1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/cms/cmsCollectorPolicy.hpp"
  32 #include "gc/cms/cmsGCStats.hpp"
  33 #include "gc/cms/cmsHeap.hpp"
  34 #include "gc/cms/cmsOopClosures.inline.hpp"
  35 #include "gc/cms/compactibleFreeListSpace.hpp"
  36 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  37 #include "gc/cms/concurrentMarkSweepThread.hpp"
  38 #include "gc/cms/parNewGeneration.hpp"
  39 #include "gc/cms/vmCMSOperations.hpp"
  40 #include "gc/serial/genMarkSweep.hpp"
  41 #include "gc/serial/tenuredGeneration.hpp"
  42 #include "gc/shared/adaptiveSizePolicy.hpp"
  43 #include "gc/shared/cardGeneration.inline.hpp"
  44 #include "gc/shared/cardTableRS.hpp"
  45 #include "gc/shared/collectedHeap.inline.hpp"
  46 #include "gc/shared/collectorCounters.hpp"
  47 #include "gc/shared/collectorPolicy.hpp"
  48 #include "gc/shared/gcLocker.hpp"
  49 #include "gc/shared/gcPolicyCounters.hpp"
  50 #include "gc/shared/gcTimer.hpp"
  51 #include "gc/shared/gcTrace.hpp"
  52 #include "gc/shared/gcTraceTime.inline.hpp"
  53 #include "gc/shared/genCollectedHeap.hpp"
  54 #include "gc/shared/genOopClosures.inline.hpp"
  55 #include "gc/shared/isGCActiveMark.hpp"
  56 #include "gc/shared/referencePolicy.hpp"
  57 #include "gc/shared/strongRootsScope.hpp"
  58 #include "gc/shared/taskqueue.inline.hpp"
  59 #include "gc/shared/weakProcessor.hpp"
  60 #include "logging/log.hpp"
  61 #include "logging/logStream.hpp"
  62 #include "memory/allocation.hpp"
  63 #include "memory/binaryTreeDictionary.inline.hpp"
  64 #include "memory/iterator.inline.hpp"
  65 #include "memory/padded.hpp"
  66 #include "memory/resourceArea.hpp"
  67 #include "oops/access.inline.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "prims/jvmtiExport.hpp"
  70 #include "runtime/atomic.hpp"
  71 #include "runtime/flags/flagSetting.hpp"
  72 #include "runtime/globals_extension.hpp"
  73 #include "runtime/handles.inline.hpp"
  74 #include "runtime/java.hpp"
  75 #include "runtime/orderAccess.inline.hpp"
  76 #include "runtime/timer.hpp"
  77 #include "runtime/vmThread.hpp"
  78 #include "services/memoryService.hpp"
  79 #include "services/runtimeService.hpp"
  80 #include "utilities/align.hpp"
  81 #include "utilities/stack.inline.hpp"
  82 
  83 // statics
  84 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  85 bool CMSCollector::_full_gc_requested = false;
  86 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  87 
  88 //////////////////////////////////////////////////////////////////
  89 // In support of CMS/VM thread synchronization
  90 //////////////////////////////////////////////////////////////////
  91 // We split use of the CGC_lock into 2 "levels".
  92 // The low-level locking is of the usual CGC_lock monitor. We introduce
  93 // a higher level "token" (hereafter "CMS token") built on top of the
  94 // low level monitor (hereafter "CGC lock").
  95 // The token-passing protocol gives priority to the VM thread. The
  96 // CMS-lock doesn't provide any fairness guarantees, but clients
  97 // should ensure that it is only held for very short, bounded
  98 // durations.
  99 //
 100 // When either of the CMS thread or the VM thread is involved in
 101 // collection operations during which it does not want the other
 102 // thread to interfere, it obtains the CMS token.
 103 //
 104 // If either thread tries to get the token while the other has
 105 // it, that thread waits. However, if the VM thread and CMS thread
 106 // both want the token, then the VM thread gets priority while the
 107 // CMS thread waits. This ensures, for instance, that the "concurrent"
 108 // phases of the CMS thread's work do not block out the VM thread
 109 // for long periods of time as the CMS thread continues to hog
 110 // the token. (See bug 4616232).
 111 //
 112 // The baton-passing functions are, however, controlled by the
 113 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 114 // and here the low-level CMS lock, not the high level token,
 115 // ensures mutual exclusion.
 116 //
 117 // Two important conditions that we have to satisfy:
 118 // 1. if a thread does a low-level wait on the CMS lock, then it
 119 //    relinquishes the CMS token if it were holding that token
 120 //    when it acquired the low-level CMS lock.
 121 // 2. any low-level notifications on the low-level lock
 122 //    should only be sent when a thread has relinquished the token.
 123 //
 124 // In the absence of either property, we'd have potential deadlock.
 125 //
 126 // We protect each of the CMS (concurrent and sequential) phases
 127 // with the CMS _token_, not the CMS _lock_.
 128 //
 129 // The only code protected by CMS lock is the token acquisition code
 130 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 131 // baton-passing code.
 132 //
 133 // Unfortunately, i couldn't come up with a good abstraction to factor and
 134 // hide the naked CGC_lock manipulation in the baton-passing code
 135 // further below. That's something we should try to do. Also, the proof
 136 // of correctness of this 2-level locking scheme is far from obvious,
 137 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 138 // that there may be a theoretical possibility of delay/starvation in the
 139 // low-level lock/wait/notify scheme used for the baton-passing because of
 140 // potential interference with the priority scheme embodied in the
 141 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 142 // invocation further below and marked with "XXX 20011219YSR".
 143 // Indeed, as we note elsewhere, this may become yet more slippery
 144 // in the presence of multiple CMS and/or multiple VM threads. XXX
 145 
 146 class CMSTokenSync: public StackObj {
 147  private:
 148   bool _is_cms_thread;
 149  public:
 150   CMSTokenSync(bool is_cms_thread):
 151     _is_cms_thread(is_cms_thread) {
 152     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 153            "Incorrect argument to constructor");
 154     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 155   }
 156 
 157   ~CMSTokenSync() {
 158     assert(_is_cms_thread ?
 159              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 160              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 161           "Incorrect state");
 162     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 163   }
 164 };
 165 
 166 // Convenience class that does a CMSTokenSync, and then acquires
 167 // upto three locks.
 168 class CMSTokenSyncWithLocks: public CMSTokenSync {
 169  private:
 170   // Note: locks are acquired in textual declaration order
 171   // and released in the opposite order
 172   MutexLockerEx _locker1, _locker2, _locker3;
 173  public:
 174   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 175                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 176     CMSTokenSync(is_cms_thread),
 177     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 178     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 179     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 180   { }
 181 };
 182 
 183 
 184 //////////////////////////////////////////////////////////////////
 185 //  Concurrent Mark-Sweep Generation /////////////////////////////
 186 //////////////////////////////////////////////////////////////////
 187 
 188 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 189 
 190 // This struct contains per-thread things necessary to support parallel
 191 // young-gen collection.
 192 class CMSParGCThreadState: public CHeapObj<mtGC> {
 193  public:
 194   CompactibleFreeListSpaceLAB lab;
 195   PromotionInfo promo;
 196 
 197   // Constructor.
 198   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 199     promo.setSpace(cfls);
 200   }
 201 };
 202 
 203 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 204      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 205   CardGeneration(rs, initial_byte_size, ct),
 206   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 207   _did_compact(false)
 208 {
 209   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 210   HeapWord* end    = (HeapWord*) _virtual_space.high();
 211 
 212   _direct_allocated_words = 0;
 213   NOT_PRODUCT(
 214     _numObjectsPromoted = 0;
 215     _numWordsPromoted = 0;
 216     _numObjectsAllocated = 0;
 217     _numWordsAllocated = 0;
 218   )
 219 
 220   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 221   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 222   _cmsSpace->_old_gen = this;
 223 
 224   _gc_stats = new CMSGCStats();
 225 
 226   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 227   // offsets match. The ability to tell free chunks from objects
 228   // depends on this property.
 229   debug_only(
 230     FreeChunk* junk = NULL;
 231     assert(UseCompressedClassPointers ||
 232            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 233            "Offset of FreeChunk::_prev within FreeChunk must match"
 234            "  that of OopDesc::_klass within OopDesc");
 235   )
 236 
 237   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 238   for (uint i = 0; i < ParallelGCThreads; i++) {
 239     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 240   }
 241 
 242   _incremental_collection_failed = false;
 243   // The "dilatation_factor" is the expansion that can occur on
 244   // account of the fact that the minimum object size in the CMS
 245   // generation may be larger than that in, say, a contiguous young
 246   //  generation.
 247   // Ideally, in the calculation below, we'd compute the dilatation
 248   // factor as: MinChunkSize/(promoting_gen's min object size)
 249   // Since we do not have such a general query interface for the
 250   // promoting generation, we'll instead just use the minimum
 251   // object size (which today is a header's worth of space);
 252   // note that all arithmetic is in units of HeapWords.
 253   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 254   assert(_dilatation_factor >= 1.0, "from previous assert");
 255 }
 256 
 257 
 258 // The field "_initiating_occupancy" represents the occupancy percentage
 259 // at which we trigger a new collection cycle.  Unless explicitly specified
 260 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 261 // is calculated by:
 262 //
 263 //   Let "f" be MinHeapFreeRatio in
 264 //
 265 //    _initiating_occupancy = 100-f +
 266 //                           f * (CMSTriggerRatio/100)
 267 //   where CMSTriggerRatio is the argument "tr" below.
 268 //
 269 // That is, if we assume the heap is at its desired maximum occupancy at the
 270 // end of a collection, we let CMSTriggerRatio of the (purported) free
 271 // space be allocated before initiating a new collection cycle.
 272 //
 273 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 274   assert(io <= 100 && tr <= 100, "Check the arguments");
 275   if (io >= 0) {
 276     _initiating_occupancy = (double)io / 100.0;
 277   } else {
 278     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 279                              (double)(tr * MinHeapFreeRatio) / 100.0)
 280                             / 100.0;
 281   }
 282 }
 283 
 284 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 285   assert(collector() != NULL, "no collector");
 286   collector()->ref_processor_init();
 287 }
 288 
 289 void CMSCollector::ref_processor_init() {
 290   if (_ref_processor == NULL) {
 291     // Allocate and initialize a reference processor
 292     _ref_processor =
 293       new ReferenceProcessor(&_span_discoverer,                      // span
 294                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 295                              ParallelGCThreads,                      // mt processing degree
 296                              _cmsGen->refs_discovery_is_mt(),        // mt discovery
 297                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 298                              _cmsGen->refs_discovery_is_atomic(),    // discovery is not atomic
 299                              &_is_alive_closure);                    // closure for liveness info
 300     // Initialize the _ref_processor field of CMSGen
 301     _cmsGen->set_ref_processor(_ref_processor);
 302 
 303   }
 304 }
 305 
 306 AdaptiveSizePolicy* CMSCollector::size_policy() {
 307   return CMSHeap::heap()->size_policy();
 308 }
 309 
 310 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 311 
 312   const char* gen_name = "old";
 313   GenCollectorPolicy* gcp = CMSHeap::heap()->gen_policy();
 314   // Generation Counters - generation 1, 1 subspace
 315   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 316       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 317 
 318   _space_counters = new GSpaceCounters(gen_name, 0,
 319                                        _virtual_space.reserved_size(),
 320                                        this, _gen_counters);
 321 }
 322 
 323 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 324   _cms_gen(cms_gen)
 325 {
 326   assert(alpha <= 100, "bad value");
 327   _saved_alpha = alpha;
 328 
 329   // Initialize the alphas to the bootstrap value of 100.
 330   _gc0_alpha = _cms_alpha = 100;
 331 
 332   _cms_begin_time.update();
 333   _cms_end_time.update();
 334 
 335   _gc0_duration = 0.0;
 336   _gc0_period = 0.0;
 337   _gc0_promoted = 0;
 338 
 339   _cms_duration = 0.0;
 340   _cms_period = 0.0;
 341   _cms_allocated = 0;
 342 
 343   _cms_used_at_gc0_begin = 0;
 344   _cms_used_at_gc0_end = 0;
 345   _allow_duty_cycle_reduction = false;
 346   _valid_bits = 0;
 347 }
 348 
 349 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 350   // TBD: CR 6909490
 351   return 1.0;
 352 }
 353 
 354 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 355 }
 356 
 357 // If promotion failure handling is on use
 358 // the padded average size of the promotion for each
 359 // young generation collection.
 360 double CMSStats::time_until_cms_gen_full() const {
 361   size_t cms_free = _cms_gen->cmsSpace()->free();
 362   CMSHeap* heap = CMSHeap::heap();
 363   size_t expected_promotion = MIN2(heap->young_gen()->capacity(),
 364                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 365   if (cms_free > expected_promotion) {
 366     // Start a cms collection if there isn't enough space to promote
 367     // for the next young collection.  Use the padded average as
 368     // a safety factor.
 369     cms_free -= expected_promotion;
 370 
 371     // Adjust by the safety factor.
 372     double cms_free_dbl = (double)cms_free;
 373     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 374     // Apply a further correction factor which tries to adjust
 375     // for recent occurance of concurrent mode failures.
 376     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 377     cms_free_dbl = cms_free_dbl * cms_adjustment;
 378 
 379     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 380                   cms_free, expected_promotion);
 381     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 382     // Add 1 in case the consumption rate goes to zero.
 383     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 384   }
 385   return 0.0;
 386 }
 387 
 388 // Compare the duration of the cms collection to the
 389 // time remaining before the cms generation is empty.
 390 // Note that the time from the start of the cms collection
 391 // to the start of the cms sweep (less than the total
 392 // duration of the cms collection) can be used.  This
 393 // has been tried and some applications experienced
 394 // promotion failures early in execution.  This was
 395 // possibly because the averages were not accurate
 396 // enough at the beginning.
 397 double CMSStats::time_until_cms_start() const {
 398   // We add "gc0_period" to the "work" calculation
 399   // below because this query is done (mostly) at the
 400   // end of a scavenge, so we need to conservatively
 401   // account for that much possible delay
 402   // in the query so as to avoid concurrent mode failures
 403   // due to starting the collection just a wee bit too
 404   // late.
 405   double work = cms_duration() + gc0_period();
 406   double deadline = time_until_cms_gen_full();
 407   // If a concurrent mode failure occurred recently, we want to be
 408   // more conservative and halve our expected time_until_cms_gen_full()
 409   if (work > deadline) {
 410     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 411                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 412     return 0.0;
 413   }
 414   return work - deadline;
 415 }
 416 
 417 #ifndef PRODUCT
 418 void CMSStats::print_on(outputStream *st) const {
 419   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 420   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 421                gc0_duration(), gc0_period(), gc0_promoted());
 422   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 423             cms_duration(), cms_period(), cms_allocated());
 424   st->print(",cms_since_beg=%g,cms_since_end=%g",
 425             cms_time_since_begin(), cms_time_since_end());
 426   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 427             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 428 
 429   if (valid()) {
 430     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 431               promotion_rate(), cms_allocation_rate());
 432     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 433               cms_consumption_rate(), time_until_cms_gen_full());
 434   }
 435   st->cr();
 436 }
 437 #endif // #ifndef PRODUCT
 438 
 439 CMSCollector::CollectorState CMSCollector::_collectorState =
 440                              CMSCollector::Idling;
 441 bool CMSCollector::_foregroundGCIsActive = false;
 442 bool CMSCollector::_foregroundGCShouldWait = false;
 443 
 444 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 445                            CardTableRS*                   ct,
 446                            ConcurrentMarkSweepPolicy*     cp):
 447   _cmsGen(cmsGen),
 448   // Adjust span to cover old (cms) gen
 449   _span(cmsGen->reserved()),
 450   _ct(ct),
 451   _span_discoverer(_span),
 452   _ref_processor(NULL),    // will be set later
 453   _conc_workers(NULL),     // may be set later
 454   _abort_preclean(false),
 455   _start_sampling(false),
 456   _between_prologue_and_epilogue(false),
 457   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 458   _modUnionTable((CardTable::card_shift - LogHeapWordSize),
 459                  -1 /* lock-free */, "No_lock" /* dummy */),
 460   _modUnionClosurePar(&_modUnionTable),
 461   // Construct the is_alive_closure with _span & markBitMap
 462   _is_alive_closure(_span, &_markBitMap),
 463   _restart_addr(NULL),
 464   _overflow_list(NULL),
 465   _stats(cmsGen),
 466   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 467                              //verify that this lock should be acquired with safepoint check.
 468                              Monitor::_safepoint_check_sometimes)),
 469   _eden_chunk_array(NULL),     // may be set in ctor body
 470   _eden_chunk_capacity(0),     // -- ditto --
 471   _eden_chunk_index(0),        // -- ditto --
 472   _survivor_plab_array(NULL),  // -- ditto --
 473   _survivor_chunk_array(NULL), // -- ditto --
 474   _survivor_chunk_capacity(0), // -- ditto --
 475   _survivor_chunk_index(0),    // -- ditto --
 476   _ser_pmc_preclean_ovflw(0),
 477   _ser_kac_preclean_ovflw(0),
 478   _ser_pmc_remark_ovflw(0),
 479   _par_pmc_remark_ovflw(0),
 480   _ser_kac_ovflw(0),
 481   _par_kac_ovflw(0),
 482 #ifndef PRODUCT
 483   _num_par_pushes(0),
 484 #endif
 485   _collection_count_start(0),
 486   _verifying(false),
 487   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 488   _completed_initialization(false),
 489   _collector_policy(cp),
 490   _should_unload_classes(CMSClassUnloadingEnabled),
 491   _concurrent_cycles_since_last_unload(0),
 492   _roots_scanning_options(GenCollectedHeap::SO_None),
 493   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 494   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 495   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 496   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 497   _cms_start_registered(false)
 498 {
 499   // Now expand the span and allocate the collection support structures
 500   // (MUT, marking bit map etc.) to cover both generations subject to
 501   // collection.
 502 
 503   // For use by dirty card to oop closures.
 504   _cmsGen->cmsSpace()->set_collector(this);
 505 
 506   // Allocate MUT and marking bit map
 507   {
 508     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 509     if (!_markBitMap.allocate(_span)) {
 510       log_warning(gc)("Failed to allocate CMS Bit Map");
 511       return;
 512     }
 513     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 514   }
 515   {
 516     _modUnionTable.allocate(_span);
 517     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 518   }
 519 
 520   if (!_markStack.allocate(MarkStackSize)) {
 521     log_warning(gc)("Failed to allocate CMS Marking Stack");
 522     return;
 523   }
 524 
 525   // Support for multi-threaded concurrent phases
 526   if (CMSConcurrentMTEnabled) {
 527     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 528       // just for now
 529       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 530     }
 531     if (ConcGCThreads > 1) {
 532       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 533                                  ConcGCThreads, true);
 534       if (_conc_workers == NULL) {
 535         log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
 536         CMSConcurrentMTEnabled = false;
 537       } else {
 538         _conc_workers->initialize_workers();
 539       }
 540     } else {
 541       CMSConcurrentMTEnabled = false;
 542     }
 543   }
 544   if (!CMSConcurrentMTEnabled) {
 545     ConcGCThreads = 0;
 546   } else {
 547     // Turn off CMSCleanOnEnter optimization temporarily for
 548     // the MT case where it's not fixed yet; see 6178663.
 549     CMSCleanOnEnter = false;
 550   }
 551   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 552          "Inconsistency");
 553   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 554   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 555 
 556   // Parallel task queues; these are shared for the
 557   // concurrent and stop-world phases of CMS, but
 558   // are not shared with parallel scavenge (ParNew).
 559   {
 560     uint i;
 561     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 562 
 563     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 564          || ParallelRefProcEnabled)
 565         && num_queues > 0) {
 566       _task_queues = new OopTaskQueueSet(num_queues);
 567       if (_task_queues == NULL) {
 568         log_warning(gc)("task_queues allocation failure.");
 569         return;
 570       }
 571       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 572       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 573       for (i = 0; i < num_queues; i++) {
 574         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 575         if (q == NULL) {
 576           log_warning(gc)("work_queue allocation failure.");
 577           return;
 578         }
 579         _task_queues->register_queue(i, q);
 580       }
 581       for (i = 0; i < num_queues; i++) {
 582         _task_queues->queue(i)->initialize();
 583         _hash_seed[i] = 17;  // copied from ParNew
 584       }
 585     }
 586   }
 587 
 588   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 589 
 590   // Clip CMSBootstrapOccupancy between 0 and 100.
 591   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 592 
 593   // Now tell CMS generations the identity of their collector
 594   ConcurrentMarkSweepGeneration::set_collector(this);
 595 
 596   // Create & start a CMS thread for this CMS collector
 597   _cmsThread = ConcurrentMarkSweepThread::start(this);
 598   assert(cmsThread() != NULL, "CMS Thread should have been created");
 599   assert(cmsThread()->collector() == this,
 600          "CMS Thread should refer to this gen");
 601   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 602 
 603   // Support for parallelizing young gen rescan
 604   CMSHeap* heap = CMSHeap::heap();
 605   assert(heap->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 606   _young_gen = (ParNewGeneration*)heap->young_gen();
 607   if (heap->supports_inline_contig_alloc()) {
 608     _top_addr = heap->top_addr();
 609     _end_addr = heap->end_addr();
 610     assert(_young_gen != NULL, "no _young_gen");
 611     _eden_chunk_index = 0;
 612     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 613     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 614   }
 615 
 616   // Support for parallelizing survivor space rescan
 617   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 618     const size_t max_plab_samples =
 619       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 620 
 621     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 622     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 623     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 624     _survivor_chunk_capacity = max_plab_samples;
 625     for (uint i = 0; i < ParallelGCThreads; i++) {
 626       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 627       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 628       assert(cur->end() == 0, "Should be 0");
 629       assert(cur->array() == vec, "Should be vec");
 630       assert(cur->capacity() == max_plab_samples, "Error");
 631     }
 632   }
 633 
 634   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 635   _gc_counters = new CollectorCounters("CMS", 1);
 636   _cgc_counters = new CollectorCounters("CMS stop-the-world phases", 2);
 637   _completed_initialization = true;
 638   _inter_sweep_timer.start();  // start of time
 639 }
 640 
 641 const char* ConcurrentMarkSweepGeneration::name() const {
 642   return "concurrent mark-sweep generation";
 643 }
 644 void ConcurrentMarkSweepGeneration::update_counters() {
 645   if (UsePerfData) {
 646     _space_counters->update_all();
 647     _gen_counters->update_all();
 648   }
 649 }
 650 
 651 // this is an optimized version of update_counters(). it takes the
 652 // used value as a parameter rather than computing it.
 653 //
 654 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 655   if (UsePerfData) {
 656     _space_counters->update_used(used);
 657     _space_counters->update_capacity();
 658     _gen_counters->update_all();
 659   }
 660 }
 661 
 662 void ConcurrentMarkSweepGeneration::print() const {
 663   Generation::print();
 664   cmsSpace()->print();
 665 }
 666 
 667 #ifndef PRODUCT
 668 void ConcurrentMarkSweepGeneration::print_statistics() {
 669   cmsSpace()->printFLCensus(0);
 670 }
 671 #endif
 672 
 673 size_t
 674 ConcurrentMarkSweepGeneration::contiguous_available() const {
 675   // dld proposes an improvement in precision here. If the committed
 676   // part of the space ends in a free block we should add that to
 677   // uncommitted size in the calculation below. Will make this
 678   // change later, staying with the approximation below for the
 679   // time being. -- ysr.
 680   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 681 }
 682 
 683 size_t
 684 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 685   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 686 }
 687 
 688 size_t ConcurrentMarkSweepGeneration::max_available() const {
 689   return free() + _virtual_space.uncommitted_size();
 690 }
 691 
 692 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 693   size_t available = max_available();
 694   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 695   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 696   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 697                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 698   return res;
 699 }
 700 
 701 // At a promotion failure dump information on block layout in heap
 702 // (cms old generation).
 703 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 704   Log(gc, promotion) log;
 705   if (log.is_trace()) {
 706     LogStream ls(log.trace());
 707     cmsSpace()->dump_at_safepoint_with_locks(collector(), &ls);
 708   }
 709 }
 710 
 711 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 712   // Clear the promotion information.  These pointers can be adjusted
 713   // along with all the other pointers into the heap but
 714   // compaction is expected to be a rare event with
 715   // a heap using cms so don't do it without seeing the need.
 716   for (uint i = 0; i < ParallelGCThreads; i++) {
 717     _par_gc_thread_states[i]->promo.reset();
 718   }
 719 }
 720 
 721 void ConcurrentMarkSweepGeneration::compute_new_size() {
 722   assert_locked_or_safepoint(Heap_lock);
 723 
 724   // If incremental collection failed, we just want to expand
 725   // to the limit.
 726   if (incremental_collection_failed()) {
 727     clear_incremental_collection_failed();
 728     grow_to_reserved();
 729     return;
 730   }
 731 
 732   // The heap has been compacted but not reset yet.
 733   // Any metric such as free() or used() will be incorrect.
 734 
 735   CardGeneration::compute_new_size();
 736 
 737   // Reset again after a possible resizing
 738   if (did_compact()) {
 739     cmsSpace()->reset_after_compaction();
 740   }
 741 }
 742 
 743 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 744   assert_locked_or_safepoint(Heap_lock);
 745 
 746   // If incremental collection failed, we just want to expand
 747   // to the limit.
 748   if (incremental_collection_failed()) {
 749     clear_incremental_collection_failed();
 750     grow_to_reserved();
 751     return;
 752   }
 753 
 754   double free_percentage = ((double) free()) / capacity();
 755   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 756   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 757 
 758   // compute expansion delta needed for reaching desired free percentage
 759   if (free_percentage < desired_free_percentage) {
 760     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 761     assert(desired_capacity >= capacity(), "invalid expansion size");
 762     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 763     Log(gc) log;
 764     if (log.is_trace()) {
 765       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 766       log.trace("From compute_new_size: ");
 767       log.trace("  Free fraction %f", free_percentage);
 768       log.trace("  Desired free fraction %f", desired_free_percentage);
 769       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 770       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 771       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 772       CMSHeap* heap = CMSHeap::heap();
 773       assert(heap->is_old_gen(this), "The CMS generation should always be the old generation");
 774       size_t young_size = heap->young_gen()->capacity();
 775       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 776       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 777       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 778       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 779     }
 780     // safe if expansion fails
 781     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 782     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 783   } else {
 784     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 785     assert(desired_capacity <= capacity(), "invalid expansion size");
 786     size_t shrink_bytes = capacity() - desired_capacity;
 787     // Don't shrink unless the delta is greater than the minimum shrink we want
 788     if (shrink_bytes >= MinHeapDeltaBytes) {
 789       shrink_free_list_by(shrink_bytes);
 790     }
 791   }
 792 }
 793 
 794 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 795   return cmsSpace()->freelistLock();
 796 }
 797 
 798 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 799   CMSSynchronousYieldRequest yr;
 800   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 801   return have_lock_and_allocate(size, tlab);
 802 }
 803 
 804 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 805                                                                 bool   tlab /* ignored */) {
 806   assert_lock_strong(freelistLock());
 807   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 808   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 809   // Allocate the object live (grey) if the background collector has
 810   // started marking. This is necessary because the marker may
 811   // have passed this address and consequently this object will
 812   // not otherwise be greyed and would be incorrectly swept up.
 813   // Note that if this object contains references, the writing
 814   // of those references will dirty the card containing this object
 815   // allowing the object to be blackened (and its references scanned)
 816   // either during a preclean phase or at the final checkpoint.
 817   if (res != NULL) {
 818     // We may block here with an uninitialized object with
 819     // its mark-bit or P-bits not yet set. Such objects need
 820     // to be safely navigable by block_start().
 821     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 822     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 823     collector()->direct_allocated(res, adjustedSize);
 824     _direct_allocated_words += adjustedSize;
 825     // allocation counters
 826     NOT_PRODUCT(
 827       _numObjectsAllocated++;
 828       _numWordsAllocated += (int)adjustedSize;
 829     )
 830   }
 831   return res;
 832 }
 833 
 834 // In the case of direct allocation by mutators in a generation that
 835 // is being concurrently collected, the object must be allocated
 836 // live (grey) if the background collector has started marking.
 837 // This is necessary because the marker may
 838 // have passed this address and consequently this object will
 839 // not otherwise be greyed and would be incorrectly swept up.
 840 // Note that if this object contains references, the writing
 841 // of those references will dirty the card containing this object
 842 // allowing the object to be blackened (and its references scanned)
 843 // either during a preclean phase or at the final checkpoint.
 844 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 845   assert(_markBitMap.covers(start, size), "Out of bounds");
 846   if (_collectorState >= Marking) {
 847     MutexLockerEx y(_markBitMap.lock(),
 848                     Mutex::_no_safepoint_check_flag);
 849     // [see comments preceding SweepClosure::do_blk() below for details]
 850     //
 851     // Can the P-bits be deleted now?  JJJ
 852     //
 853     // 1. need to mark the object as live so it isn't collected
 854     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 855     // 3. need to mark the end of the object so marking, precleaning or sweeping
 856     //    can skip over uninitialized or unparsable objects. An allocated
 857     //    object is considered uninitialized for our purposes as long as
 858     //    its klass word is NULL.  All old gen objects are parsable
 859     //    as soon as they are initialized.)
 860     _markBitMap.mark(start);          // object is live
 861     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 862     _markBitMap.mark(start + size - 1);
 863                                       // mark end of object
 864   }
 865   // check that oop looks uninitialized
 866   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 867 }
 868 
 869 void CMSCollector::promoted(bool par, HeapWord* start,
 870                             bool is_obj_array, size_t obj_size) {
 871   assert(_markBitMap.covers(start), "Out of bounds");
 872   // See comment in direct_allocated() about when objects should
 873   // be allocated live.
 874   if (_collectorState >= Marking) {
 875     // we already hold the marking bit map lock, taken in
 876     // the prologue
 877     if (par) {
 878       _markBitMap.par_mark(start);
 879     } else {
 880       _markBitMap.mark(start);
 881     }
 882     // We don't need to mark the object as uninitialized (as
 883     // in direct_allocated above) because this is being done with the
 884     // world stopped and the object will be initialized by the
 885     // time the marking, precleaning or sweeping get to look at it.
 886     // But see the code for copying objects into the CMS generation,
 887     // where we need to ensure that concurrent readers of the
 888     // block offset table are able to safely navigate a block that
 889     // is in flux from being free to being allocated (and in
 890     // transition while being copied into) and subsequently
 891     // becoming a bona-fide object when the copy/promotion is complete.
 892     assert(SafepointSynchronize::is_at_safepoint(),
 893            "expect promotion only at safepoints");
 894 
 895     if (_collectorState < Sweeping) {
 896       // Mark the appropriate cards in the modUnionTable, so that
 897       // this object gets scanned before the sweep. If this is
 898       // not done, CMS generation references in the object might
 899       // not get marked.
 900       // For the case of arrays, which are otherwise precisely
 901       // marked, we need to dirty the entire array, not just its head.
 902       if (is_obj_array) {
 903         // The [par_]mark_range() method expects mr.end() below to
 904         // be aligned to the granularity of a bit's representation
 905         // in the heap. In the case of the MUT below, that's a
 906         // card size.
 907         MemRegion mr(start,
 908                      align_up(start + obj_size,
 909                               CardTable::card_size /* bytes */));
 910         if (par) {
 911           _modUnionTable.par_mark_range(mr);
 912         } else {
 913           _modUnionTable.mark_range(mr);
 914         }
 915       } else {  // not an obj array; we can just mark the head
 916         if (par) {
 917           _modUnionTable.par_mark(start);
 918         } else {
 919           _modUnionTable.mark(start);
 920         }
 921       }
 922     }
 923   }
 924 }
 925 
 926 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 927   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 928   // allocate, copy and if necessary update promoinfo --
 929   // delegate to underlying space.
 930   assert_lock_strong(freelistLock());
 931 
 932 #ifndef PRODUCT
 933   if (CMSHeap::heap()->promotion_should_fail()) {
 934     return NULL;
 935   }
 936 #endif  // #ifndef PRODUCT
 937 
 938   oop res = _cmsSpace->promote(obj, obj_size);
 939   if (res == NULL) {
 940     // expand and retry
 941     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 942     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 943     // Since this is the old generation, we don't try to promote
 944     // into a more senior generation.
 945     res = _cmsSpace->promote(obj, obj_size);
 946   }
 947   if (res != NULL) {
 948     // See comment in allocate() about when objects should
 949     // be allocated live.
 950     assert(oopDesc::is_oop(obj), "Will dereference klass pointer below");
 951     collector()->promoted(false,           // Not parallel
 952                           (HeapWord*)res, obj->is_objArray(), obj_size);
 953     // promotion counters
 954     NOT_PRODUCT(
 955       _numObjectsPromoted++;
 956       _numWordsPromoted +=
 957         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 958     )
 959   }
 960   return res;
 961 }
 962 
 963 
 964 // IMPORTANT: Notes on object size recognition in CMS.
 965 // ---------------------------------------------------
 966 // A block of storage in the CMS generation is always in
 967 // one of three states. A free block (FREE), an allocated
 968 // object (OBJECT) whose size() method reports the correct size,
 969 // and an intermediate state (TRANSIENT) in which its size cannot
 970 // be accurately determined.
 971 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 972 // -----------------------------------------------------
 973 // FREE:      klass_word & 1 == 1; mark_word holds block size
 974 //
 975 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 976 //            obj->size() computes correct size
 977 //
 978 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 979 //
 980 // STATE IDENTIFICATION: (64 bit+COOPS)
 981 // ------------------------------------
 982 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 983 //
 984 // OBJECT:    klass_word installed; klass_word != 0;
 985 //            obj->size() computes correct size
 986 //
 987 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 988 //
 989 //
 990 // STATE TRANSITION DIAGRAM
 991 //
 992 //        mut / parnew                     mut  /  parnew
 993 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
 994 //  ^                                                                   |
 995 //  |------------------------ DEAD <------------------------------------|
 996 //         sweep                            mut
 997 //
 998 // While a block is in TRANSIENT state its size cannot be determined
 999 // so readers will either need to come back later or stall until
1000 // the size can be determined. Note that for the case of direct
1001 // allocation, P-bits, when available, may be used to determine the
1002 // size of an object that may not yet have been initialized.
1003 
1004 // Things to support parallel young-gen collection.
1005 oop
1006 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1007                                            oop old, markOop m,
1008                                            size_t word_sz) {
1009 #ifndef PRODUCT
1010   if (CMSHeap::heap()->promotion_should_fail()) {
1011     return NULL;
1012   }
1013 #endif  // #ifndef PRODUCT
1014 
1015   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1016   PromotionInfo* promoInfo = &ps->promo;
1017   // if we are tracking promotions, then first ensure space for
1018   // promotion (including spooling space for saving header if necessary).
1019   // then allocate and copy, then track promoted info if needed.
1020   // When tracking (see PromotionInfo::track()), the mark word may
1021   // be displaced and in this case restoration of the mark word
1022   // occurs in the (oop_since_save_marks_)iterate phase.
1023   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1024     // Out of space for allocating spooling buffers;
1025     // try expanding and allocating spooling buffers.
1026     if (!expand_and_ensure_spooling_space(promoInfo)) {
1027       return NULL;
1028     }
1029   }
1030   assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant");
1031   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1032   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1033   if (obj_ptr == NULL) {
1034      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1035      if (obj_ptr == NULL) {
1036        return NULL;
1037      }
1038   }
1039   oop obj = oop(obj_ptr);
1040   OrderAccess::storestore();
1041   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1042   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1043   // IMPORTANT: See note on object initialization for CMS above.
1044   // Otherwise, copy the object.  Here we must be careful to insert the
1045   // klass pointer last, since this marks the block as an allocated object.
1046   // Except with compressed oops it's the mark word.
1047   HeapWord* old_ptr = (HeapWord*)old;
1048   // Restore the mark word copied above.
1049   obj->set_mark_raw(m);
1050   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1051   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1052   OrderAccess::storestore();
1053 
1054   if (UseCompressedClassPointers) {
1055     // Copy gap missed by (aligned) header size calculation below
1056     obj->set_klass_gap(old->klass_gap());
1057   }
1058   if (word_sz > (size_t)oopDesc::header_size()) {
1059     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1060                                  obj_ptr + oopDesc::header_size(),
1061                                  word_sz - oopDesc::header_size());
1062   }
1063 
1064   // Now we can track the promoted object, if necessary.  We take care
1065   // to delay the transition from uninitialized to full object
1066   // (i.e., insertion of klass pointer) until after, so that it
1067   // atomically becomes a promoted object.
1068   if (promoInfo->tracking()) {
1069     promoInfo->track((PromotedObject*)obj, old->klass());
1070   }
1071   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1072   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1073   assert(oopDesc::is_oop(old), "Will use and dereference old klass ptr below");
1074 
1075   // Finally, install the klass pointer (this should be volatile).
1076   OrderAccess::storestore();
1077   obj->set_klass(old->klass());
1078   // We should now be able to calculate the right size for this object
1079   assert(oopDesc::is_oop(obj) && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1080 
1081   collector()->promoted(true,          // parallel
1082                         obj_ptr, old->is_objArray(), word_sz);
1083 
1084   NOT_PRODUCT(
1085     Atomic::inc(&_numObjectsPromoted);
1086     Atomic::add(alloc_sz, &_numWordsPromoted);
1087   )
1088 
1089   return obj;
1090 }
1091 
1092 void
1093 ConcurrentMarkSweepGeneration::
1094 par_promote_alloc_done(int thread_num) {
1095   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1096   ps->lab.retire(thread_num);
1097 }
1098 
1099 void
1100 ConcurrentMarkSweepGeneration::
1101 par_oop_since_save_marks_iterate_done(int thread_num) {
1102   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1103   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1104   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1105 
1106   // Because card-scanning has been completed, subsequent phases
1107   // (e.g., reference processing) will not need to recognize which
1108   // objects have been promoted during this GC. So, we can now disable
1109   // promotion tracking.
1110   ps->promo.stopTrackingPromotions();
1111 }
1112 
1113 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1114                                                    size_t size,
1115                                                    bool   tlab)
1116 {
1117   // We allow a STW collection only if a full
1118   // collection was requested.
1119   return full || should_allocate(size, tlab); // FIX ME !!!
1120   // This and promotion failure handling are connected at the
1121   // hip and should be fixed by untying them.
1122 }
1123 
1124 bool CMSCollector::shouldConcurrentCollect() {
1125   LogTarget(Trace, gc) log;
1126 
1127   if (_full_gc_requested) {
1128     log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1129     return true;
1130   }
1131 
1132   FreelistLocker x(this);
1133   // ------------------------------------------------------------------
1134   // Print out lots of information which affects the initiation of
1135   // a collection.
1136   if (log.is_enabled() && stats().valid()) {
1137     log.print("CMSCollector shouldConcurrentCollect: ");
1138 
1139     LogStream out(log);
1140     stats().print_on(&out);
1141 
1142     log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1143     log.print("free=" SIZE_FORMAT, _cmsGen->free());
1144     log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1145     log.print("promotion_rate=%g", stats().promotion_rate());
1146     log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
1147     log.print("occupancy=%3.7f", _cmsGen->occupancy());
1148     log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1149     log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1150     log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1151     log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1152   }
1153   // ------------------------------------------------------------------
1154 
1155   // If the estimated time to complete a cms collection (cms_duration())
1156   // is less than the estimated time remaining until the cms generation
1157   // is full, start a collection.
1158   if (!UseCMSInitiatingOccupancyOnly) {
1159     if (stats().valid()) {
1160       if (stats().time_until_cms_start() == 0.0) {
1161         return true;
1162       }
1163     } else {
1164       // We want to conservatively collect somewhat early in order
1165       // to try and "bootstrap" our CMS/promotion statistics;
1166       // this branch will not fire after the first successful CMS
1167       // collection because the stats should then be valid.
1168       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1169         log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1170                   _cmsGen->occupancy(), _bootstrap_occupancy);
1171         return true;
1172       }
1173     }
1174   }
1175 
1176   // Otherwise, we start a collection cycle if
1177   // old gen want a collection cycle started. Each may use
1178   // an appropriate criterion for making this decision.
1179   // XXX We need to make sure that the gen expansion
1180   // criterion dovetails well with this. XXX NEED TO FIX THIS
1181   if (_cmsGen->should_concurrent_collect()) {
1182     log.print("CMS old gen initiated");
1183     return true;
1184   }
1185 
1186   // We start a collection if we believe an incremental collection may fail;
1187   // this is not likely to be productive in practice because it's probably too
1188   // late anyway.
1189   CMSHeap* heap = CMSHeap::heap();
1190   if (heap->incremental_collection_will_fail(true /* consult_young */)) {
1191     log.print("CMSCollector: collect because incremental collection will fail ");
1192     return true;
1193   }
1194 
1195   if (MetaspaceGC::should_concurrent_collect()) {
1196     log.print("CMSCollector: collect for metadata allocation ");
1197     return true;
1198   }
1199 
1200   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1201   if (CMSTriggerInterval >= 0) {
1202     if (CMSTriggerInterval == 0) {
1203       // Trigger always
1204       return true;
1205     }
1206 
1207     // Check the CMS time since begin (we do not check the stats validity
1208     // as we want to be able to trigger the first CMS cycle as well)
1209     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1210       if (stats().valid()) {
1211         log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1212                   stats().cms_time_since_begin());
1213       } else {
1214         log.print("CMSCollector: collect because of trigger interval (first collection)");
1215       }
1216       return true;
1217     }
1218   }
1219 
1220   return false;
1221 }
1222 
1223 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1224 
1225 // Clear _expansion_cause fields of constituent generations
1226 void CMSCollector::clear_expansion_cause() {
1227   _cmsGen->clear_expansion_cause();
1228 }
1229 
1230 // We should be conservative in starting a collection cycle.  To
1231 // start too eagerly runs the risk of collecting too often in the
1232 // extreme.  To collect too rarely falls back on full collections,
1233 // which works, even if not optimum in terms of concurrent work.
1234 // As a work around for too eagerly collecting, use the flag
1235 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1236 // giving the user an easily understandable way of controlling the
1237 // collections.
1238 // We want to start a new collection cycle if any of the following
1239 // conditions hold:
1240 // . our current occupancy exceeds the configured initiating occupancy
1241 //   for this generation, or
1242 // . we recently needed to expand this space and have not, since that
1243 //   expansion, done a collection of this generation, or
1244 // . the underlying space believes that it may be a good idea to initiate
1245 //   a concurrent collection (this may be based on criteria such as the
1246 //   following: the space uses linear allocation and linear allocation is
1247 //   going to fail, or there is believed to be excessive fragmentation in
1248 //   the generation, etc... or ...
1249 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1250 //   the case of the old generation; see CR 6543076):
1251 //   we may be approaching a point at which allocation requests may fail because
1252 //   we will be out of sufficient free space given allocation rate estimates.]
1253 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1254 
1255   assert_lock_strong(freelistLock());
1256   if (occupancy() > initiating_occupancy()) {
1257     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1258                   short_name(), occupancy(), initiating_occupancy());
1259     return true;
1260   }
1261   if (UseCMSInitiatingOccupancyOnly) {
1262     return false;
1263   }
1264   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1265     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1266     return true;
1267   }
1268   return false;
1269 }
1270 
1271 void ConcurrentMarkSweepGeneration::collect(bool   full,
1272                                             bool   clear_all_soft_refs,
1273                                             size_t size,
1274                                             bool   tlab)
1275 {
1276   collector()->collect(full, clear_all_soft_refs, size, tlab);
1277 }
1278 
1279 void CMSCollector::collect(bool   full,
1280                            bool   clear_all_soft_refs,
1281                            size_t size,
1282                            bool   tlab)
1283 {
1284   // The following "if" branch is present for defensive reasons.
1285   // In the current uses of this interface, it can be replaced with:
1286   // assert(!GCLocker.is_active(), "Can't be called otherwise");
1287   // But I am not placing that assert here to allow future
1288   // generality in invoking this interface.
1289   if (GCLocker::is_active()) {
1290     // A consistency test for GCLocker
1291     assert(GCLocker::needs_gc(), "Should have been set already");
1292     // Skip this foreground collection, instead
1293     // expanding the heap if necessary.
1294     // Need the free list locks for the call to free() in compute_new_size()
1295     compute_new_size();
1296     return;
1297   }
1298   acquire_control_and_collect(full, clear_all_soft_refs);
1299 }
1300 
1301 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1302   CMSHeap* heap = CMSHeap::heap();
1303   unsigned int gc_count = heap->total_full_collections();
1304   if (gc_count == full_gc_count) {
1305     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1306     _full_gc_requested = true;
1307     _full_gc_cause = cause;
1308     CGC_lock->notify();   // nudge CMS thread
1309   } else {
1310     assert(gc_count > full_gc_count, "Error: causal loop");
1311   }
1312 }
1313 
1314 bool CMSCollector::is_external_interruption() {
1315   GCCause::Cause cause = CMSHeap::heap()->gc_cause();
1316   return GCCause::is_user_requested_gc(cause) ||
1317          GCCause::is_serviceability_requested_gc(cause);
1318 }
1319 
1320 void CMSCollector::report_concurrent_mode_interruption() {
1321   if (is_external_interruption()) {
1322     log_debug(gc)("Concurrent mode interrupted");
1323   } else {
1324     log_debug(gc)("Concurrent mode failure");
1325     _gc_tracer_cm->report_concurrent_mode_failure();
1326   }
1327 }
1328 
1329 
1330 // The foreground and background collectors need to coordinate in order
1331 // to make sure that they do not mutually interfere with CMS collections.
1332 // When a background collection is active,
1333 // the foreground collector may need to take over (preempt) and
1334 // synchronously complete an ongoing collection. Depending on the
1335 // frequency of the background collections and the heap usage
1336 // of the application, this preemption can be seldom or frequent.
1337 // There are only certain
1338 // points in the background collection that the "collection-baton"
1339 // can be passed to the foreground collector.
1340 //
1341 // The foreground collector will wait for the baton before
1342 // starting any part of the collection.  The foreground collector
1343 // will only wait at one location.
1344 //
1345 // The background collector will yield the baton before starting a new
1346 // phase of the collection (e.g., before initial marking, marking from roots,
1347 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1348 // of the loop which switches the phases. The background collector does some
1349 // of the phases (initial mark, final re-mark) with the world stopped.
1350 // Because of locking involved in stopping the world,
1351 // the foreground collector should not block waiting for the background
1352 // collector when it is doing a stop-the-world phase.  The background
1353 // collector will yield the baton at an additional point just before
1354 // it enters a stop-the-world phase.  Once the world is stopped, the
1355 // background collector checks the phase of the collection.  If the
1356 // phase has not changed, it proceeds with the collection.  If the
1357 // phase has changed, it skips that phase of the collection.  See
1358 // the comments on the use of the Heap_lock in collect_in_background().
1359 //
1360 // Variable used in baton passing.
1361 //   _foregroundGCIsActive - Set to true by the foreground collector when
1362 //      it wants the baton.  The foreground clears it when it has finished
1363 //      the collection.
1364 //   _foregroundGCShouldWait - Set to true by the background collector
1365 //        when it is running.  The foreground collector waits while
1366 //      _foregroundGCShouldWait is true.
1367 //  CGC_lock - monitor used to protect access to the above variables
1368 //      and to notify the foreground and background collectors.
1369 //  _collectorState - current state of the CMS collection.
1370 //
1371 // The foreground collector
1372 //   acquires the CGC_lock
1373 //   sets _foregroundGCIsActive
1374 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1375 //     various locks acquired in preparation for the collection
1376 //     are released so as not to block the background collector
1377 //     that is in the midst of a collection
1378 //   proceeds with the collection
1379 //   clears _foregroundGCIsActive
1380 //   returns
1381 //
1382 // The background collector in a loop iterating on the phases of the
1383 //      collection
1384 //   acquires the CGC_lock
1385 //   sets _foregroundGCShouldWait
1386 //   if _foregroundGCIsActive is set
1387 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1388 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1389 //     and exits the loop.
1390 //   otherwise
1391 //     proceed with that phase of the collection
1392 //     if the phase is a stop-the-world phase,
1393 //       yield the baton once more just before enqueueing
1394 //       the stop-world CMS operation (executed by the VM thread).
1395 //   returns after all phases of the collection are done
1396 //
1397 
1398 void CMSCollector::acquire_control_and_collect(bool full,
1399         bool clear_all_soft_refs) {
1400   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1401   assert(!Thread::current()->is_ConcurrentGC_thread(),
1402          "shouldn't try to acquire control from self!");
1403 
1404   // Start the protocol for acquiring control of the
1405   // collection from the background collector (aka CMS thread).
1406   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1407          "VM thread should have CMS token");
1408   // Remember the possibly interrupted state of an ongoing
1409   // concurrent collection
1410   CollectorState first_state = _collectorState;
1411 
1412   // Signal to a possibly ongoing concurrent collection that
1413   // we want to do a foreground collection.
1414   _foregroundGCIsActive = true;
1415 
1416   // release locks and wait for a notify from the background collector
1417   // releasing the locks in only necessary for phases which
1418   // do yields to improve the granularity of the collection.
1419   assert_lock_strong(bitMapLock());
1420   // We need to lock the Free list lock for the space that we are
1421   // currently collecting.
1422   assert(haveFreelistLocks(), "Must be holding free list locks");
1423   bitMapLock()->unlock();
1424   releaseFreelistLocks();
1425   {
1426     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1427     if (_foregroundGCShouldWait) {
1428       // We are going to be waiting for action for the CMS thread;
1429       // it had better not be gone (for instance at shutdown)!
1430       assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1431              "CMS thread must be running");
1432       // Wait here until the background collector gives us the go-ahead
1433       ConcurrentMarkSweepThread::clear_CMS_flag(
1434         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1435       // Get a possibly blocked CMS thread going:
1436       //   Note that we set _foregroundGCIsActive true above,
1437       //   without protection of the CGC_lock.
1438       CGC_lock->notify();
1439       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1440              "Possible deadlock");
1441       while (_foregroundGCShouldWait) {
1442         // wait for notification
1443         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1444         // Possibility of delay/starvation here, since CMS token does
1445         // not know to give priority to VM thread? Actually, i think
1446         // there wouldn't be any delay/starvation, but the proof of
1447         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1448       }
1449       ConcurrentMarkSweepThread::set_CMS_flag(
1450         ConcurrentMarkSweepThread::CMS_vm_has_token);
1451     }
1452   }
1453   // The CMS_token is already held.  Get back the other locks.
1454   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1455          "VM thread should have CMS token");
1456   getFreelistLocks();
1457   bitMapLock()->lock_without_safepoint_check();
1458   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1459                        p2i(Thread::current()), first_state);
1460   log_debug(gc, state)("    gets control with state %d", _collectorState);
1461 
1462   // Inform cms gen if this was due to partial collection failing.
1463   // The CMS gen may use this fact to determine its expansion policy.
1464   CMSHeap* heap = CMSHeap::heap();
1465   if (heap->incremental_collection_will_fail(false /* don't consult_young */)) {
1466     assert(!_cmsGen->incremental_collection_failed(),
1467            "Should have been noticed, reacted to and cleared");
1468     _cmsGen->set_incremental_collection_failed();
1469   }
1470 
1471   if (first_state > Idling) {
1472     report_concurrent_mode_interruption();
1473   }
1474 
1475   set_did_compact(true);
1476 
1477   // If the collection is being acquired from the background
1478   // collector, there may be references on the discovered
1479   // references lists.  Abandon those references, since some
1480   // of them may have become unreachable after concurrent
1481   // discovery; the STW compacting collector will redo discovery
1482   // more precisely, without being subject to floating garbage.
1483   // Leaving otherwise unreachable references in the discovered
1484   // lists would require special handling.
1485   ref_processor()->disable_discovery();
1486   ref_processor()->abandon_partial_discovery();
1487   ref_processor()->verify_no_references_recorded();
1488 
1489   if (first_state > Idling) {
1490     save_heap_summary();
1491   }
1492 
1493   do_compaction_work(clear_all_soft_refs);
1494 
1495   // Has the GC time limit been exceeded?
1496   size_t max_eden_size = _young_gen->max_eden_size();
1497   GCCause::Cause gc_cause = heap->gc_cause();
1498   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1499                                          _young_gen->eden()->used(),
1500                                          _cmsGen->max_capacity(),
1501                                          max_eden_size,
1502                                          full,
1503                                          gc_cause,
1504                                          heap->soft_ref_policy());
1505 
1506   // Reset the expansion cause, now that we just completed
1507   // a collection cycle.
1508   clear_expansion_cause();
1509   _foregroundGCIsActive = false;
1510   return;
1511 }
1512 
1513 // Resize the tenured generation
1514 // after obtaining the free list locks for the
1515 // two generations.
1516 void CMSCollector::compute_new_size() {
1517   assert_locked_or_safepoint(Heap_lock);
1518   FreelistLocker z(this);
1519   MetaspaceGC::compute_new_size();
1520   _cmsGen->compute_new_size_free_list();
1521 }
1522 
1523 // A work method used by the foreground collector to do
1524 // a mark-sweep-compact.
1525 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1526   CMSHeap* heap = CMSHeap::heap();
1527 
1528   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1529   gc_timer->register_gc_start();
1530 
1531   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1532   gc_tracer->report_gc_start(heap->gc_cause(), gc_timer->gc_start());
1533 
1534   heap->pre_full_gc_dump(gc_timer);
1535 
1536   GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1537 
1538   // Temporarily widen the span of the weak reference processing to
1539   // the entire heap.
1540   MemRegion new_span(CMSHeap::heap()->reserved_region());
1541   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1542   // Temporarily, clear the "is_alive_non_header" field of the
1543   // reference processor.
1544   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1545   // Temporarily make reference _processing_ single threaded (non-MT).
1546   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1547   // Temporarily make refs discovery atomic
1548   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1549   // Temporarily make reference _discovery_ single threaded (non-MT)
1550   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1551 
1552   ref_processor()->set_enqueuing_is_done(false);
1553   ref_processor()->enable_discovery();
1554   ref_processor()->setup_policy(clear_all_soft_refs);
1555   // If an asynchronous collection finishes, the _modUnionTable is
1556   // all clear.  If we are assuming the collection from an asynchronous
1557   // collection, clear the _modUnionTable.
1558   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1559     "_modUnionTable should be clear if the baton was not passed");
1560   _modUnionTable.clear_all();
1561   assert(_collectorState != Idling || _ct->cld_rem_set()->mod_union_is_clear(),
1562     "mod union for klasses should be clear if the baton was passed");
1563   _ct->cld_rem_set()->clear_mod_union();
1564 
1565 
1566   // We must adjust the allocation statistics being maintained
1567   // in the free list space. We do so by reading and clearing
1568   // the sweep timer and updating the block flux rate estimates below.
1569   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1570   if (_inter_sweep_timer.is_active()) {
1571     _inter_sweep_timer.stop();
1572     // Note that we do not use this sample to update the _inter_sweep_estimate.
1573     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1574                                             _inter_sweep_estimate.padded_average(),
1575                                             _intra_sweep_estimate.padded_average());
1576   }
1577 
1578   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1579   #ifdef ASSERT
1580     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1581     size_t free_size = cms_space->free();
1582     assert(free_size ==
1583            pointer_delta(cms_space->end(), cms_space->compaction_top())
1584            * HeapWordSize,
1585       "All the free space should be compacted into one chunk at top");
1586     assert(cms_space->dictionary()->total_chunk_size(
1587                                       debug_only(cms_space->freelistLock())) == 0 ||
1588            cms_space->totalSizeInIndexedFreeLists() == 0,
1589       "All the free space should be in a single chunk");
1590     size_t num = cms_space->totalCount();
1591     assert((free_size == 0 && num == 0) ||
1592            (free_size > 0  && (num == 1 || num == 2)),
1593          "There should be at most 2 free chunks after compaction");
1594   #endif // ASSERT
1595   _collectorState = Resetting;
1596   assert(_restart_addr == NULL,
1597          "Should have been NULL'd before baton was passed");
1598   reset_stw();
1599   _cmsGen->reset_after_compaction();
1600   _concurrent_cycles_since_last_unload = 0;
1601 
1602   // Clear any data recorded in the PLAB chunk arrays.
1603   if (_survivor_plab_array != NULL) {
1604     reset_survivor_plab_arrays();
1605   }
1606 
1607   // Adjust the per-size allocation stats for the next epoch.
1608   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1609   // Restart the "inter sweep timer" for the next epoch.
1610   _inter_sweep_timer.reset();
1611   _inter_sweep_timer.start();
1612 
1613   // No longer a need to do a concurrent collection for Metaspace.
1614   MetaspaceGC::set_should_concurrent_collect(false);
1615 
1616   heap->post_full_gc_dump(gc_timer);
1617 
1618   gc_timer->register_gc_end();
1619 
1620   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1621 
1622   // For a mark-sweep-compact, compute_new_size() will be called
1623   // in the heap's do_collection() method.
1624 }
1625 
1626 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1627   Log(gc, heap) log;
1628   if (!log.is_trace()) {
1629     return;
1630   }
1631 
1632   ContiguousSpace* eden_space = _young_gen->eden();
1633   ContiguousSpace* from_space = _young_gen->from();
1634   ContiguousSpace* to_space   = _young_gen->to();
1635   // Eden
1636   if (_eden_chunk_array != NULL) {
1637     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1638               p2i(eden_space->bottom()), p2i(eden_space->top()),
1639               p2i(eden_space->end()), eden_space->capacity());
1640     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1641               _eden_chunk_index, _eden_chunk_capacity);
1642     for (size_t i = 0; i < _eden_chunk_index; i++) {
1643       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1644     }
1645   }
1646   // Survivor
1647   if (_survivor_chunk_array != NULL) {
1648     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1649               p2i(from_space->bottom()), p2i(from_space->top()),
1650               p2i(from_space->end()), from_space->capacity());
1651     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1652               _survivor_chunk_index, _survivor_chunk_capacity);
1653     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1654       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1655     }
1656   }
1657 }
1658 
1659 void CMSCollector::getFreelistLocks() const {
1660   // Get locks for all free lists in all generations that this
1661   // collector is responsible for
1662   _cmsGen->freelistLock()->lock_without_safepoint_check();
1663 }
1664 
1665 void CMSCollector::releaseFreelistLocks() const {
1666   // Release locks for all free lists in all generations that this
1667   // collector is responsible for
1668   _cmsGen->freelistLock()->unlock();
1669 }
1670 
1671 bool CMSCollector::haveFreelistLocks() const {
1672   // Check locks for all free lists in all generations that this
1673   // collector is responsible for
1674   assert_lock_strong(_cmsGen->freelistLock());
1675   PRODUCT_ONLY(ShouldNotReachHere());
1676   return true;
1677 }
1678 
1679 // A utility class that is used by the CMS collector to
1680 // temporarily "release" the foreground collector from its
1681 // usual obligation to wait for the background collector to
1682 // complete an ongoing phase before proceeding.
1683 class ReleaseForegroundGC: public StackObj {
1684  private:
1685   CMSCollector* _c;
1686  public:
1687   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1688     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1689     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1690     // allow a potentially blocked foreground collector to proceed
1691     _c->_foregroundGCShouldWait = false;
1692     if (_c->_foregroundGCIsActive) {
1693       CGC_lock->notify();
1694     }
1695     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1696            "Possible deadlock");
1697   }
1698 
1699   ~ReleaseForegroundGC() {
1700     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1701     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1702     _c->_foregroundGCShouldWait = true;
1703   }
1704 };
1705 
1706 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1707   assert(Thread::current()->is_ConcurrentGC_thread(),
1708     "A CMS asynchronous collection is only allowed on a CMS thread.");
1709 
1710   CMSHeap* heap = CMSHeap::heap();
1711   {
1712     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1713     MutexLockerEx hl(Heap_lock, safepoint_check);
1714     FreelistLocker fll(this);
1715     MutexLockerEx x(CGC_lock, safepoint_check);
1716     if (_foregroundGCIsActive) {
1717       // The foreground collector is. Skip this
1718       // background collection.
1719       assert(!_foregroundGCShouldWait, "Should be clear");
1720       return;
1721     } else {
1722       assert(_collectorState == Idling, "Should be idling before start.");
1723       _collectorState = InitialMarking;
1724       register_gc_start(cause);
1725       // Reset the expansion cause, now that we are about to begin
1726       // a new cycle.
1727       clear_expansion_cause();
1728 
1729       // Clear the MetaspaceGC flag since a concurrent collection
1730       // is starting but also clear it after the collection.
1731       MetaspaceGC::set_should_concurrent_collect(false);
1732     }
1733     // Decide if we want to enable class unloading as part of the
1734     // ensuing concurrent GC cycle.
1735     update_should_unload_classes();
1736     _full_gc_requested = false;           // acks all outstanding full gc requests
1737     _full_gc_cause = GCCause::_no_gc;
1738     // Signal that we are about to start a collection
1739     heap->increment_total_full_collections();  // ... starting a collection cycle
1740     _collection_count_start = heap->total_full_collections();
1741   }
1742 
1743   size_t prev_used = _cmsGen->used();
1744 
1745   // The change of the collection state is normally done at this level;
1746   // the exceptions are phases that are executed while the world is
1747   // stopped.  For those phases the change of state is done while the
1748   // world is stopped.  For baton passing purposes this allows the
1749   // background collector to finish the phase and change state atomically.
1750   // The foreground collector cannot wait on a phase that is done
1751   // while the world is stopped because the foreground collector already
1752   // has the world stopped and would deadlock.
1753   while (_collectorState != Idling) {
1754     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1755                          p2i(Thread::current()), _collectorState);
1756     // The foreground collector
1757     //   holds the Heap_lock throughout its collection.
1758     //   holds the CMS token (but not the lock)
1759     //     except while it is waiting for the background collector to yield.
1760     //
1761     // The foreground collector should be blocked (not for long)
1762     //   if the background collector is about to start a phase
1763     //   executed with world stopped.  If the background
1764     //   collector has already started such a phase, the
1765     //   foreground collector is blocked waiting for the
1766     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1767     //   are executed in the VM thread.
1768     //
1769     // The locking order is
1770     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1771     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1772     //   CMS token  (claimed in
1773     //                stop_world_and_do() -->
1774     //                  safepoint_synchronize() -->
1775     //                    CMSThread::synchronize())
1776 
1777     {
1778       // Check if the FG collector wants us to yield.
1779       CMSTokenSync x(true); // is cms thread
1780       if (waitForForegroundGC()) {
1781         // We yielded to a foreground GC, nothing more to be
1782         // done this round.
1783         assert(_foregroundGCShouldWait == false, "We set it to false in "
1784                "waitForForegroundGC()");
1785         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1786                              p2i(Thread::current()), _collectorState);
1787         return;
1788       } else {
1789         // The background collector can run but check to see if the
1790         // foreground collector has done a collection while the
1791         // background collector was waiting to get the CGC_lock
1792         // above.  If yes, break so that _foregroundGCShouldWait
1793         // is cleared before returning.
1794         if (_collectorState == Idling) {
1795           break;
1796         }
1797       }
1798     }
1799 
1800     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1801       "should be waiting");
1802 
1803     switch (_collectorState) {
1804       case InitialMarking:
1805         {
1806           ReleaseForegroundGC x(this);
1807           stats().record_cms_begin();
1808           VM_CMS_Initial_Mark initial_mark_op(this);
1809           VMThread::execute(&initial_mark_op);
1810         }
1811         // The collector state may be any legal state at this point
1812         // since the background collector may have yielded to the
1813         // foreground collector.
1814         break;
1815       case Marking:
1816         // initial marking in checkpointRootsInitialWork has been completed
1817         if (markFromRoots()) { // we were successful
1818           assert(_collectorState == Precleaning, "Collector state should "
1819             "have changed");
1820         } else {
1821           assert(_foregroundGCIsActive, "Internal state inconsistency");
1822         }
1823         break;
1824       case Precleaning:
1825         // marking from roots in markFromRoots has been completed
1826         preclean();
1827         assert(_collectorState == AbortablePreclean ||
1828                _collectorState == FinalMarking,
1829                "Collector state should have changed");
1830         break;
1831       case AbortablePreclean:
1832         abortable_preclean();
1833         assert(_collectorState == FinalMarking, "Collector state should "
1834           "have changed");
1835         break;
1836       case FinalMarking:
1837         {
1838           ReleaseForegroundGC x(this);
1839 
1840           VM_CMS_Final_Remark final_remark_op(this);
1841           VMThread::execute(&final_remark_op);
1842         }
1843         assert(_foregroundGCShouldWait, "block post-condition");
1844         break;
1845       case Sweeping:
1846         // final marking in checkpointRootsFinal has been completed
1847         sweep();
1848         assert(_collectorState == Resizing, "Collector state change "
1849           "to Resizing must be done under the free_list_lock");
1850 
1851       case Resizing: {
1852         // Sweeping has been completed...
1853         // At this point the background collection has completed.
1854         // Don't move the call to compute_new_size() down
1855         // into code that might be executed if the background
1856         // collection was preempted.
1857         {
1858           ReleaseForegroundGC x(this);   // unblock FG collection
1859           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1860           CMSTokenSync        z(true);   // not strictly needed.
1861           if (_collectorState == Resizing) {
1862             compute_new_size();
1863             save_heap_summary();
1864             _collectorState = Resetting;
1865           } else {
1866             assert(_collectorState == Idling, "The state should only change"
1867                    " because the foreground collector has finished the collection");
1868           }
1869         }
1870         break;
1871       }
1872       case Resetting:
1873         // CMS heap resizing has been completed
1874         reset_concurrent();
1875         assert(_collectorState == Idling, "Collector state should "
1876           "have changed");
1877 
1878         MetaspaceGC::set_should_concurrent_collect(false);
1879 
1880         stats().record_cms_end();
1881         // Don't move the concurrent_phases_end() and compute_new_size()
1882         // calls to here because a preempted background collection
1883         // has it's state set to "Resetting".
1884         break;
1885       case Idling:
1886       default:
1887         ShouldNotReachHere();
1888         break;
1889     }
1890     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1891                          p2i(Thread::current()), _collectorState);
1892     assert(_foregroundGCShouldWait, "block post-condition");
1893   }
1894 
1895   // Should this be in gc_epilogue?
1896   heap->counters()->update_counters();
1897 
1898   {
1899     // Clear _foregroundGCShouldWait and, in the event that the
1900     // foreground collector is waiting, notify it, before
1901     // returning.
1902     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1903     _foregroundGCShouldWait = false;
1904     if (_foregroundGCIsActive) {
1905       CGC_lock->notify();
1906     }
1907     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1908            "Possible deadlock");
1909   }
1910   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1911                        p2i(Thread::current()), _collectorState);
1912   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1913                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1914 }
1915 
1916 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1917   _cms_start_registered = true;
1918   _gc_timer_cm->register_gc_start();
1919   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1920 }
1921 
1922 void CMSCollector::register_gc_end() {
1923   if (_cms_start_registered) {
1924     report_heap_summary(GCWhen::AfterGC);
1925 
1926     _gc_timer_cm->register_gc_end();
1927     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1928     _cms_start_registered = false;
1929   }
1930 }
1931 
1932 void CMSCollector::save_heap_summary() {
1933   CMSHeap* heap = CMSHeap::heap();
1934   _last_heap_summary = heap->create_heap_summary();
1935   _last_metaspace_summary = heap->create_metaspace_summary();
1936 }
1937 
1938 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1939   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1940   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1941 }
1942 
1943 bool CMSCollector::waitForForegroundGC() {
1944   bool res = false;
1945   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1946          "CMS thread should have CMS token");
1947   // Block the foreground collector until the
1948   // background collectors decides whether to
1949   // yield.
1950   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1951   _foregroundGCShouldWait = true;
1952   if (_foregroundGCIsActive) {
1953     // The background collector yields to the
1954     // foreground collector and returns a value
1955     // indicating that it has yielded.  The foreground
1956     // collector can proceed.
1957     res = true;
1958     _foregroundGCShouldWait = false;
1959     ConcurrentMarkSweepThread::clear_CMS_flag(
1960       ConcurrentMarkSweepThread::CMS_cms_has_token);
1961     ConcurrentMarkSweepThread::set_CMS_flag(
1962       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1963     // Get a possibly blocked foreground thread going
1964     CGC_lock->notify();
1965     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1966                          p2i(Thread::current()), _collectorState);
1967     while (_foregroundGCIsActive) {
1968       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1969     }
1970     ConcurrentMarkSweepThread::set_CMS_flag(
1971       ConcurrentMarkSweepThread::CMS_cms_has_token);
1972     ConcurrentMarkSweepThread::clear_CMS_flag(
1973       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1974   }
1975   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1976                        p2i(Thread::current()), _collectorState);
1977   return res;
1978 }
1979 
1980 // Because of the need to lock the free lists and other structures in
1981 // the collector, common to all the generations that the collector is
1982 // collecting, we need the gc_prologues of individual CMS generations
1983 // delegate to their collector. It may have been simpler had the
1984 // current infrastructure allowed one to call a prologue on a
1985 // collector. In the absence of that we have the generation's
1986 // prologue delegate to the collector, which delegates back
1987 // some "local" work to a worker method in the individual generations
1988 // that it's responsible for collecting, while itself doing any
1989 // work common to all generations it's responsible for. A similar
1990 // comment applies to the  gc_epilogue()'s.
1991 // The role of the variable _between_prologue_and_epilogue is to
1992 // enforce the invocation protocol.
1993 void CMSCollector::gc_prologue(bool full) {
1994   // Call gc_prologue_work() for the CMSGen
1995   // we are responsible for.
1996 
1997   // The following locking discipline assumes that we are only called
1998   // when the world is stopped.
1999   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2000 
2001   // The CMSCollector prologue must call the gc_prologues for the
2002   // "generations" that it's responsible
2003   // for.
2004 
2005   assert(   Thread::current()->is_VM_thread()
2006          || (   CMSScavengeBeforeRemark
2007              && Thread::current()->is_ConcurrentGC_thread()),
2008          "Incorrect thread type for prologue execution");
2009 
2010   if (_between_prologue_and_epilogue) {
2011     // We have already been invoked; this is a gc_prologue delegation
2012     // from yet another CMS generation that we are responsible for, just
2013     // ignore it since all relevant work has already been done.
2014     return;
2015   }
2016 
2017   // set a bit saying prologue has been called; cleared in epilogue
2018   _between_prologue_and_epilogue = true;
2019   // Claim locks for common data structures, then call gc_prologue_work()
2020   // for each CMSGen.
2021 
2022   getFreelistLocks();   // gets free list locks on constituent spaces
2023   bitMapLock()->lock_without_safepoint_check();
2024 
2025   // Should call gc_prologue_work() for all cms gens we are responsible for
2026   bool duringMarking =    _collectorState >= Marking
2027                          && _collectorState < Sweeping;
2028 
2029   // The young collections clear the modified oops state, which tells if
2030   // there are any modified oops in the class. The remark phase also needs
2031   // that information. Tell the young collection to save the union of all
2032   // modified klasses.
2033   if (duringMarking) {
2034     _ct->cld_rem_set()->set_accumulate_modified_oops(true);
2035   }
2036 
2037   bool registerClosure = duringMarking;
2038 
2039   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2040 
2041   if (!full) {
2042     stats().record_gc0_begin();
2043   }
2044 }
2045 
2046 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2047 
2048   _capacity_at_prologue = capacity();
2049   _used_at_prologue = used();
2050 
2051   // We enable promotion tracking so that card-scanning can recognize
2052   // which objects have been promoted during this GC and skip them.
2053   for (uint i = 0; i < ParallelGCThreads; i++) {
2054     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2055   }
2056 
2057   // Delegate to CMScollector which knows how to coordinate between
2058   // this and any other CMS generations that it is responsible for
2059   // collecting.
2060   collector()->gc_prologue(full);
2061 }
2062 
2063 // This is a "private" interface for use by this generation's CMSCollector.
2064 // Not to be called directly by any other entity (for instance,
2065 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2066 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2067   bool registerClosure, ModUnionClosure* modUnionClosure) {
2068   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2069   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2070     "Should be NULL");
2071   if (registerClosure) {
2072     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2073   }
2074   cmsSpace()->gc_prologue();
2075   // Clear stat counters
2076   NOT_PRODUCT(
2077     assert(_numObjectsPromoted == 0, "check");
2078     assert(_numWordsPromoted   == 0, "check");
2079     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2080                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2081     _numObjectsAllocated = 0;
2082     _numWordsAllocated   = 0;
2083   )
2084 }
2085 
2086 void CMSCollector::gc_epilogue(bool full) {
2087   // The following locking discipline assumes that we are only called
2088   // when the world is stopped.
2089   assert(SafepointSynchronize::is_at_safepoint(),
2090          "world is stopped assumption");
2091 
2092   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2093   // if linear allocation blocks need to be appropriately marked to allow the
2094   // the blocks to be parsable. We also check here whether we need to nudge the
2095   // CMS collector thread to start a new cycle (if it's not already active).
2096   assert(   Thread::current()->is_VM_thread()
2097          || (   CMSScavengeBeforeRemark
2098              && Thread::current()->is_ConcurrentGC_thread()),
2099          "Incorrect thread type for epilogue execution");
2100 
2101   if (!_between_prologue_and_epilogue) {
2102     // We have already been invoked; this is a gc_epilogue delegation
2103     // from yet another CMS generation that we are responsible for, just
2104     // ignore it since all relevant work has already been done.
2105     return;
2106   }
2107   assert(haveFreelistLocks(), "must have freelist locks");
2108   assert_lock_strong(bitMapLock());
2109 
2110   _ct->cld_rem_set()->set_accumulate_modified_oops(false);
2111 
2112   _cmsGen->gc_epilogue_work(full);
2113 
2114   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2115     // in case sampling was not already enabled, enable it
2116     _start_sampling = true;
2117   }
2118   // reset _eden_chunk_array so sampling starts afresh
2119   _eden_chunk_index = 0;
2120 
2121   size_t cms_used   = _cmsGen->cmsSpace()->used();
2122 
2123   // update performance counters - this uses a special version of
2124   // update_counters() that allows the utilization to be passed as a
2125   // parameter, avoiding multiple calls to used().
2126   //
2127   _cmsGen->update_counters(cms_used);
2128 
2129   bitMapLock()->unlock();
2130   releaseFreelistLocks();
2131 
2132   if (!CleanChunkPoolAsync) {
2133     Chunk::clean_chunk_pool();
2134   }
2135 
2136   set_did_compact(false);
2137   _between_prologue_and_epilogue = false;  // ready for next cycle
2138 }
2139 
2140 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2141   collector()->gc_epilogue(full);
2142 
2143   // When using ParNew, promotion tracking should have already been
2144   // disabled. However, the prologue (which enables promotion
2145   // tracking) and epilogue are called irrespective of the type of
2146   // GC. So they will also be called before and after Full GCs, during
2147   // which promotion tracking will not be explicitly disabled. So,
2148   // it's safer to also disable it here too (to be symmetric with
2149   // enabling it in the prologue).
2150   for (uint i = 0; i < ParallelGCThreads; i++) {
2151     _par_gc_thread_states[i]->promo.stopTrackingPromotions();
2152   }
2153 }
2154 
2155 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2156   assert(!incremental_collection_failed(), "Should have been cleared");
2157   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2158   cmsSpace()->gc_epilogue();
2159     // Print stat counters
2160   NOT_PRODUCT(
2161     assert(_numObjectsAllocated == 0, "check");
2162     assert(_numWordsAllocated == 0, "check");
2163     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2164                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2165     _numObjectsPromoted = 0;
2166     _numWordsPromoted   = 0;
2167   )
2168 
2169   // Call down the chain in contiguous_available needs the freelistLock
2170   // so print this out before releasing the freeListLock.
2171   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2172 }
2173 
2174 #ifndef PRODUCT
2175 bool CMSCollector::have_cms_token() {
2176   Thread* thr = Thread::current();
2177   if (thr->is_VM_thread()) {
2178     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2179   } else if (thr->is_ConcurrentGC_thread()) {
2180     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2181   } else if (thr->is_GC_task_thread()) {
2182     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2183            ParGCRareEvent_lock->owned_by_self();
2184   }
2185   return false;
2186 }
2187 
2188 // Check reachability of the given heap address in CMS generation,
2189 // treating all other generations as roots.
2190 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2191   // We could "guarantee" below, rather than assert, but I'll
2192   // leave these as "asserts" so that an adventurous debugger
2193   // could try this in the product build provided some subset of
2194   // the conditions were met, provided they were interested in the
2195   // results and knew that the computation below wouldn't interfere
2196   // with other concurrent computations mutating the structures
2197   // being read or written.
2198   assert(SafepointSynchronize::is_at_safepoint(),
2199          "Else mutations in object graph will make answer suspect");
2200   assert(have_cms_token(), "Should hold cms token");
2201   assert(haveFreelistLocks(), "must hold free list locks");
2202   assert_lock_strong(bitMapLock());
2203 
2204   // Clear the marking bit map array before starting, but, just
2205   // for kicks, first report if the given address is already marked
2206   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2207                 _markBitMap.isMarked(addr) ? "" : " not");
2208 
2209   if (verify_after_remark()) {
2210     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2211     bool result = verification_mark_bm()->isMarked(addr);
2212     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2213                   result ? "IS" : "is NOT");
2214     return result;
2215   } else {
2216     tty->print_cr("Could not compute result");
2217     return false;
2218   }
2219 }
2220 #endif
2221 
2222 void
2223 CMSCollector::print_on_error(outputStream* st) {
2224   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2225   if (collector != NULL) {
2226     CMSBitMap* bitmap = &collector->_markBitMap;
2227     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2228     bitmap->print_on_error(st, " Bits: ");
2229 
2230     st->cr();
2231 
2232     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2233     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2234     mut_bitmap->print_on_error(st, " Bits: ");
2235   }
2236 }
2237 
2238 ////////////////////////////////////////////////////////
2239 // CMS Verification Support
2240 ////////////////////////////////////////////////////////
2241 // Following the remark phase, the following invariant
2242 // should hold -- each object in the CMS heap which is
2243 // marked in markBitMap() should be marked in the verification_mark_bm().
2244 
2245 class VerifyMarkedClosure: public BitMapClosure {
2246   CMSBitMap* _marks;
2247   bool       _failed;
2248 
2249  public:
2250   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2251 
2252   bool do_bit(size_t offset) {
2253     HeapWord* addr = _marks->offsetToHeapWord(offset);
2254     if (!_marks->isMarked(addr)) {
2255       Log(gc, verify) log;
2256       ResourceMark rm;
2257       LogStream ls(log.error());
2258       oop(addr)->print_on(&ls);
2259       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2260       _failed = true;
2261     }
2262     return true;
2263   }
2264 
2265   bool failed() { return _failed; }
2266 };
2267 
2268 bool CMSCollector::verify_after_remark() {
2269   GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2270   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2271   static bool init = false;
2272 
2273   assert(SafepointSynchronize::is_at_safepoint(),
2274          "Else mutations in object graph will make answer suspect");
2275   assert(have_cms_token(),
2276          "Else there may be mutual interference in use of "
2277          " verification data structures");
2278   assert(_collectorState > Marking && _collectorState <= Sweeping,
2279          "Else marking info checked here may be obsolete");
2280   assert(haveFreelistLocks(), "must hold free list locks");
2281   assert_lock_strong(bitMapLock());
2282 
2283 
2284   // Allocate marking bit map if not already allocated
2285   if (!init) { // first time
2286     if (!verification_mark_bm()->allocate(_span)) {
2287       return false;
2288     }
2289     init = true;
2290   }
2291 
2292   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2293 
2294   // Turn off refs discovery -- so we will be tracing through refs.
2295   // This is as intended, because by this time
2296   // GC must already have cleared any refs that need to be cleared,
2297   // and traced those that need to be marked; moreover,
2298   // the marking done here is not going to interfere in any
2299   // way with the marking information used by GC.
2300   NoRefDiscovery no_discovery(ref_processor());
2301 
2302 #if COMPILER2_OR_JVMCI
2303   DerivedPointerTableDeactivate dpt_deact;
2304 #endif
2305 
2306   // Clear any marks from a previous round
2307   verification_mark_bm()->clear_all();
2308   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2309   verify_work_stacks_empty();
2310 
2311   CMSHeap* heap = CMSHeap::heap();
2312   heap->ensure_parsability(false);  // fill TLABs, but no need to retire them
2313   // Update the saved marks which may affect the root scans.
2314   heap->save_marks();
2315 
2316   if (CMSRemarkVerifyVariant == 1) {
2317     // In this first variant of verification, we complete
2318     // all marking, then check if the new marks-vector is
2319     // a subset of the CMS marks-vector.
2320     verify_after_remark_work_1();
2321   } else {
2322     guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2323     // In this second variant of verification, we flag an error
2324     // (i.e. an object reachable in the new marks-vector not reachable
2325     // in the CMS marks-vector) immediately, also indicating the
2326     // identify of an object (A) that references the unmarked object (B) --
2327     // presumably, a mutation to A failed to be picked up by preclean/remark?
2328     verify_after_remark_work_2();
2329   }
2330 
2331   return true;
2332 }
2333 
2334 void CMSCollector::verify_after_remark_work_1() {
2335   ResourceMark rm;
2336   HandleMark  hm;
2337   CMSHeap* heap = CMSHeap::heap();
2338 
2339   // Get a clear set of claim bits for the roots processing to work with.
2340   ClassLoaderDataGraph::clear_claimed_marks();
2341 
2342   // Mark from roots one level into CMS
2343   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2344   heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2345 
2346   {
2347     StrongRootsScope srs(1);
2348 
2349     heap->cms_process_roots(&srs,
2350                            true,   // young gen as roots
2351                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2352                            should_unload_classes(),
2353                            &notOlder,
2354                            NULL);
2355   }
2356 
2357   // Now mark from the roots
2358   MarkFromRootsClosure markFromRootsClosure(this, _span,
2359     verification_mark_bm(), verification_mark_stack(),
2360     false /* don't yield */, true /* verifying */);
2361   assert(_restart_addr == NULL, "Expected pre-condition");
2362   verification_mark_bm()->iterate(&markFromRootsClosure);
2363   while (_restart_addr != NULL) {
2364     // Deal with stack overflow: by restarting at the indicated
2365     // address.
2366     HeapWord* ra = _restart_addr;
2367     markFromRootsClosure.reset(ra);
2368     _restart_addr = NULL;
2369     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2370   }
2371   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2372   verify_work_stacks_empty();
2373 
2374   // Marking completed -- now verify that each bit marked in
2375   // verification_mark_bm() is also marked in markBitMap(); flag all
2376   // errors by printing corresponding objects.
2377   VerifyMarkedClosure vcl(markBitMap());
2378   verification_mark_bm()->iterate(&vcl);
2379   if (vcl.failed()) {
2380     Log(gc, verify) log;
2381     log.error("Failed marking verification after remark");
2382     ResourceMark rm;
2383     LogStream ls(log.error());
2384     heap->print_on(&ls);
2385     fatal("CMS: failed marking verification after remark");
2386   }
2387 }
2388 
2389 class VerifyCLDOopsCLDClosure : public CLDClosure {
2390   class VerifyCLDOopsClosure : public OopClosure {
2391     CMSBitMap* _bitmap;
2392    public:
2393     VerifyCLDOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2394     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2395     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2396   } _oop_closure;
2397  public:
2398   VerifyCLDOopsCLDClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2399   void do_cld(ClassLoaderData* cld) {
2400     cld->oops_do(&_oop_closure, false, false);
2401   }
2402 };
2403 
2404 void CMSCollector::verify_after_remark_work_2() {
2405   ResourceMark rm;
2406   HandleMark  hm;
2407   CMSHeap* heap = CMSHeap::heap();
2408 
2409   // Get a clear set of claim bits for the roots processing to work with.
2410   ClassLoaderDataGraph::clear_claimed_marks();
2411 
2412   // Mark from roots one level into CMS
2413   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2414                                      markBitMap());
2415   CLDToOopClosure cld_closure(&notOlder, true);
2416 
2417   heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2418 
2419   {
2420     StrongRootsScope srs(1);
2421 
2422     heap->cms_process_roots(&srs,
2423                            true,   // young gen as roots
2424                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2425                            should_unload_classes(),
2426                            &notOlder,
2427                            &cld_closure);
2428   }
2429 
2430   // Now mark from the roots
2431   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2432     verification_mark_bm(), markBitMap(), verification_mark_stack());
2433   assert(_restart_addr == NULL, "Expected pre-condition");
2434   verification_mark_bm()->iterate(&markFromRootsClosure);
2435   while (_restart_addr != NULL) {
2436     // Deal with stack overflow: by restarting at the indicated
2437     // address.
2438     HeapWord* ra = _restart_addr;
2439     markFromRootsClosure.reset(ra);
2440     _restart_addr = NULL;
2441     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2442   }
2443   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2444   verify_work_stacks_empty();
2445 
2446   VerifyCLDOopsCLDClosure verify_cld_oops(verification_mark_bm());
2447   ClassLoaderDataGraph::cld_do(&verify_cld_oops);
2448 
2449   // Marking completed -- now verify that each bit marked in
2450   // verification_mark_bm() is also marked in markBitMap(); flag all
2451   // errors by printing corresponding objects.
2452   VerifyMarkedClosure vcl(markBitMap());
2453   verification_mark_bm()->iterate(&vcl);
2454   assert(!vcl.failed(), "Else verification above should not have succeeded");
2455 }
2456 
2457 void ConcurrentMarkSweepGeneration::save_marks() {
2458   // delegate to CMS space
2459   cmsSpace()->save_marks();
2460 }
2461 
2462 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2463   return cmsSpace()->no_allocs_since_save_marks();
2464 }
2465 
2466 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2467                                                                 \
2468 void ConcurrentMarkSweepGeneration::                            \
2469 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2470   cl->set_generation(this);                                     \
2471   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2472   cl->reset_generation();                                       \
2473   save_marks();                                                 \
2474 }
2475 
2476 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2477 
2478 void
2479 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2480   if (freelistLock()->owned_by_self()) {
2481     Generation::oop_iterate(cl);
2482   } else {
2483     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2484     Generation::oop_iterate(cl);
2485   }
2486 }
2487 
2488 void
2489 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2490   if (freelistLock()->owned_by_self()) {
2491     Generation::object_iterate(cl);
2492   } else {
2493     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2494     Generation::object_iterate(cl);
2495   }
2496 }
2497 
2498 void
2499 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2500   if (freelistLock()->owned_by_self()) {
2501     Generation::safe_object_iterate(cl);
2502   } else {
2503     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2504     Generation::safe_object_iterate(cl);
2505   }
2506 }
2507 
2508 void
2509 ConcurrentMarkSweepGeneration::post_compact() {
2510 }
2511 
2512 void
2513 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2514   // Fix the linear allocation blocks to look like free blocks.
2515 
2516   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2517   // are not called when the heap is verified during universe initialization and
2518   // at vm shutdown.
2519   if (freelistLock()->owned_by_self()) {
2520     cmsSpace()->prepare_for_verify();
2521   } else {
2522     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2523     cmsSpace()->prepare_for_verify();
2524   }
2525 }
2526 
2527 void
2528 ConcurrentMarkSweepGeneration::verify() {
2529   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2530   // are not called when the heap is verified during universe initialization and
2531   // at vm shutdown.
2532   if (freelistLock()->owned_by_self()) {
2533     cmsSpace()->verify();
2534   } else {
2535     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2536     cmsSpace()->verify();
2537   }
2538 }
2539 
2540 void CMSCollector::verify() {
2541   _cmsGen->verify();
2542 }
2543 
2544 #ifndef PRODUCT
2545 bool CMSCollector::overflow_list_is_empty() const {
2546   assert(_num_par_pushes >= 0, "Inconsistency");
2547   if (_overflow_list == NULL) {
2548     assert(_num_par_pushes == 0, "Inconsistency");
2549   }
2550   return _overflow_list == NULL;
2551 }
2552 
2553 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2554 // merely consolidate assertion checks that appear to occur together frequently.
2555 void CMSCollector::verify_work_stacks_empty() const {
2556   assert(_markStack.isEmpty(), "Marking stack should be empty");
2557   assert(overflow_list_is_empty(), "Overflow list should be empty");
2558 }
2559 
2560 void CMSCollector::verify_overflow_empty() const {
2561   assert(overflow_list_is_empty(), "Overflow list should be empty");
2562   assert(no_preserved_marks(), "No preserved marks");
2563 }
2564 #endif // PRODUCT
2565 
2566 // Decide if we want to enable class unloading as part of the
2567 // ensuing concurrent GC cycle. We will collect and
2568 // unload classes if it's the case that:
2569 //  (a) class unloading is enabled at the command line, and
2570 //  (b) old gen is getting really full
2571 // NOTE: Provided there is no change in the state of the heap between
2572 // calls to this method, it should have idempotent results. Moreover,
2573 // its results should be monotonically increasing (i.e. going from 0 to 1,
2574 // but not 1 to 0) between successive calls between which the heap was
2575 // not collected. For the implementation below, it must thus rely on
2576 // the property that concurrent_cycles_since_last_unload()
2577 // will not decrease unless a collection cycle happened and that
2578 // _cmsGen->is_too_full() are
2579 // themselves also monotonic in that sense. See check_monotonicity()
2580 // below.
2581 void CMSCollector::update_should_unload_classes() {
2582   _should_unload_classes = false;
2583   if (CMSClassUnloadingEnabled) {
2584     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2585                               CMSClassUnloadingMaxInterval)
2586                            || _cmsGen->is_too_full();
2587   }
2588 }
2589 
2590 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2591   bool res = should_concurrent_collect();
2592   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2593   return res;
2594 }
2595 
2596 void CMSCollector::setup_cms_unloading_and_verification_state() {
2597   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2598                              || VerifyBeforeExit;
2599   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2600 
2601   // We set the proper root for this CMS cycle here.
2602   if (should_unload_classes()) {   // Should unload classes this cycle
2603     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2604     set_verifying(should_verify);    // Set verification state for this cycle
2605     return;                            // Nothing else needs to be done at this time
2606   }
2607 
2608   // Not unloading classes this cycle
2609   assert(!should_unload_classes(), "Inconsistency!");
2610 
2611   // If we are not unloading classes then add SO_AllCodeCache to root
2612   // scanning options.
2613   add_root_scanning_option(rso);
2614 
2615   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2616     set_verifying(true);
2617   } else if (verifying() && !should_verify) {
2618     // We were verifying, but some verification flags got disabled.
2619     set_verifying(false);
2620     // Exclude symbols, strings and code cache elements from root scanning to
2621     // reduce IM and RM pauses.
2622     remove_root_scanning_option(rso);
2623   }
2624 }
2625 
2626 
2627 #ifndef PRODUCT
2628 HeapWord* CMSCollector::block_start(const void* p) const {
2629   const HeapWord* addr = (HeapWord*)p;
2630   if (_span.contains(p)) {
2631     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2632       return _cmsGen->cmsSpace()->block_start(p);
2633     }
2634   }
2635   return NULL;
2636 }
2637 #endif
2638 
2639 HeapWord*
2640 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2641                                                    bool   tlab,
2642                                                    bool   parallel) {
2643   CMSSynchronousYieldRequest yr;
2644   assert(!tlab, "Can't deal with TLAB allocation");
2645   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2646   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2647   if (GCExpandToAllocateDelayMillis > 0) {
2648     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2649   }
2650   return have_lock_and_allocate(word_size, tlab);
2651 }
2652 
2653 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2654     size_t bytes,
2655     size_t expand_bytes,
2656     CMSExpansionCause::Cause cause)
2657 {
2658 
2659   bool success = expand(bytes, expand_bytes);
2660 
2661   // remember why we expanded; this information is used
2662   // by shouldConcurrentCollect() when making decisions on whether to start
2663   // a new CMS cycle.
2664   if (success) {
2665     set_expansion_cause(cause);
2666     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2667   }
2668 }
2669 
2670 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2671   HeapWord* res = NULL;
2672   MutexLocker x(ParGCRareEvent_lock);
2673   while (true) {
2674     // Expansion by some other thread might make alloc OK now:
2675     res = ps->lab.alloc(word_sz);
2676     if (res != NULL) return res;
2677     // If there's not enough expansion space available, give up.
2678     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2679       return NULL;
2680     }
2681     // Otherwise, we try expansion.
2682     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2683     // Now go around the loop and try alloc again;
2684     // A competing par_promote might beat us to the expansion space,
2685     // so we may go around the loop again if promotion fails again.
2686     if (GCExpandToAllocateDelayMillis > 0) {
2687       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2688     }
2689   }
2690 }
2691 
2692 
2693 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2694   PromotionInfo* promo) {
2695   MutexLocker x(ParGCRareEvent_lock);
2696   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2697   while (true) {
2698     // Expansion by some other thread might make alloc OK now:
2699     if (promo->ensure_spooling_space()) {
2700       assert(promo->has_spooling_space(),
2701              "Post-condition of successful ensure_spooling_space()");
2702       return true;
2703     }
2704     // If there's not enough expansion space available, give up.
2705     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2706       return false;
2707     }
2708     // Otherwise, we try expansion.
2709     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2710     // Now go around the loop and try alloc again;
2711     // A competing allocation might beat us to the expansion space,
2712     // so we may go around the loop again if allocation fails again.
2713     if (GCExpandToAllocateDelayMillis > 0) {
2714       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2715     }
2716   }
2717 }
2718 
2719 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2720   // Only shrink if a compaction was done so that all the free space
2721   // in the generation is in a contiguous block at the end.
2722   if (did_compact()) {
2723     CardGeneration::shrink(bytes);
2724   }
2725 }
2726 
2727 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2728   assert_locked_or_safepoint(Heap_lock);
2729 }
2730 
2731 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2732   assert_locked_or_safepoint(Heap_lock);
2733   assert_lock_strong(freelistLock());
2734   log_trace(gc)("Shrinking of CMS not yet implemented");
2735   return;
2736 }
2737 
2738 
2739 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2740 // phases.
2741 class CMSPhaseAccounting: public StackObj {
2742  public:
2743   CMSPhaseAccounting(CMSCollector *collector,
2744                      const char *title);
2745   ~CMSPhaseAccounting();
2746 
2747  private:
2748   CMSCollector *_collector;
2749   const char *_title;
2750   GCTraceConcTime(Info, gc) _trace_time;
2751 
2752  public:
2753   // Not MT-safe; so do not pass around these StackObj's
2754   // where they may be accessed by other threads.
2755   double wallclock_millis() {
2756     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2757   }
2758 };
2759 
2760 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2761                                        const char *title) :
2762   _collector(collector), _title(title), _trace_time(title) {
2763 
2764   _collector->resetYields();
2765   _collector->resetTimer();
2766   _collector->startTimer();
2767   _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2768 }
2769 
2770 CMSPhaseAccounting::~CMSPhaseAccounting() {
2771   _collector->gc_timer_cm()->register_gc_concurrent_end();
2772   _collector->stopTimer();
2773   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2774   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2775 }
2776 
2777 // CMS work
2778 
2779 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2780 class CMSParMarkTask : public AbstractGangTask {
2781  protected:
2782   CMSCollector*     _collector;
2783   uint              _n_workers;
2784   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2785       AbstractGangTask(name),
2786       _collector(collector),
2787       _n_workers(n_workers) {}
2788   // Work method in support of parallel rescan ... of young gen spaces
2789   void do_young_space_rescan(OopsInGenClosure* cl,
2790                              ContiguousSpace* space,
2791                              HeapWord** chunk_array, size_t chunk_top);
2792   void work_on_young_gen_roots(OopsInGenClosure* cl);
2793 };
2794 
2795 // Parallel initial mark task
2796 class CMSParInitialMarkTask: public CMSParMarkTask {
2797   StrongRootsScope* _strong_roots_scope;
2798  public:
2799   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2800       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2801       _strong_roots_scope(strong_roots_scope) {}
2802   void work(uint worker_id);
2803 };
2804 
2805 // Checkpoint the roots into this generation from outside
2806 // this generation. [Note this initial checkpoint need only
2807 // be approximate -- we'll do a catch up phase subsequently.]
2808 void CMSCollector::checkpointRootsInitial() {
2809   assert(_collectorState == InitialMarking, "Wrong collector state");
2810   check_correct_thread_executing();
2811   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
2812 
2813   save_heap_summary();
2814   report_heap_summary(GCWhen::BeforeGC);
2815 
2816   ReferenceProcessor* rp = ref_processor();
2817   assert(_restart_addr == NULL, "Control point invariant");
2818   {
2819     // acquire locks for subsequent manipulations
2820     MutexLockerEx x(bitMapLock(),
2821                     Mutex::_no_safepoint_check_flag);
2822     checkpointRootsInitialWork();
2823     // enable ("weak") refs discovery
2824     rp->enable_discovery();
2825     _collectorState = Marking;
2826   }
2827 }
2828 
2829 void CMSCollector::checkpointRootsInitialWork() {
2830   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2831   assert(_collectorState == InitialMarking, "just checking");
2832 
2833   // Already have locks.
2834   assert_lock_strong(bitMapLock());
2835   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2836 
2837   // Setup the verification and class unloading state for this
2838   // CMS collection cycle.
2839   setup_cms_unloading_and_verification_state();
2840 
2841   GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2842 
2843   // Reset all the PLAB chunk arrays if necessary.
2844   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2845     reset_survivor_plab_arrays();
2846   }
2847 
2848   ResourceMark rm;
2849   HandleMark  hm;
2850 
2851   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2852   CMSHeap* heap = CMSHeap::heap();
2853 
2854   verify_work_stacks_empty();
2855   verify_overflow_empty();
2856 
2857   heap->ensure_parsability(false);  // fill TLABs, but no need to retire them
2858   // Update the saved marks which may affect the root scans.
2859   heap->save_marks();
2860 
2861   // weak reference processing has not started yet.
2862   ref_processor()->set_enqueuing_is_done(false);
2863 
2864   // Need to remember all newly created CLDs,
2865   // so that we can guarantee that the remark finds them.
2866   ClassLoaderDataGraph::remember_new_clds(true);
2867 
2868   // Whenever a CLD is found, it will be claimed before proceeding to mark
2869   // the klasses. The claimed marks need to be cleared before marking starts.
2870   ClassLoaderDataGraph::clear_claimed_marks();
2871 
2872   print_eden_and_survivor_chunk_arrays();
2873 
2874   {
2875 #if COMPILER2_OR_JVMCI
2876     DerivedPointerTableDeactivate dpt_deact;
2877 #endif
2878     if (CMSParallelInitialMarkEnabled) {
2879       // The parallel version.
2880       WorkGang* workers = heap->workers();
2881       assert(workers != NULL, "Need parallel worker threads.");
2882       uint n_workers = workers->active_workers();
2883 
2884       StrongRootsScope srs(n_workers);
2885 
2886       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2887       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2888       // If the total workers is greater than 1, then multiple workers
2889       // may be used at some time and the initialization has been set
2890       // such that the single threaded path cannot be used.
2891       if (workers->total_workers() > 1) {
2892         workers->run_task(&tsk);
2893       } else {
2894         tsk.work(0);
2895       }
2896     } else {
2897       // The serial version.
2898       CLDToOopClosure cld_closure(&notOlder, true);
2899       heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2900 
2901       StrongRootsScope srs(1);
2902 
2903       heap->cms_process_roots(&srs,
2904                              true,   // young gen as roots
2905                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2906                              should_unload_classes(),
2907                              &notOlder,
2908                              &cld_closure);
2909     }
2910   }
2911 
2912   // Clear mod-union table; it will be dirtied in the prologue of
2913   // CMS generation per each young generation collection.
2914 
2915   assert(_modUnionTable.isAllClear(),
2916        "Was cleared in most recent final checkpoint phase"
2917        " or no bits are set in the gc_prologue before the start of the next "
2918        "subsequent marking phase.");
2919 
2920   assert(_ct->cld_rem_set()->mod_union_is_clear(), "Must be");
2921 
2922   // Save the end of the used_region of the constituent generations
2923   // to be used to limit the extent of sweep in each generation.
2924   save_sweep_limits();
2925   verify_overflow_empty();
2926 }
2927 
2928 bool CMSCollector::markFromRoots() {
2929   // we might be tempted to assert that:
2930   // assert(!SafepointSynchronize::is_at_safepoint(),
2931   //        "inconsistent argument?");
2932   // However that wouldn't be right, because it's possible that
2933   // a safepoint is indeed in progress as a young generation
2934   // stop-the-world GC happens even as we mark in this generation.
2935   assert(_collectorState == Marking, "inconsistent state?");
2936   check_correct_thread_executing();
2937   verify_overflow_empty();
2938 
2939   // Weak ref discovery note: We may be discovering weak
2940   // refs in this generation concurrent (but interleaved) with
2941   // weak ref discovery by the young generation collector.
2942 
2943   CMSTokenSyncWithLocks ts(true, bitMapLock());
2944   GCTraceCPUTime tcpu;
2945   CMSPhaseAccounting pa(this, "Concurrent Mark");
2946   bool res = markFromRootsWork();
2947   if (res) {
2948     _collectorState = Precleaning;
2949   } else { // We failed and a foreground collection wants to take over
2950     assert(_foregroundGCIsActive, "internal state inconsistency");
2951     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2952     log_debug(gc)("bailing out to foreground collection");
2953   }
2954   verify_overflow_empty();
2955   return res;
2956 }
2957 
2958 bool CMSCollector::markFromRootsWork() {
2959   // iterate over marked bits in bit map, doing a full scan and mark
2960   // from these roots using the following algorithm:
2961   // . if oop is to the right of the current scan pointer,
2962   //   mark corresponding bit (we'll process it later)
2963   // . else (oop is to left of current scan pointer)
2964   //   push oop on marking stack
2965   // . drain the marking stack
2966 
2967   // Note that when we do a marking step we need to hold the
2968   // bit map lock -- recall that direct allocation (by mutators)
2969   // and promotion (by the young generation collector) is also
2970   // marking the bit map. [the so-called allocate live policy.]
2971   // Because the implementation of bit map marking is not
2972   // robust wrt simultaneous marking of bits in the same word,
2973   // we need to make sure that there is no such interference
2974   // between concurrent such updates.
2975 
2976   // already have locks
2977   assert_lock_strong(bitMapLock());
2978 
2979   verify_work_stacks_empty();
2980   verify_overflow_empty();
2981   bool result = false;
2982   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2983     result = do_marking_mt();
2984   } else {
2985     result = do_marking_st();
2986   }
2987   return result;
2988 }
2989 
2990 // Forward decl
2991 class CMSConcMarkingTask;
2992 
2993 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2994   CMSCollector*       _collector;
2995   CMSConcMarkingTask* _task;
2996  public:
2997   virtual void yield();
2998 
2999   // "n_threads" is the number of threads to be terminated.
3000   // "queue_set" is a set of work queues of other threads.
3001   // "collector" is the CMS collector associated with this task terminator.
3002   // "yield" indicates whether we need the gang as a whole to yield.
3003   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3004     ParallelTaskTerminator(n_threads, queue_set),
3005     _collector(collector) { }
3006 
3007   void set_task(CMSConcMarkingTask* task) {
3008     _task = task;
3009   }
3010 };
3011 
3012 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3013   CMSConcMarkingTask* _task;
3014  public:
3015   bool should_exit_termination();
3016   void set_task(CMSConcMarkingTask* task) {
3017     _task = task;
3018   }
3019 };
3020 
3021 // MT Concurrent Marking Task
3022 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3023   CMSCollector*             _collector;
3024   uint                      _n_workers;      // requested/desired # workers
3025   bool                      _result;
3026   CompactibleFreeListSpace* _cms_space;
3027   char                      _pad_front[64];   // padding to ...
3028   HeapWord* volatile        _global_finger;   // ... avoid sharing cache line
3029   char                      _pad_back[64];
3030   HeapWord*                 _restart_addr;
3031 
3032   //  Exposed here for yielding support
3033   Mutex* const _bit_map_lock;
3034 
3035   // The per thread work queues, available here for stealing
3036   OopTaskQueueSet*  _task_queues;
3037 
3038   // Termination (and yielding) support
3039   CMSConcMarkingTerminator _term;
3040   CMSConcMarkingTerminatorTerminator _term_term;
3041 
3042  public:
3043   CMSConcMarkingTask(CMSCollector* collector,
3044                  CompactibleFreeListSpace* cms_space,
3045                  YieldingFlexibleWorkGang* workers,
3046                  OopTaskQueueSet* task_queues):
3047     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3048     _collector(collector),
3049     _cms_space(cms_space),
3050     _n_workers(0), _result(true),
3051     _task_queues(task_queues),
3052     _term(_n_workers, task_queues, _collector),
3053     _bit_map_lock(collector->bitMapLock())
3054   {
3055     _requested_size = _n_workers;
3056     _term.set_task(this);
3057     _term_term.set_task(this);
3058     _restart_addr = _global_finger = _cms_space->bottom();
3059   }
3060 
3061 
3062   OopTaskQueueSet* task_queues()  { return _task_queues; }
3063 
3064   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3065 
3066   HeapWord* volatile* global_finger_addr() { return &_global_finger; }
3067 
3068   CMSConcMarkingTerminator* terminator() { return &_term; }
3069 
3070   virtual void set_for_termination(uint active_workers) {
3071     terminator()->reset_for_reuse(active_workers);
3072   }
3073 
3074   void work(uint worker_id);
3075   bool should_yield() {
3076     return    ConcurrentMarkSweepThread::should_yield()
3077            && !_collector->foregroundGCIsActive();
3078   }
3079 
3080   virtual void coordinator_yield();  // stuff done by coordinator
3081   bool result() { return _result; }
3082 
3083   void reset(HeapWord* ra) {
3084     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3085     _restart_addr = _global_finger = ra;
3086     _term.reset_for_reuse();
3087   }
3088 
3089   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3090                                            OopTaskQueue* work_q);
3091 
3092  private:
3093   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3094   void do_work_steal(int i);
3095   void bump_global_finger(HeapWord* f);
3096 };
3097 
3098 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3099   assert(_task != NULL, "Error");
3100   return _task->yielding();
3101   // Note that we do not need the disjunct || _task->should_yield() above
3102   // because we want terminating threads to yield only if the task
3103   // is already in the midst of yielding, which happens only after at least one
3104   // thread has yielded.
3105 }
3106 
3107 void CMSConcMarkingTerminator::yield() {
3108   if (_task->should_yield()) {
3109     _task->yield();
3110   } else {
3111     ParallelTaskTerminator::yield();
3112   }
3113 }
3114 
3115 ////////////////////////////////////////////////////////////////
3116 // Concurrent Marking Algorithm Sketch
3117 ////////////////////////////////////////////////////////////////
3118 // Until all tasks exhausted (both spaces):
3119 // -- claim next available chunk
3120 // -- bump global finger via CAS
3121 // -- find first object that starts in this chunk
3122 //    and start scanning bitmap from that position
3123 // -- scan marked objects for oops
3124 // -- CAS-mark target, and if successful:
3125 //    . if target oop is above global finger (volatile read)
3126 //      nothing to do
3127 //    . if target oop is in chunk and above local finger
3128 //        then nothing to do
3129 //    . else push on work-queue
3130 // -- Deal with possible overflow issues:
3131 //    . local work-queue overflow causes stuff to be pushed on
3132 //      global (common) overflow queue
3133 //    . always first empty local work queue
3134 //    . then get a batch of oops from global work queue if any
3135 //    . then do work stealing
3136 // -- When all tasks claimed (both spaces)
3137 //    and local work queue empty,
3138 //    then in a loop do:
3139 //    . check global overflow stack; steal a batch of oops and trace
3140 //    . try to steal from other threads oif GOS is empty
3141 //    . if neither is available, offer termination
3142 // -- Terminate and return result
3143 //
3144 void CMSConcMarkingTask::work(uint worker_id) {
3145   elapsedTimer _timer;
3146   ResourceMark rm;
3147   HandleMark hm;
3148 
3149   DEBUG_ONLY(_collector->verify_overflow_empty();)
3150 
3151   // Before we begin work, our work queue should be empty
3152   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3153   // Scan the bitmap covering _cms_space, tracing through grey objects.
3154   _timer.start();
3155   do_scan_and_mark(worker_id, _cms_space);
3156   _timer.stop();
3157   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3158 
3159   // ... do work stealing
3160   _timer.reset();
3161   _timer.start();
3162   do_work_steal(worker_id);
3163   _timer.stop();
3164   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3165   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3166   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3167   // Note that under the current task protocol, the
3168   // following assertion is true even of the spaces
3169   // expanded since the completion of the concurrent
3170   // marking. XXX This will likely change under a strict
3171   // ABORT semantics.
3172   // After perm removal the comparison was changed to
3173   // greater than or equal to from strictly greater than.
3174   // Before perm removal the highest address sweep would
3175   // have been at the end of perm gen but now is at the
3176   // end of the tenured gen.
3177   assert(_global_finger >=  _cms_space->end(),
3178          "All tasks have been completed");
3179   DEBUG_ONLY(_collector->verify_overflow_empty();)
3180 }
3181 
3182 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3183   HeapWord* read = _global_finger;
3184   HeapWord* cur  = read;
3185   while (f > read) {
3186     cur = read;
3187     read = Atomic::cmpxchg(f, &_global_finger, cur);
3188     if (cur == read) {
3189       // our cas succeeded
3190       assert(_global_finger >= f, "protocol consistency");
3191       break;
3192     }
3193   }
3194 }
3195 
3196 // This is really inefficient, and should be redone by
3197 // using (not yet available) block-read and -write interfaces to the
3198 // stack and the work_queue. XXX FIX ME !!!
3199 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3200                                                       OopTaskQueue* work_q) {
3201   // Fast lock-free check
3202   if (ovflw_stk->length() == 0) {
3203     return false;
3204   }
3205   assert(work_q->size() == 0, "Shouldn't steal");
3206   MutexLockerEx ml(ovflw_stk->par_lock(),
3207                    Mutex::_no_safepoint_check_flag);
3208   // Grab up to 1/4 the size of the work queue
3209   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3210                     (size_t)ParGCDesiredObjsFromOverflowList);
3211   num = MIN2(num, ovflw_stk->length());
3212   for (int i = (int) num; i > 0; i--) {
3213     oop cur = ovflw_stk->pop();
3214     assert(cur != NULL, "Counted wrong?");
3215     work_q->push(cur);
3216   }
3217   return num > 0;
3218 }
3219 
3220 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3221   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3222   int n_tasks = pst->n_tasks();
3223   // We allow that there may be no tasks to do here because
3224   // we are restarting after a stack overflow.
3225   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3226   uint nth_task = 0;
3227 
3228   HeapWord* aligned_start = sp->bottom();
3229   if (sp->used_region().contains(_restart_addr)) {
3230     // Align down to a card boundary for the start of 0th task
3231     // for this space.
3232     aligned_start = align_down(_restart_addr, CardTable::card_size);
3233   }
3234 
3235   size_t chunk_size = sp->marking_task_size();
3236   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3237     // Having claimed the nth task in this space,
3238     // compute the chunk that it corresponds to:
3239     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3240                                aligned_start + (nth_task+1)*chunk_size);
3241     // Try and bump the global finger via a CAS;
3242     // note that we need to do the global finger bump
3243     // _before_ taking the intersection below, because
3244     // the task corresponding to that region will be
3245     // deemed done even if the used_region() expands
3246     // because of allocation -- as it almost certainly will
3247     // during start-up while the threads yield in the
3248     // closure below.
3249     HeapWord* finger = span.end();
3250     bump_global_finger(finger);   // atomically
3251     // There are null tasks here corresponding to chunks
3252     // beyond the "top" address of the space.
3253     span = span.intersection(sp->used_region());
3254     if (!span.is_empty()) {  // Non-null task
3255       HeapWord* prev_obj;
3256       assert(!span.contains(_restart_addr) || nth_task == 0,
3257              "Inconsistency");
3258       if (nth_task == 0) {
3259         // For the 0th task, we'll not need to compute a block_start.
3260         if (span.contains(_restart_addr)) {
3261           // In the case of a restart because of stack overflow,
3262           // we might additionally skip a chunk prefix.
3263           prev_obj = _restart_addr;
3264         } else {
3265           prev_obj = span.start();
3266         }
3267       } else {
3268         // We want to skip the first object because
3269         // the protocol is to scan any object in its entirety
3270         // that _starts_ in this span; a fortiori, any
3271         // object starting in an earlier span is scanned
3272         // as part of an earlier claimed task.
3273         // Below we use the "careful" version of block_start
3274         // so we do not try to navigate uninitialized objects.
3275         prev_obj = sp->block_start_careful(span.start());
3276         // Below we use a variant of block_size that uses the
3277         // Printezis bits to avoid waiting for allocated
3278         // objects to become initialized/parsable.
3279         while (prev_obj < span.start()) {
3280           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3281           if (sz > 0) {
3282             prev_obj += sz;
3283           } else {
3284             // In this case we may end up doing a bit of redundant
3285             // scanning, but that appears unavoidable, short of
3286             // locking the free list locks; see bug 6324141.
3287             break;
3288           }
3289         }
3290       }
3291       if (prev_obj < span.end()) {
3292         MemRegion my_span = MemRegion(prev_obj, span.end());
3293         // Do the marking work within a non-empty span --
3294         // the last argument to the constructor indicates whether the
3295         // iteration should be incremental with periodic yields.
3296         ParMarkFromRootsClosure cl(this, _collector, my_span,
3297                                    &_collector->_markBitMap,
3298                                    work_queue(i),
3299                                    &_collector->_markStack);
3300         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3301       } // else nothing to do for this task
3302     }   // else nothing to do for this task
3303   }
3304   // We'd be tempted to assert here that since there are no
3305   // more tasks left to claim in this space, the global_finger
3306   // must exceed space->top() and a fortiori space->end(). However,
3307   // that would not quite be correct because the bumping of
3308   // global_finger occurs strictly after the claiming of a task,
3309   // so by the time we reach here the global finger may not yet
3310   // have been bumped up by the thread that claimed the last
3311   // task.
3312   pst->all_tasks_completed();
3313 }
3314 
3315 class ParConcMarkingClosure: public MetadataAwareOopClosure {
3316  private:
3317   CMSCollector* _collector;
3318   CMSConcMarkingTask* _task;
3319   MemRegion     _span;
3320   CMSBitMap*    _bit_map;
3321   CMSMarkStack* _overflow_stack;
3322   OopTaskQueue* _work_queue;
3323  protected:
3324   DO_OOP_WORK_DEFN
3325  public:
3326   ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3327                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3328     MetadataAwareOopClosure(collector->ref_processor()),
3329     _collector(collector),
3330     _task(task),
3331     _span(collector->_span),
3332     _work_queue(work_queue),
3333     _bit_map(bit_map),
3334     _overflow_stack(overflow_stack)
3335   { }
3336   virtual void do_oop(oop* p);
3337   virtual void do_oop(narrowOop* p);
3338 
3339   void trim_queue(size_t max);
3340   void handle_stack_overflow(HeapWord* lost);
3341   void do_yield_check() {
3342     if (_task->should_yield()) {
3343       _task->yield();
3344     }
3345   }
3346 };
3347 
3348 DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3349 
3350 // Grey object scanning during work stealing phase --
3351 // the salient assumption here is that any references
3352 // that are in these stolen objects being scanned must
3353 // already have been initialized (else they would not have
3354 // been published), so we do not need to check for
3355 // uninitialized objects before pushing here.
3356 void ParConcMarkingClosure::do_oop(oop obj) {
3357   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3358   HeapWord* addr = (HeapWord*)obj;
3359   // Check if oop points into the CMS generation
3360   // and is not marked
3361   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3362     // a white object ...
3363     // If we manage to "claim" the object, by being the
3364     // first thread to mark it, then we push it on our
3365     // marking stack
3366     if (_bit_map->par_mark(addr)) {     // ... now grey
3367       // push on work queue (grey set)
3368       bool simulate_overflow = false;
3369       NOT_PRODUCT(
3370         if (CMSMarkStackOverflowALot &&
3371             _collector->simulate_overflow()) {
3372           // simulate a stack overflow
3373           simulate_overflow = true;
3374         }
3375       )
3376       if (simulate_overflow ||
3377           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3378         // stack overflow
3379         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3380         // We cannot assert that the overflow stack is full because
3381         // it may have been emptied since.
3382         assert(simulate_overflow ||
3383                _work_queue->size() == _work_queue->max_elems(),
3384               "Else push should have succeeded");
3385         handle_stack_overflow(addr);
3386       }
3387     } // Else, some other thread got there first
3388     do_yield_check();
3389   }
3390 }
3391 
3392 void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3393 void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3394 
3395 void ParConcMarkingClosure::trim_queue(size_t max) {
3396   while (_work_queue->size() > max) {
3397     oop new_oop;
3398     if (_work_queue->pop_local(new_oop)) {
3399       assert(oopDesc::is_oop(new_oop), "Should be an oop");
3400       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3401       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3402       new_oop->oop_iterate(this);  // do_oop() above
3403       do_yield_check();
3404     }
3405   }
3406 }
3407 
3408 // Upon stack overflow, we discard (part of) the stack,
3409 // remembering the least address amongst those discarded
3410 // in CMSCollector's _restart_address.
3411 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3412   // We need to do this under a mutex to prevent other
3413   // workers from interfering with the work done below.
3414   MutexLockerEx ml(_overflow_stack->par_lock(),
3415                    Mutex::_no_safepoint_check_flag);
3416   // Remember the least grey address discarded
3417   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3418   _collector->lower_restart_addr(ra);
3419   _overflow_stack->reset();  // discard stack contents
3420   _overflow_stack->expand(); // expand the stack if possible
3421 }
3422 
3423 
3424 void CMSConcMarkingTask::do_work_steal(int i) {
3425   OopTaskQueue* work_q = work_queue(i);
3426   oop obj_to_scan;
3427   CMSBitMap* bm = &(_collector->_markBitMap);
3428   CMSMarkStack* ovflw = &(_collector->_markStack);
3429   int* seed = _collector->hash_seed(i);
3430   ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3431   while (true) {
3432     cl.trim_queue(0);
3433     assert(work_q->size() == 0, "Should have been emptied above");
3434     if (get_work_from_overflow_stack(ovflw, work_q)) {
3435       // Can't assert below because the work obtained from the
3436       // overflow stack may already have been stolen from us.
3437       // assert(work_q->size() > 0, "Work from overflow stack");
3438       continue;
3439     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3440       assert(oopDesc::is_oop(obj_to_scan), "Should be an oop");
3441       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3442       obj_to_scan->oop_iterate(&cl);
3443     } else if (terminator()->offer_termination(&_term_term)) {
3444       assert(work_q->size() == 0, "Impossible!");
3445       break;
3446     } else if (yielding() || should_yield()) {
3447       yield();
3448     }
3449   }
3450 }
3451 
3452 // This is run by the CMS (coordinator) thread.
3453 void CMSConcMarkingTask::coordinator_yield() {
3454   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3455          "CMS thread should hold CMS token");
3456   // First give up the locks, then yield, then re-lock
3457   // We should probably use a constructor/destructor idiom to
3458   // do this unlock/lock or modify the MutexUnlocker class to
3459   // serve our purpose. XXX
3460   assert_lock_strong(_bit_map_lock);
3461   _bit_map_lock->unlock();
3462   ConcurrentMarkSweepThread::desynchronize(true);
3463   _collector->stopTimer();
3464   _collector->incrementYields();
3465 
3466   // It is possible for whichever thread initiated the yield request
3467   // not to get a chance to wake up and take the bitmap lock between
3468   // this thread releasing it and reacquiring it. So, while the
3469   // should_yield() flag is on, let's sleep for a bit to give the
3470   // other thread a chance to wake up. The limit imposed on the number
3471   // of iterations is defensive, to avoid any unforseen circumstances
3472   // putting us into an infinite loop. Since it's always been this
3473   // (coordinator_yield()) method that was observed to cause the
3474   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3475   // which is by default non-zero. For the other seven methods that
3476   // also perform the yield operation, as are using a different
3477   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3478   // can enable the sleeping for those methods too, if necessary.
3479   // See 6442774.
3480   //
3481   // We really need to reconsider the synchronization between the GC
3482   // thread and the yield-requesting threads in the future and we
3483   // should really use wait/notify, which is the recommended
3484   // way of doing this type of interaction. Additionally, we should
3485   // consolidate the eight methods that do the yield operation and they
3486   // are almost identical into one for better maintainability and
3487   // readability. See 6445193.
3488   //
3489   // Tony 2006.06.29
3490   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3491                    ConcurrentMarkSweepThread::should_yield() &&
3492                    !CMSCollector::foregroundGCIsActive(); ++i) {
3493     os::sleep(Thread::current(), 1, false);
3494   }
3495 
3496   ConcurrentMarkSweepThread::synchronize(true);
3497   _bit_map_lock->lock_without_safepoint_check();
3498   _collector->startTimer();
3499 }
3500 
3501 bool CMSCollector::do_marking_mt() {
3502   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3503   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3504                                                                   conc_workers()->active_workers(),
3505                                                                   Threads::number_of_non_daemon_threads());
3506   num_workers = conc_workers()->update_active_workers(num_workers);
3507   log_info(gc,task)("Using %u workers of %u for marking", num_workers, conc_workers()->total_workers());
3508 
3509   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3510 
3511   CMSConcMarkingTask tsk(this,
3512                          cms_space,
3513                          conc_workers(),
3514                          task_queues());
3515 
3516   // Since the actual number of workers we get may be different
3517   // from the number we requested above, do we need to do anything different
3518   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3519   // class?? XXX
3520   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3521 
3522   // Refs discovery is already non-atomic.
3523   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3524   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3525   conc_workers()->start_task(&tsk);
3526   while (tsk.yielded()) {
3527     tsk.coordinator_yield();
3528     conc_workers()->continue_task(&tsk);
3529   }
3530   // If the task was aborted, _restart_addr will be non-NULL
3531   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3532   while (_restart_addr != NULL) {
3533     // XXX For now we do not make use of ABORTED state and have not
3534     // yet implemented the right abort semantics (even in the original
3535     // single-threaded CMS case). That needs some more investigation
3536     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3537     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3538     // If _restart_addr is non-NULL, a marking stack overflow
3539     // occurred; we need to do a fresh marking iteration from the
3540     // indicated restart address.
3541     if (_foregroundGCIsActive) {
3542       // We may be running into repeated stack overflows, having
3543       // reached the limit of the stack size, while making very
3544       // slow forward progress. It may be best to bail out and
3545       // let the foreground collector do its job.
3546       // Clear _restart_addr, so that foreground GC
3547       // works from scratch. This avoids the headache of
3548       // a "rescan" which would otherwise be needed because
3549       // of the dirty mod union table & card table.
3550       _restart_addr = NULL;
3551       return false;
3552     }
3553     // Adjust the task to restart from _restart_addr
3554     tsk.reset(_restart_addr);
3555     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3556                   _restart_addr);
3557     _restart_addr = NULL;
3558     // Get the workers going again
3559     conc_workers()->start_task(&tsk);
3560     while (tsk.yielded()) {
3561       tsk.coordinator_yield();
3562       conc_workers()->continue_task(&tsk);
3563     }
3564   }
3565   assert(tsk.completed(), "Inconsistency");
3566   assert(tsk.result() == true, "Inconsistency");
3567   return true;
3568 }
3569 
3570 bool CMSCollector::do_marking_st() {
3571   ResourceMark rm;
3572   HandleMark   hm;
3573 
3574   // Temporarily make refs discovery single threaded (non-MT)
3575   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3576   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3577     &_markStack, CMSYield);
3578   // the last argument to iterate indicates whether the iteration
3579   // should be incremental with periodic yields.
3580   _markBitMap.iterate(&markFromRootsClosure);
3581   // If _restart_addr is non-NULL, a marking stack overflow
3582   // occurred; we need to do a fresh iteration from the
3583   // indicated restart address.
3584   while (_restart_addr != NULL) {
3585     if (_foregroundGCIsActive) {
3586       // We may be running into repeated stack overflows, having
3587       // reached the limit of the stack size, while making very
3588       // slow forward progress. It may be best to bail out and
3589       // let the foreground collector do its job.
3590       // Clear _restart_addr, so that foreground GC
3591       // works from scratch. This avoids the headache of
3592       // a "rescan" which would otherwise be needed because
3593       // of the dirty mod union table & card table.
3594       _restart_addr = NULL;
3595       return false;  // indicating failure to complete marking
3596     }
3597     // Deal with stack overflow:
3598     // we restart marking from _restart_addr
3599     HeapWord* ra = _restart_addr;
3600     markFromRootsClosure.reset(ra);
3601     _restart_addr = NULL;
3602     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3603   }
3604   return true;
3605 }
3606 
3607 void CMSCollector::preclean() {
3608   check_correct_thread_executing();
3609   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3610   verify_work_stacks_empty();
3611   verify_overflow_empty();
3612   _abort_preclean = false;
3613   if (CMSPrecleaningEnabled) {
3614     if (!CMSEdenChunksRecordAlways) {
3615       _eden_chunk_index = 0;
3616     }
3617     size_t used = get_eden_used();
3618     size_t capacity = get_eden_capacity();
3619     // Don't start sampling unless we will get sufficiently
3620     // many samples.
3621     if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
3622                 * CMSScheduleRemarkEdenPenetration)) {
3623       _start_sampling = true;
3624     } else {
3625       _start_sampling = false;
3626     }
3627     GCTraceCPUTime tcpu;
3628     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3629     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3630   }
3631   CMSTokenSync x(true); // is cms thread
3632   if (CMSPrecleaningEnabled) {
3633     sample_eden();
3634     _collectorState = AbortablePreclean;
3635   } else {
3636     _collectorState = FinalMarking;
3637   }
3638   verify_work_stacks_empty();
3639   verify_overflow_empty();
3640 }
3641 
3642 // Try and schedule the remark such that young gen
3643 // occupancy is CMSScheduleRemarkEdenPenetration %.
3644 void CMSCollector::abortable_preclean() {
3645   check_correct_thread_executing();
3646   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3647   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3648 
3649   // If Eden's current occupancy is below this threshold,
3650   // immediately schedule the remark; else preclean
3651   // past the next scavenge in an effort to
3652   // schedule the pause as described above. By choosing
3653   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3654   // we will never do an actual abortable preclean cycle.
3655   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3656     GCTraceCPUTime tcpu;
3657     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3658     // We need more smarts in the abortable preclean
3659     // loop below to deal with cases where allocation
3660     // in young gen is very very slow, and our precleaning
3661     // is running a losing race against a horde of
3662     // mutators intent on flooding us with CMS updates
3663     // (dirty cards).
3664     // One, admittedly dumb, strategy is to give up
3665     // after a certain number of abortable precleaning loops
3666     // or after a certain maximum time. We want to make
3667     // this smarter in the next iteration.
3668     // XXX FIX ME!!! YSR
3669     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3670     while (!(should_abort_preclean() ||
3671              ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3672       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3673       cumworkdone += workdone;
3674       loops++;
3675       // Voluntarily terminate abortable preclean phase if we have
3676       // been at it for too long.
3677       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3678           loops >= CMSMaxAbortablePrecleanLoops) {
3679         log_debug(gc)(" CMS: abort preclean due to loops ");
3680         break;
3681       }
3682       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3683         log_debug(gc)(" CMS: abort preclean due to time ");
3684         break;
3685       }
3686       // If we are doing little work each iteration, we should
3687       // take a short break.
3688       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3689         // Sleep for some time, waiting for work to accumulate
3690         stopTimer();
3691         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3692         startTimer();
3693         waited++;
3694       }
3695     }
3696     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3697                                loops, waited, cumworkdone);
3698   }
3699   CMSTokenSync x(true); // is cms thread
3700   if (_collectorState != Idling) {
3701     assert(_collectorState == AbortablePreclean,
3702            "Spontaneous state transition?");
3703     _collectorState = FinalMarking;
3704   } // Else, a foreground collection completed this CMS cycle.
3705   return;
3706 }
3707 
3708 // Respond to an Eden sampling opportunity
3709 void CMSCollector::sample_eden() {
3710   // Make sure a young gc cannot sneak in between our
3711   // reading and recording of a sample.
3712   assert(Thread::current()->is_ConcurrentGC_thread(),
3713          "Only the cms thread may collect Eden samples");
3714   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3715          "Should collect samples while holding CMS token");
3716   if (!_start_sampling) {
3717     return;
3718   }
3719   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3720   // is populated by the young generation.
3721   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3722     if (_eden_chunk_index < _eden_chunk_capacity) {
3723       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3724       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3725              "Unexpected state of Eden");
3726       // We'd like to check that what we just sampled is an oop-start address;
3727       // however, we cannot do that here since the object may not yet have been
3728       // initialized. So we'll instead do the check when we _use_ this sample
3729       // later.
3730       if (_eden_chunk_index == 0 ||
3731           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3732                          _eden_chunk_array[_eden_chunk_index-1])
3733            >= CMSSamplingGrain)) {
3734         _eden_chunk_index++;  // commit sample
3735       }
3736     }
3737   }
3738   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3739     size_t used = get_eden_used();
3740     size_t capacity = get_eden_capacity();
3741     assert(used <= capacity, "Unexpected state of Eden");
3742     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3743       _abort_preclean = true;
3744     }
3745   }
3746 }
3747 
3748 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3749   assert(_collectorState == Precleaning ||
3750          _collectorState == AbortablePreclean, "incorrect state");
3751   ResourceMark rm;
3752   HandleMark   hm;
3753 
3754   // Precleaning is currently not MT but the reference processor
3755   // may be set for MT.  Disable it temporarily here.
3756   ReferenceProcessor* rp = ref_processor();
3757   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3758 
3759   // Do one pass of scrubbing the discovered reference lists
3760   // to remove any reference objects with strongly-reachable
3761   // referents.
3762   if (clean_refs) {
3763     CMSPrecleanRefsYieldClosure yield_cl(this);
3764     assert(_span_discoverer.span().equals(_span), "Spans should be equal");
3765     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3766                                    &_markStack, true /* preclean */);
3767     CMSDrainMarkingStackClosure complete_trace(this,
3768                                    _span, &_markBitMap, &_markStack,
3769                                    &keep_alive, true /* preclean */);
3770 
3771     // We don't want this step to interfere with a young
3772     // collection because we don't want to take CPU
3773     // or memory bandwidth away from the young GC threads
3774     // (which may be as many as there are CPUs).
3775     // Note that we don't need to protect ourselves from
3776     // interference with mutators because they can't
3777     // manipulate the discovered reference lists nor affect
3778     // the computed reachability of the referents, the
3779     // only properties manipulated by the precleaning
3780     // of these reference lists.
3781     stopTimer();
3782     CMSTokenSyncWithLocks x(true /* is cms thread */,
3783                             bitMapLock());
3784     startTimer();
3785     sample_eden();
3786 
3787     // The following will yield to allow foreground
3788     // collection to proceed promptly. XXX YSR:
3789     // The code in this method may need further
3790     // tweaking for better performance and some restructuring
3791     // for cleaner interfaces.
3792     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3793     rp->preclean_discovered_references(
3794           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3795           gc_timer);
3796   }
3797 
3798   if (clean_survivor) {  // preclean the active survivor space(s)
3799     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3800                              &_markBitMap, &_modUnionTable,
3801                              &_markStack, true /* precleaning phase */);
3802     stopTimer();
3803     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3804                              bitMapLock());
3805     startTimer();
3806     unsigned int before_count =
3807       CMSHeap::heap()->total_collections();
3808     SurvivorSpacePrecleanClosure
3809       sss_cl(this, _span, &_markBitMap, &_markStack,
3810              &pam_cl, before_count, CMSYield);
3811     _young_gen->from()->object_iterate_careful(&sss_cl);
3812     _young_gen->to()->object_iterate_careful(&sss_cl);
3813   }
3814   MarkRefsIntoAndScanClosure
3815     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3816              &_markStack, this, CMSYield,
3817              true /* precleaning phase */);
3818   // CAUTION: The following closure has persistent state that may need to
3819   // be reset upon a decrease in the sequence of addresses it
3820   // processes.
3821   ScanMarkedObjectsAgainCarefullyClosure
3822     smoac_cl(this, _span,
3823       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3824 
3825   // Preclean dirty cards in ModUnionTable and CardTable using
3826   // appropriate convergence criterion;
3827   // repeat CMSPrecleanIter times unless we find that
3828   // we are losing.
3829   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3830   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3831          "Bad convergence multiplier");
3832   assert(CMSPrecleanThreshold >= 100,
3833          "Unreasonably low CMSPrecleanThreshold");
3834 
3835   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3836   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3837        numIter < CMSPrecleanIter;
3838        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3839     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3840     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3841     // Either there are very few dirty cards, so re-mark
3842     // pause will be small anyway, or our pre-cleaning isn't
3843     // that much faster than the rate at which cards are being
3844     // dirtied, so we might as well stop and re-mark since
3845     // precleaning won't improve our re-mark time by much.
3846     if (curNumCards <= CMSPrecleanThreshold ||
3847         (numIter > 0 &&
3848          (curNumCards * CMSPrecleanDenominator >
3849          lastNumCards * CMSPrecleanNumerator))) {
3850       numIter++;
3851       cumNumCards += curNumCards;
3852       break;
3853     }
3854   }
3855 
3856   preclean_cld(&mrias_cl, _cmsGen->freelistLock());
3857 
3858   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3859   cumNumCards += curNumCards;
3860   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3861                              curNumCards, cumNumCards, numIter);
3862   return cumNumCards;   // as a measure of useful work done
3863 }
3864 
3865 // PRECLEANING NOTES:
3866 // Precleaning involves:
3867 // . reading the bits of the modUnionTable and clearing the set bits.
3868 // . For the cards corresponding to the set bits, we scan the
3869 //   objects on those cards. This means we need the free_list_lock
3870 //   so that we can safely iterate over the CMS space when scanning
3871 //   for oops.
3872 // . When we scan the objects, we'll be both reading and setting
3873 //   marks in the marking bit map, so we'll need the marking bit map.
3874 // . For protecting _collector_state transitions, we take the CGC_lock.
3875 //   Note that any races in the reading of of card table entries by the
3876 //   CMS thread on the one hand and the clearing of those entries by the
3877 //   VM thread or the setting of those entries by the mutator threads on the
3878 //   other are quite benign. However, for efficiency it makes sense to keep
3879 //   the VM thread from racing with the CMS thread while the latter is
3880 //   dirty card info to the modUnionTable. We therefore also use the
3881 //   CGC_lock to protect the reading of the card table and the mod union
3882 //   table by the CM thread.
3883 // . We run concurrently with mutator updates, so scanning
3884 //   needs to be done carefully  -- we should not try to scan
3885 //   potentially uninitialized objects.
3886 //
3887 // Locking strategy: While holding the CGC_lock, we scan over and
3888 // reset a maximal dirty range of the mod union / card tables, then lock
3889 // the free_list_lock and bitmap lock to do a full marking, then
3890 // release these locks; and repeat the cycle. This allows for a
3891 // certain amount of fairness in the sharing of these locks between
3892 // the CMS collector on the one hand, and the VM thread and the
3893 // mutators on the other.
3894 
3895 // NOTE: preclean_mod_union_table() and preclean_card_table()
3896 // further below are largely identical; if you need to modify
3897 // one of these methods, please check the other method too.
3898 
3899 size_t CMSCollector::preclean_mod_union_table(
3900   ConcurrentMarkSweepGeneration* old_gen,
3901   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3902   verify_work_stacks_empty();
3903   verify_overflow_empty();
3904 
3905   // strategy: starting with the first card, accumulate contiguous
3906   // ranges of dirty cards; clear these cards, then scan the region
3907   // covered by these cards.
3908 
3909   // Since all of the MUT is committed ahead, we can just use
3910   // that, in case the generations expand while we are precleaning.
3911   // It might also be fine to just use the committed part of the
3912   // generation, but we might potentially miss cards when the
3913   // generation is rapidly expanding while we are in the midst
3914   // of precleaning.
3915   HeapWord* startAddr = old_gen->reserved().start();
3916   HeapWord* endAddr   = old_gen->reserved().end();
3917 
3918   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3919 
3920   size_t numDirtyCards, cumNumDirtyCards;
3921   HeapWord *nextAddr, *lastAddr;
3922   for (cumNumDirtyCards = numDirtyCards = 0,
3923        nextAddr = lastAddr = startAddr;
3924        nextAddr < endAddr;
3925        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3926 
3927     ResourceMark rm;
3928     HandleMark   hm;
3929 
3930     MemRegion dirtyRegion;
3931     {
3932       stopTimer();
3933       // Potential yield point
3934       CMSTokenSync ts(true);
3935       startTimer();
3936       sample_eden();
3937       // Get dirty region starting at nextOffset (inclusive),
3938       // simultaneously clearing it.
3939       dirtyRegion =
3940         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3941       assert(dirtyRegion.start() >= nextAddr,
3942              "returned region inconsistent?");
3943     }
3944     // Remember where the next search should begin.
3945     // The returned region (if non-empty) is a right open interval,
3946     // so lastOffset is obtained from the right end of that
3947     // interval.
3948     lastAddr = dirtyRegion.end();
3949     // Should do something more transparent and less hacky XXX
3950     numDirtyCards =
3951       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3952 
3953     // We'll scan the cards in the dirty region (with periodic
3954     // yields for foreground GC as needed).
3955     if (!dirtyRegion.is_empty()) {
3956       assert(numDirtyCards > 0, "consistency check");
3957       HeapWord* stop_point = NULL;
3958       stopTimer();
3959       // Potential yield point
3960       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3961                                bitMapLock());
3962       startTimer();
3963       {
3964         verify_work_stacks_empty();
3965         verify_overflow_empty();
3966         sample_eden();
3967         stop_point =
3968           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3969       }
3970       if (stop_point != NULL) {
3971         // The careful iteration stopped early either because it found an
3972         // uninitialized object, or because we were in the midst of an
3973         // "abortable preclean", which should now be aborted. Redirty
3974         // the bits corresponding to the partially-scanned or unscanned
3975         // cards. We'll either restart at the next block boundary or
3976         // abort the preclean.
3977         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3978                "Should only be AbortablePreclean.");
3979         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3980         if (should_abort_preclean()) {
3981           break; // out of preclean loop
3982         } else {
3983           // Compute the next address at which preclean should pick up;
3984           // might need bitMapLock in order to read P-bits.
3985           lastAddr = next_card_start_after_block(stop_point);
3986         }
3987       }
3988     } else {
3989       assert(lastAddr == endAddr, "consistency check");
3990       assert(numDirtyCards == 0, "consistency check");
3991       break;
3992     }
3993   }
3994   verify_work_stacks_empty();
3995   verify_overflow_empty();
3996   return cumNumDirtyCards;
3997 }
3998 
3999 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4000 // below are largely identical; if you need to modify
4001 // one of these methods, please check the other method too.
4002 
4003 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4004   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4005   // strategy: it's similar to precleamModUnionTable above, in that
4006   // we accumulate contiguous ranges of dirty cards, mark these cards
4007   // precleaned, then scan the region covered by these cards.
4008   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4009   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4010 
4011   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4012 
4013   size_t numDirtyCards, cumNumDirtyCards;
4014   HeapWord *lastAddr, *nextAddr;
4015 
4016   for (cumNumDirtyCards = numDirtyCards = 0,
4017        nextAddr = lastAddr = startAddr;
4018        nextAddr < endAddr;
4019        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4020 
4021     ResourceMark rm;
4022     HandleMark   hm;
4023 
4024     MemRegion dirtyRegion;
4025     {
4026       // See comments in "Precleaning notes" above on why we
4027       // do this locking. XXX Could the locking overheads be
4028       // too high when dirty cards are sparse? [I don't think so.]
4029       stopTimer();
4030       CMSTokenSync x(true); // is cms thread
4031       startTimer();
4032       sample_eden();
4033       // Get and clear dirty region from card table
4034       dirtyRegion = _ct->dirty_card_range_after_reset(MemRegion(nextAddr, endAddr),
4035                                                       true,
4036                                                       CardTable::precleaned_card_val());
4037 
4038       assert(dirtyRegion.start() >= nextAddr,
4039              "returned region inconsistent?");
4040     }
4041     lastAddr = dirtyRegion.end();
4042     numDirtyCards =
4043       dirtyRegion.word_size()/CardTable::card_size_in_words;
4044 
4045     if (!dirtyRegion.is_empty()) {
4046       stopTimer();
4047       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4048       startTimer();
4049       sample_eden();
4050       verify_work_stacks_empty();
4051       verify_overflow_empty();
4052       HeapWord* stop_point =
4053         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4054       if (stop_point != NULL) {
4055         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4056                "Should only be AbortablePreclean.");
4057         _ct->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4058         if (should_abort_preclean()) {
4059           break; // out of preclean loop
4060         } else {
4061           // Compute the next address at which preclean should pick up.
4062           lastAddr = next_card_start_after_block(stop_point);
4063         }
4064       }
4065     } else {
4066       break;
4067     }
4068   }
4069   verify_work_stacks_empty();
4070   verify_overflow_empty();
4071   return cumNumDirtyCards;
4072 }
4073 
4074 class PrecleanCLDClosure : public CLDClosure {
4075   MetadataAwareOopsInGenClosure* _cm_closure;
4076  public:
4077   PrecleanCLDClosure(MetadataAwareOopsInGenClosure* oop_closure) : _cm_closure(oop_closure) {}
4078   void do_cld(ClassLoaderData* cld) {
4079     if (cld->has_accumulated_modified_oops()) {
4080       cld->clear_accumulated_modified_oops();
4081 
4082       _cm_closure->do_cld(cld);
4083     }
4084   }
4085 };
4086 
4087 // The freelist lock is needed to prevent asserts, is it really needed?
4088 void CMSCollector::preclean_cld(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4089 
4090   cl->set_freelistLock(freelistLock);
4091 
4092   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4093 
4094   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4095   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4096   PrecleanCLDClosure preclean_closure(cl);
4097   ClassLoaderDataGraph::cld_do(&preclean_closure);
4098 
4099   verify_work_stacks_empty();
4100   verify_overflow_empty();
4101 }
4102 
4103 void CMSCollector::checkpointRootsFinal() {
4104   assert(_collectorState == FinalMarking, "incorrect state transition?");
4105   check_correct_thread_executing();
4106   // world is stopped at this checkpoint
4107   assert(SafepointSynchronize::is_at_safepoint(),
4108          "world should be stopped");
4109   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
4110 
4111   verify_work_stacks_empty();
4112   verify_overflow_empty();
4113 
4114   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4115                 _young_gen->used() / K, _young_gen->capacity() / K);
4116   {
4117     if (CMSScavengeBeforeRemark) {
4118       CMSHeap* heap = CMSHeap::heap();
4119       // Temporarily set flag to false, GCH->do_collection will
4120       // expect it to be false and set to true
4121       FlagSetting fl(heap->_is_gc_active, false);
4122 
4123       heap->do_collection(true,                      // full (i.e. force, see below)
4124                           false,                     // !clear_all_soft_refs
4125                           0,                         // size
4126                           false,                     // is_tlab
4127                           GenCollectedHeap::YoungGen // type
4128         );
4129     }
4130     FreelistLocker x(this);
4131     MutexLockerEx y(bitMapLock(),
4132                     Mutex::_no_safepoint_check_flag);
4133     checkpointRootsFinalWork();
4134   }
4135   verify_work_stacks_empty();
4136   verify_overflow_empty();
4137 }
4138 
4139 void CMSCollector::checkpointRootsFinalWork() {
4140   GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4141 
4142   assert(haveFreelistLocks(), "must have free list locks");
4143   assert_lock_strong(bitMapLock());
4144 
4145   ResourceMark rm;
4146   HandleMark   hm;
4147 
4148   CMSHeap* heap = CMSHeap::heap();
4149 
4150   if (should_unload_classes()) {
4151     CodeCache::gc_prologue();
4152   }
4153   assert(haveFreelistLocks(), "must have free list locks");
4154   assert_lock_strong(bitMapLock());
4155 
4156   // We might assume that we need not fill TLAB's when
4157   // CMSScavengeBeforeRemark is set, because we may have just done
4158   // a scavenge which would have filled all TLAB's -- and besides
4159   // Eden would be empty. This however may not always be the case --
4160   // for instance although we asked for a scavenge, it may not have
4161   // happened because of a JNI critical section. We probably need
4162   // a policy for deciding whether we can in that case wait until
4163   // the critical section releases and then do the remark following
4164   // the scavenge, and skip it here. In the absence of that policy,
4165   // or of an indication of whether the scavenge did indeed occur,
4166   // we cannot rely on TLAB's having been filled and must do
4167   // so here just in case a scavenge did not happen.
4168   heap->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4169   // Update the saved marks which may affect the root scans.
4170   heap->save_marks();
4171 
4172   print_eden_and_survivor_chunk_arrays();
4173 
4174   {
4175 #if COMPILER2_OR_JVMCI
4176     DerivedPointerTableDeactivate dpt_deact;
4177 #endif
4178 
4179     // Note on the role of the mod union table:
4180     // Since the marker in "markFromRoots" marks concurrently with
4181     // mutators, it is possible for some reachable objects not to have been
4182     // scanned. For instance, an only reference to an object A was
4183     // placed in object B after the marker scanned B. Unless B is rescanned,
4184     // A would be collected. Such updates to references in marked objects
4185     // are detected via the mod union table which is the set of all cards
4186     // dirtied since the first checkpoint in this GC cycle and prior to
4187     // the most recent young generation GC, minus those cleaned up by the
4188     // concurrent precleaning.
4189     if (CMSParallelRemarkEnabled) {
4190       GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4191       do_remark_parallel();
4192     } else {
4193       GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4194       do_remark_non_parallel();
4195     }
4196   }
4197   verify_work_stacks_empty();
4198   verify_overflow_empty();
4199 
4200   {
4201     GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4202     refProcessingWork();
4203   }
4204   verify_work_stacks_empty();
4205   verify_overflow_empty();
4206 
4207   if (should_unload_classes()) {
4208     CodeCache::gc_epilogue();
4209   }
4210   JvmtiExport::gc_epilogue();
4211 
4212   // If we encountered any (marking stack / work queue) overflow
4213   // events during the current CMS cycle, take appropriate
4214   // remedial measures, where possible, so as to try and avoid
4215   // recurrence of that condition.
4216   assert(_markStack.isEmpty(), "No grey objects");
4217   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4218                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4219   if (ser_ovflw > 0) {
4220     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4221                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4222     _markStack.expand();
4223     _ser_pmc_remark_ovflw = 0;
4224     _ser_pmc_preclean_ovflw = 0;
4225     _ser_kac_preclean_ovflw = 0;
4226     _ser_kac_ovflw = 0;
4227   }
4228   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4229      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4230                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4231      _par_pmc_remark_ovflw = 0;
4232     _par_kac_ovflw = 0;
4233   }
4234    if (_markStack._hit_limit > 0) {
4235      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4236                           _markStack._hit_limit);
4237    }
4238    if (_markStack._failed_double > 0) {
4239      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4240                           _markStack._failed_double, _markStack.capacity());
4241    }
4242   _markStack._hit_limit = 0;
4243   _markStack._failed_double = 0;
4244 
4245   if ((VerifyAfterGC || VerifyDuringGC) &&
4246       CMSHeap::heap()->total_collections() >= VerifyGCStartAt) {
4247     verify_after_remark();
4248   }
4249 
4250   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4251 
4252   // Change under the freelistLocks.
4253   _collectorState = Sweeping;
4254   // Call isAllClear() under bitMapLock
4255   assert(_modUnionTable.isAllClear(),
4256       "Should be clear by end of the final marking");
4257   assert(_ct->cld_rem_set()->mod_union_is_clear(),
4258       "Should be clear by end of the final marking");
4259 }
4260 
4261 void CMSParInitialMarkTask::work(uint worker_id) {
4262   elapsedTimer _timer;
4263   ResourceMark rm;
4264   HandleMark   hm;
4265 
4266   // ---------- scan from roots --------------
4267   _timer.start();
4268   CMSHeap* heap = CMSHeap::heap();
4269   ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4270 
4271   // ---------- young gen roots --------------
4272   {
4273     work_on_young_gen_roots(&par_mri_cl);
4274     _timer.stop();
4275     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4276   }
4277 
4278   // ---------- remaining roots --------------
4279   _timer.reset();
4280   _timer.start();
4281 
4282   CLDToOopClosure cld_closure(&par_mri_cl, true);
4283 
4284   heap->cms_process_roots(_strong_roots_scope,
4285                           false,     // yg was scanned above
4286                           GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4287                           _collector->should_unload_classes(),
4288                           &par_mri_cl,
4289                           &cld_closure);
4290   assert(_collector->should_unload_classes()
4291          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4292          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4293   _timer.stop();
4294   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4295 }
4296 
4297 // Parallel remark task
4298 class CMSParRemarkTask: public CMSParMarkTask {
4299   CompactibleFreeListSpace* _cms_space;
4300 
4301   // The per-thread work queues, available here for stealing.
4302   OopTaskQueueSet*       _task_queues;
4303   ParallelTaskTerminator _term;
4304   StrongRootsScope*      _strong_roots_scope;
4305 
4306  public:
4307   // A value of 0 passed to n_workers will cause the number of
4308   // workers to be taken from the active workers in the work gang.
4309   CMSParRemarkTask(CMSCollector* collector,
4310                    CompactibleFreeListSpace* cms_space,
4311                    uint n_workers, WorkGang* workers,
4312                    OopTaskQueueSet* task_queues,
4313                    StrongRootsScope* strong_roots_scope):
4314     CMSParMarkTask("Rescan roots and grey objects in parallel",
4315                    collector, n_workers),
4316     _cms_space(cms_space),
4317     _task_queues(task_queues),
4318     _term(n_workers, task_queues),
4319     _strong_roots_scope(strong_roots_scope) { }
4320 
4321   OopTaskQueueSet* task_queues() { return _task_queues; }
4322 
4323   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4324 
4325   ParallelTaskTerminator* terminator() { return &_term; }
4326   uint n_workers() { return _n_workers; }
4327 
4328   void work(uint worker_id);
4329 
4330  private:
4331   // ... of  dirty cards in old space
4332   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4333                                   ParMarkRefsIntoAndScanClosure* cl);
4334 
4335   // ... work stealing for the above
4336   void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4337 };
4338 
4339 class RemarkCLDClosure : public CLDClosure {
4340   CLDToOopClosure _cm_closure;
4341  public:
4342   RemarkCLDClosure(OopClosure* oop_closure) : _cm_closure(oop_closure) {}
4343   void do_cld(ClassLoaderData* cld) {
4344     // Check if we have modified any oops in the CLD during the concurrent marking.
4345     if (cld->has_accumulated_modified_oops()) {
4346       cld->clear_accumulated_modified_oops();
4347 
4348       // We could have transfered the current modified marks to the accumulated marks,
4349       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4350     } else if (cld->has_modified_oops()) {
4351       // Don't clear anything, this info is needed by the next young collection.
4352     } else {
4353       // No modified oops in the ClassLoaderData.
4354       return;
4355     }
4356 
4357     // The klass has modified fields, need to scan the klass.
4358     _cm_closure.do_cld(cld);
4359   }
4360 };
4361 
4362 void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
4363   ParNewGeneration* young_gen = _collector->_young_gen;
4364   ContiguousSpace* eden_space = young_gen->eden();
4365   ContiguousSpace* from_space = young_gen->from();
4366   ContiguousSpace* to_space   = young_gen->to();
4367 
4368   HeapWord** eca = _collector->_eden_chunk_array;
4369   size_t     ect = _collector->_eden_chunk_index;
4370   HeapWord** sca = _collector->_survivor_chunk_array;
4371   size_t     sct = _collector->_survivor_chunk_index;
4372 
4373   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4374   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4375 
4376   do_young_space_rescan(cl, to_space, NULL, 0);
4377   do_young_space_rescan(cl, from_space, sca, sct);
4378   do_young_space_rescan(cl, eden_space, eca, ect);
4379 }
4380 
4381 // work_queue(i) is passed to the closure
4382 // ParMarkRefsIntoAndScanClosure.  The "i" parameter
4383 // also is passed to do_dirty_card_rescan_tasks() and to
4384 // do_work_steal() to select the i-th task_queue.
4385 
4386 void CMSParRemarkTask::work(uint worker_id) {
4387   elapsedTimer _timer;
4388   ResourceMark rm;
4389   HandleMark   hm;
4390 
4391   // ---------- rescan from roots --------------
4392   _timer.start();
4393   CMSHeap* heap = CMSHeap::heap();
4394   ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4395     _collector->_span, _collector->ref_processor(),
4396     &(_collector->_markBitMap),
4397     work_queue(worker_id));
4398 
4399   // Rescan young gen roots first since these are likely
4400   // coarsely partitioned and may, on that account, constitute
4401   // the critical path; thus, it's best to start off that
4402   // work first.
4403   // ---------- young gen roots --------------
4404   {
4405     work_on_young_gen_roots(&par_mrias_cl);
4406     _timer.stop();
4407     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4408   }
4409 
4410   // ---------- remaining roots --------------
4411   _timer.reset();
4412   _timer.start();
4413   heap->cms_process_roots(_strong_roots_scope,
4414                           false,     // yg was scanned above
4415                           GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4416                           _collector->should_unload_classes(),
4417                           &par_mrias_cl,
4418                           NULL);     // The dirty klasses will be handled below
4419 
4420   assert(_collector->should_unload_classes()
4421          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4422          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4423   _timer.stop();
4424   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4425 
4426   // ---------- unhandled CLD scanning ----------
4427   if (worker_id == 0) { // Single threaded at the moment.
4428     _timer.reset();
4429     _timer.start();
4430 
4431     // Scan all new class loader data objects and new dependencies that were
4432     // introduced during concurrent marking.
4433     ResourceMark rm;
4434     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4435     for (int i = 0; i < array->length(); i++) {
4436       par_mrias_cl.do_cld_nv(array->at(i));
4437     }
4438 
4439     // We don't need to keep track of new CLDs anymore.
4440     ClassLoaderDataGraph::remember_new_clds(false);
4441 
4442     _timer.stop();
4443     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4444   }
4445 
4446   // We might have added oops to ClassLoaderData::_handles during the
4447   // concurrent marking phase. These oops do not always point to newly allocated objects
4448   // that are guaranteed to be kept alive.  Hence,
4449   // we do have to revisit the _handles block during the remark phase.
4450 
4451   // ---------- dirty CLD scanning ----------
4452   if (worker_id == 0) { // Single threaded at the moment.
4453     _timer.reset();
4454     _timer.start();
4455 
4456     // Scan all classes that was dirtied during the concurrent marking phase.
4457     RemarkCLDClosure remark_closure(&par_mrias_cl);
4458     ClassLoaderDataGraph::cld_do(&remark_closure);
4459 
4460     _timer.stop();
4461     log_trace(gc, task)("Finished dirty CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4462   }
4463 
4464 
4465   // ---------- rescan dirty cards ------------
4466   _timer.reset();
4467   _timer.start();
4468 
4469   // Do the rescan tasks for each of the two spaces
4470   // (cms_space) in turn.
4471   // "worker_id" is passed to select the task_queue for "worker_id"
4472   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4473   _timer.stop();
4474   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4475 
4476   // ---------- steal work from other threads ...
4477   // ---------- ... and drain overflow list.
4478   _timer.reset();
4479   _timer.start();
4480   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4481   _timer.stop();
4482   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4483 }
4484 
4485 void
4486 CMSParMarkTask::do_young_space_rescan(
4487   OopsInGenClosure* cl, ContiguousSpace* space,
4488   HeapWord** chunk_array, size_t chunk_top) {
4489   // Until all tasks completed:
4490   // . claim an unclaimed task
4491   // . compute region boundaries corresponding to task claimed
4492   //   using chunk_array
4493   // . par_oop_iterate(cl) over that region
4494 
4495   ResourceMark rm;
4496   HandleMark   hm;
4497 
4498   SequentialSubTasksDone* pst = space->par_seq_tasks();
4499 
4500   uint nth_task = 0;
4501   uint n_tasks  = pst->n_tasks();
4502 
4503   if (n_tasks > 0) {
4504     assert(pst->valid(), "Uninitialized use?");
4505     HeapWord *start, *end;
4506     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4507       // We claimed task # nth_task; compute its boundaries.
4508       if (chunk_top == 0) {  // no samples were taken
4509         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4510         start = space->bottom();
4511         end   = space->top();
4512       } else if (nth_task == 0) {
4513         start = space->bottom();
4514         end   = chunk_array[nth_task];
4515       } else if (nth_task < (uint)chunk_top) {
4516         assert(nth_task >= 1, "Control point invariant");
4517         start = chunk_array[nth_task - 1];
4518         end   = chunk_array[nth_task];
4519       } else {
4520         assert(nth_task == (uint)chunk_top, "Control point invariant");
4521         start = chunk_array[chunk_top - 1];
4522         end   = space->top();
4523       }
4524       MemRegion mr(start, end);
4525       // Verify that mr is in space
4526       assert(mr.is_empty() || space->used_region().contains(mr),
4527              "Should be in space");
4528       // Verify that "start" is an object boundary
4529       assert(mr.is_empty() || oopDesc::is_oop(oop(mr.start())),
4530              "Should be an oop");
4531       space->par_oop_iterate(mr, cl);
4532     }
4533     pst->all_tasks_completed();
4534   }
4535 }
4536 
4537 void
4538 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4539   CompactibleFreeListSpace* sp, int i,
4540   ParMarkRefsIntoAndScanClosure* cl) {
4541   // Until all tasks completed:
4542   // . claim an unclaimed task
4543   // . compute region boundaries corresponding to task claimed
4544   // . transfer dirty bits ct->mut for that region
4545   // . apply rescanclosure to dirty mut bits for that region
4546 
4547   ResourceMark rm;
4548   HandleMark   hm;
4549 
4550   OopTaskQueue* work_q = work_queue(i);
4551   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4552   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4553   // CAUTION: This closure has state that persists across calls to
4554   // the work method dirty_range_iterate_clear() in that it has
4555   // embedded in it a (subtype of) UpwardsObjectClosure. The
4556   // use of that state in the embedded UpwardsObjectClosure instance
4557   // assumes that the cards are always iterated (even if in parallel
4558   // by several threads) in monotonically increasing order per each
4559   // thread. This is true of the implementation below which picks
4560   // card ranges (chunks) in monotonically increasing order globally
4561   // and, a-fortiori, in monotonically increasing order per thread
4562   // (the latter order being a subsequence of the former).
4563   // If the work code below is ever reorganized into a more chaotic
4564   // work-partitioning form than the current "sequential tasks"
4565   // paradigm, the use of that persistent state will have to be
4566   // revisited and modified appropriately. See also related
4567   // bug 4756801 work on which should examine this code to make
4568   // sure that the changes there do not run counter to the
4569   // assumptions made here and necessary for correctness and
4570   // efficiency. Note also that this code might yield inefficient
4571   // behavior in the case of very large objects that span one or
4572   // more work chunks. Such objects would potentially be scanned
4573   // several times redundantly. Work on 4756801 should try and
4574   // address that performance anomaly if at all possible. XXX
4575   MemRegion  full_span  = _collector->_span;
4576   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4577   MarkFromDirtyCardsClosure
4578     greyRescanClosure(_collector, full_span, // entire span of interest
4579                       sp, bm, work_q, cl);
4580 
4581   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4582   assert(pst->valid(), "Uninitialized use?");
4583   uint nth_task = 0;
4584   const int alignment = CardTable::card_size * BitsPerWord;
4585   MemRegion span = sp->used_region();
4586   HeapWord* start_addr = span.start();
4587   HeapWord* end_addr = align_up(span.end(), alignment);
4588   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4589   assert(is_aligned(start_addr, alignment), "Check alignment");
4590   assert(is_aligned(chunk_size, alignment), "Check alignment");
4591 
4592   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4593     // Having claimed the nth_task, compute corresponding mem-region,
4594     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4595     // The alignment restriction ensures that we do not need any
4596     // synchronization with other gang-workers while setting or
4597     // clearing bits in thus chunk of the MUT.
4598     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4599                                     start_addr + (nth_task+1)*chunk_size);
4600     // The last chunk's end might be way beyond end of the
4601     // used region. In that case pull back appropriately.
4602     if (this_span.end() > end_addr) {
4603       this_span.set_end(end_addr);
4604       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4605     }
4606     // Iterate over the dirty cards covering this chunk, marking them
4607     // precleaned, and setting the corresponding bits in the mod union
4608     // table. Since we have been careful to partition at Card and MUT-word
4609     // boundaries no synchronization is needed between parallel threads.
4610     _collector->_ct->dirty_card_iterate(this_span,
4611                                                  &modUnionClosure);
4612 
4613     // Having transferred these marks into the modUnionTable,
4614     // rescan the marked objects on the dirty cards in the modUnionTable.
4615     // Even if this is at a synchronous collection, the initial marking
4616     // may have been done during an asynchronous collection so there
4617     // may be dirty bits in the mod-union table.
4618     _collector->_modUnionTable.dirty_range_iterate_clear(
4619                   this_span, &greyRescanClosure);
4620     _collector->_modUnionTable.verifyNoOneBitsInRange(
4621                                  this_span.start(),
4622                                  this_span.end());
4623   }
4624   pst->all_tasks_completed();  // declare that i am done
4625 }
4626 
4627 // . see if we can share work_queues with ParNew? XXX
4628 void
4629 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4630                                 int* seed) {
4631   OopTaskQueue* work_q = work_queue(i);
4632   NOT_PRODUCT(int num_steals = 0;)
4633   oop obj_to_scan;
4634   CMSBitMap* bm = &(_collector->_markBitMap);
4635 
4636   while (true) {
4637     // Completely finish any left over work from (an) earlier round(s)
4638     cl->trim_queue(0);
4639     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4640                                          (size_t)ParGCDesiredObjsFromOverflowList);
4641     // Now check if there's any work in the overflow list
4642     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4643     // only affects the number of attempts made to get work from the
4644     // overflow list and does not affect the number of workers.  Just
4645     // pass ParallelGCThreads so this behavior is unchanged.
4646     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4647                                                 work_q,
4648                                                 ParallelGCThreads)) {
4649       // found something in global overflow list;
4650       // not yet ready to go stealing work from others.
4651       // We'd like to assert(work_q->size() != 0, ...)
4652       // because we just took work from the overflow list,
4653       // but of course we can't since all of that could have
4654       // been already stolen from us.
4655       // "He giveth and He taketh away."
4656       continue;
4657     }
4658     // Verify that we have no work before we resort to stealing
4659     assert(work_q->size() == 0, "Have work, shouldn't steal");
4660     // Try to steal from other queues that have work
4661     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4662       NOT_PRODUCT(num_steals++;)
4663       assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!");
4664       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4665       // Do scanning work
4666       obj_to_scan->oop_iterate(cl);
4667       // Loop around, finish this work, and try to steal some more
4668     } else if (terminator()->offer_termination()) {
4669         break;  // nirvana from the infinite cycle
4670     }
4671   }
4672   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4673   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4674          "Else our work is not yet done");
4675 }
4676 
4677 // Record object boundaries in _eden_chunk_array by sampling the eden
4678 // top in the slow-path eden object allocation code path and record
4679 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4680 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4681 // sampling in sample_eden() that activates during the part of the
4682 // preclean phase.
4683 void CMSCollector::sample_eden_chunk() {
4684   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4685     if (_eden_chunk_lock->try_lock()) {
4686       // Record a sample. This is the critical section. The contents
4687       // of the _eden_chunk_array have to be non-decreasing in the
4688       // address order.
4689       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4690       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4691              "Unexpected state of Eden");
4692       if (_eden_chunk_index == 0 ||
4693           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4694            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4695                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4696         _eden_chunk_index++;  // commit sample
4697       }
4698       _eden_chunk_lock->unlock();
4699     }
4700   }
4701 }
4702 
4703 // Return a thread-local PLAB recording array, as appropriate.
4704 void* CMSCollector::get_data_recorder(int thr_num) {
4705   if (_survivor_plab_array != NULL &&
4706       (CMSPLABRecordAlways ||
4707        (_collectorState > Marking && _collectorState < FinalMarking))) {
4708     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4709     ChunkArray* ca = &_survivor_plab_array[thr_num];
4710     ca->reset();   // clear it so that fresh data is recorded
4711     return (void*) ca;
4712   } else {
4713     return NULL;
4714   }
4715 }
4716 
4717 // Reset all the thread-local PLAB recording arrays
4718 void CMSCollector::reset_survivor_plab_arrays() {
4719   for (uint i = 0; i < ParallelGCThreads; i++) {
4720     _survivor_plab_array[i].reset();
4721   }
4722 }
4723 
4724 // Merge the per-thread plab arrays into the global survivor chunk
4725 // array which will provide the partitioning of the survivor space
4726 // for CMS initial scan and rescan.
4727 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4728                                               int no_of_gc_threads) {
4729   assert(_survivor_plab_array  != NULL, "Error");
4730   assert(_survivor_chunk_array != NULL, "Error");
4731   assert(_collectorState == FinalMarking ||
4732          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4733   for (int j = 0; j < no_of_gc_threads; j++) {
4734     _cursor[j] = 0;
4735   }
4736   HeapWord* top = surv->top();
4737   size_t i;
4738   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4739     HeapWord* min_val = top;          // Higher than any PLAB address
4740     uint      min_tid = 0;            // position of min_val this round
4741     for (int j = 0; j < no_of_gc_threads; j++) {
4742       ChunkArray* cur_sca = &_survivor_plab_array[j];
4743       if (_cursor[j] == cur_sca->end()) {
4744         continue;
4745       }
4746       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4747       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4748       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4749       if (cur_val < min_val) {
4750         min_tid = j;
4751         min_val = cur_val;
4752       } else {
4753         assert(cur_val < top, "All recorded addresses should be less");
4754       }
4755     }
4756     // At this point min_val and min_tid are respectively
4757     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4758     // and the thread (j) that witnesses that address.
4759     // We record this address in the _survivor_chunk_array[i]
4760     // and increment _cursor[min_tid] prior to the next round i.
4761     if (min_val == top) {
4762       break;
4763     }
4764     _survivor_chunk_array[i] = min_val;
4765     _cursor[min_tid]++;
4766   }
4767   // We are all done; record the size of the _survivor_chunk_array
4768   _survivor_chunk_index = i; // exclusive: [0, i)
4769   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4770   // Verify that we used up all the recorded entries
4771   #ifdef ASSERT
4772     size_t total = 0;
4773     for (int j = 0; j < no_of_gc_threads; j++) {
4774       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4775       total += _cursor[j];
4776     }
4777     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4778     // Check that the merged array is in sorted order
4779     if (total > 0) {
4780       for (size_t i = 0; i < total - 1; i++) {
4781         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4782                                      i, p2i(_survivor_chunk_array[i]));
4783         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4784                "Not sorted");
4785       }
4786     }
4787   #endif // ASSERT
4788 }
4789 
4790 // Set up the space's par_seq_tasks structure for work claiming
4791 // for parallel initial scan and rescan of young gen.
4792 // See ParRescanTask where this is currently used.
4793 void
4794 CMSCollector::
4795 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4796   assert(n_threads > 0, "Unexpected n_threads argument");
4797 
4798   // Eden space
4799   if (!_young_gen->eden()->is_empty()) {
4800     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4801     assert(!pst->valid(), "Clobbering existing data?");
4802     // Each valid entry in [0, _eden_chunk_index) represents a task.
4803     size_t n_tasks = _eden_chunk_index + 1;
4804     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4805     // Sets the condition for completion of the subtask (how many threads
4806     // need to finish in order to be done).
4807     pst->set_n_threads(n_threads);
4808     pst->set_n_tasks((int)n_tasks);
4809   }
4810 
4811   // Merge the survivor plab arrays into _survivor_chunk_array
4812   if (_survivor_plab_array != NULL) {
4813     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4814   } else {
4815     assert(_survivor_chunk_index == 0, "Error");
4816   }
4817 
4818   // To space
4819   {
4820     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4821     assert(!pst->valid(), "Clobbering existing data?");
4822     // Sets the condition for completion of the subtask (how many threads
4823     // need to finish in order to be done).
4824     pst->set_n_threads(n_threads);
4825     pst->set_n_tasks(1);
4826     assert(pst->valid(), "Error");
4827   }
4828 
4829   // From space
4830   {
4831     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4832     assert(!pst->valid(), "Clobbering existing data?");
4833     size_t n_tasks = _survivor_chunk_index + 1;
4834     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4835     // Sets the condition for completion of the subtask (how many threads
4836     // need to finish in order to be done).
4837     pst->set_n_threads(n_threads);
4838     pst->set_n_tasks((int)n_tasks);
4839     assert(pst->valid(), "Error");
4840   }
4841 }
4842 
4843 // Parallel version of remark
4844 void CMSCollector::do_remark_parallel() {
4845   CMSHeap* heap = CMSHeap::heap();
4846   WorkGang* workers = heap->workers();
4847   assert(workers != NULL, "Need parallel worker threads.");
4848   // Choose to use the number of GC workers most recently set
4849   // into "active_workers".
4850   uint n_workers = workers->active_workers();
4851 
4852   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4853 
4854   StrongRootsScope srs(n_workers);
4855 
4856   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4857 
4858   // We won't be iterating over the cards in the card table updating
4859   // the younger_gen cards, so we shouldn't call the following else
4860   // the verification code as well as subsequent younger_refs_iterate
4861   // code would get confused. XXX
4862   // heap->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4863 
4864   // The young gen rescan work will not be done as part of
4865   // process_roots (which currently doesn't know how to
4866   // parallelize such a scan), but rather will be broken up into
4867   // a set of parallel tasks (via the sampling that the [abortable]
4868   // preclean phase did of eden, plus the [two] tasks of
4869   // scanning the [two] survivor spaces. Further fine-grain
4870   // parallelization of the scanning of the survivor spaces
4871   // themselves, and of precleaning of the young gen itself
4872   // is deferred to the future.
4873   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4874 
4875   // The dirty card rescan work is broken up into a "sequence"
4876   // of parallel tasks (per constituent space) that are dynamically
4877   // claimed by the parallel threads.
4878   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4879 
4880   // It turns out that even when we're using 1 thread, doing the work in a
4881   // separate thread causes wide variance in run times.  We can't help this
4882   // in the multi-threaded case, but we special-case n=1 here to get
4883   // repeatable measurements of the 1-thread overhead of the parallel code.
4884   if (n_workers > 1) {
4885     // Make refs discovery MT-safe, if it isn't already: it may not
4886     // necessarily be so, since it's possible that we are doing
4887     // ST marking.
4888     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4889     workers->run_task(&tsk);
4890   } else {
4891     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4892     tsk.work(0);
4893   }
4894 
4895   // restore, single-threaded for now, any preserved marks
4896   // as a result of work_q overflow
4897   restore_preserved_marks_if_any();
4898 }
4899 
4900 // Non-parallel version of remark
4901 void CMSCollector::do_remark_non_parallel() {
4902   ResourceMark rm;
4903   HandleMark   hm;
4904   CMSHeap* heap = CMSHeap::heap();
4905   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4906 
4907   MarkRefsIntoAndScanClosure
4908     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4909              &_markStack, this,
4910              false /* should_yield */, false /* not precleaning */);
4911   MarkFromDirtyCardsClosure
4912     markFromDirtyCardsClosure(this, _span,
4913                               NULL,  // space is set further below
4914                               &_markBitMap, &_markStack, &mrias_cl);
4915   {
4916     GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4917     // Iterate over the dirty cards, setting the corresponding bits in the
4918     // mod union table.
4919     {
4920       ModUnionClosure modUnionClosure(&_modUnionTable);
4921       _ct->dirty_card_iterate(_cmsGen->used_region(),
4922                               &modUnionClosure);
4923     }
4924     // Having transferred these marks into the modUnionTable, we just need
4925     // to rescan the marked objects on the dirty cards in the modUnionTable.
4926     // The initial marking may have been done during an asynchronous
4927     // collection so there may be dirty bits in the mod-union table.
4928     const int alignment = CardTable::card_size * BitsPerWord;
4929     {
4930       // ... First handle dirty cards in CMS gen
4931       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4932       MemRegion ur = _cmsGen->used_region();
4933       HeapWord* lb = ur.start();
4934       HeapWord* ub = align_up(ur.end(), alignment);
4935       MemRegion cms_span(lb, ub);
4936       _modUnionTable.dirty_range_iterate_clear(cms_span,
4937                                                &markFromDirtyCardsClosure);
4938       verify_work_stacks_empty();
4939       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4940     }
4941   }
4942   if (VerifyDuringGC &&
4943       CMSHeap::heap()->total_collections() >= VerifyGCStartAt) {
4944     HandleMark hm;  // Discard invalid handles created during verification
4945     Universe::verify();
4946   }
4947   {
4948     GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4949 
4950     verify_work_stacks_empty();
4951 
4952     heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4953     StrongRootsScope srs(1);
4954 
4955     heap->cms_process_roots(&srs,
4956                             true,  // young gen as roots
4957                             GenCollectedHeap::ScanningOption(roots_scanning_options()),
4958                             should_unload_classes(),
4959                             &mrias_cl,
4960                             NULL); // The dirty klasses will be handled below
4961 
4962     assert(should_unload_classes()
4963            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4964            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4965   }
4966 
4967   {
4968     GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
4969 
4970     verify_work_stacks_empty();
4971 
4972     // Scan all class loader data objects that might have been introduced
4973     // during concurrent marking.
4974     ResourceMark rm;
4975     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4976     for (int i = 0; i < array->length(); i++) {
4977       mrias_cl.do_cld_nv(array->at(i));
4978     }
4979 
4980     // We don't need to keep track of new CLDs anymore.
4981     ClassLoaderDataGraph::remember_new_clds(false);
4982 
4983     verify_work_stacks_empty();
4984   }
4985 
4986   // We might have added oops to ClassLoaderData::_handles during the
4987   // concurrent marking phase. These oops do not point to newly allocated objects
4988   // that are guaranteed to be kept alive.  Hence,
4989   // we do have to revisit the _handles block during the remark phase.
4990   {
4991     GCTraceTime(Trace, gc, phases) t("Dirty CLD Scan", _gc_timer_cm);
4992 
4993     verify_work_stacks_empty();
4994 
4995     RemarkCLDClosure remark_closure(&mrias_cl);
4996     ClassLoaderDataGraph::cld_do(&remark_closure);
4997 
4998     verify_work_stacks_empty();
4999   }
5000 
5001   verify_work_stacks_empty();
5002   // Restore evacuated mark words, if any, used for overflow list links
5003   restore_preserved_marks_if_any();
5004 
5005   verify_overflow_empty();
5006 }
5007 
5008 ////////////////////////////////////////////////////////
5009 // Parallel Reference Processing Task Proxy Class
5010 ////////////////////////////////////////////////////////
5011 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5012   OopTaskQueueSet*       _queues;
5013   ParallelTaskTerminator _terminator;
5014  public:
5015   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5016     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5017   ParallelTaskTerminator* terminator() { return &_terminator; }
5018   OopTaskQueueSet* queues() { return _queues; }
5019 };
5020 
5021 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5022   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5023   CMSCollector*          _collector;
5024   CMSBitMap*             _mark_bit_map;
5025   const MemRegion        _span;
5026   ProcessTask&           _task;
5027 
5028 public:
5029   CMSRefProcTaskProxy(ProcessTask&     task,
5030                       CMSCollector*    collector,
5031                       const MemRegion& span,
5032                       CMSBitMap*       mark_bit_map,
5033                       AbstractWorkGang* workers,
5034                       OopTaskQueueSet* task_queues):
5035     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5036       task_queues,
5037       workers->active_workers()),
5038     _task(task),
5039     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5040   {
5041     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5042            "Inconsistency in _span");
5043   }
5044 
5045   OopTaskQueueSet* task_queues() { return queues(); }
5046 
5047   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5048 
5049   void do_work_steal(int i,
5050                      CMSParDrainMarkingStackClosure* drain,
5051                      CMSParKeepAliveClosure* keep_alive,
5052                      int* seed);
5053 
5054   virtual void work(uint worker_id);
5055 };
5056 
5057 void CMSRefProcTaskProxy::work(uint worker_id) {
5058   ResourceMark rm;
5059   HandleMark hm;
5060   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5061   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5062                                         _mark_bit_map,
5063                                         work_queue(worker_id));
5064   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5065                                                  _mark_bit_map,
5066                                                  work_queue(worker_id));
5067   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5068   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5069   if (_task.marks_oops_alive()) {
5070     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5071                   _collector->hash_seed(worker_id));
5072   }
5073   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5074   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5075 }
5076 
5077 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5078   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5079   EnqueueTask& _task;
5080 
5081 public:
5082   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5083     : AbstractGangTask("Enqueue reference objects in parallel"),
5084       _task(task)
5085   { }
5086 
5087   virtual void work(uint worker_id)
5088   {
5089     _task.work(worker_id);
5090   }
5091 };
5092 
5093 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5094   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5095    _span(span),
5096    _bit_map(bit_map),
5097    _work_queue(work_queue),
5098    _mark_and_push(collector, span, bit_map, work_queue),
5099    _low_water_mark(MIN2((work_queue->max_elems()/4),
5100                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5101 { }
5102 
5103 // . see if we can share work_queues with ParNew? XXX
5104 void CMSRefProcTaskProxy::do_work_steal(int i,
5105   CMSParDrainMarkingStackClosure* drain,
5106   CMSParKeepAliveClosure* keep_alive,
5107   int* seed) {
5108   OopTaskQueue* work_q = work_queue(i);
5109   NOT_PRODUCT(int num_steals = 0;)
5110   oop obj_to_scan;
5111 
5112   while (true) {
5113     // Completely finish any left over work from (an) earlier round(s)
5114     drain->trim_queue(0);
5115     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5116                                          (size_t)ParGCDesiredObjsFromOverflowList);
5117     // Now check if there's any work in the overflow list
5118     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5119     // only affects the number of attempts made to get work from the
5120     // overflow list and does not affect the number of workers.  Just
5121     // pass ParallelGCThreads so this behavior is unchanged.
5122     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5123                                                 work_q,
5124                                                 ParallelGCThreads)) {
5125       // Found something in global overflow list;
5126       // not yet ready to go stealing work from others.
5127       // We'd like to assert(work_q->size() != 0, ...)
5128       // because we just took work from the overflow list,
5129       // but of course we can't, since all of that might have
5130       // been already stolen from us.
5131       continue;
5132     }
5133     // Verify that we have no work before we resort to stealing
5134     assert(work_q->size() == 0, "Have work, shouldn't steal");
5135     // Try to steal from other queues that have work
5136     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5137       NOT_PRODUCT(num_steals++;)
5138       assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!");
5139       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5140       // Do scanning work
5141       obj_to_scan->oop_iterate(keep_alive);
5142       // Loop around, finish this work, and try to steal some more
5143     } else if (terminator()->offer_termination()) {
5144       break;  // nirvana from the infinite cycle
5145     }
5146   }
5147   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5148 }
5149 
5150 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5151 {
5152   CMSHeap* heap = CMSHeap::heap();
5153   WorkGang* workers = heap->workers();
5154   assert(workers != NULL, "Need parallel worker threads.");
5155   CMSRefProcTaskProxy rp_task(task, &_collector,
5156                               _collector.ref_processor_span(),
5157                               _collector.markBitMap(),
5158                               workers, _collector.task_queues());
5159   workers->run_task(&rp_task);
5160 }
5161 
5162 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5163 {
5164 
5165   CMSHeap* heap = CMSHeap::heap();
5166   WorkGang* workers = heap->workers();
5167   assert(workers != NULL, "Need parallel worker threads.");
5168   CMSRefEnqueueTaskProxy enq_task(task);
5169   workers->run_task(&enq_task);
5170 }
5171 
5172 void CMSCollector::refProcessingWork() {
5173   ResourceMark rm;
5174   HandleMark   hm;
5175 
5176   ReferenceProcessor* rp = ref_processor();
5177   assert(_span_discoverer.span().equals(_span), "Spans should be equal");
5178   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5179   // Process weak references.
5180   rp->setup_policy(false);
5181   verify_work_stacks_empty();
5182 
5183   ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_q());
5184   {
5185     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5186 
5187     // Setup keep_alive and complete closures.
5188     CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5189                                             &_markStack, false /* !preclean */);
5190     CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5191                                   _span, &_markBitMap, &_markStack,
5192                                   &cmsKeepAliveClosure, false /* !preclean */);
5193 
5194     ReferenceProcessorStats stats;
5195     if (rp->processing_is_mt()) {
5196       // Set the degree of MT here.  If the discovery is done MT, there
5197       // may have been a different number of threads doing the discovery
5198       // and a different number of discovered lists may have Ref objects.
5199       // That is OK as long as the Reference lists are balanced (see
5200       // balance_all_queues() and balance_queues()).
5201       CMSHeap* heap = CMSHeap::heap();
5202       uint active_workers = ParallelGCThreads;
5203       WorkGang* workers = heap->workers();
5204       if (workers != NULL) {
5205         active_workers = workers->active_workers();
5206         // The expectation is that active_workers will have already
5207         // been set to a reasonable value.  If it has not been set,
5208         // investigate.
5209         assert(active_workers > 0, "Should have been set during scavenge");
5210       }
5211       rp->set_active_mt_degree(active_workers);
5212       CMSRefProcTaskExecutor task_executor(*this);
5213       stats = rp->process_discovered_references(&_is_alive_closure,
5214                                         &cmsKeepAliveClosure,
5215                                         &cmsDrainMarkingStackClosure,
5216                                         &task_executor,
5217                                         &pt);
5218     } else {
5219       stats = rp->process_discovered_references(&_is_alive_closure,
5220                                         &cmsKeepAliveClosure,
5221                                         &cmsDrainMarkingStackClosure,
5222                                         NULL,
5223                                         &pt);
5224     }
5225     _gc_tracer_cm->report_gc_reference_stats(stats);
5226     pt.print_all_references();
5227   }
5228 
5229   // This is the point where the entire marking should have completed.
5230   verify_work_stacks_empty();
5231 
5232   {
5233     GCTraceTime(Debug, gc, phases) t("Weak Processing", _gc_timer_cm);
5234     WeakProcessor::weak_oops_do(&_is_alive_closure, &do_nothing_cl);
5235   }
5236 
5237   if (should_unload_classes()) {
5238     {
5239       GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5240 
5241       // Unload classes and purge the SystemDictionary.
5242       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure, _gc_timer_cm);
5243 
5244       // Unload nmethods.
5245       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5246 
5247       // Prune dead klasses from subklass/sibling/implementor lists.
5248       Klass::clean_weak_klass_links();
5249     }
5250 
5251     {
5252       GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm);
5253       // Clean up unreferenced symbols in symbol table.
5254       SymbolTable::unlink();
5255     }
5256 
5257     {
5258       GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm);
5259       // Delete entries for dead interned strings.
5260       StringTable::unlink(&_is_alive_closure);
5261     }
5262   }
5263 
5264   // Restore any preserved marks as a result of mark stack or
5265   // work queue overflow
5266   restore_preserved_marks_if_any();  // done single-threaded for now
5267 
5268   rp->set_enqueuing_is_done(true);
5269   if (rp->processing_is_mt()) {
5270     rp->balance_all_queues();
5271     CMSRefProcTaskExecutor task_executor(*this);
5272     rp->enqueue_discovered_references(&task_executor, &pt);
5273   } else {
5274     rp->enqueue_discovered_references(NULL, &pt);
5275   }
5276   rp->verify_no_references_recorded();
5277   pt.print_enqueue_phase();
5278   assert(!rp->discovery_enabled(), "should have been disabled");
5279 }
5280 
5281 #ifndef PRODUCT
5282 void CMSCollector::check_correct_thread_executing() {
5283   Thread* t = Thread::current();
5284   // Only the VM thread or the CMS thread should be here.
5285   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5286          "Unexpected thread type");
5287   // If this is the vm thread, the foreground process
5288   // should not be waiting.  Note that _foregroundGCIsActive is
5289   // true while the foreground collector is waiting.
5290   if (_foregroundGCShouldWait) {
5291     // We cannot be the VM thread
5292     assert(t->is_ConcurrentGC_thread(),
5293            "Should be CMS thread");
5294   } else {
5295     // We can be the CMS thread only if we are in a stop-world
5296     // phase of CMS collection.
5297     if (t->is_ConcurrentGC_thread()) {
5298       assert(_collectorState == InitialMarking ||
5299              _collectorState == FinalMarking,
5300              "Should be a stop-world phase");
5301       // The CMS thread should be holding the CMS_token.
5302       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5303              "Potential interference with concurrently "
5304              "executing VM thread");
5305     }
5306   }
5307 }
5308 #endif
5309 
5310 void CMSCollector::sweep() {
5311   assert(_collectorState == Sweeping, "just checking");
5312   check_correct_thread_executing();
5313   verify_work_stacks_empty();
5314   verify_overflow_empty();
5315   increment_sweep_count();
5316   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
5317 
5318   _inter_sweep_timer.stop();
5319   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5320 
5321   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5322   _intra_sweep_timer.reset();
5323   _intra_sweep_timer.start();
5324   {
5325     GCTraceCPUTime tcpu;
5326     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5327     // First sweep the old gen
5328     {
5329       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5330                                bitMapLock());
5331       sweepWork(_cmsGen);
5332     }
5333 
5334     // Update Universe::_heap_*_at_gc figures.
5335     // We need all the free list locks to make the abstract state
5336     // transition from Sweeping to Resetting. See detailed note
5337     // further below.
5338     {
5339       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5340       // Update heap occupancy information which is used as
5341       // input to soft ref clearing policy at the next gc.
5342       Universe::update_heap_info_at_gc();
5343       _collectorState = Resizing;
5344     }
5345   }
5346   verify_work_stacks_empty();
5347   verify_overflow_empty();
5348 
5349   if (should_unload_classes()) {
5350     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5351     // requires that the virtual spaces are stable and not deleted.
5352     ClassLoaderDataGraph::set_should_purge(true);
5353   }
5354 
5355   _intra_sweep_timer.stop();
5356   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5357 
5358   _inter_sweep_timer.reset();
5359   _inter_sweep_timer.start();
5360 
5361   // We need to use a monotonically non-decreasing time in ms
5362   // or we will see time-warp warnings and os::javaTimeMillis()
5363   // does not guarantee monotonicity.
5364   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5365   update_time_of_last_gc(now);
5366 
5367   // NOTE on abstract state transitions:
5368   // Mutators allocate-live and/or mark the mod-union table dirty
5369   // based on the state of the collection.  The former is done in
5370   // the interval [Marking, Sweeping] and the latter in the interval
5371   // [Marking, Sweeping).  Thus the transitions into the Marking state
5372   // and out of the Sweeping state must be synchronously visible
5373   // globally to the mutators.
5374   // The transition into the Marking state happens with the world
5375   // stopped so the mutators will globally see it.  Sweeping is
5376   // done asynchronously by the background collector so the transition
5377   // from the Sweeping state to the Resizing state must be done
5378   // under the freelistLock (as is the check for whether to
5379   // allocate-live and whether to dirty the mod-union table).
5380   assert(_collectorState == Resizing, "Change of collector state to"
5381     " Resizing must be done under the freelistLocks (plural)");
5382 
5383   // Now that sweeping has been completed, we clear
5384   // the incremental_collection_failed flag,
5385   // thus inviting a younger gen collection to promote into
5386   // this generation. If such a promotion may still fail,
5387   // the flag will be set again when a young collection is
5388   // attempted.
5389   CMSHeap* heap = CMSHeap::heap();
5390   heap->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5391   heap->update_full_collections_completed(_collection_count_start);
5392 }
5393 
5394 // FIX ME!!! Looks like this belongs in CFLSpace, with
5395 // CMSGen merely delegating to it.
5396 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5397   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5398   HeapWord*  minAddr        = _cmsSpace->bottom();
5399   HeapWord*  largestAddr    =
5400     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5401   if (largestAddr == NULL) {
5402     // The dictionary appears to be empty.  In this case
5403     // try to coalesce at the end of the heap.
5404     largestAddr = _cmsSpace->end();
5405   }
5406   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5407   size_t nearLargestOffset =
5408     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5409   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5410                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5411   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5412 }
5413 
5414 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5415   return addr >= _cmsSpace->nearLargestChunk();
5416 }
5417 
5418 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5419   return _cmsSpace->find_chunk_at_end();
5420 }
5421 
5422 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5423                                                     bool full) {
5424   // If the young generation has been collected, gather any statistics
5425   // that are of interest at this point.
5426   bool current_is_young = CMSHeap::heap()->is_young_gen(current_generation);
5427   if (!full && current_is_young) {
5428     // Gather statistics on the young generation collection.
5429     collector()->stats().record_gc0_end(used());
5430   }
5431 }
5432 
5433 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5434   // We iterate over the space(s) underlying this generation,
5435   // checking the mark bit map to see if the bits corresponding
5436   // to specific blocks are marked or not. Blocks that are
5437   // marked are live and are not swept up. All remaining blocks
5438   // are swept up, with coalescing on-the-fly as we sweep up
5439   // contiguous free and/or garbage blocks:
5440   // We need to ensure that the sweeper synchronizes with allocators
5441   // and stop-the-world collectors. In particular, the following
5442   // locks are used:
5443   // . CMS token: if this is held, a stop the world collection cannot occur
5444   // . freelistLock: if this is held no allocation can occur from this
5445   //                 generation by another thread
5446   // . bitMapLock: if this is held, no other thread can access or update
5447   //
5448 
5449   // Note that we need to hold the freelistLock if we use
5450   // block iterate below; else the iterator might go awry if
5451   // a mutator (or promotion) causes block contents to change
5452   // (for instance if the allocator divvies up a block).
5453   // If we hold the free list lock, for all practical purposes
5454   // young generation GC's can't occur (they'll usually need to
5455   // promote), so we might as well prevent all young generation
5456   // GC's while we do a sweeping step. For the same reason, we might
5457   // as well take the bit map lock for the entire duration
5458 
5459   // check that we hold the requisite locks
5460   assert(have_cms_token(), "Should hold cms token");
5461   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5462   assert_lock_strong(old_gen->freelistLock());
5463   assert_lock_strong(bitMapLock());
5464 
5465   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5466   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5467   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5468                                           _inter_sweep_estimate.padded_average(),
5469                                           _intra_sweep_estimate.padded_average());
5470   old_gen->setNearLargestChunk();
5471 
5472   {
5473     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5474     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5475     // We need to free-up/coalesce garbage/blocks from a
5476     // co-terminal free run. This is done in the SweepClosure
5477     // destructor; so, do not remove this scope, else the
5478     // end-of-sweep-census below will be off by a little bit.
5479   }
5480   old_gen->cmsSpace()->sweep_completed();
5481   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5482   if (should_unload_classes()) {                // unloaded classes this cycle,
5483     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5484   } else {                                      // did not unload classes,
5485     _concurrent_cycles_since_last_unload++;     // ... increment count
5486   }
5487 }
5488 
5489 // Reset CMS data structures (for now just the marking bit map)
5490 // preparatory for the next cycle.
5491 void CMSCollector::reset_concurrent() {
5492   CMSTokenSyncWithLocks ts(true, bitMapLock());
5493 
5494   // If the state is not "Resetting", the foreground  thread
5495   // has done a collection and the resetting.
5496   if (_collectorState != Resetting) {
5497     assert(_collectorState == Idling, "The state should only change"
5498       " because the foreground collector has finished the collection");
5499     return;
5500   }
5501 
5502   {
5503     // Clear the mark bitmap (no grey objects to start with)
5504     // for the next cycle.
5505     GCTraceCPUTime tcpu;
5506     CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5507 
5508     HeapWord* curAddr = _markBitMap.startWord();
5509     while (curAddr < _markBitMap.endWord()) {
5510       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5511       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5512       _markBitMap.clear_large_range(chunk);
5513       if (ConcurrentMarkSweepThread::should_yield() &&
5514           !foregroundGCIsActive() &&
5515           CMSYield) {
5516         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5517                "CMS thread should hold CMS token");
5518         assert_lock_strong(bitMapLock());
5519         bitMapLock()->unlock();
5520         ConcurrentMarkSweepThread::desynchronize(true);
5521         stopTimer();
5522         incrementYields();
5523 
5524         // See the comment in coordinator_yield()
5525         for (unsigned i = 0; i < CMSYieldSleepCount &&
5526                          ConcurrentMarkSweepThread::should_yield() &&
5527                          !CMSCollector::foregroundGCIsActive(); ++i) {
5528           os::sleep(Thread::current(), 1, false);
5529         }
5530 
5531         ConcurrentMarkSweepThread::synchronize(true);
5532         bitMapLock()->lock_without_safepoint_check();
5533         startTimer();
5534       }
5535       curAddr = chunk.end();
5536     }
5537     // A successful mostly concurrent collection has been done.
5538     // Because only the full (i.e., concurrent mode failure) collections
5539     // are being measured for gc overhead limits, clean the "near" flag
5540     // and count.
5541     size_policy()->reset_gc_overhead_limit_count();
5542     _collectorState = Idling;
5543   }
5544 
5545   register_gc_end();
5546 }
5547 
5548 // Same as above but for STW paths
5549 void CMSCollector::reset_stw() {
5550   // already have the lock
5551   assert(_collectorState == Resetting, "just checking");
5552   assert_lock_strong(bitMapLock());
5553   GCIdMark gc_id_mark(_cmsThread->gc_id());
5554   _markBitMap.clear_all();
5555   _collectorState = Idling;
5556   register_gc_end();
5557 }
5558 
5559 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5560   GCTraceCPUTime tcpu;
5561   TraceCollectorStats tcs_cgc(cgc_counters());
5562 
5563   switch (op) {
5564     case CMS_op_checkpointRootsInitial: {
5565       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5566       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5567       checkpointRootsInitial();
5568       break;
5569     }
5570     case CMS_op_checkpointRootsFinal: {
5571       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5572       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5573       checkpointRootsFinal();
5574       break;
5575     }
5576     default:
5577       fatal("No such CMS_op");
5578   }
5579 }
5580 
5581 #ifndef PRODUCT
5582 size_t const CMSCollector::skip_header_HeapWords() {
5583   return FreeChunk::header_size();
5584 }
5585 
5586 // Try and collect here conditions that should hold when
5587 // CMS thread is exiting. The idea is that the foreground GC
5588 // thread should not be blocked if it wants to terminate
5589 // the CMS thread and yet continue to run the VM for a while
5590 // after that.
5591 void CMSCollector::verify_ok_to_terminate() const {
5592   assert(Thread::current()->is_ConcurrentGC_thread(),
5593          "should be called by CMS thread");
5594   assert(!_foregroundGCShouldWait, "should be false");
5595   // We could check here that all the various low-level locks
5596   // are not held by the CMS thread, but that is overkill; see
5597   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5598   // is checked.
5599 }
5600 #endif
5601 
5602 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5603    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5604           "missing Printezis mark?");
5605   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5606   size_t size = pointer_delta(nextOneAddr + 1, addr);
5607   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5608          "alignment problem");
5609   assert(size >= 3, "Necessary for Printezis marks to work");
5610   return size;
5611 }
5612 
5613 // A variant of the above (block_size_using_printezis_bits()) except
5614 // that we return 0 if the P-bits are not yet set.
5615 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5616   if (_markBitMap.isMarked(addr + 1)) {
5617     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5618     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5619     size_t size = pointer_delta(nextOneAddr + 1, addr);
5620     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5621            "alignment problem");
5622     assert(size >= 3, "Necessary for Printezis marks to work");
5623     return size;
5624   }
5625   return 0;
5626 }
5627 
5628 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5629   size_t sz = 0;
5630   oop p = (oop)addr;
5631   if (p->klass_or_null_acquire() != NULL) {
5632     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5633   } else {
5634     sz = block_size_using_printezis_bits(addr);
5635   }
5636   assert(sz > 0, "size must be nonzero");
5637   HeapWord* next_block = addr + sz;
5638   HeapWord* next_card  = align_up(next_block, CardTable::card_size);
5639   assert(align_down((uintptr_t)addr,      CardTable::card_size) <
5640          align_down((uintptr_t)next_card, CardTable::card_size),
5641          "must be different cards");
5642   return next_card;
5643 }
5644 
5645 
5646 // CMS Bit Map Wrapper /////////////////////////////////////////
5647 
5648 // Construct a CMS bit map infrastructure, but don't create the
5649 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5650 // further below.
5651 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5652   _bm(),
5653   _shifter(shifter),
5654   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5655                                     Monitor::_safepoint_check_sometimes) : NULL)
5656 {
5657   _bmStartWord = 0;
5658   _bmWordSize  = 0;
5659 }
5660 
5661 bool CMSBitMap::allocate(MemRegion mr) {
5662   _bmStartWord = mr.start();
5663   _bmWordSize  = mr.word_size();
5664   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5665                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5666   if (!brs.is_reserved()) {
5667     log_warning(gc)("CMS bit map allocation failure");
5668     return false;
5669   }
5670   // For now we'll just commit all of the bit map up front.
5671   // Later on we'll try to be more parsimonious with swap.
5672   if (!_virtual_space.initialize(brs, brs.size())) {
5673     log_warning(gc)("CMS bit map backing store failure");
5674     return false;
5675   }
5676   assert(_virtual_space.committed_size() == brs.size(),
5677          "didn't reserve backing store for all of CMS bit map?");
5678   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5679          _bmWordSize, "inconsistency in bit map sizing");
5680   _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter);
5681 
5682   // bm.clear(); // can we rely on getting zero'd memory? verify below
5683   assert(isAllClear(),
5684          "Expected zero'd memory from ReservedSpace constructor");
5685   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5686          "consistency check");
5687   return true;
5688 }
5689 
5690 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5691   HeapWord *next_addr, *end_addr, *last_addr;
5692   assert_locked();
5693   assert(covers(mr), "out-of-range error");
5694   // XXX assert that start and end are appropriately aligned
5695   for (next_addr = mr.start(), end_addr = mr.end();
5696        next_addr < end_addr; next_addr = last_addr) {
5697     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5698     last_addr = dirty_region.end();
5699     if (!dirty_region.is_empty()) {
5700       cl->do_MemRegion(dirty_region);
5701     } else {
5702       assert(last_addr == end_addr, "program logic");
5703       return;
5704     }
5705   }
5706 }
5707 
5708 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5709   _bm.print_on_error(st, prefix);
5710 }
5711 
5712 #ifndef PRODUCT
5713 void CMSBitMap::assert_locked() const {
5714   CMSLockVerifier::assert_locked(lock());
5715 }
5716 
5717 bool CMSBitMap::covers(MemRegion mr) const {
5718   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5719   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5720          "size inconsistency");
5721   return (mr.start() >= _bmStartWord) &&
5722          (mr.end()   <= endWord());
5723 }
5724 
5725 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5726     return (start >= _bmStartWord && (start + size) <= endWord());
5727 }
5728 
5729 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5730   // verify that there are no 1 bits in the interval [left, right)
5731   FalseBitMapClosure falseBitMapClosure;
5732   iterate(&falseBitMapClosure, left, right);
5733 }
5734 
5735 void CMSBitMap::region_invariant(MemRegion mr)
5736 {
5737   assert_locked();
5738   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5739   assert(!mr.is_empty(), "unexpected empty region");
5740   assert(covers(mr), "mr should be covered by bit map");
5741   // convert address range into offset range
5742   size_t start_ofs = heapWordToOffset(mr.start());
5743   // Make sure that end() is appropriately aligned
5744   assert(mr.end() == align_up(mr.end(), (1 << (_shifter+LogHeapWordSize))),
5745          "Misaligned mr.end()");
5746   size_t end_ofs   = heapWordToOffset(mr.end());
5747   assert(end_ofs > start_ofs, "Should mark at least one bit");
5748 }
5749 
5750 #endif
5751 
5752 bool CMSMarkStack::allocate(size_t size) {
5753   // allocate a stack of the requisite depth
5754   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5755                    size * sizeof(oop)));
5756   if (!rs.is_reserved()) {
5757     log_warning(gc)("CMSMarkStack allocation failure");
5758     return false;
5759   }
5760   if (!_virtual_space.initialize(rs, rs.size())) {
5761     log_warning(gc)("CMSMarkStack backing store failure");
5762     return false;
5763   }
5764   assert(_virtual_space.committed_size() == rs.size(),
5765          "didn't reserve backing store for all of CMS stack?");
5766   _base = (oop*)(_virtual_space.low());
5767   _index = 0;
5768   _capacity = size;
5769   NOT_PRODUCT(_max_depth = 0);
5770   return true;
5771 }
5772 
5773 // XXX FIX ME !!! In the MT case we come in here holding a
5774 // leaf lock. For printing we need to take a further lock
5775 // which has lower rank. We need to recalibrate the two
5776 // lock-ranks involved in order to be able to print the
5777 // messages below. (Or defer the printing to the caller.
5778 // For now we take the expedient path of just disabling the
5779 // messages for the problematic case.)
5780 void CMSMarkStack::expand() {
5781   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5782   if (_capacity == MarkStackSizeMax) {
5783     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5784       // We print a warning message only once per CMS cycle.
5785       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5786     }
5787     return;
5788   }
5789   // Double capacity if possible
5790   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5791   // Do not give up existing stack until we have managed to
5792   // get the double capacity that we desired.
5793   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5794                    new_capacity * sizeof(oop)));
5795   if (rs.is_reserved()) {
5796     // Release the backing store associated with old stack
5797     _virtual_space.release();
5798     // Reinitialize virtual space for new stack
5799     if (!_virtual_space.initialize(rs, rs.size())) {
5800       fatal("Not enough swap for expanded marking stack");
5801     }
5802     _base = (oop*)(_virtual_space.low());
5803     _index = 0;
5804     _capacity = new_capacity;
5805   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5806     // Failed to double capacity, continue;
5807     // we print a detail message only once per CMS cycle.
5808     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5809                         _capacity / K, new_capacity / K);
5810   }
5811 }
5812 
5813 
5814 // Closures
5815 // XXX: there seems to be a lot of code  duplication here;
5816 // should refactor and consolidate common code.
5817 
5818 // This closure is used to mark refs into the CMS generation in
5819 // the CMS bit map. Called at the first checkpoint. This closure
5820 // assumes that we do not need to re-mark dirty cards; if the CMS
5821 // generation on which this is used is not an oldest
5822 // generation then this will lose younger_gen cards!
5823 
5824 MarkRefsIntoClosure::MarkRefsIntoClosure(
5825   MemRegion span, CMSBitMap* bitMap):
5826     _span(span),
5827     _bitMap(bitMap)
5828 {
5829   assert(ref_discoverer() == NULL, "deliberately left NULL");
5830   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5831 }
5832 
5833 void MarkRefsIntoClosure::do_oop(oop obj) {
5834   // if p points into _span, then mark corresponding bit in _markBitMap
5835   assert(oopDesc::is_oop(obj), "expected an oop");
5836   HeapWord* addr = (HeapWord*)obj;
5837   if (_span.contains(addr)) {
5838     // this should be made more efficient
5839     _bitMap->mark(addr);
5840   }
5841 }
5842 
5843 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5844 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5845 
5846 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5847   MemRegion span, CMSBitMap* bitMap):
5848     _span(span),
5849     _bitMap(bitMap)
5850 {
5851   assert(ref_discoverer() == NULL, "deliberately left NULL");
5852   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5853 }
5854 
5855 void ParMarkRefsIntoClosure::do_oop(oop obj) {
5856   // if p points into _span, then mark corresponding bit in _markBitMap
5857   assert(oopDesc::is_oop(obj), "expected an oop");
5858   HeapWord* addr = (HeapWord*)obj;
5859   if (_span.contains(addr)) {
5860     // this should be made more efficient
5861     _bitMap->par_mark(addr);
5862   }
5863 }
5864 
5865 void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5866 void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5867 
5868 // A variant of the above, used for CMS marking verification.
5869 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5870   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5871     _span(span),
5872     _verification_bm(verification_bm),
5873     _cms_bm(cms_bm)
5874 {
5875   assert(ref_discoverer() == NULL, "deliberately left NULL");
5876   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5877 }
5878 
5879 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5880   // if p points into _span, then mark corresponding bit in _markBitMap
5881   assert(oopDesc::is_oop(obj), "expected an oop");
5882   HeapWord* addr = (HeapWord*)obj;
5883   if (_span.contains(addr)) {
5884     _verification_bm->mark(addr);
5885     if (!_cms_bm->isMarked(addr)) {
5886       Log(gc, verify) log;
5887       ResourceMark rm;
5888       LogStream ls(log.error());
5889       oop(addr)->print_on(&ls);
5890       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5891       fatal("... aborting");
5892     }
5893   }
5894 }
5895 
5896 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5897 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5898 
5899 //////////////////////////////////////////////////
5900 // MarkRefsIntoAndScanClosure
5901 //////////////////////////////////////////////////
5902 
5903 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5904                                                        ReferenceDiscoverer* rd,
5905                                                        CMSBitMap* bit_map,
5906                                                        CMSBitMap* mod_union_table,
5907                                                        CMSMarkStack*  mark_stack,
5908                                                        CMSCollector* collector,
5909                                                        bool should_yield,
5910                                                        bool concurrent_precleaning):
5911   _collector(collector),
5912   _span(span),
5913   _bit_map(bit_map),
5914   _mark_stack(mark_stack),
5915   _pushAndMarkClosure(collector, span, rd, bit_map, mod_union_table,
5916                       mark_stack, concurrent_precleaning),
5917   _yield(should_yield),
5918   _concurrent_precleaning(concurrent_precleaning),
5919   _freelistLock(NULL)
5920 {
5921   // FIXME: Should initialize in base class constructor.
5922   assert(rd != NULL, "ref_discoverer shouldn't be NULL");
5923   set_ref_discoverer_internal(rd);
5924 }
5925 
5926 // This closure is used to mark refs into the CMS generation at the
5927 // second (final) checkpoint, and to scan and transitively follow
5928 // the unmarked oops. It is also used during the concurrent precleaning
5929 // phase while scanning objects on dirty cards in the CMS generation.
5930 // The marks are made in the marking bit map and the marking stack is
5931 // used for keeping the (newly) grey objects during the scan.
5932 // The parallel version (Par_...) appears further below.
5933 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5934   if (obj != NULL) {
5935     assert(oopDesc::is_oop(obj), "expected an oop");
5936     HeapWord* addr = (HeapWord*)obj;
5937     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5938     assert(_collector->overflow_list_is_empty(),
5939            "overflow list should be empty");
5940     if (_span.contains(addr) &&
5941         !_bit_map->isMarked(addr)) {
5942       // mark bit map (object is now grey)
5943       _bit_map->mark(addr);
5944       // push on marking stack (stack should be empty), and drain the
5945       // stack by applying this closure to the oops in the oops popped
5946       // from the stack (i.e. blacken the grey objects)
5947       bool res = _mark_stack->push(obj);
5948       assert(res, "Should have space to push on empty stack");
5949       do {
5950         oop new_oop = _mark_stack->pop();
5951         assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
5952         assert(_bit_map->isMarked((HeapWord*)new_oop),
5953                "only grey objects on this stack");
5954         // iterate over the oops in this oop, marking and pushing
5955         // the ones in CMS heap (i.e. in _span).
5956         new_oop->oop_iterate(&_pushAndMarkClosure);
5957         // check if it's time to yield
5958         do_yield_check();
5959       } while (!_mark_stack->isEmpty() ||
5960                (!_concurrent_precleaning && take_from_overflow_list()));
5961         // if marking stack is empty, and we are not doing this
5962         // during precleaning, then check the overflow list
5963     }
5964     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5965     assert(_collector->overflow_list_is_empty(),
5966            "overflow list was drained above");
5967 
5968     assert(_collector->no_preserved_marks(),
5969            "All preserved marks should have been restored above");
5970   }
5971 }
5972 
5973 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5974 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5975 
5976 void MarkRefsIntoAndScanClosure::do_yield_work() {
5977   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5978          "CMS thread should hold CMS token");
5979   assert_lock_strong(_freelistLock);
5980   assert_lock_strong(_bit_map->lock());
5981   // relinquish the free_list_lock and bitMaplock()
5982   _bit_map->lock()->unlock();
5983   _freelistLock->unlock();
5984   ConcurrentMarkSweepThread::desynchronize(true);
5985   _collector->stopTimer();
5986   _collector->incrementYields();
5987 
5988   // See the comment in coordinator_yield()
5989   for (unsigned i = 0;
5990        i < CMSYieldSleepCount &&
5991        ConcurrentMarkSweepThread::should_yield() &&
5992        !CMSCollector::foregroundGCIsActive();
5993        ++i) {
5994     os::sleep(Thread::current(), 1, false);
5995   }
5996 
5997   ConcurrentMarkSweepThread::synchronize(true);
5998   _freelistLock->lock_without_safepoint_check();
5999   _bit_map->lock()->lock_without_safepoint_check();
6000   _collector->startTimer();
6001 }
6002 
6003 ///////////////////////////////////////////////////////////
6004 // ParMarkRefsIntoAndScanClosure: a parallel version of
6005 //                                MarkRefsIntoAndScanClosure
6006 ///////////////////////////////////////////////////////////
6007 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
6008   CMSCollector* collector, MemRegion span, ReferenceDiscoverer* rd,
6009   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6010   _span(span),
6011   _bit_map(bit_map),
6012   _work_queue(work_queue),
6013   _low_water_mark(MIN2((work_queue->max_elems()/4),
6014                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6015   _parPushAndMarkClosure(collector, span, rd, bit_map, work_queue)
6016 {
6017   // FIXME: Should initialize in base class constructor.
6018   assert(rd != NULL, "ref_discoverer shouldn't be NULL");
6019   set_ref_discoverer_internal(rd);
6020 }
6021 
6022 // This closure is used to mark refs into the CMS generation at the
6023 // second (final) checkpoint, and to scan and transitively follow
6024 // the unmarked oops. The marks are made in the marking bit map and
6025 // the work_queue is used for keeping the (newly) grey objects during
6026 // the scan phase whence they are also available for stealing by parallel
6027 // threads. Since the marking bit map is shared, updates are
6028 // synchronized (via CAS).
6029 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6030   if (obj != NULL) {
6031     // Ignore mark word because this could be an already marked oop
6032     // that may be chained at the end of the overflow list.
6033     assert(oopDesc::is_oop(obj, true), "expected an oop");
6034     HeapWord* addr = (HeapWord*)obj;
6035     if (_span.contains(addr) &&
6036         !_bit_map->isMarked(addr)) {
6037       // mark bit map (object will become grey):
6038       // It is possible for several threads to be
6039       // trying to "claim" this object concurrently;
6040       // the unique thread that succeeds in marking the
6041       // object first will do the subsequent push on
6042       // to the work queue (or overflow list).
6043       if (_bit_map->par_mark(addr)) {
6044         // push on work_queue (which may not be empty), and trim the
6045         // queue to an appropriate length by applying this closure to
6046         // the oops in the oops popped from the stack (i.e. blacken the
6047         // grey objects)
6048         bool res = _work_queue->push(obj);
6049         assert(res, "Low water mark should be less than capacity?");
6050         trim_queue(_low_water_mark);
6051       } // Else, another thread claimed the object
6052     }
6053   }
6054 }
6055 
6056 void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6057 void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6058 
6059 // This closure is used to rescan the marked objects on the dirty cards
6060 // in the mod union table and the card table proper.
6061 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6062   oop p, MemRegion mr) {
6063 
6064   size_t size = 0;
6065   HeapWord* addr = (HeapWord*)p;
6066   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6067   assert(_span.contains(addr), "we are scanning the CMS generation");
6068   // check if it's time to yield
6069   if (do_yield_check()) {
6070     // We yielded for some foreground stop-world work,
6071     // and we have been asked to abort this ongoing preclean cycle.
6072     return 0;
6073   }
6074   if (_bitMap->isMarked(addr)) {
6075     // it's marked; is it potentially uninitialized?
6076     if (p->klass_or_null_acquire() != NULL) {
6077         // an initialized object; ignore mark word in verification below
6078         // since we are running concurrent with mutators
6079         assert(oopDesc::is_oop(p, true), "should be an oop");
6080         if (p->is_objArray()) {
6081           // objArrays are precisely marked; restrict scanning
6082           // to dirty cards only.
6083           size = CompactibleFreeListSpace::adjustObjectSize(
6084                    p->oop_iterate_size(_scanningClosure, mr));
6085         } else {
6086           // A non-array may have been imprecisely marked; we need
6087           // to scan object in its entirety.
6088           size = CompactibleFreeListSpace::adjustObjectSize(
6089                    p->oop_iterate_size(_scanningClosure));
6090         }
6091       #ifdef ASSERT
6092         size_t direct_size =
6093           CompactibleFreeListSpace::adjustObjectSize(p->size());
6094         assert(size == direct_size, "Inconsistency in size");
6095         assert(size >= 3, "Necessary for Printezis marks to work");
6096         HeapWord* start_pbit = addr + 1;
6097         HeapWord* end_pbit = addr + size - 1;
6098         assert(_bitMap->isMarked(start_pbit) == _bitMap->isMarked(end_pbit),
6099                "inconsistent Printezis mark");
6100         // Verify inner mark bits (between Printezis bits) are clear,
6101         // but don't repeat if there are multiple dirty regions for
6102         // the same object, to avoid potential O(N^2) performance.
6103         if (addr != _last_scanned_object) {
6104           _bitMap->verifyNoOneBitsInRange(start_pbit + 1, end_pbit);
6105           _last_scanned_object = addr;
6106         }
6107       #endif // ASSERT
6108     } else {
6109       // An uninitialized object.
6110       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6111       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6112       size = pointer_delta(nextOneAddr + 1, addr);
6113       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6114              "alignment problem");
6115       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6116       // will dirty the card when the klass pointer is installed in the
6117       // object (signaling the completion of initialization).
6118     }
6119   } else {
6120     // Either a not yet marked object or an uninitialized object
6121     if (p->klass_or_null_acquire() == NULL) {
6122       // An uninitialized object, skip to the next card, since
6123       // we may not be able to read its P-bits yet.
6124       assert(size == 0, "Initial value");
6125     } else {
6126       // An object not (yet) reached by marking: we merely need to
6127       // compute its size so as to go look at the next block.
6128       assert(oopDesc::is_oop(p, true), "should be an oop");
6129       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6130     }
6131   }
6132   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6133   return size;
6134 }
6135 
6136 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6137   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6138          "CMS thread should hold CMS token");
6139   assert_lock_strong(_freelistLock);
6140   assert_lock_strong(_bitMap->lock());
6141   // relinquish the free_list_lock and bitMaplock()
6142   _bitMap->lock()->unlock();
6143   _freelistLock->unlock();
6144   ConcurrentMarkSweepThread::desynchronize(true);
6145   _collector->stopTimer();
6146   _collector->incrementYields();
6147 
6148   // See the comment in coordinator_yield()
6149   for (unsigned i = 0; i < CMSYieldSleepCount &&
6150                    ConcurrentMarkSweepThread::should_yield() &&
6151                    !CMSCollector::foregroundGCIsActive(); ++i) {
6152     os::sleep(Thread::current(), 1, false);
6153   }
6154 
6155   ConcurrentMarkSweepThread::synchronize(true);
6156   _freelistLock->lock_without_safepoint_check();
6157   _bitMap->lock()->lock_without_safepoint_check();
6158   _collector->startTimer();
6159 }
6160 
6161 
6162 //////////////////////////////////////////////////////////////////
6163 // SurvivorSpacePrecleanClosure
6164 //////////////////////////////////////////////////////////////////
6165 // This (single-threaded) closure is used to preclean the oops in
6166 // the survivor spaces.
6167 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6168 
6169   HeapWord* addr = (HeapWord*)p;
6170   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6171   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6172   assert(p->klass_or_null() != NULL, "object should be initialized");
6173   // an initialized object; ignore mark word in verification below
6174   // since we are running concurrent with mutators
6175   assert(oopDesc::is_oop(p, true), "should be an oop");
6176   // Note that we do not yield while we iterate over
6177   // the interior oops of p, pushing the relevant ones
6178   // on our marking stack.
6179   size_t size = p->oop_iterate_size(_scanning_closure);
6180   do_yield_check();
6181   // Observe that below, we do not abandon the preclean
6182   // phase as soon as we should; rather we empty the
6183   // marking stack before returning. This is to satisfy
6184   // some existing assertions. In general, it may be a
6185   // good idea to abort immediately and complete the marking
6186   // from the grey objects at a later time.
6187   while (!_mark_stack->isEmpty()) {
6188     oop new_oop = _mark_stack->pop();
6189     assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
6190     assert(_bit_map->isMarked((HeapWord*)new_oop),
6191            "only grey objects on this stack");
6192     // iterate over the oops in this oop, marking and pushing
6193     // the ones in CMS heap (i.e. in _span).
6194     new_oop->oop_iterate(_scanning_closure);
6195     // check if it's time to yield
6196     do_yield_check();
6197   }
6198   unsigned int after_count =
6199     CMSHeap::heap()->total_collections();
6200   bool abort = (_before_count != after_count) ||
6201                _collector->should_abort_preclean();
6202   return abort ? 0 : size;
6203 }
6204 
6205 void SurvivorSpacePrecleanClosure::do_yield_work() {
6206   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6207          "CMS thread should hold CMS token");
6208   assert_lock_strong(_bit_map->lock());
6209   // Relinquish the bit map lock
6210   _bit_map->lock()->unlock();
6211   ConcurrentMarkSweepThread::desynchronize(true);
6212   _collector->stopTimer();
6213   _collector->incrementYields();
6214 
6215   // See the comment in coordinator_yield()
6216   for (unsigned i = 0; i < CMSYieldSleepCount &&
6217                        ConcurrentMarkSweepThread::should_yield() &&
6218                        !CMSCollector::foregroundGCIsActive(); ++i) {
6219     os::sleep(Thread::current(), 1, false);
6220   }
6221 
6222   ConcurrentMarkSweepThread::synchronize(true);
6223   _bit_map->lock()->lock_without_safepoint_check();
6224   _collector->startTimer();
6225 }
6226 
6227 // This closure is used to rescan the marked objects on the dirty cards
6228 // in the mod union table and the card table proper. In the parallel
6229 // case, although the bitMap is shared, we do a single read so the
6230 // isMarked() query is "safe".
6231 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6232   // Ignore mark word because we are running concurrent with mutators
6233   assert(oopDesc::is_oop_or_null(p, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6234   HeapWord* addr = (HeapWord*)p;
6235   assert(_span.contains(addr), "we are scanning the CMS generation");
6236   bool is_obj_array = false;
6237   #ifdef ASSERT
6238     if (!_parallel) {
6239       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6240       assert(_collector->overflow_list_is_empty(),
6241              "overflow list should be empty");
6242 
6243     }
6244   #endif // ASSERT
6245   if (_bit_map->isMarked(addr)) {
6246     // Obj arrays are precisely marked, non-arrays are not;
6247     // so we scan objArrays precisely and non-arrays in their
6248     // entirety.
6249     if (p->is_objArray()) {
6250       is_obj_array = true;
6251       if (_parallel) {
6252         p->oop_iterate(_par_scan_closure, mr);
6253       } else {
6254         p->oop_iterate(_scan_closure, mr);
6255       }
6256     } else {
6257       if (_parallel) {
6258         p->oop_iterate(_par_scan_closure);
6259       } else {
6260         p->oop_iterate(_scan_closure);
6261       }
6262     }
6263   }
6264   #ifdef ASSERT
6265     if (!_parallel) {
6266       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6267       assert(_collector->overflow_list_is_empty(),
6268              "overflow list should be empty");
6269 
6270     }
6271   #endif // ASSERT
6272   return is_obj_array;
6273 }
6274 
6275 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6276                         MemRegion span,
6277                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6278                         bool should_yield, bool verifying):
6279   _collector(collector),
6280   _span(span),
6281   _bitMap(bitMap),
6282   _mut(&collector->_modUnionTable),
6283   _markStack(markStack),
6284   _yield(should_yield),
6285   _skipBits(0)
6286 {
6287   assert(_markStack->isEmpty(), "stack should be empty");
6288   _finger = _bitMap->startWord();
6289   _threshold = _finger;
6290   assert(_collector->_restart_addr == NULL, "Sanity check");
6291   assert(_span.contains(_finger), "Out of bounds _finger?");
6292   DEBUG_ONLY(_verifying = verifying;)
6293 }
6294 
6295 void MarkFromRootsClosure::reset(HeapWord* addr) {
6296   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6297   assert(_span.contains(addr), "Out of bounds _finger?");
6298   _finger = addr;
6299   _threshold = align_up(_finger, CardTable::card_size);
6300 }
6301 
6302 // Should revisit to see if this should be restructured for
6303 // greater efficiency.
6304 bool MarkFromRootsClosure::do_bit(size_t offset) {
6305   if (_skipBits > 0) {
6306     _skipBits--;
6307     return true;
6308   }
6309   // convert offset into a HeapWord*
6310   HeapWord* addr = _bitMap->startWord() + offset;
6311   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6312          "address out of range");
6313   assert(_bitMap->isMarked(addr), "tautology");
6314   if (_bitMap->isMarked(addr+1)) {
6315     // this is an allocated but not yet initialized object
6316     assert(_skipBits == 0, "tautology");
6317     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6318     oop p = oop(addr);
6319     if (p->klass_or_null_acquire() == NULL) {
6320       DEBUG_ONLY(if (!_verifying) {)
6321         // We re-dirty the cards on which this object lies and increase
6322         // the _threshold so that we'll come back to scan this object
6323         // during the preclean or remark phase. (CMSCleanOnEnter)
6324         if (CMSCleanOnEnter) {
6325           size_t sz = _collector->block_size_using_printezis_bits(addr);
6326           HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
6327           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6328           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6329           // Bump _threshold to end_card_addr; note that
6330           // _threshold cannot possibly exceed end_card_addr, anyhow.
6331           // This prevents future clearing of the card as the scan proceeds
6332           // to the right.
6333           assert(_threshold <= end_card_addr,
6334                  "Because we are just scanning into this object");
6335           if (_threshold < end_card_addr) {
6336             _threshold = end_card_addr;
6337           }
6338           if (p->klass_or_null_acquire() != NULL) {
6339             // Redirty the range of cards...
6340             _mut->mark_range(redirty_range);
6341           } // ...else the setting of klass will dirty the card anyway.
6342         }
6343       DEBUG_ONLY(})
6344       return true;
6345     }
6346   }
6347   scanOopsInOop(addr);
6348   return true;
6349 }
6350 
6351 // We take a break if we've been at this for a while,
6352 // so as to avoid monopolizing the locks involved.
6353 void MarkFromRootsClosure::do_yield_work() {
6354   // First give up the locks, then yield, then re-lock
6355   // We should probably use a constructor/destructor idiom to
6356   // do this unlock/lock or modify the MutexUnlocker class to
6357   // serve our purpose. XXX
6358   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6359          "CMS thread should hold CMS token");
6360   assert_lock_strong(_bitMap->lock());
6361   _bitMap->lock()->unlock();
6362   ConcurrentMarkSweepThread::desynchronize(true);
6363   _collector->stopTimer();
6364   _collector->incrementYields();
6365 
6366   // See the comment in coordinator_yield()
6367   for (unsigned i = 0; i < CMSYieldSleepCount &&
6368                        ConcurrentMarkSweepThread::should_yield() &&
6369                        !CMSCollector::foregroundGCIsActive(); ++i) {
6370     os::sleep(Thread::current(), 1, false);
6371   }
6372 
6373   ConcurrentMarkSweepThread::synchronize(true);
6374   _bitMap->lock()->lock_without_safepoint_check();
6375   _collector->startTimer();
6376 }
6377 
6378 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6379   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6380   assert(_markStack->isEmpty(),
6381          "should drain stack to limit stack usage");
6382   // convert ptr to an oop preparatory to scanning
6383   oop obj = oop(ptr);
6384   // Ignore mark word in verification below, since we
6385   // may be running concurrent with mutators.
6386   assert(oopDesc::is_oop(obj, true), "should be an oop");
6387   assert(_finger <= ptr, "_finger runneth ahead");
6388   // advance the finger to right end of this object
6389   _finger = ptr + obj->size();
6390   assert(_finger > ptr, "we just incremented it above");
6391   // On large heaps, it may take us some time to get through
6392   // the marking phase. During
6393   // this time it's possible that a lot of mutations have
6394   // accumulated in the card table and the mod union table --
6395   // these mutation records are redundant until we have
6396   // actually traced into the corresponding card.
6397   // Here, we check whether advancing the finger would make
6398   // us cross into a new card, and if so clear corresponding
6399   // cards in the MUT (preclean them in the card-table in the
6400   // future).
6401 
6402   DEBUG_ONLY(if (!_verifying) {)
6403     // The clean-on-enter optimization is disabled by default,
6404     // until we fix 6178663.
6405     if (CMSCleanOnEnter && (_finger > _threshold)) {
6406       // [_threshold, _finger) represents the interval
6407       // of cards to be cleared  in MUT (or precleaned in card table).
6408       // The set of cards to be cleared is all those that overlap
6409       // with the interval [_threshold, _finger); note that
6410       // _threshold is always kept card-aligned but _finger isn't
6411       // always card-aligned.
6412       HeapWord* old_threshold = _threshold;
6413       assert(is_aligned(old_threshold, CardTable::card_size),
6414              "_threshold should always be card-aligned");
6415       _threshold = align_up(_finger, CardTable::card_size);
6416       MemRegion mr(old_threshold, _threshold);
6417       assert(!mr.is_empty(), "Control point invariant");
6418       assert(_span.contains(mr), "Should clear within span");
6419       _mut->clear_range(mr);
6420     }
6421   DEBUG_ONLY(})
6422   // Note: the finger doesn't advance while we drain
6423   // the stack below.
6424   PushOrMarkClosure pushOrMarkClosure(_collector,
6425                                       _span, _bitMap, _markStack,
6426                                       _finger, this);
6427   bool res = _markStack->push(obj);
6428   assert(res, "Empty non-zero size stack should have space for single push");
6429   while (!_markStack->isEmpty()) {
6430     oop new_oop = _markStack->pop();
6431     // Skip verifying header mark word below because we are
6432     // running concurrent with mutators.
6433     assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop");
6434     // now scan this oop's oops
6435     new_oop->oop_iterate(&pushOrMarkClosure);
6436     do_yield_check();
6437   }
6438   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6439 }
6440 
6441 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6442                        CMSCollector* collector, MemRegion span,
6443                        CMSBitMap* bit_map,
6444                        OopTaskQueue* work_queue,
6445                        CMSMarkStack*  overflow_stack):
6446   _collector(collector),
6447   _whole_span(collector->_span),
6448   _span(span),
6449   _bit_map(bit_map),
6450   _mut(&collector->_modUnionTable),
6451   _work_queue(work_queue),
6452   _overflow_stack(overflow_stack),
6453   _skip_bits(0),
6454   _task(task)
6455 {
6456   assert(_work_queue->size() == 0, "work_queue should be empty");
6457   _finger = span.start();
6458   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6459   assert(_span.contains(_finger), "Out of bounds _finger?");
6460 }
6461 
6462 // Should revisit to see if this should be restructured for
6463 // greater efficiency.
6464 bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6465   if (_skip_bits > 0) {
6466     _skip_bits--;
6467     return true;
6468   }
6469   // convert offset into a HeapWord*
6470   HeapWord* addr = _bit_map->startWord() + offset;
6471   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6472          "address out of range");
6473   assert(_bit_map->isMarked(addr), "tautology");
6474   if (_bit_map->isMarked(addr+1)) {
6475     // this is an allocated object that might not yet be initialized
6476     assert(_skip_bits == 0, "tautology");
6477     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6478     oop p = oop(addr);
6479     if (p->klass_or_null_acquire() == NULL) {
6480       // in the case of Clean-on-Enter optimization, redirty card
6481       // and avoid clearing card by increasing  the threshold.
6482       return true;
6483     }
6484   }
6485   scan_oops_in_oop(addr);
6486   return true;
6487 }
6488 
6489 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6490   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6491   // Should we assert that our work queue is empty or
6492   // below some drain limit?
6493   assert(_work_queue->size() == 0,
6494          "should drain stack to limit stack usage");
6495   // convert ptr to an oop preparatory to scanning
6496   oop obj = oop(ptr);
6497   // Ignore mark word in verification below, since we
6498   // may be running concurrent with mutators.
6499   assert(oopDesc::is_oop(obj, true), "should be an oop");
6500   assert(_finger <= ptr, "_finger runneth ahead");
6501   // advance the finger to right end of this object
6502   _finger = ptr + obj->size();
6503   assert(_finger > ptr, "we just incremented it above");
6504   // On large heaps, it may take us some time to get through
6505   // the marking phase. During
6506   // this time it's possible that a lot of mutations have
6507   // accumulated in the card table and the mod union table --
6508   // these mutation records are redundant until we have
6509   // actually traced into the corresponding card.
6510   // Here, we check whether advancing the finger would make
6511   // us cross into a new card, and if so clear corresponding
6512   // cards in the MUT (preclean them in the card-table in the
6513   // future).
6514 
6515   // The clean-on-enter optimization is disabled by default,
6516   // until we fix 6178663.
6517   if (CMSCleanOnEnter && (_finger > _threshold)) {
6518     // [_threshold, _finger) represents the interval
6519     // of cards to be cleared  in MUT (or precleaned in card table).
6520     // The set of cards to be cleared is all those that overlap
6521     // with the interval [_threshold, _finger); note that
6522     // _threshold is always kept card-aligned but _finger isn't
6523     // always card-aligned.
6524     HeapWord* old_threshold = _threshold;
6525     assert(is_aligned(old_threshold, CardTable::card_size),
6526            "_threshold should always be card-aligned");
6527     _threshold = align_up(_finger, CardTable::card_size);
6528     MemRegion mr(old_threshold, _threshold);
6529     assert(!mr.is_empty(), "Control point invariant");
6530     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6531     _mut->clear_range(mr);
6532   }
6533 
6534   // Note: the local finger doesn't advance while we drain
6535   // the stack below, but the global finger sure can and will.
6536   HeapWord* volatile* gfa = _task->global_finger_addr();
6537   ParPushOrMarkClosure pushOrMarkClosure(_collector,
6538                                          _span, _bit_map,
6539                                          _work_queue,
6540                                          _overflow_stack,
6541                                          _finger,
6542                                          gfa, this);
6543   bool res = _work_queue->push(obj);   // overflow could occur here
6544   assert(res, "Will hold once we use workqueues");
6545   while (true) {
6546     oop new_oop;
6547     if (!_work_queue->pop_local(new_oop)) {
6548       // We emptied our work_queue; check if there's stuff that can
6549       // be gotten from the overflow stack.
6550       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6551             _overflow_stack, _work_queue)) {
6552         do_yield_check();
6553         continue;
6554       } else {  // done
6555         break;
6556       }
6557     }
6558     // Skip verifying header mark word below because we are
6559     // running concurrent with mutators.
6560     assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop");
6561     // now scan this oop's oops
6562     new_oop->oop_iterate(&pushOrMarkClosure);
6563     do_yield_check();
6564   }
6565   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6566 }
6567 
6568 // Yield in response to a request from VM Thread or
6569 // from mutators.
6570 void ParMarkFromRootsClosure::do_yield_work() {
6571   assert(_task != NULL, "sanity");
6572   _task->yield();
6573 }
6574 
6575 // A variant of the above used for verifying CMS marking work.
6576 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6577                         MemRegion span,
6578                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6579                         CMSMarkStack*  mark_stack):
6580   _collector(collector),
6581   _span(span),
6582   _verification_bm(verification_bm),
6583   _cms_bm(cms_bm),
6584   _mark_stack(mark_stack),
6585   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6586                       mark_stack)
6587 {
6588   assert(_mark_stack->isEmpty(), "stack should be empty");
6589   _finger = _verification_bm->startWord();
6590   assert(_collector->_restart_addr == NULL, "Sanity check");
6591   assert(_span.contains(_finger), "Out of bounds _finger?");
6592 }
6593 
6594 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6595   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6596   assert(_span.contains(addr), "Out of bounds _finger?");
6597   _finger = addr;
6598 }
6599 
6600 // Should revisit to see if this should be restructured for
6601 // greater efficiency.
6602 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6603   // convert offset into a HeapWord*
6604   HeapWord* addr = _verification_bm->startWord() + offset;
6605   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6606          "address out of range");
6607   assert(_verification_bm->isMarked(addr), "tautology");
6608   assert(_cms_bm->isMarked(addr), "tautology");
6609 
6610   assert(_mark_stack->isEmpty(),
6611          "should drain stack to limit stack usage");
6612   // convert addr to an oop preparatory to scanning
6613   oop obj = oop(addr);
6614   assert(oopDesc::is_oop(obj), "should be an oop");
6615   assert(_finger <= addr, "_finger runneth ahead");
6616   // advance the finger to right end of this object
6617   _finger = addr + obj->size();
6618   assert(_finger > addr, "we just incremented it above");
6619   // Note: the finger doesn't advance while we drain
6620   // the stack below.
6621   bool res = _mark_stack->push(obj);
6622   assert(res, "Empty non-zero size stack should have space for single push");
6623   while (!_mark_stack->isEmpty()) {
6624     oop new_oop = _mark_stack->pop();
6625     assert(oopDesc::is_oop(new_oop), "Oops! expected to pop an oop");
6626     // now scan this oop's oops
6627     new_oop->oop_iterate(&_pam_verify_closure);
6628   }
6629   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6630   return true;
6631 }
6632 
6633 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6634   CMSCollector* collector, MemRegion span,
6635   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6636   CMSMarkStack*  mark_stack):
6637   MetadataAwareOopClosure(collector->ref_processor()),
6638   _collector(collector),
6639   _span(span),
6640   _verification_bm(verification_bm),
6641   _cms_bm(cms_bm),
6642   _mark_stack(mark_stack)
6643 { }
6644 
6645 template <class T> void PushAndMarkVerifyClosure::do_oop_work(T *p) {
6646   oop obj = RawAccess<>::oop_load(p);
6647   do_oop(obj);
6648 }
6649 
6650 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6651 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6652 
6653 // Upon stack overflow, we discard (part of) the stack,
6654 // remembering the least address amongst those discarded
6655 // in CMSCollector's _restart_address.
6656 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6657   // Remember the least grey address discarded
6658   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6659   _collector->lower_restart_addr(ra);
6660   _mark_stack->reset();  // discard stack contents
6661   _mark_stack->expand(); // expand the stack if possible
6662 }
6663 
6664 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6665   assert(oopDesc::is_oop_or_null(obj), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6666   HeapWord* addr = (HeapWord*)obj;
6667   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6668     // Oop lies in _span and isn't yet grey or black
6669     _verification_bm->mark(addr);            // now grey
6670     if (!_cms_bm->isMarked(addr)) {
6671       Log(gc, verify) log;
6672       ResourceMark rm;
6673       LogStream ls(log.error());
6674       oop(addr)->print_on(&ls);
6675       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6676       fatal("... aborting");
6677     }
6678 
6679     if (!_mark_stack->push(obj)) { // stack overflow
6680       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6681       assert(_mark_stack->isFull(), "Else push should have succeeded");
6682       handle_stack_overflow(addr);
6683     }
6684     // anything including and to the right of _finger
6685     // will be scanned as we iterate over the remainder of the
6686     // bit map
6687   }
6688 }
6689 
6690 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6691                      MemRegion span,
6692                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6693                      HeapWord* finger, MarkFromRootsClosure* parent) :
6694   MetadataAwareOopClosure(collector->ref_processor()),
6695   _collector(collector),
6696   _span(span),
6697   _bitMap(bitMap),
6698   _markStack(markStack),
6699   _finger(finger),
6700   _parent(parent)
6701 { }
6702 
6703 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6704                                            MemRegion span,
6705                                            CMSBitMap* bit_map,
6706                                            OopTaskQueue* work_queue,
6707                                            CMSMarkStack*  overflow_stack,
6708                                            HeapWord* finger,
6709                                            HeapWord* volatile* global_finger_addr,
6710                                            ParMarkFromRootsClosure* parent) :
6711   MetadataAwareOopClosure(collector->ref_processor()),
6712   _collector(collector),
6713   _whole_span(collector->_span),
6714   _span(span),
6715   _bit_map(bit_map),
6716   _work_queue(work_queue),
6717   _overflow_stack(overflow_stack),
6718   _finger(finger),
6719   _global_finger_addr(global_finger_addr),
6720   _parent(parent)
6721 { }
6722 
6723 // Assumes thread-safe access by callers, who are
6724 // responsible for mutual exclusion.
6725 void CMSCollector::lower_restart_addr(HeapWord* low) {
6726   assert(_span.contains(low), "Out of bounds addr");
6727   if (_restart_addr == NULL) {
6728     _restart_addr = low;
6729   } else {
6730     _restart_addr = MIN2(_restart_addr, low);
6731   }
6732 }
6733 
6734 // Upon stack overflow, we discard (part of) the stack,
6735 // remembering the least address amongst those discarded
6736 // in CMSCollector's _restart_address.
6737 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6738   // Remember the least grey address discarded
6739   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6740   _collector->lower_restart_addr(ra);
6741   _markStack->reset();  // discard stack contents
6742   _markStack->expand(); // expand the stack if possible
6743 }
6744 
6745 // Upon stack overflow, we discard (part of) the stack,
6746 // remembering the least address amongst those discarded
6747 // in CMSCollector's _restart_address.
6748 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6749   // We need to do this under a mutex to prevent other
6750   // workers from interfering with the work done below.
6751   MutexLockerEx ml(_overflow_stack->par_lock(),
6752                    Mutex::_no_safepoint_check_flag);
6753   // Remember the least grey address discarded
6754   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6755   _collector->lower_restart_addr(ra);
6756   _overflow_stack->reset();  // discard stack contents
6757   _overflow_stack->expand(); // expand the stack if possible
6758 }
6759 
6760 void PushOrMarkClosure::do_oop(oop obj) {
6761   // Ignore mark word because we are running concurrent with mutators.
6762   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6763   HeapWord* addr = (HeapWord*)obj;
6764   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6765     // Oop lies in _span and isn't yet grey or black
6766     _bitMap->mark(addr);            // now grey
6767     if (addr < _finger) {
6768       // the bit map iteration has already either passed, or
6769       // sampled, this bit in the bit map; we'll need to
6770       // use the marking stack to scan this oop's oops.
6771       bool simulate_overflow = false;
6772       NOT_PRODUCT(
6773         if (CMSMarkStackOverflowALot &&
6774             _collector->simulate_overflow()) {
6775           // simulate a stack overflow
6776           simulate_overflow = true;
6777         }
6778       )
6779       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6780         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6781         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6782         handle_stack_overflow(addr);
6783       }
6784     }
6785     // anything including and to the right of _finger
6786     // will be scanned as we iterate over the remainder of the
6787     // bit map
6788     do_yield_check();
6789   }
6790 }
6791 
6792 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6793 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6794 
6795 void ParPushOrMarkClosure::do_oop(oop obj) {
6796   // Ignore mark word because we are running concurrent with mutators.
6797   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6798   HeapWord* addr = (HeapWord*)obj;
6799   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6800     // Oop lies in _span and isn't yet grey or black
6801     // We read the global_finger (volatile read) strictly after marking oop
6802     bool res = _bit_map->par_mark(addr);    // now grey
6803     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6804     // Should we push this marked oop on our stack?
6805     // -- if someone else marked it, nothing to do
6806     // -- if target oop is above global finger nothing to do
6807     // -- if target oop is in chunk and above local finger
6808     //      then nothing to do
6809     // -- else push on work queue
6810     if (   !res       // someone else marked it, they will deal with it
6811         || (addr >= *gfa)  // will be scanned in a later task
6812         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6813       return;
6814     }
6815     // the bit map iteration has already either passed, or
6816     // sampled, this bit in the bit map; we'll need to
6817     // use the marking stack to scan this oop's oops.
6818     bool simulate_overflow = false;
6819     NOT_PRODUCT(
6820       if (CMSMarkStackOverflowALot &&
6821           _collector->simulate_overflow()) {
6822         // simulate a stack overflow
6823         simulate_overflow = true;
6824       }
6825     )
6826     if (simulate_overflow ||
6827         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6828       // stack overflow
6829       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6830       // We cannot assert that the overflow stack is full because
6831       // it may have been emptied since.
6832       assert(simulate_overflow ||
6833              _work_queue->size() == _work_queue->max_elems(),
6834             "Else push should have succeeded");
6835       handle_stack_overflow(addr);
6836     }
6837     do_yield_check();
6838   }
6839 }
6840 
6841 void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6842 void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6843 
6844 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6845                                        MemRegion span,
6846                                        ReferenceDiscoverer* rd,
6847                                        CMSBitMap* bit_map,
6848                                        CMSBitMap* mod_union_table,
6849                                        CMSMarkStack*  mark_stack,
6850                                        bool           concurrent_precleaning):
6851   MetadataAwareOopClosure(rd),
6852   _collector(collector),
6853   _span(span),
6854   _bit_map(bit_map),
6855   _mod_union_table(mod_union_table),
6856   _mark_stack(mark_stack),
6857   _concurrent_precleaning(concurrent_precleaning)
6858 {
6859   assert(ref_discoverer() != NULL, "ref_discoverer shouldn't be NULL");
6860 }
6861 
6862 // Grey object rescan during pre-cleaning and second checkpoint phases --
6863 // the non-parallel version (the parallel version appears further below.)
6864 void PushAndMarkClosure::do_oop(oop obj) {
6865   // Ignore mark word verification. If during concurrent precleaning,
6866   // the object monitor may be locked. If during the checkpoint
6867   // phases, the object may already have been reached by a  different
6868   // path and may be at the end of the global overflow list (so
6869   // the mark word may be NULL).
6870   assert(oopDesc::is_oop_or_null(obj, true /* ignore mark word */),
6871          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6872   HeapWord* addr = (HeapWord*)obj;
6873   // Check if oop points into the CMS generation
6874   // and is not marked
6875   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6876     // a white object ...
6877     _bit_map->mark(addr);         // ... now grey
6878     // push on the marking stack (grey set)
6879     bool simulate_overflow = false;
6880     NOT_PRODUCT(
6881       if (CMSMarkStackOverflowALot &&
6882           _collector->simulate_overflow()) {
6883         // simulate a stack overflow
6884         simulate_overflow = true;
6885       }
6886     )
6887     if (simulate_overflow || !_mark_stack->push(obj)) {
6888       if (_concurrent_precleaning) {
6889          // During precleaning we can just dirty the appropriate card(s)
6890          // in the mod union table, thus ensuring that the object remains
6891          // in the grey set  and continue. In the case of object arrays
6892          // we need to dirty all of the cards that the object spans,
6893          // since the rescan of object arrays will be limited to the
6894          // dirty cards.
6895          // Note that no one can be interfering with us in this action
6896          // of dirtying the mod union table, so no locking or atomics
6897          // are required.
6898          if (obj->is_objArray()) {
6899            size_t sz = obj->size();
6900            HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
6901            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6902            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6903            _mod_union_table->mark_range(redirty_range);
6904          } else {
6905            _mod_union_table->mark(addr);
6906          }
6907          _collector->_ser_pmc_preclean_ovflw++;
6908       } else {
6909          // During the remark phase, we need to remember this oop
6910          // in the overflow list.
6911          _collector->push_on_overflow_list(obj);
6912          _collector->_ser_pmc_remark_ovflw++;
6913       }
6914     }
6915   }
6916 }
6917 
6918 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6919                                              MemRegion span,
6920                                              ReferenceDiscoverer* rd,
6921                                              CMSBitMap* bit_map,
6922                                              OopTaskQueue* work_queue):
6923   MetadataAwareOopClosure(rd),
6924   _collector(collector),
6925   _span(span),
6926   _bit_map(bit_map),
6927   _work_queue(work_queue)
6928 {
6929   assert(ref_discoverer() != NULL, "ref_discoverer shouldn't be NULL");
6930 }
6931 
6932 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6933 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6934 
6935 // Grey object rescan during second checkpoint phase --
6936 // the parallel version.
6937 void ParPushAndMarkClosure::do_oop(oop obj) {
6938   // In the assert below, we ignore the mark word because
6939   // this oop may point to an already visited object that is
6940   // on the overflow stack (in which case the mark word has
6941   // been hijacked for chaining into the overflow stack --
6942   // if this is the last object in the overflow stack then
6943   // its mark word will be NULL). Because this object may
6944   // have been subsequently popped off the global overflow
6945   // stack, and the mark word possibly restored to the prototypical
6946   // value, by the time we get to examined this failing assert in
6947   // the debugger, is_oop_or_null(false) may subsequently start
6948   // to hold.
6949   assert(oopDesc::is_oop_or_null(obj, true),
6950          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6951   HeapWord* addr = (HeapWord*)obj;
6952   // Check if oop points into the CMS generation
6953   // and is not marked
6954   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6955     // a white object ...
6956     // If we manage to "claim" the object, by being the
6957     // first thread to mark it, then we push it on our
6958     // marking stack
6959     if (_bit_map->par_mark(addr)) {     // ... now grey
6960       // push on work queue (grey set)
6961       bool simulate_overflow = false;
6962       NOT_PRODUCT(
6963         if (CMSMarkStackOverflowALot &&
6964             _collector->par_simulate_overflow()) {
6965           // simulate a stack overflow
6966           simulate_overflow = true;
6967         }
6968       )
6969       if (simulate_overflow || !_work_queue->push(obj)) {
6970         _collector->par_push_on_overflow_list(obj);
6971         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6972       }
6973     } // Else, some other thread got there first
6974   }
6975 }
6976 
6977 void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6978 void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6979 
6980 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6981   Mutex* bml = _collector->bitMapLock();
6982   assert_lock_strong(bml);
6983   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6984          "CMS thread should hold CMS token");
6985 
6986   bml->unlock();
6987   ConcurrentMarkSweepThread::desynchronize(true);
6988 
6989   _collector->stopTimer();
6990   _collector->incrementYields();
6991 
6992   // See the comment in coordinator_yield()
6993   for (unsigned i = 0; i < CMSYieldSleepCount &&
6994                        ConcurrentMarkSweepThread::should_yield() &&
6995                        !CMSCollector::foregroundGCIsActive(); ++i) {
6996     os::sleep(Thread::current(), 1, false);
6997   }
6998 
6999   ConcurrentMarkSweepThread::synchronize(true);
7000   bml->lock();
7001 
7002   _collector->startTimer();
7003 }
7004 
7005 bool CMSPrecleanRefsYieldClosure::should_return() {
7006   if (ConcurrentMarkSweepThread::should_yield()) {
7007     do_yield_work();
7008   }
7009   return _collector->foregroundGCIsActive();
7010 }
7011 
7012 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7013   assert(((size_t)mr.start())%CardTable::card_size_in_words == 0,
7014          "mr should be aligned to start at a card boundary");
7015   // We'd like to assert:
7016   // assert(mr.word_size()%CardTable::card_size_in_words == 0,
7017   //        "mr should be a range of cards");
7018   // However, that would be too strong in one case -- the last
7019   // partition ends at _unallocated_block which, in general, can be
7020   // an arbitrary boundary, not necessarily card aligned.
7021   _num_dirty_cards += mr.word_size()/CardTable::card_size_in_words;
7022   _space->object_iterate_mem(mr, &_scan_cl);
7023 }
7024 
7025 SweepClosure::SweepClosure(CMSCollector* collector,
7026                            ConcurrentMarkSweepGeneration* g,
7027                            CMSBitMap* bitMap, bool should_yield) :
7028   _collector(collector),
7029   _g(g),
7030   _sp(g->cmsSpace()),
7031   _limit(_sp->sweep_limit()),
7032   _freelistLock(_sp->freelistLock()),
7033   _bitMap(bitMap),
7034   _yield(should_yield),
7035   _inFreeRange(false),           // No free range at beginning of sweep
7036   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7037   _lastFreeRangeCoalesced(false),
7038   _freeFinger(g->used_region().start())
7039 {
7040   NOT_PRODUCT(
7041     _numObjectsFreed = 0;
7042     _numWordsFreed   = 0;
7043     _numObjectsLive = 0;
7044     _numWordsLive = 0;
7045     _numObjectsAlreadyFree = 0;
7046     _numWordsAlreadyFree = 0;
7047     _last_fc = NULL;
7048 
7049     _sp->initializeIndexedFreeListArrayReturnedBytes();
7050     _sp->dictionary()->initialize_dict_returned_bytes();
7051   )
7052   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7053          "sweep _limit out of bounds");
7054   log_develop_trace(gc, sweep)("====================");
7055   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7056 }
7057 
7058 void SweepClosure::print_on(outputStream* st) const {
7059   st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7060                p2i(_sp->bottom()), p2i(_sp->end()));
7061   st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7062   st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7063   NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7064   st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7065                _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7066 }
7067 
7068 #ifndef PRODUCT
7069 // Assertion checking only:  no useful work in product mode --
7070 // however, if any of the flags below become product flags,
7071 // you may need to review this code to see if it needs to be
7072 // enabled in product mode.
7073 SweepClosure::~SweepClosure() {
7074   assert_lock_strong(_freelistLock);
7075   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7076          "sweep _limit out of bounds");
7077   if (inFreeRange()) {
7078     Log(gc, sweep) log;
7079     log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7080     ResourceMark rm;
7081     LogStream ls(log.error());
7082     print_on(&ls);
7083     ShouldNotReachHere();
7084   }
7085 
7086   if (log_is_enabled(Debug, gc, sweep)) {
7087     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7088                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7089     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7090                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7091     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7092     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7093   }
7094 
7095   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7096     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7097     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7098     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7099     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7100                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7101   }
7102   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7103   log_develop_trace(gc, sweep)("================");
7104 }
7105 #endif  // PRODUCT
7106 
7107 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7108     bool freeRangeInFreeLists) {
7109   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7110                                p2i(freeFinger), freeRangeInFreeLists);
7111   assert(!inFreeRange(), "Trampling existing free range");
7112   set_inFreeRange(true);
7113   set_lastFreeRangeCoalesced(false);
7114 
7115   set_freeFinger(freeFinger);
7116   set_freeRangeInFreeLists(freeRangeInFreeLists);
7117   if (CMSTestInFreeList) {
7118     if (freeRangeInFreeLists) {
7119       FreeChunk* fc = (FreeChunk*) freeFinger;
7120       assert(fc->is_free(), "A chunk on the free list should be free.");
7121       assert(fc->size() > 0, "Free range should have a size");
7122       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7123     }
7124   }
7125 }
7126 
7127 // Note that the sweeper runs concurrently with mutators. Thus,
7128 // it is possible for direct allocation in this generation to happen
7129 // in the middle of the sweep. Note that the sweeper also coalesces
7130 // contiguous free blocks. Thus, unless the sweeper and the allocator
7131 // synchronize appropriately freshly allocated blocks may get swept up.
7132 // This is accomplished by the sweeper locking the free lists while
7133 // it is sweeping. Thus blocks that are determined to be free are
7134 // indeed free. There is however one additional complication:
7135 // blocks that have been allocated since the final checkpoint and
7136 // mark, will not have been marked and so would be treated as
7137 // unreachable and swept up. To prevent this, the allocator marks
7138 // the bit map when allocating during the sweep phase. This leads,
7139 // however, to a further complication -- objects may have been allocated
7140 // but not yet initialized -- in the sense that the header isn't yet
7141 // installed. The sweeper can not then determine the size of the block
7142 // in order to skip over it. To deal with this case, we use a technique
7143 // (due to Printezis) to encode such uninitialized block sizes in the
7144 // bit map. Since the bit map uses a bit per every HeapWord, but the
7145 // CMS generation has a minimum object size of 3 HeapWords, it follows
7146 // that "normal marks" won't be adjacent in the bit map (there will
7147 // always be at least two 0 bits between successive 1 bits). We make use
7148 // of these "unused" bits to represent uninitialized blocks -- the bit
7149 // corresponding to the start of the uninitialized object and the next
7150 // bit are both set. Finally, a 1 bit marks the end of the object that
7151 // started with the two consecutive 1 bits to indicate its potentially
7152 // uninitialized state.
7153 
7154 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7155   FreeChunk* fc = (FreeChunk*)addr;
7156   size_t res;
7157 
7158   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7159   // than "addr == _limit" because although _limit was a block boundary when
7160   // we started the sweep, it may no longer be one because heap expansion
7161   // may have caused us to coalesce the block ending at the address _limit
7162   // with a newly expanded chunk (this happens when _limit was set to the
7163   // previous _end of the space), so we may have stepped past _limit:
7164   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7165   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7166     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7167            "sweep _limit out of bounds");
7168     assert(addr < _sp->end(), "addr out of bounds");
7169     // Flush any free range we might be holding as a single
7170     // coalesced chunk to the appropriate free list.
7171     if (inFreeRange()) {
7172       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7173              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7174       flush_cur_free_chunk(freeFinger(),
7175                            pointer_delta(addr, freeFinger()));
7176       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7177                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7178                                    lastFreeRangeCoalesced() ? 1 : 0);
7179     }
7180 
7181     // help the iterator loop finish
7182     return pointer_delta(_sp->end(), addr);
7183   }
7184 
7185   assert(addr < _limit, "sweep invariant");
7186   // check if we should yield
7187   do_yield_check(addr);
7188   if (fc->is_free()) {
7189     // Chunk that is already free
7190     res = fc->size();
7191     do_already_free_chunk(fc);
7192     debug_only(_sp->verifyFreeLists());
7193     // If we flush the chunk at hand in lookahead_and_flush()
7194     // and it's coalesced with a preceding chunk, then the
7195     // process of "mangling" the payload of the coalesced block
7196     // will cause erasure of the size information from the
7197     // (erstwhile) header of all the coalesced blocks but the
7198     // first, so the first disjunct in the assert will not hold
7199     // in that specific case (in which case the second disjunct
7200     // will hold).
7201     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7202            "Otherwise the size info doesn't change at this step");
7203     NOT_PRODUCT(
7204       _numObjectsAlreadyFree++;
7205       _numWordsAlreadyFree += res;
7206     )
7207     NOT_PRODUCT(_last_fc = fc;)
7208   } else if (!_bitMap->isMarked(addr)) {
7209     // Chunk is fresh garbage
7210     res = do_garbage_chunk(fc);
7211     debug_only(_sp->verifyFreeLists());
7212     NOT_PRODUCT(
7213       _numObjectsFreed++;
7214       _numWordsFreed += res;
7215     )
7216   } else {
7217     // Chunk that is alive.
7218     res = do_live_chunk(fc);
7219     debug_only(_sp->verifyFreeLists());
7220     NOT_PRODUCT(
7221         _numObjectsLive++;
7222         _numWordsLive += res;
7223     )
7224   }
7225   return res;
7226 }
7227 
7228 // For the smart allocation, record following
7229 //  split deaths - a free chunk is removed from its free list because
7230 //      it is being split into two or more chunks.
7231 //  split birth - a free chunk is being added to its free list because
7232 //      a larger free chunk has been split and resulted in this free chunk.
7233 //  coal death - a free chunk is being removed from its free list because
7234 //      it is being coalesced into a large free chunk.
7235 //  coal birth - a free chunk is being added to its free list because
7236 //      it was created when two or more free chunks where coalesced into
7237 //      this free chunk.
7238 //
7239 // These statistics are used to determine the desired number of free
7240 // chunks of a given size.  The desired number is chosen to be relative
7241 // to the end of a CMS sweep.  The desired number at the end of a sweep
7242 // is the
7243 //      count-at-end-of-previous-sweep (an amount that was enough)
7244 //              - count-at-beginning-of-current-sweep  (the excess)
7245 //              + split-births  (gains in this size during interval)
7246 //              - split-deaths  (demands on this size during interval)
7247 // where the interval is from the end of one sweep to the end of the
7248 // next.
7249 //
7250 // When sweeping the sweeper maintains an accumulated chunk which is
7251 // the chunk that is made up of chunks that have been coalesced.  That
7252 // will be termed the left-hand chunk.  A new chunk of garbage that
7253 // is being considered for coalescing will be referred to as the
7254 // right-hand chunk.
7255 //
7256 // When making a decision on whether to coalesce a right-hand chunk with
7257 // the current left-hand chunk, the current count vs. the desired count
7258 // of the left-hand chunk is considered.  Also if the right-hand chunk
7259 // is near the large chunk at the end of the heap (see
7260 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7261 // left-hand chunk is coalesced.
7262 //
7263 // When making a decision about whether to split a chunk, the desired count
7264 // vs. the current count of the candidate to be split is also considered.
7265 // If the candidate is underpopulated (currently fewer chunks than desired)
7266 // a chunk of an overpopulated (currently more chunks than desired) size may
7267 // be chosen.  The "hint" associated with a free list, if non-null, points
7268 // to a free list which may be overpopulated.
7269 //
7270 
7271 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7272   const size_t size = fc->size();
7273   // Chunks that cannot be coalesced are not in the
7274   // free lists.
7275   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7276     assert(_sp->verify_chunk_in_free_list(fc),
7277            "free chunk should be in free lists");
7278   }
7279   // a chunk that is already free, should not have been
7280   // marked in the bit map
7281   HeapWord* const addr = (HeapWord*) fc;
7282   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7283   // Verify that the bit map has no bits marked between
7284   // addr and purported end of this block.
7285   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7286 
7287   // Some chunks cannot be coalesced under any circumstances.
7288   // See the definition of cantCoalesce().
7289   if (!fc->cantCoalesce()) {
7290     // This chunk can potentially be coalesced.
7291     // All the work is done in
7292     do_post_free_or_garbage_chunk(fc, size);
7293     // Note that if the chunk is not coalescable (the else arm
7294     // below), we unconditionally flush, without needing to do
7295     // a "lookahead," as we do below.
7296     if (inFreeRange()) lookahead_and_flush(fc, size);
7297   } else {
7298     // Code path common to both original and adaptive free lists.
7299 
7300     // cant coalesce with previous block; this should be treated
7301     // as the end of a free run if any
7302     if (inFreeRange()) {
7303       // we kicked some butt; time to pick up the garbage
7304       assert(freeFinger() < addr, "freeFinger points too high");
7305       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7306     }
7307     // else, nothing to do, just continue
7308   }
7309 }
7310 
7311 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7312   // This is a chunk of garbage.  It is not in any free list.
7313   // Add it to a free list or let it possibly be coalesced into
7314   // a larger chunk.
7315   HeapWord* const addr = (HeapWord*) fc;
7316   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7317 
7318   // Verify that the bit map has no bits marked between
7319   // addr and purported end of just dead object.
7320   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7321   do_post_free_or_garbage_chunk(fc, size);
7322 
7323   assert(_limit >= addr + size,
7324          "A freshly garbage chunk can't possibly straddle over _limit");
7325   if (inFreeRange()) lookahead_and_flush(fc, size);
7326   return size;
7327 }
7328 
7329 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7330   HeapWord* addr = (HeapWord*) fc;
7331   // The sweeper has just found a live object. Return any accumulated
7332   // left hand chunk to the free lists.
7333   if (inFreeRange()) {
7334     assert(freeFinger() < addr, "freeFinger points too high");
7335     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7336   }
7337 
7338   // This object is live: we'd normally expect this to be
7339   // an oop, and like to assert the following:
7340   // assert(oopDesc::is_oop(oop(addr)), "live block should be an oop");
7341   // However, as we commented above, this may be an object whose
7342   // header hasn't yet been initialized.
7343   size_t size;
7344   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7345   if (_bitMap->isMarked(addr + 1)) {
7346     // Determine the size from the bit map, rather than trying to
7347     // compute it from the object header.
7348     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7349     size = pointer_delta(nextOneAddr + 1, addr);
7350     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7351            "alignment problem");
7352 
7353 #ifdef ASSERT
7354       if (oop(addr)->klass_or_null_acquire() != NULL) {
7355         // Ignore mark word because we are running concurrent with mutators
7356         assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop");
7357         assert(size ==
7358                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7359                "P-mark and computed size do not agree");
7360       }
7361 #endif
7362 
7363   } else {
7364     // This should be an initialized object that's alive.
7365     assert(oop(addr)->klass_or_null_acquire() != NULL,
7366            "Should be an initialized object");
7367     // Ignore mark word because we are running concurrent with mutators
7368     assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop");
7369     // Verify that the bit map has no bits marked between
7370     // addr and purported end of this block.
7371     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7372     assert(size >= 3, "Necessary for Printezis marks to work");
7373     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7374     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7375   }
7376   return size;
7377 }
7378 
7379 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7380                                                  size_t chunkSize) {
7381   // do_post_free_or_garbage_chunk() should only be called in the case
7382   // of the adaptive free list allocator.
7383   const bool fcInFreeLists = fc->is_free();
7384   assert((HeapWord*)fc <= _limit, "sweep invariant");
7385   if (CMSTestInFreeList && fcInFreeLists) {
7386     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7387   }
7388 
7389   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7390 
7391   HeapWord* const fc_addr = (HeapWord*) fc;
7392 
7393   bool coalesce = false;
7394   const size_t left  = pointer_delta(fc_addr, freeFinger());
7395   const size_t right = chunkSize;
7396   switch (FLSCoalescePolicy) {
7397     // numeric value forms a coalition aggressiveness metric
7398     case 0:  { // never coalesce
7399       coalesce = false;
7400       break;
7401     }
7402     case 1: { // coalesce if left & right chunks on overpopulated lists
7403       coalesce = _sp->coalOverPopulated(left) &&
7404                  _sp->coalOverPopulated(right);
7405       break;
7406     }
7407     case 2: { // coalesce if left chunk on overpopulated list (default)
7408       coalesce = _sp->coalOverPopulated(left);
7409       break;
7410     }
7411     case 3: { // coalesce if left OR right chunk on overpopulated list
7412       coalesce = _sp->coalOverPopulated(left) ||
7413                  _sp->coalOverPopulated(right);
7414       break;
7415     }
7416     case 4: { // always coalesce
7417       coalesce = true;
7418       break;
7419     }
7420     default:
7421      ShouldNotReachHere();
7422   }
7423 
7424   // Should the current free range be coalesced?
7425   // If the chunk is in a free range and either we decided to coalesce above
7426   // or the chunk is near the large block at the end of the heap
7427   // (isNearLargestChunk() returns true), then coalesce this chunk.
7428   const bool doCoalesce = inFreeRange()
7429                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7430   if (doCoalesce) {
7431     // Coalesce the current free range on the left with the new
7432     // chunk on the right.  If either is on a free list,
7433     // it must be removed from the list and stashed in the closure.
7434     if (freeRangeInFreeLists()) {
7435       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7436       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7437              "Size of free range is inconsistent with chunk size.");
7438       if (CMSTestInFreeList) {
7439         assert(_sp->verify_chunk_in_free_list(ffc),
7440                "Chunk is not in free lists");
7441       }
7442       _sp->coalDeath(ffc->size());
7443       _sp->removeFreeChunkFromFreeLists(ffc);
7444       set_freeRangeInFreeLists(false);
7445     }
7446     if (fcInFreeLists) {
7447       _sp->coalDeath(chunkSize);
7448       assert(fc->size() == chunkSize,
7449         "The chunk has the wrong size or is not in the free lists");
7450       _sp->removeFreeChunkFromFreeLists(fc);
7451     }
7452     set_lastFreeRangeCoalesced(true);
7453     print_free_block_coalesced(fc);
7454   } else {  // not in a free range and/or should not coalesce
7455     // Return the current free range and start a new one.
7456     if (inFreeRange()) {
7457       // In a free range but cannot coalesce with the right hand chunk.
7458       // Put the current free range into the free lists.
7459       flush_cur_free_chunk(freeFinger(),
7460                            pointer_delta(fc_addr, freeFinger()));
7461     }
7462     // Set up for new free range.  Pass along whether the right hand
7463     // chunk is in the free lists.
7464     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7465   }
7466 }
7467 
7468 // Lookahead flush:
7469 // If we are tracking a free range, and this is the last chunk that
7470 // we'll look at because its end crosses past _limit, we'll preemptively
7471 // flush it along with any free range we may be holding on to. Note that
7472 // this can be the case only for an already free or freshly garbage
7473 // chunk. If this block is an object, it can never straddle
7474 // over _limit. The "straddling" occurs when _limit is set at
7475 // the previous end of the space when this cycle started, and
7476 // a subsequent heap expansion caused the previously co-terminal
7477 // free block to be coalesced with the newly expanded portion,
7478 // thus rendering _limit a non-block-boundary making it dangerous
7479 // for the sweeper to step over and examine.
7480 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7481   assert(inFreeRange(), "Should only be called if currently in a free range.");
7482   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7483   assert(_sp->used_region().contains(eob - 1),
7484          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7485          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7486          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7487          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7488   if (eob >= _limit) {
7489     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7490     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7491                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7492                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7493                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7494     // Return the storage we are tracking back into the free lists.
7495     log_develop_trace(gc, sweep)("Flushing ... ");
7496     assert(freeFinger() < eob, "Error");
7497     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7498   }
7499 }
7500 
7501 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7502   assert(inFreeRange(), "Should only be called if currently in a free range.");
7503   assert(size > 0,
7504     "A zero sized chunk cannot be added to the free lists.");
7505   if (!freeRangeInFreeLists()) {
7506     if (CMSTestInFreeList) {
7507       FreeChunk* fc = (FreeChunk*) chunk;
7508       fc->set_size(size);
7509       assert(!_sp->verify_chunk_in_free_list(fc),
7510              "chunk should not be in free lists yet");
7511     }
7512     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7513     // A new free range is going to be starting.  The current
7514     // free range has not been added to the free lists yet or
7515     // was removed so add it back.
7516     // If the current free range was coalesced, then the death
7517     // of the free range was recorded.  Record a birth now.
7518     if (lastFreeRangeCoalesced()) {
7519       _sp->coalBirth(size);
7520     }
7521     _sp->addChunkAndRepairOffsetTable(chunk, size,
7522             lastFreeRangeCoalesced());
7523   } else {
7524     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7525   }
7526   set_inFreeRange(false);
7527   set_freeRangeInFreeLists(false);
7528 }
7529 
7530 // We take a break if we've been at this for a while,
7531 // so as to avoid monopolizing the locks involved.
7532 void SweepClosure::do_yield_work(HeapWord* addr) {
7533   // Return current free chunk being used for coalescing (if any)
7534   // to the appropriate freelist.  After yielding, the next
7535   // free block encountered will start a coalescing range of
7536   // free blocks.  If the next free block is adjacent to the
7537   // chunk just flushed, they will need to wait for the next
7538   // sweep to be coalesced.
7539   if (inFreeRange()) {
7540     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7541   }
7542 
7543   // First give up the locks, then yield, then re-lock.
7544   // We should probably use a constructor/destructor idiom to
7545   // do this unlock/lock or modify the MutexUnlocker class to
7546   // serve our purpose. XXX
7547   assert_lock_strong(_bitMap->lock());
7548   assert_lock_strong(_freelistLock);
7549   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7550          "CMS thread should hold CMS token");
7551   _bitMap->lock()->unlock();
7552   _freelistLock->unlock();
7553   ConcurrentMarkSweepThread::desynchronize(true);
7554   _collector->stopTimer();
7555   _collector->incrementYields();
7556 
7557   // See the comment in coordinator_yield()
7558   for (unsigned i = 0; i < CMSYieldSleepCount &&
7559                        ConcurrentMarkSweepThread::should_yield() &&
7560                        !CMSCollector::foregroundGCIsActive(); ++i) {
7561     os::sleep(Thread::current(), 1, false);
7562   }
7563 
7564   ConcurrentMarkSweepThread::synchronize(true);
7565   _freelistLock->lock();
7566   _bitMap->lock()->lock_without_safepoint_check();
7567   _collector->startTimer();
7568 }
7569 
7570 #ifndef PRODUCT
7571 // This is actually very useful in a product build if it can
7572 // be called from the debugger.  Compile it into the product
7573 // as needed.
7574 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7575   return debug_cms_space->verify_chunk_in_free_list(fc);
7576 }
7577 #endif
7578 
7579 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7580   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7581                                p2i(fc), fc->size());
7582 }
7583 
7584 // CMSIsAliveClosure
7585 bool CMSIsAliveClosure::do_object_b(oop obj) {
7586   HeapWord* addr = (HeapWord*)obj;
7587   return addr != NULL &&
7588          (!_span.contains(addr) || _bit_map->isMarked(addr));
7589 }
7590 
7591 
7592 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7593                       MemRegion span,
7594                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7595                       bool cpc):
7596   _collector(collector),
7597   _span(span),
7598   _bit_map(bit_map),
7599   _mark_stack(mark_stack),
7600   _concurrent_precleaning(cpc) {
7601   assert(!_span.is_empty(), "Empty span could spell trouble");
7602 }
7603 
7604 
7605 // CMSKeepAliveClosure: the serial version
7606 void CMSKeepAliveClosure::do_oop(oop obj) {
7607   HeapWord* addr = (HeapWord*)obj;
7608   if (_span.contains(addr) &&
7609       !_bit_map->isMarked(addr)) {
7610     _bit_map->mark(addr);
7611     bool simulate_overflow = false;
7612     NOT_PRODUCT(
7613       if (CMSMarkStackOverflowALot &&
7614           _collector->simulate_overflow()) {
7615         // simulate a stack overflow
7616         simulate_overflow = true;
7617       }
7618     )
7619     if (simulate_overflow || !_mark_stack->push(obj)) {
7620       if (_concurrent_precleaning) {
7621         // We dirty the overflown object and let the remark
7622         // phase deal with it.
7623         assert(_collector->overflow_list_is_empty(), "Error");
7624         // In the case of object arrays, we need to dirty all of
7625         // the cards that the object spans. No locking or atomics
7626         // are needed since no one else can be mutating the mod union
7627         // table.
7628         if (obj->is_objArray()) {
7629           size_t sz = obj->size();
7630           HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
7631           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7632           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7633           _collector->_modUnionTable.mark_range(redirty_range);
7634         } else {
7635           _collector->_modUnionTable.mark(addr);
7636         }
7637         _collector->_ser_kac_preclean_ovflw++;
7638       } else {
7639         _collector->push_on_overflow_list(obj);
7640         _collector->_ser_kac_ovflw++;
7641       }
7642     }
7643   }
7644 }
7645 
7646 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7647 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7648 
7649 // CMSParKeepAliveClosure: a parallel version of the above.
7650 // The work queues are private to each closure (thread),
7651 // but (may be) available for stealing by other threads.
7652 void CMSParKeepAliveClosure::do_oop(oop obj) {
7653   HeapWord* addr = (HeapWord*)obj;
7654   if (_span.contains(addr) &&
7655       !_bit_map->isMarked(addr)) {
7656     // In general, during recursive tracing, several threads
7657     // may be concurrently getting here; the first one to
7658     // "tag" it, claims it.
7659     if (_bit_map->par_mark(addr)) {
7660       bool res = _work_queue->push(obj);
7661       assert(res, "Low water mark should be much less than capacity");
7662       // Do a recursive trim in the hope that this will keep
7663       // stack usage lower, but leave some oops for potential stealers
7664       trim_queue(_low_water_mark);
7665     } // Else, another thread got there first
7666   }
7667 }
7668 
7669 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7670 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7671 
7672 void CMSParKeepAliveClosure::trim_queue(uint max) {
7673   while (_work_queue->size() > max) {
7674     oop new_oop;
7675     if (_work_queue->pop_local(new_oop)) {
7676       assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
7677       assert(_bit_map->isMarked((HeapWord*)new_oop),
7678              "no white objects on this stack!");
7679       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7680       // iterate over the oops in this oop, marking and pushing
7681       // the ones in CMS heap (i.e. in _span).
7682       new_oop->oop_iterate(&_mark_and_push);
7683     }
7684   }
7685 }
7686 
7687 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7688                                 CMSCollector* collector,
7689                                 MemRegion span, CMSBitMap* bit_map,
7690                                 OopTaskQueue* work_queue):
7691   _collector(collector),
7692   _span(span),
7693   _bit_map(bit_map),
7694   _work_queue(work_queue) { }
7695 
7696 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7697   HeapWord* addr = (HeapWord*)obj;
7698   if (_span.contains(addr) &&
7699       !_bit_map->isMarked(addr)) {
7700     if (_bit_map->par_mark(addr)) {
7701       bool simulate_overflow = false;
7702       NOT_PRODUCT(
7703         if (CMSMarkStackOverflowALot &&
7704             _collector->par_simulate_overflow()) {
7705           // simulate a stack overflow
7706           simulate_overflow = true;
7707         }
7708       )
7709       if (simulate_overflow || !_work_queue->push(obj)) {
7710         _collector->par_push_on_overflow_list(obj);
7711         _collector->_par_kac_ovflw++;
7712       }
7713     } // Else another thread got there already
7714   }
7715 }
7716 
7717 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7718 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7719 
7720 //////////////////////////////////////////////////////////////////
7721 //  CMSExpansionCause                /////////////////////////////
7722 //////////////////////////////////////////////////////////////////
7723 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7724   switch (cause) {
7725     case _no_expansion:
7726       return "No expansion";
7727     case _satisfy_free_ratio:
7728       return "Free ratio";
7729     case _satisfy_promotion:
7730       return "Satisfy promotion";
7731     case _satisfy_allocation:
7732       return "allocation";
7733     case _allocate_par_lab:
7734       return "Par LAB";
7735     case _allocate_par_spooling_space:
7736       return "Par Spooling Space";
7737     case _adaptive_size_policy:
7738       return "Ergonomics";
7739     default:
7740       return "unknown";
7741   }
7742 }
7743 
7744 void CMSDrainMarkingStackClosure::do_void() {
7745   // the max number to take from overflow list at a time
7746   const size_t num = _mark_stack->capacity()/4;
7747   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7748          "Overflow list should be NULL during concurrent phases");
7749   while (!_mark_stack->isEmpty() ||
7750          // if stack is empty, check the overflow list
7751          _collector->take_from_overflow_list(num, _mark_stack)) {
7752     oop obj = _mark_stack->pop();
7753     HeapWord* addr = (HeapWord*)obj;
7754     assert(_span.contains(addr), "Should be within span");
7755     assert(_bit_map->isMarked(addr), "Should be marked");
7756     assert(oopDesc::is_oop(obj), "Should be an oop");
7757     obj->oop_iterate(_keep_alive);
7758   }
7759 }
7760 
7761 void CMSParDrainMarkingStackClosure::do_void() {
7762   // drain queue
7763   trim_queue(0);
7764 }
7765 
7766 // Trim our work_queue so its length is below max at return
7767 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7768   while (_work_queue->size() > max) {
7769     oop new_oop;
7770     if (_work_queue->pop_local(new_oop)) {
7771       assert(oopDesc::is_oop(new_oop), "Expected an oop");
7772       assert(_bit_map->isMarked((HeapWord*)new_oop),
7773              "no white objects on this stack!");
7774       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7775       // iterate over the oops in this oop, marking and pushing
7776       // the ones in CMS heap (i.e. in _span).
7777       new_oop->oop_iterate(&_mark_and_push);
7778     }
7779   }
7780 }
7781 
7782 ////////////////////////////////////////////////////////////////////
7783 // Support for Marking Stack Overflow list handling and related code
7784 ////////////////////////////////////////////////////////////////////
7785 // Much of the following code is similar in shape and spirit to the
7786 // code used in ParNewGC. We should try and share that code
7787 // as much as possible in the future.
7788 
7789 #ifndef PRODUCT
7790 // Debugging support for CMSStackOverflowALot
7791 
7792 // It's OK to call this multi-threaded;  the worst thing
7793 // that can happen is that we'll get a bunch of closely
7794 // spaced simulated overflows, but that's OK, in fact
7795 // probably good as it would exercise the overflow code
7796 // under contention.
7797 bool CMSCollector::simulate_overflow() {
7798   if (_overflow_counter-- <= 0) { // just being defensive
7799     _overflow_counter = CMSMarkStackOverflowInterval;
7800     return true;
7801   } else {
7802     return false;
7803   }
7804 }
7805 
7806 bool CMSCollector::par_simulate_overflow() {
7807   return simulate_overflow();
7808 }
7809 #endif
7810 
7811 // Single-threaded
7812 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7813   assert(stack->isEmpty(), "Expected precondition");
7814   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7815   size_t i = num;
7816   oop  cur = _overflow_list;
7817   const markOop proto = markOopDesc::prototype();
7818   NOT_PRODUCT(ssize_t n = 0;)
7819   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7820     next = oop(cur->mark_raw());
7821     cur->set_mark_raw(proto);   // until proven otherwise
7822     assert(oopDesc::is_oop(cur), "Should be an oop");
7823     bool res = stack->push(cur);
7824     assert(res, "Bit off more than can chew?");
7825     NOT_PRODUCT(n++;)
7826   }
7827   _overflow_list = cur;
7828 #ifndef PRODUCT
7829   assert(_num_par_pushes >= n, "Too many pops?");
7830   _num_par_pushes -=n;
7831 #endif
7832   return !stack->isEmpty();
7833 }
7834 
7835 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7836 // (MT-safe) Get a prefix of at most "num" from the list.
7837 // The overflow list is chained through the mark word of
7838 // each object in the list. We fetch the entire list,
7839 // break off a prefix of the right size and return the
7840 // remainder. If other threads try to take objects from
7841 // the overflow list at that time, they will wait for
7842 // some time to see if data becomes available. If (and
7843 // only if) another thread places one or more object(s)
7844 // on the global list before we have returned the suffix
7845 // to the global list, we will walk down our local list
7846 // to find its end and append the global list to
7847 // our suffix before returning it. This suffix walk can
7848 // prove to be expensive (quadratic in the amount of traffic)
7849 // when there are many objects in the overflow list and
7850 // there is much producer-consumer contention on the list.
7851 // *NOTE*: The overflow list manipulation code here and
7852 // in ParNewGeneration:: are very similar in shape,
7853 // except that in the ParNew case we use the old (from/eden)
7854 // copy of the object to thread the list via its klass word.
7855 // Because of the common code, if you make any changes in
7856 // the code below, please check the ParNew version to see if
7857 // similar changes might be needed.
7858 // CR 6797058 has been filed to consolidate the common code.
7859 bool CMSCollector::par_take_from_overflow_list(size_t num,
7860                                                OopTaskQueue* work_q,
7861                                                int no_of_gc_threads) {
7862   assert(work_q->size() == 0, "First empty local work queue");
7863   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7864   if (_overflow_list == NULL) {
7865     return false;
7866   }
7867   // Grab the entire list; we'll put back a suffix
7868   oop prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
7869   Thread* tid = Thread::current();
7870   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7871   // set to ParallelGCThreads.
7872   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7873   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7874   // If the list is busy, we spin for a short while,
7875   // sleeping between attempts to get the list.
7876   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7877     os::sleep(tid, sleep_time_millis, false);
7878     if (_overflow_list == NULL) {
7879       // Nothing left to take
7880       return false;
7881     } else if (_overflow_list != BUSY) {
7882       // Try and grab the prefix
7883       prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
7884     }
7885   }
7886   // If the list was found to be empty, or we spun long
7887   // enough, we give up and return empty-handed. If we leave
7888   // the list in the BUSY state below, it must be the case that
7889   // some other thread holds the overflow list and will set it
7890   // to a non-BUSY state in the future.
7891   if (prefix == NULL || prefix == BUSY) {
7892      // Nothing to take or waited long enough
7893      if (prefix == NULL) {
7894        // Write back the NULL in case we overwrote it with BUSY above
7895        // and it is still the same value.
7896        Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
7897      }
7898      return false;
7899   }
7900   assert(prefix != NULL && prefix != BUSY, "Error");
7901   size_t i = num;
7902   oop cur = prefix;
7903   // Walk down the first "num" objects, unless we reach the end.
7904   for (; i > 1 && cur->mark_raw() != NULL; cur = oop(cur->mark_raw()), i--);
7905   if (cur->mark_raw() == NULL) {
7906     // We have "num" or fewer elements in the list, so there
7907     // is nothing to return to the global list.
7908     // Write back the NULL in lieu of the BUSY we wrote
7909     // above, if it is still the same value.
7910     if (_overflow_list == BUSY) {
7911       Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
7912     }
7913   } else {
7914     // Chop off the suffix and return it to the global list.
7915     assert(cur->mark_raw() != BUSY, "Error");
7916     oop suffix_head = cur->mark_raw(); // suffix will be put back on global list
7917     cur->set_mark_raw(NULL);           // break off suffix
7918     // It's possible that the list is still in the empty(busy) state
7919     // we left it in a short while ago; in that case we may be
7920     // able to place back the suffix without incurring the cost
7921     // of a walk down the list.
7922     oop observed_overflow_list = _overflow_list;
7923     oop cur_overflow_list = observed_overflow_list;
7924     bool attached = false;
7925     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7926       observed_overflow_list =
7927         Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list);
7928       if (cur_overflow_list == observed_overflow_list) {
7929         attached = true;
7930         break;
7931       } else cur_overflow_list = observed_overflow_list;
7932     }
7933     if (!attached) {
7934       // Too bad, someone else sneaked in (at least) an element; we'll need
7935       // to do a splice. Find tail of suffix so we can prepend suffix to global
7936       // list.
7937       for (cur = suffix_head; cur->mark_raw() != NULL; cur = (oop)(cur->mark_raw()));
7938       oop suffix_tail = cur;
7939       assert(suffix_tail != NULL && suffix_tail->mark_raw() == NULL,
7940              "Tautology");
7941       observed_overflow_list = _overflow_list;
7942       do {
7943         cur_overflow_list = observed_overflow_list;
7944         if (cur_overflow_list != BUSY) {
7945           // Do the splice ...
7946           suffix_tail->set_mark_raw(markOop(cur_overflow_list));
7947         } else { // cur_overflow_list == BUSY
7948           suffix_tail->set_mark_raw(NULL);
7949         }
7950         // ... and try to place spliced list back on overflow_list ...
7951         observed_overflow_list =
7952           Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list);
7953       } while (cur_overflow_list != observed_overflow_list);
7954       // ... until we have succeeded in doing so.
7955     }
7956   }
7957 
7958   // Push the prefix elements on work_q
7959   assert(prefix != NULL, "control point invariant");
7960   const markOop proto = markOopDesc::prototype();
7961   oop next;
7962   NOT_PRODUCT(ssize_t n = 0;)
7963   for (cur = prefix; cur != NULL; cur = next) {
7964     next = oop(cur->mark_raw());
7965     cur->set_mark_raw(proto);   // until proven otherwise
7966     assert(oopDesc::is_oop(cur), "Should be an oop");
7967     bool res = work_q->push(cur);
7968     assert(res, "Bit off more than we can chew?");
7969     NOT_PRODUCT(n++;)
7970   }
7971 #ifndef PRODUCT
7972   assert(_num_par_pushes >= n, "Too many pops?");
7973   Atomic::sub(n, &_num_par_pushes);
7974 #endif
7975   return true;
7976 }
7977 
7978 // Single-threaded
7979 void CMSCollector::push_on_overflow_list(oop p) {
7980   NOT_PRODUCT(_num_par_pushes++;)
7981   assert(oopDesc::is_oop(p), "Not an oop");
7982   preserve_mark_if_necessary(p);
7983   p->set_mark_raw((markOop)_overflow_list);
7984   _overflow_list = p;
7985 }
7986 
7987 // Multi-threaded; use CAS to prepend to overflow list
7988 void CMSCollector::par_push_on_overflow_list(oop p) {
7989   NOT_PRODUCT(Atomic::inc(&_num_par_pushes);)
7990   assert(oopDesc::is_oop(p), "Not an oop");
7991   par_preserve_mark_if_necessary(p);
7992   oop observed_overflow_list = _overflow_list;
7993   oop cur_overflow_list;
7994   do {
7995     cur_overflow_list = observed_overflow_list;
7996     if (cur_overflow_list != BUSY) {
7997       p->set_mark_raw(markOop(cur_overflow_list));
7998     } else {
7999       p->set_mark_raw(NULL);
8000     }
8001     observed_overflow_list =
8002       Atomic::cmpxchg((oopDesc*)p, &_overflow_list, (oopDesc*)cur_overflow_list);
8003   } while (cur_overflow_list != observed_overflow_list);
8004 }
8005 #undef BUSY
8006 
8007 // Single threaded
8008 // General Note on GrowableArray: pushes may silently fail
8009 // because we are (temporarily) out of C-heap for expanding
8010 // the stack. The problem is quite ubiquitous and affects
8011 // a lot of code in the JVM. The prudent thing for GrowableArray
8012 // to do (for now) is to exit with an error. However, that may
8013 // be too draconian in some cases because the caller may be
8014 // able to recover without much harm. For such cases, we
8015 // should probably introduce a "soft_push" method which returns
8016 // an indication of success or failure with the assumption that
8017 // the caller may be able to recover from a failure; code in
8018 // the VM can then be changed, incrementally, to deal with such
8019 // failures where possible, thus, incrementally hardening the VM
8020 // in such low resource situations.
8021 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8022   _preserved_oop_stack.push(p);
8023   _preserved_mark_stack.push(m);
8024   assert(m == p->mark_raw(), "Mark word changed");
8025   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8026          "bijection");
8027 }
8028 
8029 // Single threaded
8030 void CMSCollector::preserve_mark_if_necessary(oop p) {
8031   markOop m = p->mark_raw();
8032   if (m->must_be_preserved(p)) {
8033     preserve_mark_work(p, m);
8034   }
8035 }
8036 
8037 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8038   markOop m = p->mark_raw();
8039   if (m->must_be_preserved(p)) {
8040     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8041     // Even though we read the mark word without holding
8042     // the lock, we are assured that it will not change
8043     // because we "own" this oop, so no other thread can
8044     // be trying to push it on the overflow list; see
8045     // the assertion in preserve_mark_work() that checks
8046     // that m == p->mark_raw().
8047     preserve_mark_work(p, m);
8048   }
8049 }
8050 
8051 // We should be able to do this multi-threaded,
8052 // a chunk of stack being a task (this is
8053 // correct because each oop only ever appears
8054 // once in the overflow list. However, it's
8055 // not very easy to completely overlap this with
8056 // other operations, so will generally not be done
8057 // until all work's been completed. Because we
8058 // expect the preserved oop stack (set) to be small,
8059 // it's probably fine to do this single-threaded.
8060 // We can explore cleverer concurrent/overlapped/parallel
8061 // processing of preserved marks if we feel the
8062 // need for this in the future. Stack overflow should
8063 // be so rare in practice and, when it happens, its
8064 // effect on performance so great that this will
8065 // likely just be in the noise anyway.
8066 void CMSCollector::restore_preserved_marks_if_any() {
8067   assert(SafepointSynchronize::is_at_safepoint(),
8068          "world should be stopped");
8069   assert(Thread::current()->is_ConcurrentGC_thread() ||
8070          Thread::current()->is_VM_thread(),
8071          "should be single-threaded");
8072   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8073          "bijection");
8074 
8075   while (!_preserved_oop_stack.is_empty()) {
8076     oop p = _preserved_oop_stack.pop();
8077     assert(oopDesc::is_oop(p), "Should be an oop");
8078     assert(_span.contains(p), "oop should be in _span");
8079     assert(p->mark_raw() == markOopDesc::prototype(),
8080            "Set when taken from overflow list");
8081     markOop m = _preserved_mark_stack.pop();
8082     p->set_mark_raw(m);
8083   }
8084   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8085          "stacks were cleared above");
8086 }
8087 
8088 #ifndef PRODUCT
8089 bool CMSCollector::no_preserved_marks() const {
8090   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8091 }
8092 #endif
8093 
8094 // Transfer some number of overflown objects to usual marking
8095 // stack. Return true if some objects were transferred.
8096 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8097   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8098                     (size_t)ParGCDesiredObjsFromOverflowList);
8099 
8100   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8101   assert(_collector->overflow_list_is_empty() || res,
8102          "If list is not empty, we should have taken something");
8103   assert(!res || !_mark_stack->isEmpty(),
8104          "If we took something, it should now be on our stack");
8105   return res;
8106 }
8107 
8108 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8109   size_t res = _sp->block_size_no_stall(addr, _collector);
8110   if (_sp->block_is_obj(addr)) {
8111     if (_live_bit_map->isMarked(addr)) {
8112       // It can't have been dead in a previous cycle
8113       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8114     } else {
8115       _dead_bit_map->mark(addr);      // mark the dead object
8116     }
8117   }
8118   // Could be 0, if the block size could not be computed without stalling.
8119   return res;
8120 }
8121 
8122 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8123   GCMemoryManager* manager = CMSHeap::heap()->old_manager();
8124   switch (phase) {
8125     case CMSCollector::InitialMarking:
8126       initialize(manager /* GC manager */ ,
8127                  cause   /* cause of the GC */,
8128                  true    /* recordGCBeginTime */,
8129                  true    /* recordPreGCUsage */,
8130                  false   /* recordPeakUsage */,
8131                  false   /* recordPostGCusage */,
8132                  true    /* recordAccumulatedGCTime */,
8133                  false   /* recordGCEndTime */,
8134                  false   /* countCollection */  );
8135       break;
8136 
8137     case CMSCollector::FinalMarking:
8138       initialize(manager /* GC manager */ ,
8139                  cause   /* cause of the GC */,
8140                  false   /* recordGCBeginTime */,
8141                  false   /* recordPreGCUsage */,
8142                  false   /* recordPeakUsage */,
8143                  false   /* recordPostGCusage */,
8144                  true    /* recordAccumulatedGCTime */,
8145                  false   /* recordGCEndTime */,
8146                  false   /* countCollection */  );
8147       break;
8148 
8149     case CMSCollector::Sweeping:
8150       initialize(manager /* GC manager */ ,
8151                  cause   /* cause of the GC */,
8152                  false   /* recordGCBeginTime */,
8153                  false   /* recordPreGCUsage */,
8154                  true    /* recordPeakUsage */,
8155                  true    /* recordPostGCusage */,
8156                  false   /* recordAccumulatedGCTime */,
8157                  true    /* recordGCEndTime */,
8158                  true    /* countCollection */  );
8159       break;
8160 
8161     default:
8162       ShouldNotReachHere();
8163   }
8164 }