/* * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_G1_SPARSEPRT_HPP #define SHARE_VM_GC_G1_SPARSEPRT_HPP #include "gc/g1/g1CollectedHeap.hpp" #include "gc/g1/heapRegion.hpp" #include "gc/shared/cardTableBarrierSet.hpp" #include "memory/allocation.hpp" #include "runtime/mutex.hpp" #include "utilities/align.hpp" #include "utilities/globalDefinitions.hpp" // Sparse remembered set for a heap region (the "owning" region). Maps // indices of other regions to short sequences of cards in the other region // that might contain pointers into the owner region. // These tables only expand while they are accessed in parallel -- // deletions may be done in single-threaded code. This allows us to allow // unsynchronized reads/iterations, as long as expansions caused by // insertions only enqueue old versions for deletions, but do not delete // old versions synchronously. class SparsePRTEntry: public CHeapObj { private: // The type of a card entry. typedef uint16_t card_elem_t; // We need to make sizeof(SparsePRTEntry) an even multiple of maximum member size, // in order to force correct alignment that could otherwise cause SIGBUS errors // when reading the member variables. This calculates the minimum number of card // array elements required to get that alignment. static const size_t card_array_alignment = sizeof(int) / sizeof(card_elem_t); RegionIdx_t _region_ind; int _next_index; int _next_null; // The actual cards stored in this array. // WARNING: Don't put any data members beyond this line. Card array has, in fact, variable length. // It should always be the last data member. card_elem_t _cards[card_array_alignment]; // Copy the current entry's cards into "cards". inline void copy_cards(card_elem_t* cards) const; public: // Returns the size of the entry, used for entry allocation. static size_t size() { return sizeof(SparsePRTEntry) + sizeof(card_elem_t) * (cards_num() - card_array_alignment); } // Returns the size of the card array. static int cards_num() { return align_up((int)G1RSetSparseRegionEntries, (int)card_array_alignment); } // Set the region_ind to the given value, and delete all cards. inline void init(RegionIdx_t region_ind); RegionIdx_t r_ind() const { return _region_ind; } bool valid_entry() const { return r_ind() >= 0; } void set_r_ind(RegionIdx_t rind) { _region_ind = rind; } int next_index() const { return _next_index; } int* next_index_addr() { return &_next_index; } void set_next_index(int ni) { _next_index = ni; } // Returns "true" iff the entry contains the given card index. inline bool contains_card(CardIdx_t card_index) const; // Returns the number of non-NULL card entries. inline int num_valid_cards() const { return _next_null; } // Requires that the entry not contain the given card index. If there is // space available, add the given card index to the entry and return // "true"; otherwise, return "false" to indicate that the entry is full. enum AddCardResult { overflow, found, added }; inline AddCardResult add_card(CardIdx_t card_index); // Copy the current entry's cards into the "_card" array of "e." inline void copy_cards(SparsePRTEntry* e) const; inline CardIdx_t card(int i) const { assert(i >= 0, "must be nonnegative"); assert(i < cards_num(), "range checking"); return (CardIdx_t)_cards[i]; } }; class RSHashTable : public CHeapObj { friend class RSHashTableIter; // Inverse maximum hash table occupancy used. static float TableOccupancyFactor; size_t _num_entries; size_t _capacity; size_t _capacity_mask; size_t _occupied_entries; size_t _occupied_cards; SparsePRTEntry* _entries; int* _buckets; int _free_region; int _free_list; // Requires that the caller hold a lock preventing parallel modifying // operations, and that the the table be less than completely full. If // an entry for "region_ind" is already in the table, finds it and // returns its address; otherwise allocates, initializes, inserts and // returns a new entry for "region_ind". SparsePRTEntry* entry_for_region_ind_create(RegionIdx_t region_ind); // Returns the index of the next free entry in "_entries". int alloc_entry(); // Declares the entry "fi" to be free. (It must have already been // deleted from any bucket lists. void free_entry(int fi); public: RSHashTable(size_t capacity); ~RSHashTable(); static const int NullEntry = -1; bool should_expand() const { return _occupied_entries == _num_entries; } // Attempts to ensure that the given card_index in the given region is in // the sparse table. If successful (because the card was already // present, or because it was successfully added) returns "true". // Otherwise, returns "false" to indicate that the addition would // overflow the entry for the region. The caller must transfer these // entries to a larger-capacity representation. bool add_card(RegionIdx_t region_id, CardIdx_t card_index); bool get_cards(RegionIdx_t region_id, CardIdx_t* cards); bool delete_entry(RegionIdx_t region_id); bool contains_card(RegionIdx_t region_id, CardIdx_t card_index) const; void add_entry(SparsePRTEntry* e); SparsePRTEntry* get_entry(RegionIdx_t region_id) const; void clear(); size_t capacity() const { return _capacity; } size_t capacity_mask() const { return _capacity_mask; } size_t occupied_entries() const { return _occupied_entries; } size_t occupied_cards() const { return _occupied_cards; } size_t mem_size() const; // The number of SparsePRTEntry instances available. size_t num_entries() const { return _num_entries; } SparsePRTEntry* entry(int i) const { assert(i >= 0 && (size_t)i < _num_entries, "precondition"); return (SparsePRTEntry*)((char*)_entries + SparsePRTEntry::size() * i); } void print(); }; // This is embedded in HRRS iterator. class RSHashTableIter { // Return value indicating "invalid/no card". static const int NoCardFound = -1; int _tbl_ind; // [-1, 0.._rsht->_capacity) int _bl_ind; // [-1, 0.._rsht->_capacity) short _card_ind; // [0..SparsePRTEntry::cards_num()) RSHashTable* _rsht; // If the bucket list pointed to by _bl_ind contains a card, sets // _bl_ind to the index of that entry, // Returns the card found if there is, otherwise returns InvalidCard. CardIdx_t find_first_card_in_list(); // Computes the proper card index for the card whose offset in the // current region (as indicated by _bl_ind) is "ci". // This is subject to errors when there is iteration concurrent with // modification, but these errors should be benign. size_t compute_card_ind(CardIdx_t ci); public: RSHashTableIter(RSHashTable* rsht) : _tbl_ind(RSHashTable::NullEntry), // So that first increment gets to 0. _bl_ind(RSHashTable::NullEntry), _card_ind((SparsePRTEntry::cards_num() - 1)), _rsht(rsht) {} bool has_next(size_t& card_index); }; // Concurrent access to a SparsePRT must be serialized by some external mutex. class SparsePRTIter; class SparsePRTCleanupTask; class SparsePRT { friend class SparsePRTCleanupTask; // Iterations are done on the _cur hash table, since they only need to // see entries visible at the start of a collection pause. // All other operations are done using the _next hash table. RSHashTable* _cur; RSHashTable* _next; enum SomeAdditionalPrivateConstants { InitialCapacity = 16 }; void expand(); bool _expanded; bool expanded() { return _expanded; } void set_expanded(bool b) { _expanded = b; } SparsePRT* _next_expanded; SparsePRT* next_expanded() { return _next_expanded; } void set_next_expanded(SparsePRT* nxt) { _next_expanded = nxt; } bool should_be_on_expanded_list(); static SparsePRT* volatile _head_expanded_list; public: SparsePRT(); ~SparsePRT(); size_t occupied() const { return _next->occupied_cards(); } size_t mem_size() const; // Attempts to ensure that the given card_index in the given region is in // the sparse table. If successful (because the card was already // present, or because it was successfully added) returns "true". // Otherwise, returns "false" to indicate that the addition would // overflow the entry for the region. The caller must transfer these // entries to a larger-capacity representation. bool add_card(RegionIdx_t region_id, CardIdx_t card_index); // Return the pointer to the entry associated with the given region. SparsePRTEntry* get_entry(RegionIdx_t region_ind); // If there is an entry for "region_ind", removes it and return "true"; // otherwise returns "false." bool delete_entry(RegionIdx_t region_ind); // Clear the table, and reinitialize to initial capacity. void clear(); // Ensure that "_cur" and "_next" point to the same table. void cleanup(); // Clean up all tables on the expanded list. Called single threaded. static void cleanup_all(); RSHashTable* cur() const { return _cur; } static void add_to_expanded_list(SparsePRT* sprt); static SparsePRT* get_from_expanded_list(); // The purpose of these three methods is to help the GC workers // during the cleanup pause to recreate the expanded list, purging // any tables from it that belong to regions that are freed during // cleanup (if we don't purge those tables, there is a race that // causes various crashes; see CR 7014261). // // We chose to recreate the expanded list, instead of purging // entries from it by iterating over it, to avoid this serial phase // at the end of the cleanup pause. // // The three methods below work as follows: // * reset_for_cleanup_tasks() : Nulls the expanded list head at the // start of the cleanup pause. // * do_cleanup_work() : Called by the cleanup workers for every // region that is not free / is being freed by the cleanup // pause. It creates a list of expanded tables whose head / tail // are on the thread-local SparsePRTCleanupTask object. // * finish_cleanup_task() : Called by the cleanup workers after // they complete their cleanup task. It adds the local list into // the global expanded list. It assumes that the // ParGCRareEvent_lock is being held to ensure MT-safety. static void reset_for_cleanup_tasks(); void do_cleanup_work(SparsePRTCleanupTask* sprt_cleanup_task); static void finish_cleanup_task(SparsePRTCleanupTask* sprt_cleanup_task); bool contains_card(RegionIdx_t region_id, CardIdx_t card_index) const { return _next->contains_card(region_id, card_index); } }; class SparsePRTIter: public RSHashTableIter { public: SparsePRTIter(const SparsePRT* sprt) : RSHashTableIter(sprt->cur()) {} bool has_next(size_t& card_index) { return RSHashTableIter::has_next(card_index); } }; // This allows each worker during a cleanup pause to create a // thread-local list of sparse tables that have been expanded and need // to be processed at the beginning of the next GC pause. This lists // are concatenated into the single expanded list at the end of the // cleanup pause. class SparsePRTCleanupTask { private: SparsePRT* _head; SparsePRT* _tail; public: SparsePRTCleanupTask() : _head(NULL), _tail(NULL) { } void add(SparsePRT* sprt); SparsePRT* head() { return _head; } SparsePRT* tail() { return _tail; } }; #endif // SHARE_VM_GC_G1_SPARSEPRT_HPP