1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
  26 #define SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
  27 
  28 #include "gc/shared/referenceDiscoverer.hpp"
  29 #include "gc/shared/referencePolicy.hpp"
  30 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  31 #include "gc/shared/referenceProcessorStats.hpp"
  32 #include "memory/referenceType.hpp"
  33 #include "oops/instanceRefKlass.hpp"
  34 
  35 class GCTimer;
  36 
  37 // ReferenceProcessor class encapsulates the per-"collector" processing
  38 // of java.lang.Reference objects for GC. The interface is useful for supporting
  39 // a generational abstraction, in particular when there are multiple
  40 // generations that are being independently collected -- possibly
  41 // concurrently and/or incrementally.  Note, however, that the
  42 // ReferenceProcessor class abstracts away from a generational setting
  43 // by using only a heap interval (called "span" below), thus allowing
  44 // its use in a straightforward manner in a general, non-generational
  45 // setting.
  46 //
  47 // The basic idea is that each ReferenceProcessor object concerns
  48 // itself with ("weak") reference processing in a specific "span"
  49 // of the heap of interest to a specific collector. Currently,
  50 // the span is a convex interval of the heap, but, efficiency
  51 // apart, there seems to be no reason it couldn't be extended
  52 // (with appropriate modifications) to any "non-convex interval".
  53 
  54 // forward references
  55 class ReferencePolicy;
  56 class AbstractRefProcTaskExecutor;
  57 
  58 // List of discovered references.
  59 class DiscoveredList {
  60 public:
  61   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  62   inline oop head() const;
  63   HeapWord* adr_head() {
  64     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  65                                (HeapWord*)&_oop_head;
  66   }
  67   inline void set_head(oop o);
  68   inline bool is_empty() const;
  69   size_t length()               { return _len; }
  70   void   set_length(size_t len) { _len = len;  }
  71   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  72   void   dec_length(size_t dec) { _len -= dec; }
  73 private:
  74   // Set value depending on UseCompressedOops. This could be a template class
  75   // but then we have to fix all the instantiations and declarations that use this class.
  76   oop       _oop_head;
  77   narrowOop _compressed_head;
  78   size_t _len;
  79 };
  80 
  81 // Iterator for the list of discovered references.
  82 class DiscoveredListIterator {
  83 private:
  84   DiscoveredList&    _refs_list;
  85   HeapWord*          _prev_next;
  86   oop                _prev;
  87   oop                _ref;
  88   HeapWord*          _discovered_addr;
  89   oop                _next;
  90   HeapWord*          _referent_addr;
  91   oop                _referent;
  92   OopClosure*        _keep_alive;
  93   BoolObjectClosure* _is_alive;
  94 
  95   DEBUG_ONLY(
  96   oop                _first_seen; // cyclic linked list check
  97   )
  98 
  99   NOT_PRODUCT(
 100   size_t             _processed;
 101   size_t             _removed;
 102   )
 103 
 104 public:
 105   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 106                                 OopClosure*        keep_alive,
 107                                 BoolObjectClosure* is_alive);
 108 
 109   // End Of List.
 110   inline bool has_next() const { return _ref != NULL; }
 111 
 112   // Get oop to the Reference object.
 113   inline oop obj() const { return _ref; }
 114 
 115   // Get oop to the referent object.
 116   inline oop referent() const { return _referent; }
 117 
 118   // Returns true if referent is alive.
 119   inline bool is_referent_alive() const {
 120     return _is_alive->do_object_b(_referent);
 121   }
 122 
 123   // Loads data for the current reference.
 124   // The "allow_null_referent" argument tells us to allow for the possibility
 125   // of a NULL referent in the discovered Reference object. This typically
 126   // happens in the case of concurrent collectors that may have done the
 127   // discovery concurrently, or interleaved, with mutator execution.
 128   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 129 
 130   // Move to the next discovered reference.
 131   inline void next() {
 132     _prev_next = _discovered_addr;
 133     _prev = _ref;
 134     move_to_next();
 135   }
 136 
 137   // Remove the current reference from the list
 138   void remove();
 139 
 140   // Make the referent alive.
 141   inline void make_referent_alive() {
 142     if (UseCompressedOops) {
 143       _keep_alive->do_oop((narrowOop*)_referent_addr);
 144     } else {
 145       _keep_alive->do_oop((oop*)_referent_addr);
 146     }
 147   }
 148 
 149   // NULL out referent pointer.
 150   void clear_referent();
 151 
 152   // Statistics
 153   NOT_PRODUCT(
 154   inline size_t processed() const { return _processed; }
 155   inline size_t removed() const   { return _removed; }
 156   )
 157 
 158   inline void move_to_next() {
 159     if (_ref == _next) {
 160       // End of the list.
 161       _ref = NULL;
 162     } else {
 163       _ref = _next;
 164     }
 165     assert(_ref != _first_seen, "cyclic ref_list found");
 166     NOT_PRODUCT(_processed++);
 167   }
 168 };
 169 
 170 class ReferenceProcessor : public ReferenceDiscoverer {
 171 
 172  private:
 173   size_t total_count(DiscoveredList lists[]) const;
 174 
 175  protected:
 176   // The SoftReference master timestamp clock
 177   static jlong _soft_ref_timestamp_clock;
 178 
 179   MemRegion   _span;                    // (right-open) interval of heap
 180                                         // subject to wkref discovery
 181 
 182   bool        _discovering_refs;        // true when discovery enabled
 183   bool        _discovery_is_atomic;     // if discovery is atomic wrt
 184                                         // other collectors in configuration
 185   bool        _discovery_is_mt;         // true if reference discovery is MT.
 186 
 187   bool        _enqueuing_is_done;       // true if all weak references enqueued
 188   bool        _processing_is_mt;        // true during phases when
 189                                         // reference processing is MT.
 190   uint        _next_id;                 // round-robin mod _num_q counter in
 191                                         // support of work distribution
 192 
 193   // For collectors that do not keep GC liveness information
 194   // in the object header, this field holds a closure that
 195   // helps the reference processor determine the reachability
 196   // of an oop. It is currently initialized to NULL for all
 197   // collectors except for CMS and G1.
 198   BoolObjectClosure* _is_alive_non_header;
 199 
 200   // Soft ref clearing policies
 201   // . the default policy
 202   static ReferencePolicy*   _default_soft_ref_policy;
 203   // . the "clear all" policy
 204   static ReferencePolicy*   _always_clear_soft_ref_policy;
 205   // . the current policy below is either one of the above
 206   ReferencePolicy*          _current_soft_ref_policy;
 207 
 208   // The discovered ref lists themselves
 209 
 210   // The active MT'ness degree of the queues below
 211   uint             _num_q;
 212   // The maximum MT'ness degree of the queues below
 213   uint             _max_num_q;
 214 
 215   // Master array of discovered oops
 216   DiscoveredList* _discovered_refs;
 217 
 218   // Arrays of lists of oops, one per thread (pointers into master array above)
 219   DiscoveredList* _discoveredSoftRefs;
 220   DiscoveredList* _discoveredWeakRefs;
 221   DiscoveredList* _discoveredFinalRefs;
 222   DiscoveredList* _discoveredPhantomRefs;
 223 
 224  public:
 225   static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
 226 
 227   uint num_q()                             { return _num_q; }
 228   uint max_num_q()                         { return _max_num_q; }
 229   void set_active_mt_degree(uint v);
 230 
 231   DiscoveredList* discovered_refs()        { return _discovered_refs; }
 232 
 233   ReferencePolicy* setup_policy(bool always_clear) {
 234     _current_soft_ref_policy = always_clear ?
 235       _always_clear_soft_ref_policy : _default_soft_ref_policy;
 236     _current_soft_ref_policy->setup();   // snapshot the policy threshold
 237     return _current_soft_ref_policy;
 238   }
 239 
 240   // Process references with a certain reachability level.
 241   void process_discovered_reflist(DiscoveredList                refs_lists[],
 242                                   ReferencePolicy*              policy,
 243                                   bool                          clear_referent,
 244                                   BoolObjectClosure*            is_alive,
 245                                   OopClosure*                   keep_alive,
 246                                   VoidClosure*                  complete_gc,
 247                                   AbstractRefProcTaskExecutor*  task_executor,
 248                                   ReferenceProcessorPhaseTimes* phase_times);
 249 
 250   // Work methods used by the method process_discovered_reflist
 251   // Phase1: keep alive all those referents that are otherwise
 252   // dead but which must be kept alive by policy (and their closure).
 253   void process_phase1(DiscoveredList&     refs_list,
 254                       ReferencePolicy*    policy,
 255                       BoolObjectClosure*  is_alive,
 256                       OopClosure*         keep_alive,
 257                       VoidClosure*        complete_gc);
 258   // Phase2: remove all those references whose referents are
 259   // reachable.
 260   inline void process_phase2(DiscoveredList&    refs_list,
 261                              BoolObjectClosure* is_alive,
 262                              OopClosure*        keep_alive,
 263                              VoidClosure*       complete_gc) {
 264     if (discovery_is_atomic()) {
 265       // complete_gc is ignored in this case for this phase
 266       pp2_work(refs_list, is_alive, keep_alive);
 267     } else {
 268       assert(complete_gc != NULL, "Error");
 269       pp2_work_concurrent_discovery(refs_list, is_alive,
 270                                     keep_alive, complete_gc);
 271     }
 272   }
 273   // Work methods in support of process_phase2
 274   void pp2_work(DiscoveredList&    refs_list,
 275                 BoolObjectClosure* is_alive,
 276                 OopClosure*        keep_alive);
 277   void pp2_work_concurrent_discovery(
 278                 DiscoveredList&    refs_list,
 279                 BoolObjectClosure* is_alive,
 280                 OopClosure*        keep_alive,
 281                 VoidClosure*       complete_gc);
 282   // Phase3: process the referents by either clearing them
 283   // or keeping them alive (and their closure)
 284   void process_phase3(DiscoveredList&    refs_list,
 285                       bool               clear_referent,
 286                       BoolObjectClosure* is_alive,
 287                       OopClosure*        keep_alive,
 288                       VoidClosure*       complete_gc);
 289 
 290   // Enqueue references with a certain reachability level
 291   void enqueue_discovered_reflist(DiscoveredList& refs_list);
 292 
 293   // "Preclean" all the discovered reference lists
 294   // by removing references with strongly reachable referents.
 295   // The first argument is a predicate on an oop that indicates
 296   // its (strong) reachability and the second is a closure that
 297   // may be used to incrementalize or abort the precleaning process.
 298   // The caller is responsible for taking care of potential
 299   // interference with concurrent operations on these lists
 300   // (or predicates involved) by other threads. Currently
 301   // only used by the CMS collector.
 302   void preclean_discovered_references(BoolObjectClosure* is_alive,
 303                                       OopClosure*        keep_alive,
 304                                       VoidClosure*       complete_gc,
 305                                       YieldClosure*      yield,
 306                                       GCTimer*           gc_timer);
 307 
 308   // Returns the name of the discovered reference list
 309   // occupying the i / _num_q slot.
 310   const char* list_name(uint i);
 311 
 312   void enqueue_discovered_reflists(AbstractRefProcTaskExecutor* task_executor,
 313                                    ReferenceProcessorPhaseTimes* phase_times);
 314 
 315  protected:
 316   // "Preclean" the given discovered reference list
 317   // by removing references with strongly reachable referents.
 318   // Currently used in support of CMS only.
 319   void preclean_discovered_reflist(DiscoveredList&    refs_list,
 320                                    BoolObjectClosure* is_alive,
 321                                    OopClosure*        keep_alive,
 322                                    VoidClosure*       complete_gc,
 323                                    YieldClosure*      yield);
 324 
 325   // round-robin mod _num_q (not: _not_ mode _max_num_q)
 326   uint next_id() {
 327     uint id = _next_id;
 328     assert(!_discovery_is_mt, "Round robin should only be used in serial discovery");
 329     if (++_next_id == _num_q) {
 330       _next_id = 0;
 331     }
 332     assert(_next_id < _num_q, "_next_id %u _num_q %u _max_num_q %u", _next_id, _num_q, _max_num_q);
 333     return id;
 334   }
 335   DiscoveredList* get_discovered_list(ReferenceType rt);
 336   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
 337                                         HeapWord* discovered_addr);
 338 
 339   void clear_discovered_references(DiscoveredList& refs_list);
 340 
 341   void log_reflist_counts(DiscoveredList ref_lists[], uint active_length, size_t total_count) PRODUCT_RETURN;
 342 
 343   // Balances reference queues.
 344   void balance_queues(DiscoveredList ref_lists[]);
 345 
 346   // Update (advance) the soft ref master clock field.
 347   void update_soft_ref_master_clock();
 348 
 349  public:
 350   // Default parameters give you a vanilla reference processor.
 351   ReferenceProcessor(MemRegion span,
 352                      bool mt_processing = false, uint mt_processing_degree = 1,
 353                      bool mt_discovery  = false, uint mt_discovery_degree  = 1,
 354                      bool atomic_discovery = true,
 355                      BoolObjectClosure* is_alive_non_header = NULL);
 356 
 357   // RefDiscoveryPolicy values
 358   enum DiscoveryPolicy {
 359     ReferenceBasedDiscovery = 0,
 360     ReferentBasedDiscovery  = 1,
 361     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
 362     DiscoveryPolicyMax      = ReferentBasedDiscovery
 363   };
 364 
 365   static void init_statics();
 366 
 367  public:
 368   // get and set "is_alive_non_header" field
 369   BoolObjectClosure* is_alive_non_header() {
 370     return _is_alive_non_header;
 371   }
 372   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
 373     _is_alive_non_header = is_alive_non_header;
 374   }
 375 
 376   // get and set span
 377   MemRegion span()                   { return _span; }
 378   void      set_span(MemRegion span) { _span = span; }
 379 
 380   // start and stop weak ref discovery
 381   void enable_discovery(bool check_no_refs = true);
 382   void disable_discovery()  { _discovering_refs = false; }
 383   bool discovery_enabled()  { return _discovering_refs;  }
 384 
 385   // whether discovery is atomic wrt other collectors
 386   bool discovery_is_atomic() const { return _discovery_is_atomic; }
 387   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
 388 
 389   // whether discovery is done by multiple threads same-old-timeously
 390   bool discovery_is_mt() const { return _discovery_is_mt; }
 391   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
 392 
 393   // Whether we are in a phase when _processing_ is MT.
 394   bool processing_is_mt() const { return _processing_is_mt; }
 395   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
 396 
 397   // whether all enqueueing of weak references is complete
 398   bool enqueuing_is_done()  { return _enqueuing_is_done; }
 399   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
 400 
 401   // iterate over oops
 402   void weak_oops_do(OopClosure* f);       // weak roots
 403 
 404   // Balance each of the discovered lists.
 405   void balance_all_queues();
 406   void verify_list(DiscoveredList& ref_list);
 407 
 408   // Discover a Reference object, using appropriate discovery criteria
 409   virtual bool discover_reference(oop obj, ReferenceType rt);
 410 
 411   // Has discovered references that need handling
 412   bool has_discovered_references();
 413 
 414   // Process references found during GC (called by the garbage collector)
 415   ReferenceProcessorStats
 416   process_discovered_references(BoolObjectClosure*            is_alive,
 417                                 OopClosure*                   keep_alive,
 418                                 VoidClosure*                  complete_gc,
 419                                 AbstractRefProcTaskExecutor*  task_executor,
 420                                 ReferenceProcessorPhaseTimes* phase_times);
 421 
 422   // Enqueue references at end of GC (called by the garbage collector)
 423   void enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor,
 424                                      ReferenceProcessorPhaseTimes* phase_times);
 425 
 426   // If a discovery is in process that is being superceded, abandon it: all
 427   // the discovered lists will be empty, and all the objects on them will
 428   // have NULL discovered fields.  Must be called only at a safepoint.
 429   void abandon_partial_discovery();
 430 
 431   size_t total_reference_count(ReferenceType rt) const;
 432 
 433   // debugging
 434   void verify_no_references_recorded() PRODUCT_RETURN;
 435   void verify_referent(oop obj)        PRODUCT_RETURN;
 436 };
 437 
 438 // A utility class to disable reference discovery in
 439 // the scope which contains it, for given ReferenceProcessor.
 440 class NoRefDiscovery: StackObj {
 441  private:
 442   ReferenceProcessor* _rp;
 443   bool _was_discovering_refs;
 444  public:
 445   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
 446     _was_discovering_refs = _rp->discovery_enabled();
 447     if (_was_discovering_refs) {
 448       _rp->disable_discovery();
 449     }
 450   }
 451 
 452   ~NoRefDiscovery() {
 453     if (_was_discovering_refs) {
 454       _rp->enable_discovery(false /*check_no_refs*/);
 455     }
 456   }
 457 };
 458 
 459 
 460 // A utility class to temporarily mutate the span of the
 461 // given ReferenceProcessor in the scope that contains it.
 462 class ReferenceProcessorSpanMutator: StackObj {
 463  private:
 464   ReferenceProcessor* _rp;
 465   MemRegion           _saved_span;
 466 
 467  public:
 468   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
 469                                 MemRegion span):
 470     _rp(rp) {
 471     _saved_span = _rp->span();
 472     _rp->set_span(span);
 473   }
 474 
 475   ~ReferenceProcessorSpanMutator() {
 476     _rp->set_span(_saved_span);
 477   }
 478 };
 479 
 480 // A utility class to temporarily change the MT'ness of
 481 // reference discovery for the given ReferenceProcessor
 482 // in the scope that contains it.
 483 class ReferenceProcessorMTDiscoveryMutator: StackObj {
 484  private:
 485   ReferenceProcessor* _rp;
 486   bool                _saved_mt;
 487 
 488  public:
 489   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
 490                                        bool mt):
 491     _rp(rp) {
 492     _saved_mt = _rp->discovery_is_mt();
 493     _rp->set_mt_discovery(mt);
 494   }
 495 
 496   ~ReferenceProcessorMTDiscoveryMutator() {
 497     _rp->set_mt_discovery(_saved_mt);
 498   }
 499 };
 500 
 501 
 502 // A utility class to temporarily change the disposition
 503 // of the "is_alive_non_header" closure field of the
 504 // given ReferenceProcessor in the scope that contains it.
 505 class ReferenceProcessorIsAliveMutator: StackObj {
 506  private:
 507   ReferenceProcessor* _rp;
 508   BoolObjectClosure*  _saved_cl;
 509 
 510  public:
 511   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
 512                                    BoolObjectClosure*  cl):
 513     _rp(rp) {
 514     _saved_cl = _rp->is_alive_non_header();
 515     _rp->set_is_alive_non_header(cl);
 516   }
 517 
 518   ~ReferenceProcessorIsAliveMutator() {
 519     _rp->set_is_alive_non_header(_saved_cl);
 520   }
 521 };
 522 
 523 // A utility class to temporarily change the disposition
 524 // of the "discovery_is_atomic" field of the
 525 // given ReferenceProcessor in the scope that contains it.
 526 class ReferenceProcessorAtomicMutator: StackObj {
 527  private:
 528   ReferenceProcessor* _rp;
 529   bool                _saved_atomic_discovery;
 530 
 531  public:
 532   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
 533                                   bool atomic):
 534     _rp(rp) {
 535     _saved_atomic_discovery = _rp->discovery_is_atomic();
 536     _rp->set_atomic_discovery(atomic);
 537   }
 538 
 539   ~ReferenceProcessorAtomicMutator() {
 540     _rp->set_atomic_discovery(_saved_atomic_discovery);
 541   }
 542 };
 543 
 544 
 545 // A utility class to temporarily change the MT processing
 546 // disposition of the given ReferenceProcessor instance
 547 // in the scope that contains it.
 548 class ReferenceProcessorMTProcMutator: StackObj {
 549  private:
 550   ReferenceProcessor* _rp;
 551   bool  _saved_mt;
 552 
 553  public:
 554   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
 555                                   bool mt):
 556     _rp(rp) {
 557     _saved_mt = _rp->processing_is_mt();
 558     _rp->set_mt_processing(mt);
 559   }
 560 
 561   ~ReferenceProcessorMTProcMutator() {
 562     _rp->set_mt_processing(_saved_mt);
 563   }
 564 };
 565 
 566 
 567 // This class is an interface used to implement task execution for the
 568 // reference processing.
 569 class AbstractRefProcTaskExecutor {
 570 public:
 571 
 572   // Abstract tasks to execute.
 573   class ProcessTask;
 574   class EnqueueTask;
 575 
 576   // Executes a task using worker threads.
 577   virtual void execute(ProcessTask& task) = 0;
 578   virtual void execute(EnqueueTask& task) = 0;
 579 
 580   // Switch to single threaded mode.
 581   virtual void set_single_threaded_mode() { };
 582 };
 583 
 584 // Abstract reference processing task to execute.
 585 class AbstractRefProcTaskExecutor::ProcessTask {
 586 protected:
 587   ProcessTask(ReferenceProcessor&           ref_processor,
 588               DiscoveredList                refs_lists[],
 589               bool                          marks_oops_alive,
 590               ReferenceProcessorPhaseTimes* phase_times)
 591     : _ref_processor(ref_processor),
 592       _refs_lists(refs_lists),
 593       _phase_times(phase_times),
 594       _marks_oops_alive(marks_oops_alive)
 595   { }
 596 
 597 public:
 598   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
 599                     OopClosure& keep_alive,
 600                     VoidClosure& complete_gc) = 0;
 601 
 602   // Returns true if a task marks some oops as alive.
 603   bool marks_oops_alive() const
 604   { return _marks_oops_alive; }
 605 
 606 protected:
 607   ReferenceProcessor&           _ref_processor;
 608   DiscoveredList*               _refs_lists;
 609   ReferenceProcessorPhaseTimes* _phase_times;
 610   const bool                    _marks_oops_alive;
 611 };
 612 
 613 // Abstract reference processing task to execute.
 614 class AbstractRefProcTaskExecutor::EnqueueTask {
 615 protected:
 616   EnqueueTask(ReferenceProcessor&           ref_processor,
 617               DiscoveredList                refs_lists[],
 618               int                           n_queues,
 619               ReferenceProcessorPhaseTimes* phase_times)
 620     : _ref_processor(ref_processor),
 621       _refs_lists(refs_lists),
 622       _n_queues(n_queues),
 623       _phase_times(phase_times)
 624   { }
 625 
 626 public:
 627   virtual void work(unsigned int work_id) = 0;
 628 
 629 protected:
 630   ReferenceProcessor&           _ref_processor;
 631   DiscoveredList*               _refs_lists;
 632   ReferenceProcessorPhaseTimes* _phase_times;
 633   int                           _n_queues;
 634 };
 635 
 636 #endif // SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP