_tasks = 0;
 608 }
 609 
 610 G1ConcurrentMark::~G1ConcurrentMark() {
 611   FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts);
 612   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats);
 613   // The G1ConcurrentMark instance is never freed.
 614   ShouldNotReachHere();
 615 }
 616 
 617 class G1ClearBitMapTask : public AbstractGangTask {
 618 public:
 619   static size_t chunk_size() { return M; }
 620 
 621 private:
 622   // Heap region closure used for clearing the given mark bitmap.
 623   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 624   private:
 625     G1CMBitMap* _bitmap;
 626     G1ConcurrentMark* _cm;
 627   public:
 628     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 629     }
 630 
 631     virtual bool do_heap_region(HeapRegion* r) {
 632       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 633 
 634       HeapWord* cur = r->bottom();
 635       HeapWord* const end = r->end();
 636 
 637       while (cur < end) {
 638         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 639         _bitmap->clear_range(mr);
 640 
 641         cur += chunk_size_in_words;
 642 
 643         // Abort iteration if after yielding the marking has been aborted.
 644         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 645           return true;
 646         }
 647         // Repeat the asserts from before the start of the closure. We will do them
 648         // as asserts here to minimize their overhead on the product. However, we
 649         // will have them as guarantees at the beginning / end of the bitmap
 650         // clearing to get some checking in the product.
 651         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 652         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 653       }
 654       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 655 
 656       return false;
 657     }
 658   };
 659 
 660   G1ClearBitmapHRClosure _cl;
 661   HeapRegionClaimer _hr_claimer;
 662   bool _suspendible; // If the task is suspendible, workers must join the STS.
 663 
 664 public:
 665   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 666     AbstractGangTask("G1 Clear Bitmap"),
 667     _cl(bitmap, suspendible ? cm : NULL),
 668     _hr_claimer(n_workers),
 669     _suspendible(suspendible)
 670   { }
 671 
 672   void work(uint worker_id) {
 673     SuspendibleThreadSetJoiner sts_join(_suspendible);
 674     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 675   }
 676 
 677   bool is_complete() {
 678     return _cl.is_complete();
 679   }
 680 };
 681 
 682 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 683   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 684 
 685   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 686   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 687 
 688   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 689 
 690   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 691 
 692   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 693   workers->run_task(&cl, num_workers);
 694   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 695 }
 696 
 697 void G1ConcurrentMark::cleanup_for_next_mark() {
 698   // Make sure that the concurrent mark thread looks to still be in
 699   // the current cycle.
 700   guarantee(cm_thread()->during_cycle(), "invariant");
 701 
 702   // We are finishing up the current cycle by clearing the next
 703   // marking bitmap and getting it ready for the next cycle. During
 704   // this time no other cycle can start. So, let's make sure that this
 705   // is the case.
 706   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 707 
 708   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 709 
 710   // Repeat the asserts from above.
 711   guarantee(cm_thread()->during_cycle(), "invariant");
 712   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 713 }
 714 
 715 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 716   assert_at_safepoint_on_vm_thread();
 717   clear_bitmap(_prev_mark_bitmap, workers, false);
 718 }
 719 
 720 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 721   G1CMBitMap* _bitmap;
 722  public:
 723   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 724   }
 725 
 726   virtual bool do_heap_region(HeapRegion* r) {
 727     // This closure can be called concurrently to the mutator, so we must make sure
 728     // that the result of the getNextMarkedWordAddress() call is compared to the
 729     // value passed to it as limit to detect any found bits.
 730     // end never changes in G1.
 731     HeapWord* end = r->end();
 732     return _bitmap->get_next_marked_addr(r->bottom(), end) != end;
 733   }
 734 };
 735 
 736 bool G1ConcurrentMark::next_mark_bitmap_is_clear() {
 737   CheckBitmapClearHRClosure cl(_next_mark_bitmap);
 738   _g1h->heap_region_iterate(&cl);
 739   return cl.is_complete();
 740 }
 741 
 742 class NoteStartOfMarkHRClosure : public HeapRegionClosure {
 743 public:
 744   bool do_heap_region(HeapRegion* r) {
 745     r->note_start_of_marking();
 746     return false;
 747   }
 748 };
 749 
 750 void G1ConcurrentMark::pre_initial_mark() {
 751   // Initialize marking structures. This has to be done in a STW phase.
 752   reset();
 753 
 754   // For each region note start of marking.
 755   NoteStartOfMarkHRClosure startcl;
 756   _g1h->heap_region_iterate(&startcl);
 757 }
 758 
 759 
 760 void G1ConcurrentMark::post_initial_mark() {
 761   // Start Concurrent Marking weak-reference discovery.
 762   ReferenceProcessor* rp = _g1h->ref_processor_cm();
 763   // enable ("weak") refs discovery
 764   rp->enable_discovery();
 765   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 766 
 767   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
 768   // This is the start of  the marking cycle, we're expected all
 769   // threads to have SATB queues with active set to false.
 770   satb_mq_set.set_active_all_threads(true, /* new active value */
 771                                      false /* expected_active */);
 772 
 773   _root_regions.prepare_for_scan();
 774 
 775   // update_g1_committed() will be called at the end of an evac pause
 776   // when marking is on. So, it's also called at the end of the
 777   // initial-mark pause to update the heap end, if the heap expands
 778   // during it. No need to call it here.
 779 }
 780 
 781 /*
 782  * Notice that in the next two methods, we actually leave the STS
 783  * during the barrier sync and join it immediately afterwards. If we
 784  * do not do this, the following deadlock can occur: one thread could
 785  * be in the barrier sync code, waiting for the other thread to also
 786  * sync up, whereas another one could be trying to yield, while also
 787  * waiting for the other threads to sync up too.
 788  *
 789  * Note, however, that this code is also used during remark and in
 790  * this case we should not attempt to leave / enter the STS, otherwise
 791  * we'll either hit an assert (debug / fastdebug) or deadlock
 792  * (product). So we should only leave / enter the STS if we are
 793  * operating concurrently.
 794  *
 795  * Because the thread that does the sync barrier has left the STS, it
 796  * is possible to be suspended for a Full GC or an evacuation pause
 797  * could occur. This is actually safe, since the entering the sync
 798  * barrier is one of the last things do_marking_step() does, and it
 799  * doesn't manipulate any data structures afterwards.
 800  */
 801 
 802 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 803   bool barrier_aborted;
 804   {
 805     SuspendibleThreadSetLeaver sts_leave(concurrent());
 806     barrier_aborted = !_first_overflow_barrier_sync.enter();
 807   }
 808 
 809   // at this point everyone should have synced up and not be doing any
 810   // more work
 811 
 812   if (barrier_aborted) {
 813     // If the barrier aborted we ignore the overflow condition and
 814     // just abort the whole marking phase as quickly as possible.
 815     return;
 816   }
 817 }
 818 
 819 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 820   SuspendibleThreadSetLeaver sts_leave(concurrent());
 821   _second_overflow_barrier_sync.enter();
 822 
 823   // at this point everything should be re-initialized and ready to go
 824 }
 825 
 826 class G1CMConcurrentMarkingTask : public AbstractGangTask {
 827   G1ConcurrentMark*     _cm;
 828 
 829 public:
 830   void work(uint worker_id) {
 831     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 832     ResourceMark rm;
 833 
 834     double start_vtime = os::elapsedVTime();
 835 
 836     {
 837       SuspendibleThreadSetJoiner sts_join;
 838 
 839       assert(worker_id < _cm->active_tasks(), "invariant");
 840 
 841       G1CMTask* task = _cm->task(worker_id);
 842       task->record_start_time();
 843       if (!_cm->has_aborted()) {
 844         do {
 845           task->do_marking_step(G1ConcMarkStepDurationMillis,
 846                                 true  /* do_termination */,
 847                                 false /* is_serial*/);
 848 
 849           _cm->do_yield_check();
 850         } while (!_cm->has_aborted() && task->has_aborted());
 851       }
 852       task->record_end_time();
 853       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 854     }
 855 
 856     double end_vtime = os::elapsedVTime();
 857     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 858   }
 859 
 860   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) :
 861       AbstractGangTask("Concurrent Mark"), _cm(cm) { }
 862 
 863   ~G1CMConcurrentMarkingTask() { }
 864 };
 865 
 866 uint G1ConcurrentMark::calc_active_marking_workers() {
 867   uint result = 0;
 868   if (!UseDynamicNumberOfGCThreads ||
 869       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 870        !ForceDynamicNumberOfGCThreads)) {
 871     result = _max_concurrent_workers;
 872   } else {
 873     result =
 874       AdaptiveSizePolicy::calc_default_active_workers(_max_concurrent_workers,
 875                                                       1, /* Minimum workers */
 876                                                       _num_concurrent_workers,
 877                                                       Threads::number_of_non_daemon_threads());
 878     // Don't scale the result down by scale_concurrent_workers() because
 879     // that scaling has already gone into "_max_concurrent_workers".
 880   }
 881   assert(result > 0 && result <= _max_concurrent_workers,
 882          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 883          _max_concurrent_workers, result);
 884   return result;
 885 }
 886 
 887 void G1ConcurrentMark::scan_root_region(HeapRegion* hr, uint worker_id) {
 888   // Currently, only survivors can be root regions.
 889   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 890   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 891 
 892   const uintx interval = PrefetchScanIntervalInBytes;
 893   HeapWord* curr = hr->bottom();
 894   const HeapWord* end = hr->top();
 895   while (curr < end) {
 896     Prefetch::read(curr, interval);
 897     oop obj = oop(curr);
 898     int size = obj->oop_iterate_size(&cl);
 899     assert(size == obj->size(), "sanity");
 900     curr += size;
 901   }
 902 }
 903 
 904 class G1CMRootRegionScanTask : public AbstractGangTask {
 905   G1ConcurrentMark* _cm;
 906 public:
 907   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 908     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 909 
 910   void work(uint worker_id) {
 911     assert(Thread::current()->is_ConcurrentGC_thread(),
 912            "this should only be done by a conc GC thread");
 913 
 914     G1CMRootRegions* root_regions = _cm->root_regions();
 915     HeapRegion* hr = root_regions->claim_next();
 916     while (hr != NULL) {
 917       _cm->scan_root_region(hr, worker_id);
 918       hr = root_regions->claim_next();
 919     }
 920   }
 921 };
 922 
 923 void G1ConcurrentMark::scan_root_regions() {
 924   // scan_in_progress() will have been set to true only if there was
 925   // at least one root region to scan. So, if it's false, we
 926   // should not attempt to do any further work.
 927   if (root_regions()->scan_in_progress()) {
 928     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 929 
 930     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 931                                    // We distribute work on a per-region basis, so starting
 932                                    // more threads than that is useless.
 933                                    root_regions()->num_root_regions());
 934     assert(_num_concurrent_workers <= _max_concurrent_workers,
 935            "Maximum number of marking threads exceeded");
 936 
 937     G1CMRootRegionScanTask task(this);
 938     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 939                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 940     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 941 
 942     // It's possible that has_aborted() is true here without actually
 943     // aborting the survivor scan earlier. This is OK as it's
 944     // mainly used for sanity checking.
 945     root_regions()->scan_finished();
 946   }
 947 }
 948 
 949 void G1ConcurrentMark::concurrent_cycle_start() {
 950   _gc_timer_cm->register_gc_start();
 951 
 952   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 953 
 954   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 955 }
 956 
 957 void G1ConcurrentMark::concurrent_cycle_end() {
 958   _g1h->collector_state()->set_clearing_next_bitmap(false);
 959 
 960   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 961 
 962   if (has_aborted()) {
 963     log_info(gc, marking)("Concurrent Mark Abort");
 964     _gc_tracer_cm->report_concurrent_mode_failure();
 965   }
 966 
 967   _gc_timer_cm->register_gc_end();
 968 
 969   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 970 }
 971 
 972 void G1ConcurrentMark::mark_from_roots() {
 973   _restart_for_overflow = false;
 974 
 975   _num_concurrent_workers = calc_active_marking_workers();
 976 
 977   uint active_workers = MAX2(1U, _num_concurrent_workers);
 978 
 979   // Setting active workers is not guaranteed since fewer
 980   // worker threads may currently exist and more may not be
 981   // available.
 982   active_workers = _concurrent_workers->update_active_workers(active_workers);
 983   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 984 
 985   // Parallel task terminator is set in "set_concurrency_and_phase()"
 986   set_concurrency_and_phase(active_workers, true /* concurrent */);
 987 
 988   G1CMConcurrentMarkingTask marking_task(this);
 989   _concurrent_workers->run_task(&marking_task);
 990   print_stats();
 991 }
 992 
 993 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) {
 994   G1HeapVerifier* verifier = _g1h->verifier();
 995 
 996   verifier->verify_region_sets_optional();
 997 
 998   if (VerifyDuringGC) {
 999     GCTraceTime(Debug, gc, phases) debug(caller, _gc_timer_cm);
1000 
1001     size_t const BufLen = 512;
1002     char buffer[BufLen];
1003 
1004     jio_snprintf(buffer, BufLen, "During GC (%s)", caller);
1005     verifier->verify(type, vo, buffer);
1006   }
1007 
1008   verifier->check_bitmaps(caller);
1009 }
1010 
1011 class G1UpdateRemSetTrackingBeforeRebuildTask : public AbstractGangTask {
1012   G1CollectedHeap* _g1h;
1013   G1ConcurrentMark* _cm;
1014   HeapRegionClaimer _hrclaimer;
1015   uint volatile _total_selected_for_rebuild;
1016 
1017   G1PrintRegionLivenessInfoClosure _cl;
1018 
1019   class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure {
1020     G1CollectedHeap* _g1h;
1021     G1ConcurrentMark* _cm;
1022 
1023     G1PrintRegionLivenessInfoClosure* _cl;
1024 
1025     uint _num_regions_selected_for_rebuild;  // The number of regions actually selected for rebuild.
1026 
1027     void update_remset_before_rebuild(HeapRegion * hr) {
1028       G1RemSetTrackingPolicy* tracking_policy = _g1h->g1_policy()->remset_tracker();
1029 
1030       size_t const live_bytes = _cm->liveness(hr->hrm_index()) * HeapWordSize;
1031       bool selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes);
1032       if (selected_for_rebuild) {
1033         _num_regions_selected_for_rebuild++;
1034       }
1035       _cm->update_top_at_rebuild_start(hr);
1036     }
1037 
1038     // Distribute the given words across the humongous object starting with hr and
1039     // note end of marking.
1040     void distribute_marked_bytes(HeapRegion* hr, size_t marked_words) {
1041       uint const region_idx = hr->hrm_index();
1042       size_t const obj_size_in_words = (size_t)oop(hr->bottom())->size();
1043       uint const num_regions_in_humongous = (uint)G1CollectedHeap::humongous_obj_size_in_regions(obj_size_in_words);
1044 
1045       // "Distributing" zero words means that we only note end of marking for these
1046       // regions.
1047       assert(marked_words == 0 || obj_size_in_words == marked_words,
1048              "Marked words should either be 0 or the same as humongous object (" SIZE_FORMAT ") but is " SIZE_FORMAT,
1049              obj_size_in_words, marked_words);
1050 
1051       for (uint i = region_idx; i < (region_idx + num_regions_in_humongous); i++) {
1052         HeapRegion* const r = _g1h->region_at(i);
1053         size_t const words_to_add = MIN2(HeapRegion::GrainWords, marked_words);
1054 
1055         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to humongous region %u (%s)",
1056                                words_to_add, i, r->get_type_str());
1057         add_marked_bytes_and_note_end(r, words_to_add * HeapWordSize);
1058         marked_words -= words_to_add;
1059       }
1060       assert(marked_words == 0,
1061              SIZE_FORMAT " words left after distributing space across %u regions",
1062              marked_words, num_regions_in_humongous);
1063     }
1064 
1065     void update_marked_bytes(HeapRegion* hr) {
1066       uint const region_idx = hr->hrm_index();
1067       size_t const marked_words = _cm->liveness(region_idx);
1068       // The marking attributes the object's size completely to the humongous starts
1069       // region. We need to distribute this value across the entire set of regions a
1070       // humongous object spans.
1071       if (hr->is_humongous()) {
1072         assert(hr->is_starts_humongous() || marked_words == 0,
1073                "Should not have marked words " SIZE_FORMAT " in non-starts humongous region %u (%s)",
1074                marked_words, region_idx, hr->get_type_str());
1075         if (hr->is_starts_humongous()) {
1076           distribute_marked_bytes(hr, marked_words);
1077         }
1078       } else {
1079         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to region %u (%s)", marked_words, region_idx, hr->get_type_str());
1080         add_marked_bytes_and_note_end(hr, marked_words * HeapWordSize);
1081       }
1082     }
1083 
1084     void add_marked_bytes_and_note_end(HeapRegion* hr, size_t marked_bytes) {
1085       hr->add_to_marked_bytes(marked_bytes);
1086       _cl->do_heap_region(hr);
1087       hr->note_end_of_marking();
1088     }
1089 
1090   public:
1091     G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm, G1PrintRegionLivenessInfoClosure* cl) :
1092       _g1h(g1h), _cm(cm), _num_regions_selected_for_rebuild(0), _cl(cl) { }
1093 
1094     virtual bool do_heap_region(HeapRegion* r) {
1095       update_remset_before_rebuild(r);
1096       update_marked_bytes(r);
1097 
1098       return false;
1099     }
1100 
1101     uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; }
1102   };
1103 
1104 public:
1105   G1UpdateRemSetTrackingBeforeRebuildTask(G1CollectedHeap* g1h, G1ConcurrentMark* cm, uint num_workers) :
1106     AbstractGangTask("G1 Update RemSet Tracking Before Rebuild"),
1107     _g1h(g1h), _cm(cm), _hrclaimer(num_workers), _total_selected_for_rebuild(0), _cl("Post-Marking") { }
1108 
1109   virtual void work(uint worker_id) {
1110     G1UpdateRemSetTrackingBeforeRebuild update_cl(_g1h, _cm, &_cl);
1111     _g1h->heap_region_par_iterate_from_worker_offset(&update_cl, &_hrclaimer, worker_id);
1112     Atomic::add(update_cl.num_selected_for_rebuild(), &_total_selected_for_rebuild);
1113   }
1114 
1115   uint total_selected_for_rebuild() const { return _total_selected_for_rebuild; }
1116 
1117   // Number of regions for which roughly one thread should be spawned for this work.
1118   static const uint RegionsPerThread = 384;
1119 };
1120 
1121 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure {
1122   G1CollectedHeap* _g1h;
1123 public:
1124   G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { }
1125 
1126   virtual bool do_heap_region(HeapRegion* r) {
1127     _g1h->g1_policy()->remset_tracker()->update_after_rebuild(r);
1128     return false;
1129   }
1130 };
1131 
1132 void G1ConcurrentMark::remark() {
1133   assert_at_safepoint_on_vm_thread();
1134 
1135   // If a full collection has happened, we should not continue. However we might
1136   // have ended up here as the Remark VM operation has been scheduled already.
1137   if (has_aborted()) {
1138     return;
1139   }
1140 
1141   G1Policy* g1p = _g1h->g1_policy();
1142   g1p->record_concurrent_mark_remark_start();
1143 
1144   double start = os::elapsedTime();
1145 
1146   verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before");
1147 
1148   {
1149     GCTraceTime(Debug, gc, phases) debug("Finalize Marking", _gc_timer_cm);
1150     finalize_marking();
1151   }
1152 
1153   double mark_work_end = os::elapsedTime();
1154 
1155   bool const mark_finished = !has_overflown();
1156   if (mark_finished) {
1157     weak_refs_work(false /* clear_all_soft_refs */);
1158 
1159     SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1160     // We're done with marking.
1161     // This is the end of the marking cycle, we're expected all
1162     // threads to have SATB queues with active set to true.
1163     satb_mq_set.set_active_all_threads(false, /* new active value */
1164                                        true /* expected_active */);
1165 
1166     {
1167       GCTraceTime(Debug, gc, phases) debug("Flush Task Caches", _gc_timer_cm);
1168       flush_all_task_caches();
1169     }
1170 
1171     // Install newly created mark bitmap as "prev".
1172     swap_mark_bitmaps();
1173     {
1174       GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking Before Rebuild", _gc_timer_cm);
1175 
1176       uint const workers_by_capacity = (_g1h->num_regions() + G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread - 1) /
1177                                        G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread;
1178       uint const num_workers = MIN2(_g1h->workers()->active_workers(), workers_by_capacity);
1179 
1180       G1UpdateRemSetTrackingBeforeRebuildTask cl(_g1h, this, num_workers);
1181       log_debug(gc,ergo)("Running %s using %u workers for %u regions in heap", cl.name(), num_workers, _g1h->num_regions());
1182       _g1h->workers()->run_task(&cl, num_workers);
1183 
1184       log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u",
1185                                       _g1h->num_regions(), cl.total_selected_for_rebuild());
1186     }
1187     {
1188       GCTraceTime(Debug, gc, phases) debug("Reclaim Empty Regions", _gc_timer_cm);
1189       reclaim_empty_regions();
1190     }
1191 
1192     // Clean out dead classes
1193     if (ClassUnloadingWithConcurrentMark) {
1194       GCTraceTime(Debug, gc, phases) debug("Purge Metaspace", _gc_timer_cm);
1195       ClassLoaderDataGraph::purge();
1196     }
1197 
1198     compute_new_sizes();
1199 
1200     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark after");
1201 
1202     assert(!restart_for_overflow(), "sanity");
1203     // Completely reset the marking state since marking completed
1204     reset_at_marking_complete();
1205   } else {
1206     // We overflowed.  Restart concurrent marking.
1207     _restart_for_overflow = true;
1208 
1209     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow");
1210 
1211     // Clear the marking state because we will be restarting
1212     // marking due to overflowing the global mark stack.
1213     reset_marking_for_restart();
1214   }
1215 
1216   {
1217     GCTraceTime(Debug, gc, phases) debug("Report Object Count", _gc_timer_cm);
1218     report_object_count(mark_finished);
1219   }
1220 
1221   // Statistics
1222   double now = os::elapsedTime();
1223   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1224   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1225   _remark_times.add((now - start) * 1000.0);
1226 
1227   g1p->record_concurrent_mark_remark_end();
1228 }
1229 
1230 class G1ReclaimEmptyRegionsTask : public AbstractGangTask {
1231   // Per-region work during the Cleanup pause.
1232   class G1ReclaimEmptyRegionsClosure : public HeapRegionClosure {
1233     G1CollectedHeap* _g1h;
1234     size_t _freed_bytes;
1235     FreeRegionList* _local_cleanup_list;
1236     uint _old_regions_removed;
1237     uint _humongous_regions_removed;
1238     HRRSCleanupTask* _hrrs_cleanup_task;
1239 
1240   public:
1241     G1ReclaimEmptyRegionsClosure(G1CollectedHeap* g1h,
1242                                  FreeRegionList* local_cleanup_list,
1243                                  HRRSCleanupTask* hrrs_cleanup_task) :
1244       _g1h(g1h),
1245       _freed_bytes(0),
1246       _local_cleanup_list(local_cleanup_list),
1247       _old_regions_removed(0),
1248       _humongous_regions_removed(0),
1249       _hrrs_cleanup_task(hrrs_cleanup_task) { }
1250 
1251     size_t freed_bytes() { return _freed_bytes; }
1252     const uint old_regions_removed() { return _old_regions_removed; }
1253     const uint humongous_regions_removed() { return _humongous_regions_removed; }
1254 
1255     bool do_heap_region(HeapRegion *hr) {
1256       if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1257         _freed_bytes += hr->used();
1258         hr->set_containing_set(NULL);
1259         if (hr->is_humongous()) {
1260           _humongous_regions_removed++;
1261           _g1h->free_humongous_region(hr, _local_cleanup_list);
1262         } else {
1263           _old_regions_removed++;
1264           _g1h->free_region(hr, _local_cleanup_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
1265         }
1266         hr->clear_cardtable();
1267         _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index());
1268         log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom()));
1269       } else {
1270         hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1271       }
1272 
1273       return false;
1274     }
1275   };
1276 
1277   G1CollectedHeap* _g1h;
1278   FreeRegionList* _cleanup_list;
1279   HeapRegionClaimer _hrclaimer;
1280 
1281 public:
1282   G1ReclaimEmptyRegionsTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1283     AbstractGangTask("G1 Cleanup"),
1284     _g1h(g1h),
1285     _cleanup_list(cleanup_list),
1286     _hrclaimer(n_workers) {
1287 
1288     HeapRegionRemSet::reset_for_cleanup_tasks();
1289   }
1290 
1291   void work(uint worker_id) {
1292     FreeRegionList local_cleanup_list("Local Cleanup List");
1293     HRRSCleanupTask hrrs_cleanup_task;
1294     G1ReclaimEmptyRegionsClosure cl(_g1h,
1295                                     &local_cleanup_list,
1296                                     &hrrs_cleanup_task);
1297     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
1298     assert(cl.is_complete(), "Shouldn't have aborted!");
1299 
1300     // Now update the old/humongous region sets
1301     _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed());
1302     {
1303       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1304       _g1h->decrement_summary_bytes(cl.freed_bytes());
1305 
1306       _cleanup_list->add_ordered(&local_cleanup_list);
1307       assert(local_cleanup_list.is_empty(), "post-condition");
1308 
1309       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1310     }
1311   }
1312 };
1313 
1314 void G1ConcurrentMark::reclaim_empty_regions() {
1315   WorkGang* workers = _g1h->workers();
1316   FreeRegionList empty_regions_list("Empty Regions After Mark List");
1317 
1318   G1ReclaimEmptyRegionsTask cl(_g1h, &empty_regions_list, workers->active_workers());
1319   workers->run_task(&cl);
1320 
1321   if (!empty_regions_list.is_empty()) {
1322     log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length());
1323     // Now print the empty regions list.
1324     G1HRPrinter* hrp = _g1h->hr_printer();
1325     if (hrp->is_active()) {
1326       FreeRegionListIterator iter(&empty_regions_list);
1327       while (iter.more_available()) {
1328         HeapRegion* hr = iter.get_next();
1329         hrp->cleanup(hr);
1330       }
1331     }
1332     // And actually make them available.
1333     _g1h->prepend_to_freelist(&empty_regions_list);
1334   }
1335 }
1336 
1337 void G1ConcurrentMark::compute_new_sizes() {
1338   MetaspaceGC::compute_new_size();
1339 
1340   // Cleanup will have freed any regions completely full of garbage.
1341   // Update the soft reference policy with the new heap occupancy.
1342   Universe::update_heap_info_at_gc();
1343 
1344   // We reclaimed old regions so we should calculate the sizes to make
1345   // sure we update the old gen/space data.
1346   _g1h->g1mm()->update_sizes();
1347 }
1348 
1349 void G1ConcurrentMark::cleanup() {
1350   assert_at_safepoint_on_vm_thread();
1351 
1352   // If a full collection has happened, we shouldn't do this.
1353   if (has_aborted()) {
1354     return;
1355   }
1356 
1357   G1Policy* g1p = _g1h->g1_policy();
1358   g1p->record_concurrent_mark_cleanup_start();
1359 
1360   double start = os::elapsedTime();
1361 
1362   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup before");
1363 
1364   {
1365     GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking After Rebuild", _gc_timer_cm);
1366     G1UpdateRemSetTrackingAfterRebuild cl(_g1h);
1367     _g1h->heap_region_iterate(&cl);
1368   }
1369 
1370   if (log_is_enabled(Trace, gc, liveness)) {
1371     G1PrintRegionLivenessInfoClosure cl("Post-Cleanup");
1372     _g1h->heap_region_iterate(&cl);
1373   }
1374 
1375   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after");
1376 
1377   // We need to make this be a "collection" so any collection pause that
1378   // races with it goes around and waits for Cleanup to finish.
1379   _g1h->increment_total_collections();
1380 
1381   // Local statistics
1382   double recent_cleanup_time = (os::elapsedTime() - start);
1383   _total_cleanup_time += recent_cleanup_time;
1384   _cleanup_times.add(recent_cleanup_time);
1385 
1386   {
1387     GCTraceTime(Debug, gc, phases) debug("Finalize Concurrent Mark Cleanup", _gc_timer_cm);
1388     _g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1389   }
1390 }
1391 
1392 // Supporting Object and Oop closures for reference discovery
1393 // and processing in during marking
1394 
1395 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1396   HeapWord* addr = (HeapWord*)obj;
1397   return addr != NULL &&
1398          (!_g1h->is_in_g1_reserved(addr) || !_g1h->is_obj_ill(obj));
1399 }
1400 
1401 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1402 // Uses the G1CMTask associated with a worker thread (for serial reference
1403 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1404 // trace referent objects.
1405 //
1406 // Using the G1CMTask and embedded local queues avoids having the worker
1407 // threads operating on the global mark stack. This reduces the risk
1408 // of overflowing the stack - which we would rather avoid at this late
1409 // state. Also using the tasks' local queues removes the potential
1410 // of the workers interfering with each other that could occur if
1411 // operating on the global stack.
1412 
1413 class G1CMKeepAliveAndDrainClosure : public OopClosure {
1414   G1ConcurrentMark* _cm;
1415   G1CMTask*         _task;
1416   uint              _ref_counter_limit;
1417   uint              _ref_counter;
1418   bool              _is_serial;
1419 public:
1420   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1421     _cm(cm), _task(task), _is_serial(is_serial),
1422     _ref_counter_limit(G1RefProcDrainInterval) {
1423     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1424     _ref_counter = _ref_counter_limit;
1425   }
1426 
1427   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1428   virtual void do_oop(      oop* p) { do_oop_work(p); }
1429 
1430   template <class T> void do_oop_work(T* p) {
1431     if (_cm->has_overflown()) {
1432       return;
1433     }
1434     if (!_task->deal_with_reference(p)) {
1435       // We did not add anything to the mark bitmap (or mark stack), so there is
1436       // no point trying to drain it.
1437       return;
1438     }
1439     _ref_counter--;
1440 
1441     if (_ref_counter == 0) {
1442       // We have dealt with _ref_counter_limit references, pushing them
1443       // and objects reachable from them on to the local stack (and
1444       // possibly the global stack). Call G1CMTask::do_marking_step() to
1445       // process these entries.
1446       //
1447       // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1448       // there's nothing more to do (i.e. we're done with the entries that
1449       // were pushed as a result of the G1CMTask::deal_with_reference() calls
1450       // above) or we overflow.
1451       //
1452       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1453       // flag while there may still be some work to do. (See the comment at
1454       // the beginning of G1CMTask::do_marking_step() for those conditions -
1455       // one of which is reaching the specified time target.) It is only
1456       // when G1CMTask::do_marking_step() returns without setting the
1457       // has_aborted() flag that the marking step has completed.
1458       do {
1459         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1460         _task->do_marking_step(mark_step_duration_ms,
1461                                false      /* do_termination */,
1462                                _is_serial);
1463       } while (_task->has_aborted() && !_cm->has_overflown());
1464       _ref_counter = _ref_counter_limit;
1465     }
1466   }
1467 };
1468 
1469 // 'Drain' oop closure used by both serial and parallel reference processing.
1470 // Uses the G1CMTask associated with a given worker thread (for serial
1471 // reference processing the G1CMtask for worker 0 is used). Calls the
1472 // do_marking_step routine, with an unbelievably large timeout value,
1473 // to drain the marking data structures of the remaining entries
1474 // added by the 'keep alive' oop closure above.
1475 
1476 class G1CMDrainMarkingStackClosure : public VoidClosure {
1477   G1ConcurrentMark* _cm;
1478   G1CMTask*         _task;
1479   bool              _is_serial;
1480  public:
1481   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1482     _cm(cm), _task(task), _is_serial(is_serial) {
1483     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1484   }
1485 
1486   void do_void() {
1487     do {
1488       // We call G1CMTask::do_marking_step() to completely drain the local
1489       // and global marking stacks of entries pushed by the 'keep alive'
1490       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1491       //
1492       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1493       // if there's nothing more to do (i.e. we've completely drained the
1494       // entries that were pushed as a a result of applying the 'keep alive'
1495       // closure to the entries on the discovered ref lists) or we overflow
1496       // the global marking stack.
1497       //
1498       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1499       // flag while there may still be some work to do. (See the comment at
1500       // the beginning of G1CMTask::do_marking_step() for those conditions -
1501       // one of which is reaching the specified time target.) It is only
1502       // when G1CMTask::do_marking_step() returns without setting the
1503       // has_aborted() flag that the marking step has completed.
1504 
1505       _task->do_marking_step(1000000000.0 /* something very large */,
1506                              true         /* do_termination */,
1507                              _is_serial);
1508     } while (_task->has_aborted() && !_cm->has_overflown());
1509   }
1510 };
1511 
1512 // Implementation of AbstractRefProcTaskExecutor for parallel
1513 // reference processing at the end of G1 concurrent marking
1514 
1515 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor {
1516 private:
1517   G1CollectedHeap*  _g1h;
1518   G1ConcurrentMark* _cm;
1519   WorkGang*         _workers;
1520   uint              _active_workers;
1521 
1522 public:
1523   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1524                           G1ConcurrentMark* cm,
1525                           WorkGang* workers,
1526                           uint n_workers) :
1527     _g1h(g1h), _cm(cm),
1528     _workers(workers), _active_workers(n_workers) { }
1529 
1530   // Executes the given task using concurrent marking worker threads.
1531   virtual void execute(ProcessTask& task);
1532   virtual void execute(EnqueueTask& task);
1533 };
1534 
1535 class G1CMRefProcTaskProxy : public AbstractGangTask {
1536   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1537   ProcessTask&      _proc_task;
1538   G1CollectedHeap*  _g1h;
1539   G1ConcurrentMark* _cm;
1540 
1541 public:
1542   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1543                        G1CollectedHeap* g1h,
1544                        G1ConcurrentMark* cm) :
1545     AbstractGangTask("Process reference objects in parallel"),
1546     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1547     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1548     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1549   }
1550 
1551   virtual void work(uint worker_id) {
1552     ResourceMark rm;
1553     HandleMark hm;
1554     G1CMTask* task = _cm->task(worker_id);
1555     G1CMIsAliveClosure g1_is_alive(_g1h);
1556     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1557     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1558 
1559     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1560   }
1561 };
1562 
1563 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1564   assert(_workers != NULL, "Need parallel worker threads.");
1565   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1566 
1567   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1568 
1569   // We need to reset the concurrency level before each
1570   // proxy task execution, so that the termination protocol
1571   // and overflow handling in G1CMTask::do_marking_step() knows
1572   // how many workers to wait for.
1573   _cm->set_concurrency(_active_workers);
1574   _workers->run_task(&proc_task_proxy);
1575 }
1576 
1577 class G1CMRefEnqueueTaskProxy : public AbstractGangTask {
1578   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1579   EnqueueTask& _enq_task;
1580 
1581 public:
1582   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1583     AbstractGangTask("Enqueue reference objects in parallel"),
1584     _enq_task(enq_task) { }
1585 
1586   virtual void work(uint worker_id) {
1587     _enq_task.work(worker_id);
1588   }
1589 };
1590 
1591 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1592   assert(_workers != NULL, "Need parallel worker threads.");
1593   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1594 
1595   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1596 
1597   // Not strictly necessary but...
1598   //
1599   // We need to reset the concurrency level before each
1600   // proxy task execution, so that the termination protocol
1601   // and overflow handling in G1CMTask::do_marking_step() knows
1602   // how many workers to wait for.
1603   _cm->set_concurrency(_active_workers);
1604   _workers->run_task(&enq_task_proxy);
1605 }
1606 
1607 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1608   ResourceMark rm;
1609   HandleMark   hm;
1610 
1611   // Is alive closure.
1612   G1CMIsAliveClosure g1_is_alive(_g1h);
1613 
1614   // Inner scope to exclude the cleaning of the string and symbol
1615   // tables from the displayed time.
1616   {
1617     GCTraceTime(Debug, gc, phases) debug("Reference Processing", _gc_timer_cm);
1618 
1619     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1620 
1621     // See the comment in G1CollectedHeap::ref_processing_init()
1622     // about how reference processing currently works in G1.
1623 
1624     // Set the soft reference policy
1625     rp->setup_policy(clear_all_soft_refs);
1626     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1627 
1628     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1629     // in serial reference processing. Note these closures are also
1630     // used for serially processing (by the the current thread) the
1631     // JNI references during parallel reference processing.
1632     //
1633     // These closures do not need to synchronize with the worker
1634     // threads involved in parallel reference processing as these
1635     // instances are executed serially by the current thread (e.g.
1636     // reference processing is not multi-threaded and is thus
1637     // performed by the current thread instead of a gang worker).
1638     //
1639     // The gang tasks involved in parallel reference processing create
1640     // their own instances of these closures, which do their own
1641     // synchronization among themselves.
1642     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1643     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1644 
1645     // We need at least one active thread. If reference processing
1646     // is not multi-threaded we use the current (VMThread) thread,
1647     // otherwise we use the work gang from the G1CollectedHeap and
1648     // we utilize all the worker threads we can.
1649     bool processing_is_mt = rp->processing_is_mt();
1650     uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U);
1651     active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U);
1652 
1653     // Parallel processing task executor.
1654     G1CMRefProcTaskExecutor par_task_executor(_g1h, this,
1655                                               _g1h->workers(), active_workers);
1656     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1657 
1658     // Set the concurrency level. The phase was already set prior to
1659     // executing the remark task.
1660     set_concurrency(active_workers);
1661 
1662     // Set the degree of MT processing here.  If the discovery was done MT,
1663     // the number of threads involved during discovery could differ from
1664     // the number of active workers.  This is OK as long as the discovered
1665     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1666     rp->set_active_mt_degree(active_workers);
1667 
1668     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_q());
1669 
1670     // Process the weak references.
1671     const ReferenceProcessorStats& stats =
1672         rp->process_discovered_references(&g1_is_alive,
1673                                           &g1_keep_alive,
1674                                           &g1_drain_mark_stack,
1675                                           executor,
1676                                           &pt);
1677     _gc_tracer_cm->report_gc_reference_stats(stats);
1678     pt.print_all_references();
1679 
1680     // The do_oop work routines of the keep_alive and drain_marking_stack
1681     // oop closures will set the has_overflown flag if we overflow the
1682     // global marking stack.
1683 
1684     assert(has_overflown() || _global_mark_stack.is_empty(),
1685            "Mark stack should be empty (unless it has overflown)");
1686 
1687     assert(rp->num_q() == active_workers, "why not");
1688 
1689     rp->enqueue_discovered_references(executor, &pt);
1690 
1691     rp->verify_no_references_recorded();
1692 
1693     pt.print_enqueue_phase();
1694 
1695     assert(!rp->discovery_enabled(), "Post condition");
1696   }
1697 
1698   if (has_overflown()) {
1699     // We can not trust g1_is_alive if the marking stack overflowed
1700     return;
1701   }
1702 
1703   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1704 
1705   {
1706     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1707     WeakProcessor::weak_oops_do(&g1_is_alive, &do_nothing_cl);
1708   }
1709 
1710   // Unload Klasses, String, Symbols, Code Cache, etc.
1711   if (ClassUnloadingWithConcurrentMark) {
1712     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1713     bool purged_classes = SystemDictionary::do_unloading(&g1_is_alive, _gc_timer_cm, false /* Defer cleaning */);
1714     _g1h->complete_cleaning(&g1_is_alive, purged_classes);
1715   } else {
1716     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1717     // No need to clean string table and symbol table as they are treated as strong roots when
1718     // class unloading is disabled.
1719     _g1h->partial_cleaning(&g1_is_alive, false, false, G1StringDedup::is_enabled());
1720   }
1721 }
1722 
1723 // When sampling object counts, we already swapped the mark bitmaps, so we need to use
1724 // the prev bitmap determining liveness.
1725 class G1ObjectCountIsAliveClosure: public BoolObjectClosure {
1726   G1CollectedHeap* _g1h;
1727 public:
1728   G1ObjectCountIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
1729 
1730   bool do_object_b(oop obj) {
1731     HeapWord* addr = (HeapWord*)obj;
1732     return addr != NULL &&
1733            (!_g1h->is_in_g1_reserved(addr) || !_g1h->is_obj_dead(obj));
1734   }
1735 };
1736 
1737 void G1ConcurrentMark::report_object_count(bool mark_completed) {
1738   // Depending on the completion of the marking liveness needs to be determined
1739   // using either the next or prev bitmap.
1740   if (mark_completed) {
1741     G1ObjectCountIsAliveClosure is_alive(_g1h);
1742     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1743   } else {
1744     G1CMIsAliveClosure is_alive(_g1h);
1745     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1746   }
1747 }
1748 
1749 
1750 void G1ConcurrentMark::swap_mark_bitmaps() {
1751   G1CMBitMap* temp = _prev_mark_bitmap;
1752   _prev_mark_bitmap = _next_mark_bitmap;
1753   _next_mark_bitmap = temp;
1754   _g1h->collector_state()->set_clearing_next_bitmap(true);
1755 }
1756 
1757 // Closure for marking entries in SATB buffers.
1758 class G1CMSATBBufferClosure : public SATBBufferClosure {
1759 private:
1760   G1CMTask* _task;
1761   G1CollectedHeap* _g1h;
1762 
1763   // This is very similar to G1CMTask::deal_with_reference, but with
1764   // more relaxed requirements for the argument, so this must be more
1765   // circumspect about treating the argument as an object.
1766   void do_entry(void* entry) const {
1767     _task->increment_refs_reached();
1768     oop const obj = static_cast<oop>(entry);
1769     _task->make_reference_grey(obj);
1770   }
1771 
1772 public:
1773   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1774     : _task(task), _g1h(g1h) { }
1775 
1776   virtual void do_buffer(void** buffer, size_t size) {
1777     for (size_t i = 0; i < size; ++i) {
1778       do_entry(buffer[i]);
1779     }
1780   }
1781 };
1782 
1783 class G1RemarkThreadsClosure : public ThreadClosure {
1784   G1CMSATBBufferClosure _cm_satb_cl;
1785   G1CMOopClosure _cm_cl;
1786   MarkingCodeBlobClosure _code_cl;
1787   int _thread_parity;
1788 
1789  public:
1790   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1791     _cm_satb_cl(task, g1h),
1792     _cm_cl(g1h, task),
1793     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1794     _thread_parity(Threads::thread_claim_parity()) {}
1795 
1796   void do_thread(Thread* thread) {
1797     if (thread->is_Java_thread()) {
1798       if (thread->claim_oops_do(true, _thread_parity)) {
1799         JavaThread* jt = (JavaThread*)thread;
1800 
1801         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1802         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1803         // * Alive if on the stack of an executing method
1804         // * Weakly reachable otherwise
1805         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1806         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1807         jt->nmethods_do(&_code_cl);
1808 
1809         G1ThreadLocalData::satb_mark_queue(jt).apply_closure_and_empty(&_cm_satb_cl);
1810       }
1811     } else if (thread->is_VM_thread()) {
1812       if (thread->claim_oops_do(true, _thread_parity)) {
1813         G1BarrierSet::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1814       }
1815     }
1816   }
1817 };
1818 
1819 class G1CMRemarkTask : public AbstractGangTask {
1820   G1ConcurrentMark* _cm;
1821 public:
1822   void work(uint worker_id) {
1823     G1CMTask* task = _cm->task(worker_id);
1824     task->record_start_time();
1825     {
1826       ResourceMark rm;
1827       HandleMark hm;
1828 
1829       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1830       Threads::threads_do(&threads_f);
1831     }
1832 
1833     do {
1834       task->do_marking_step(1000000000.0 /* something very large */,
1835                             true         /* do_termination       */,
1836                             false        /* is_serial            */);
1837     } while (task->has_aborted() && !_cm->has_overflown());
1838     // If we overflow, then we do not want to restart. We instead
1839     // want to abort remark and do concurrent marking again.
1840     task->record_end_time();
1841   }
1842 
1843   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1844     AbstractGangTask("Par Remark"), _cm(cm) {
1845     _cm->terminator()->reset_for_reuse(active_workers);
1846   }
1847 };
1848 
1849 void G1ConcurrentMark::finalize_marking() {
1850   ResourceMark rm;
1851   HandleMark   hm;
1852 
1853   _g1h->ensure_parsability(false);
1854 
1855   // this is remark, so we'll use up all active threads
1856   uint active_workers = _g1h->workers()->active_workers();
1857   set_concurrency_and_phase(active_workers, false /* concurrent */);
1858   // Leave _parallel_marking_threads at it's
1859   // value originally calculated in the G1ConcurrentMark
1860   // constructor and pass values of the active workers
1861   // through the gang in the task.
1862 
1863   {
1864     StrongRootsScope srs(active_workers);
1865 
1866     G1CMRemarkTask remarkTask(this, active_workers);
1867     // We will start all available threads, even if we decide that the
1868     // active_workers will be fewer. The extra ones will just bail out
1869     // immediately.
1870     _g1h->workers()->run_task(&remarkTask);
1871   }
1872 
1873   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1874   guarantee(has_overflown() ||
1875             satb_mq_set.completed_buffers_num() == 0,
1876             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1877             BOOL_TO_STR(has_overflown()),
1878             satb_mq_set.completed_buffers_num());
1879 
1880   print_stats();
1881 }
1882 
1883 void G1ConcurrentMark::flush_all_task_caches() {
1884   size_t hits = 0;
1885   size_t misses = 0;
1886   for (uint i = 0; i < _max_num_tasks; i++) {
1887     Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache();
1888     hits += stats.first;
1889     misses += stats.second;
1890   }
1891   size_t sum = hits + misses;
1892   log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf",
1893                        hits, misses, percent_of(hits, sum));
1894 }
1895 
1896 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1897   _prev_mark_bitmap->clear_range(mr);
1898 }
1899 
1900 HeapRegion*
1901 G1ConcurrentMark::claim_region(uint worker_id) {
1902   // "checkpoint" the finger
1903   HeapWord* finger = _finger;
1904 
1905   while (finger < _heap.end()) {
1906     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1907 
1908     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1909     // Make sure that the reads below do not float before loading curr_region.
1910     OrderAccess::loadload();
1911     // Above heap_region_containing may return NULL as we always scan claim
1912     // until the end of the heap. In this case, just jump to the next region.
1913     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1914 
1915     // Is the gap between reading the finger and doing the CAS too long?
1916     HeapWord* res = Atomic::cmpxchg(end, &_finger, finger);
1917     if (res == finger && curr_region != NULL) {
1918       // we succeeded
1919       HeapWord*   bottom        = curr_region->bottom();
1920       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1921 
1922       // notice that _finger == end cannot be guaranteed here since,
1923       // someone else might have moved the finger even further
1924       assert(_finger >= end, "the finger should have moved forward");
1925 
1926       if (limit > bottom) {
1927         return curr_region;
1928       } else {
1929         assert(limit == bottom,
1930                "the region limit should be at bottom");
1931         // we return NULL and the caller should try calling
1932         // claim_region() again.
1933         return NULL;
1934       }
1935     } else {
1936       assert(_finger > finger, "the finger should have moved forward");
1937       // read it again
1938       finger = _finger;
1939     }
1940   }
1941 
1942   return NULL;
1943 }
1944 
1945 #ifndef PRODUCT
1946 class VerifyNoCSetOops {
1947   G1CollectedHeap* _g1h;
1948   const char* _phase;
1949   int _info;
1950 
1951 public:
1952   VerifyNoCSetOops(const char* phase, int info = -1) :
1953     _g1h(G1CollectedHeap::heap()),
1954     _phase(phase),
1955     _info(info)
1956   { }
1957 
1958   void operator()(G1TaskQueueEntry task_entry) const {
1959     if (task_entry.is_array_slice()) {
1960       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1961       return;
1962     }
1963     guarantee(oopDesc::is_oop(task_entry.obj()),
1964               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1965               p2i(task_entry.obj()), _phase, _info);
1966     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1967               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1968               p2i(task_entry.obj()), _phase, _info);
1969   }
1970 };
1971 
1972 void G1ConcurrentMark::verify_no_cset_oops() {
1973   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1974   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
1975     return;
1976   }
1977 
1978   // Verify entries on the global mark stack
1979   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1980 
1981   // Verify entries on the task queues
1982   for (uint i = 0; i < _max_num_tasks; ++i) {
1983     G1CMTaskQueue* queue = _task_queues->queue(i);
1984     queue->iterate(VerifyNoCSetOops("Queue", i));
1985   }
1986 
1987   // Verify the global finger
1988   HeapWord* global_finger = finger();
1989   if (global_finger != NULL && global_finger < _heap.end()) {
1990     // Since we always iterate over all regions, we might get a NULL HeapRegion
1991     // here.
1992     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1993     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1994               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1995               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1996   }
1997 
1998   // Verify the task fingers
1999   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
2000   for (uint i = 0; i < _num_concurrent_workers; ++i) {
2001     G1CMTask* task = _tasks[i];
2002     HeapWord* task_finger = task->finger();
2003     if (task_finger != NULL && task_finger < _heap.end()) {
2004       // See above note on the global finger verification.
2005       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
2006       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2007                 !task_hr->in_collection_set(),
2008                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
2009                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
2010     }
2011   }
2012 }
2013 #endif // PRODUCT
2014 
2015 void G1ConcurrentMark::rebuild_rem_set_concurrently() {
2016   _g1h->g1_rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset);
2017 }
2018 
2019 void G1ConcurrentMark::print_stats() {
2020   if (!log_is_enabled(Debug, gc, stats)) {
2021     return;
2022   }
2023   log_debug(gc, stats)("---------------------------------------------------------------------");
2024   for (size_t i = 0; i < _num_active_tasks; ++i) {
2025     _tasks[i]->print_stats();
2026     log_debug(gc, stats)("---------------------------------------------------------------------");
2027   }
2028 }
2029 
2030 void G1ConcurrentMark::concurrent_cycle_abort() {
2031   if (!cm_thread()->during_cycle() || _has_aborted) {
2032     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2033     return;
2034   }
2035 
2036   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2037   // concurrent bitmap clearing.
2038   {
2039     GCTraceTime(Debug, gc) debug("Clear Next Bitmap");
2040     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
2041   }
2042   // Note we cannot clear the previous marking bitmap here
2043   // since VerifyDuringGC verifies the objects marked during
2044   // a full GC against the previous bitmap.
2045 
2046   // Empty mark stack
2047   reset_marking_for_restart();
2048   for (uint i = 0; i < _max_num_tasks; ++i) {
2049     _tasks[i]->clear_region_fields();
2050   }
2051   _first_overflow_barrier_sync.abort();
2052   _second_overflow_barrier_sync.abort();
2053   _has_aborted = true;
2054 
2055   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2056   satb_mq_set.abandon_partial_marking();
2057   // This can be called either during or outside marking, we'll read
2058   // the expected_active value from the SATB queue set.
2059   satb_mq_set.set_active_all_threads(
2060                                  false, /* new active value */
2061                                  satb_mq_set.is_active() /* expected_active */);
2062 }
2063 
2064 static void print_ms_time_info(const char* prefix, const char* name,
2065                                NumberSeq& ns) {
2066   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2067                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2068   if (ns.num() > 0) {
2069     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2070                            prefix, ns.sd(), ns.maximum());
2071   }
2072 }
2073 
2074 void G1ConcurrentMark::print_summary_info() {
2075   Log(gc, marking) log;
2076   if (!log.is_trace()) {
2077     return;
2078   }
2079 
2080   log.trace(" Concurrent marking:");
2081   print_ms_time_info("  ", "init marks", _init_times);
2082   print_ms_time_info("  ", "remarks", _remark_times);
2083   {
2084     print_ms_time_info("     ", "final marks", _remark_mark_times);
2085     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2086 
2087   }
2088   print_ms_time_info("  ", "cleanups", _cleanup_times);
2089   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2090             _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2091   log.trace("  Total stop_world time = %8.2f s.",
2092             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2093   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2094             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2095 }
2096 
2097 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2098   _concurrent_workers->print_worker_threads_on(st);
2099 }
2100 
2101 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2102   _concurrent_workers->threads_do(tc);
2103 }
2104 
2105 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2106   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2107                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2108   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2109   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2110 }
2111 
2112 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2113   ReferenceProcessor* result = g1h->ref_processor_cm();
2114   assert(result != NULL, "CM reference processor should not be NULL");
2115   return result;
2116 }
2117 
2118 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2119                                G1CMTask* task)
2120   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2121     _g1h(g1h), _task(task)
2122 { }
2123 
2124 void G1CMTask::setup_for_region(HeapRegion* hr) {
2125   assert(hr != NULL,
2126         "claim_region() should have filtered out NULL regions");
2127   _curr_region  = hr;
2128   _finger       = hr->bottom();
2129   update_region_limit();
2130 }
2131 
2132 void G1CMTask::update_region_limit() {
2133   HeapRegion* hr            = _curr_region;
2134   HeapWord* bottom          = hr->bottom();
2135   HeapWord* limit           = hr->next_top_at_mark_start();
2136 
2137   if (limit == bottom) {
2138     // The region was collected underneath our feet.
2139     // We set the finger to bottom to ensure that the bitmap
2140     // iteration that will follow this will not do anything.
2141     // (this is not a condition that holds when we set the region up,
2142     // as the region is not supposed to be empty in the first place)
2143     _finger = bottom;
2144   } else if (limit >= _region_limit) {
2145     assert(limit >= _finger, "peace of mind");
2146   } else {
2147     assert(limit < _region_limit, "only way to get here");
2148     // This can happen under some pretty unusual circumstances.  An
2149     // evacuation pause empties the region underneath our feet (NTAMS
2150     // at bottom). We then do some allocation in the region (NTAMS
2151     // stays at bottom), followed by the region being used as a GC
2152     // alloc region (NTAMS will move to top() and the objects
2153     // originally below it will be grayed). All objects now marked in
2154     // the region are explicitly grayed, if below the global finger,
2155     // and we do not need in fact to scan anything else. So, we simply
2156     // set _finger to be limit to ensure that the bitmap iteration
2157     // doesn't do anything.
2158     _finger = limit;
2159   }
2160 
2161   _region_limit = limit;
2162 }
2163 
2164 void G1CMTask::giveup_current_region() {
2165   assert(_curr_region != NULL, "invariant");
2166   clear_region_fields();
2167 }
2168 
2169 void G1CMTask::clear_region_fields() {
2170   // Values for these three fields that indicate that we're not
2171   // holding on to a region.
2172   _curr_region   = NULL;
2173   _finger        = NULL;
2174   _region_limit  = NULL;
2175 }
2176 
2177 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2178   if (cm_oop_closure == NULL) {
2179     assert(_cm_oop_closure != NULL, "invariant");
2180   } else {
2181     assert(_cm_oop_closure == NULL, "invariant");
2182   }
2183   _cm_oop_closure = cm_oop_closure;
2184 }
2185 
2186 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2187   guarantee(next_mark_bitmap != NULL, "invariant");
2188   _next_mark_bitmap              = next_mark_bitmap;
2189   clear_region_fields();
2190 
2191   _calls                         = 0;
2192   _elapsed_time_ms               = 0.0;
2193   _termination_time_ms           = 0.0;
2194   _termination_start_time_ms     = 0.0;
2195 
2196   _mark_stats_cache.reset();
2197 }
2198 
2199 bool G1CMTask::should_exit_termination() {
2200   regular_clock_call();
2201   // This is called when we are in the termination protocol. We should
2202   // quit if, for some reason, this task wants to abort or the global
2203   // stack is not empty (this means that we can get work from it).
2204   return !_cm->mark_stack_empty() || has_aborted();
2205 }
2206 
2207 void G1CMTask::reached_limit() {
2208   assert(_words_scanned >= _words_scanned_limit ||
2209          _refs_reached >= _refs_reached_limit ,
2210          "shouldn't have been called otherwise");
2211   regular_clock_call();
2212 }
2213 
2214 void G1CMTask::regular_clock_call() {
2215   if (has_aborted()) {
2216     return;
2217   }
2218 
2219   // First, we need to recalculate the words scanned and refs reached
2220   // limits for the next clock call.
2221   recalculate_limits();
2222 
2223   // During the regular clock call we do the following
2224 
2225   // (1) If an overflow has been flagged, then we abort.
2226   if (_cm->has_overflown()) {
2227     set_has_aborted();
2228     return;
2229   }
2230 
2231   // If we are not concurrent (i.e. we're doing remark) we don't need
2232   // to check anything else. The other steps are only needed during
2233   // the concurrent marking phase.
2234   if (!_cm->concurrent()) {
2235     return;
2236   }
2237 
2238   // (2) If marking has been aborted for Full GC, then we also abort.
2239   if (_cm->has_aborted()) {
2240     set_has_aborted();
2241     return;
2242   }
2243 
2244   double curr_time_ms = os::elapsedVTime() * 1000.0;
2245 
2246   // (4) We check whether we should yield. If we have to, then we abort.
2247   if (SuspendibleThreadSet::should_yield()) {
2248     // We should yield. To do this we abort the task. The caller is
2249     // responsible for yielding.
2250     set_has_aborted();
2251     return;
2252   }
2253 
2254   // (5) We check whether we've reached our time quota. If we have,
2255   // then we abort.
2256   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2257   if (elapsed_time_ms > _time_target_ms) {
2258     set_has_aborted();
2259     _has_timed_out = true;
2260     return;
2261   }
2262 
2263   // (6) Finally, we check whether there are enough completed STAB
2264   // buffers available for processing. If there are, we abort.
2265   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2266   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2267     // we do need to process SATB buffers, we'll abort and restart
2268     // the marking task to do so
2269     set_has_aborted();
2270     return;
2271   }
2272 }
2273 
2274 void G1CMTask::recalculate_limits() {
2275   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2276   _words_scanned_limit      = _real_words_scanned_limit;
2277 
2278   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2279   _refs_reached_limit       = _real_refs_reached_limit;
2280 }
2281 
2282 void G1CMTask::decrease_limits() {
2283   // This is called when we believe that we're going to do an infrequent
2284   // operation which will increase the per byte scanned cost (i.e. move
2285   // entries to/from the global stack). It basically tries to decrease the
2286   // scanning limit so that the clock is called earlier.
2287 
2288   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2289   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2290 }
2291 
2292 void G1CMTask::move_entries_to_global_stack() {
2293   // Local array where we'll store the entries that will be popped
2294   // from the local queue.
2295   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2296 
2297   size_t n = 0;
2298   G1TaskQueueEntry task_entry;
2299   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2300     buffer[n] = task_entry;
2301     ++n;
2302   }
2303   if (n < G1CMMarkStack::EntriesPerChunk) {
2304     buffer[n] = G1TaskQueueEntry();
2305   }
2306 
2307   if (n > 0) {
2308     if (!_cm->mark_stack_push(buffer)) {
2309       set_has_aborted();
2310     }
2311   }
2312 
2313   // This operation was quite expensive, so decrease the limits.
2314   decrease_limits();
2315 }
2316 
2317 bool G1CMTask::get_entries_from_global_stack() {
2318   // Local array where we'll store the entries that will be popped
2319   // from the global stack.
2320   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2321 
2322   if (!_cm->mark_stack_pop(buffer)) {
2323     return false;
2324   }
2325 
2326   // We did actually pop at least one entry.
2327   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2328     G1TaskQueueEntry task_entry = buffer[i];
2329     if (task_entry.is_null()) {
2330       break;
2331     }
2332     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2333     bool success = _task_queue->push(task_entry);
2334     // We only call this when the local queue is empty or under a
2335     // given target limit. So, we do not expect this push to fail.
2336     assert(success, "invariant");
2337   }
2338 
2339   // This operation was quite expensive, so decrease the limits
2340   decrease_limits();
2341   return true;
2342 }
2343 
2344 void G1CMTask::drain_local_queue(bool partially) {
2345   if (has_aborted()) {
2346     return;
2347   }
2348 
2349   // Decide what the target size is, depending whether we're going to
2350   // drain it partially (so that other tasks can steal if they run out
2351   // of things to do) or totally (at the very end).
2352   size_t target_size;
2353   if (partially) {
2354     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2355   } else {
2356     target_size = 0;
2357   }
2358 
2359   if (_task_queue->size() > target_size) {
2360     G1TaskQueueEntry entry;
2361     bool ret = _task_queue->pop_local(entry);
2362     while (ret) {
2363       scan_task_entry(entry);
2364       if (_task_queue->size() <= target_size || has_aborted()) {
2365         ret = false;
2366       } else {
2367         ret = _task_queue->pop_local(entry);
2368       }
2369     }
2370   }
2371 }
2372 
2373 void G1CMTask::drain_global_stack(bool partially) {
2374   if (has_aborted()) {
2375     return;
2376   }
2377 
2378   // We have a policy to drain the local queue before we attempt to
2379   // drain the global stack.
2380   assert(partially || _task_queue->size() == 0, "invariant");
2381 
2382   // Decide what the target size is, depending whether we're going to
2383   // drain it partially (so that other tasks can steal if they run out
2384   // of things to do) or totally (at the very end).
2385   // Notice that when draining the global mark stack partially, due to the racyness
2386   // of the mark stack size update we might in fact drop below the target. But,
2387   // this is not a problem.
2388   // In case of total draining, we simply process until the global mark stack is
2389   // totally empty, disregarding the size counter.
2390   if (partially) {
2391     size_t const target_size = _cm->partial_mark_stack_size_target();
2392     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2393       if (get_entries_from_global_stack()) {
2394         drain_local_queue(partially);
2395       }
2396     }
2397   } else {
2398     while (!has_aborted() && get_entries_from_global_stack()) {
2399       drain_local_queue(partially);
2400     }
2401   }
2402 }
2403 
2404 // SATB Queue has several assumptions on whether to call the par or
2405 // non-par versions of the methods. this is why some of the code is
2406 // replicated. We should really get rid of the single-threaded version
2407 // of the code to simplify things.
2408 void G1CMTask::drain_satb_buffers() {
2409   if (has_aborted()) {
2410     return;
2411   }
2412 
2413   // We set this so that the regular clock knows that we're in the
2414   // middle of draining buffers and doesn't set the abort flag when it
2415   // notices that SATB buffers are available for draining. It'd be
2416   // very counter productive if it did that. :-)
2417   _draining_satb_buffers = true;
2418 
2419   G1CMSATBBufferClosure satb_cl(this, _g1h);
2420   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2421 
2422   // This keeps claiming and applying the closure to completed buffers
2423   // until we run out of buffers or we need to abort.
2424   while (!has_aborted() &&
2425          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2426     regular_clock_call();
2427   }
2428 
2429   _draining_satb_buffers = false;
2430 
2431   assert(has_aborted() ||
2432          _cm->concurrent() ||
2433          satb_mq_set.completed_buffers_num() == 0, "invariant");
2434 
2435   // again, this was a potentially expensive operation, decrease the
2436   // limits to get the regular clock call early
2437   decrease_limits();
2438 }
2439 
2440 void G1CMTask::clear_mark_stats_cache(uint region_idx) {
2441   _mark_stats_cache.reset(region_idx);
2442 }
2443 
2444 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() {
2445   return _mark_stats_cache.evict_all();
2446 }
2447 
2448 void G1CMTask::print_stats() {
2449   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls);
2450   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2451                        _elapsed_time_ms, _termination_time_ms);
2452   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms",
2453                        _step_times_ms.num(),
2454                        _step_times_ms.avg(),
2455                        _step_times_ms.sd(),
2456                        _step_times_ms.maximum(),
2457                        _step_times_ms.sum());
2458   size_t const hits = _mark_stats_cache.hits();
2459   size_t const misses = _mark_stats_cache.misses();
2460   log_debug(gc, stats)("  Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f",
2461                        hits, misses, percent_of(hits, hits + misses));
2462 }
2463 
2464 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) {
2465   return _task_queues->steal(worker_id, hash_seed, task_entry);
2466 }
2467 
2468 /*****************************************************************************
2469 
2470     The do_marking_step(time_target_ms, ...) method is the building
2471     block of the parallel marking framework. It can be called in parallel
2472     with other invocations of do_marking_step() on different tasks
2473     (but only one per task, obviously) and concurrently with the
2474     mutator threads, or during remark, hence it eliminates the need
2475     for two versions of the code. When called during remark, it will
2476     pick up from where the task left off during the concurrent marking
2477     phase. Interestingly, tasks are also claimable during evacuation
2478     pauses too, since do_marking_step() ensures that it aborts before
2479     it needs to yield.
2480 
2481     The data structures that it uses to do marking work are the
2482     following:
2483 
2484       (1) Marking Bitmap. If there are gray objects that appear only
2485       on the bitmap (this happens either when dealing with an overflow
2486       or when the initial marking phase has simply marked the roots
2487       and didn't push them on the stack), then tasks claim heap
2488       regions whose bitmap they then scan to find gray objects. A
2489       global finger indicates where the end of the last claimed region
2490       is. A local finger indicates how far into the region a task has
2491       scanned. The two fingers are used to determine how to gray an
2492       object (i.e. whether simply marking it is OK, as it will be
2493       visited by a task in the future, or whether it needs to be also
2494       pushed on a stack).
2495 
2496       (2) Local Queue. The local queue of the task which is accessed
2497       reasonably efficiently by the task. Other tasks can steal from
2498       it when they run out of work. Throughout the marking phase, a
2499       task attempts to keep its local queue short but not totally
2500       empty, so that entries are available for stealing by other
2501       tasks. Only when there is no more work, a task will totally
2502       drain its local queue.
2503 
2504       (3) Global Mark Stack. This handles local queue overflow. During
2505       marking only sets of entries are moved between it and the local
2506       queues, as access to it requires a mutex and more fine-grain
2507       interaction with it which might cause contention. If it
2508       overflows, then the marking phase should restart and iterate
2509       over the bitmap to identify gray objects. Throughout the marking
2510       phase, tasks attempt to keep the global mark stack at a small
2511       length but not totally empty, so that entries are available for
2512       popping by other tasks. Only when there is no more work, tasks
2513       will totally drain the global mark stack.
2514 
2515       (4) SATB Buffer Queue. This is where completed SATB buffers are
2516       made available. Buffers are regularly removed from this queue
2517       and scanned for roots, so that the queue doesn't get too
2518       long. During remark, all completed buffers are processed, as
2519       well as the filled in parts of any uncompleted buffers.
2520 
2521     The do_marking_step() method tries to abort when the time target
2522     has been reached. There are a few other cases when the
2523     do_marking_step() method also aborts:
2524 
2525       (1) When the marking phase has been aborted (after a Full GC).
2526 
2527       (2) When a global overflow (on the global stack) has been
2528       triggered. Before the task aborts, it will actually sync up with
2529       the other tasks to ensure that all the marking data structures
2530       (local queues, stacks, fingers etc.)  are re-initialized so that
2531       when do_marking_step() completes, the marking phase can
2532       immediately restart.
2533 
2534       (3) When enough completed SATB buffers are available. The
2535       do_marking_step() method only tries to drain SATB buffers right
2536       at the beginning. So, if enough buffers are available, the
2537       marking step aborts and the SATB buffers are processed at
2538       the beginning of the next invocation.
2539 
2540       (4) To yield. when we have to yield then we abort and yield
2541       right at the end of do_marking_step(). This saves us from a lot
2542       of hassle as, by yielding we might allow a Full GC. If this
2543       happens then objects will be compacted underneath our feet, the
2544       heap might shrink, etc. We save checking for this by just
2545       aborting and doing the yield right at the end.
2546 
2547     From the above it follows that the do_marking_step() method should
2548     be called in a loop (or, otherwise, regularly) until it completes.
2549 
2550     If a marking step completes without its has_aborted() flag being
2551     true, it means it has completed the current marking phase (and
2552     also all other marking tasks have done so and have all synced up).
2553 
2554     A method called regular_clock_call() is invoked "regularly" (in
2555     sub ms intervals) throughout marking. It is this clock method that
2556     checks all the abort conditions which were mentioned above and
2557     decides when the task should abort. A work-based scheme is used to
2558     trigger this clock method: when the number of object words the
2559     marking phase has scanned or the number of references the marking
2560     phase has visited reach a given limit. Additional invocations to
2561     the method clock have been planted in a few other strategic places
2562     too. The initial reason for the clock method was to avoid calling
2563     vtime too regularly, as it is quite expensive. So, once it was in
2564     place, it was natural to piggy-back all the other conditions on it
2565     too and not constantly check them throughout the code.
2566 
2567     If do_termination is true then do_marking_step will enter its
2568     termination protocol.
2569 
2570     The value of is_serial must be true when do_marking_step is being
2571     called serially (i.e. by the VMThread) and do_marking_step should
2572     skip any synchronization in the termination and overflow code.
2573     Examples include the serial remark code and the serial reference
2574     processing closures.
2575 
2576     The value of is_serial must be false when do_marking_step is
2577     being called by any of the worker threads in a work gang.
2578     Examples include the concurrent marking code (CMMarkingTask),
2579     the MT remark code, and the MT reference processing closures.
2580 
2581  *****************************************************************************/
2582 
2583 void G1CMTask::do_marking_step(double time_target_ms,
2584                                bool do_termination,
2585                                bool is_serial) {
2586   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2587 
2588   _start_time_ms = os::elapsedVTime() * 1000.0;
2589 
2590   // If do_stealing is true then do_marking_step will attempt to
2591   // steal work from the other G1CMTasks. It only makes sense to
2592   // enable stealing when the termination protocol is enabled
2593   // and do_marking_step() is not being called serially.
2594   bool do_stealing = do_termination && !is_serial;
2595 
2596   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2597   _time_target_ms = time_target_ms - diff_prediction_ms;
2598 
2599   // set up the variables that are used in the work-based scheme to
2600   // call the regular clock method
2601   _words_scanned = 0;
2602   _refs_reached  = 0;
2603   recalculate_limits();
2604 
2605   // clear all flags
2606   clear_has_aborted();
2607   _has_timed_out = false;
2608   _draining_satb_buffers = false;
2609 
2610   ++_calls;
2611 
2612   // Set up the bitmap and oop closures. Anything that uses them is
2613   // eventually called from this method, so it is OK to allocate these
2614   // statically.
2615   G1CMBitMapClosure bitmap_closure(this, _cm);
2616   G1CMOopClosure cm_oop_closure(_g1h, this);
2617   set_cm_oop_closure(&cm_oop_closure);
2618 
2619   if (_cm->has_overflown()) {
2620     // This can happen if the mark stack overflows during a GC pause
2621     // and this task, after a yield point, restarts. We have to abort
2622     // as we need to get into the overflow protocol which happens
2623     // right at the end of this task.
2624     set_has_aborted();
2625   }
2626 
2627   // First drain any available SATB buffers. After this, we will not
2628   // look at SATB buffers before the next invocation of this method.
2629   // If enough completed SATB buffers are queued up, the regular clock
2630   // will abort this task so that it restarts.
2631   drain_satb_buffers();
2632   // ...then partially drain the local queue and the global stack
2633   drain_local_queue(true);
2634   drain_global_stack(true);
2635 
2636   do {
2637     if (!has_aborted() && _curr_region != NULL) {
2638       // This means that we're already holding on to a region.
2639       assert(_finger != NULL, "if region is not NULL, then the finger "
2640              "should not be NULL either");
2641 
2642       // We might have restarted this task after an evacuation pause
2643       // which might have evacuated the region we're holding on to
2644       // underneath our feet. Let's read its limit again to make sure
2645       // that we do not iterate over a region of the heap that
2646       // contains garbage (update_region_limit() will also move
2647       // _finger to the start of the region if it is found empty).
2648       update_region_limit();
2649       // We will start from _finger not from the start of the region,
2650       // as we might be restarting this task after aborting half-way
2651       // through scanning this region. In this case, _finger points to
2652       // the address where we last found a marked object. If this is a
2653       // fresh region, _finger points to start().
2654       MemRegion mr = MemRegion(_finger, _region_limit);
2655 
2656       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2657              "humongous regions should go around loop once only");
2658 
2659       // Some special cases:
2660       // If the memory region is empty, we can just give up the region.
2661       // If the current region is humongous then we only need to check
2662       // the bitmap for the bit associated with the start of the object,
2663       // scan the object if it's live, and give up the region.
2664       // Otherwise, let's iterate over the bitmap of the part of the region
2665       // that is left.
2666       // If the iteration is successful, give up the region.
2667       if (mr.is_empty()) {
2668         giveup_current_region();
2669         regular_clock_call();
2670       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2671         if (_next_mark_bitmap->is_marked(mr.start())) {
2672           // The object is marked - apply the closure
2673           bitmap_closure.do_addr(mr.start());
2674         }
2675         // Even if this task aborted while scanning the humongous object
2676         // we can (and should) give up the current region.
2677         giveup_current_region();
2678         regular_clock_call();
2679       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2680         giveup_current_region();
2681         regular_clock_call();
2682       } else {
2683         assert(has_aborted(), "currently the only way to do so");
2684         // The only way to abort the bitmap iteration is to return
2685         // false from the do_bit() method. However, inside the
2686         // do_bit() method we move the _finger to point to the
2687         // object currently being looked at. So, if we bail out, we
2688         // have definitely set _finger to something non-null.
2689         assert(_finger != NULL, "invariant");
2690 
2691         // Region iteration was actually aborted. So now _finger
2692         // points to the address of the object we last scanned. If we
2693         // leave it there, when we restart this task, we will rescan
2694         // the object. It is easy to avoid this. We move the finger by
2695         // enough to point to the next possible object header.
2696         assert(_finger < _region_limit, "invariant");
2697         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2698         // Check if bitmap iteration was aborted while scanning the last object
2699         if (new_finger >= _region_limit) {
2700           giveup_current_region();
2701         } else {
2702           move_finger_to(new_finger);
2703         }
2704       }
2705     }
2706     // At this point we have either completed iterating over the
2707     // region we were holding on to, or we have aborted.
2708 
2709     // We then partially drain the local queue and the global stack.
2710     // (Do we really need this?)
2711     drain_local_queue(true);
2712     drain_global_stack(true);
2713 
2714     // Read the note on the claim_region() method on why it might
2715     // return NULL with potentially more regions available for
2716     // claiming and why we have to check out_of_regions() to determine
2717     // whether we're done or not.
2718     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2719       // We are going to try to claim a new region. We should have
2720       // given up on the previous one.
2721       // Separated the asserts so that we know which one fires.
2722       assert(_curr_region  == NULL, "invariant");
2723       assert(_finger       == NULL, "invariant");
2724       assert(_region_limit == NULL, "invariant");
2725       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2726       if (claimed_region != NULL) {
2727         // Yes, we managed to claim one
2728         setup_for_region(claimed_region);
2729         assert(_curr_region == claimed_region, "invariant");
2730       }
2731       // It is important to call the regular clock here. It might take
2732       // a while to claim a region if, for example, we hit a large
2733       // block of empty regions. So we need to call the regular clock
2734       // method once round the loop to make sure it's called
2735       // frequently enough.
2736       regular_clock_call();
2737     }
2738 
2739     if (!has_aborted() && _curr_region == NULL) {
2740       assert(_cm->out_of_regions(),
2741              "at this point we should be out of regions");
2742     }
2743   } while ( _curr_region != NULL && !has_aborted());
2744 
2745   if (!has_aborted()) {
2746     // We cannot check whether the global stack is empty, since other
2747     // tasks might be pushing objects to it concurrently.
2748     assert(_cm->out_of_regions(),
2749            "at this point we should be out of regions");
2750     // Try to reduce the number of available SATB buffers so that
2751     // remark has less work to do.
2752     drain_satb_buffers();
2753   }
2754 
2755   // Since we've done everything else, we can now totally drain the
2756   // local queue and global stack.
2757   drain_local_queue(false);
2758   drain_global_stack(false);
2759 
2760   // Attempt at work stealing from other task's queues.
2761   if (do_stealing && !has_aborted()) {
2762     // We have not aborted. This means that we have finished all that
2763     // we could. Let's try to do some stealing...
2764 
2765     // We cannot check whether the global stack is empty, since other
2766     // tasks might be pushing objects to it concurrently.
2767     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2768            "only way to reach here");
2769     while (!has_aborted()) {
2770       G1TaskQueueEntry entry;
2771       if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) {
2772         scan_task_entry(entry);
2773 
2774         // And since we're towards the end, let's totally drain the
2775         // local queue and global stack.
2776         drain_local_queue(false);
2777         drain_global_stack(false);
2778       } else {
2779         break;
2780       }
2781     }
2782   }
2783 
2784   // We still haven't aborted. Now, let's try to get into the
2785   // termination protocol.
2786   if (do_termination && !has_aborted()) {
2787     // We cannot check whether the global stack is empty, since other
2788     // tasks might be concurrently pushing objects on it.
2789     // Separated the asserts so that we know which one fires.
2790     assert(_cm->out_of_regions(), "only way to reach here");
2791     assert(_task_queue->size() == 0, "only way to reach here");
2792     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2793 
2794     // The G1CMTask class also extends the TerminatorTerminator class,
2795     // hence its should_exit_termination() method will also decide
2796     // whether to exit the termination protocol or not.
2797     bool finished = (is_serial ||
2798                      _cm->terminator()->offer_termination(this));
2799     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2800     _termination_time_ms +=
2801       termination_end_time_ms - _termination_start_time_ms;
2802 
2803     if (finished) {
2804       // We're all done.
2805 
2806       // We can now guarantee that the global stack is empty, since
2807       // all other tasks have finished. We separated the guarantees so
2808       // that, if a condition is false, we can immediately find out
2809       // which one.
2810       guarantee(_cm->out_of_regions(), "only way to reach here");
2811       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2812       guarantee(_task_queue->size() == 0, "only way to reach here");
2813       guarantee(!_cm->has_overflown(), "only way to reach here");
2814     } else {
2815       // Apparently there's more work to do. Let's abort this task. It
2816       // will restart it and we can hopefully find more things to do.
2817       set_has_aborted();
2818     }
2819   }
2820 
2821   // Mainly for debugging purposes to make sure that a pointer to the
2822   // closure which was statically allocated in this frame doesn't
2823   // escape it by accident.
2824   set_cm_oop_closure(NULL);
2825   double end_time_ms = os::elapsedVTime() * 1000.0;
2826   double elapsed_time_ms = end_time_ms - _start_time_ms;
2827   // Update the step history.
2828   _step_times_ms.add(elapsed_time_ms);
2829 
2830   if (has_aborted()) {
2831     // The task was aborted for some reason.
2832     if (_has_timed_out) {
2833       double diff_ms = elapsed_time_ms - _time_target_ms;
2834       // Keep statistics of how well we did with respect to hitting
2835       // our target only if we actually timed out (if we aborted for
2836       // other reasons, then the results might get skewed).
2837       _marking_step_diffs_ms.add(diff_ms);
2838     }
2839 
2840     if (_cm->has_overflown()) {
2841       // This is the interesting one. We aborted because a global
2842       // overflow was raised. This means we have to restart the
2843       // marking phase and start iterating over regions. However, in
2844       // order to do this we have to make sure that all tasks stop
2845       // what they are doing and re-initialize in a safe manner. We
2846       // will achieve this with the use of two barrier sync points.
2847 
2848       if (!is_serial) {
2849         // We only need to enter the sync barrier if being called
2850         // from a parallel context
2851         _cm->enter_first_sync_barrier(_worker_id);
2852 
2853         // When we exit this sync barrier we know that all tasks have
2854         // stopped doing marking work. So, it's now safe to
2855         // re-initialize our data structures.
2856       }
2857 
2858       clear_region_fields();
2859       flush_mark_stats_cache();
2860 
2861       if (!is_serial) {
2862         // If we're executing the concurrent phase of marking, reset the marking
2863         // state; otherwise the marking state is reset after reference processing,
2864         // during the remark pause.
2865         // If we reset here as a result of an overflow during the remark we will
2866         // see assertion failures from any subsequent set_concurrency_and_phase()
2867         // calls.
2868         if (_cm->concurrent() && _worker_id == 0) {
2869           // Worker 0 is responsible for clearing the global data structures because
2870           // of an overflow. During STW we should not clear the overflow flag (in
2871           // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit
2872           // method to abort the pause and restart concurrent marking.
2873           _cm->reset_marking_for_restart();
2874 
2875           log_info(gc, marking)("Concurrent Mark reset for overflow");
2876         }
2877 
2878         // ...and enter the second barrier.
2879         _cm->enter_second_sync_barrier(_worker_id);
2880       }
2881       // At this point, if we're during the concurrent phase of
2882       // marking, everything has been re-initialized and we're
2883       // ready to restart.
2884     }
2885   }
2886 }
2887 
2888 G1CMTask::G1CMTask(uint worker_id,
2889                    G1ConcurrentMark* cm,
2890                    G1CMTaskQueue* task_queue,
2891                    G1RegionMarkStats* mark_stats,
2892                    uint max_regions) :
2893   _objArray_processor(this),
2894   _worker_id(worker_id),
2895   _g1h(G1CollectedHeap::heap()),
2896   _cm(cm),
2897   _next_mark_bitmap(NULL),
2898   _task_queue(task_queue),
2899   _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize),
2900   _calls(0),
2901   _time_target_ms(0.0),
2902   _start_time_ms(0.0),
2903   _cm_oop_closure(NULL),
2904   _curr_region(NULL),
2905   _finger(NULL),
2906   _region_limit(NULL),
2907   _words_scanned(0),
2908   _words_scanned_limit(0),
2909   _real_words_scanned_limit(0),
2910   _refs_reached(0),
2911   _refs_reached_limit(0),
2912   _real_refs_reached_limit(0),
2913   _hash_seed(17),
2914   _has_aborted(false),
2915   _has_timed_out(false),
2916   _draining_satb_buffers(false),
2917   _step_times_ms(),
2918   _elapsed_time_ms(0.0),
2919   _termination_time_ms(0.0),
2920   _termination_start_time_ms(0.0),
2921   _marking_step_diffs_ms()
2922 {
2923   guarantee(task_queue != NULL, "invariant");
2924 
2925   _marking_step_diffs_ms.add(0.5);
2926 }
2927 
2928 // These are formatting macros that are used below to ensure
2929 // consistent formatting. The *_H_* versions are used to format the
2930 // header for a particular value and they should be kept consistent
2931 // with the corresponding macro. Also note that most of the macros add
2932 // the necessary white space (as a prefix) which makes them a bit
2933 // easier to compose.
2934 
2935 // All the output lines are prefixed with this string to be able to
2936 // identify them easily in a large log file.
2937 #define G1PPRL_LINE_PREFIX            "###"
2938 
2939 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2940 #ifdef _LP64
2941 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2942 #else // _LP64
2943 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2944 #endif // _LP64
2945 
2946 // For per-region info
2947 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2948 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2949 #define G1PPRL_STATE_FORMAT           "   %-5s"
2950 #define G1PPRL_STATE_H_FORMAT         "   %5s"
2951 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2952 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2953 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2954 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2955 
2956 // For summary info
2957 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2958 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2959 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2960 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2961 
2962 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2963   _total_used_bytes(0), _total_capacity_bytes(0),
2964   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2965   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2966 {
2967   if (!log_is_enabled(Trace, gc, liveness)) {
2968     return;
2969   }
2970 
2971   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2972   MemRegion g1_reserved = g1h->g1_reserved();
2973   double now = os::elapsedTime();
2974 
2975   // Print the header of the output.
2976   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2977   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2978                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2979                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2980                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2981                           HeapRegion::GrainBytes);
2982   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2983   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2984                           G1PPRL_TYPE_H_FORMAT
2985                           G1PPRL_ADDR_BASE_H_FORMAT
2986                           G1PPRL_BYTE_H_FORMAT
2987                           G1PPRL_BYTE_H_FORMAT
2988                           G1PPRL_BYTE_H_FORMAT
2989                           G1PPRL_DOUBLE_H_FORMAT
2990                           G1PPRL_BYTE_H_FORMAT
2991                           G1PPRL_STATE_H_FORMAT
2992                           G1PPRL_BYTE_H_FORMAT,
2993                           "type", "address-range",
2994                           "used", "prev-live", "next-live", "gc-eff",
2995                           "remset", "state", "code-roots");
2996   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2997                           G1PPRL_TYPE_H_FORMAT
2998                           G1PPRL_ADDR_BASE_H_FORMAT
2999                           G1PPRL_BYTE_H_FORMAT
3000                           G1PPRL_BYTE_H_FORMAT
3001                           G1PPRL_BYTE_H_FORMAT
3002                           G1PPRL_DOUBLE_H_FORMAT
3003                           G1PPRL_BYTE_H_FORMAT
3004                           G1PPRL_STATE_H_FORMAT
3005                           G1PPRL_BYTE_H_FORMAT,
3006                           "", "",
3007                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3008                           "(bytes)", "", "(bytes)");
3009 }
3010 
3011 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
3012   if (!log_is_enabled(Trace, gc, liveness)) {
3013     return false;
3014   }
3015 
3016   const char* type       = r->get_type_str();
3017   HeapWord* bottom       = r->bottom();
3018   HeapWord* end          = r->end();
3019   size_t capacity_bytes  = r->capacity();
3020   size_t used_bytes      = r->used();
3021   size_t prev_live_bytes = r->live_bytes();
3022   size_t next_live_bytes = r->next_live_bytes();
3023   double gc_eff          = r->gc_efficiency();
3024   size_t remset_bytes    = r->rem_set()->mem_size();
3025   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3026   const char* remset_type = r->rem_set()->get_short_state_str();
3027 
3028   _total_used_bytes      += used_bytes;
3029   _total_capacity_bytes  += capacity_bytes;
3030   _total_prev_live_bytes += prev_live_bytes;
3031   _total_next_live_bytes += next_live_bytes;
3032   _total_remset_bytes    += remset_bytes;
3033   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3034 
3035   // Print a line for this particular region.
3036   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3037                           G1PPRL_TYPE_FORMAT
3038                           G1PPRL_ADDR_BASE_FORMAT
3039                           G1PPRL_BYTE_FORMAT
3040                           G1PPRL_BYTE_FORMAT
3041                           G1PPRL_BYTE_FORMAT
3042                           G1PPRL_DOUBLE_FORMAT
3043                           G1PPRL_BYTE_FORMAT
3044                           G1PPRL_STATE_FORMAT
3045                           G1PPRL_BYTE_FORMAT,
3046                           type, p2i(bottom), p2i(end),
3047                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3048                           remset_bytes, remset_type, strong_code_roots_bytes);
3049 
3050   return false;
3051 }
3052 
3053 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3054   if (!log_is_enabled(Trace, gc, liveness)) {
3055     return;
3056   }
3057 
3058   // add static memory usages to remembered set sizes
3059   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3060   // Print the footer of the output.
3061   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3062   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3063                          " SUMMARY"
3064                          G1PPRL_SUM_MB_FORMAT("capacity")
3065                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3066                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3067                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3068                          G1PPRL_SUM_MB_FORMAT("remset")
3069                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3070                          bytes_to_mb(_total_capacity_bytes),
3071                          bytes_to_mb(_total_used_bytes),
3072                          percent_of(_total_used_bytes, _total_capacity_bytes),
3073                          bytes_to_mb(_total_prev_live_bytes),
3074                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
3075                          bytes_to_mb(_total_next_live_bytes),
3076                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
3077                          bytes_to_mb(_total_remset_bytes),
3078                          bytes_to_mb(_total_strong_code_roots_bytes));
3079 }