1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorState.hpp"
  31 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1HeapVerifier.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1Policy.hpp"
  36 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/g1/heapRegionSet.inline.hpp"
  41 #include "gc/shared/adaptiveSizePolicy.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcTimer.hpp"
  44 #include "gc/shared/gcTrace.hpp"
  45 #include "gc/shared/gcTraceTime.inline.hpp"
  46 #include "gc/shared/genOopClosures.inline.hpp"
  47 #include "gc/shared/referencePolicy.hpp"
  48 #include "gc/shared/strongRootsScope.hpp"
  49 #include "gc/shared/suspendibleThreadSet.hpp"
  50 #include "gc/shared/taskqueue.inline.hpp"
  51 #include "gc/shared/vmGCOperations.hpp"
  52 #include "gc/shared/weakProcessor.hpp"
  53 #include "include/jvm.h"
  54 #include "logging/log.hpp"
  55 #include "memory/allocation.hpp"
  56 #include "memory/resourceArea.hpp"
  57 #include "oops/access.inline.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "runtime/atomic.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/prefetch.inline.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "utilities/align.hpp"
  65 #include "utilities/growableArray.hpp"
  66 
  67 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  68   assert(addr < _cm->finger(), "invariant");
  69   assert(addr >= _task->finger(), "invariant");
  70 
  71   // We move that task's local finger along.
  72   _task->move_finger_to(addr);
  73 
  74   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  75   // we only partially drain the local queue and global stack
  76   _task->drain_local_queue(true);
  77   _task->drain_global_stack(true);
  78 
  79   // if the has_aborted flag has been raised, we need to bail out of
  80   // the iteration
  81   return !_task->has_aborted();
  82 }
  83 
  84 G1CMMarkStack::G1CMMarkStack() :
  85   _max_chunk_capacity(0),
  86   _base(NULL),
  87   _chunk_capacity(0) {
  88   set_empty();
  89 }
  90 
  91 bool G1CMMarkStack::resize(size_t new_capacity) {
  92   assert(is_empty(), "Only resize when stack is empty.");
  93   assert(new_capacity <= _max_chunk_capacity,
  94          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
  95 
  96   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
  97 
  98   if (new_base == NULL) {
  99     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
 100     return false;
 101   }
 102   // Release old mapping.
 103   if (_base != NULL) {
 104     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 105   }
 106 
 107   _base = new_base;
 108   _chunk_capacity = new_capacity;
 109   set_empty();
 110 
 111   return true;
 112 }
 113 
 114 size_t G1CMMarkStack::capacity_alignment() {
 115   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 116 }
 117 
 118 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 119   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 120 
 121   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 122 
 123   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 124   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 125 
 126   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 127             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 128             _max_chunk_capacity,
 129             initial_chunk_capacity);
 130 
 131   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 132                 initial_chunk_capacity, _max_chunk_capacity);
 133 
 134   return resize(initial_chunk_capacity);
 135 }
 136 
 137 void G1CMMarkStack::expand() {
 138   if (_chunk_capacity == _max_chunk_capacity) {
 139     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 140     return;
 141   }
 142   size_t old_capacity = _chunk_capacity;
 143   // Double capacity if possible
 144   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 145 
 146   if (resize(new_capacity)) {
 147     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 148                   old_capacity, new_capacity);
 149   } else {
 150     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 151                     old_capacity, new_capacity);
 152   }
 153 }
 154 
 155 G1CMMarkStack::~G1CMMarkStack() {
 156   if (_base != NULL) {
 157     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 158   }
 159 }
 160 
 161 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 162   elem->next = *list;
 163   *list = elem;
 164 }
 165 
 166 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 167   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 168   add_chunk_to_list(&_chunk_list, elem);
 169   _chunks_in_chunk_list++;
 170 }
 171 
 172 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 173   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 174   add_chunk_to_list(&_free_list, elem);
 175 }
 176 
 177 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 178   TaskQueueEntryChunk* result = *list;
 179   if (result != NULL) {
 180     *list = (*list)->next;
 181   }
 182   return result;
 183 }
 184 
 185 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 186   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 187   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 188   if (result != NULL) {
 189     _chunks_in_chunk_list--;
 190   }
 191   return result;
 192 }
 193 
 194 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 195   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 196   return remove_chunk_from_list(&_free_list);
 197 }
 198 
 199 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 200   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 201   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 202   // wraparound of _hwm.
 203   if (_hwm >= _chunk_capacity) {
 204     return NULL;
 205   }
 206 
 207   size_t cur_idx = Atomic::add(1u, &_hwm) - 1;
 208   if (cur_idx >= _chunk_capacity) {
 209     return NULL;
 210   }
 211 
 212   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 213   result->next = NULL;
 214   return result;
 215 }
 216 
 217 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 218   // Get a new chunk.
 219   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 220 
 221   if (new_chunk == NULL) {
 222     // Did not get a chunk from the free list. Allocate from backing memory.
 223     new_chunk = allocate_new_chunk();
 224 
 225     if (new_chunk == NULL) {
 226       return false;
 227     }
 228   }
 229 
 230   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 231 
 232   add_chunk_to_chunk_list(new_chunk);
 233 
 234   return true;
 235 }
 236 
 237 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 238   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 239 
 240   if (cur == NULL) {
 241     return false;
 242   }
 243 
 244   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 245 
 246   add_chunk_to_free_list(cur);
 247   return true;
 248 }
 249 
 250 void G1CMMarkStack::set_empty() {
 251   _chunks_in_chunk_list = 0;
 252   _hwm = 0;
 253   _chunk_list = NULL;
 254   _free_list = NULL;
 255 }
 256 
 257 G1CMRootRegions::G1CMRootRegions() :
 258   _survivors(NULL), _cm(NULL), _scan_in_progress(false),
 259   _should_abort(false), _claimed_survivor_index(0) { }
 260 
 261 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 262   _survivors = survivors;
 263   _cm = cm;
 264 }
 265 
 266 void G1CMRootRegions::prepare_for_scan() {
 267   assert(!scan_in_progress(), "pre-condition");
 268 
 269   // Currently, only survivors can be root regions.
 270   _claimed_survivor_index = 0;
 271   _scan_in_progress = _survivors->regions()->is_nonempty();
 272   _should_abort = false;
 273 }
 274 
 275 HeapRegion* G1CMRootRegions::claim_next() {
 276   if (_should_abort) {
 277     // If someone has set the should_abort flag, we return NULL to
 278     // force the caller to bail out of their loop.
 279     return NULL;
 280   }
 281 
 282   // Currently, only survivors can be root regions.
 283   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 284 
 285   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 286   if (claimed_index < survivor_regions->length()) {
 287     return survivor_regions->at(claimed_index);
 288   }
 289   return NULL;
 290 }
 291 
 292 uint G1CMRootRegions::num_root_regions() const {
 293   return (uint)_survivors->regions()->length();
 294 }
 295 
 296 void G1CMRootRegions::notify_scan_done() {
 297   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 298   _scan_in_progress = false;
 299   RootRegionScan_lock->notify_all();
 300 }
 301 
 302 void G1CMRootRegions::cancel_scan() {
 303   notify_scan_done();
 304 }
 305 
 306 void G1CMRootRegions::scan_finished() {
 307   assert(scan_in_progress(), "pre-condition");
 308 
 309   // Currently, only survivors can be root regions.
 310   if (!_should_abort) {
 311     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 312     assert((uint)_claimed_survivor_index >= _survivors->length(),
 313            "we should have claimed all survivors, claimed index = %u, length = %u",
 314            (uint)_claimed_survivor_index, _survivors->length());
 315   }
 316 
 317   notify_scan_done();
 318 }
 319 
 320 bool G1CMRootRegions::wait_until_scan_finished() {
 321   if (!scan_in_progress()) {
 322     return false;
 323   }
 324 
 325   {
 326     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 327     while (scan_in_progress()) {
 328       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 329     }
 330   }
 331   return true;
 332 }
 333 
 334 // Returns the maximum number of workers to be used in a concurrent
 335 // phase based on the number of GC workers being used in a STW
 336 // phase.
 337 static uint scale_concurrent_worker_threads(uint num_gc_workers) {
 338   return MAX2((num_gc_workers + 2) / 4, 1U);
 339 }
 340 
 341 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 342                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 343                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 344   // _cm_thread set inside the constructor
 345   _g1h(g1h),
 346   _completed_initialization(false),
 347 
 348   _mark_bitmap_1(),
 349   _mark_bitmap_2(),
 350   _prev_mark_bitmap(&_mark_bitmap_1),
 351   _next_mark_bitmap(&_mark_bitmap_2),
 352 
 353   _heap(_g1h->reserved_region()),
 354 
 355   _root_regions(),
 356 
 357   _global_mark_stack(),
 358 
 359   // _finger set in set_non_marking_state
 360 
 361   _worker_id_offset(DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads),
 362   _max_num_tasks(ParallelGCThreads),
 363   // _num_active_tasks set in set_non_marking_state()
 364   // _tasks set inside the constructor
 365 
 366   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 367   _terminator(ParallelTaskTerminator((int) _max_num_tasks, _task_queues)),
 368 
 369   _first_overflow_barrier_sync(),
 370   _second_overflow_barrier_sync(),
 371 
 372   _has_overflown(false),
 373   _concurrent(false),
 374   _has_aborted(false),
 375   _restart_for_overflow(false),
 376   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 377   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 378 
 379   // _verbose_level set below
 380 
 381   _init_times(),
 382   _remark_times(),
 383   _remark_mark_times(),
 384   _remark_weak_ref_times(),
 385   _cleanup_times(),
 386   _total_cleanup_time(0.0),
 387 
 388   _accum_task_vtime(NULL),
 389 
 390   _concurrent_workers(NULL),
 391   _num_concurrent_workers(0),
 392   _max_concurrent_workers(0),
 393 
 394   _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)),
 395   _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC))
 396 {
 397   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 398   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 399 
 400   // Create & start ConcurrentMark thread.
 401   _cm_thread = new G1ConcurrentMarkThread(this);
 402   if (_cm_thread->osthread() == NULL) {
 403     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 404   }
 405 
 406   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 407 
 408   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 409   satb_qs.set_buffer_size(G1SATBBufferSize);
 410 
 411   _root_regions.init(_g1h->survivor(), this);
 412 
 413   if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) {
 414     // Calculate the number of concurrent worker threads by scaling
 415     // the number of parallel GC threads.
 416     uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads);
 417     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 418   }
 419 
 420   assert(ConcGCThreads > 0, "ConcGCThreads have been set.");
 421   if (ConcGCThreads > ParallelGCThreads) {
 422     log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).",
 423                     ConcGCThreads, ParallelGCThreads);
 424     return;
 425   }
 426 
 427   log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset);
 428   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 429 
 430   _num_concurrent_workers = ConcGCThreads;
 431   _max_concurrent_workers = _num_concurrent_workers;
 432 
 433   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 434   _concurrent_workers->initialize_workers();
 435 
 436   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 437     size_t mark_stack_size =
 438       MIN2(MarkStackSizeMax,
 439           MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE)));
 440     // Verify that the calculated value for MarkStackSize is in range.
 441     // It would be nice to use the private utility routine from Arguments.
 442     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 443       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 444                       "must be between 1 and " SIZE_FORMAT,
 445                       mark_stack_size, MarkStackSizeMax);
 446       return;
 447     }
 448     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 449   } else {
 450     // Verify MarkStackSize is in range.
 451     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 452       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 453         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 454           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 455                           "must be between 1 and " SIZE_FORMAT,
 456                           MarkStackSize, MarkStackSizeMax);
 457           return;
 458         }
 459       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 460         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 461           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 462                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 463                           MarkStackSize, MarkStackSizeMax);
 464           return;
 465         }
 466       }
 467     }
 468   }
 469 
 470   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 471     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 472   }
 473 
 474   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 475   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 476 
 477   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 478   _num_active_tasks = _max_num_tasks;
 479 
 480   for (uint i = 0; i < _max_num_tasks; ++i) {
 481     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 482     task_queue->initialize();
 483     _task_queues->register_queue(i, task_queue);
 484 
 485     _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions());
 486 
 487     _accum_task_vtime[i] = 0.0;
 488   }
 489 
 490   reset_at_marking_complete();
 491   _completed_initialization = true;
 492 }
 493 
 494 void G1ConcurrentMark::reset() {
 495   _has_aborted = false;
 496 
 497   reset_marking_for_restart();
 498 
 499   // Reset all tasks, since different phases will use different number of active
 500   // threads. So, it's easiest to have all of them ready.
 501   for (uint i = 0; i < _max_num_tasks; ++i) {
 502     _tasks[i]->reset(_next_mark_bitmap);
 503   }
 504 
 505   uint max_regions = _g1h->max_regions();
 506   for (uint i = 0; i < max_regions; i++) {
 507     _top_at_rebuild_starts[i] = NULL;
 508     _region_mark_stats[i].clear();
 509   }
 510 }
 511 
 512 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) {
 513   for (uint j = 0; j < _max_num_tasks; ++j) {
 514     _tasks[j]->clear_mark_stats_cache(region_idx);
 515   }
 516   _top_at_rebuild_starts[region_idx] = NULL;
 517   _region_mark_stats[region_idx].clear();
 518 }
 519 
 520 void G1ConcurrentMark::clear_statistics(HeapRegion* r) {
 521   uint const region_idx = r->hrm_index();
 522   if (r->is_humongous()) {
 523     assert(r->is_starts_humongous(), "Got humongous continues region here");
 524     uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size());
 525     for (uint j = region_idx; j < (region_idx + size_in_regions); j++) {
 526       clear_statistics_in_region(j);
 527     }
 528   } else {
 529     clear_statistics_in_region(region_idx);
 530   }
 531 }
 532 
 533 static void clear_mark_if_set(G1CMBitMap* bitmap, HeapWord* addr) {
 534   if (bitmap->is_marked(addr)) {
 535     bitmap->clear(addr);
 536   }
 537 }
 538 
 539 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) {
 540   assert_at_safepoint_on_vm_thread();
 541 
 542   // Need to clear all mark bits of the humongous object.
 543   clear_mark_if_set(_prev_mark_bitmap, r->bottom());
 544   clear_mark_if_set(_next_mark_bitmap, r->bottom());
 545 
 546   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
 547     return;
 548   }
 549 
 550   // Clear any statistics about the region gathered so far.
 551   clear_statistics(r);
 552 }
 553 
 554 void G1ConcurrentMark::reset_marking_for_restart() {
 555   _global_mark_stack.set_empty();
 556 
 557   // Expand the marking stack, if we have to and if we can.
 558   if (has_overflown()) {
 559     _global_mark_stack.expand();
 560 
 561     uint max_regions = _g1h->max_regions();
 562     for (uint i = 0; i < max_regions; i++) {
 563       _region_mark_stats[i].clear_during_overflow();
 564     }
 565   }
 566 
 567   clear_has_overflown();
 568   _finger = _heap.start();
 569 
 570   for (uint i = 0; i < _max_num_tasks; ++i) {
 571     G1CMTaskQueue* queue = _task_queues->queue(i);
 572     queue->set_empty();
 573   }
 574 }
 575 
 576 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 577   assert(active_tasks <= _max_num_tasks, "we should not have more");
 578 
 579   _num_active_tasks = active_tasks;
 580   // Need to update the three data structures below according to the
 581   // number of active threads for this phase.
 582   _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
 583   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 584   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 585 }
 586 
 587 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 588   set_concurrency(active_tasks);
 589 
 590   _concurrent = concurrent;
 591 
 592   if (!concurrent) {
 593     // At this point we should be in a STW phase, and completed marking.
 594     assert_at_safepoint_on_vm_thread();
 595     assert(out_of_regions(),
 596            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 597            p2i(_finger), p2i(_heap.end()));
 598   }
 599 }
 600 
 601 void G1ConcurrentMark::reset_at_marking_complete() {
 602   // We set the global marking state to some default values when we're
 603   // not doing marking.
 604   reset_marking_for_restart();
 605   _num_active_tasks = 0;
 606 }
 607 
 608 G1ConcurrentMark::~G1ConcurrentMark() {
 609   FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts);
 610   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats);
 611   // The G1ConcurrentMark instance is never freed.
 612   ShouldNotReachHere();
 613 }
 614 
 615 class G1ClearBitMapTask : public AbstractGangTask {
 616 public:
 617   static size_t chunk_size() { return M; }
 618 
 619 private:
 620   // Heap region closure used for clearing the given mark bitmap.
 621   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 622   private:
 623     G1CMBitMap* _bitmap;
 624     G1ConcurrentMark* _cm;
 625   public:
 626     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 627     }
 628 
 629     virtual bool do_heap_region(HeapRegion* r) {
 630       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 631 
 632       HeapWord* cur = r->bottom();
 633       HeapWord* const end = r->end();
 634 
 635       while (cur < end) {
 636         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 637         _bitmap->clear_range(mr);
 638 
 639         cur += chunk_size_in_words;
 640 
 641         // Abort iteration if after yielding the marking has been aborted.
 642         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 643           return true;
 644         }
 645         // Repeat the asserts from before the start of the closure. We will do them
 646         // as asserts here to minimize their overhead on the product. However, we
 647         // will have them as guarantees at the beginning / end of the bitmap
 648         // clearing to get some checking in the product.
 649         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 650         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 651       }
 652       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 653 
 654       return false;
 655     }
 656   };
 657 
 658   G1ClearBitmapHRClosure _cl;
 659   HeapRegionClaimer _hr_claimer;
 660   bool _suspendible; // If the task is suspendible, workers must join the STS.
 661 
 662 public:
 663   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 664     AbstractGangTask("G1 Clear Bitmap"),
 665     _cl(bitmap, suspendible ? cm : NULL),
 666     _hr_claimer(n_workers),
 667     _suspendible(suspendible)
 668   { }
 669 
 670   void work(uint worker_id) {
 671     SuspendibleThreadSetJoiner sts_join(_suspendible);
 672     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 673   }
 674 
 675   bool is_complete() {
 676     return _cl.is_complete();
 677   }
 678 };
 679 
 680 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 681   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 682 
 683   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 684   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 685 
 686   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 687 
 688   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 689 
 690   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 691   workers->run_task(&cl, num_workers);
 692   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 693 }
 694 
 695 void G1ConcurrentMark::cleanup_for_next_mark() {
 696   // Make sure that the concurrent mark thread looks to still be in
 697   // the current cycle.
 698   guarantee(cm_thread()->during_cycle(), "invariant");
 699 
 700   // We are finishing up the current cycle by clearing the next
 701   // marking bitmap and getting it ready for the next cycle. During
 702   // this time no other cycle can start. So, let's make sure that this
 703   // is the case.
 704   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 705 
 706   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 707 
 708   // Repeat the asserts from above.
 709   guarantee(cm_thread()->during_cycle(), "invariant");
 710   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 711 }
 712 
 713 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 714   assert_at_safepoint_on_vm_thread();
 715   clear_bitmap(_prev_mark_bitmap, workers, false);
 716 }
 717 
 718 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 719   G1CMBitMap* _bitmap;
 720  public:
 721   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 722   }
 723 
 724   virtual bool do_heap_region(HeapRegion* r) {
 725     // This closure can be called concurrently to the mutator, so we must make sure
 726     // that the result of the getNextMarkedWordAddress() call is compared to the
 727     // value passed to it as limit to detect any found bits.
 728     // end never changes in G1.
 729     HeapWord* end = r->end();
 730     return _bitmap->get_next_marked_addr(r->bottom(), end) != end;
 731   }
 732 };
 733 
 734 bool G1ConcurrentMark::next_mark_bitmap_is_clear() {
 735   CheckBitmapClearHRClosure cl(_next_mark_bitmap);
 736   _g1h->heap_region_iterate(&cl);
 737   return cl.is_complete();
 738 }
 739 
 740 class NoteStartOfMarkHRClosure : public HeapRegionClosure {
 741 public:
 742   bool do_heap_region(HeapRegion* r) {
 743     r->note_start_of_marking();
 744     return false;
 745   }
 746 };
 747 
 748 void G1ConcurrentMark::pre_initial_mark() {
 749   // Initialize marking structures. This has to be done in a STW phase.
 750   reset();
 751 
 752   // For each region note start of marking.
 753   NoteStartOfMarkHRClosure startcl;
 754   _g1h->heap_region_iterate(&startcl);
 755 }
 756 
 757 
 758 void G1ConcurrentMark::post_initial_mark() {
 759   // Start Concurrent Marking weak-reference discovery.
 760   ReferenceProcessor* rp = _g1h->ref_processor_cm();
 761   // enable ("weak") refs discovery
 762   rp->enable_discovery();
 763   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 764 
 765   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 766   // This is the start of  the marking cycle, we're expected all
 767   // threads to have SATB queues with active set to false.
 768   satb_mq_set.set_active_all_threads(true, /* new active value */
 769                                      false /* expected_active */);
 770 
 771   _root_regions.prepare_for_scan();
 772 
 773   // update_g1_committed() will be called at the end of an evac pause
 774   // when marking is on. So, it's also called at the end of the
 775   // initial-mark pause to update the heap end, if the heap expands
 776   // during it. No need to call it here.
 777 }
 778 
 779 /*
 780  * Notice that in the next two methods, we actually leave the STS
 781  * during the barrier sync and join it immediately afterwards. If we
 782  * do not do this, the following deadlock can occur: one thread could
 783  * be in the barrier sync code, waiting for the other thread to also
 784  * sync up, whereas another one could be trying to yield, while also
 785  * waiting for the other threads to sync up too.
 786  *
 787  * Note, however, that this code is also used during remark and in
 788  * this case we should not attempt to leave / enter the STS, otherwise
 789  * we'll either hit an assert (debug / fastdebug) or deadlock
 790  * (product). So we should only leave / enter the STS if we are
 791  * operating concurrently.
 792  *
 793  * Because the thread that does the sync barrier has left the STS, it
 794  * is possible to be suspended for a Full GC or an evacuation pause
 795  * could occur. This is actually safe, since the entering the sync
 796  * barrier is one of the last things do_marking_step() does, and it
 797  * doesn't manipulate any data structures afterwards.
 798  */
 799 
 800 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 801   bool barrier_aborted;
 802   {
 803     SuspendibleThreadSetLeaver sts_leave(concurrent());
 804     barrier_aborted = !_first_overflow_barrier_sync.enter();
 805   }
 806 
 807   // at this point everyone should have synced up and not be doing any
 808   // more work
 809 
 810   if (barrier_aborted) {
 811     // If the barrier aborted we ignore the overflow condition and
 812     // just abort the whole marking phase as quickly as possible.
 813     return;
 814   }
 815 }
 816 
 817 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 818   SuspendibleThreadSetLeaver sts_leave(concurrent());
 819   _second_overflow_barrier_sync.enter();
 820 
 821   // at this point everything should be re-initialized and ready to go
 822 }
 823 
 824 class G1CMConcurrentMarkingTask : public AbstractGangTask {
 825   G1ConcurrentMark*     _cm;
 826 
 827 public:
 828   void work(uint worker_id) {
 829     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 830     ResourceMark rm;
 831 
 832     double start_vtime = os::elapsedVTime();
 833 
 834     {
 835       SuspendibleThreadSetJoiner sts_join;
 836 
 837       assert(worker_id < _cm->active_tasks(), "invariant");
 838 
 839       G1CMTask* task = _cm->task(worker_id);
 840       task->record_start_time();
 841       if (!_cm->has_aborted()) {
 842         do {
 843           task->do_marking_step(G1ConcMarkStepDurationMillis,
 844                                 true  /* do_termination */,
 845                                 false /* is_serial*/);
 846 
 847           _cm->do_yield_check();
 848         } while (!_cm->has_aborted() && task->has_aborted());
 849       }
 850       task->record_end_time();
 851       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 852     }
 853 
 854     double end_vtime = os::elapsedVTime();
 855     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 856   }
 857 
 858   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) :
 859       AbstractGangTask("Concurrent Mark"), _cm(cm) { }
 860 
 861   ~G1CMConcurrentMarkingTask() { }
 862 };
 863 
 864 uint G1ConcurrentMark::calc_active_marking_workers() {
 865   uint result = 0;
 866   if (!UseDynamicNumberOfGCThreads ||
 867       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 868        !ForceDynamicNumberOfGCThreads)) {
 869     result = _max_concurrent_workers;
 870   } else {
 871     result =
 872       AdaptiveSizePolicy::calc_default_active_workers(_max_concurrent_workers,
 873                                                       1, /* Minimum workers */
 874                                                       _num_concurrent_workers,
 875                                                       Threads::number_of_non_daemon_threads());
 876     // Don't scale the result down by scale_concurrent_workers() because
 877     // that scaling has already gone into "_max_concurrent_workers".
 878   }
 879   assert(result > 0 && result <= _max_concurrent_workers,
 880          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 881          _max_concurrent_workers, result);
 882   return result;
 883 }
 884 
 885 void G1ConcurrentMark::scan_root_region(HeapRegion* hr, uint worker_id) {
 886   // Currently, only survivors can be root regions.
 887   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 888   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 889 
 890   const uintx interval = PrefetchScanIntervalInBytes;
 891   HeapWord* curr = hr->bottom();
 892   const HeapWord* end = hr->top();
 893   while (curr < end) {
 894     Prefetch::read(curr, interval);
 895     oop obj = oop(curr);
 896     int size = obj->oop_iterate_size(&cl);
 897     assert(size == obj->size(), "sanity");
 898     curr += size;
 899   }
 900 }
 901 
 902 class G1CMRootRegionScanTask : public AbstractGangTask {
 903   G1ConcurrentMark* _cm;
 904 public:
 905   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 906     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 907 
 908   void work(uint worker_id) {
 909     assert(Thread::current()->is_ConcurrentGC_thread(),
 910            "this should only be done by a conc GC thread");
 911 
 912     G1CMRootRegions* root_regions = _cm->root_regions();
 913     HeapRegion* hr = root_regions->claim_next();
 914     while (hr != NULL) {
 915       _cm->scan_root_region(hr, worker_id);
 916       hr = root_regions->claim_next();
 917     }
 918   }
 919 };
 920 
 921 void G1ConcurrentMark::scan_root_regions() {
 922   // scan_in_progress() will have been set to true only if there was
 923   // at least one root region to scan. So, if it's false, we
 924   // should not attempt to do any further work.
 925   if (root_regions()->scan_in_progress()) {
 926     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 927 
 928     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 929                                    // We distribute work on a per-region basis, so starting
 930                                    // more threads than that is useless.
 931                                    root_regions()->num_root_regions());
 932     assert(_num_concurrent_workers <= _max_concurrent_workers,
 933            "Maximum number of marking threads exceeded");
 934 
 935     G1CMRootRegionScanTask task(this);
 936     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 937                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 938     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 939 
 940     // It's possible that has_aborted() is true here without actually
 941     // aborting the survivor scan earlier. This is OK as it's
 942     // mainly used for sanity checking.
 943     root_regions()->scan_finished();
 944   }
 945 }
 946 
 947 void G1ConcurrentMark::concurrent_cycle_start() {
 948   _gc_timer_cm->register_gc_start();
 949 
 950   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 951 
 952   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 953 }
 954 
 955 void G1ConcurrentMark::concurrent_cycle_end() {
 956   _g1h->collector_state()->set_clearing_next_bitmap(false);
 957 
 958   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 959 
 960   if (has_aborted()) {
 961     log_info(gc, marking)("Concurrent Mark Abort");
 962     _gc_tracer_cm->report_concurrent_mode_failure();
 963   }
 964 
 965   _gc_timer_cm->register_gc_end();
 966 
 967   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 968 }
 969 
 970 void G1ConcurrentMark::mark_from_roots() {
 971   _restart_for_overflow = false;
 972 
 973   _num_concurrent_workers = calc_active_marking_workers();
 974 
 975   uint active_workers = MAX2(1U, _num_concurrent_workers);
 976 
 977   // Setting active workers is not guaranteed since fewer
 978   // worker threads may currently exist and more may not be
 979   // available.
 980   active_workers = _concurrent_workers->update_active_workers(active_workers);
 981   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 982 
 983   // Parallel task terminator is set in "set_concurrency_and_phase()"
 984   set_concurrency_and_phase(active_workers, true /* concurrent */);
 985 
 986   G1CMConcurrentMarkingTask marking_task(this);
 987   _concurrent_workers->run_task(&marking_task);
 988   print_stats();
 989 }
 990 
 991 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) {
 992   G1HeapVerifier* verifier = _g1h->verifier();
 993 
 994   verifier->verify_region_sets_optional();
 995 
 996   if (VerifyDuringGC) {
 997     GCTraceTime(Debug, gc, phases) trace(caller, _gc_timer_cm);
 998 
 999     size_t const BufLen = 512;
1000     char buffer[BufLen];
1001 
1002     jio_snprintf(buffer, BufLen, "During GC (%s)", caller);
1003     verifier->verify(type, vo, buffer);
1004   }
1005 
1006   verifier->check_bitmaps(caller);
1007 }
1008 
1009 class G1UpdateRemSetTrackingBeforeRebuildTask : public AbstractGangTask {
1010   G1CollectedHeap* _g1h;
1011   G1ConcurrentMark* _cm;
1012   HeapRegionClaimer _hrclaimer;
1013   uint _total_selected_for_rebuild;
1014  
1015   G1PrintRegionLivenessInfoClosure _cl;
1016 
1017   class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure {
1018     G1CollectedHeap* _g1h;
1019     G1ConcurrentMark* _cm;
1020 
1021     G1PrintRegionLivenessInfoClosure* _cl;
1022 
1023     uint _num_regions_selected_for_rebuild;  // The number of regions actually selected for rebuild.
1024 
1025     void update_remset_before_rebuild(HeapRegion * hr) {
1026       G1RemSetTrackingPolicy* tracking_policy = _g1h->g1_policy()->remset_tracker();
1027 
1028       size_t const live_bytes = _cm->liveness(hr->hrm_index()) * HeapWordSize;
1029       bool selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes);
1030       if (selected_for_rebuild) {
1031         _num_regions_selected_for_rebuild++;
1032       }
1033       _cm->update_top_at_rebuild_start(hr);
1034     }
1035 
1036     // Distribute the given words across the humongous object starting with hr and
1037     // note end of marking.
1038     void distribute_marked_bytes(HeapRegion* hr, size_t marked_words) {
1039       uint const region_idx = hr->hrm_index();
1040       size_t const obj_size_in_words = (size_t)oop(hr->bottom())->size();
1041       uint const num_regions_in_humongous = (uint)G1CollectedHeap::humongous_obj_size_in_regions(obj_size_in_words);
1042 
1043       // "Distributing" zero words means that we only note end of marking for these
1044       // regions.
1045       assert(marked_words == 0 || obj_size_in_words == marked_words,
1046              "Marked words should either be 0 or the same as humongous object (" SIZE_FORMAT ") but is " SIZE_FORMAT,
1047              obj_size_in_words, marked_words);
1048 
1049       for (uint i = region_idx; i < (region_idx + num_regions_in_humongous); i++) {
1050         HeapRegion* const r = _g1h->region_at(i);
1051         size_t const words_to_add = MIN2(HeapRegion::GrainWords, marked_words);
1052       
1053         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to humongous region %u (%s)", 
1054                                words_to_add, i, r->get_type_str());
1055         add_marked_bytes_and_note_end(r, words_to_add * HeapWordSize);
1056         marked_words -= words_to_add;
1057       }
1058       assert(marked_words == 0,
1059              SIZE_FORMAT " words left after distributing space across %u regions",
1060              marked_words, num_regions_in_humongous);
1061     }
1062 
1063     void update_marked_bytes(HeapRegion* hr) {
1064       uint const region_idx = hr->hrm_index();
1065       size_t const marked_words = _cm->liveness(region_idx);
1066       // The marking attributes the object's size completely to the humongous starts
1067       // region. We need to distribute this value across the entire set of regions a
1068       // humongous object spans.
1069       if (hr->is_humongous()) {
1070         assert(hr->is_starts_humongous() || marked_words == 0,
1071                "Should not have marked words " SIZE_FORMAT " in non-starts humongous region %u (%s)",
1072                marked_words, region_idx, hr->get_type_str());
1073         if (hr->is_starts_humongous()) {
1074           distribute_marked_bytes(hr, marked_words);
1075         }
1076       } else {
1077         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to region %u (%s)", marked_words, region_idx, hr->get_type_str());
1078         add_marked_bytes_and_note_end(hr, marked_words * HeapWordSize);
1079       }
1080     }
1081 
1082     void add_marked_bytes_and_note_end(HeapRegion* hr, size_t marked_bytes) {
1083       hr->add_to_marked_bytes(marked_bytes);
1084       _cl->do_heap_region(hr);
1085       hr->note_end_of_marking();
1086     }
1087 
1088   public:
1089     G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm, G1PrintRegionLivenessInfoClosure* cl) :
1090       _g1h(g1h), _cm(cm), _num_regions_selected_for_rebuild(0), _cl(cl) { }
1091 
1092     virtual bool do_heap_region(HeapRegion* r) {
1093       update_remset_before_rebuild(r);
1094       update_marked_bytes(r);
1095 
1096       return false;
1097     }
1098 
1099     uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; }
1100   };
1101 
1102 public:
1103   G1UpdateRemSetTrackingBeforeRebuildTask(G1CollectedHeap* g1h, G1ConcurrentMark* cm, uint num_workers) :
1104     AbstractGangTask("G1 Update RemSet Tracking Before Rebuild"),
1105     _g1h(g1h), _cm(cm), _hrclaimer(num_workers), _total_selected_for_rebuild(0), _cl("Post-Marking") { }
1106 
1107   virtual void work(uint worker_id) {
1108     G1UpdateRemSetTrackingBeforeRebuild update_cl(_g1h, _cm, &_cl);
1109     _g1h->heap_region_par_iterate_from_worker_offset(&update_cl, &_hrclaimer, worker_id);
1110     Atomic::add(update_cl.num_selected_for_rebuild(), &_total_selected_for_rebuild);
1111   }
1112 
1113   uint total_selected_for_rebuild() const { return _total_selected_for_rebuild; }
1114 
1115   // Number of regions for which roughly one thread should be spawned for this work.
1116   static const uint RegionsPerThread = 384; 
1117 };
1118 
1119 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure {
1120   G1CollectedHeap* _g1h;
1121 public:
1122   G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { }
1123 
1124   virtual bool do_heap_region(HeapRegion* r) {
1125     _g1h->g1_policy()->remset_tracker()->update_after_rebuild(r);
1126     return false;
1127   }
1128 };
1129 
1130 void G1ConcurrentMark::remark() {
1131   assert_at_safepoint_on_vm_thread();
1132 
1133   // If a full collection has happened, we should not continue. However we might
1134   // have ended up here as the Remark VM operation has been scheduled already.
1135   if (has_aborted()) {
1136     return;
1137   }
1138 
1139   G1Policy* g1p = _g1h->g1_policy();
1140   g1p->record_concurrent_mark_remark_start();
1141 
1142   double start = os::elapsedTime();
1143 
1144   verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before");
1145 
1146   {
1147     GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
1148     finalize_marking();
1149   }
1150 
1151   double mark_work_end = os::elapsedTime();
1152 
1153   bool const mark_finished = !has_overflown();
1154   if (mark_finished) {
1155     weak_refs_work(false /* clear_all_soft_refs */);
1156 
1157     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1158     // We're done with marking.
1159     // This is the end of the marking cycle, we're expected all
1160     // threads to have SATB queues with active set to true.
1161     satb_mq_set.set_active_all_threads(false, /* new active value */
1162                                        true /* expected_active */);
1163 
1164     {
1165       GCTraceTime(Debug, gc, phases) trace("Flush Task Caches", _gc_timer_cm);
1166       flush_all_task_caches();
1167     }
1168 
1169     // Install newly created mark bitmap as "prev".
1170     swap_mark_bitmaps();
1171     {
1172       GCTraceTime(Debug, gc, phases) trace("Update Remembered Set Tracking Before Rebuild", _gc_timer_cm);
1173 
1174       uint const workers_by_capacity = (_g1h->num_regions() + G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread - 1) /
1175                                        G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread;
1176       uint const num_workers = MIN2(_g1h->workers()->active_workers(), workers_by_capacity);
1177 
1178       G1UpdateRemSetTrackingBeforeRebuildTask cl(_g1h, this, num_workers);
1179       log_debug(gc,ergo)("Running %s using %u workers for %u regions in heap", cl.name(), num_workers, _g1h->num_regions());
1180       _g1h->workers()->run_task(&cl, num_workers);
1181 
1182       log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u",
1183                                       _g1h->num_regions(), cl.total_selected_for_rebuild());
1184     }
1185     {
1186       GCTraceTime(Debug, gc, phases) trace("Reclaim Empty Regions", _gc_timer_cm);
1187       reclaim_empty_regions();
1188     }
1189 
1190     // Clean out dead classes
1191     if (ClassUnloadingWithConcurrentMark) {
1192       GCTraceTime(Debug, gc, phases) trace("Purge Metaspace", _gc_timer_cm);
1193       ClassLoaderDataGraph::purge();
1194     }
1195 
1196     compute_new_sizes();
1197 
1198     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark after");
1199 
1200     assert(!restart_for_overflow(), "sanity");
1201     // Completely reset the marking state since marking completed
1202     reset_at_marking_complete();
1203   } else {
1204     // We overflowed.  Restart concurrent marking.
1205     _restart_for_overflow = true;
1206 
1207     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow");
1208 
1209     // Clear the marking state because we will be restarting
1210     // marking due to overflowing the global mark stack.
1211     reset_marking_for_restart();
1212   }
1213 
1214   {
1215     GCTraceTime(Debug, gc, phases) trace("Report Object Count", _gc_timer_cm);
1216     report_object_count(mark_finished);
1217   }
1218 
1219   // Statistics
1220   double now = os::elapsedTime();
1221   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1222   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1223   _remark_times.add((now - start) * 1000.0);
1224 
1225   g1p->record_concurrent_mark_remark_end();
1226 }
1227 
1228 class G1ReclaimEmptyRegionsTask : public AbstractGangTask {
1229   // Per-region work during the Cleanup pause.
1230   class G1ReclaimEmptyRegionsClosure : public HeapRegionClosure {
1231     G1CollectedHeap* _g1h;
1232     size_t _freed_bytes;
1233     FreeRegionList* _local_cleanup_list;
1234     uint _old_regions_removed;
1235     uint _humongous_regions_removed;
1236     HRRSCleanupTask* _hrrs_cleanup_task;
1237 
1238   public:
1239     G1ReclaimEmptyRegionsClosure(G1CollectedHeap* g1h,
1240                                  FreeRegionList* local_cleanup_list,
1241                                  HRRSCleanupTask* hrrs_cleanup_task) :
1242       _g1h(g1h),
1243       _freed_bytes(0),
1244       _local_cleanup_list(local_cleanup_list),
1245       _old_regions_removed(0),
1246       _humongous_regions_removed(0),
1247       _hrrs_cleanup_task(hrrs_cleanup_task) { }
1248 
1249     size_t freed_bytes() { return _freed_bytes; }
1250     const uint old_regions_removed() { return _old_regions_removed; }
1251     const uint humongous_regions_removed() { return _humongous_regions_removed; }
1252 
1253     bool do_heap_region(HeapRegion *hr) {
1254       if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1255         _freed_bytes += hr->used();
1256         hr->set_containing_set(NULL);
1257         if (hr->is_humongous()) {
1258           _humongous_regions_removed++;
1259           _g1h->free_humongous_region(hr, _local_cleanup_list);
1260         } else {
1261           _old_regions_removed++;
1262           _g1h->free_region(hr, _local_cleanup_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
1263         }
1264         hr->clear_cardtable();
1265         _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index());
1266         log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom()));
1267       } else {
1268         hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1269       }
1270 
1271       return false;
1272     }
1273   };
1274 
1275   G1CollectedHeap* _g1h;
1276   FreeRegionList* _cleanup_list;
1277   HeapRegionClaimer _hrclaimer;
1278 
1279 public:
1280   G1ReclaimEmptyRegionsTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1281     AbstractGangTask("G1 Cleanup"),
1282     _g1h(g1h),
1283     _cleanup_list(cleanup_list),
1284     _hrclaimer(n_workers) {
1285 
1286     HeapRegionRemSet::reset_for_cleanup_tasks();
1287   }
1288 
1289   void work(uint worker_id) {
1290     FreeRegionList local_cleanup_list("Local Cleanup List");
1291     HRRSCleanupTask hrrs_cleanup_task;
1292     G1ReclaimEmptyRegionsClosure cl(_g1h,
1293                                     &local_cleanup_list,
1294                                     &hrrs_cleanup_task);
1295     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
1296     assert(cl.is_complete(), "Shouldn't have aborted!");
1297 
1298     // Now update the old/humongous region sets
1299     _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed());
1300     {
1301       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1302       _g1h->decrement_summary_bytes(cl.freed_bytes());
1303 
1304       _cleanup_list->add_ordered(&local_cleanup_list);
1305       assert(local_cleanup_list.is_empty(), "post-condition");
1306 
1307       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1308     }
1309   }
1310 };
1311 
1312 void G1ConcurrentMark::reclaim_empty_regions() {
1313   WorkGang* workers = _g1h->workers();
1314   FreeRegionList empty_regions_list("Empty Regions After Mark List");
1315 
1316   G1ReclaimEmptyRegionsTask cl(_g1h, &empty_regions_list, workers->active_workers());
1317   workers->run_task(&cl);
1318 
1319   if (!empty_regions_list.is_empty()) {
1320     log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length());
1321     // Now print the empty regions list.
1322     G1HRPrinter* hrp = _g1h->hr_printer();
1323     if (hrp->is_active()) {
1324       FreeRegionListIterator iter(&empty_regions_list);
1325       while (iter.more_available()) {
1326         HeapRegion* hr = iter.get_next();
1327         hrp->cleanup(hr);
1328       }
1329     }
1330     // And actually make them available.
1331     _g1h->prepend_to_freelist(&empty_regions_list);
1332   }
1333 }
1334 
1335 void G1ConcurrentMark::compute_new_sizes() {
1336   MetaspaceGC::compute_new_size();
1337 
1338   // Cleanup will have freed any regions completely full of garbage.
1339   // Update the soft reference policy with the new heap occupancy.
1340   Universe::update_heap_info_at_gc();
1341 
1342   // We reclaimed old regions so we should calculate the sizes to make
1343   // sure we update the old gen/space data.
1344   _g1h->g1mm()->update_sizes();
1345 }
1346 
1347 void G1ConcurrentMark::cleanup() {
1348   assert_at_safepoint_on_vm_thread();
1349 
1350   // If a full collection has happened, we shouldn't do this.
1351   if (has_aborted()) {
1352     return;
1353   }
1354 
1355   G1Policy* g1p = _g1h->g1_policy();
1356   g1p->record_concurrent_mark_cleanup_start();
1357 
1358   double start = os::elapsedTime();
1359 
1360   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup before");
1361 
1362   {
1363     GCTraceTime(Debug, gc, phases) trace("Update Remembered Set Tracking After Rebuild", _gc_timer_cm);
1364     G1UpdateRemSetTrackingAfterRebuild cl(_g1h);
1365     _g1h->heap_region_iterate(&cl);
1366   }
1367 
1368   if (log_is_enabled(Trace, gc, liveness)) {
1369     G1PrintRegionLivenessInfoClosure cl("Post-Cleanup");
1370     _g1h->heap_region_iterate(&cl);
1371   }
1372 
1373   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after");
1374 
1375   // We need to make this be a "collection" so any collection pause that
1376   // races with it goes around and waits for Cleanup to finish.
1377   _g1h->increment_total_collections();
1378 
1379   // Local statistics
1380   double recent_cleanup_time = (os::elapsedTime() - start);
1381   _total_cleanup_time += recent_cleanup_time;
1382   _cleanup_times.add(recent_cleanup_time);
1383 
1384   {
1385     GCTraceTime(Debug, gc, phases) trace("Finalize Concurrent Mark Cleanup", _gc_timer_cm);
1386     _g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1387   }
1388 }
1389 
1390 // Supporting Object and Oop closures for reference discovery
1391 // and processing in during marking
1392 
1393 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1394   HeapWord* addr = (HeapWord*)obj;
1395   return addr != NULL &&
1396          (!_g1h->is_in_g1_reserved(addr) || !_g1h->is_obj_ill(obj));
1397 }
1398 
1399 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1400 // Uses the G1CMTask associated with a worker thread (for serial reference
1401 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1402 // trace referent objects.
1403 //
1404 // Using the G1CMTask and embedded local queues avoids having the worker
1405 // threads operating on the global mark stack. This reduces the risk
1406 // of overflowing the stack - which we would rather avoid at this late
1407 // state. Also using the tasks' local queues removes the potential
1408 // of the workers interfering with each other that could occur if
1409 // operating on the global stack.
1410 
1411 class G1CMKeepAliveAndDrainClosure : public OopClosure {
1412   G1ConcurrentMark* _cm;
1413   G1CMTask*         _task;
1414   int               _ref_counter_limit;
1415   int               _ref_counter;
1416   bool              _is_serial;
1417 public:
1418   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1419     _cm(cm), _task(task), _is_serial(is_serial),
1420     _ref_counter_limit(G1RefProcDrainInterval) {
1421     assert(_ref_counter_limit > 0, "sanity");
1422     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1423     _ref_counter = _ref_counter_limit;
1424   }
1425 
1426   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1427   virtual void do_oop(      oop* p) { do_oop_work(p); }
1428 
1429   template <class T> void do_oop_work(T* p) {
1430     if (_cm->has_overflown()) {
1431       return;
1432     }
1433     if (!_task->deal_with_reference(p)) {
1434       // We did not add anything to the mark bitmap (or mark stack), so there is
1435       // no point trying to drain it.
1436       return;
1437     }
1438     _ref_counter--;
1439 
1440     if (_ref_counter == 0) {
1441       // We have dealt with _ref_counter_limit references, pushing them
1442       // and objects reachable from them on to the local stack (and
1443       // possibly the global stack). Call G1CMTask::do_marking_step() to
1444       // process these entries.
1445       //
1446       // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1447       // there's nothing more to do (i.e. we're done with the entries that
1448       // were pushed as a result of the G1CMTask::deal_with_reference() calls
1449       // above) or we overflow.
1450       //
1451       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1452       // flag while there may still be some work to do. (See the comment at
1453       // the beginning of G1CMTask::do_marking_step() for those conditions -
1454       // one of which is reaching the specified time target.) It is only
1455       // when G1CMTask::do_marking_step() returns without setting the
1456       // has_aborted() flag that the marking step has completed.
1457       do {
1458         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1459         _task->do_marking_step(mark_step_duration_ms,
1460                                false      /* do_termination */,
1461                                _is_serial);
1462       } while (_task->has_aborted() && !_cm->has_overflown());
1463       _ref_counter = _ref_counter_limit;
1464     }
1465   }
1466 };
1467 
1468 // 'Drain' oop closure used by both serial and parallel reference processing.
1469 // Uses the G1CMTask associated with a given worker thread (for serial
1470 // reference processing the G1CMtask for worker 0 is used). Calls the
1471 // do_marking_step routine, with an unbelievably large timeout value,
1472 // to drain the marking data structures of the remaining entries
1473 // added by the 'keep alive' oop closure above.
1474 
1475 class G1CMDrainMarkingStackClosure : public VoidClosure {
1476   G1ConcurrentMark* _cm;
1477   G1CMTask*         _task;
1478   bool              _is_serial;
1479  public:
1480   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1481     _cm(cm), _task(task), _is_serial(is_serial) {
1482     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1483   }
1484 
1485   void do_void() {
1486     do {
1487       // We call G1CMTask::do_marking_step() to completely drain the local
1488       // and global marking stacks of entries pushed by the 'keep alive'
1489       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1490       //
1491       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1492       // if there's nothing more to do (i.e. we've completely drained the
1493       // entries that were pushed as a a result of applying the 'keep alive'
1494       // closure to the entries on the discovered ref lists) or we overflow
1495       // the global marking stack.
1496       //
1497       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1498       // flag while there may still be some work to do. (See the comment at
1499       // the beginning of G1CMTask::do_marking_step() for those conditions -
1500       // one of which is reaching the specified time target.) It is only
1501       // when G1CMTask::do_marking_step() returns without setting the
1502       // has_aborted() flag that the marking step has completed.
1503 
1504       _task->do_marking_step(1000000000.0 /* something very large */,
1505                              true         /* do_termination */,
1506                              _is_serial);
1507     } while (_task->has_aborted() && !_cm->has_overflown());
1508   }
1509 };
1510 
1511 // Implementation of AbstractRefProcTaskExecutor for parallel
1512 // reference processing at the end of G1 concurrent marking
1513 
1514 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor {
1515 private:
1516   G1CollectedHeap*  _g1h;
1517   G1ConcurrentMark* _cm;
1518   WorkGang*         _workers;
1519   uint              _active_workers;
1520 
1521 public:
1522   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1523                           G1ConcurrentMark* cm,
1524                           WorkGang* workers,
1525                           uint n_workers) :
1526     _g1h(g1h), _cm(cm),
1527     _workers(workers), _active_workers(n_workers) { }
1528 
1529   // Executes the given task using concurrent marking worker threads.
1530   virtual void execute(ProcessTask& task);
1531   virtual void execute(EnqueueTask& task);
1532 };
1533 
1534 class G1CMRefProcTaskProxy : public AbstractGangTask {
1535   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1536   ProcessTask&      _proc_task;
1537   G1CollectedHeap*  _g1h;
1538   G1ConcurrentMark* _cm;
1539 
1540 public:
1541   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1542                        G1CollectedHeap* g1h,
1543                        G1ConcurrentMark* cm) :
1544     AbstractGangTask("Process reference objects in parallel"),
1545     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1546     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1547     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1548   }
1549 
1550   virtual void work(uint worker_id) {
1551     ResourceMark rm;
1552     HandleMark hm;
1553     G1CMTask* task = _cm->task(worker_id);
1554     G1CMIsAliveClosure g1_is_alive(_g1h);
1555     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1556     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1557 
1558     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1559   }
1560 };
1561 
1562 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1563   assert(_workers != NULL, "Need parallel worker threads.");
1564   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1565 
1566   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1567 
1568   // We need to reset the concurrency level before each
1569   // proxy task execution, so that the termination protocol
1570   // and overflow handling in G1CMTask::do_marking_step() knows
1571   // how many workers to wait for.
1572   _cm->set_concurrency(_active_workers);
1573   _workers->run_task(&proc_task_proxy);
1574 }
1575 
1576 class G1CMRefEnqueueTaskProxy : public AbstractGangTask {
1577   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1578   EnqueueTask& _enq_task;
1579 
1580 public:
1581   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1582     AbstractGangTask("Enqueue reference objects in parallel"),
1583     _enq_task(enq_task) { }
1584 
1585   virtual void work(uint worker_id) {
1586     _enq_task.work(worker_id);
1587   }
1588 };
1589 
1590 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1591   assert(_workers != NULL, "Need parallel worker threads.");
1592   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1593 
1594   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1595 
1596   // Not strictly necessary but...
1597   //
1598   // We need to reset the concurrency level before each
1599   // proxy task execution, so that the termination protocol
1600   // and overflow handling in G1CMTask::do_marking_step() knows
1601   // how many workers to wait for.
1602   _cm->set_concurrency(_active_workers);
1603   _workers->run_task(&enq_task_proxy);
1604 }
1605 
1606 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1607   ResourceMark rm;
1608   HandleMark   hm;
1609 
1610   // Is alive closure.
1611   G1CMIsAliveClosure g1_is_alive(_g1h);
1612 
1613   // Inner scope to exclude the cleaning of the string and symbol
1614   // tables from the displayed time.
1615   {
1616     GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
1617 
1618     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1619 
1620     // See the comment in G1CollectedHeap::ref_processing_init()
1621     // about how reference processing currently works in G1.
1622 
1623     // Set the soft reference policy
1624     rp->setup_policy(clear_all_soft_refs);
1625     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1626 
1627     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1628     // in serial reference processing. Note these closures are also
1629     // used for serially processing (by the the current thread) the
1630     // JNI references during parallel reference processing.
1631     //
1632     // These closures do not need to synchronize with the worker
1633     // threads involved in parallel reference processing as these
1634     // instances are executed serially by the current thread (e.g.
1635     // reference processing is not multi-threaded and is thus
1636     // performed by the current thread instead of a gang worker).
1637     //
1638     // The gang tasks involved in parallel reference processing create
1639     // their own instances of these closures, which do their own
1640     // synchronization among themselves.
1641     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1642     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1643 
1644     // We need at least one active thread. If reference processing
1645     // is not multi-threaded we use the current (VMThread) thread,
1646     // otherwise we use the work gang from the G1CollectedHeap and
1647     // we utilize all the worker threads we can.
1648     bool processing_is_mt = rp->processing_is_mt();
1649     uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U);
1650     active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U);
1651 
1652     // Parallel processing task executor.
1653     G1CMRefProcTaskExecutor par_task_executor(_g1h, this,
1654                                               _g1h->workers(), active_workers);
1655     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1656 
1657     // Set the concurrency level. The phase was already set prior to
1658     // executing the remark task.
1659     set_concurrency(active_workers);
1660 
1661     // Set the degree of MT processing here.  If the discovery was done MT,
1662     // the number of threads involved during discovery could differ from
1663     // the number of active workers.  This is OK as long as the discovered
1664     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1665     rp->set_active_mt_degree(active_workers);
1666 
1667     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_q());
1668 
1669     // Process the weak references.
1670     const ReferenceProcessorStats& stats =
1671         rp->process_discovered_references(&g1_is_alive,
1672                                           &g1_keep_alive,
1673                                           &g1_drain_mark_stack,
1674                                           executor,
1675                                           &pt);
1676     _gc_tracer_cm->report_gc_reference_stats(stats);
1677     pt.print_all_references();
1678 
1679     // The do_oop work routines of the keep_alive and drain_marking_stack
1680     // oop closures will set the has_overflown flag if we overflow the
1681     // global marking stack.
1682 
1683     assert(has_overflown() || _global_mark_stack.is_empty(),
1684            "Mark stack should be empty (unless it has overflown)");
1685 
1686     assert(rp->num_q() == active_workers, "why not");
1687 
1688     rp->enqueue_discovered_references(executor, &pt);
1689 
1690     rp->verify_no_references_recorded();
1691 
1692     pt.print_enqueue_phase();
1693 
1694     assert(!rp->discovery_enabled(), "Post condition");
1695   }
1696 
1697   assert(has_overflown() || _global_mark_stack.is_empty(),
1698          "Mark stack should be empty (unless it has overflown)");
1699 
1700   {
1701     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1702     WeakProcessor::weak_oops_do(&g1_is_alive, &do_nothing_cl);
1703   }
1704 
1705   if (has_overflown()) {
1706     // We can not trust g1_is_alive if the marking stack overflowed
1707     return;
1708   }
1709 
1710   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1711 
1712   // Unload Klasses, String, Symbols, Code Cache, etc.
1713   if (ClassUnloadingWithConcurrentMark) {
1714     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1715     bool purged_classes = SystemDictionary::do_unloading(&g1_is_alive, _gc_timer_cm, false /* Defer cleaning */);
1716     _g1h->complete_cleaning(&g1_is_alive, purged_classes);
1717   } else {
1718     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1719     // No need to clean string table and symbol table as they are treated as strong roots when
1720     // class unloading is disabled.
1721     _g1h->partial_cleaning(&g1_is_alive, false, false, G1StringDedup::is_enabled());
1722   }
1723 }
1724 
1725 // When sampling object counts, we already swapped the mark bitmaps, so we need to use
1726 // the prev bitmap determining liveness.
1727 class G1ObjectCountIsAliveClosure: public BoolObjectClosure {
1728   G1CollectedHeap* _g1h;
1729 public:
1730   G1ObjectCountIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
1731 
1732   bool do_object_b(oop obj) {
1733     HeapWord* addr = (HeapWord*)obj;
1734     return addr != NULL &&
1735            (!_g1h->is_in_g1_reserved(addr) || !_g1h->is_obj_dead(obj));
1736   }
1737 };
1738 
1739 void G1ConcurrentMark::report_object_count(bool mark_completed) {
1740   // Depending on the completion of the marking liveness needs to be determined
1741   // using either the next or prev bitmap.
1742   if (mark_completed) {
1743     G1ObjectCountIsAliveClosure is_alive(_g1h);
1744     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1745   } else {
1746     G1CMIsAliveClosure is_alive(_g1h);
1747     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1748   }
1749 }
1750 
1751 
1752 void G1ConcurrentMark::swap_mark_bitmaps() {
1753   G1CMBitMap* temp = _prev_mark_bitmap;
1754   _prev_mark_bitmap = _next_mark_bitmap;
1755   _next_mark_bitmap = temp;
1756   _g1h->collector_state()->set_clearing_next_bitmap(true);
1757 }
1758 
1759 // Closure for marking entries in SATB buffers.
1760 class G1CMSATBBufferClosure : public SATBBufferClosure {
1761 private:
1762   G1CMTask* _task;
1763   G1CollectedHeap* _g1h;
1764 
1765   // This is very similar to G1CMTask::deal_with_reference, but with
1766   // more relaxed requirements for the argument, so this must be more
1767   // circumspect about treating the argument as an object.
1768   void do_entry(void* entry) const {
1769     _task->increment_refs_reached();
1770     oop const obj = static_cast<oop>(entry);
1771     _task->make_reference_grey(obj);
1772   }
1773 
1774 public:
1775   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1776     : _task(task), _g1h(g1h) { }
1777 
1778   virtual void do_buffer(void** buffer, size_t size) {
1779     for (size_t i = 0; i < size; ++i) {
1780       do_entry(buffer[i]);
1781     }
1782   }
1783 };
1784 
1785 class G1RemarkThreadsClosure : public ThreadClosure {
1786   G1CMSATBBufferClosure _cm_satb_cl;
1787   G1CMOopClosure _cm_cl;
1788   MarkingCodeBlobClosure _code_cl;
1789   int _thread_parity;
1790 
1791  public:
1792   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1793     _cm_satb_cl(task, g1h),
1794     _cm_cl(g1h, task),
1795     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1796     _thread_parity(Threads::thread_claim_parity()) {}
1797 
1798   void do_thread(Thread* thread) {
1799     if (thread->is_Java_thread()) {
1800       if (thread->claim_oops_do(true, _thread_parity)) {
1801         JavaThread* jt = (JavaThread*)thread;
1802 
1803         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1804         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1805         // * Alive if on the stack of an executing method
1806         // * Weakly reachable otherwise
1807         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1808         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1809         jt->nmethods_do(&_code_cl);
1810 
1811         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1812       }
1813     } else if (thread->is_VM_thread()) {
1814       if (thread->claim_oops_do(true, _thread_parity)) {
1815         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1816       }
1817     }
1818   }
1819 };
1820 
1821 class G1CMRemarkTask : public AbstractGangTask {
1822   G1ConcurrentMark* _cm;
1823 public:
1824   void work(uint worker_id) {
1825     G1CMTask* task = _cm->task(worker_id);
1826     task->record_start_time();
1827     {
1828       ResourceMark rm;
1829       HandleMark hm;
1830 
1831       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1832       Threads::threads_do(&threads_f);
1833     }
1834 
1835     do {
1836       task->do_marking_step(1000000000.0 /* something very large */,
1837                             true         /* do_termination       */,
1838                             false        /* is_serial            */);
1839     } while (task->has_aborted() && !_cm->has_overflown());
1840     // If we overflow, then we do not want to restart. We instead
1841     // want to abort remark and do concurrent marking again.
1842     task->record_end_time();
1843   }
1844 
1845   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1846     AbstractGangTask("Par Remark"), _cm(cm) {
1847     _cm->terminator()->reset_for_reuse(active_workers);
1848   }
1849 };
1850 
1851 void G1ConcurrentMark::finalize_marking() {
1852   ResourceMark rm;
1853   HandleMark   hm;
1854 
1855   _g1h->ensure_parsability(false);
1856 
1857   // this is remark, so we'll use up all active threads
1858   uint active_workers = _g1h->workers()->active_workers();
1859   set_concurrency_and_phase(active_workers, false /* concurrent */);
1860   // Leave _parallel_marking_threads at it's
1861   // value originally calculated in the G1ConcurrentMark
1862   // constructor and pass values of the active workers
1863   // through the gang in the task.
1864 
1865   {
1866     StrongRootsScope srs(active_workers);
1867 
1868     G1CMRemarkTask remarkTask(this, active_workers);
1869     // We will start all available threads, even if we decide that the
1870     // active_workers will be fewer. The extra ones will just bail out
1871     // immediately.
1872     _g1h->workers()->run_task(&remarkTask);
1873   }
1874 
1875   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1876   guarantee(has_overflown() ||
1877             satb_mq_set.completed_buffers_num() == 0,
1878             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1879             BOOL_TO_STR(has_overflown()),
1880             satb_mq_set.completed_buffers_num());
1881 
1882   print_stats();
1883 }
1884 
1885 void G1ConcurrentMark::flush_all_task_caches() {
1886   size_t hits = 0;
1887   size_t misses = 0;
1888   for (uint i = 0; i < _max_num_tasks; i++) {
1889     Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache();
1890     hits += stats.first;
1891     misses += stats.second;
1892   }
1893   size_t sum = hits + misses;
1894   log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf",
1895                        hits, misses, percent_of(hits, sum));
1896 }
1897 
1898 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1899   _prev_mark_bitmap->clear_range(mr);
1900 }
1901 
1902 HeapRegion*
1903 G1ConcurrentMark::claim_region(uint worker_id) {
1904   // "checkpoint" the finger
1905   HeapWord* finger = _finger;
1906 
1907   while (finger < _heap.end()) {
1908     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1909 
1910     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1911     // Make sure that the reads below do not float before loading curr_region.
1912     OrderAccess::loadload();
1913     // Above heap_region_containing may return NULL as we always scan claim
1914     // until the end of the heap. In this case, just jump to the next region.
1915     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1916 
1917     // Is the gap between reading the finger and doing the CAS too long?
1918     HeapWord* res = Atomic::cmpxchg(end, &_finger, finger);
1919     if (res == finger && curr_region != NULL) {
1920       // we succeeded
1921       HeapWord*   bottom        = curr_region->bottom();
1922       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1923 
1924       // notice that _finger == end cannot be guaranteed here since,
1925       // someone else might have moved the finger even further
1926       assert(_finger >= end, "the finger should have moved forward");
1927 
1928       if (limit > bottom) {
1929         return curr_region;
1930       } else {
1931         assert(limit == bottom,
1932                "the region limit should be at bottom");
1933         // we return NULL and the caller should try calling
1934         // claim_region() again.
1935         return NULL;
1936       }
1937     } else {
1938       assert(_finger > finger, "the finger should have moved forward");
1939       // read it again
1940       finger = _finger;
1941     }
1942   }
1943 
1944   return NULL;
1945 }
1946 
1947 #ifndef PRODUCT
1948 class VerifyNoCSetOops {
1949   G1CollectedHeap* _g1h;
1950   const char* _phase;
1951   int _info;
1952 
1953 public:
1954   VerifyNoCSetOops(const char* phase, int info = -1) :
1955     _g1h(G1CollectedHeap::heap()),
1956     _phase(phase),
1957     _info(info)
1958   { }
1959 
1960   void operator()(G1TaskQueueEntry task_entry) const {
1961     if (task_entry.is_array_slice()) {
1962       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1963       return;
1964     }
1965     guarantee(oopDesc::is_oop(task_entry.obj()),
1966               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1967               p2i(task_entry.obj()), _phase, _info);
1968     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1969               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1970               p2i(task_entry.obj()), _phase, _info);
1971   }
1972 };
1973 
1974 void G1ConcurrentMark::verify_no_cset_oops() {
1975   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1976   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
1977     return;
1978   }
1979 
1980   // Verify entries on the global mark stack
1981   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1982 
1983   // Verify entries on the task queues
1984   for (uint i = 0; i < _max_num_tasks; ++i) {
1985     G1CMTaskQueue* queue = _task_queues->queue(i);
1986     queue->iterate(VerifyNoCSetOops("Queue", i));
1987   }
1988 
1989   // Verify the global finger
1990   HeapWord* global_finger = finger();
1991   if (global_finger != NULL && global_finger < _heap.end()) {
1992     // Since we always iterate over all regions, we might get a NULL HeapRegion
1993     // here.
1994     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1995     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1996               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1997               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1998   }
1999 
2000   // Verify the task fingers
2001   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
2002   for (uint i = 0; i < _num_concurrent_workers; ++i) {
2003     G1CMTask* task = _tasks[i];
2004     HeapWord* task_finger = task->finger();
2005     if (task_finger != NULL && task_finger < _heap.end()) {
2006       // See above note on the global finger verification.
2007       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
2008       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2009                 !task_hr->in_collection_set(),
2010                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
2011                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
2012     }
2013   }
2014 }
2015 #endif // PRODUCT
2016 
2017 void G1ConcurrentMark::rebuild_rem_set_concurrently() {
2018   _g1h->g1_rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset);
2019 }
2020 
2021 void G1ConcurrentMark::print_stats() {
2022   if (!log_is_enabled(Debug, gc, stats)) {
2023     return;
2024   }
2025   log_debug(gc, stats)("---------------------------------------------------------------------");
2026   for (size_t i = 0; i < _num_active_tasks; ++i) {
2027     _tasks[i]->print_stats();
2028     log_debug(gc, stats)("---------------------------------------------------------------------");
2029   }
2030 }
2031 
2032 void G1ConcurrentMark::concurrent_cycle_abort() {
2033   if (!cm_thread()->during_cycle() || _has_aborted) {
2034     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2035     return;
2036   }
2037 
2038   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2039   // concurrent bitmap clearing.
2040   {
2041     GCTraceTime(Debug, gc)("Clear Next Bitmap");
2042     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
2043   }
2044   // Note we cannot clear the previous marking bitmap here
2045   // since VerifyDuringGC verifies the objects marked during
2046   // a full GC against the previous bitmap.
2047 
2048   // Empty mark stack
2049   reset_marking_for_restart();
2050   for (uint i = 0; i < _max_num_tasks; ++i) {
2051     _tasks[i]->clear_region_fields();
2052   }
2053   _first_overflow_barrier_sync.abort();
2054   _second_overflow_barrier_sync.abort();
2055   _has_aborted = true;
2056 
2057   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2058   satb_mq_set.abandon_partial_marking();
2059   // This can be called either during or outside marking, we'll read
2060   // the expected_active value from the SATB queue set.
2061   satb_mq_set.set_active_all_threads(
2062                                  false, /* new active value */
2063                                  satb_mq_set.is_active() /* expected_active */);
2064 }
2065 
2066 static void print_ms_time_info(const char* prefix, const char* name,
2067                                NumberSeq& ns) {
2068   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2069                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2070   if (ns.num() > 0) {
2071     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2072                            prefix, ns.sd(), ns.maximum());
2073   }
2074 }
2075 
2076 void G1ConcurrentMark::print_summary_info() {
2077   Log(gc, marking) log;
2078   if (!log.is_trace()) {
2079     return;
2080   }
2081 
2082   log.trace(" Concurrent marking:");
2083   print_ms_time_info("  ", "init marks", _init_times);
2084   print_ms_time_info("  ", "remarks", _remark_times);
2085   {
2086     print_ms_time_info("     ", "final marks", _remark_mark_times);
2087     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2088 
2089   }
2090   print_ms_time_info("  ", "cleanups", _cleanup_times);
2091   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2092             _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2093   log.trace("  Total stop_world time = %8.2f s.",
2094             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2095   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2096             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2097 }
2098 
2099 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2100   _concurrent_workers->print_worker_threads_on(st);
2101 }
2102 
2103 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2104   _concurrent_workers->threads_do(tc);
2105 }
2106 
2107 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2108   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2109                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2110   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2111   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2112 }
2113 
2114 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2115   ReferenceProcessor* result = g1h->ref_processor_cm();
2116   assert(result != NULL, "CM reference processor should not be NULL");
2117   return result;
2118 }
2119 
2120 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2121                                G1CMTask* task)
2122   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2123     _g1h(g1h), _task(task)
2124 { }
2125 
2126 void G1CMTask::setup_for_region(HeapRegion* hr) {
2127   assert(hr != NULL,
2128         "claim_region() should have filtered out NULL regions");
2129   _curr_region  = hr;
2130   _finger       = hr->bottom();
2131   update_region_limit();
2132 }
2133 
2134 void G1CMTask::update_region_limit() {
2135   HeapRegion* hr            = _curr_region;
2136   HeapWord* bottom          = hr->bottom();
2137   HeapWord* limit           = hr->next_top_at_mark_start();
2138 
2139   if (limit == bottom) {
2140     // The region was collected underneath our feet.
2141     // We set the finger to bottom to ensure that the bitmap
2142     // iteration that will follow this will not do anything.
2143     // (this is not a condition that holds when we set the region up,
2144     // as the region is not supposed to be empty in the first place)
2145     _finger = bottom;
2146   } else if (limit >= _region_limit) {
2147     assert(limit >= _finger, "peace of mind");
2148   } else {
2149     assert(limit < _region_limit, "only way to get here");
2150     // This can happen under some pretty unusual circumstances.  An
2151     // evacuation pause empties the region underneath our feet (NTAMS
2152     // at bottom). We then do some allocation in the region (NTAMS
2153     // stays at bottom), followed by the region being used as a GC
2154     // alloc region (NTAMS will move to top() and the objects
2155     // originally below it will be grayed). All objects now marked in
2156     // the region are explicitly grayed, if below the global finger,
2157     // and we do not need in fact to scan anything else. So, we simply
2158     // set _finger to be limit to ensure that the bitmap iteration
2159     // doesn't do anything.
2160     _finger = limit;
2161   }
2162 
2163   _region_limit = limit;
2164 }
2165 
2166 void G1CMTask::giveup_current_region() {
2167   assert(_curr_region != NULL, "invariant");
2168   clear_region_fields();
2169 }
2170 
2171 void G1CMTask::clear_region_fields() {
2172   // Values for these three fields that indicate that we're not
2173   // holding on to a region.
2174   _curr_region   = NULL;
2175   _finger        = NULL;
2176   _region_limit  = NULL;
2177 }
2178 
2179 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2180   if (cm_oop_closure == NULL) {
2181     assert(_cm_oop_closure != NULL, "invariant");
2182   } else {
2183     assert(_cm_oop_closure == NULL, "invariant");
2184   }
2185   _cm_oop_closure = cm_oop_closure;
2186 }
2187 
2188 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2189   guarantee(next_mark_bitmap != NULL, "invariant");
2190   _next_mark_bitmap              = next_mark_bitmap;
2191   clear_region_fields();
2192 
2193   _calls                         = 0;
2194   _elapsed_time_ms               = 0.0;
2195   _termination_time_ms           = 0.0;
2196   _termination_start_time_ms     = 0.0;
2197 
2198   _mark_stats_cache.reset();
2199 }
2200 
2201 bool G1CMTask::should_exit_termination() {
2202   regular_clock_call();
2203   // This is called when we are in the termination protocol. We should
2204   // quit if, for some reason, this task wants to abort or the global
2205   // stack is not empty (this means that we can get work from it).
2206   return !_cm->mark_stack_empty() || has_aborted();
2207 }
2208 
2209 void G1CMTask::reached_limit() {
2210   assert(_words_scanned >= _words_scanned_limit ||
2211          _refs_reached >= _refs_reached_limit ,
2212          "shouldn't have been called otherwise");
2213   regular_clock_call();
2214 }
2215 
2216 void G1CMTask::regular_clock_call() {
2217   if (has_aborted()) {
2218     return;
2219   }
2220 
2221   // First, we need to recalculate the words scanned and refs reached
2222   // limits for the next clock call.
2223   recalculate_limits();
2224 
2225   // During the regular clock call we do the following
2226 
2227   // (1) If an overflow has been flagged, then we abort.
2228   if (_cm->has_overflown()) {
2229     set_has_aborted();
2230     return;
2231   }
2232 
2233   // If we are not concurrent (i.e. we're doing remark) we don't need
2234   // to check anything else. The other steps are only needed during
2235   // the concurrent marking phase.
2236   if (!_cm->concurrent()) {
2237     return;
2238   }
2239 
2240   // (2) If marking has been aborted for Full GC, then we also abort.
2241   if (_cm->has_aborted()) {
2242     set_has_aborted();
2243     return;
2244   }
2245 
2246   double curr_time_ms = os::elapsedVTime() * 1000.0;
2247 
2248   // (4) We check whether we should yield. If we have to, then we abort.
2249   if (SuspendibleThreadSet::should_yield()) {
2250     // We should yield. To do this we abort the task. The caller is
2251     // responsible for yielding.
2252     set_has_aborted();
2253     return;
2254   }
2255 
2256   // (5) We check whether we've reached our time quota. If we have,
2257   // then we abort.
2258   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2259   if (elapsed_time_ms > _time_target_ms) {
2260     set_has_aborted();
2261     _has_timed_out = true;
2262     return;
2263   }
2264 
2265   // (6) Finally, we check whether there are enough completed STAB
2266   // buffers available for processing. If there are, we abort.
2267   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2268   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2269     // we do need to process SATB buffers, we'll abort and restart
2270     // the marking task to do so
2271     set_has_aborted();
2272     return;
2273   }
2274 }
2275 
2276 void G1CMTask::recalculate_limits() {
2277   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2278   _words_scanned_limit      = _real_words_scanned_limit;
2279 
2280   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2281   _refs_reached_limit       = _real_refs_reached_limit;
2282 }
2283 
2284 void G1CMTask::decrease_limits() {
2285   // This is called when we believe that we're going to do an infrequent
2286   // operation which will increase the per byte scanned cost (i.e. move
2287   // entries to/from the global stack). It basically tries to decrease the
2288   // scanning limit so that the clock is called earlier.
2289 
2290   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2291   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2292 }
2293 
2294 void G1CMTask::move_entries_to_global_stack() {
2295   // Local array where we'll store the entries that will be popped
2296   // from the local queue.
2297   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2298 
2299   size_t n = 0;
2300   G1TaskQueueEntry task_entry;
2301   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2302     buffer[n] = task_entry;
2303     ++n;
2304   }
2305   if (n < G1CMMarkStack::EntriesPerChunk) {
2306     buffer[n] = G1TaskQueueEntry();
2307   }
2308 
2309   if (n > 0) {
2310     if (!_cm->mark_stack_push(buffer)) {
2311       set_has_aborted();
2312     }
2313   }
2314 
2315   // This operation was quite expensive, so decrease the limits.
2316   decrease_limits();
2317 }
2318 
2319 bool G1CMTask::get_entries_from_global_stack() {
2320   // Local array where we'll store the entries that will be popped
2321   // from the global stack.
2322   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2323 
2324   if (!_cm->mark_stack_pop(buffer)) {
2325     return false;
2326   }
2327 
2328   // We did actually pop at least one entry.
2329   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2330     G1TaskQueueEntry task_entry = buffer[i];
2331     if (task_entry.is_null()) {
2332       break;
2333     }
2334     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2335     bool success = _task_queue->push(task_entry);
2336     // We only call this when the local queue is empty or under a
2337     // given target limit. So, we do not expect this push to fail.
2338     assert(success, "invariant");
2339   }
2340 
2341   // This operation was quite expensive, so decrease the limits
2342   decrease_limits();
2343   return true;
2344 }
2345 
2346 void G1CMTask::drain_local_queue(bool partially) {
2347   if (has_aborted()) {
2348     return;
2349   }
2350 
2351   // Decide what the target size is, depending whether we're going to
2352   // drain it partially (so that other tasks can steal if they run out
2353   // of things to do) or totally (at the very end).
2354   size_t target_size;
2355   if (partially) {
2356     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2357   } else {
2358     target_size = 0;
2359   }
2360 
2361   if (_task_queue->size() > target_size) {
2362     G1TaskQueueEntry entry;
2363     bool ret = _task_queue->pop_local(entry);
2364     while (ret) {
2365       scan_task_entry(entry);
2366       if (_task_queue->size() <= target_size || has_aborted()) {
2367         ret = false;
2368       } else {
2369         ret = _task_queue->pop_local(entry);
2370       }
2371     }
2372   }
2373 }
2374 
2375 void G1CMTask::drain_global_stack(bool partially) {
2376   if (has_aborted()) {
2377     return;
2378   }
2379 
2380   // We have a policy to drain the local queue before we attempt to
2381   // drain the global stack.
2382   assert(partially || _task_queue->size() == 0, "invariant");
2383 
2384   // Decide what the target size is, depending whether we're going to
2385   // drain it partially (so that other tasks can steal if they run out
2386   // of things to do) or totally (at the very end).
2387   // Notice that when draining the global mark stack partially, due to the racyness
2388   // of the mark stack size update we might in fact drop below the target. But,
2389   // this is not a problem.
2390   // In case of total draining, we simply process until the global mark stack is
2391   // totally empty, disregarding the size counter.
2392   if (partially) {
2393     size_t const target_size = _cm->partial_mark_stack_size_target();
2394     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2395       if (get_entries_from_global_stack()) {
2396         drain_local_queue(partially);
2397       }
2398     }
2399   } else {
2400     while (!has_aborted() && get_entries_from_global_stack()) {
2401       drain_local_queue(partially);
2402     }
2403   }
2404 }
2405 
2406 // SATB Queue has several assumptions on whether to call the par or
2407 // non-par versions of the methods. this is why some of the code is
2408 // replicated. We should really get rid of the single-threaded version
2409 // of the code to simplify things.
2410 void G1CMTask::drain_satb_buffers() {
2411   if (has_aborted()) {
2412     return;
2413   }
2414 
2415   // We set this so that the regular clock knows that we're in the
2416   // middle of draining buffers and doesn't set the abort flag when it
2417   // notices that SATB buffers are available for draining. It'd be
2418   // very counter productive if it did that. :-)
2419   _draining_satb_buffers = true;
2420 
2421   G1CMSATBBufferClosure satb_cl(this, _g1h);
2422   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2423 
2424   // This keeps claiming and applying the closure to completed buffers
2425   // until we run out of buffers or we need to abort.
2426   while (!has_aborted() &&
2427          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2428     regular_clock_call();
2429   }
2430 
2431   _draining_satb_buffers = false;
2432 
2433   assert(has_aborted() ||
2434          _cm->concurrent() ||
2435          satb_mq_set.completed_buffers_num() == 0, "invariant");
2436 
2437   // again, this was a potentially expensive operation, decrease the
2438   // limits to get the regular clock call early
2439   decrease_limits();
2440 }
2441 
2442 void G1CMTask::clear_mark_stats_cache(uint region_idx) {
2443   _mark_stats_cache.reset(region_idx);
2444 }
2445 
2446 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() {
2447   return _mark_stats_cache.evict_all();
2448 }
2449 
2450 void G1CMTask::print_stats() {
2451   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls);
2452   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2453                        _elapsed_time_ms, _termination_time_ms);
2454   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms",
2455                        _step_times_ms.num(),
2456                        _step_times_ms.avg(),
2457                        _step_times_ms.sd(),
2458                        _step_times_ms.maximum(),
2459                        _step_times_ms.sum());
2460   size_t const hits = _mark_stats_cache.hits();
2461   size_t const misses = _mark_stats_cache.misses();
2462   log_debug(gc, stats)("  Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f",
2463                        hits, misses, percent_of(hits, hits + misses));
2464 }
2465 
2466 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) {
2467   return _task_queues->steal(worker_id, hash_seed, task_entry);
2468 }
2469 
2470 /*****************************************************************************
2471 
2472     The do_marking_step(time_target_ms, ...) method is the building
2473     block of the parallel marking framework. It can be called in parallel
2474     with other invocations of do_marking_step() on different tasks
2475     (but only one per task, obviously) and concurrently with the
2476     mutator threads, or during remark, hence it eliminates the need
2477     for two versions of the code. When called during remark, it will
2478     pick up from where the task left off during the concurrent marking
2479     phase. Interestingly, tasks are also claimable during evacuation
2480     pauses too, since do_marking_step() ensures that it aborts before
2481     it needs to yield.
2482 
2483     The data structures that it uses to do marking work are the
2484     following:
2485 
2486       (1) Marking Bitmap. If there are gray objects that appear only
2487       on the bitmap (this happens either when dealing with an overflow
2488       or when the initial marking phase has simply marked the roots
2489       and didn't push them on the stack), then tasks claim heap
2490       regions whose bitmap they then scan to find gray objects. A
2491       global finger indicates where the end of the last claimed region
2492       is. A local finger indicates how far into the region a task has
2493       scanned. The two fingers are used to determine how to gray an
2494       object (i.e. whether simply marking it is OK, as it will be
2495       visited by a task in the future, or whether it needs to be also
2496       pushed on a stack).
2497 
2498       (2) Local Queue. The local queue of the task which is accessed
2499       reasonably efficiently by the task. Other tasks can steal from
2500       it when they run out of work. Throughout the marking phase, a
2501       task attempts to keep its local queue short but not totally
2502       empty, so that entries are available for stealing by other
2503       tasks. Only when there is no more work, a task will totally
2504       drain its local queue.
2505 
2506       (3) Global Mark Stack. This handles local queue overflow. During
2507       marking only sets of entries are moved between it and the local
2508       queues, as access to it requires a mutex and more fine-grain
2509       interaction with it which might cause contention. If it
2510       overflows, then the marking phase should restart and iterate
2511       over the bitmap to identify gray objects. Throughout the marking
2512       phase, tasks attempt to keep the global mark stack at a small
2513       length but not totally empty, so that entries are available for
2514       popping by other tasks. Only when there is no more work, tasks
2515       will totally drain the global mark stack.
2516 
2517       (4) SATB Buffer Queue. This is where completed SATB buffers are
2518       made available. Buffers are regularly removed from this queue
2519       and scanned for roots, so that the queue doesn't get too
2520       long. During remark, all completed buffers are processed, as
2521       well as the filled in parts of any uncompleted buffers.
2522 
2523     The do_marking_step() method tries to abort when the time target
2524     has been reached. There are a few other cases when the
2525     do_marking_step() method also aborts:
2526 
2527       (1) When the marking phase has been aborted (after a Full GC).
2528 
2529       (2) When a global overflow (on the global stack) has been
2530       triggered. Before the task aborts, it will actually sync up with
2531       the other tasks to ensure that all the marking data structures
2532       (local queues, stacks, fingers etc.)  are re-initialized so that
2533       when do_marking_step() completes, the marking phase can
2534       immediately restart.
2535 
2536       (3) When enough completed SATB buffers are available. The
2537       do_marking_step() method only tries to drain SATB buffers right
2538       at the beginning. So, if enough buffers are available, the
2539       marking step aborts and the SATB buffers are processed at
2540       the beginning of the next invocation.
2541 
2542       (4) To yield. when we have to yield then we abort and yield
2543       right at the end of do_marking_step(). This saves us from a lot
2544       of hassle as, by yielding we might allow a Full GC. If this
2545       happens then objects will be compacted underneath our feet, the
2546       heap might shrink, etc. We save checking for this by just
2547       aborting and doing the yield right at the end.
2548 
2549     From the above it follows that the do_marking_step() method should
2550     be called in a loop (or, otherwise, regularly) until it completes.
2551 
2552     If a marking step completes without its has_aborted() flag being
2553     true, it means it has completed the current marking phase (and
2554     also all other marking tasks have done so and have all synced up).
2555 
2556     A method called regular_clock_call() is invoked "regularly" (in
2557     sub ms intervals) throughout marking. It is this clock method that
2558     checks all the abort conditions which were mentioned above and
2559     decides when the task should abort. A work-based scheme is used to
2560     trigger this clock method: when the number of object words the
2561     marking phase has scanned or the number of references the marking
2562     phase has visited reach a given limit. Additional invocations to
2563     the method clock have been planted in a few other strategic places
2564     too. The initial reason for the clock method was to avoid calling
2565     vtime too regularly, as it is quite expensive. So, once it was in
2566     place, it was natural to piggy-back all the other conditions on it
2567     too and not constantly check them throughout the code.
2568 
2569     If do_termination is true then do_marking_step will enter its
2570     termination protocol.
2571 
2572     The value of is_serial must be true when do_marking_step is being
2573     called serially (i.e. by the VMThread) and do_marking_step should
2574     skip any synchronization in the termination and overflow code.
2575     Examples include the serial remark code and the serial reference
2576     processing closures.
2577 
2578     The value of is_serial must be false when do_marking_step is
2579     being called by any of the worker threads in a work gang.
2580     Examples include the concurrent marking code (CMMarkingTask),
2581     the MT remark code, and the MT reference processing closures.
2582 
2583  *****************************************************************************/
2584 
2585 void G1CMTask::do_marking_step(double time_target_ms,
2586                                bool do_termination,
2587                                bool is_serial) {
2588   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2589 
2590   _start_time_ms = os::elapsedVTime() * 1000.0;
2591 
2592   // If do_stealing is true then do_marking_step will attempt to
2593   // steal work from the other G1CMTasks. It only makes sense to
2594   // enable stealing when the termination protocol is enabled
2595   // and do_marking_step() is not being called serially.
2596   bool do_stealing = do_termination && !is_serial;
2597 
2598   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2599   _time_target_ms = time_target_ms - diff_prediction_ms;
2600 
2601   // set up the variables that are used in the work-based scheme to
2602   // call the regular clock method
2603   _words_scanned = 0;
2604   _refs_reached  = 0;
2605   recalculate_limits();
2606 
2607   // clear all flags
2608   clear_has_aborted();
2609   _has_timed_out = false;
2610   _draining_satb_buffers = false;
2611 
2612   ++_calls;
2613 
2614   // Set up the bitmap and oop closures. Anything that uses them is
2615   // eventually called from this method, so it is OK to allocate these
2616   // statically.
2617   G1CMBitMapClosure bitmap_closure(this, _cm);
2618   G1CMOopClosure cm_oop_closure(_g1h, this);
2619   set_cm_oop_closure(&cm_oop_closure);
2620 
2621   if (_cm->has_overflown()) {
2622     // This can happen if the mark stack overflows during a GC pause
2623     // and this task, after a yield point, restarts. We have to abort
2624     // as we need to get into the overflow protocol which happens
2625     // right at the end of this task.
2626     set_has_aborted();
2627   }
2628 
2629   // First drain any available SATB buffers. After this, we will not
2630   // look at SATB buffers before the next invocation of this method.
2631   // If enough completed SATB buffers are queued up, the regular clock
2632   // will abort this task so that it restarts.
2633   drain_satb_buffers();
2634   // ...then partially drain the local queue and the global stack
2635   drain_local_queue(true);
2636   drain_global_stack(true);
2637 
2638   do {
2639     if (!has_aborted() && _curr_region != NULL) {
2640       // This means that we're already holding on to a region.
2641       assert(_finger != NULL, "if region is not NULL, then the finger "
2642              "should not be NULL either");
2643 
2644       // We might have restarted this task after an evacuation pause
2645       // which might have evacuated the region we're holding on to
2646       // underneath our feet. Let's read its limit again to make sure
2647       // that we do not iterate over a region of the heap that
2648       // contains garbage (update_region_limit() will also move
2649       // _finger to the start of the region if it is found empty).
2650       update_region_limit();
2651       // We will start from _finger not from the start of the region,
2652       // as we might be restarting this task after aborting half-way
2653       // through scanning this region. In this case, _finger points to
2654       // the address where we last found a marked object. If this is a
2655       // fresh region, _finger points to start().
2656       MemRegion mr = MemRegion(_finger, _region_limit);
2657 
2658       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2659              "humongous regions should go around loop once only");
2660 
2661       // Some special cases:
2662       // If the memory region is empty, we can just give up the region.
2663       // If the current region is humongous then we only need to check
2664       // the bitmap for the bit associated with the start of the object,
2665       // scan the object if it's live, and give up the region.
2666       // Otherwise, let's iterate over the bitmap of the part of the region
2667       // that is left.
2668       // If the iteration is successful, give up the region.
2669       if (mr.is_empty()) {
2670         giveup_current_region();
2671         regular_clock_call();
2672       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2673         if (_next_mark_bitmap->is_marked(mr.start())) {
2674           // The object is marked - apply the closure
2675           bitmap_closure.do_addr(mr.start());
2676         }
2677         // Even if this task aborted while scanning the humongous object
2678         // we can (and should) give up the current region.
2679         giveup_current_region();
2680         regular_clock_call();
2681       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2682         giveup_current_region();
2683         regular_clock_call();
2684       } else {
2685         assert(has_aborted(), "currently the only way to do so");
2686         // The only way to abort the bitmap iteration is to return
2687         // false from the do_bit() method. However, inside the
2688         // do_bit() method we move the _finger to point to the
2689         // object currently being looked at. So, if we bail out, we
2690         // have definitely set _finger to something non-null.
2691         assert(_finger != NULL, "invariant");
2692 
2693         // Region iteration was actually aborted. So now _finger
2694         // points to the address of the object we last scanned. If we
2695         // leave it there, when we restart this task, we will rescan
2696         // the object. It is easy to avoid this. We move the finger by
2697         // enough to point to the next possible object header.
2698         assert(_finger < _region_limit, "invariant");
2699         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2700         // Check if bitmap iteration was aborted while scanning the last object
2701         if (new_finger >= _region_limit) {
2702           giveup_current_region();
2703         } else {
2704           move_finger_to(new_finger);
2705         }
2706       }
2707     }
2708     // At this point we have either completed iterating over the
2709     // region we were holding on to, or we have aborted.
2710 
2711     // We then partially drain the local queue and the global stack.
2712     // (Do we really need this?)
2713     drain_local_queue(true);
2714     drain_global_stack(true);
2715 
2716     // Read the note on the claim_region() method on why it might
2717     // return NULL with potentially more regions available for
2718     // claiming and why we have to check out_of_regions() to determine
2719     // whether we're done or not.
2720     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2721       // We are going to try to claim a new region. We should have
2722       // given up on the previous one.
2723       // Separated the asserts so that we know which one fires.
2724       assert(_curr_region  == NULL, "invariant");
2725       assert(_finger       == NULL, "invariant");
2726       assert(_region_limit == NULL, "invariant");
2727       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2728       if (claimed_region != NULL) {
2729         // Yes, we managed to claim one
2730         setup_for_region(claimed_region);
2731         assert(_curr_region == claimed_region, "invariant");
2732       }
2733       // It is important to call the regular clock here. It might take
2734       // a while to claim a region if, for example, we hit a large
2735       // block of empty regions. So we need to call the regular clock
2736       // method once round the loop to make sure it's called
2737       // frequently enough.
2738       regular_clock_call();
2739     }
2740 
2741     if (!has_aborted() && _curr_region == NULL) {
2742       assert(_cm->out_of_regions(),
2743              "at this point we should be out of regions");
2744     }
2745   } while ( _curr_region != NULL && !has_aborted());
2746 
2747   if (!has_aborted()) {
2748     // We cannot check whether the global stack is empty, since other
2749     // tasks might be pushing objects to it concurrently.
2750     assert(_cm->out_of_regions(),
2751            "at this point we should be out of regions");
2752     // Try to reduce the number of available SATB buffers so that
2753     // remark has less work to do.
2754     drain_satb_buffers();
2755   }
2756 
2757   // Since we've done everything else, we can now totally drain the
2758   // local queue and global stack.
2759   drain_local_queue(false);
2760   drain_global_stack(false);
2761 
2762   // Attempt at work stealing from other task's queues.
2763   if (do_stealing && !has_aborted()) {
2764     // We have not aborted. This means that we have finished all that
2765     // we could. Let's try to do some stealing...
2766 
2767     // We cannot check whether the global stack is empty, since other
2768     // tasks might be pushing objects to it concurrently.
2769     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2770            "only way to reach here");
2771     while (!has_aborted()) {
2772       G1TaskQueueEntry entry;
2773       if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) {
2774         scan_task_entry(entry);
2775 
2776         // And since we're towards the end, let's totally drain the
2777         // local queue and global stack.
2778         drain_local_queue(false);
2779         drain_global_stack(false);
2780       } else {
2781         break;
2782       }
2783     }
2784   }
2785 
2786   // We still haven't aborted. Now, let's try to get into the
2787   // termination protocol.
2788   if (do_termination && !has_aborted()) {
2789     // We cannot check whether the global stack is empty, since other
2790     // tasks might be concurrently pushing objects on it.
2791     // Separated the asserts so that we know which one fires.
2792     assert(_cm->out_of_regions(), "only way to reach here");
2793     assert(_task_queue->size() == 0, "only way to reach here");
2794     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2795 
2796     // The G1CMTask class also extends the TerminatorTerminator class,
2797     // hence its should_exit_termination() method will also decide
2798     // whether to exit the termination protocol or not.
2799     bool finished = (is_serial ||
2800                      _cm->terminator()->offer_termination(this));
2801     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2802     _termination_time_ms +=
2803       termination_end_time_ms - _termination_start_time_ms;
2804 
2805     if (finished) {
2806       // We're all done.
2807 
2808       // We can now guarantee that the global stack is empty, since
2809       // all other tasks have finished. We separated the guarantees so
2810       // that, if a condition is false, we can immediately find out
2811       // which one.
2812       guarantee(_cm->out_of_regions(), "only way to reach here");
2813       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2814       guarantee(_task_queue->size() == 0, "only way to reach here");
2815       guarantee(!_cm->has_overflown(), "only way to reach here");
2816     } else {
2817       // Apparently there's more work to do. Let's abort this task. It
2818       // will restart it and we can hopefully find more things to do.
2819       set_has_aborted();
2820     }
2821   }
2822 
2823   // Mainly for debugging purposes to make sure that a pointer to the
2824   // closure which was statically allocated in this frame doesn't
2825   // escape it by accident.
2826   set_cm_oop_closure(NULL);
2827   double end_time_ms = os::elapsedVTime() * 1000.0;
2828   double elapsed_time_ms = end_time_ms - _start_time_ms;
2829   // Update the step history.
2830   _step_times_ms.add(elapsed_time_ms);
2831 
2832   if (has_aborted()) {
2833     // The task was aborted for some reason.
2834     if (_has_timed_out) {
2835       double diff_ms = elapsed_time_ms - _time_target_ms;
2836       // Keep statistics of how well we did with respect to hitting
2837       // our target only if we actually timed out (if we aborted for
2838       // other reasons, then the results might get skewed).
2839       _marking_step_diffs_ms.add(diff_ms);
2840     }
2841 
2842     if (_cm->has_overflown()) {
2843       // This is the interesting one. We aborted because a global
2844       // overflow was raised. This means we have to restart the
2845       // marking phase and start iterating over regions. However, in
2846       // order to do this we have to make sure that all tasks stop
2847       // what they are doing and re-initialize in a safe manner. We
2848       // will achieve this with the use of two barrier sync points.
2849 
2850       if (!is_serial) {
2851         // We only need to enter the sync barrier if being called
2852         // from a parallel context
2853         _cm->enter_first_sync_barrier(_worker_id);
2854 
2855         // When we exit this sync barrier we know that all tasks have
2856         // stopped doing marking work. So, it's now safe to
2857         // re-initialize our data structures.
2858       }
2859 
2860       clear_region_fields();
2861       flush_mark_stats_cache();
2862 
2863       if (!is_serial) {
2864         // If we're executing the concurrent phase of marking, reset the marking
2865         // state; otherwise the marking state is reset after reference processing,
2866         // during the remark pause.
2867         // If we reset here as a result of an overflow during the remark we will
2868         // see assertion failures from any subsequent set_concurrency_and_phase()
2869         // calls.
2870         if (_cm->concurrent() && _worker_id == 0) {
2871           // Worker 0 is responsible for clearing the global data structures because
2872           // of an overflow. During STW we should not clear the overflow flag (in
2873           // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit
2874           // method to abort the pause and restart concurrent marking.
2875           _cm->reset_marking_for_restart();
2876 
2877           log_info(gc, marking)("Concurrent Mark reset for overflow");
2878         }
2879 
2880         // ...and enter the second barrier.
2881         _cm->enter_second_sync_barrier(_worker_id);
2882       }
2883       // At this point, if we're during the concurrent phase of
2884       // marking, everything has been re-initialized and we're
2885       // ready to restart.
2886     }
2887   }
2888 }
2889 
2890 G1CMTask::G1CMTask(uint worker_id,
2891                    G1ConcurrentMark* cm,
2892                    G1CMTaskQueue* task_queue,
2893                    G1RegionMarkStats* mark_stats,
2894                    uint max_regions) :
2895   _objArray_processor(this),
2896   _worker_id(worker_id),
2897   _g1h(G1CollectedHeap::heap()),
2898   _cm(cm),
2899   _next_mark_bitmap(NULL),
2900   _task_queue(task_queue),
2901   _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize),
2902   _calls(0),
2903   _time_target_ms(0.0),
2904   _start_time_ms(0.0),
2905   _cm_oop_closure(NULL),
2906   _curr_region(NULL),
2907   _finger(NULL),
2908   _region_limit(NULL),
2909   _words_scanned(0),
2910   _words_scanned_limit(0),
2911   _real_words_scanned_limit(0),
2912   _refs_reached(0),
2913   _refs_reached_limit(0),
2914   _real_refs_reached_limit(0),
2915   _hash_seed(17),
2916   _has_aborted(false),
2917   _has_timed_out(false),
2918   _draining_satb_buffers(false),
2919   _step_times_ms(),
2920   _elapsed_time_ms(0.0),
2921   _termination_time_ms(0.0),
2922   _termination_start_time_ms(0.0),
2923   _marking_step_diffs_ms()
2924 {
2925   guarantee(task_queue != NULL, "invariant");
2926 
2927   _marking_step_diffs_ms.add(0.5);
2928 }
2929 
2930 // These are formatting macros that are used below to ensure
2931 // consistent formatting. The *_H_* versions are used to format the
2932 // header for a particular value and they should be kept consistent
2933 // with the corresponding macro. Also note that most of the macros add
2934 // the necessary white space (as a prefix) which makes them a bit
2935 // easier to compose.
2936 
2937 // All the output lines are prefixed with this string to be able to
2938 // identify them easily in a large log file.
2939 #define G1PPRL_LINE_PREFIX            "###"
2940 
2941 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2942 #ifdef _LP64
2943 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2944 #else // _LP64
2945 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2946 #endif // _LP64
2947 
2948 // For per-region info
2949 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2950 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2951 #define G1PPRL_STATE_FORMAT           "   %-5s"
2952 #define G1PPRL_STATE_H_FORMAT         "   %5s"
2953 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2954 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2955 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2956 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2957 
2958 // For summary info
2959 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2960 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2961 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2962 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2963 
2964 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2965   _total_used_bytes(0), _total_capacity_bytes(0),
2966   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2967   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2968 {
2969   if (!log_is_enabled(Trace, gc, liveness)) {
2970     return;
2971   }
2972 
2973   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2974   MemRegion g1_reserved = g1h->g1_reserved();
2975   double now = os::elapsedTime();
2976 
2977   // Print the header of the output.
2978   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2979   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2980                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2981                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2982                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2983                           HeapRegion::GrainBytes);
2984   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2985   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2986                           G1PPRL_TYPE_H_FORMAT
2987                           G1PPRL_ADDR_BASE_H_FORMAT
2988                           G1PPRL_BYTE_H_FORMAT
2989                           G1PPRL_BYTE_H_FORMAT
2990                           G1PPRL_BYTE_H_FORMAT
2991                           G1PPRL_DOUBLE_H_FORMAT
2992                           G1PPRL_BYTE_H_FORMAT
2993                           G1PPRL_STATE_H_FORMAT
2994                           G1PPRL_BYTE_H_FORMAT,
2995                           "type", "address-range",
2996                           "used", "prev-live", "next-live", "gc-eff",
2997                           "remset", "state", "code-roots");
2998   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2999                           G1PPRL_TYPE_H_FORMAT
3000                           G1PPRL_ADDR_BASE_H_FORMAT
3001                           G1PPRL_BYTE_H_FORMAT
3002                           G1PPRL_BYTE_H_FORMAT
3003                           G1PPRL_BYTE_H_FORMAT
3004                           G1PPRL_DOUBLE_H_FORMAT
3005                           G1PPRL_BYTE_H_FORMAT
3006                           G1PPRL_STATE_H_FORMAT
3007                           G1PPRL_BYTE_H_FORMAT,
3008                           "", "",
3009                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3010                           "(bytes)", "", "(bytes)");
3011 }
3012 
3013 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
3014   if (!log_is_enabled(Trace, gc, liveness)) {
3015     return false;
3016   }
3017 
3018   const char* type       = r->get_type_str();
3019   HeapWord* bottom       = r->bottom();
3020   HeapWord* end          = r->end();
3021   size_t capacity_bytes  = r->capacity();
3022   size_t used_bytes      = r->used();
3023   size_t prev_live_bytes = r->live_bytes();
3024   size_t next_live_bytes = r->next_live_bytes();
3025   double gc_eff          = r->gc_efficiency();
3026   size_t remset_bytes    = r->rem_set()->mem_size();
3027   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3028   const char* remset_type = r->rem_set()->get_short_state_str();
3029 
3030   _total_used_bytes      += used_bytes;
3031   _total_capacity_bytes  += capacity_bytes;
3032   _total_prev_live_bytes += prev_live_bytes;
3033   _total_next_live_bytes += next_live_bytes;
3034   _total_remset_bytes    += remset_bytes;
3035   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3036 
3037   // Print a line for this particular region.
3038   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3039                           G1PPRL_TYPE_FORMAT
3040                           G1PPRL_ADDR_BASE_FORMAT
3041                           G1PPRL_BYTE_FORMAT
3042                           G1PPRL_BYTE_FORMAT
3043                           G1PPRL_BYTE_FORMAT
3044                           G1PPRL_DOUBLE_FORMAT
3045                           G1PPRL_BYTE_FORMAT
3046                           G1PPRL_STATE_FORMAT
3047                           G1PPRL_BYTE_FORMAT,
3048                           type, p2i(bottom), p2i(end),
3049                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3050                           remset_bytes, remset_type, strong_code_roots_bytes);
3051 
3052   return false;
3053 }
3054 
3055 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3056   if (!log_is_enabled(Trace, gc, liveness)) {
3057     return;
3058   }
3059 
3060   // add static memory usages to remembered set sizes
3061   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3062   // Print the footer of the output.
3063   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3064   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3065                          " SUMMARY"
3066                          G1PPRL_SUM_MB_FORMAT("capacity")
3067                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3068                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3069                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3070                          G1PPRL_SUM_MB_FORMAT("remset")
3071                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3072                          bytes_to_mb(_total_capacity_bytes),
3073                          bytes_to_mb(_total_used_bytes),
3074                          percent_of(_total_used_bytes, _total_capacity_bytes),
3075                          bytes_to_mb(_total_prev_live_bytes),
3076                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
3077                          bytes_to_mb(_total_next_live_bytes),
3078                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
3079                          bytes_to_mb(_total_remset_bytes),
3080                          bytes_to_mb(_total_strong_code_roots_bytes));
3081 }