1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc/g1/g1CollectionSet.hpp"
  35 #include "gc/g1/g1CollectorPolicy.hpp"
  36 #include "gc/g1/g1CollectorState.hpp"
  37 #include "gc/g1/g1ConcurrentRefine.hpp"
  38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1SATBMarkQueueFilter.hpp"
  56 #include "gc/g1/g1StringDedup.hpp"
  57 #include "gc/g1/g1ThreadLocalData.hpp"
  58 #include "gc/g1/g1YCTypes.hpp"
  59 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  60 #include "gc/g1/heapRegion.inline.hpp"
  61 #include "gc/g1/heapRegionRemSet.hpp"
  62 #include "gc/g1/heapRegionSet.inline.hpp"
  63 #include "gc/g1/vm_operations_g1.hpp"
  64 #include "gc/shared/adaptiveSizePolicy.hpp"
  65 #include "gc/shared/gcHeapSummary.hpp"
  66 #include "gc/shared/gcId.hpp"
  67 #include "gc/shared/gcLocker.hpp"
  68 #include "gc/shared/gcTimer.hpp"
  69 #include "gc/shared/gcTrace.hpp"
  70 #include "gc/shared/gcTraceTime.inline.hpp"
  71 #include "gc/shared/generationSpec.hpp"
  72 #include "gc/shared/isGCActiveMark.hpp"
  73 #include "gc/shared/oopStorageParState.hpp"
  74 #include "gc/shared/preservedMarks.inline.hpp"
  75 #include "gc/shared/suspendibleThreadSet.hpp"
  76 #include "gc/shared/referenceProcessor.inline.hpp"
  77 #include "gc/shared/taskqueue.inline.hpp"
  78 #include "gc/shared/weakProcessor.hpp"
  79 #include "logging/log.hpp"
  80 #include "memory/allocation.hpp"
  81 #include "memory/iterator.hpp"
  82 #include "memory/metaspaceShared.hpp"
  83 #include "memory/resourceArea.hpp"
  84 #include "oops/access.inline.hpp"
  85 #include "oops/compressedOops.inline.hpp"
  86 #include "oops/oop.inline.hpp"
  87 #include "prims/resolvedMethodTable.hpp"
  88 #include "runtime/atomic.hpp"
  89 #include "runtime/flags/flagSetting.hpp"
  90 #include "runtime/handles.inline.hpp"
  91 #include "runtime/init.hpp"
  92 #include "runtime/orderAccess.hpp"
  93 #include "runtime/threadSMR.hpp"
  94 #include "runtime/vmThread.hpp"
  95 #include "utilities/align.hpp"
  96 #include "utilities/globalDefinitions.hpp"
  97 #include "utilities/stack.inline.hpp"
  98 
  99 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 100 
 101 // INVARIANTS/NOTES
 102 //
 103 // All allocation activity covered by the G1CollectedHeap interface is
 104 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 105 // and allocate_new_tlab, which are the "entry" points to the
 106 // allocation code from the rest of the JVM.  (Note that this does not
 107 // apply to TLAB allocation, which is not part of this interface: it
 108 // is done by clients of this interface.)
 109 
 110 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 111  private:
 112   size_t _num_dirtied;
 113   G1CollectedHeap* _g1h;
 114   G1CardTable* _g1_ct;
 115 
 116   HeapRegion* region_for_card(jbyte* card_ptr) const {
 117     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 118   }
 119 
 120   bool will_become_free(HeapRegion* hr) const {
 121     // A region will be freed by free_collection_set if the region is in the
 122     // collection set and has not had an evacuation failure.
 123     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 124   }
 125 
 126  public:
 127   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 128     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 129 
 130   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 131     HeapRegion* hr = region_for_card(card_ptr);
 132 
 133     // Should only dirty cards in regions that won't be freed.
 134     if (!will_become_free(hr)) {
 135       *card_ptr = G1CardTable::dirty_card_val();
 136       _num_dirtied++;
 137     }
 138 
 139     return true;
 140   }
 141 
 142   size_t num_dirtied()   const { return _num_dirtied; }
 143 };
 144 
 145 
 146 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 147   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 148 }
 149 
 150 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 151   // The from card cache is not the memory that is actually committed. So we cannot
 152   // take advantage of the zero_filled parameter.
 153   reset_from_card_cache(start_idx, num_regions);
 154 }
 155 
 156 
 157 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 158                                              MemRegion mr) {
 159   return new HeapRegion(hrs_index, bot(), mr);
 160 }
 161 
 162 // Private methods.
 163 
 164 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 165   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 166          "the only time we use this to allocate a humongous region is "
 167          "when we are allocating a single humongous region");
 168 
 169   HeapRegion* res = _hrm.allocate_free_region(is_old);
 170 
 171   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 172     // Currently, only attempts to allocate GC alloc regions set
 173     // do_expand to true. So, we should only reach here during a
 174     // safepoint. If this assumption changes we might have to
 175     // reconsider the use of _expand_heap_after_alloc_failure.
 176     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 177 
 178     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 179                               word_size * HeapWordSize);
 180 
 181     if (expand(word_size * HeapWordSize)) {
 182       // Given that expand() succeeded in expanding the heap, and we
 183       // always expand the heap by an amount aligned to the heap
 184       // region size, the free list should in theory not be empty.
 185       // In either case allocate_free_region() will check for NULL.
 186       res = _hrm.allocate_free_region(is_old);
 187     } else {
 188       _expand_heap_after_alloc_failure = false;
 189     }
 190   }
 191   return res;
 192 }
 193 
 194 HeapWord*
 195 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 196                                                            uint num_regions,
 197                                                            size_t word_size) {
 198   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 199   assert(is_humongous(word_size), "word_size should be humongous");
 200   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 201 
 202   // Index of last region in the series.
 203   uint last = first + num_regions - 1;
 204 
 205   // We need to initialize the region(s) we just discovered. This is
 206   // a bit tricky given that it can happen concurrently with
 207   // refinement threads refining cards on these regions and
 208   // potentially wanting to refine the BOT as they are scanning
 209   // those cards (this can happen shortly after a cleanup; see CR
 210   // 6991377). So we have to set up the region(s) carefully and in
 211   // a specific order.
 212 
 213   // The word size sum of all the regions we will allocate.
 214   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 215   assert(word_size <= word_size_sum, "sanity");
 216 
 217   // This will be the "starts humongous" region.
 218   HeapRegion* first_hr = region_at(first);
 219   // The header of the new object will be placed at the bottom of
 220   // the first region.
 221   HeapWord* new_obj = first_hr->bottom();
 222   // This will be the new top of the new object.
 223   HeapWord* obj_top = new_obj + word_size;
 224 
 225   // First, we need to zero the header of the space that we will be
 226   // allocating. When we update top further down, some refinement
 227   // threads might try to scan the region. By zeroing the header we
 228   // ensure that any thread that will try to scan the region will
 229   // come across the zero klass word and bail out.
 230   //
 231   // NOTE: It would not have been correct to have used
 232   // CollectedHeap::fill_with_object() and make the space look like
 233   // an int array. The thread that is doing the allocation will
 234   // later update the object header to a potentially different array
 235   // type and, for a very short period of time, the klass and length
 236   // fields will be inconsistent. This could cause a refinement
 237   // thread to calculate the object size incorrectly.
 238   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 239 
 240   // Next, pad out the unused tail of the last region with filler
 241   // objects, for improved usage accounting.
 242   // How many words we use for filler objects.
 243   size_t word_fill_size = word_size_sum - word_size;
 244 
 245   // How many words memory we "waste" which cannot hold a filler object.
 246   size_t words_not_fillable = 0;
 247 
 248   if (word_fill_size >= min_fill_size()) {
 249     fill_with_objects(obj_top, word_fill_size);
 250   } else if (word_fill_size > 0) {
 251     // We have space to fill, but we cannot fit an object there.
 252     words_not_fillable = word_fill_size;
 253     word_fill_size = 0;
 254   }
 255 
 256   // We will set up the first region as "starts humongous". This
 257   // will also update the BOT covering all the regions to reflect
 258   // that there is a single object that starts at the bottom of the
 259   // first region.
 260   first_hr->set_starts_humongous(obj_top, word_fill_size);
 261   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 262   // Then, if there are any, we will set up the "continues
 263   // humongous" regions.
 264   HeapRegion* hr = NULL;
 265   for (uint i = first + 1; i <= last; ++i) {
 266     hr = region_at(i);
 267     hr->set_continues_humongous(first_hr);
 268     _g1_policy->remset_tracker()->update_at_allocate(hr);
 269   }
 270 
 271   // Up to this point no concurrent thread would have been able to
 272   // do any scanning on any region in this series. All the top
 273   // fields still point to bottom, so the intersection between
 274   // [bottom,top] and [card_start,card_end] will be empty. Before we
 275   // update the top fields, we'll do a storestore to make sure that
 276   // no thread sees the update to top before the zeroing of the
 277   // object header and the BOT initialization.
 278   OrderAccess::storestore();
 279 
 280   // Now, we will update the top fields of the "continues humongous"
 281   // regions except the last one.
 282   for (uint i = first; i < last; ++i) {
 283     hr = region_at(i);
 284     hr->set_top(hr->end());
 285   }
 286 
 287   hr = region_at(last);
 288   // If we cannot fit a filler object, we must set top to the end
 289   // of the humongous object, otherwise we cannot iterate the heap
 290   // and the BOT will not be complete.
 291   hr->set_top(hr->end() - words_not_fillable);
 292 
 293   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 294          "obj_top should be in last region");
 295 
 296   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 297 
 298   assert(words_not_fillable == 0 ||
 299          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 300          "Miscalculation in humongous allocation");
 301 
 302   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 303 
 304   for (uint i = first; i <= last; ++i) {
 305     hr = region_at(i);
 306     _humongous_set.add(hr);
 307     _hr_printer.alloc(hr);
 308   }
 309 
 310   return new_obj;
 311 }
 312 
 313 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 314   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 315   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 316 }
 317 
 318 // If could fit into free regions w/o expansion, try.
 319 // Otherwise, if can expand, do so.
 320 // Otherwise, if using ex regions might help, try with ex given back.
 321 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 322   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 323 
 324   _verifier->verify_region_sets_optional();
 325 
 326   uint first = G1_NO_HRM_INDEX;
 327   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 328 
 329   if (obj_regions == 1) {
 330     // Only one region to allocate, try to use a fast path by directly allocating
 331     // from the free lists. Do not try to expand here, we will potentially do that
 332     // later.
 333     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 334     if (hr != NULL) {
 335       first = hr->hrm_index();
 336     }
 337   } else {
 338     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 339     // are lucky enough to find some.
 340     first = _hrm.find_contiguous_only_empty(obj_regions);
 341     if (first != G1_NO_HRM_INDEX) {
 342       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 343     }
 344   }
 345 
 346   if (first == G1_NO_HRM_INDEX) {
 347     // Policy: We could not find enough regions for the humongous object in the
 348     // free list. Look through the heap to find a mix of free and uncommitted regions.
 349     // If so, try expansion.
 350     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 351     if (first != G1_NO_HRM_INDEX) {
 352       // We found something. Make sure these regions are committed, i.e. expand
 353       // the heap. Alternatively we could do a defragmentation GC.
 354       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 355                                     word_size * HeapWordSize);
 356 
 357       _hrm.expand_at(first, obj_regions, workers());
 358       g1_policy()->record_new_heap_size(num_regions());
 359 
 360 #ifdef ASSERT
 361       for (uint i = first; i < first + obj_regions; ++i) {
 362         HeapRegion* hr = region_at(i);
 363         assert(hr->is_free(), "sanity");
 364         assert(hr->is_empty(), "sanity");
 365         assert(is_on_master_free_list(hr), "sanity");
 366       }
 367 #endif
 368       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 369     } else {
 370       // Policy: Potentially trigger a defragmentation GC.
 371     }
 372   }
 373 
 374   HeapWord* result = NULL;
 375   if (first != G1_NO_HRM_INDEX) {
 376     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 377     assert(result != NULL, "it should always return a valid result");
 378 
 379     // A successful humongous object allocation changes the used space
 380     // information of the old generation so we need to recalculate the
 381     // sizes and update the jstat counters here.
 382     g1mm()->update_sizes();
 383   }
 384 
 385   _verifier->verify_region_sets_optional();
 386 
 387   return result;
 388 }
 389 
 390 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 391                                              size_t requested_size,
 392                                              size_t* actual_size) {
 393   assert_heap_not_locked_and_not_at_safepoint();
 394   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 395 
 396   return attempt_allocation(min_size, requested_size, actual_size);
 397 }
 398 
 399 HeapWord*
 400 G1CollectedHeap::mem_allocate(size_t word_size,
 401                               bool*  gc_overhead_limit_was_exceeded) {
 402   assert_heap_not_locked_and_not_at_safepoint();
 403 
 404   if (is_humongous(word_size)) {
 405     return attempt_allocation_humongous(word_size);
 406   }
 407   size_t dummy = 0;
 408   return attempt_allocation(word_size, word_size, &dummy);
 409 }
 410 
 411 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 412   ResourceMark rm; // For retrieving the thread names in log messages.
 413 
 414   // Make sure you read the note in attempt_allocation_humongous().
 415 
 416   assert_heap_not_locked_and_not_at_safepoint();
 417   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 418          "be called for humongous allocation requests");
 419 
 420   // We should only get here after the first-level allocation attempt
 421   // (attempt_allocation()) failed to allocate.
 422 
 423   // We will loop until a) we manage to successfully perform the
 424   // allocation or b) we successfully schedule a collection which
 425   // fails to perform the allocation. b) is the only case when we'll
 426   // return NULL.
 427   HeapWord* result = NULL;
 428   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 429     bool should_try_gc;
 430     uint gc_count_before;
 431 
 432     {
 433       MutexLockerEx x(Heap_lock);
 434       result = _allocator->attempt_allocation_locked(word_size);
 435       if (result != NULL) {
 436         return result;
 437       }
 438 
 439       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 440       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 441       // waiting because the GCLocker is active to not wait too long.
 442       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 443         // No need for an ergo message here, can_expand_young_list() does this when
 444         // it returns true.
 445         result = _allocator->attempt_allocation_force(word_size);
 446         if (result != NULL) {
 447           return result;
 448         }
 449       }
 450       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 451       // the GCLocker initiated GC has been performed and then retry. This includes
 452       // the case when the GC Locker is not active but has not been performed.
 453       should_try_gc = !GCLocker::needs_gc();
 454       // Read the GC count while still holding the Heap_lock.
 455       gc_count_before = total_collections();
 456     }
 457 
 458     if (should_try_gc) {
 459       bool succeeded;
 460       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 461                                    GCCause::_g1_inc_collection_pause);
 462       if (result != NULL) {
 463         assert(succeeded, "only way to get back a non-NULL result");
 464         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 465                              Thread::current()->name(), p2i(result));
 466         return result;
 467       }
 468 
 469       if (succeeded) {
 470         // We successfully scheduled a collection which failed to allocate. No
 471         // point in trying to allocate further. We'll just return NULL.
 472         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 473                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 474         return NULL;
 475       }
 476       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 477                            Thread::current()->name(), word_size);
 478     } else {
 479       // Failed to schedule a collection.
 480       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 481         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 482                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 483         return NULL;
 484       }
 485       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 486       // The GCLocker is either active or the GCLocker initiated
 487       // GC has not yet been performed. Stall until it is and
 488       // then retry the allocation.
 489       GCLocker::stall_until_clear();
 490       gclocker_retry_count += 1;
 491     }
 492 
 493     // We can reach here if we were unsuccessful in scheduling a
 494     // collection (because another thread beat us to it) or if we were
 495     // stalled due to the GC locker. In either can we should retry the
 496     // allocation attempt in case another thread successfully
 497     // performed a collection and reclaimed enough space. We do the
 498     // first attempt (without holding the Heap_lock) here and the
 499     // follow-on attempt will be at the start of the next loop
 500     // iteration (after taking the Heap_lock).
 501     size_t dummy = 0;
 502     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 503     if (result != NULL) {
 504       return result;
 505     }
 506 
 507     // Give a warning if we seem to be looping forever.
 508     if ((QueuedAllocationWarningCount > 0) &&
 509         (try_count % QueuedAllocationWarningCount == 0)) {
 510       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 511                              Thread::current()->name(), try_count, word_size);
 512     }
 513   }
 514 
 515   ShouldNotReachHere();
 516   return NULL;
 517 }
 518 
 519 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 520   assert_at_safepoint_on_vm_thread();
 521   if (_archive_allocator == NULL) {
 522     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 523   }
 524 }
 525 
 526 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 527   // Allocations in archive regions cannot be of a size that would be considered
 528   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 529   // may be different at archive-restore time.
 530   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 531 }
 532 
 533 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 534   assert_at_safepoint_on_vm_thread();
 535   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 536   if (is_archive_alloc_too_large(word_size)) {
 537     return NULL;
 538   }
 539   return _archive_allocator->archive_mem_allocate(word_size);
 540 }
 541 
 542 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 543                                               size_t end_alignment_in_bytes) {
 544   assert_at_safepoint_on_vm_thread();
 545   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 546 
 547   // Call complete_archive to do the real work, filling in the MemRegion
 548   // array with the archive regions.
 549   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 550   delete _archive_allocator;
 551   _archive_allocator = NULL;
 552 }
 553 
 554 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 555   assert(ranges != NULL, "MemRegion array NULL");
 556   assert(count != 0, "No MemRegions provided");
 557   MemRegion reserved = _hrm.reserved();
 558   for (size_t i = 0; i < count; i++) {
 559     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 560       return false;
 561     }
 562   }
 563   return true;
 564 }
 565 
 566 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 567                                             size_t count,
 568                                             bool open) {
 569   assert(!is_init_completed(), "Expect to be called at JVM init time");
 570   assert(ranges != NULL, "MemRegion array NULL");
 571   assert(count != 0, "No MemRegions provided");
 572   MutexLockerEx x(Heap_lock);
 573 
 574   MemRegion reserved = _hrm.reserved();
 575   HeapWord* prev_last_addr = NULL;
 576   HeapRegion* prev_last_region = NULL;
 577 
 578   // Temporarily disable pretouching of heap pages. This interface is used
 579   // when mmap'ing archived heap data in, so pre-touching is wasted.
 580   FlagSetting fs(AlwaysPreTouch, false);
 581 
 582   // Enable archive object checking used by G1MarkSweep. We have to let it know
 583   // about each archive range, so that objects in those ranges aren't marked.
 584   G1ArchiveAllocator::enable_archive_object_check();
 585 
 586   // For each specified MemRegion range, allocate the corresponding G1
 587   // regions and mark them as archive regions. We expect the ranges
 588   // in ascending starting address order, without overlap.
 589   for (size_t i = 0; i < count; i++) {
 590     MemRegion curr_range = ranges[i];
 591     HeapWord* start_address = curr_range.start();
 592     size_t word_size = curr_range.word_size();
 593     HeapWord* last_address = curr_range.last();
 594     size_t commits = 0;
 595 
 596     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 597               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 598               p2i(start_address), p2i(last_address));
 599     guarantee(start_address > prev_last_addr,
 600               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 601               p2i(start_address), p2i(prev_last_addr));
 602     prev_last_addr = last_address;
 603 
 604     // Check for ranges that start in the same G1 region in which the previous
 605     // range ended, and adjust the start address so we don't try to allocate
 606     // the same region again. If the current range is entirely within that
 607     // region, skip it, just adjusting the recorded top.
 608     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 609     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 610       start_address = start_region->end();
 611       if (start_address > last_address) {
 612         increase_used(word_size * HeapWordSize);
 613         start_region->set_top(last_address + 1);
 614         continue;
 615       }
 616       start_region->set_top(start_address);
 617       curr_range = MemRegion(start_address, last_address + 1);
 618       start_region = _hrm.addr_to_region(start_address);
 619     }
 620 
 621     // Perform the actual region allocation, exiting if it fails.
 622     // Then note how much new space we have allocated.
 623     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 624       return false;
 625     }
 626     increase_used(word_size * HeapWordSize);
 627     if (commits != 0) {
 628       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 629                                 HeapRegion::GrainWords * HeapWordSize * commits);
 630 
 631     }
 632 
 633     // Mark each G1 region touched by the range as archive, add it to
 634     // the old set, and set top.
 635     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 636     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 637     prev_last_region = last_region;
 638 
 639     while (curr_region != NULL) {
 640       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 641              "Region already in use (index %u)", curr_region->hrm_index());
 642       if (open) {
 643         curr_region->set_open_archive();
 644       } else {
 645         curr_region->set_closed_archive();
 646       }
 647       _hr_printer.alloc(curr_region);
 648       _archive_set.add(curr_region);
 649       HeapWord* top;
 650       HeapRegion* next_region;
 651       if (curr_region != last_region) {
 652         top = curr_region->end();
 653         next_region = _hrm.next_region_in_heap(curr_region);
 654       } else {
 655         top = last_address + 1;
 656         next_region = NULL;
 657       }
 658       curr_region->set_top(top);
 659       curr_region->set_first_dead(top);
 660       curr_region->set_end_of_live(top);
 661       curr_region = next_region;
 662     }
 663 
 664     // Notify mark-sweep of the archive
 665     G1ArchiveAllocator::set_range_archive(curr_range, open);
 666   }
 667   return true;
 668 }
 669 
 670 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 671   assert(!is_init_completed(), "Expect to be called at JVM init time");
 672   assert(ranges != NULL, "MemRegion array NULL");
 673   assert(count != 0, "No MemRegions provided");
 674   MemRegion reserved = _hrm.reserved();
 675   HeapWord *prev_last_addr = NULL;
 676   HeapRegion* prev_last_region = NULL;
 677 
 678   // For each MemRegion, create filler objects, if needed, in the G1 regions
 679   // that contain the address range. The address range actually within the
 680   // MemRegion will not be modified. That is assumed to have been initialized
 681   // elsewhere, probably via an mmap of archived heap data.
 682   MutexLockerEx x(Heap_lock);
 683   for (size_t i = 0; i < count; i++) {
 684     HeapWord* start_address = ranges[i].start();
 685     HeapWord* last_address = ranges[i].last();
 686 
 687     assert(reserved.contains(start_address) && reserved.contains(last_address),
 688            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 689            p2i(start_address), p2i(last_address));
 690     assert(start_address > prev_last_addr,
 691            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 692            p2i(start_address), p2i(prev_last_addr));
 693 
 694     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 695     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 696     HeapWord* bottom_address = start_region->bottom();
 697 
 698     // Check for a range beginning in the same region in which the
 699     // previous one ended.
 700     if (start_region == prev_last_region) {
 701       bottom_address = prev_last_addr + 1;
 702     }
 703 
 704     // Verify that the regions were all marked as archive regions by
 705     // alloc_archive_regions.
 706     HeapRegion* curr_region = start_region;
 707     while (curr_region != NULL) {
 708       guarantee(curr_region->is_archive(),
 709                 "Expected archive region at index %u", curr_region->hrm_index());
 710       if (curr_region != last_region) {
 711         curr_region = _hrm.next_region_in_heap(curr_region);
 712       } else {
 713         curr_region = NULL;
 714       }
 715     }
 716 
 717     prev_last_addr = last_address;
 718     prev_last_region = last_region;
 719 
 720     // Fill the memory below the allocated range with dummy object(s),
 721     // if the region bottom does not match the range start, or if the previous
 722     // range ended within the same G1 region, and there is a gap.
 723     if (start_address != bottom_address) {
 724       size_t fill_size = pointer_delta(start_address, bottom_address);
 725       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 726       increase_used(fill_size * HeapWordSize);
 727     }
 728   }
 729 }
 730 
 731 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 732                                                      size_t desired_word_size,
 733                                                      size_t* actual_word_size) {
 734   assert_heap_not_locked_and_not_at_safepoint();
 735   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 736          "be called for humongous allocation requests");
 737 
 738   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 739 
 740   if (result == NULL) {
 741     *actual_word_size = desired_word_size;
 742     result = attempt_allocation_slow(desired_word_size);
 743   }
 744 
 745   assert_heap_not_locked();
 746   if (result != NULL) {
 747     assert(*actual_word_size != 0, "Actual size must have been set here");
 748     dirty_young_block(result, *actual_word_size);
 749   } else {
 750     *actual_word_size = 0;
 751   }
 752 
 753   return result;
 754 }
 755 
 756 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 757   assert(!is_init_completed(), "Expect to be called at JVM init time");
 758   assert(ranges != NULL, "MemRegion array NULL");
 759   assert(count != 0, "No MemRegions provided");
 760   MemRegion reserved = _hrm.reserved();
 761   HeapWord* prev_last_addr = NULL;
 762   HeapRegion* prev_last_region = NULL;
 763   size_t size_used = 0;
 764   size_t uncommitted_regions = 0;
 765 
 766   // For each Memregion, free the G1 regions that constitute it, and
 767   // notify mark-sweep that the range is no longer to be considered 'archive.'
 768   MutexLockerEx x(Heap_lock);
 769   for (size_t i = 0; i < count; i++) {
 770     HeapWord* start_address = ranges[i].start();
 771     HeapWord* last_address = ranges[i].last();
 772 
 773     assert(reserved.contains(start_address) && reserved.contains(last_address),
 774            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 775            p2i(start_address), p2i(last_address));
 776     assert(start_address > prev_last_addr,
 777            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 778            p2i(start_address), p2i(prev_last_addr));
 779     size_used += ranges[i].byte_size();
 780     prev_last_addr = last_address;
 781 
 782     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 783     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 784 
 785     // Check for ranges that start in the same G1 region in which the previous
 786     // range ended, and adjust the start address so we don't try to free
 787     // the same region again. If the current range is entirely within that
 788     // region, skip it.
 789     if (start_region == prev_last_region) {
 790       start_address = start_region->end();
 791       if (start_address > last_address) {
 792         continue;
 793       }
 794       start_region = _hrm.addr_to_region(start_address);
 795     }
 796     prev_last_region = last_region;
 797 
 798     // After verifying that each region was marked as an archive region by
 799     // alloc_archive_regions, set it free and empty and uncommit it.
 800     HeapRegion* curr_region = start_region;
 801     while (curr_region != NULL) {
 802       guarantee(curr_region->is_archive(),
 803                 "Expected archive region at index %u", curr_region->hrm_index());
 804       uint curr_index = curr_region->hrm_index();
 805       _archive_set.remove(curr_region);
 806       curr_region->set_free();
 807       curr_region->set_top(curr_region->bottom());
 808       if (curr_region != last_region) {
 809         curr_region = _hrm.next_region_in_heap(curr_region);
 810       } else {
 811         curr_region = NULL;
 812       }
 813       _hrm.shrink_at(curr_index, 1);
 814       uncommitted_regions++;
 815     }
 816 
 817     // Notify mark-sweep that this is no longer an archive range.
 818     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 819   }
 820 
 821   if (uncommitted_regions != 0) {
 822     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 823                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 824   }
 825   decrease_used(size_used);
 826 }
 827 
 828 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 829   assert(obj != NULL, "archived obj is NULL");
 830   assert(MetaspaceShared::is_archive_object(obj), "must be archived object");
 831 
 832   // Loading an archived object makes it strongly reachable. If it is
 833   // loaded during concurrent marking, it must be enqueued to the SATB
 834   // queue, shading the previously white object gray.
 835   G1BarrierSet::enqueue(obj);
 836 
 837   return obj;
 838 }
 839 
 840 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 841   ResourceMark rm; // For retrieving the thread names in log messages.
 842 
 843   // The structure of this method has a lot of similarities to
 844   // attempt_allocation_slow(). The reason these two were not merged
 845   // into a single one is that such a method would require several "if
 846   // allocation is not humongous do this, otherwise do that"
 847   // conditional paths which would obscure its flow. In fact, an early
 848   // version of this code did use a unified method which was harder to
 849   // follow and, as a result, it had subtle bugs that were hard to
 850   // track down. So keeping these two methods separate allows each to
 851   // be more readable. It will be good to keep these two in sync as
 852   // much as possible.
 853 
 854   assert_heap_not_locked_and_not_at_safepoint();
 855   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 856          "should only be called for humongous allocations");
 857 
 858   // Humongous objects can exhaust the heap quickly, so we should check if we
 859   // need to start a marking cycle at each humongous object allocation. We do
 860   // the check before we do the actual allocation. The reason for doing it
 861   // before the allocation is that we avoid having to keep track of the newly
 862   // allocated memory while we do a GC.
 863   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 864                                            word_size)) {
 865     collect(GCCause::_g1_humongous_allocation);
 866   }
 867 
 868   // We will loop until a) we manage to successfully perform the
 869   // allocation or b) we successfully schedule a collection which
 870   // fails to perform the allocation. b) is the only case when we'll
 871   // return NULL.
 872   HeapWord* result = NULL;
 873   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 874     bool should_try_gc;
 875     uint gc_count_before;
 876 
 877 
 878     {
 879       MutexLockerEx x(Heap_lock);
 880 
 881       // Given that humongous objects are not allocated in young
 882       // regions, we'll first try to do the allocation without doing a
 883       // collection hoping that there's enough space in the heap.
 884       result = humongous_obj_allocate(word_size);
 885       if (result != NULL) {
 886         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 887         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 888         return result;
 889       }
 890 
 891       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 892       // the GCLocker initiated GC has been performed and then retry. This includes
 893       // the case when the GC Locker is not active but has not been performed.
 894       should_try_gc = !GCLocker::needs_gc();
 895       // Read the GC count while still holding the Heap_lock.
 896       gc_count_before = total_collections();
 897     }
 898 
 899     if (should_try_gc) {
 900       bool succeeded;
 901       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 902                                    GCCause::_g1_humongous_allocation);
 903       if (result != NULL) {
 904         assert(succeeded, "only way to get back a non-NULL result");
 905         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 906                              Thread::current()->name(), p2i(result));
 907         return result;
 908       }
 909 
 910       if (succeeded) {
 911         // We successfully scheduled a collection which failed to allocate. No
 912         // point in trying to allocate further. We'll just return NULL.
 913         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 914                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 915         return NULL;
 916       }
 917       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 918                            Thread::current()->name(), word_size);
 919     } else {
 920       // Failed to schedule a collection.
 921       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 922         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 923                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 924         return NULL;
 925       }
 926       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 927       // The GCLocker is either active or the GCLocker initiated
 928       // GC has not yet been performed. Stall until it is and
 929       // then retry the allocation.
 930       GCLocker::stall_until_clear();
 931       gclocker_retry_count += 1;
 932     }
 933 
 934 
 935     // We can reach here if we were unsuccessful in scheduling a
 936     // collection (because another thread beat us to it) or if we were
 937     // stalled due to the GC locker. In either can we should retry the
 938     // allocation attempt in case another thread successfully
 939     // performed a collection and reclaimed enough space.
 940     // Humongous object allocation always needs a lock, so we wait for the retry
 941     // in the next iteration of the loop, unlike for the regular iteration case.
 942     // Give a warning if we seem to be looping forever.
 943 
 944     if ((QueuedAllocationWarningCount > 0) &&
 945         (try_count % QueuedAllocationWarningCount == 0)) {
 946       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 947                              Thread::current()->name(), try_count, word_size);
 948     }
 949   }
 950 
 951   ShouldNotReachHere();
 952   return NULL;
 953 }
 954 
 955 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 956                                                            bool expect_null_mutator_alloc_region) {
 957   assert_at_safepoint_on_vm_thread();
 958   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 959          "the current alloc region was unexpectedly found to be non-NULL");
 960 
 961   if (!is_humongous(word_size)) {
 962     return _allocator->attempt_allocation_locked(word_size);
 963   } else {
 964     HeapWord* result = humongous_obj_allocate(word_size);
 965     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 966       collector_state()->set_initiate_conc_mark_if_possible(true);
 967     }
 968     return result;
 969   }
 970 
 971   ShouldNotReachHere();
 972 }
 973 
 974 class PostCompactionPrinterClosure: public HeapRegionClosure {
 975 private:
 976   G1HRPrinter* _hr_printer;
 977 public:
 978   bool do_heap_region(HeapRegion* hr) {
 979     assert(!hr->is_young(), "not expecting to find young regions");
 980     _hr_printer->post_compaction(hr);
 981     return false;
 982   }
 983 
 984   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 985     : _hr_printer(hr_printer) { }
 986 };
 987 
 988 void G1CollectedHeap::print_hrm_post_compaction() {
 989   if (_hr_printer.is_active()) {
 990     PostCompactionPrinterClosure cl(hr_printer());
 991     heap_region_iterate(&cl);
 992   }
 993 }
 994 
 995 void G1CollectedHeap::abort_concurrent_cycle() {
 996   // If we start the compaction before the CM threads finish
 997   // scanning the root regions we might trip them over as we'll
 998   // be moving objects / updating references. So let's wait until
 999   // they are done. By telling them to abort, they should complete
1000   // early.
1001   _cm->root_regions()->abort();
1002   _cm->root_regions()->wait_until_scan_finished();
1003 
1004   // Disable discovery and empty the discovered lists
1005   // for the CM ref processor.
1006   _ref_processor_cm->disable_discovery();
1007   _ref_processor_cm->abandon_partial_discovery();
1008   _ref_processor_cm->verify_no_references_recorded();
1009 
1010   // Abandon current iterations of concurrent marking and concurrent
1011   // refinement, if any are in progress.
1012   concurrent_mark()->concurrent_cycle_abort();
1013 }
1014 
1015 void G1CollectedHeap::prepare_heap_for_full_collection() {
1016   // Make sure we'll choose a new allocation region afterwards.
1017   _allocator->release_mutator_alloc_region();
1018   _allocator->abandon_gc_alloc_regions();
1019   g1_rem_set()->cleanupHRRS();
1020 
1021   // We may have added regions to the current incremental collection
1022   // set between the last GC or pause and now. We need to clear the
1023   // incremental collection set and then start rebuilding it afresh
1024   // after this full GC.
1025   abandon_collection_set(collection_set());
1026 
1027   tear_down_region_sets(false /* free_list_only */);
1028 }
1029 
1030 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1031   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1032   assert(used() == recalculate_used(), "Should be equal");
1033   _verifier->verify_region_sets_optional();
1034   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1035   _verifier->check_bitmaps("Full GC Start");
1036 }
1037 
1038 void G1CollectedHeap::prepare_heap_for_mutators() {
1039   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1040   ClassLoaderDataGraph::purge();
1041   MetaspaceUtils::verify_metrics();
1042 
1043   // Prepare heap for normal collections.
1044   assert(num_free_regions() == 0, "we should not have added any free regions");
1045   rebuild_region_sets(false /* free_list_only */);
1046   abort_refinement();
1047   resize_if_necessary_after_full_collection();
1048 
1049   // Rebuild the strong code root lists for each region
1050   rebuild_strong_code_roots();
1051 
1052   // Start a new incremental collection set for the next pause
1053   start_new_collection_set();
1054 
1055   _allocator->init_mutator_alloc_region();
1056 
1057   // Post collection state updates.
1058   MetaspaceGC::compute_new_size();
1059 }
1060 
1061 void G1CollectedHeap::abort_refinement() {
1062   if (_hot_card_cache->use_cache()) {
1063     _hot_card_cache->reset_hot_cache();
1064   }
1065 
1066   // Discard all remembered set updates.
1067   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1068   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1069 }
1070 
1071 void G1CollectedHeap::verify_after_full_collection() {
1072   _hrm.verify_optional();
1073   _verifier->verify_region_sets_optional();
1074   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1075   // Clear the previous marking bitmap, if needed for bitmap verification.
1076   // Note we cannot do this when we clear the next marking bitmap in
1077   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1078   // objects marked during a full GC against the previous bitmap.
1079   // But we need to clear it before calling check_bitmaps below since
1080   // the full GC has compacted objects and updated TAMS but not updated
1081   // the prev bitmap.
1082   if (G1VerifyBitmaps) {
1083     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1084     _cm->clear_prev_bitmap(workers());
1085   }
1086   _verifier->check_bitmaps("Full GC End");
1087 
1088   // At this point there should be no regions in the
1089   // entire heap tagged as young.
1090   assert(check_young_list_empty(), "young list should be empty at this point");
1091 
1092   // Note: since we've just done a full GC, concurrent
1093   // marking is no longer active. Therefore we need not
1094   // re-enable reference discovery for the CM ref processor.
1095   // That will be done at the start of the next marking cycle.
1096   // We also know that the STW processor should no longer
1097   // discover any new references.
1098   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1099   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1100   _ref_processor_stw->verify_no_references_recorded();
1101   _ref_processor_cm->verify_no_references_recorded();
1102 }
1103 
1104 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1105   // Post collection logging.
1106   // We should do this after we potentially resize the heap so
1107   // that all the COMMIT / UNCOMMIT events are generated before
1108   // the compaction events.
1109   print_hrm_post_compaction();
1110   heap_transition->print();
1111   print_heap_after_gc();
1112   print_heap_regions();
1113 #ifdef TRACESPINNING
1114   ParallelTaskTerminator::print_termination_counts();
1115 #endif
1116 }
1117 
1118 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1119                                          bool clear_all_soft_refs) {
1120   assert_at_safepoint_on_vm_thread();
1121 
1122   if (GCLocker::check_active_before_gc()) {
1123     // Full GC was not completed.
1124     return false;
1125   }
1126 
1127   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1128       soft_ref_policy()->should_clear_all_soft_refs();
1129 
1130   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1131   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1132 
1133   collector.prepare_collection();
1134   collector.collect();
1135   collector.complete_collection();
1136 
1137   // Full collection was successfully completed.
1138   return true;
1139 }
1140 
1141 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1142   // Currently, there is no facility in the do_full_collection(bool) API to notify
1143   // the caller that the collection did not succeed (e.g., because it was locked
1144   // out by the GC locker). So, right now, we'll ignore the return value.
1145   bool dummy = do_full_collection(true,                /* explicit_gc */
1146                                   clear_all_soft_refs);
1147 }
1148 
1149 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1150   // Capacity, free and used after the GC counted as full regions to
1151   // include the waste in the following calculations.
1152   const size_t capacity_after_gc = capacity();
1153   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1154 
1155   // This is enforced in arguments.cpp.
1156   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1157          "otherwise the code below doesn't make sense");
1158 
1159   // We don't have floating point command-line arguments
1160   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1161   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1162   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1163   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1164 
1165   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1166   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1167 
1168   // We have to be careful here as these two calculations can overflow
1169   // 32-bit size_t's.
1170   double used_after_gc_d = (double) used_after_gc;
1171   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1172   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1173 
1174   // Let's make sure that they are both under the max heap size, which
1175   // by default will make them fit into a size_t.
1176   double desired_capacity_upper_bound = (double) max_heap_size;
1177   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1178                                     desired_capacity_upper_bound);
1179   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1180                                     desired_capacity_upper_bound);
1181 
1182   // We can now safely turn them into size_t's.
1183   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1184   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1185 
1186   // This assert only makes sense here, before we adjust them
1187   // with respect to the min and max heap size.
1188   assert(minimum_desired_capacity <= maximum_desired_capacity,
1189          "minimum_desired_capacity = " SIZE_FORMAT ", "
1190          "maximum_desired_capacity = " SIZE_FORMAT,
1191          minimum_desired_capacity, maximum_desired_capacity);
1192 
1193   // Should not be greater than the heap max size. No need to adjust
1194   // it with respect to the heap min size as it's a lower bound (i.e.,
1195   // we'll try to make the capacity larger than it, not smaller).
1196   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1197   // Should not be less than the heap min size. No need to adjust it
1198   // with respect to the heap max size as it's an upper bound (i.e.,
1199   // we'll try to make the capacity smaller than it, not greater).
1200   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1201 
1202   if (capacity_after_gc < minimum_desired_capacity) {
1203     // Don't expand unless it's significant
1204     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1205 
1206     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1207                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1208                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1209                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1210 
1211     expand(expand_bytes, _workers);
1212 
1213     // No expansion, now see if we want to shrink
1214   } else if (capacity_after_gc > maximum_desired_capacity) {
1215     // Capacity too large, compute shrinking size
1216     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1217 
1218     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1219                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1220                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1221                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1222 
1223     shrink(shrink_bytes);
1224   }
1225 }
1226 
1227 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1228                                                             bool do_gc,
1229                                                             bool clear_all_soft_refs,
1230                                                             bool expect_null_mutator_alloc_region,
1231                                                             bool* gc_succeeded) {
1232   *gc_succeeded = true;
1233   // Let's attempt the allocation first.
1234   HeapWord* result =
1235     attempt_allocation_at_safepoint(word_size,
1236                                     expect_null_mutator_alloc_region);
1237   if (result != NULL) {
1238     return result;
1239   }
1240 
1241   // In a G1 heap, we're supposed to keep allocation from failing by
1242   // incremental pauses.  Therefore, at least for now, we'll favor
1243   // expansion over collection.  (This might change in the future if we can
1244   // do something smarter than full collection to satisfy a failed alloc.)
1245   result = expand_and_allocate(word_size);
1246   if (result != NULL) {
1247     return result;
1248   }
1249 
1250   if (do_gc) {
1251     // Expansion didn't work, we'll try to do a Full GC.
1252     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1253                                        clear_all_soft_refs);
1254   }
1255 
1256   return NULL;
1257 }
1258 
1259 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1260                                                      bool* succeeded) {
1261   assert_at_safepoint_on_vm_thread();
1262 
1263   // Attempts to allocate followed by Full GC.
1264   HeapWord* result =
1265     satisfy_failed_allocation_helper(word_size,
1266                                      true,  /* do_gc */
1267                                      false, /* clear_all_soft_refs */
1268                                      false, /* expect_null_mutator_alloc_region */
1269                                      succeeded);
1270 
1271   if (result != NULL || !*succeeded) {
1272     return result;
1273   }
1274 
1275   // Attempts to allocate followed by Full GC that will collect all soft references.
1276   result = satisfy_failed_allocation_helper(word_size,
1277                                             true, /* do_gc */
1278                                             true, /* clear_all_soft_refs */
1279                                             true, /* expect_null_mutator_alloc_region */
1280                                             succeeded);
1281 
1282   if (result != NULL || !*succeeded) {
1283     return result;
1284   }
1285 
1286   // Attempts to allocate, no GC
1287   result = satisfy_failed_allocation_helper(word_size,
1288                                             false, /* do_gc */
1289                                             false, /* clear_all_soft_refs */
1290                                             true,  /* expect_null_mutator_alloc_region */
1291                                             succeeded);
1292 
1293   if (result != NULL) {
1294     return result;
1295   }
1296 
1297   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1298          "Flag should have been handled and cleared prior to this point");
1299 
1300   // What else?  We might try synchronous finalization later.  If the total
1301   // space available is large enough for the allocation, then a more
1302   // complete compaction phase than we've tried so far might be
1303   // appropriate.
1304   return NULL;
1305 }
1306 
1307 // Attempting to expand the heap sufficiently
1308 // to support an allocation of the given "word_size".  If
1309 // successful, perform the allocation and return the address of the
1310 // allocated block, or else "NULL".
1311 
1312 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1313   assert_at_safepoint_on_vm_thread();
1314 
1315   _verifier->verify_region_sets_optional();
1316 
1317   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1318   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1319                             word_size * HeapWordSize);
1320 
1321 
1322   if (expand(expand_bytes, _workers)) {
1323     _hrm.verify_optional();
1324     _verifier->verify_region_sets_optional();
1325     return attempt_allocation_at_safepoint(word_size,
1326                                            false /* expect_null_mutator_alloc_region */);
1327   }
1328   return NULL;
1329 }
1330 
1331 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1332   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1333   aligned_expand_bytes = align_up(aligned_expand_bytes,
1334                                        HeapRegion::GrainBytes);
1335 
1336   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1337                             expand_bytes, aligned_expand_bytes);
1338 
1339   if (is_maximal_no_gc()) {
1340     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1341     return false;
1342   }
1343 
1344   double expand_heap_start_time_sec = os::elapsedTime();
1345   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1346   assert(regions_to_expand > 0, "Must expand by at least one region");
1347 
1348   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1349   if (expand_time_ms != NULL) {
1350     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1351   }
1352 
1353   if (expanded_by > 0) {
1354     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1355     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1356     g1_policy()->record_new_heap_size(num_regions());
1357   } else {
1358     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1359 
1360     // The expansion of the virtual storage space was unsuccessful.
1361     // Let's see if it was because we ran out of swap.
1362     if (G1ExitOnExpansionFailure &&
1363         _hrm.available() >= regions_to_expand) {
1364       // We had head room...
1365       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1366     }
1367   }
1368   return regions_to_expand > 0;
1369 }
1370 
1371 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1372   size_t aligned_shrink_bytes =
1373     ReservedSpace::page_align_size_down(shrink_bytes);
1374   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1375                                          HeapRegion::GrainBytes);
1376   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1377 
1378   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1379   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1380 
1381 
1382   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1383                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1384   if (num_regions_removed > 0) {
1385     g1_policy()->record_new_heap_size(num_regions());
1386   } else {
1387     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1388   }
1389 }
1390 
1391 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1392   _verifier->verify_region_sets_optional();
1393 
1394   // We should only reach here at the end of a Full GC which means we
1395   // should not not be holding to any GC alloc regions. The method
1396   // below will make sure of that and do any remaining clean up.
1397   _allocator->abandon_gc_alloc_regions();
1398 
1399   // Instead of tearing down / rebuilding the free lists here, we
1400   // could instead use the remove_all_pending() method on free_list to
1401   // remove only the ones that we need to remove.
1402   tear_down_region_sets(true /* free_list_only */);
1403   shrink_helper(shrink_bytes);
1404   rebuild_region_sets(true /* free_list_only */);
1405 
1406   _hrm.verify_optional();
1407   _verifier->verify_region_sets_optional();
1408 }
1409 
1410 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1411   CollectedHeap(),
1412   _young_gen_sampling_thread(NULL),
1413   _workers(NULL),
1414   _collector_policy(collector_policy),
1415   _card_table(NULL),
1416   _soft_ref_policy(),
1417   _old_set("Old Region Set", HeapRegionSetBase::ForOldRegions, new OldRegionSetMtSafeChecker()),
1418   _archive_set("Archive Region Set", HeapRegionSetBase::ForArchiveRegions, new ArchiveRegionSetMtSafeChecker()),
1419   _humongous_set("Humongous Region Set", HeapRegionSetBase::ForHumongousRegions, new HumongousRegionSetMtSafeChecker()),
1420   _bot(NULL),
1421   _listener(),
1422   _hrm(),
1423   _allocator(NULL),
1424   _verifier(NULL),
1425   _summary_bytes_used(0),
1426   _archive_allocator(NULL),
1427   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1428   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1429   _expand_heap_after_alloc_failure(true),
1430   _g1mm(NULL),
1431   _humongous_reclaim_candidates(),
1432   _has_humongous_reclaim_candidates(false),
1433   _hr_printer(),
1434   _collector_state(),
1435   _old_marking_cycles_started(0),
1436   _old_marking_cycles_completed(0),
1437   _eden(),
1438   _survivor(),
1439   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1440   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1441   _g1_policy(new G1Policy(_gc_timer_stw)),
1442   _heap_sizing_policy(NULL),
1443   _collection_set(this, _g1_policy),
1444   _hot_card_cache(NULL),
1445   _g1_rem_set(NULL),
1446   _dirty_card_queue_set(false),
1447   _cm(NULL),
1448   _cm_thread(NULL),
1449   _cr(NULL),
1450   _task_queues(NULL),
1451   _evacuation_failed(false),
1452   _evacuation_failed_info_array(NULL),
1453   _preserved_marks_set(true /* in_c_heap */),
1454 #ifndef PRODUCT
1455   _evacuation_failure_alot_for_current_gc(false),
1456   _evacuation_failure_alot_gc_number(0),
1457   _evacuation_failure_alot_count(0),
1458 #endif
1459   _ref_processor_stw(NULL),
1460   _is_alive_closure_stw(this),
1461   _is_subject_to_discovery_stw(this),
1462   _ref_processor_cm(NULL),
1463   _is_alive_closure_cm(this),
1464   _is_subject_to_discovery_cm(this),
1465   _in_cset_fast_test() {
1466 
1467   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1468                           true /* are_GC_task_threads */,
1469                           false /* are_ConcurrentGC_threads */);
1470   _workers->initialize_workers();
1471   _verifier = new G1HeapVerifier(this);
1472 
1473   _allocator = new G1Allocator(this);
1474 
1475   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1476 
1477   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1478 
1479   // Override the default _filler_array_max_size so that no humongous filler
1480   // objects are created.
1481   _filler_array_max_size = _humongous_object_threshold_in_words;
1482 
1483   uint n_queues = ParallelGCThreads;
1484   _task_queues = new RefToScanQueueSet(n_queues);
1485 
1486   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1487 
1488   for (uint i = 0; i < n_queues; i++) {
1489     RefToScanQueue* q = new RefToScanQueue();
1490     q->initialize();
1491     _task_queues->register_queue(i, q);
1492     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1493   }
1494 
1495   // Initialize the G1EvacuationFailureALot counters and flags.
1496   NOT_PRODUCT(reset_evacuation_should_fail();)
1497 
1498   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1499 }
1500 
1501 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1502                                                                  size_t size,
1503                                                                  size_t translation_factor) {
1504   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1505   // Allocate a new reserved space, preferring to use large pages.
1506   ReservedSpace rs(size, preferred_page_size);
1507   G1RegionToSpaceMapper* result  =
1508     G1RegionToSpaceMapper::create_mapper(rs,
1509                                          size,
1510                                          rs.alignment(),
1511                                          HeapRegion::GrainBytes,
1512                                          translation_factor,
1513                                          mtGC);
1514 
1515   os::trace_page_sizes_for_requested_size(description,
1516                                           size,
1517                                           preferred_page_size,
1518                                           rs.alignment(),
1519                                           rs.base(),
1520                                           rs.size());
1521 
1522   return result;
1523 }
1524 
1525 jint G1CollectedHeap::initialize_concurrent_refinement() {
1526   jint ecode = JNI_OK;
1527   _cr = G1ConcurrentRefine::create(&ecode);
1528   return ecode;
1529 }
1530 
1531 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1532   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1533   if (_young_gen_sampling_thread->osthread() == NULL) {
1534     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1535     return JNI_ENOMEM;
1536   }
1537   return JNI_OK;
1538 }
1539 
1540 jint G1CollectedHeap::initialize() {
1541   os::enable_vtime();
1542 
1543   // Necessary to satisfy locking discipline assertions.
1544 
1545   MutexLocker x(Heap_lock);
1546 
1547   // While there are no constraints in the GC code that HeapWordSize
1548   // be any particular value, there are multiple other areas in the
1549   // system which believe this to be true (e.g. oop->object_size in some
1550   // cases incorrectly returns the size in wordSize units rather than
1551   // HeapWordSize).
1552   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1553 
1554   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1555   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1556   size_t heap_alignment = collector_policy()->heap_alignment();
1557 
1558   // Ensure that the sizes are properly aligned.
1559   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1560   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1561   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1562 
1563   // Reserve the maximum.
1564 
1565   // When compressed oops are enabled, the preferred heap base
1566   // is calculated by subtracting the requested size from the
1567   // 32Gb boundary and using the result as the base address for
1568   // heap reservation. If the requested size is not aligned to
1569   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1570   // into the ReservedHeapSpace constructor) then the actual
1571   // base of the reserved heap may end up differing from the
1572   // address that was requested (i.e. the preferred heap base).
1573   // If this happens then we could end up using a non-optimal
1574   // compressed oops mode.
1575 
1576   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1577                                                  heap_alignment);
1578 
1579   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1580 
1581   // Create the barrier set for the entire reserved region.
1582   G1CardTable* ct = new G1CardTable(reserved_region());
1583   ct->initialize();
1584   G1BarrierSet* bs = new G1BarrierSet(ct);
1585   bs->initialize();
1586   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1587   BarrierSet::set_barrier_set(bs);
1588   _card_table = ct;
1589 
1590   // Create the hot card cache.
1591   _hot_card_cache = new G1HotCardCache(this);
1592 
1593   // Carve out the G1 part of the heap.
1594   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1595   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1596   G1RegionToSpaceMapper* heap_storage =
1597     G1RegionToSpaceMapper::create_mapper(g1_rs,
1598                                          g1_rs.size(),
1599                                          page_size,
1600                                          HeapRegion::GrainBytes,
1601                                          1,
1602                                          mtJavaHeap);
1603   os::trace_page_sizes("Heap",
1604                        collector_policy()->min_heap_byte_size(),
1605                        max_byte_size,
1606                        page_size,
1607                        heap_rs.base(),
1608                        heap_rs.size());
1609   heap_storage->set_mapping_changed_listener(&_listener);
1610 
1611   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1612   G1RegionToSpaceMapper* bot_storage =
1613     create_aux_memory_mapper("Block Offset Table",
1614                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1615                              G1BlockOffsetTable::heap_map_factor());
1616 
1617   G1RegionToSpaceMapper* cardtable_storage =
1618     create_aux_memory_mapper("Card Table",
1619                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1620                              G1CardTable::heap_map_factor());
1621 
1622   G1RegionToSpaceMapper* card_counts_storage =
1623     create_aux_memory_mapper("Card Counts Table",
1624                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1625                              G1CardCounts::heap_map_factor());
1626 
1627   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1628   G1RegionToSpaceMapper* prev_bitmap_storage =
1629     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1630   G1RegionToSpaceMapper* next_bitmap_storage =
1631     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1632 
1633   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1634   _card_table->initialize(cardtable_storage);
1635   // Do later initialization work for concurrent refinement.
1636   _hot_card_cache->initialize(card_counts_storage);
1637 
1638   // 6843694 - ensure that the maximum region index can fit
1639   // in the remembered set structures.
1640   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1641   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1642 
1643   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1644   // start within the first card.
1645   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1646   // Also create a G1 rem set.
1647   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1648   _g1_rem_set->initialize(max_capacity(), max_regions());
1649 
1650   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1651   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1652   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1653             "too many cards per region");
1654 
1655   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1656 
1657   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1658 
1659   {
1660     HeapWord* start = _hrm.reserved().start();
1661     HeapWord* end = _hrm.reserved().end();
1662     size_t granularity = HeapRegion::GrainBytes;
1663 
1664     _in_cset_fast_test.initialize(start, end, granularity);
1665     _humongous_reclaim_candidates.initialize(start, end, granularity);
1666   }
1667 
1668   // Create the G1ConcurrentMark data structure and thread.
1669   // (Must do this late, so that "max_regions" is defined.)
1670   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1671   if (_cm == NULL || !_cm->completed_initialization()) {
1672     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1673     return JNI_ENOMEM;
1674   }
1675   _cm_thread = _cm->cm_thread();
1676 
1677   // Now expand into the initial heap size.
1678   if (!expand(init_byte_size, _workers)) {
1679     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1680     return JNI_ENOMEM;
1681   }
1682 
1683   // Perform any initialization actions delegated to the policy.
1684   g1_policy()->init(this, &_collection_set);
1685 
1686   G1SATBMarkQueueFilter* satb_filter = new G1SATBMarkQueueFilter(this);
1687   G1BarrierSet::satb_mark_queue_set().initialize(satb_filter,
1688                                                  SATB_Q_CBL_mon,
1689                                                  SATB_Q_FL_lock,
1690                                                  G1SATBProcessCompletedThreshold,
1691                                                  Shared_SATB_Q_lock);
1692 
1693   jint ecode = initialize_concurrent_refinement();
1694   if (ecode != JNI_OK) {
1695     return ecode;
1696   }
1697 
1698   ecode = initialize_young_gen_sampling_thread();
1699   if (ecode != JNI_OK) {
1700     return ecode;
1701   }
1702 
1703   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1704                                                   DirtyCardQ_FL_lock,
1705                                                   (int)concurrent_refine()->yellow_zone(),
1706                                                   (int)concurrent_refine()->red_zone(),
1707                                                   Shared_DirtyCardQ_lock,
1708                                                   NULL,  // fl_owner
1709                                                   true); // init_free_ids
1710 
1711   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1712                                     DirtyCardQ_FL_lock,
1713                                     -1, // never trigger processing
1714                                     -1, // no limit on length
1715                                     Shared_DirtyCardQ_lock,
1716                                     &G1BarrierSet::dirty_card_queue_set());
1717 
1718   // Here we allocate the dummy HeapRegion that is required by the
1719   // G1AllocRegion class.
1720   HeapRegion* dummy_region = _hrm.get_dummy_region();
1721 
1722   // We'll re-use the same region whether the alloc region will
1723   // require BOT updates or not and, if it doesn't, then a non-young
1724   // region will complain that it cannot support allocations without
1725   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1726   dummy_region->set_eden();
1727   // Make sure it's full.
1728   dummy_region->set_top(dummy_region->end());
1729   G1AllocRegion::setup(this, dummy_region);
1730 
1731   _allocator->init_mutator_alloc_region();
1732 
1733   // Do create of the monitoring and management support so that
1734   // values in the heap have been properly initialized.
1735   _g1mm = new G1MonitoringSupport(this);
1736 
1737   G1StringDedup::initialize();
1738 
1739   _preserved_marks_set.init(ParallelGCThreads);
1740 
1741   _collection_set.initialize(max_regions());
1742 
1743   return JNI_OK;
1744 }
1745 
1746 void G1CollectedHeap::stop() {
1747   // Stop all concurrent threads. We do this to make sure these threads
1748   // do not continue to execute and access resources (e.g. logging)
1749   // that are destroyed during shutdown.
1750   _cr->stop();
1751   _young_gen_sampling_thread->stop();
1752   _cm_thread->stop();
1753   if (G1StringDedup::is_enabled()) {
1754     G1StringDedup::stop();
1755   }
1756 }
1757 
1758 void G1CollectedHeap::safepoint_synchronize_begin() {
1759   SuspendibleThreadSet::synchronize();
1760 }
1761 
1762 void G1CollectedHeap::safepoint_synchronize_end() {
1763   SuspendibleThreadSet::desynchronize();
1764 }
1765 
1766 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1767   return HeapRegion::max_region_size();
1768 }
1769 
1770 void G1CollectedHeap::post_initialize() {
1771   CollectedHeap::post_initialize();
1772   ref_processing_init();
1773 }
1774 
1775 void G1CollectedHeap::ref_processing_init() {
1776   // Reference processing in G1 currently works as follows:
1777   //
1778   // * There are two reference processor instances. One is
1779   //   used to record and process discovered references
1780   //   during concurrent marking; the other is used to
1781   //   record and process references during STW pauses
1782   //   (both full and incremental).
1783   // * Both ref processors need to 'span' the entire heap as
1784   //   the regions in the collection set may be dotted around.
1785   //
1786   // * For the concurrent marking ref processor:
1787   //   * Reference discovery is enabled at initial marking.
1788   //   * Reference discovery is disabled and the discovered
1789   //     references processed etc during remarking.
1790   //   * Reference discovery is MT (see below).
1791   //   * Reference discovery requires a barrier (see below).
1792   //   * Reference processing may or may not be MT
1793   //     (depending on the value of ParallelRefProcEnabled
1794   //     and ParallelGCThreads).
1795   //   * A full GC disables reference discovery by the CM
1796   //     ref processor and abandons any entries on it's
1797   //     discovered lists.
1798   //
1799   // * For the STW processor:
1800   //   * Non MT discovery is enabled at the start of a full GC.
1801   //   * Processing and enqueueing during a full GC is non-MT.
1802   //   * During a full GC, references are processed after marking.
1803   //
1804   //   * Discovery (may or may not be MT) is enabled at the start
1805   //     of an incremental evacuation pause.
1806   //   * References are processed near the end of a STW evacuation pause.
1807   //   * For both types of GC:
1808   //     * Discovery is atomic - i.e. not concurrent.
1809   //     * Reference discovery will not need a barrier.
1810 
1811   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1812 
1813   // Concurrent Mark ref processor
1814   _ref_processor_cm =
1815     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1816                            mt_processing,                                  // mt processing
1817                            ParallelGCThreads,                              // degree of mt processing
1818                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1819                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1820                            false,                                          // Reference discovery is not atomic
1821                            &_is_alive_closure_cm,                          // is alive closure
1822                            true);                                          // allow changes to number of processing threads
1823 
1824   // STW ref processor
1825   _ref_processor_stw =
1826     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1827                            mt_processing,                        // mt processing
1828                            ParallelGCThreads,                    // degree of mt processing
1829                            (ParallelGCThreads > 1),              // mt discovery
1830                            ParallelGCThreads,                    // degree of mt discovery
1831                            true,                                 // Reference discovery is atomic
1832                            &_is_alive_closure_stw,               // is alive closure
1833                            true);                                // allow changes to number of processing threads
1834 }
1835 
1836 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1837   return _collector_policy;
1838 }
1839 
1840 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1841   return &_soft_ref_policy;
1842 }
1843 
1844 size_t G1CollectedHeap::capacity() const {
1845   return _hrm.length() * HeapRegion::GrainBytes;
1846 }
1847 
1848 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1849   return _hrm.total_free_bytes();
1850 }
1851 
1852 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1853   _hot_card_cache->drain(cl, worker_i);
1854 }
1855 
1856 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1857   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1858   size_t n_completed_buffers = 0;
1859   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1860     n_completed_buffers++;
1861   }
1862   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1863   dcqs.clear_n_completed_buffers();
1864   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1865 }
1866 
1867 // Computes the sum of the storage used by the various regions.
1868 size_t G1CollectedHeap::used() const {
1869   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1870   if (_archive_allocator != NULL) {
1871     result += _archive_allocator->used();
1872   }
1873   return result;
1874 }
1875 
1876 size_t G1CollectedHeap::used_unlocked() const {
1877   return _summary_bytes_used;
1878 }
1879 
1880 class SumUsedClosure: public HeapRegionClosure {
1881   size_t _used;
1882 public:
1883   SumUsedClosure() : _used(0) {}
1884   bool do_heap_region(HeapRegion* r) {
1885     _used += r->used();
1886     return false;
1887   }
1888   size_t result() { return _used; }
1889 };
1890 
1891 size_t G1CollectedHeap::recalculate_used() const {
1892   double recalculate_used_start = os::elapsedTime();
1893 
1894   SumUsedClosure blk;
1895   heap_region_iterate(&blk);
1896 
1897   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1898   return blk.result();
1899 }
1900 
1901 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1902   switch (cause) {
1903     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1904     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1905     case GCCause::_wb_conc_mark:                        return true;
1906     default :                                           return false;
1907   }
1908 }
1909 
1910 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1911   switch (cause) {
1912     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1913     case GCCause::_g1_humongous_allocation: return true;
1914     default:                                return is_user_requested_concurrent_full_gc(cause);
1915   }
1916 }
1917 
1918 #ifndef PRODUCT
1919 void G1CollectedHeap::allocate_dummy_regions() {
1920   // Let's fill up most of the region
1921   size_t word_size = HeapRegion::GrainWords - 1024;
1922   // And as a result the region we'll allocate will be humongous.
1923   guarantee(is_humongous(word_size), "sanity");
1924 
1925   // _filler_array_max_size is set to humongous object threshold
1926   // but temporarily change it to use CollectedHeap::fill_with_object().
1927   SizeTFlagSetting fs(_filler_array_max_size, word_size);
1928 
1929   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
1930     // Let's use the existing mechanism for the allocation
1931     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
1932     if (dummy_obj != NULL) {
1933       MemRegion mr(dummy_obj, word_size);
1934       CollectedHeap::fill_with_object(mr);
1935     } else {
1936       // If we can't allocate once, we probably cannot allocate
1937       // again. Let's get out of the loop.
1938       break;
1939     }
1940   }
1941 }
1942 #endif // !PRODUCT
1943 
1944 void G1CollectedHeap::increment_old_marking_cycles_started() {
1945   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1946          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1947          "Wrong marking cycle count (started: %d, completed: %d)",
1948          _old_marking_cycles_started, _old_marking_cycles_completed);
1949 
1950   _old_marking_cycles_started++;
1951 }
1952 
1953 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
1954   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
1955 
1956   // We assume that if concurrent == true, then the caller is a
1957   // concurrent thread that was joined the Suspendible Thread
1958   // Set. If there's ever a cheap way to check this, we should add an
1959   // assert here.
1960 
1961   // Given that this method is called at the end of a Full GC or of a
1962   // concurrent cycle, and those can be nested (i.e., a Full GC can
1963   // interrupt a concurrent cycle), the number of full collections
1964   // completed should be either one (in the case where there was no
1965   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1966   // behind the number of full collections started.
1967 
1968   // This is the case for the inner caller, i.e. a Full GC.
1969   assert(concurrent ||
1970          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1971          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1972          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1973          "is inconsistent with _old_marking_cycles_completed = %u",
1974          _old_marking_cycles_started, _old_marking_cycles_completed);
1975 
1976   // This is the case for the outer caller, i.e. the concurrent cycle.
1977   assert(!concurrent ||
1978          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1979          "for outer caller (concurrent cycle): "
1980          "_old_marking_cycles_started = %u "
1981          "is inconsistent with _old_marking_cycles_completed = %u",
1982          _old_marking_cycles_started, _old_marking_cycles_completed);
1983 
1984   _old_marking_cycles_completed += 1;
1985 
1986   // We need to clear the "in_progress" flag in the CM thread before
1987   // we wake up any waiters (especially when ExplicitInvokesConcurrent
1988   // is set) so that if a waiter requests another System.gc() it doesn't
1989   // incorrectly see that a marking cycle is still in progress.
1990   if (concurrent) {
1991     _cm_thread->set_idle();
1992   }
1993 
1994   // This notify_all() will ensure that a thread that called
1995   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
1996   // and it's waiting for a full GC to finish will be woken up. It is
1997   // waiting in VM_G1CollectForAllocation::doit_epilogue().
1998   FullGCCount_lock->notify_all();
1999 }
2000 
2001 void G1CollectedHeap::collect(GCCause::Cause cause) {
2002   assert_heap_not_locked();
2003 
2004   uint gc_count_before;
2005   uint old_marking_count_before;
2006   uint full_gc_count_before;
2007   bool retry_gc;
2008 
2009   do {
2010     retry_gc = false;
2011 
2012     {
2013       MutexLocker ml(Heap_lock);
2014 
2015       // Read the GC count while holding the Heap_lock
2016       gc_count_before = total_collections();
2017       full_gc_count_before = total_full_collections();
2018       old_marking_count_before = _old_marking_cycles_started;
2019     }
2020 
2021     if (should_do_concurrent_full_gc(cause)) {
2022       // Schedule an initial-mark evacuation pause that will start a
2023       // concurrent cycle. We're setting word_size to 0 which means that
2024       // we are not requesting a post-GC allocation.
2025       VM_G1CollectForAllocation op(0,     /* word_size */
2026                                    gc_count_before,
2027                                    cause,
2028                                    true,  /* should_initiate_conc_mark */
2029                                    g1_policy()->max_pause_time_ms());
2030       VMThread::execute(&op);
2031       if (!op.pause_succeeded()) {
2032         if (old_marking_count_before == _old_marking_cycles_started) {
2033           retry_gc = op.should_retry_gc();
2034         } else {
2035           // A Full GC happened while we were trying to schedule the
2036           // initial-mark GC. No point in starting a new cycle given
2037           // that the whole heap was collected anyway.
2038         }
2039 
2040         if (retry_gc) {
2041           if (GCLocker::is_active_and_needs_gc()) {
2042             GCLocker::stall_until_clear();
2043           }
2044         }
2045       }
2046     } else {
2047       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2048           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2049 
2050         // Schedule a standard evacuation pause. We're setting word_size
2051         // to 0 which means that we are not requesting a post-GC allocation.
2052         VM_G1CollectForAllocation op(0,     /* word_size */
2053                                      gc_count_before,
2054                                      cause,
2055                                      false, /* should_initiate_conc_mark */
2056                                      g1_policy()->max_pause_time_ms());
2057         VMThread::execute(&op);
2058       } else {
2059         // Schedule a Full GC.
2060         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2061         VMThread::execute(&op);
2062       }
2063     }
2064   } while (retry_gc);
2065 }
2066 
2067 bool G1CollectedHeap::is_in(const void* p) const {
2068   if (_hrm.reserved().contains(p)) {
2069     // Given that we know that p is in the reserved space,
2070     // heap_region_containing() should successfully
2071     // return the containing region.
2072     HeapRegion* hr = heap_region_containing(p);
2073     return hr->is_in(p);
2074   } else {
2075     return false;
2076   }
2077 }
2078 
2079 #ifdef ASSERT
2080 bool G1CollectedHeap::is_in_exact(const void* p) const {
2081   bool contains = reserved_region().contains(p);
2082   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2083   if (contains && available) {
2084     return true;
2085   } else {
2086     return false;
2087   }
2088 }
2089 #endif
2090 
2091 // Iteration functions.
2092 
2093 // Iterates an ObjectClosure over all objects within a HeapRegion.
2094 
2095 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2096   ObjectClosure* _cl;
2097 public:
2098   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2099   bool do_heap_region(HeapRegion* r) {
2100     if (!r->is_continues_humongous()) {
2101       r->object_iterate(_cl);
2102     }
2103     return false;
2104   }
2105 };
2106 
2107 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2108   IterateObjectClosureRegionClosure blk(cl);
2109   heap_region_iterate(&blk);
2110 }
2111 
2112 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2113   _hrm.iterate(cl);
2114 }
2115 
2116 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2117                                                                  HeapRegionClaimer *hrclaimer,
2118                                                                  uint worker_id) const {
2119   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2120 }
2121 
2122 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2123                                                          HeapRegionClaimer *hrclaimer) const {
2124   _hrm.par_iterate(cl, hrclaimer, 0);
2125 }
2126 
2127 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2128   _collection_set.iterate(cl);
2129 }
2130 
2131 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2132   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2133 }
2134 
2135 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2136   HeapRegion* hr = heap_region_containing(addr);
2137   return hr->block_start(addr);
2138 }
2139 
2140 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2141   HeapRegion* hr = heap_region_containing(addr);
2142   return hr->block_size(addr);
2143 }
2144 
2145 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2146   HeapRegion* hr = heap_region_containing(addr);
2147   return hr->block_is_obj(addr);
2148 }
2149 
2150 bool G1CollectedHeap::supports_tlab_allocation() const {
2151   return true;
2152 }
2153 
2154 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2155   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2156 }
2157 
2158 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2159   return _eden.length() * HeapRegion::GrainBytes;
2160 }
2161 
2162 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2163 // must be equal to the humongous object limit.
2164 size_t G1CollectedHeap::max_tlab_size() const {
2165   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2166 }
2167 
2168 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2169   return _allocator->unsafe_max_tlab_alloc();
2170 }
2171 
2172 size_t G1CollectedHeap::max_capacity() const {
2173   return _hrm.reserved().byte_size();
2174 }
2175 
2176 jlong G1CollectedHeap::millis_since_last_gc() {
2177   // See the notes in GenCollectedHeap::millis_since_last_gc()
2178   // for more information about the implementation.
2179   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2180     _g1_policy->collection_pause_end_millis();
2181   if (ret_val < 0) {
2182     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2183       ". returning zero instead.", ret_val);
2184     return 0;
2185   }
2186   return ret_val;
2187 }
2188 
2189 void G1CollectedHeap::deduplicate_string(oop str) {
2190   assert(java_lang_String::is_instance(str), "invariant");
2191 
2192   if (G1StringDedup::is_enabled()) {
2193     G1StringDedup::deduplicate(str);
2194   }
2195 }
2196 
2197 void G1CollectedHeap::prepare_for_verify() {
2198   _verifier->prepare_for_verify();
2199 }
2200 
2201 void G1CollectedHeap::verify(VerifyOption vo) {
2202   _verifier->verify(vo);
2203 }
2204 
2205 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2206   return true;
2207 }
2208 
2209 const char* const* G1CollectedHeap::concurrent_phases() const {
2210   return _cm_thread->concurrent_phases();
2211 }
2212 
2213 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2214   return _cm_thread->request_concurrent_phase(phase);
2215 }
2216 
2217 class PrintRegionClosure: public HeapRegionClosure {
2218   outputStream* _st;
2219 public:
2220   PrintRegionClosure(outputStream* st) : _st(st) {}
2221   bool do_heap_region(HeapRegion* r) {
2222     r->print_on(_st);
2223     return false;
2224   }
2225 };
2226 
2227 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2228                                        const HeapRegion* hr,
2229                                        const VerifyOption vo) const {
2230   switch (vo) {
2231   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2232   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2233   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2234   default:                            ShouldNotReachHere();
2235   }
2236   return false; // keep some compilers happy
2237 }
2238 
2239 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2240                                        const VerifyOption vo) const {
2241   switch (vo) {
2242   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2243   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2244   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2245   default:                            ShouldNotReachHere();
2246   }
2247   return false; // keep some compilers happy
2248 }
2249 
2250 void G1CollectedHeap::print_heap_regions() const {
2251   LogTarget(Trace, gc, heap, region) lt;
2252   if (lt.is_enabled()) {
2253     LogStream ls(lt);
2254     print_regions_on(&ls);
2255   }
2256 }
2257 
2258 void G1CollectedHeap::print_on(outputStream* st) const {
2259   st->print(" %-20s", "garbage-first heap");
2260   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2261             capacity()/K, used_unlocked()/K);
2262   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2263             p2i(_hrm.reserved().start()),
2264             p2i(_hrm.reserved().end()));
2265   st->cr();
2266   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2267   uint young_regions = young_regions_count();
2268   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2269             (size_t) young_regions * HeapRegion::GrainBytes / K);
2270   uint survivor_regions = survivor_regions_count();
2271   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2272             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2273   st->cr();
2274   MetaspaceUtils::print_on(st);
2275 }
2276 
2277 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2278   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2279                "HS=humongous(starts), HC=humongous(continues), "
2280                "CS=collection set, F=free, A=archive, "
2281                "TAMS=top-at-mark-start (previous, next)");
2282   PrintRegionClosure blk(st);
2283   heap_region_iterate(&blk);
2284 }
2285 
2286 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2287   print_on(st);
2288 
2289   // Print the per-region information.
2290   print_regions_on(st);
2291 }
2292 
2293 void G1CollectedHeap::print_on_error(outputStream* st) const {
2294   this->CollectedHeap::print_on_error(st);
2295 
2296   if (_cm != NULL) {
2297     st->cr();
2298     _cm->print_on_error(st);
2299   }
2300 }
2301 
2302 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2303   workers()->print_worker_threads_on(st);
2304   _cm_thread->print_on(st);
2305   st->cr();
2306   _cm->print_worker_threads_on(st);
2307   _cr->print_threads_on(st);
2308   _young_gen_sampling_thread->print_on(st);
2309   if (G1StringDedup::is_enabled()) {
2310     G1StringDedup::print_worker_threads_on(st);
2311   }
2312 }
2313 
2314 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2315   workers()->threads_do(tc);
2316   tc->do_thread(_cm_thread);
2317   _cm->threads_do(tc);
2318   _cr->threads_do(tc);
2319   tc->do_thread(_young_gen_sampling_thread);
2320   if (G1StringDedup::is_enabled()) {
2321     G1StringDedup::threads_do(tc);
2322   }
2323 }
2324 
2325 void G1CollectedHeap::print_tracing_info() const {
2326   g1_rem_set()->print_summary_info();
2327   concurrent_mark()->print_summary_info();
2328 }
2329 
2330 #ifndef PRODUCT
2331 // Helpful for debugging RSet issues.
2332 
2333 class PrintRSetsClosure : public HeapRegionClosure {
2334 private:
2335   const char* _msg;
2336   size_t _occupied_sum;
2337 
2338 public:
2339   bool do_heap_region(HeapRegion* r) {
2340     HeapRegionRemSet* hrrs = r->rem_set();
2341     size_t occupied = hrrs->occupied();
2342     _occupied_sum += occupied;
2343 
2344     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2345     if (occupied == 0) {
2346       tty->print_cr("  RSet is empty");
2347     } else {
2348       hrrs->print();
2349     }
2350     tty->print_cr("----------");
2351     return false;
2352   }
2353 
2354   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2355     tty->cr();
2356     tty->print_cr("========================================");
2357     tty->print_cr("%s", msg);
2358     tty->cr();
2359   }
2360 
2361   ~PrintRSetsClosure() {
2362     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2363     tty->print_cr("========================================");
2364     tty->cr();
2365   }
2366 };
2367 
2368 void G1CollectedHeap::print_cset_rsets() {
2369   PrintRSetsClosure cl("Printing CSet RSets");
2370   collection_set_iterate(&cl);
2371 }
2372 
2373 void G1CollectedHeap::print_all_rsets() {
2374   PrintRSetsClosure cl("Printing All RSets");;
2375   heap_region_iterate(&cl);
2376 }
2377 #endif // PRODUCT
2378 
2379 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2380 
2381   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2382   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2383   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2384 
2385   size_t eden_capacity_bytes =
2386     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2387 
2388   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2389   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2390                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2391 }
2392 
2393 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2394   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2395                        stats->unused(), stats->used(), stats->region_end_waste(),
2396                        stats->regions_filled(), stats->direct_allocated(),
2397                        stats->failure_used(), stats->failure_waste());
2398 }
2399 
2400 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2401   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2402   gc_tracer->report_gc_heap_summary(when, heap_summary);
2403 
2404   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2405   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2406 }
2407 
2408 G1CollectedHeap* G1CollectedHeap::heap() {
2409   CollectedHeap* heap = Universe::heap();
2410   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2411   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2412   return (G1CollectedHeap*)heap;
2413 }
2414 
2415 void G1CollectedHeap::gc_prologue(bool full) {
2416   // always_do_update_barrier = false;
2417   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2418 
2419   // This summary needs to be printed before incrementing total collections.
2420   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2421 
2422   // Update common counters.
2423   increment_total_collections(full /* full gc */);
2424   if (full) {
2425     increment_old_marking_cycles_started();
2426   }
2427 
2428   // Fill TLAB's and such
2429   double start = os::elapsedTime();
2430   accumulate_statistics_all_tlabs();
2431   ensure_parsability(true);
2432   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2433 }
2434 
2435 void G1CollectedHeap::gc_epilogue(bool full) {
2436   // Update common counters.
2437   if (full) {
2438     // Update the number of full collections that have been completed.
2439     increment_old_marking_cycles_completed(false /* concurrent */);
2440   }
2441 
2442   // We are at the end of the GC. Total collections has already been increased.
2443   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2444 
2445   // FIXME: what is this about?
2446   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2447   // is set.
2448 #if COMPILER2_OR_JVMCI
2449   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2450 #endif
2451   // always_do_update_barrier = true;
2452 
2453   double start = os::elapsedTime();
2454   resize_all_tlabs();
2455   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2456 
2457   MemoryService::track_memory_usage();
2458   // We have just completed a GC. Update the soft reference
2459   // policy with the new heap occupancy
2460   Universe::update_heap_info_at_gc();
2461 }
2462 
2463 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2464                                                uint gc_count_before,
2465                                                bool* succeeded,
2466                                                GCCause::Cause gc_cause) {
2467   assert_heap_not_locked_and_not_at_safepoint();
2468   VM_G1CollectForAllocation op(word_size,
2469                                gc_count_before,
2470                                gc_cause,
2471                                false, /* should_initiate_conc_mark */
2472                                g1_policy()->max_pause_time_ms());
2473   VMThread::execute(&op);
2474 
2475   HeapWord* result = op.result();
2476   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2477   assert(result == NULL || ret_succeeded,
2478          "the result should be NULL if the VM did not succeed");
2479   *succeeded = ret_succeeded;
2480 
2481   assert_heap_not_locked();
2482   return result;
2483 }
2484 
2485 void G1CollectedHeap::do_concurrent_mark() {
2486   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2487   if (!_cm_thread->in_progress()) {
2488     _cm_thread->set_started();
2489     CGC_lock->notify();
2490   }
2491 }
2492 
2493 size_t G1CollectedHeap::pending_card_num() {
2494   size_t extra_cards = 0;
2495   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2496     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2497     extra_cards += dcq.size();
2498   }
2499   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2500   size_t buffer_size = dcqs.buffer_size();
2501   size_t buffer_num = dcqs.completed_buffers_num();
2502 
2503   return buffer_size * buffer_num + extra_cards;
2504 }
2505 
2506 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2507   // We don't nominate objects with many remembered set entries, on
2508   // the assumption that such objects are likely still live.
2509   HeapRegionRemSet* rem_set = r->rem_set();
2510 
2511   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2512          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2513          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2514 }
2515 
2516 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2517  private:
2518   size_t _total_humongous;
2519   size_t _candidate_humongous;
2520 
2521   DirtyCardQueue _dcq;
2522 
2523   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2524     assert(region->is_starts_humongous(), "Must start a humongous object");
2525 
2526     oop obj = oop(region->bottom());
2527 
2528     // Dead objects cannot be eager reclaim candidates. Due to class
2529     // unloading it is unsafe to query their classes so we return early.
2530     if (g1h->is_obj_dead(obj, region)) {
2531       return false;
2532     }
2533 
2534     // If we do not have a complete remembered set for the region, then we can
2535     // not be sure that we have all references to it.
2536     if (!region->rem_set()->is_complete()) {
2537       return false;
2538     }
2539     // Candidate selection must satisfy the following constraints
2540     // while concurrent marking is in progress:
2541     //
2542     // * In order to maintain SATB invariants, an object must not be
2543     // reclaimed if it was allocated before the start of marking and
2544     // has not had its references scanned.  Such an object must have
2545     // its references (including type metadata) scanned to ensure no
2546     // live objects are missed by the marking process.  Objects
2547     // allocated after the start of concurrent marking don't need to
2548     // be scanned.
2549     //
2550     // * An object must not be reclaimed if it is on the concurrent
2551     // mark stack.  Objects allocated after the start of concurrent
2552     // marking are never pushed on the mark stack.
2553     //
2554     // Nominating only objects allocated after the start of concurrent
2555     // marking is sufficient to meet both constraints.  This may miss
2556     // some objects that satisfy the constraints, but the marking data
2557     // structures don't support efficiently performing the needed
2558     // additional tests or scrubbing of the mark stack.
2559     //
2560     // However, we presently only nominate is_typeArray() objects.
2561     // A humongous object containing references induces remembered
2562     // set entries on other regions.  In order to reclaim such an
2563     // object, those remembered sets would need to be cleaned up.
2564     //
2565     // We also treat is_typeArray() objects specially, allowing them
2566     // to be reclaimed even if allocated before the start of
2567     // concurrent mark.  For this we rely on mark stack insertion to
2568     // exclude is_typeArray() objects, preventing reclaiming an object
2569     // that is in the mark stack.  We also rely on the metadata for
2570     // such objects to be built-in and so ensured to be kept live.
2571     // Frequent allocation and drop of large binary blobs is an
2572     // important use case for eager reclaim, and this special handling
2573     // may reduce needed headroom.
2574 
2575     return obj->is_typeArray() &&
2576            g1h->is_potential_eager_reclaim_candidate(region);
2577   }
2578 
2579  public:
2580   RegisterHumongousWithInCSetFastTestClosure()
2581   : _total_humongous(0),
2582     _candidate_humongous(0),
2583     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2584   }
2585 
2586   virtual bool do_heap_region(HeapRegion* r) {
2587     if (!r->is_starts_humongous()) {
2588       return false;
2589     }
2590     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2591 
2592     bool is_candidate = humongous_region_is_candidate(g1h, r);
2593     uint rindex = r->hrm_index();
2594     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2595     if (is_candidate) {
2596       _candidate_humongous++;
2597       g1h->register_humongous_region_with_cset(rindex);
2598       // Is_candidate already filters out humongous object with large remembered sets.
2599       // If we have a humongous object with a few remembered sets, we simply flush these
2600       // remembered set entries into the DCQS. That will result in automatic
2601       // re-evaluation of their remembered set entries during the following evacuation
2602       // phase.
2603       if (!r->rem_set()->is_empty()) {
2604         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2605                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2606         G1CardTable* ct = g1h->card_table();
2607         HeapRegionRemSetIterator hrrs(r->rem_set());
2608         size_t card_index;
2609         while (hrrs.has_next(card_index)) {
2610           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2611           // The remembered set might contain references to already freed
2612           // regions. Filter out such entries to avoid failing card table
2613           // verification.
2614           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2615             if (*card_ptr != G1CardTable::dirty_card_val()) {
2616               *card_ptr = G1CardTable::dirty_card_val();
2617               _dcq.enqueue(card_ptr);
2618             }
2619           }
2620         }
2621         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2622                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2623                hrrs.n_yielded(), r->rem_set()->occupied());
2624         // We should only clear the card based remembered set here as we will not
2625         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2626         // (and probably never) we do not enter this path if there are other kind of
2627         // remembered sets for this region.
2628         r->rem_set()->clear_locked(true /* only_cardset */);
2629         // Clear_locked() above sets the state to Empty. However we want to continue
2630         // collecting remembered set entries for humongous regions that were not
2631         // reclaimed.
2632         r->rem_set()->set_state_complete();
2633       }
2634       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2635     }
2636     _total_humongous++;
2637 
2638     return false;
2639   }
2640 
2641   size_t total_humongous() const { return _total_humongous; }
2642   size_t candidate_humongous() const { return _candidate_humongous; }
2643 
2644   void flush_rem_set_entries() { _dcq.flush(); }
2645 };
2646 
2647 void G1CollectedHeap::register_humongous_regions_with_cset() {
2648   if (!G1EagerReclaimHumongousObjects) {
2649     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2650     return;
2651   }
2652   double time = os::elapsed_counter();
2653 
2654   // Collect reclaim candidate information and register candidates with cset.
2655   RegisterHumongousWithInCSetFastTestClosure cl;
2656   heap_region_iterate(&cl);
2657 
2658   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2659   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2660                                                                   cl.total_humongous(),
2661                                                                   cl.candidate_humongous());
2662   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2663 
2664   // Finally flush all remembered set entries to re-check into the global DCQS.
2665   cl.flush_rem_set_entries();
2666 }
2667 
2668 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2669   public:
2670     bool do_heap_region(HeapRegion* hr) {
2671       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2672         hr->verify_rem_set();
2673       }
2674       return false;
2675     }
2676 };
2677 
2678 uint G1CollectedHeap::num_task_queues() const {
2679   return _task_queues->size();
2680 }
2681 
2682 #if TASKQUEUE_STATS
2683 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2684   st->print_raw_cr("GC Task Stats");
2685   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2686   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2687 }
2688 
2689 void G1CollectedHeap::print_taskqueue_stats() const {
2690   if (!log_is_enabled(Trace, gc, task, stats)) {
2691     return;
2692   }
2693   Log(gc, task, stats) log;
2694   ResourceMark rm;
2695   LogStream ls(log.trace());
2696   outputStream* st = &ls;
2697 
2698   print_taskqueue_stats_hdr(st);
2699 
2700   TaskQueueStats totals;
2701   const uint n = num_task_queues();
2702   for (uint i = 0; i < n; ++i) {
2703     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2704     totals += task_queue(i)->stats;
2705   }
2706   st->print_raw("tot "); totals.print(st); st->cr();
2707 
2708   DEBUG_ONLY(totals.verify());
2709 }
2710 
2711 void G1CollectedHeap::reset_taskqueue_stats() {
2712   const uint n = num_task_queues();
2713   for (uint i = 0; i < n; ++i) {
2714     task_queue(i)->stats.reset();
2715   }
2716 }
2717 #endif // TASKQUEUE_STATS
2718 
2719 void G1CollectedHeap::wait_for_root_region_scanning() {
2720   double scan_wait_start = os::elapsedTime();
2721   // We have to wait until the CM threads finish scanning the
2722   // root regions as it's the only way to ensure that all the
2723   // objects on them have been correctly scanned before we start
2724   // moving them during the GC.
2725   bool waited = _cm->root_regions()->wait_until_scan_finished();
2726   double wait_time_ms = 0.0;
2727   if (waited) {
2728     double scan_wait_end = os::elapsedTime();
2729     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2730   }
2731   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2732 }
2733 
2734 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2735 private:
2736   G1HRPrinter* _hr_printer;
2737 public:
2738   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2739 
2740   virtual bool do_heap_region(HeapRegion* r) {
2741     _hr_printer->cset(r);
2742     return false;
2743   }
2744 };
2745 
2746 void G1CollectedHeap::start_new_collection_set() {
2747   collection_set()->start_incremental_building();
2748 
2749   clear_cset_fast_test();
2750 
2751   guarantee(_eden.length() == 0, "eden should have been cleared");
2752   g1_policy()->transfer_survivors_to_cset(survivor());
2753 }
2754 
2755 bool
2756 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2757   assert_at_safepoint_on_vm_thread();
2758   guarantee(!is_gc_active(), "collection is not reentrant");
2759 
2760   if (GCLocker::check_active_before_gc()) {
2761     return false;
2762   }
2763 
2764   _gc_timer_stw->register_gc_start();
2765 
2766   GCIdMark gc_id_mark;
2767   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2768 
2769   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2770   ResourceMark rm;
2771 
2772   g1_policy()->note_gc_start();
2773 
2774   wait_for_root_region_scanning();
2775 
2776   print_heap_before_gc();
2777   print_heap_regions();
2778   trace_heap_before_gc(_gc_tracer_stw);
2779 
2780   _verifier->verify_region_sets_optional();
2781   _verifier->verify_dirty_young_regions();
2782 
2783   // We should not be doing initial mark unless the conc mark thread is running
2784   if (!_cm_thread->should_terminate()) {
2785     // This call will decide whether this pause is an initial-mark
2786     // pause. If it is, in_initial_mark_gc() will return true
2787     // for the duration of this pause.
2788     g1_policy()->decide_on_conc_mark_initiation();
2789   }
2790 
2791   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2792   assert(!collector_state()->in_initial_mark_gc() ||
2793           collector_state()->in_young_only_phase(), "sanity");
2794 
2795   // We also do not allow mixed GCs during marking.
2796   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2797 
2798   // Record whether this pause is an initial mark. When the current
2799   // thread has completed its logging output and it's safe to signal
2800   // the CM thread, the flag's value in the policy has been reset.
2801   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2802 
2803   // Inner scope for scope based logging, timers, and stats collection
2804   {
2805     EvacuationInfo evacuation_info;
2806 
2807     if (collector_state()->in_initial_mark_gc()) {
2808       // We are about to start a marking cycle, so we increment the
2809       // full collection counter.
2810       increment_old_marking_cycles_started();
2811       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2812     }
2813 
2814     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2815 
2816     GCTraceCPUTime tcpu;
2817 
2818     G1HeapVerifier::G1VerifyType verify_type;
2819     FormatBuffer<> gc_string("Pause Young ");
2820     if (collector_state()->in_initial_mark_gc()) {
2821       gc_string.append("(Concurrent Start)");
2822       verify_type = G1HeapVerifier::G1VerifyConcurrentStart;
2823     } else if (collector_state()->in_young_only_phase()) {
2824       if (collector_state()->in_young_gc_before_mixed()) {
2825         gc_string.append("(Prepare Mixed)");
2826       } else {
2827         gc_string.append("(Normal)");
2828       }
2829       verify_type = G1HeapVerifier::G1VerifyYoungNormal;
2830     } else {
2831       gc_string.append("(Mixed)");
2832       verify_type = G1HeapVerifier::G1VerifyMixed;
2833     }
2834     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2835 
2836     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2837                                                                   workers()->active_workers(),
2838                                                                   Threads::number_of_non_daemon_threads());
2839     active_workers = workers()->update_active_workers(active_workers);
2840     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2841 
2842     G1MonitoringScope ms(g1mm(),
2843                          false /* full_gc */,
2844                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
2845 
2846     G1HeapTransition heap_transition(this);
2847     size_t heap_used_bytes_before_gc = used();
2848 
2849     // Don't dynamically change the number of GC threads this early.  A value of
2850     // 0 is used to indicate serial work.  When parallel work is done,
2851     // it will be set.
2852 
2853     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2854       IsGCActiveMark x;
2855 
2856       gc_prologue(false);
2857 
2858       if (VerifyRememberedSets) {
2859         log_info(gc, verify)("[Verifying RemSets before GC]");
2860         VerifyRegionRemSetClosure v_cl;
2861         heap_region_iterate(&v_cl);
2862       }
2863 
2864       _verifier->verify_before_gc(verify_type);
2865 
2866       _verifier->check_bitmaps("GC Start");
2867 
2868 #if COMPILER2_OR_JVMCI
2869       DerivedPointerTable::clear();
2870 #endif
2871 
2872       // Please see comment in g1CollectedHeap.hpp and
2873       // G1CollectedHeap::ref_processing_init() to see how
2874       // reference processing currently works in G1.
2875 
2876       // Enable discovery in the STW reference processor
2877       _ref_processor_stw->enable_discovery();
2878 
2879       {
2880         // We want to temporarily turn off discovery by the
2881         // CM ref processor, if necessary, and turn it back on
2882         // on again later if we do. Using a scoped
2883         // NoRefDiscovery object will do this.
2884         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
2885 
2886         // Forget the current alloc region (we might even choose it to be part
2887         // of the collection set!).
2888         _allocator->release_mutator_alloc_region();
2889 
2890         // This timing is only used by the ergonomics to handle our pause target.
2891         // It is unclear why this should not include the full pause. We will
2892         // investigate this in CR 7178365.
2893         //
2894         // Preserving the old comment here if that helps the investigation:
2895         //
2896         // The elapsed time induced by the start time below deliberately elides
2897         // the possible verification above.
2898         double sample_start_time_sec = os::elapsedTime();
2899 
2900         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2901 
2902         if (collector_state()->in_initial_mark_gc()) {
2903           concurrent_mark()->pre_initial_mark();
2904         }
2905 
2906         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2907 
2908         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2909 
2910         // Make sure the remembered sets are up to date. This needs to be
2911         // done before register_humongous_regions_with_cset(), because the
2912         // remembered sets are used there to choose eager reclaim candidates.
2913         // If the remembered sets are not up to date we might miss some
2914         // entries that need to be handled.
2915         g1_rem_set()->cleanupHRRS();
2916 
2917         register_humongous_regions_with_cset();
2918 
2919         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2920 
2921         // We call this after finalize_cset() to
2922         // ensure that the CSet has been finalized.
2923         _cm->verify_no_cset_oops();
2924 
2925         if (_hr_printer.is_active()) {
2926           G1PrintCollectionSetClosure cl(&_hr_printer);
2927           _collection_set.iterate(&cl);
2928         }
2929 
2930         // Initialize the GC alloc regions.
2931         _allocator->init_gc_alloc_regions(evacuation_info);
2932 
2933         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
2934         pre_evacuate_collection_set();
2935 
2936         // Actually do the work...
2937         evacuate_collection_set(&per_thread_states);
2938 
2939         post_evacuate_collection_set(evacuation_info, &per_thread_states);
2940 
2941         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
2942         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
2943 
2944         eagerly_reclaim_humongous_regions();
2945 
2946         record_obj_copy_mem_stats();
2947         _survivor_evac_stats.adjust_desired_plab_sz();
2948         _old_evac_stats.adjust_desired_plab_sz();
2949 
2950         double start = os::elapsedTime();
2951         start_new_collection_set();
2952         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2953 
2954         if (evacuation_failed()) {
2955           set_used(recalculate_used());
2956           if (_archive_allocator != NULL) {
2957             _archive_allocator->clear_used();
2958           }
2959           for (uint i = 0; i < ParallelGCThreads; i++) {
2960             if (_evacuation_failed_info_array[i].has_failed()) {
2961               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
2962             }
2963           }
2964         } else {
2965           // The "used" of the the collection set have already been subtracted
2966           // when they were freed.  Add in the bytes evacuated.
2967           increase_used(g1_policy()->bytes_copied_during_gc());
2968         }
2969 
2970         if (collector_state()->in_initial_mark_gc()) {
2971           // We have to do this before we notify the CM threads that
2972           // they can start working to make sure that all the
2973           // appropriate initialization is done on the CM object.
2974           concurrent_mark()->post_initial_mark();
2975           // Note that we don't actually trigger the CM thread at
2976           // this point. We do that later when we're sure that
2977           // the current thread has completed its logging output.
2978         }
2979 
2980         allocate_dummy_regions();
2981 
2982         _allocator->init_mutator_alloc_region();
2983 
2984         {
2985           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2986           if (expand_bytes > 0) {
2987             size_t bytes_before = capacity();
2988             // No need for an ergo logging here,
2989             // expansion_amount() does this when it returns a value > 0.
2990             double expand_ms;
2991             if (!expand(expand_bytes, _workers, &expand_ms)) {
2992               // We failed to expand the heap. Cannot do anything about it.
2993             }
2994             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
2995           }
2996         }
2997 
2998         // We redo the verification but now wrt to the new CSet which
2999         // has just got initialized after the previous CSet was freed.
3000         _cm->verify_no_cset_oops();
3001 
3002         // This timing is only used by the ergonomics to handle our pause target.
3003         // It is unclear why this should not include the full pause. We will
3004         // investigate this in CR 7178365.
3005         double sample_end_time_sec = os::elapsedTime();
3006         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3007         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3008         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3009 
3010         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3011         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3012 
3013         if (VerifyRememberedSets) {
3014           log_info(gc, verify)("[Verifying RemSets after GC]");
3015           VerifyRegionRemSetClosure v_cl;
3016           heap_region_iterate(&v_cl);
3017         }
3018 
3019         _verifier->verify_after_gc(verify_type);
3020         _verifier->check_bitmaps("GC End");
3021 
3022         assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
3023         _ref_processor_stw->verify_no_references_recorded();
3024 
3025         // CM reference discovery will be re-enabled if necessary.
3026       }
3027 
3028 #ifdef TRACESPINNING
3029       ParallelTaskTerminator::print_termination_counts();
3030 #endif
3031 
3032       gc_epilogue(false);
3033     }
3034 
3035     // Print the remainder of the GC log output.
3036     if (evacuation_failed()) {
3037       log_info(gc)("To-space exhausted");
3038     }
3039 
3040     g1_policy()->print_phases();
3041     heap_transition.print();
3042 
3043     // It is not yet to safe to tell the concurrent mark to
3044     // start as we have some optional output below. We don't want the
3045     // output from the concurrent mark thread interfering with this
3046     // logging output either.
3047 
3048     _hrm.verify_optional();
3049     _verifier->verify_region_sets_optional();
3050 
3051     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3052     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3053 
3054     print_heap_after_gc();
3055     print_heap_regions();
3056     trace_heap_after_gc(_gc_tracer_stw);
3057 
3058     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3059     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3060     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3061     // before any GC notifications are raised.
3062     g1mm()->update_sizes();
3063 
3064     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3065     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3066     _gc_timer_stw->register_gc_end();
3067     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3068   }
3069   // It should now be safe to tell the concurrent mark thread to start
3070   // without its logging output interfering with the logging output
3071   // that came from the pause.
3072 
3073   if (should_start_conc_mark) {
3074     // CAUTION: after the doConcurrentMark() call below,
3075     // the concurrent marking thread(s) could be running
3076     // concurrently with us. Make sure that anything after
3077     // this point does not assume that we are the only GC thread
3078     // running. Note: of course, the actual marking work will
3079     // not start until the safepoint itself is released in
3080     // SuspendibleThreadSet::desynchronize().
3081     do_concurrent_mark();
3082   }
3083 
3084   return true;
3085 }
3086 
3087 void G1CollectedHeap::remove_self_forwarding_pointers() {
3088   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3089   workers()->run_task(&rsfp_task);
3090 }
3091 
3092 void G1CollectedHeap::restore_after_evac_failure() {
3093   double remove_self_forwards_start = os::elapsedTime();
3094 
3095   remove_self_forwarding_pointers();
3096   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3097   _preserved_marks_set.restore(&task_executor);
3098 
3099   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3100 }
3101 
3102 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3103   if (!_evacuation_failed) {
3104     _evacuation_failed = true;
3105   }
3106 
3107   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3108   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3109 }
3110 
3111 bool G1ParEvacuateFollowersClosure::offer_termination() {
3112   G1ParScanThreadState* const pss = par_scan_state();
3113   start_term_time();
3114   const bool res = terminator()->offer_termination();
3115   end_term_time();
3116   return res;
3117 }
3118 
3119 void G1ParEvacuateFollowersClosure::do_void() {
3120   G1ParScanThreadState* const pss = par_scan_state();
3121   pss->trim_queue();
3122   do {
3123     pss->steal_and_trim_queue(queues());
3124   } while (!offer_termination());
3125 }
3126 
3127 class G1ParTask : public AbstractGangTask {
3128 protected:
3129   G1CollectedHeap*         _g1h;
3130   G1ParScanThreadStateSet* _pss;
3131   RefToScanQueueSet*       _queues;
3132   G1RootProcessor*         _root_processor;
3133   ParallelTaskTerminator   _terminator;
3134   uint                     _n_workers;
3135 
3136 public:
3137   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3138     : AbstractGangTask("G1 collection"),
3139       _g1h(g1h),
3140       _pss(per_thread_states),
3141       _queues(task_queues),
3142       _root_processor(root_processor),
3143       _terminator(n_workers, _queues),
3144       _n_workers(n_workers)
3145   {}
3146 
3147   void work(uint worker_id) {
3148     if (worker_id >= _n_workers) return;  // no work needed this round
3149 
3150     double start_sec = os::elapsedTime();
3151     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3152 
3153     {
3154       ResourceMark rm;
3155       HandleMark   hm;
3156 
3157       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3158 
3159       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3160       pss->set_ref_discoverer(rp);
3161 
3162       double start_strong_roots_sec = os::elapsedTime();
3163 
3164       _root_processor->evacuate_roots(pss, worker_id);
3165 
3166       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3167       // treating the nmethods visited to act as roots for concurrent marking.
3168       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3169       // objects copied by the current evacuation.
3170       _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id);
3171 
3172       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3173 
3174       double term_sec = 0.0;
3175       size_t evac_term_attempts = 0;
3176       {
3177         double start = os::elapsedTime();
3178         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3179         evac.do_void();
3180 
3181         evac_term_attempts = evac.term_attempts();
3182         term_sec = evac.term_time();
3183         double elapsed_sec = os::elapsedTime() - start;
3184 
3185         G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3186         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3187         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3188         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3189       }
3190 
3191       assert(pss->queue_is_empty(), "should be empty");
3192 
3193       if (log_is_enabled(Debug, gc, task, stats)) {
3194         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3195         size_t lab_waste;
3196         size_t lab_undo_waste;
3197         pss->waste(lab_waste, lab_undo_waste);
3198         _g1h->print_termination_stats(worker_id,
3199                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3200                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3201                                       term_sec * 1000.0,                          /* evac term time */
3202                                       evac_term_attempts,                         /* evac term attempts */
3203                                       lab_waste,                                  /* alloc buffer waste */
3204                                       lab_undo_waste                              /* undo waste */
3205                                       );
3206       }
3207 
3208       // Close the inner scope so that the ResourceMark and HandleMark
3209       // destructors are executed here and are included as part of the
3210       // "GC Worker Time".
3211     }
3212     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3213   }
3214 };
3215 
3216 void G1CollectedHeap::print_termination_stats_hdr() {
3217   log_debug(gc, task, stats)("GC Termination Stats");
3218   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3219   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3220   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3221 }
3222 
3223 void G1CollectedHeap::print_termination_stats(uint worker_id,
3224                                               double elapsed_ms,
3225                                               double strong_roots_ms,
3226                                               double term_ms,
3227                                               size_t term_attempts,
3228                                               size_t alloc_buffer_waste,
3229                                               size_t undo_waste) const {
3230   log_debug(gc, task, stats)
3231               ("%3d %9.2f %9.2f %6.2f "
3232                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3233                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3234                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3235                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3236                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3237                alloc_buffer_waste * HeapWordSize / K,
3238                undo_waste * HeapWordSize / K);
3239 }
3240 
3241 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3242 private:
3243   BoolObjectClosure* _is_alive;
3244   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3245   OopStorage::ParState<false /* concurrent */, false /* const */> _par_state_string;
3246 
3247   int _initial_string_table_size;
3248   int _initial_symbol_table_size;
3249 
3250   bool  _process_strings;
3251   int _strings_processed;
3252   int _strings_removed;
3253 
3254   bool  _process_symbols;
3255   int _symbols_processed;
3256   int _symbols_removed;
3257 
3258   bool _process_string_dedup;
3259 
3260 public:
3261   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3262     AbstractGangTask("String/Symbol Unlinking"),
3263     _is_alive(is_alive),
3264     _dedup_closure(is_alive, NULL, false),
3265     _par_state_string(StringTable::weak_storage()),
3266     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3267     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3268     _process_string_dedup(process_string_dedup) {
3269 
3270     _initial_string_table_size = (int) StringTable::the_table()->table_size();
3271     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3272     if (process_symbols) {
3273       SymbolTable::clear_parallel_claimed_index();
3274     }
3275     if (process_strings) {
3276       StringTable::reset_dead_counter();
3277     }
3278   }
3279 
3280   ~G1StringAndSymbolCleaningTask() {
3281     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3282               "claim value %d after unlink less than initial symbol table size %d",
3283               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3284 
3285     log_info(gc, stringtable)(
3286         "Cleaned string and symbol table, "
3287         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3288         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3289         strings_processed(), strings_removed(),
3290         symbols_processed(), symbols_removed());
3291     if (_process_strings) {
3292       StringTable::finish_dead_counter();
3293     }
3294   }
3295 
3296   void work(uint worker_id) {
3297     int strings_processed = 0;
3298     int strings_removed = 0;
3299     int symbols_processed = 0;
3300     int symbols_removed = 0;
3301     if (_process_strings) {
3302       StringTable::possibly_parallel_unlink(&_par_state_string, _is_alive, &strings_processed, &strings_removed);
3303       Atomic::add(strings_processed, &_strings_processed);
3304       Atomic::add(strings_removed, &_strings_removed);
3305     }
3306     if (_process_symbols) {
3307       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3308       Atomic::add(symbols_processed, &_symbols_processed);
3309       Atomic::add(symbols_removed, &_symbols_removed);
3310     }
3311     if (_process_string_dedup) {
3312       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3313     }
3314   }
3315 
3316   size_t strings_processed() const { return (size_t)_strings_processed; }
3317   size_t strings_removed()   const { return (size_t)_strings_removed; }
3318 
3319   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3320   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3321 };
3322 
3323 class G1CodeCacheUnloadingTask {
3324 private:
3325   static Monitor* _lock;
3326 
3327   BoolObjectClosure* const _is_alive;
3328   const bool               _unloading_occurred;
3329   const uint               _num_workers;
3330 
3331   // Variables used to claim nmethods.
3332   CompiledMethod* _first_nmethod;
3333   CompiledMethod* volatile _claimed_nmethod;
3334 
3335   // The list of nmethods that need to be processed by the second pass.
3336   CompiledMethod* volatile _postponed_list;
3337   volatile uint            _num_entered_barrier;
3338 
3339  public:
3340   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3341       _is_alive(is_alive),
3342       _unloading_occurred(unloading_occurred),
3343       _num_workers(num_workers),
3344       _first_nmethod(NULL),
3345       _claimed_nmethod(NULL),
3346       _postponed_list(NULL),
3347       _num_entered_barrier(0)
3348   {
3349     CompiledMethod::increase_unloading_clock();
3350     // Get first alive nmethod
3351     CompiledMethodIterator iter = CompiledMethodIterator();
3352     if(iter.next_alive()) {
3353       _first_nmethod = iter.method();
3354     }
3355     _claimed_nmethod = _first_nmethod;
3356   }
3357 
3358   ~G1CodeCacheUnloadingTask() {
3359     CodeCache::verify_clean_inline_caches();
3360 
3361     CodeCache::set_needs_cache_clean(false);
3362     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3363 
3364     CodeCache::verify_icholder_relocations();
3365   }
3366 
3367  private:
3368   void add_to_postponed_list(CompiledMethod* nm) {
3369       CompiledMethod* old;
3370       do {
3371         old = _postponed_list;
3372         nm->set_unloading_next(old);
3373       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3374   }
3375 
3376   void clean_nmethod(CompiledMethod* nm) {
3377     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3378 
3379     if (postponed) {
3380       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3381       add_to_postponed_list(nm);
3382     }
3383 
3384     // Mark that this nmethod has been cleaned/unloaded.
3385     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3386     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3387   }
3388 
3389   void clean_nmethod_postponed(CompiledMethod* nm) {
3390     nm->do_unloading_parallel_postponed();
3391   }
3392 
3393   static const int MaxClaimNmethods = 16;
3394 
3395   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3396     CompiledMethod* first;
3397     CompiledMethodIterator last;
3398 
3399     do {
3400       *num_claimed_nmethods = 0;
3401 
3402       first = _claimed_nmethod;
3403       last = CompiledMethodIterator(first);
3404 
3405       if (first != NULL) {
3406 
3407         for (int i = 0; i < MaxClaimNmethods; i++) {
3408           if (!last.next_alive()) {
3409             break;
3410           }
3411           claimed_nmethods[i] = last.method();
3412           (*num_claimed_nmethods)++;
3413         }
3414       }
3415 
3416     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3417   }
3418 
3419   CompiledMethod* claim_postponed_nmethod() {
3420     CompiledMethod* claim;
3421     CompiledMethod* next;
3422 
3423     do {
3424       claim = _postponed_list;
3425       if (claim == NULL) {
3426         return NULL;
3427       }
3428 
3429       next = claim->unloading_next();
3430 
3431     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3432 
3433     return claim;
3434   }
3435 
3436  public:
3437   // Mark that we're done with the first pass of nmethod cleaning.
3438   void barrier_mark(uint worker_id) {
3439     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3440     _num_entered_barrier++;
3441     if (_num_entered_barrier == _num_workers) {
3442       ml.notify_all();
3443     }
3444   }
3445 
3446   // See if we have to wait for the other workers to
3447   // finish their first-pass nmethod cleaning work.
3448   void barrier_wait(uint worker_id) {
3449     if (_num_entered_barrier < _num_workers) {
3450       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3451       while (_num_entered_barrier < _num_workers) {
3452           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3453       }
3454     }
3455   }
3456 
3457   // Cleaning and unloading of nmethods. Some work has to be postponed
3458   // to the second pass, when we know which nmethods survive.
3459   void work_first_pass(uint worker_id) {
3460     // The first nmethods is claimed by the first worker.
3461     if (worker_id == 0 && _first_nmethod != NULL) {
3462       clean_nmethod(_first_nmethod);
3463       _first_nmethod = NULL;
3464     }
3465 
3466     int num_claimed_nmethods;
3467     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3468 
3469     while (true) {
3470       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3471 
3472       if (num_claimed_nmethods == 0) {
3473         break;
3474       }
3475 
3476       for (int i = 0; i < num_claimed_nmethods; i++) {
3477         clean_nmethod(claimed_nmethods[i]);
3478       }
3479     }
3480   }
3481 
3482   void work_second_pass(uint worker_id) {
3483     CompiledMethod* nm;
3484     // Take care of postponed nmethods.
3485     while ((nm = claim_postponed_nmethod()) != NULL) {
3486       clean_nmethod_postponed(nm);
3487     }
3488   }
3489 };
3490 
3491 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3492 
3493 class G1KlassCleaningTask : public StackObj {
3494   volatile int                            _clean_klass_tree_claimed;
3495   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3496 
3497  public:
3498   G1KlassCleaningTask() :
3499       _clean_klass_tree_claimed(0),
3500       _klass_iterator() {
3501   }
3502 
3503  private:
3504   bool claim_clean_klass_tree_task() {
3505     if (_clean_klass_tree_claimed) {
3506       return false;
3507     }
3508 
3509     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3510   }
3511 
3512   InstanceKlass* claim_next_klass() {
3513     Klass* klass;
3514     do {
3515       klass =_klass_iterator.next_klass();
3516     } while (klass != NULL && !klass->is_instance_klass());
3517 
3518     // this can be null so don't call InstanceKlass::cast
3519     return static_cast<InstanceKlass*>(klass);
3520   }
3521 
3522 public:
3523 
3524   void clean_klass(InstanceKlass* ik) {
3525     ik->clean_weak_instanceklass_links();
3526   }
3527 
3528   void work() {
3529     ResourceMark rm;
3530 
3531     // One worker will clean the subklass/sibling klass tree.
3532     if (claim_clean_klass_tree_task()) {
3533       Klass::clean_subklass_tree();
3534     }
3535 
3536     // All workers will help cleaning the classes,
3537     InstanceKlass* klass;
3538     while ((klass = claim_next_klass()) != NULL) {
3539       clean_klass(klass);
3540     }
3541   }
3542 };
3543 
3544 class G1ResolvedMethodCleaningTask : public StackObj {
3545   volatile int       _resolved_method_task_claimed;
3546 public:
3547   G1ResolvedMethodCleaningTask() :
3548       _resolved_method_task_claimed(0) {}
3549 
3550   bool claim_resolved_method_task() {
3551     if (_resolved_method_task_claimed) {
3552       return false;
3553     }
3554     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3555   }
3556 
3557   // These aren't big, one thread can do it all.
3558   void work() {
3559     if (claim_resolved_method_task()) {
3560       ResolvedMethodTable::unlink();
3561     }
3562   }
3563 };
3564 
3565 
3566 // To minimize the remark pause times, the tasks below are done in parallel.
3567 class G1ParallelCleaningTask : public AbstractGangTask {
3568 private:
3569   bool                          _unloading_occurred;
3570   G1StringAndSymbolCleaningTask _string_symbol_task;
3571   G1CodeCacheUnloadingTask      _code_cache_task;
3572   G1KlassCleaningTask           _klass_cleaning_task;
3573   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3574 
3575 public:
3576   // The constructor is run in the VMThread.
3577   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3578       AbstractGangTask("Parallel Cleaning"),
3579       _unloading_occurred(unloading_occurred),
3580       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3581       _code_cache_task(num_workers, is_alive, unloading_occurred),
3582       _klass_cleaning_task(),
3583       _resolved_method_cleaning_task() {
3584   }
3585 
3586   // The parallel work done by all worker threads.
3587   void work(uint worker_id) {
3588     // Do first pass of code cache cleaning.
3589     _code_cache_task.work_first_pass(worker_id);
3590 
3591     // Let the threads mark that the first pass is done.
3592     _code_cache_task.barrier_mark(worker_id);
3593 
3594     // Clean the Strings and Symbols.
3595     _string_symbol_task.work(worker_id);
3596 
3597     // Clean unreferenced things in the ResolvedMethodTable
3598     _resolved_method_cleaning_task.work();
3599 
3600     // Wait for all workers to finish the first code cache cleaning pass.
3601     _code_cache_task.barrier_wait(worker_id);
3602 
3603     // Do the second code cache cleaning work, which realize on
3604     // the liveness information gathered during the first pass.
3605     _code_cache_task.work_second_pass(worker_id);
3606 
3607     // Clean all klasses that were not unloaded.
3608     // The weak metadata in klass doesn't need to be
3609     // processed if there was no unloading.
3610     if (_unloading_occurred) {
3611       _klass_cleaning_task.work();
3612     }
3613   }
3614 };
3615 
3616 
3617 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3618                                         bool class_unloading_occurred) {
3619   uint n_workers = workers()->active_workers();
3620 
3621   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3622   workers()->run_task(&g1_unlink_task);
3623 }
3624 
3625 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3626                                        bool process_strings,
3627                                        bool process_symbols,
3628                                        bool process_string_dedup) {
3629   if (!process_strings && !process_symbols && !process_string_dedup) {
3630     // Nothing to clean.
3631     return;
3632   }
3633 
3634   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3635   workers()->run_task(&g1_unlink_task);
3636 
3637 }
3638 
3639 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3640  private:
3641   DirtyCardQueueSet* _queue;
3642   G1CollectedHeap* _g1h;
3643  public:
3644   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3645     _queue(queue), _g1h(g1h) { }
3646 
3647   virtual void work(uint worker_id) {
3648     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3649     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3650 
3651     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3652     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3653 
3654     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3655   }
3656 };
3657 
3658 void G1CollectedHeap::redirty_logged_cards() {
3659   double redirty_logged_cards_start = os::elapsedTime();
3660 
3661   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3662   dirty_card_queue_set().reset_for_par_iteration();
3663   workers()->run_task(&redirty_task);
3664 
3665   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3666   dcq.merge_bufferlists(&dirty_card_queue_set());
3667   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3668 
3669   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3670 }
3671 
3672 // Weak Reference Processing support
3673 
3674 bool G1STWIsAliveClosure::do_object_b(oop p) {
3675   // An object is reachable if it is outside the collection set,
3676   // or is inside and copied.
3677   return !_g1h->is_in_cset(p) || p->is_forwarded();
3678 }
3679 
3680 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3681   assert(obj != NULL, "must not be NULL");
3682   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3683   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3684   // may falsely indicate that this is not the case here: however the collection set only
3685   // contains old regions when concurrent mark is not running.
3686   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3687 }
3688 
3689 // Non Copying Keep Alive closure
3690 class G1KeepAliveClosure: public OopClosure {
3691   G1CollectedHeap*_g1h;
3692 public:
3693   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3694   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3695   void do_oop(oop* p) {
3696     oop obj = *p;
3697     assert(obj != NULL, "the caller should have filtered out NULL values");
3698 
3699     const InCSetState cset_state =_g1h->in_cset_state(obj);
3700     if (!cset_state.is_in_cset_or_humongous()) {
3701       return;
3702     }
3703     if (cset_state.is_in_cset()) {
3704       assert( obj->is_forwarded(), "invariant" );
3705       *p = obj->forwardee();
3706     } else {
3707       assert(!obj->is_forwarded(), "invariant" );
3708       assert(cset_state.is_humongous(),
3709              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3710      _g1h->set_humongous_is_live(obj);
3711     }
3712   }
3713 };
3714 
3715 // Copying Keep Alive closure - can be called from both
3716 // serial and parallel code as long as different worker
3717 // threads utilize different G1ParScanThreadState instances
3718 // and different queues.
3719 
3720 class G1CopyingKeepAliveClosure: public OopClosure {
3721   G1CollectedHeap*         _g1h;
3722   G1ParScanThreadState*    _par_scan_state;
3723 
3724 public:
3725   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3726                             G1ParScanThreadState* pss):
3727     _g1h(g1h),
3728     _par_scan_state(pss)
3729   {}
3730 
3731   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3732   virtual void do_oop(      oop* p) { do_oop_work(p); }
3733 
3734   template <class T> void do_oop_work(T* p) {
3735     oop obj = RawAccess<>::oop_load(p);
3736 
3737     if (_g1h->is_in_cset_or_humongous(obj)) {
3738       // If the referent object has been forwarded (either copied
3739       // to a new location or to itself in the event of an
3740       // evacuation failure) then we need to update the reference
3741       // field and, if both reference and referent are in the G1
3742       // heap, update the RSet for the referent.
3743       //
3744       // If the referent has not been forwarded then we have to keep
3745       // it alive by policy. Therefore we have copy the referent.
3746       //
3747       // When the queue is drained (after each phase of reference processing)
3748       // the object and it's followers will be copied, the reference field set
3749       // to point to the new location, and the RSet updated.
3750       _par_scan_state->push_on_queue(p);
3751     }
3752   }
3753 };
3754 
3755 // Serial drain queue closure. Called as the 'complete_gc'
3756 // closure for each discovered list in some of the
3757 // reference processing phases.
3758 
3759 class G1STWDrainQueueClosure: public VoidClosure {
3760 protected:
3761   G1CollectedHeap* _g1h;
3762   G1ParScanThreadState* _par_scan_state;
3763 
3764   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3765 
3766 public:
3767   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3768     _g1h(g1h),
3769     _par_scan_state(pss)
3770   { }
3771 
3772   void do_void() {
3773     G1ParScanThreadState* const pss = par_scan_state();
3774     pss->trim_queue();
3775   }
3776 };
3777 
3778 // Parallel Reference Processing closures
3779 
3780 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3781 // processing during G1 evacuation pauses.
3782 
3783 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3784 private:
3785   G1CollectedHeap*          _g1h;
3786   G1ParScanThreadStateSet*  _pss;
3787   RefToScanQueueSet*        _queues;
3788   WorkGang*                 _workers;
3789 
3790 public:
3791   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3792                            G1ParScanThreadStateSet* per_thread_states,
3793                            WorkGang* workers,
3794                            RefToScanQueueSet *task_queues) :
3795     _g1h(g1h),
3796     _pss(per_thread_states),
3797     _queues(task_queues),
3798     _workers(workers)
3799   {
3800     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3801   }
3802 
3803   // Executes the given task using concurrent marking worker threads.
3804   virtual void execute(ProcessTask& task, uint ergo_workers);
3805 };
3806 
3807 // Gang task for possibly parallel reference processing
3808 
3809 class G1STWRefProcTaskProxy: public AbstractGangTask {
3810   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3811   ProcessTask&     _proc_task;
3812   G1CollectedHeap* _g1h;
3813   G1ParScanThreadStateSet* _pss;
3814   RefToScanQueueSet* _task_queues;
3815   ParallelTaskTerminator* _terminator;
3816 
3817 public:
3818   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3819                         G1CollectedHeap* g1h,
3820                         G1ParScanThreadStateSet* per_thread_states,
3821                         RefToScanQueueSet *task_queues,
3822                         ParallelTaskTerminator* terminator) :
3823     AbstractGangTask("Process reference objects in parallel"),
3824     _proc_task(proc_task),
3825     _g1h(g1h),
3826     _pss(per_thread_states),
3827     _task_queues(task_queues),
3828     _terminator(terminator)
3829   {}
3830 
3831   virtual void work(uint worker_id) {
3832     // The reference processing task executed by a single worker.
3833     ResourceMark rm;
3834     HandleMark   hm;
3835 
3836     G1STWIsAliveClosure is_alive(_g1h);
3837 
3838     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3839     pss->set_ref_discoverer(NULL);
3840 
3841     // Keep alive closure.
3842     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3843 
3844     // Complete GC closure
3845     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3846 
3847     // Call the reference processing task's work routine.
3848     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3849 
3850     // Note we cannot assert that the refs array is empty here as not all
3851     // of the processing tasks (specifically phase2 - pp2_work) execute
3852     // the complete_gc closure (which ordinarily would drain the queue) so
3853     // the queue may not be empty.
3854   }
3855 };
3856 
3857 // Driver routine for parallel reference processing.
3858 // Creates an instance of the ref processing gang
3859 // task and has the worker threads execute it.
3860 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3861   assert(_workers != NULL, "Need parallel worker threads.");
3862 
3863   assert(_workers->active_workers() >= ergo_workers,
3864          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3865          ergo_workers, _workers->active_workers());
3866   ParallelTaskTerminator terminator(ergo_workers, _queues);
3867   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3868 
3869   _workers->run_task(&proc_task_proxy, ergo_workers);
3870 }
3871 
3872 // End of weak reference support closures
3873 
3874 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3875   double ref_proc_start = os::elapsedTime();
3876 
3877   ReferenceProcessor* rp = _ref_processor_stw;
3878   assert(rp->discovery_enabled(), "should have been enabled");
3879 
3880   // Closure to test whether a referent is alive.
3881   G1STWIsAliveClosure is_alive(this);
3882 
3883   // Even when parallel reference processing is enabled, the processing
3884   // of JNI refs is serial and performed serially by the current thread
3885   // rather than by a worker. The following PSS will be used for processing
3886   // JNI refs.
3887 
3888   // Use only a single queue for this PSS.
3889   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3890   pss->set_ref_discoverer(NULL);
3891   assert(pss->queue_is_empty(), "pre-condition");
3892 
3893   // Keep alive closure.
3894   G1CopyingKeepAliveClosure keep_alive(this, pss);
3895 
3896   // Serial Complete GC closure
3897   G1STWDrainQueueClosure drain_queue(this, pss);
3898 
3899   // Setup the soft refs policy...
3900   rp->setup_policy(false);
3901 
3902   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
3903 
3904   ReferenceProcessorStats stats;
3905   if (!rp->processing_is_mt()) {
3906     // Serial reference processing...
3907     stats = rp->process_discovered_references(&is_alive,
3908                                               &keep_alive,
3909                                               &drain_queue,
3910                                               NULL,
3911                                               pt);
3912   } else {
3913     uint no_of_gc_workers = workers()->active_workers();
3914 
3915     // Parallel reference processing
3916     assert(no_of_gc_workers <= rp->max_num_queues(),
3917            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3918            no_of_gc_workers,  rp->max_num_queues());
3919 
3920     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3921     stats = rp->process_discovered_references(&is_alive,
3922                                               &keep_alive,
3923                                               &drain_queue,
3924                                               &par_task_executor,
3925                                               pt);
3926   }
3927 
3928   _gc_tracer_stw->report_gc_reference_stats(stats);
3929 
3930   // We have completed copying any necessary live referent objects.
3931   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3932 
3933   make_pending_list_reachable();
3934 
3935   rp->verify_no_references_recorded();
3936 
3937   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3938   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3939 }
3940 
3941 void G1CollectedHeap::make_pending_list_reachable() {
3942   if (collector_state()->in_initial_mark_gc()) {
3943     oop pll_head = Universe::reference_pending_list();
3944     if (pll_head != NULL) {
3945       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3946       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3947     }
3948   }
3949 }
3950 
3951 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3952   double merge_pss_time_start = os::elapsedTime();
3953   per_thread_states->flush();
3954   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3955 }
3956 
3957 void G1CollectedHeap::pre_evacuate_collection_set() {
3958   _expand_heap_after_alloc_failure = true;
3959   _evacuation_failed = false;
3960 
3961   // Disable the hot card cache.
3962   _hot_card_cache->reset_hot_cache_claimed_index();
3963   _hot_card_cache->set_use_cache(false);
3964 
3965   g1_rem_set()->prepare_for_oops_into_collection_set_do();
3966   _preserved_marks_set.assert_empty();
3967 
3968   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3969 
3970   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3971   if (collector_state()->in_initial_mark_gc()) {
3972     double start_clear_claimed_marks = os::elapsedTime();
3973 
3974     ClassLoaderDataGraph::clear_claimed_marks();
3975 
3976     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3977     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3978   }
3979 }
3980 
3981 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3982   // Should G1EvacuationFailureALot be in effect for this GC?
3983   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3984 
3985   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
3986 
3987   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3988 
3989   double start_par_time_sec = os::elapsedTime();
3990   double end_par_time_sec;
3991 
3992   {
3993     const uint n_workers = workers()->active_workers();
3994     G1RootProcessor root_processor(this, n_workers);
3995     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
3996 
3997     print_termination_stats_hdr();
3998 
3999     workers()->run_task(&g1_par_task);
4000     end_par_time_sec = os::elapsedTime();
4001 
4002     // Closing the inner scope will execute the destructor
4003     // for the G1RootProcessor object. We record the current
4004     // elapsed time before closing the scope so that time
4005     // taken for the destructor is NOT included in the
4006     // reported parallel time.
4007   }
4008 
4009   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4010   phase_times->record_par_time(par_time_ms);
4011 
4012   double code_root_fixup_time_ms =
4013         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4014   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4015 }
4016 
4017 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4018   // Also cleans the card table from temporary duplicate detection information used
4019   // during UpdateRS/ScanRS.
4020   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4021 
4022   // Process any discovered reference objects - we have
4023   // to do this _before_ we retire the GC alloc regions
4024   // as we may have to copy some 'reachable' referent
4025   // objects (and their reachable sub-graphs) that were
4026   // not copied during the pause.
4027   process_discovered_references(per_thread_states);
4028 
4029   // FIXME
4030   // CM's reference processing also cleans up the string and symbol tables.
4031   // Should we do that here also? We could, but it is a serial operation
4032   // and could significantly increase the pause time.
4033 
4034   G1STWIsAliveClosure is_alive(this);
4035   G1KeepAliveClosure keep_alive(this);
4036 
4037   {
4038     double start = os::elapsedTime();
4039 
4040     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4041 
4042     double time_ms = (os::elapsedTime() - start) * 1000.0;
4043     g1_policy()->phase_times()->record_weak_ref_proc_time(time_ms);
4044   }
4045 
4046   if (G1StringDedup::is_enabled()) {
4047     double fixup_start = os::elapsedTime();
4048 
4049     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4050 
4051     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4052     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4053   }
4054 
4055   if (evacuation_failed()) {
4056     restore_after_evac_failure();
4057 
4058     // Reset the G1EvacuationFailureALot counters and flags
4059     // Note: the values are reset only when an actual
4060     // evacuation failure occurs.
4061     NOT_PRODUCT(reset_evacuation_should_fail();)
4062   }
4063 
4064   _preserved_marks_set.assert_empty();
4065 
4066   _allocator->release_gc_alloc_regions(evacuation_info);
4067 
4068   merge_per_thread_state_info(per_thread_states);
4069 
4070   // Reset and re-enable the hot card cache.
4071   // Note the counts for the cards in the regions in the
4072   // collection set are reset when the collection set is freed.
4073   _hot_card_cache->reset_hot_cache();
4074   _hot_card_cache->set_use_cache(true);
4075 
4076   purge_code_root_memory();
4077 
4078   redirty_logged_cards();
4079 #if COMPILER2_OR_JVMCI
4080   double start = os::elapsedTime();
4081   DerivedPointerTable::update_pointers();
4082   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4083 #endif
4084   g1_policy()->print_age_table();
4085 }
4086 
4087 void G1CollectedHeap::record_obj_copy_mem_stats() {
4088   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4089 
4090   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4091                                                create_g1_evac_summary(&_old_evac_stats));
4092 }
4093 
4094 void G1CollectedHeap::free_region(HeapRegion* hr,
4095                                   FreeRegionList* free_list,
4096                                   bool skip_remset,
4097                                   bool skip_hot_card_cache,
4098                                   bool locked) {
4099   assert(!hr->is_free(), "the region should not be free");
4100   assert(!hr->is_empty(), "the region should not be empty");
4101   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4102   assert(free_list != NULL, "pre-condition");
4103 
4104   if (G1VerifyBitmaps) {
4105     MemRegion mr(hr->bottom(), hr->end());
4106     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4107   }
4108 
4109   // Clear the card counts for this region.
4110   // Note: we only need to do this if the region is not young
4111   // (since we don't refine cards in young regions).
4112   if (!skip_hot_card_cache && !hr->is_young()) {
4113     _hot_card_cache->reset_card_counts(hr);
4114   }
4115   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4116   _g1_policy->remset_tracker()->update_at_free(hr);
4117   free_list->add_ordered(hr);
4118 }
4119 
4120 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4121                                             FreeRegionList* free_list) {
4122   assert(hr->is_humongous(), "this is only for humongous regions");
4123   assert(free_list != NULL, "pre-condition");
4124   hr->clear_humongous();
4125   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
4126 }
4127 
4128 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4129                                            const uint humongous_regions_removed) {
4130   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4131     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4132     _old_set.bulk_remove(old_regions_removed);
4133     _humongous_set.bulk_remove(humongous_regions_removed);
4134   }
4135 
4136 }
4137 
4138 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4139   assert(list != NULL, "list can't be null");
4140   if (!list->is_empty()) {
4141     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4142     _hrm.insert_list_into_free_list(list);
4143   }
4144 }
4145 
4146 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4147   decrease_used(bytes);
4148 }
4149 
4150 class G1FreeCollectionSetTask : public AbstractGangTask {
4151 private:
4152 
4153   // Closure applied to all regions in the collection set to do work that needs to
4154   // be done serially in a single thread.
4155   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4156   private:
4157     EvacuationInfo* _evacuation_info;
4158     const size_t* _surviving_young_words;
4159 
4160     // Bytes used in successfully evacuated regions before the evacuation.
4161     size_t _before_used_bytes;
4162     // Bytes used in unsucessfully evacuated regions before the evacuation
4163     size_t _after_used_bytes;
4164 
4165     size_t _bytes_allocated_in_old_since_last_gc;
4166 
4167     size_t _failure_used_words;
4168     size_t _failure_waste_words;
4169 
4170     FreeRegionList _local_free_list;
4171   public:
4172     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4173       HeapRegionClosure(),
4174       _evacuation_info(evacuation_info),
4175       _surviving_young_words(surviving_young_words),
4176       _before_used_bytes(0),
4177       _after_used_bytes(0),
4178       _bytes_allocated_in_old_since_last_gc(0),
4179       _failure_used_words(0),
4180       _failure_waste_words(0),
4181       _local_free_list("Local Region List for CSet Freeing") {
4182     }
4183 
4184     virtual bool do_heap_region(HeapRegion* r) {
4185       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4186 
4187       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4188       g1h->clear_in_cset(r);
4189 
4190       if (r->is_young()) {
4191         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4192                "Young index %d is wrong for region %u of type %s with %u young regions",
4193                r->young_index_in_cset(),
4194                r->hrm_index(),
4195                r->get_type_str(),
4196                g1h->collection_set()->young_region_length());
4197         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4198         r->record_surv_words_in_group(words_survived);
4199       }
4200 
4201       if (!r->evacuation_failed()) {
4202         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4203         _before_used_bytes += r->used();
4204         g1h->free_region(r,
4205                          &_local_free_list,
4206                          true, /* skip_remset */
4207                          true, /* skip_hot_card_cache */
4208                          true  /* locked */);
4209       } else {
4210         r->uninstall_surv_rate_group();
4211         r->set_young_index_in_cset(-1);
4212         r->set_evacuation_failed(false);
4213         // When moving a young gen region to old gen, we "allocate" that whole region
4214         // there. This is in addition to any already evacuated objects. Notify the
4215         // policy about that.
4216         // Old gen regions do not cause an additional allocation: both the objects
4217         // still in the region and the ones already moved are accounted for elsewhere.
4218         if (r->is_young()) {
4219           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4220         }
4221         // The region is now considered to be old.
4222         r->set_old();
4223         // Do some allocation statistics accounting. Regions that failed evacuation
4224         // are always made old, so there is no need to update anything in the young
4225         // gen statistics, but we need to update old gen statistics.
4226         size_t used_words = r->marked_bytes() / HeapWordSize;
4227 
4228         _failure_used_words += used_words;
4229         _failure_waste_words += HeapRegion::GrainWords - used_words;
4230 
4231         g1h->old_set_add(r);
4232         _after_used_bytes += r->used();
4233       }
4234       return false;
4235     }
4236 
4237     void complete_work() {
4238       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4239 
4240       _evacuation_info->set_regions_freed(_local_free_list.length());
4241       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4242 
4243       g1h->prepend_to_freelist(&_local_free_list);
4244       g1h->decrement_summary_bytes(_before_used_bytes);
4245 
4246       G1Policy* policy = g1h->g1_policy();
4247       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4248 
4249       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4250     }
4251   };
4252 
4253   G1CollectionSet* _collection_set;
4254   G1SerialFreeCollectionSetClosure _cl;
4255   const size_t* _surviving_young_words;
4256 
4257   size_t _rs_lengths;
4258 
4259   volatile jint _serial_work_claim;
4260 
4261   struct WorkItem {
4262     uint region_idx;
4263     bool is_young;
4264     bool evacuation_failed;
4265 
4266     WorkItem(HeapRegion* r) {
4267       region_idx = r->hrm_index();
4268       is_young = r->is_young();
4269       evacuation_failed = r->evacuation_failed();
4270     }
4271   };
4272 
4273   volatile size_t _parallel_work_claim;
4274   size_t _num_work_items;
4275   WorkItem* _work_items;
4276 
4277   void do_serial_work() {
4278     // Need to grab the lock to be allowed to modify the old region list.
4279     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4280     _collection_set->iterate(&_cl);
4281   }
4282 
4283   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4284     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4285 
4286     HeapRegion* r = g1h->region_at(region_idx);
4287     assert(!g1h->is_on_master_free_list(r), "sanity");
4288 
4289     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4290 
4291     if (!is_young) {
4292       g1h->_hot_card_cache->reset_card_counts(r);
4293     }
4294 
4295     if (!evacuation_failed) {
4296       r->rem_set()->clear_locked();
4297     }
4298   }
4299 
4300   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4301   private:
4302     size_t _cur_idx;
4303     WorkItem* _work_items;
4304   public:
4305     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4306 
4307     virtual bool do_heap_region(HeapRegion* r) {
4308       _work_items[_cur_idx++] = WorkItem(r);
4309       return false;
4310     }
4311   };
4312 
4313   void prepare_work() {
4314     G1PrepareFreeCollectionSetClosure cl(_work_items);
4315     _collection_set->iterate(&cl);
4316   }
4317 
4318   void complete_work() {
4319     _cl.complete_work();
4320 
4321     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4322     policy->record_max_rs_lengths(_rs_lengths);
4323     policy->cset_regions_freed();
4324   }
4325 public:
4326   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4327     AbstractGangTask("G1 Free Collection Set"),
4328     _collection_set(collection_set),
4329     _cl(evacuation_info, surviving_young_words),
4330     _surviving_young_words(surviving_young_words),
4331     _rs_lengths(0),
4332     _serial_work_claim(0),
4333     _parallel_work_claim(0),
4334     _num_work_items(collection_set->region_length()),
4335     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4336     prepare_work();
4337   }
4338 
4339   ~G1FreeCollectionSetTask() {
4340     complete_work();
4341     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4342   }
4343 
4344   // Chunk size for work distribution. The chosen value has been determined experimentally
4345   // to be a good tradeoff between overhead and achievable parallelism.
4346   static uint chunk_size() { return 32; }
4347 
4348   virtual void work(uint worker_id) {
4349     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4350 
4351     // Claim serial work.
4352     if (_serial_work_claim == 0) {
4353       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4354       if (value == 0) {
4355         double serial_time = os::elapsedTime();
4356         do_serial_work();
4357         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4358       }
4359     }
4360 
4361     // Start parallel work.
4362     double young_time = 0.0;
4363     bool has_young_time = false;
4364     double non_young_time = 0.0;
4365     bool has_non_young_time = false;
4366 
4367     while (true) {
4368       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4369       size_t cur = end - chunk_size();
4370 
4371       if (cur >= _num_work_items) {
4372         break;
4373       }
4374 
4375       double start_time = os::elapsedTime();
4376 
4377       end = MIN2(end, _num_work_items);
4378 
4379       for (; cur < end; cur++) {
4380         bool is_young = _work_items[cur].is_young;
4381 
4382         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4383 
4384         double end_time = os::elapsedTime();
4385         double time_taken = end_time - start_time;
4386         if (is_young) {
4387           young_time += time_taken;
4388           has_young_time = true;
4389         } else {
4390           non_young_time += time_taken;
4391           has_non_young_time = true;
4392         }
4393         start_time = end_time;
4394       }
4395     }
4396 
4397     if (has_young_time) {
4398       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4399     }
4400     if (has_non_young_time) {
4401       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4402     }
4403   }
4404 };
4405 
4406 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4407   _eden.clear();
4408 
4409   double free_cset_start_time = os::elapsedTime();
4410 
4411   {
4412     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4413     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4414 
4415     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4416 
4417     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4418                         cl.name(),
4419                         num_workers,
4420                         _collection_set.region_length());
4421     workers()->run_task(&cl, num_workers);
4422   }
4423   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4424 
4425   collection_set->clear();
4426 }
4427 
4428 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4429  private:
4430   FreeRegionList* _free_region_list;
4431   HeapRegionSet* _proxy_set;
4432   uint _humongous_objects_reclaimed;
4433   uint _humongous_regions_reclaimed;
4434   size_t _freed_bytes;
4435  public:
4436 
4437   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4438     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4439   }
4440 
4441   virtual bool do_heap_region(HeapRegion* r) {
4442     if (!r->is_starts_humongous()) {
4443       return false;
4444     }
4445 
4446     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4447 
4448     oop obj = (oop)r->bottom();
4449     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4450 
4451     // The following checks whether the humongous object is live are sufficient.
4452     // The main additional check (in addition to having a reference from the roots
4453     // or the young gen) is whether the humongous object has a remembered set entry.
4454     //
4455     // A humongous object cannot be live if there is no remembered set for it
4456     // because:
4457     // - there can be no references from within humongous starts regions referencing
4458     // the object because we never allocate other objects into them.
4459     // (I.e. there are no intra-region references that may be missed by the
4460     // remembered set)
4461     // - as soon there is a remembered set entry to the humongous starts region
4462     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4463     // until the end of a concurrent mark.
4464     //
4465     // It is not required to check whether the object has been found dead by marking
4466     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4467     // all objects allocated during that time are considered live.
4468     // SATB marking is even more conservative than the remembered set.
4469     // So if at this point in the collection there is no remembered set entry,
4470     // nobody has a reference to it.
4471     // At the start of collection we flush all refinement logs, and remembered sets
4472     // are completely up-to-date wrt to references to the humongous object.
4473     //
4474     // Other implementation considerations:
4475     // - never consider object arrays at this time because they would pose
4476     // considerable effort for cleaning up the the remembered sets. This is
4477     // required because stale remembered sets might reference locations that
4478     // are currently allocated into.
4479     uint region_idx = r->hrm_index();
4480     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4481         !r->rem_set()->is_empty()) {
4482       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4483                                region_idx,
4484                                (size_t)obj->size() * HeapWordSize,
4485                                p2i(r->bottom()),
4486                                r->rem_set()->occupied(),
4487                                r->rem_set()->strong_code_roots_list_length(),
4488                                next_bitmap->is_marked(r->bottom()),
4489                                g1h->is_humongous_reclaim_candidate(region_idx),
4490                                obj->is_typeArray()
4491                               );
4492       return false;
4493     }
4494 
4495     guarantee(obj->is_typeArray(),
4496               "Only eagerly reclaiming type arrays is supported, but the object "
4497               PTR_FORMAT " is not.", p2i(r->bottom()));
4498 
4499     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4500                              region_idx,
4501                              (size_t)obj->size() * HeapWordSize,
4502                              p2i(r->bottom()),
4503                              r->rem_set()->occupied(),
4504                              r->rem_set()->strong_code_roots_list_length(),
4505                              next_bitmap->is_marked(r->bottom()),
4506                              g1h->is_humongous_reclaim_candidate(region_idx),
4507                              obj->is_typeArray()
4508                             );
4509 
4510     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4511     cm->humongous_object_eagerly_reclaimed(r);
4512     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4513            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4514            region_idx,
4515            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4516            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4517     _humongous_objects_reclaimed++;
4518     do {
4519       HeapRegion* next = g1h->next_region_in_humongous(r);
4520       _freed_bytes += r->used();
4521       r->set_containing_set(NULL);
4522       _humongous_regions_reclaimed++;
4523       g1h->free_humongous_region(r, _free_region_list);
4524       r = next;
4525     } while (r != NULL);
4526 
4527     return false;
4528   }
4529 
4530   uint humongous_objects_reclaimed() {
4531     return _humongous_objects_reclaimed;
4532   }
4533 
4534   uint humongous_regions_reclaimed() {
4535     return _humongous_regions_reclaimed;
4536   }
4537 
4538   size_t bytes_freed() const {
4539     return _freed_bytes;
4540   }
4541 };
4542 
4543 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4544   assert_at_safepoint_on_vm_thread();
4545 
4546   if (!G1EagerReclaimHumongousObjects ||
4547       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4548     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4549     return;
4550   }
4551 
4552   double start_time = os::elapsedTime();
4553 
4554   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4555 
4556   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4557   heap_region_iterate(&cl);
4558 
4559   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4560 
4561   G1HRPrinter* hrp = hr_printer();
4562   if (hrp->is_active()) {
4563     FreeRegionListIterator iter(&local_cleanup_list);
4564     while (iter.more_available()) {
4565       HeapRegion* hr = iter.get_next();
4566       hrp->cleanup(hr);
4567     }
4568   }
4569 
4570   prepend_to_freelist(&local_cleanup_list);
4571   decrement_summary_bytes(cl.bytes_freed());
4572 
4573   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4574                                                                     cl.humongous_objects_reclaimed());
4575 }
4576 
4577 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4578 public:
4579   virtual bool do_heap_region(HeapRegion* r) {
4580     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4581     G1CollectedHeap::heap()->clear_in_cset(r);
4582     r->set_young_index_in_cset(-1);
4583     return false;
4584   }
4585 };
4586 
4587 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4588   G1AbandonCollectionSetClosure cl;
4589   collection_set->iterate(&cl);
4590 
4591   collection_set->clear();
4592   collection_set->stop_incremental_building();
4593 }
4594 
4595 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4596   return _allocator->is_retained_old_region(hr);
4597 }
4598 
4599 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4600   _eden.add(hr);
4601   _g1_policy->set_region_eden(hr);
4602 }
4603 
4604 #ifdef ASSERT
4605 
4606 class NoYoungRegionsClosure: public HeapRegionClosure {
4607 private:
4608   bool _success;
4609 public:
4610   NoYoungRegionsClosure() : _success(true) { }
4611   bool do_heap_region(HeapRegion* r) {
4612     if (r->is_young()) {
4613       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4614                             p2i(r->bottom()), p2i(r->end()));
4615       _success = false;
4616     }
4617     return false;
4618   }
4619   bool success() { return _success; }
4620 };
4621 
4622 bool G1CollectedHeap::check_young_list_empty() {
4623   bool ret = (young_regions_count() == 0);
4624 
4625   NoYoungRegionsClosure closure;
4626   heap_region_iterate(&closure);
4627   ret = ret && closure.success();
4628 
4629   return ret;
4630 }
4631 
4632 #endif // ASSERT
4633 
4634 class TearDownRegionSetsClosure : public HeapRegionClosure {
4635   HeapRegionSet *_old_set;
4636 
4637 public:
4638   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4639 
4640   bool do_heap_region(HeapRegion* r) {
4641     if (r->is_old()) {
4642       _old_set->remove(r);
4643     } else if(r->is_young()) {
4644       r->uninstall_surv_rate_group();
4645     } else {
4646       // We ignore free regions, we'll empty the free list afterwards.
4647       // We ignore humongous and archive regions, we're not tearing down the
4648       // humongous regions set.
4649       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4650              "it cannot be another type");
4651     }
4652     return false;
4653   }
4654 
4655   ~TearDownRegionSetsClosure() {
4656     assert(_old_set->is_empty(), "post-condition");
4657   }
4658 };
4659 
4660 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4661   assert_at_safepoint_on_vm_thread();
4662 
4663   if (!free_list_only) {
4664     TearDownRegionSetsClosure cl(&_old_set);
4665     heap_region_iterate(&cl);
4666 
4667     // Note that emptying the _young_list is postponed and instead done as
4668     // the first step when rebuilding the regions sets again. The reason for
4669     // this is that during a full GC string deduplication needs to know if
4670     // a collected region was young or old when the full GC was initiated.
4671   }
4672   _hrm.remove_all_free_regions();
4673 }
4674 
4675 void G1CollectedHeap::increase_used(size_t bytes) {
4676   _summary_bytes_used += bytes;
4677 }
4678 
4679 void G1CollectedHeap::decrease_used(size_t bytes) {
4680   assert(_summary_bytes_used >= bytes,
4681          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4682          _summary_bytes_used, bytes);
4683   _summary_bytes_used -= bytes;
4684 }
4685 
4686 void G1CollectedHeap::set_used(size_t bytes) {
4687   _summary_bytes_used = bytes;
4688 }
4689 
4690 class RebuildRegionSetsClosure : public HeapRegionClosure {
4691 private:
4692   bool _free_list_only;
4693 
4694   HeapRegionSet* _old_set;
4695   HeapRegionManager* _hrm;
4696 
4697   size_t _total_used;
4698 
4699 public:
4700   RebuildRegionSetsClosure(bool free_list_only,
4701                            HeapRegionSet* old_set,
4702                            HeapRegionManager* hrm) :
4703     _free_list_only(free_list_only),
4704     _old_set(old_set), _hrm(hrm), _total_used(0) {
4705     assert(_hrm->num_free_regions() == 0, "pre-condition");
4706     if (!free_list_only) {
4707       assert(_old_set->is_empty(), "pre-condition");
4708     }
4709   }
4710 
4711   bool do_heap_region(HeapRegion* r) {
4712     // After full GC, no region should have a remembered set.
4713     r->rem_set()->clear(true);
4714     if (r->is_empty()) {
4715       // Add free regions to the free list
4716       r->set_free();
4717       _hrm->insert_into_free_list(r);
4718     } else if (!_free_list_only) {
4719 
4720       if (r->is_archive() || r->is_humongous()) {
4721         // We ignore archive and humongous regions. We left these sets unchanged.
4722       } else {
4723         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4724         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4725         r->move_to_old();
4726         _old_set->add(r);
4727       }
4728       _total_used += r->used();
4729     }
4730 
4731     return false;
4732   }
4733 
4734   size_t total_used() {
4735     return _total_used;
4736   }
4737 };
4738 
4739 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4740   assert_at_safepoint_on_vm_thread();
4741 
4742   if (!free_list_only) {
4743     _eden.clear();
4744     _survivor.clear();
4745   }
4746 
4747   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
4748   heap_region_iterate(&cl);
4749 
4750   if (!free_list_only) {
4751     set_used(cl.total_used());
4752     if (_archive_allocator != NULL) {
4753       _archive_allocator->clear_used();
4754     }
4755   }
4756   assert(used_unlocked() == recalculate_used(),
4757          "inconsistent used_unlocked(), "
4758          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4759          used_unlocked(), recalculate_used());
4760 }
4761 
4762 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4763   HeapRegion* hr = heap_region_containing(p);
4764   return hr->is_in(p);
4765 }
4766 
4767 // Methods for the mutator alloc region
4768 
4769 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4770                                                       bool force) {
4771   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4772   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4773   if (force || should_allocate) {
4774     HeapRegion* new_alloc_region = new_region(word_size,
4775                                               false /* is_old */,
4776                                               false /* do_expand */);
4777     if (new_alloc_region != NULL) {
4778       set_region_short_lived_locked(new_alloc_region);
4779       _hr_printer.alloc(new_alloc_region, !should_allocate);
4780       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4781       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4782       return new_alloc_region;
4783     }
4784   }
4785   return NULL;
4786 }
4787 
4788 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4789                                                   size_t allocated_bytes) {
4790   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4791   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4792 
4793   collection_set()->add_eden_region(alloc_region);
4794   increase_used(allocated_bytes);
4795   _hr_printer.retire(alloc_region);
4796   // We update the eden sizes here, when the region is retired,
4797   // instead of when it's allocated, since this is the point that its
4798   // used space has been recorded in _summary_bytes_used.
4799   g1mm()->update_eden_size();
4800 }
4801 
4802 // Methods for the GC alloc regions
4803 
4804 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4805   if (dest.is_old()) {
4806     return true;
4807   } else {
4808     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4809   }
4810 }
4811 
4812 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4813   assert(FreeList_lock->owned_by_self(), "pre-condition");
4814 
4815   if (!has_more_regions(dest)) {
4816     return NULL;
4817   }
4818 
4819   const bool is_survivor = dest.is_young();
4820 
4821   HeapRegion* new_alloc_region = new_region(word_size,
4822                                             !is_survivor,
4823                                             true /* do_expand */);
4824   if (new_alloc_region != NULL) {
4825     if (is_survivor) {
4826       new_alloc_region->set_survivor();
4827       _survivor.add(new_alloc_region);
4828       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4829     } else {
4830       new_alloc_region->set_old();
4831       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4832     }
4833     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4834     _hr_printer.alloc(new_alloc_region);
4835     bool during_im = collector_state()->in_initial_mark_gc();
4836     new_alloc_region->note_start_of_copying(during_im);
4837     return new_alloc_region;
4838   }
4839   return NULL;
4840 }
4841 
4842 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4843                                              size_t allocated_bytes,
4844                                              InCSetState dest) {
4845   bool during_im = collector_state()->in_initial_mark_gc();
4846   alloc_region->note_end_of_copying(during_im);
4847   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
4848   if (dest.is_old()) {
4849     old_set_add(alloc_region);
4850   }
4851   _hr_printer.retire(alloc_region);
4852 }
4853 
4854 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4855   bool expanded = false;
4856   uint index = _hrm.find_highest_free(&expanded);
4857 
4858   if (index != G1_NO_HRM_INDEX) {
4859     if (expanded) {
4860       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4861                                 HeapRegion::GrainWords * HeapWordSize);
4862     }
4863     _hrm.allocate_free_regions_starting_at(index, 1);
4864     return region_at(index);
4865   }
4866   return NULL;
4867 }
4868 
4869 // Optimized nmethod scanning
4870 
4871 class RegisterNMethodOopClosure: public OopClosure {
4872   G1CollectedHeap* _g1h;
4873   nmethod* _nm;
4874 
4875   template <class T> void do_oop_work(T* p) {
4876     T heap_oop = RawAccess<>::oop_load(p);
4877     if (!CompressedOops::is_null(heap_oop)) {
4878       oop obj = CompressedOops::decode_not_null(heap_oop);
4879       HeapRegion* hr = _g1h->heap_region_containing(obj);
4880       assert(!hr->is_continues_humongous(),
4881              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4882              " starting at " HR_FORMAT,
4883              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4884 
4885       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4886       hr->add_strong_code_root_locked(_nm);
4887     }
4888   }
4889 
4890 public:
4891   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4892     _g1h(g1h), _nm(nm) {}
4893 
4894   void do_oop(oop* p)       { do_oop_work(p); }
4895   void do_oop(narrowOop* p) { do_oop_work(p); }
4896 };
4897 
4898 class UnregisterNMethodOopClosure: public OopClosure {
4899   G1CollectedHeap* _g1h;
4900   nmethod* _nm;
4901 
4902   template <class T> void do_oop_work(T* p) {
4903     T heap_oop = RawAccess<>::oop_load(p);
4904     if (!CompressedOops::is_null(heap_oop)) {
4905       oop obj = CompressedOops::decode_not_null(heap_oop);
4906       HeapRegion* hr = _g1h->heap_region_containing(obj);
4907       assert(!hr->is_continues_humongous(),
4908              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4909              " starting at " HR_FORMAT,
4910              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4911 
4912       hr->remove_strong_code_root(_nm);
4913     }
4914   }
4915 
4916 public:
4917   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4918     _g1h(g1h), _nm(nm) {}
4919 
4920   void do_oop(oop* p)       { do_oop_work(p); }
4921   void do_oop(narrowOop* p) { do_oop_work(p); }
4922 };
4923 
4924 // Returns true if the reference points to an object that
4925 // can move in an incremental collection.
4926 bool G1CollectedHeap::is_scavengable(oop obj) {
4927   HeapRegion* hr = heap_region_containing(obj);
4928   return !hr->is_pinned();
4929 }
4930 
4931 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4932   guarantee(nm != NULL, "sanity");
4933   RegisterNMethodOopClosure reg_cl(this, nm);
4934   nm->oops_do(&reg_cl);
4935 }
4936 
4937 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4938   guarantee(nm != NULL, "sanity");
4939   UnregisterNMethodOopClosure reg_cl(this, nm);
4940   nm->oops_do(&reg_cl, true);
4941 }
4942 
4943 void G1CollectedHeap::purge_code_root_memory() {
4944   double purge_start = os::elapsedTime();
4945   G1CodeRootSet::purge();
4946   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4947   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4948 }
4949 
4950 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4951   G1CollectedHeap* _g1h;
4952 
4953 public:
4954   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4955     _g1h(g1h) {}
4956 
4957   void do_code_blob(CodeBlob* cb) {
4958     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4959     if (nm == NULL) {
4960       return;
4961     }
4962 
4963     if (ScavengeRootsInCode) {
4964       _g1h->register_nmethod(nm);
4965     }
4966   }
4967 };
4968 
4969 void G1CollectedHeap::rebuild_strong_code_roots() {
4970   RebuildStrongCodeRootClosure blob_cl(this);
4971   CodeCache::blobs_do(&blob_cl);
4972 }
4973 
4974 void G1CollectedHeap::initialize_serviceability() {
4975   _g1mm->initialize_serviceability();
4976 }
4977 
4978 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4979   return _g1mm->memory_managers();
4980 }
4981 
4982 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4983   return _g1mm->memory_pools();
4984 }