1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/parallel/mutableNUMASpace.hpp"
  27 #include "gc/parallel/parallelScavengeHeap.hpp"
  28 #include "gc/parallel/psMarkSweepDecorator.hpp"
  29 #include "gc/parallel/psScavenge.hpp"
  30 #include "gc/parallel/psYoungGen.hpp"
  31 #include "gc/shared/gcUtil.hpp"
  32 #include "gc/shared/spaceDecorator.hpp"
  33 #include "logging/log.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "runtime/java.hpp"
  36 #include "utilities/align.hpp"
  37 
  38 PSYoungGen::PSYoungGen(size_t        initial_size,
  39                        size_t        min_size,
  40                        size_t        max_size) :
  41   _init_gen_size(initial_size),
  42   _min_gen_size(min_size),
  43   _max_gen_size(max_size)
  44 {}
  45 
  46 void PSYoungGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
  47   assert(_init_gen_size != 0, "Should have a finite size");
  48   _virtual_space = new PSVirtualSpace(rs, alignment);
  49   if (!virtual_space()->expand_by(_init_gen_size)) {
  50     vm_exit_during_initialization("Could not reserve enough space for "
  51                                   "object heap");
  52   }
  53 }
  54 
  55 void PSYoungGen::initialize(ReservedSpace rs, size_t alignment) {
  56   initialize_virtual_space(rs, alignment);
  57   initialize_work();
  58 }
  59 
  60 void PSYoungGen::initialize_work() {
  61 
  62   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
  63                         (HeapWord*)virtual_space()->high_boundary());
  64 
  65   MemRegion cmr((HeapWord*)virtual_space()->low(),
  66                 (HeapWord*)virtual_space()->high());
  67   ParallelScavengeHeap::heap()->card_table()->resize_covered_region(cmr);
  68 
  69   if (ZapUnusedHeapArea) {
  70     // Mangle newly committed space immediately because it
  71     // can be done here more simply that after the new
  72     // spaces have been computed.
  73     SpaceMangler::mangle_region(cmr);
  74   }
  75 
  76   if (UseNUMA) {
  77     _eden_space = new MutableNUMASpace(virtual_space()->alignment());
  78   } else {
  79     _eden_space = new MutableSpace(virtual_space()->alignment());
  80   }
  81   _from_space = new MutableSpace(virtual_space()->alignment());
  82   _to_space   = new MutableSpace(virtual_space()->alignment());
  83 
  84   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
  85     vm_exit_during_initialization("Could not allocate a young gen space");
  86   }
  87 
  88   // Allocate the mark sweep views of spaces
  89   _eden_mark_sweep =
  90       new PSMarkSweepDecorator(_eden_space, NULL, MarkSweepDeadRatio);
  91   _from_mark_sweep =
  92       new PSMarkSweepDecorator(_from_space, NULL, MarkSweepDeadRatio);
  93   _to_mark_sweep =
  94       new PSMarkSweepDecorator(_to_space, NULL, MarkSweepDeadRatio);
  95 
  96   if (_eden_mark_sweep == NULL ||
  97       _from_mark_sweep == NULL ||
  98       _to_mark_sweep == NULL) {
  99     vm_exit_during_initialization("Could not complete allocation"
 100                                   " of the young generation");
 101   }
 102 
 103   // Generation Counters - generation 0, 3 subspaces
 104   _gen_counters = new PSGenerationCounters("new", 0, 3, _min_gen_size,
 105                                            _max_gen_size, _virtual_space);
 106 
 107   // Compute maximum space sizes for performance counters
 108   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 109   size_t alignment = heap->space_alignment();
 110   size_t size = virtual_space()->reserved_size();
 111 
 112   size_t max_survivor_size;
 113   size_t max_eden_size;
 114 
 115   if (UseAdaptiveSizePolicy) {
 116     max_survivor_size = size / MinSurvivorRatio;
 117 
 118     // round the survivor space size down to the nearest alignment
 119     // and make sure its size is greater than 0.
 120     max_survivor_size = align_down(max_survivor_size, alignment);
 121     max_survivor_size = MAX2(max_survivor_size, alignment);
 122 
 123     // set the maximum size of eden to be the size of the young gen
 124     // less two times the minimum survivor size. The minimum survivor
 125     // size for UseAdaptiveSizePolicy is one alignment.
 126     max_eden_size = size - 2 * alignment;
 127   } else {
 128     max_survivor_size = size / InitialSurvivorRatio;
 129 
 130     // round the survivor space size down to the nearest alignment
 131     // and make sure its size is greater than 0.
 132     max_survivor_size = align_down(max_survivor_size, alignment);
 133     max_survivor_size = MAX2(max_survivor_size, alignment);
 134 
 135     // set the maximum size of eden to be the size of the young gen
 136     // less two times the survivor size when the generation is 100%
 137     // committed. The minimum survivor size for -UseAdaptiveSizePolicy
 138     // is dependent on the committed portion (current capacity) of the
 139     // generation - the less space committed, the smaller the survivor
 140     // space, possibly as small as an alignment. However, we are interested
 141     // in the case where the young generation is 100% committed, as this
 142     // is the point where eden reaches its maximum size. At this point,
 143     // the size of a survivor space is max_survivor_size.
 144     max_eden_size = size - 2 * max_survivor_size;
 145   }
 146 
 147   _eden_counters = new SpaceCounters("eden", 0, max_eden_size, _eden_space,
 148                                      _gen_counters);
 149   _from_counters = new SpaceCounters("s0", 1, max_survivor_size, _from_space,
 150                                      _gen_counters);
 151   _to_counters = new SpaceCounters("s1", 2, max_survivor_size, _to_space,
 152                                    _gen_counters);
 153 
 154   compute_initial_space_boundaries();
 155 }
 156 
 157 void PSYoungGen::compute_initial_space_boundaries() {
 158   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 159 
 160   // Compute sizes
 161   size_t alignment = heap->space_alignment();
 162   size_t size = virtual_space()->committed_size();
 163   assert(size >= 3 * alignment, "Young space is not large enough for eden + 2 survivors");
 164 
 165   size_t survivor_size = size / InitialSurvivorRatio;
 166   survivor_size = align_down(survivor_size, alignment);
 167   // ... but never less than an alignment
 168   survivor_size = MAX2(survivor_size, alignment);
 169 
 170   // Young generation is eden + 2 survivor spaces
 171   size_t eden_size = size - (2 * survivor_size);
 172 
 173   // Now go ahead and set 'em.
 174   set_space_boundaries(eden_size, survivor_size);
 175   space_invariants();
 176 
 177   if (UsePerfData) {
 178     _eden_counters->update_capacity();
 179     _from_counters->update_capacity();
 180     _to_counters->update_capacity();
 181   }
 182 }
 183 
 184 void PSYoungGen::set_space_boundaries(size_t eden_size, size_t survivor_size) {
 185   assert(eden_size < virtual_space()->committed_size(), "just checking");
 186   assert(eden_size > 0  && survivor_size > 0, "just checking");
 187 
 188   // Initial layout is Eden, to, from. After swapping survivor spaces,
 189   // that leaves us with Eden, from, to, which is step one in our two
 190   // step resize-with-live-data procedure.
 191   char *eden_start = virtual_space()->low();
 192   char *to_start   = eden_start + eden_size;
 193   char *from_start = to_start   + survivor_size;
 194   char *from_end   = from_start + survivor_size;
 195 
 196   assert(from_end == virtual_space()->high(), "just checking");
 197   assert(is_object_aligned(eden_start), "checking alignment");
 198   assert(is_object_aligned(to_start),   "checking alignment");
 199   assert(is_object_aligned(from_start), "checking alignment");
 200 
 201   MemRegion eden_mr((HeapWord*)eden_start, (HeapWord*)to_start);
 202   MemRegion to_mr  ((HeapWord*)to_start, (HeapWord*)from_start);
 203   MemRegion from_mr((HeapWord*)from_start, (HeapWord*)from_end);
 204 
 205   eden_space()->initialize(eden_mr, true, ZapUnusedHeapArea);
 206     to_space()->initialize(to_mr  , true, ZapUnusedHeapArea);
 207   from_space()->initialize(from_mr, true, ZapUnusedHeapArea);
 208 }
 209 
 210 #ifndef PRODUCT
 211 void PSYoungGen::space_invariants() {
 212   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 213   const size_t alignment = heap->space_alignment();
 214 
 215   // Currently, our eden size cannot shrink to zero
 216   guarantee(eden_space()->capacity_in_bytes() >= alignment, "eden too small");
 217   guarantee(from_space()->capacity_in_bytes() >= alignment, "from too small");
 218   guarantee(to_space()->capacity_in_bytes() >= alignment, "to too small");
 219 
 220   // Relationship of spaces to each other
 221   char* eden_start = (char*)eden_space()->bottom();
 222   char* eden_end   = (char*)eden_space()->end();
 223   char* from_start = (char*)from_space()->bottom();
 224   char* from_end   = (char*)from_space()->end();
 225   char* to_start   = (char*)to_space()->bottom();
 226   char* to_end     = (char*)to_space()->end();
 227 
 228   guarantee(eden_start >= virtual_space()->low(), "eden bottom");
 229   guarantee(eden_start < eden_end, "eden space consistency");
 230   guarantee(from_start < from_end, "from space consistency");
 231   guarantee(to_start < to_end, "to space consistency");
 232 
 233   // Check whether from space is below to space
 234   if (from_start < to_start) {
 235     // Eden, from, to
 236     guarantee(eden_end <= from_start, "eden/from boundary");
 237     guarantee(from_end <= to_start,   "from/to boundary");
 238     guarantee(to_end <= virtual_space()->high(), "to end");
 239   } else {
 240     // Eden, to, from
 241     guarantee(eden_end <= to_start, "eden/to boundary");
 242     guarantee(to_end <= from_start, "to/from boundary");
 243     guarantee(from_end <= virtual_space()->high(), "from end");
 244   }
 245 
 246   // More checks that the virtual space is consistent with the spaces
 247   assert(virtual_space()->committed_size() >=
 248     (eden_space()->capacity_in_bytes() +
 249      to_space()->capacity_in_bytes() +
 250      from_space()->capacity_in_bytes()), "Committed size is inconsistent");
 251   assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
 252     "Space invariant");
 253   char* eden_top = (char*)eden_space()->top();
 254   char* from_top = (char*)from_space()->top();
 255   char* to_top = (char*)to_space()->top();
 256   assert(eden_top <= virtual_space()->high(), "eden top");
 257   assert(from_top <= virtual_space()->high(), "from top");
 258   assert(to_top <= virtual_space()->high(), "to top");
 259 
 260   virtual_space()->verify();
 261 }
 262 #endif
 263 
 264 void PSYoungGen::resize(size_t eden_size, size_t survivor_size) {
 265   // Resize the generation if needed. If the generation resize
 266   // reports false, do not attempt to resize the spaces.
 267   if (resize_generation(eden_size, survivor_size)) {
 268     // Then we lay out the spaces inside the generation
 269     resize_spaces(eden_size, survivor_size);
 270 
 271     space_invariants();
 272 
 273     log_trace(gc, ergo)("Young generation size: "
 274                         "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
 275                         " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
 276                         " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
 277                         eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(),
 278                         _max_gen_size, min_gen_size());
 279   }
 280 }
 281 
 282 
 283 bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) {
 284   const size_t alignment = virtual_space()->alignment();
 285   size_t orig_size = virtual_space()->committed_size();
 286   bool size_changed = false;
 287 
 288   // There used to be this guarantee there.
 289   // guarantee ((eden_size + 2*survivor_size)  <= _max_gen_size, "incorrect input arguments");
 290   // Code below forces this requirement.  In addition the desired eden
 291   // size and desired survivor sizes are desired goals and may
 292   // exceed the total generation size.
 293 
 294   assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking");
 295 
 296   // Adjust new generation size
 297   const size_t eden_plus_survivors =
 298           align_up(eden_size + 2 * survivor_size, alignment);
 299   size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_size()),
 300                              min_gen_size());
 301   assert(desired_size <= max_size(), "just checking");
 302 
 303   if (desired_size > orig_size) {
 304     // Grow the generation
 305     size_t change = desired_size - orig_size;
 306     assert(change % alignment == 0, "just checking");
 307     HeapWord* prev_high = (HeapWord*) virtual_space()->high();
 308     if (!virtual_space()->expand_by(change)) {
 309       return false; // Error if we fail to resize!
 310     }
 311     if (ZapUnusedHeapArea) {
 312       // Mangle newly committed space immediately because it
 313       // can be done here more simply that after the new
 314       // spaces have been computed.
 315       HeapWord* new_high = (HeapWord*) virtual_space()->high();
 316       MemRegion mangle_region(prev_high, new_high);
 317       SpaceMangler::mangle_region(mangle_region);
 318     }
 319     size_changed = true;
 320   } else if (desired_size < orig_size) {
 321     size_t desired_change = orig_size - desired_size;
 322     assert(desired_change % alignment == 0, "just checking");
 323 
 324     desired_change = limit_gen_shrink(desired_change);
 325 
 326     if (desired_change > 0) {
 327       virtual_space()->shrink_by(desired_change);
 328       reset_survivors_after_shrink();
 329 
 330       size_changed = true;
 331     }
 332   } else {
 333     if (orig_size == gen_size_limit()) {
 334       log_trace(gc)("PSYoung generation size at maximum: " SIZE_FORMAT "K", orig_size/K);
 335     } else if (orig_size == min_gen_size()) {
 336       log_trace(gc)("PSYoung generation size at minium: " SIZE_FORMAT "K", orig_size/K);
 337     }
 338   }
 339 
 340   if (size_changed) {
 341     post_resize();
 342     log_trace(gc)("PSYoung generation size changed: " SIZE_FORMAT "K->" SIZE_FORMAT "K",
 343                   orig_size/K, virtual_space()->committed_size()/K);
 344   }
 345 
 346   guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
 347             virtual_space()->committed_size() == max_size(), "Sanity");
 348 
 349   return true;
 350 }
 351 
 352 #ifndef PRODUCT
 353 // In the numa case eden is not mangled so a survivor space
 354 // moving into a region previously occupied by a survivor
 355 // may find an unmangled region.  Also in the PS case eden
 356 // to-space and from-space may not touch (i.e., there may be
 357 // gaps between them due to movement while resizing the
 358 // spaces).  Those gaps must be mangled.
 359 void PSYoungGen::mangle_survivors(MutableSpace* s1,
 360                                   MemRegion s1MR,
 361                                   MutableSpace* s2,
 362                                   MemRegion s2MR) {
 363   // Check eden and gap between eden and from-space, in deciding
 364   // what to mangle in from-space.  Check the gap between from-space
 365   // and to-space when deciding what to mangle.
 366   //
 367   //      +--------+   +----+    +---+
 368   //      | eden   |   |s1  |    |s2 |
 369   //      +--------+   +----+    +---+
 370   //                 +-------+ +-----+
 371   //                 |s1MR   | |s2MR |
 372   //                 +-------+ +-----+
 373   // All of survivor-space is properly mangled so find the
 374   // upper bound on the mangling for any portion above current s1.
 375   HeapWord* delta_end = MIN2(s1->bottom(), s1MR.end());
 376   MemRegion delta1_left;
 377   if (s1MR.start() < delta_end) {
 378     delta1_left = MemRegion(s1MR.start(), delta_end);
 379     s1->mangle_region(delta1_left);
 380   }
 381   // Find any portion to the right of the current s1.
 382   HeapWord* delta_start = MAX2(s1->end(), s1MR.start());
 383   MemRegion delta1_right;
 384   if (delta_start < s1MR.end()) {
 385     delta1_right = MemRegion(delta_start, s1MR.end());
 386     s1->mangle_region(delta1_right);
 387   }
 388 
 389   // Similarly for the second survivor space except that
 390   // any of the new region that overlaps with the current
 391   // region of the first survivor space has already been
 392   // mangled.
 393   delta_end = MIN2(s2->bottom(), s2MR.end());
 394   delta_start = MAX2(s2MR.start(), s1->end());
 395   MemRegion delta2_left;
 396   if (s2MR.start() < delta_end) {
 397     delta2_left = MemRegion(s2MR.start(), delta_end);
 398     s2->mangle_region(delta2_left);
 399   }
 400   delta_start = MAX2(s2->end(), s2MR.start());
 401   MemRegion delta2_right;
 402   if (delta_start < s2MR.end()) {
 403     s2->mangle_region(delta2_right);
 404   }
 405 
 406   // s1
 407   log_develop_trace(gc)("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
 408     "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
 409     p2i(s1->bottom()), p2i(s1->end()),
 410     p2i(s1MR.start()), p2i(s1MR.end()));
 411   log_develop_trace(gc)("    Mangle before: [" PTR_FORMAT ", "
 412     PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
 413     p2i(delta1_left.start()), p2i(delta1_left.end()),
 414     p2i(delta1_right.start()), p2i(delta1_right.end()));
 415 
 416   // s2
 417   log_develop_trace(gc)("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
 418     "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
 419     p2i(s2->bottom()), p2i(s2->end()),
 420     p2i(s2MR.start()), p2i(s2MR.end()));
 421   log_develop_trace(gc)("    Mangle before: [" PTR_FORMAT ", "
 422     PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
 423     p2i(delta2_left.start()), p2i(delta2_left.end()),
 424     p2i(delta2_right.start()), p2i(delta2_right.end()));
 425 }
 426 #endif // NOT PRODUCT
 427 
 428 void PSYoungGen::resize_spaces(size_t requested_eden_size,
 429                                size_t requested_survivor_size) {
 430   assert(UseAdaptiveSizePolicy, "sanity check");
 431   assert(requested_eden_size > 0  && requested_survivor_size > 0,
 432          "just checking");
 433 
 434   // We require eden and to space to be empty
 435   if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) {
 436     return;
 437   }
 438 
 439   log_trace(gc, ergo)("PSYoungGen::resize_spaces(requested_eden_size: " SIZE_FORMAT ", requested_survivor_size: " SIZE_FORMAT ")",
 440                       requested_eden_size, requested_survivor_size);
 441   log_trace(gc, ergo)("    eden: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT,
 442                       p2i(eden_space()->bottom()),
 443                       p2i(eden_space()->end()),
 444                       pointer_delta(eden_space()->end(),
 445                                     eden_space()->bottom(),
 446                                     sizeof(char)));
 447   log_trace(gc, ergo)("    from: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT,
 448                       p2i(from_space()->bottom()),
 449                       p2i(from_space()->end()),
 450                       pointer_delta(from_space()->end(),
 451                                     from_space()->bottom(),
 452                                     sizeof(char)));
 453   log_trace(gc, ergo)("      to: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT,
 454                       p2i(to_space()->bottom()),
 455                       p2i(to_space()->end()),
 456                       pointer_delta(  to_space()->end(),
 457                                       to_space()->bottom(),
 458                                       sizeof(char)));
 459 
 460   // There's nothing to do if the new sizes are the same as the current
 461   if (requested_survivor_size == to_space()->capacity_in_bytes() &&
 462       requested_survivor_size == from_space()->capacity_in_bytes() &&
 463       requested_eden_size == eden_space()->capacity_in_bytes()) {
 464     log_trace(gc, ergo)("    capacities are the right sizes, returning");
 465     return;
 466   }
 467 
 468   char* eden_start = (char*)eden_space()->bottom();
 469   char* eden_end   = (char*)eden_space()->end();
 470   char* from_start = (char*)from_space()->bottom();
 471   char* from_end   = (char*)from_space()->end();
 472   char* to_start   = (char*)to_space()->bottom();
 473   char* to_end     = (char*)to_space()->end();
 474 
 475   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 476   const size_t alignment = heap->space_alignment();
 477   const bool maintain_minimum =
 478     (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();
 479 
 480   bool eden_from_to_order = from_start < to_start;
 481   // Check whether from space is below to space
 482   if (eden_from_to_order) {
 483     // Eden, from, to
 484     eden_from_to_order = true;
 485     log_trace(gc, ergo)("  Eden, from, to:");
 486 
 487     // Set eden
 488     // "requested_eden_size" is a goal for the size of eden
 489     // and may not be attainable.  "eden_size" below is
 490     // calculated based on the location of from-space and
 491     // the goal for the size of eden.  from-space is
 492     // fixed in place because it contains live data.
 493     // The calculation is done this way to avoid 32bit
 494     // overflow (i.e., eden_start + requested_eden_size
 495     // may too large for representation in 32bits).
 496     size_t eden_size;
 497     if (maintain_minimum) {
 498       // Only make eden larger than the requested size if
 499       // the minimum size of the generation has to be maintained.
 500       // This could be done in general but policy at a higher
 501       // level is determining a requested size for eden and that
 502       // should be honored unless there is a fundamental reason.
 503       eden_size = pointer_delta(from_start,
 504                                 eden_start,
 505                                 sizeof(char));
 506     } else {
 507       eden_size = MIN2(requested_eden_size,
 508                        pointer_delta(from_start, eden_start, sizeof(char)));
 509     }
 510 
 511     eden_end = eden_start + eden_size;
 512     assert(eden_end >= eden_start, "addition overflowed");
 513 
 514     // To may resize into from space as long as it is clear of live data.
 515     // From space must remain page aligned, though, so we need to do some
 516     // extra calculations.
 517 
 518     // First calculate an optimal to-space
 519     to_end   = (char*)virtual_space()->high();
 520     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
 521                                     sizeof(char));
 522 
 523     // Does the optimal to-space overlap from-space?
 524     if (to_start < (char*)from_space()->end()) {
 525       // Calculate the minimum offset possible for from_end
 526       size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char));
 527 
 528       // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
 529       if (from_size == 0) {
 530         from_size = alignment;
 531       } else {
 532         from_size = align_up(from_size, alignment);
 533       }
 534 
 535       from_end = from_start + from_size;
 536       assert(from_end > from_start, "addition overflow or from_size problem");
 537 
 538       guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right");
 539 
 540       // Now update to_start with the new from_end
 541       to_start = MAX2(from_end, to_start);
 542     }
 543 
 544     guarantee(to_start != to_end, "to space is zero sized");
 545 
 546     log_trace(gc, ergo)("    [eden_start .. eden_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 547                         p2i(eden_start),
 548                         p2i(eden_end),
 549                         pointer_delta(eden_end, eden_start, sizeof(char)));
 550     log_trace(gc, ergo)("    [from_start .. from_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 551                         p2i(from_start),
 552                         p2i(from_end),
 553                         pointer_delta(from_end, from_start, sizeof(char)));
 554     log_trace(gc, ergo)("    [  to_start ..   to_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 555                         p2i(to_start),
 556                         p2i(to_end),
 557                         pointer_delta(  to_end,   to_start, sizeof(char)));
 558   } else {
 559     // Eden, to, from
 560     log_trace(gc, ergo)("  Eden, to, from:");
 561 
 562     // To space gets priority over eden resizing. Note that we position
 563     // to space as if we were able to resize from space, even though from
 564     // space is not modified.
 565     // Giving eden priority was tried and gave poorer performance.
 566     to_end   = (char*)pointer_delta(virtual_space()->high(),
 567                                     (char*)requested_survivor_size,
 568                                     sizeof(char));
 569     to_end   = MIN2(to_end, from_start);
 570     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
 571                                     sizeof(char));
 572     // if the space sizes are to be increased by several times then
 573     // 'to_start' will point beyond the young generation. In this case
 574     // 'to_start' should be adjusted.
 575     to_start = MAX2(to_start, eden_start + alignment);
 576 
 577     // Compute how big eden can be, then adjust end.
 578     // See  comments above on calculating eden_end.
 579     size_t eden_size;
 580     if (maintain_minimum) {
 581       eden_size = pointer_delta(to_start, eden_start, sizeof(char));
 582     } else {
 583       eden_size = MIN2(requested_eden_size,
 584                        pointer_delta(to_start, eden_start, sizeof(char)));
 585     }
 586     eden_end = eden_start + eden_size;
 587     assert(eden_end >= eden_start, "addition overflowed");
 588 
 589     // Could choose to not let eden shrink
 590     // to_start = MAX2(to_start, eden_end);
 591 
 592     // Don't let eden shrink down to 0 or less.
 593     eden_end = MAX2(eden_end, eden_start + alignment);
 594     to_start = MAX2(to_start, eden_end);
 595 
 596     log_trace(gc, ergo)("    [eden_start .. eden_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 597                         p2i(eden_start),
 598                         p2i(eden_end),
 599                         pointer_delta(eden_end, eden_start, sizeof(char)));
 600     log_trace(gc, ergo)("    [  to_start ..   to_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 601                         p2i(to_start),
 602                         p2i(to_end),
 603                         pointer_delta(  to_end,   to_start, sizeof(char)));
 604     log_trace(gc, ergo)("    [from_start .. from_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 605                         p2i(from_start),
 606                         p2i(from_end),
 607                         pointer_delta(from_end, from_start, sizeof(char)));
 608   }
 609 
 610 
 611   guarantee((HeapWord*)from_start <= from_space()->bottom(),
 612             "from start moved to the right");
 613   guarantee((HeapWord*)from_end >= from_space()->top(),
 614             "from end moved into live data");
 615   assert(is_object_aligned(eden_start), "checking alignment");
 616   assert(is_object_aligned(from_start), "checking alignment");
 617   assert(is_object_aligned(to_start), "checking alignment");
 618 
 619   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
 620   MemRegion toMR  ((HeapWord*)to_start,   (HeapWord*)to_end);
 621   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);
 622 
 623   // Let's make sure the call to initialize doesn't reset "top"!
 624   HeapWord* old_from_top = from_space()->top();
 625 
 626   // For logging block  below
 627   size_t old_from = from_space()->capacity_in_bytes();
 628   size_t old_to   = to_space()->capacity_in_bytes();
 629 
 630   if (ZapUnusedHeapArea) {
 631     // NUMA is a special case because a numa space is not mangled
 632     // in order to not prematurely bind its address to memory to
 633     // the wrong memory (i.e., don't want the GC thread to first
 634     // touch the memory).  The survivor spaces are not numa
 635     // spaces and are mangled.
 636     if (UseNUMA) {
 637       if (eden_from_to_order) {
 638         mangle_survivors(from_space(), fromMR, to_space(), toMR);
 639       } else {
 640         mangle_survivors(to_space(), toMR, from_space(), fromMR);
 641       }
 642     }
 643 
 644     // If not mangling the spaces, do some checking to verify that
 645     // the spaces are already mangled.
 646     // The spaces should be correctly mangled at this point so
 647     // do some checking here. Note that they are not being mangled
 648     // in the calls to initialize().
 649     // Must check mangling before the spaces are reshaped.  Otherwise,
 650     // the bottom or end of one space may have moved into an area
 651     // covered by another space and a failure of the check may
 652     // not correctly indicate which space is not properly mangled.
 653     HeapWord* limit = (HeapWord*) virtual_space()->high();
 654     eden_space()->check_mangled_unused_area(limit);
 655     from_space()->check_mangled_unused_area(limit);
 656       to_space()->check_mangled_unused_area(limit);
 657   }
 658   // When an existing space is being initialized, it is not
 659   // mangled because the space has been previously mangled.
 660   eden_space()->initialize(edenMR,
 661                            SpaceDecorator::Clear,
 662                            SpaceDecorator::DontMangle);
 663     to_space()->initialize(toMR,
 664                            SpaceDecorator::Clear,
 665                            SpaceDecorator::DontMangle);
 666   from_space()->initialize(fromMR,
 667                            SpaceDecorator::DontClear,
 668                            SpaceDecorator::DontMangle);
 669 
 670   assert(from_space()->top() == old_from_top, "from top changed!");
 671 
 672   log_trace(gc, ergo)("AdaptiveSizePolicy::survivor space sizes: collection: %d (" SIZE_FORMAT ", " SIZE_FORMAT ") -> (" SIZE_FORMAT ", " SIZE_FORMAT ") ",
 673                       ParallelScavengeHeap::heap()->total_collections(),
 674                       old_from, old_to,
 675                       from_space()->capacity_in_bytes(),
 676                       to_space()->capacity_in_bytes());
 677 }
 678 
 679 void PSYoungGen::swap_spaces() {
 680   MutableSpace* s    = from_space();
 681   _from_space        = to_space();
 682   _to_space          = s;
 683 
 684   // Now update the decorators.
 685   PSMarkSweepDecorator* md = from_mark_sweep();
 686   _from_mark_sweep           = to_mark_sweep();
 687   _to_mark_sweep             = md;
 688 
 689   assert(from_mark_sweep()->space() == from_space(), "Sanity");
 690   assert(to_mark_sweep()->space() == to_space(), "Sanity");
 691 }
 692 
 693 size_t PSYoungGen::capacity_in_bytes() const {
 694   return eden_space()->capacity_in_bytes()
 695        + from_space()->capacity_in_bytes();  // to_space() is only used during scavenge
 696 }
 697 
 698 
 699 size_t PSYoungGen::used_in_bytes() const {
 700   return eden_space()->used_in_bytes()
 701        + from_space()->used_in_bytes();      // to_space() is only used during scavenge
 702 }
 703 
 704 
 705 size_t PSYoungGen::free_in_bytes() const {
 706   return eden_space()->free_in_bytes()
 707        + from_space()->free_in_bytes();      // to_space() is only used during scavenge
 708 }
 709 
 710 size_t PSYoungGen::capacity_in_words() const {
 711   return eden_space()->capacity_in_words()
 712        + from_space()->capacity_in_words();  // to_space() is only used during scavenge
 713 }
 714 
 715 
 716 size_t PSYoungGen::used_in_words() const {
 717   return eden_space()->used_in_words()
 718        + from_space()->used_in_words();      // to_space() is only used during scavenge
 719 }
 720 
 721 
 722 size_t PSYoungGen::free_in_words() const {
 723   return eden_space()->free_in_words()
 724        + from_space()->free_in_words();      // to_space() is only used during scavenge
 725 }
 726 
 727 void PSYoungGen::object_iterate(ObjectClosure* blk) {
 728   eden_space()->object_iterate(blk);
 729   from_space()->object_iterate(blk);
 730   to_space()->object_iterate(blk);
 731 }
 732 
 733 void PSYoungGen::precompact() {
 734   eden_mark_sweep()->precompact();
 735   from_mark_sweep()->precompact();
 736   to_mark_sweep()->precompact();
 737 }
 738 
 739 void PSYoungGen::adjust_pointers() {
 740   eden_mark_sweep()->adjust_pointers();
 741   from_mark_sweep()->adjust_pointers();
 742   to_mark_sweep()->adjust_pointers();
 743 }
 744 
 745 void PSYoungGen::compact() {
 746   eden_mark_sweep()->compact(ZapUnusedHeapArea);
 747   from_mark_sweep()->compact(ZapUnusedHeapArea);
 748   // Mark sweep stores preserved markOops in to space, don't disturb!
 749   to_mark_sweep()->compact(false);
 750 }
 751 
 752 void PSYoungGen::print() const { print_on(tty); }
 753 void PSYoungGen::print_on(outputStream* st) const {
 754   st->print(" %-15s", "PSYoungGen");
 755   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
 756              capacity_in_bytes()/K, used_in_bytes()/K);
 757   virtual_space()->print_space_boundaries_on(st);
 758   st->print("  eden"); eden_space()->print_on(st);
 759   st->print("  from"); from_space()->print_on(st);
 760   st->print("  to  "); to_space()->print_on(st);
 761 }
 762 
 763 // Note that a space is not printed before the [NAME:
 764 void PSYoungGen::print_used_change(size_t prev_used) const {
 765   log_info(gc, heap)("%s: "  SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
 766       name(), prev_used / K, used_in_bytes() / K, capacity_in_bytes() / K);
 767 }
 768 
 769 size_t PSYoungGen::available_for_expansion() {
 770   ShouldNotReachHere();
 771   return 0;
 772 }
 773 
 774 size_t PSYoungGen::available_for_contraction() {
 775   ShouldNotReachHere();
 776   return 0;
 777 }
 778 
 779 size_t PSYoungGen::available_to_min_gen() {
 780   assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
 781   return virtual_space()->committed_size() - min_gen_size();
 782 }
 783 
 784 // This method assumes that from-space has live data and that
 785 // any shrinkage of the young gen is limited by location of
 786 // from-space.
 787 size_t PSYoungGen::available_to_live() {
 788   size_t delta_in_survivor = 0;
 789   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 790   const size_t space_alignment = heap->space_alignment();
 791   const size_t gen_alignment = heap->generation_alignment();
 792 
 793   MutableSpace* space_shrinking = NULL;
 794   if (from_space()->end() > to_space()->end()) {
 795     space_shrinking = from_space();
 796   } else {
 797     space_shrinking = to_space();
 798   }
 799 
 800   // Include any space that is committed but not included in
 801   // the survivor spaces.
 802   assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
 803     "Survivor space beyond high end");
 804   size_t unused_committed = pointer_delta(virtual_space()->high(),
 805     space_shrinking->end(), sizeof(char));
 806 
 807   if (space_shrinking->is_empty()) {
 808     // Don't let the space shrink to 0
 809     assert(space_shrinking->capacity_in_bytes() >= space_alignment,
 810       "Space is too small");
 811     delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment;
 812   } else {
 813     delta_in_survivor = pointer_delta(space_shrinking->end(),
 814                                       space_shrinking->top(),
 815                                       sizeof(char));
 816   }
 817 
 818   size_t delta_in_bytes = unused_committed + delta_in_survivor;
 819   delta_in_bytes = align_down(delta_in_bytes, gen_alignment);
 820   return delta_in_bytes;
 821 }
 822 
 823 // Return the number of bytes available for resizing down the young
 824 // generation.  This is the minimum of
 825 //      input "bytes"
 826 //      bytes to the minimum young gen size
 827 //      bytes to the size currently being used + some small extra
 828 size_t PSYoungGen::limit_gen_shrink(size_t bytes) {
 829   // Allow shrinkage into the current eden but keep eden large enough
 830   // to maintain the minimum young gen size
 831   bytes = MIN3(bytes, available_to_min_gen(), available_to_live());
 832   return align_down(bytes, virtual_space()->alignment());
 833 }
 834 
 835 void PSYoungGen::reset_after_change() {
 836   ShouldNotReachHere();
 837 }
 838 
 839 void PSYoungGen::reset_survivors_after_shrink() {
 840   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
 841                         (HeapWord*)virtual_space()->high_boundary());
 842   PSScavenge::set_subject_to_discovery_span(_reserved);
 843 
 844   MutableSpace* space_shrinking = NULL;
 845   if (from_space()->end() > to_space()->end()) {
 846     space_shrinking = from_space();
 847   } else {
 848     space_shrinking = to_space();
 849   }
 850 
 851   HeapWord* new_end = (HeapWord*)virtual_space()->high();
 852   assert(new_end >= space_shrinking->bottom(), "Shrink was too large");
 853   // Was there a shrink of the survivor space?
 854   if (new_end < space_shrinking->end()) {
 855     MemRegion mr(space_shrinking->bottom(), new_end);
 856     space_shrinking->initialize(mr,
 857                                 SpaceDecorator::DontClear,
 858                                 SpaceDecorator::Mangle);
 859   }
 860 }
 861 
 862 // This method currently does not expect to expand into eden (i.e.,
 863 // the virtual space boundaries is expected to be consistent
 864 // with the eden boundaries..
 865 void PSYoungGen::post_resize() {
 866   assert_locked_or_safepoint(Heap_lock);
 867   assert((eden_space()->bottom() < to_space()->bottom()) &&
 868          (eden_space()->bottom() < from_space()->bottom()),
 869          "Eden is assumed to be below the survivor spaces");
 870 
 871   MemRegion cmr((HeapWord*)virtual_space()->low(),
 872                 (HeapWord*)virtual_space()->high());
 873   ParallelScavengeHeap::heap()->card_table()->resize_covered_region(cmr);
 874   space_invariants();
 875 }
 876 
 877 
 878 
 879 void PSYoungGen::update_counters() {
 880   if (UsePerfData) {
 881     _eden_counters->update_all();
 882     _from_counters->update_all();
 883     _to_counters->update_all();
 884     _gen_counters->update_all();
 885   }
 886 }
 887 
 888 void PSYoungGen::verify() {
 889   eden_space()->verify();
 890   from_space()->verify();
 891   to_space()->verify();
 892 }
 893 
 894 #ifndef PRODUCT
 895 void PSYoungGen::record_spaces_top() {
 896   assert(ZapUnusedHeapArea, "Not mangling unused space");
 897   eden_space()->set_top_for_allocations();
 898   from_space()->set_top_for_allocations();
 899   to_space()->set_top_for_allocations();
 900 }
 901 #endif