1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "osContainer_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.inline.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/threadSMR.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/elfFile.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 // put OS-includes here
  78 # include <sys/types.h>
  79 # include <sys/mman.h>
  80 # include <sys/stat.h>
  81 # include <sys/select.h>
  82 # include <pthread.h>
  83 # include <signal.h>
  84 # include <errno.h>
  85 # include <dlfcn.h>
  86 # include <stdio.h>
  87 # include <unistd.h>
  88 # include <sys/resource.h>
  89 # include <pthread.h>
  90 # include <sys/stat.h>
  91 # include <sys/time.h>
  92 # include <sys/times.h>
  93 # include <sys/utsname.h>
  94 # include <sys/socket.h>
  95 # include <sys/wait.h>
  96 # include <pwd.h>
  97 # include <poll.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 #define DAX_SHARED_BIT (1 << 8)
 133 ////////////////////////////////////////////////////////////////////////////////
 134 // global variables
 135 julong os::Linux::_physical_memory = 0;
 136 
 137 address   os::Linux::_initial_thread_stack_bottom = NULL;
 138 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 139 
 140 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 141 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 142 Mutex* os::Linux::_createThread_lock = NULL;
 143 pthread_t os::Linux::_main_thread;
 144 int os::Linux::_page_size = -1;
 145 bool os::Linux::_supports_fast_thread_cpu_time = false;
 146 uint32_t os::Linux::_os_version = 0;
 147 const char * os::Linux::_glibc_version = NULL;
 148 const char * os::Linux::_libpthread_version = NULL;
 149 
 150 static jlong initial_time_count=0;
 151 
 152 static int clock_tics_per_sec = 100;
 153 
 154 // If the VM might have been created on the primordial thread, we need to resolve the
 155 // primordial thread stack bounds and check if the current thread might be the
 156 // primordial thread in places. If we know that the primordial thread is never used,
 157 // such as when the VM was created by one of the standard java launchers, we can
 158 // avoid this
 159 static bool suppress_primordial_thread_resolution = false;
 160 
 161 // For diagnostics to print a message once. see run_periodic_checks
 162 static sigset_t check_signal_done;
 163 static bool check_signals = true;
 164 
 165 // Signal number used to suspend/resume a thread
 166 
 167 // do not use any signal number less than SIGSEGV, see 4355769
 168 static int SR_signum = SIGUSR2;
 169 sigset_t SR_sigset;
 170 
 171 // utility functions
 172 
 173 static int SR_initialize();
 174 
 175 julong os::available_memory() {
 176   return Linux::available_memory();
 177 }
 178 
 179 julong os::Linux::available_memory() {
 180   // values in struct sysinfo are "unsigned long"
 181   struct sysinfo si;
 182   julong avail_mem;
 183 
 184   if (OSContainer::is_containerized()) {
 185     jlong mem_limit, mem_usage;
 186     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 187       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 188                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 189     }
 190     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 191       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 192     }
 193     if (mem_limit > 0 && mem_usage > 0 ) {
 194       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 195       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 196       return avail_mem;
 197     }
 198   }
 199 
 200   sysinfo(&si);
 201   avail_mem = (julong)si.freeram * si.mem_unit;
 202   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 203   return avail_mem;
 204 }
 205 
 206 julong os::physical_memory() {
 207   jlong phys_mem = 0;
 208   if (OSContainer::is_containerized()) {
 209     jlong mem_limit;
 210     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 211       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 212       return mem_limit;
 213     }
 214     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 215                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 216   }
 217 
 218   phys_mem = Linux::physical_memory();
 219   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 220   return phys_mem;
 221 }
 222 
 223 // Return true if user is running as root.
 224 
 225 bool os::have_special_privileges() {
 226   static bool init = false;
 227   static bool privileges = false;
 228   if (!init) {
 229     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 230     init = true;
 231   }
 232   return privileges;
 233 }
 234 
 235 
 236 #ifndef SYS_gettid
 237 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 238   #ifdef __ia64__
 239     #define SYS_gettid 1105
 240   #else
 241     #ifdef __i386__
 242       #define SYS_gettid 224
 243     #else
 244       #ifdef __amd64__
 245         #define SYS_gettid 186
 246       #else
 247         #ifdef __sparc__
 248           #define SYS_gettid 143
 249         #else
 250           #error define gettid for the arch
 251         #endif
 252       #endif
 253     #endif
 254   #endif
 255 #endif
 256 
 257 
 258 // pid_t gettid()
 259 //
 260 // Returns the kernel thread id of the currently running thread. Kernel
 261 // thread id is used to access /proc.
 262 pid_t os::Linux::gettid() {
 263   int rslt = syscall(SYS_gettid);
 264   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 265   return (pid_t)rslt;
 266 }
 267 
 268 // Most versions of linux have a bug where the number of processors are
 269 // determined by looking at the /proc file system.  In a chroot environment,
 270 // the system call returns 1.
 271 static bool unsafe_chroot_detected = false;
 272 static const char *unstable_chroot_error = "/proc file system not found.\n"
 273                      "Java may be unstable running multithreaded in a chroot "
 274                      "environment on Linux when /proc filesystem is not mounted.";
 275 
 276 void os::Linux::initialize_system_info() {
 277   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 278   if (processor_count() == 1) {
 279     pid_t pid = os::Linux::gettid();
 280     char fname[32];
 281     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 282     FILE *fp = fopen(fname, "r");
 283     if (fp == NULL) {
 284       unsafe_chroot_detected = true;
 285     } else {
 286       fclose(fp);
 287     }
 288   }
 289   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 290   assert(processor_count() > 0, "linux error");
 291 }
 292 
 293 void os::init_system_properties_values() {
 294   // The next steps are taken in the product version:
 295   //
 296   // Obtain the JAVA_HOME value from the location of libjvm.so.
 297   // This library should be located at:
 298   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 299   //
 300   // If "/jre/lib/" appears at the right place in the path, then we
 301   // assume libjvm.so is installed in a JDK and we use this path.
 302   //
 303   // Otherwise exit with message: "Could not create the Java virtual machine."
 304   //
 305   // The following extra steps are taken in the debugging version:
 306   //
 307   // If "/jre/lib/" does NOT appear at the right place in the path
 308   // instead of exit check for $JAVA_HOME environment variable.
 309   //
 310   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 311   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 312   // it looks like libjvm.so is installed there
 313   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 314   //
 315   // Otherwise exit.
 316   //
 317   // Important note: if the location of libjvm.so changes this
 318   // code needs to be changed accordingly.
 319 
 320   // See ld(1):
 321   //      The linker uses the following search paths to locate required
 322   //      shared libraries:
 323   //        1: ...
 324   //        ...
 325   //        7: The default directories, normally /lib and /usr/lib.
 326 #ifndef OVERRIDE_LIBPATH
 327   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 328     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 329   #else
 330     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 331   #endif
 332 #else
 333   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 334 #endif
 335 
 336 // Base path of extensions installed on the system.
 337 #define SYS_EXT_DIR     "/usr/java/packages"
 338 #define EXTENSIONS_DIR  "/lib/ext"
 339 
 340   // Buffer that fits several sprintfs.
 341   // Note that the space for the colon and the trailing null are provided
 342   // by the nulls included by the sizeof operator.
 343   const size_t bufsize =
 344     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 345          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 346   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 347 
 348   // sysclasspath, java_home, dll_dir
 349   {
 350     char *pslash;
 351     os::jvm_path(buf, bufsize);
 352 
 353     // Found the full path to libjvm.so.
 354     // Now cut the path to <java_home>/jre if we can.
 355     pslash = strrchr(buf, '/');
 356     if (pslash != NULL) {
 357       *pslash = '\0';            // Get rid of /libjvm.so.
 358     }
 359     pslash = strrchr(buf, '/');
 360     if (pslash != NULL) {
 361       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 362     }
 363     Arguments::set_dll_dir(buf);
 364 
 365     if (pslash != NULL) {
 366       pslash = strrchr(buf, '/');
 367       if (pslash != NULL) {
 368         *pslash = '\0';        // Get rid of /lib.
 369       }
 370     }
 371     Arguments::set_java_home(buf);
 372     if (!set_boot_path('/', ':')) {
 373       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 374     }
 375   }
 376 
 377   // Where to look for native libraries.
 378   //
 379   // Note: Due to a legacy implementation, most of the library path
 380   // is set in the launcher. This was to accomodate linking restrictions
 381   // on legacy Linux implementations (which are no longer supported).
 382   // Eventually, all the library path setting will be done here.
 383   //
 384   // However, to prevent the proliferation of improperly built native
 385   // libraries, the new path component /usr/java/packages is added here.
 386   // Eventually, all the library path setting will be done here.
 387   {
 388     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 389     // should always exist (until the legacy problem cited above is
 390     // addressed).
 391     const char *v = ::getenv("LD_LIBRARY_PATH");
 392     const char *v_colon = ":";
 393     if (v == NULL) { v = ""; v_colon = ""; }
 394     // That's +1 for the colon and +1 for the trailing '\0'.
 395     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 396                                                      strlen(v) + 1 +
 397                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 398                                                      mtInternal);
 399     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 400     Arguments::set_library_path(ld_library_path);
 401     FREE_C_HEAP_ARRAY(char, ld_library_path);
 402   }
 403 
 404   // Extensions directories.
 405   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 406   Arguments::set_ext_dirs(buf);
 407 
 408   FREE_C_HEAP_ARRAY(char, buf);
 409 
 410 #undef DEFAULT_LIBPATH
 411 #undef SYS_EXT_DIR
 412 #undef EXTENSIONS_DIR
 413 }
 414 
 415 ////////////////////////////////////////////////////////////////////////////////
 416 // breakpoint support
 417 
 418 void os::breakpoint() {
 419   BREAKPOINT;
 420 }
 421 
 422 extern "C" void breakpoint() {
 423   // use debugger to set breakpoint here
 424 }
 425 
 426 ////////////////////////////////////////////////////////////////////////////////
 427 // signal support
 428 
 429 debug_only(static bool signal_sets_initialized = false);
 430 static sigset_t unblocked_sigs, vm_sigs;
 431 
 432 void os::Linux::signal_sets_init() {
 433   // Should also have an assertion stating we are still single-threaded.
 434   assert(!signal_sets_initialized, "Already initialized");
 435   // Fill in signals that are necessarily unblocked for all threads in
 436   // the VM. Currently, we unblock the following signals:
 437   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 438   //                         by -Xrs (=ReduceSignalUsage));
 439   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 440   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 441   // the dispositions or masks wrt these signals.
 442   // Programs embedding the VM that want to use the above signals for their
 443   // own purposes must, at this time, use the "-Xrs" option to prevent
 444   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 445   // (See bug 4345157, and other related bugs).
 446   // In reality, though, unblocking these signals is really a nop, since
 447   // these signals are not blocked by default.
 448   sigemptyset(&unblocked_sigs);
 449   sigaddset(&unblocked_sigs, SIGILL);
 450   sigaddset(&unblocked_sigs, SIGSEGV);
 451   sigaddset(&unblocked_sigs, SIGBUS);
 452   sigaddset(&unblocked_sigs, SIGFPE);
 453 #if defined(PPC64)
 454   sigaddset(&unblocked_sigs, SIGTRAP);
 455 #endif
 456   sigaddset(&unblocked_sigs, SR_signum);
 457 
 458   if (!ReduceSignalUsage) {
 459     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 460       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 461     }
 462     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 463       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 464     }
 465     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 466       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 467     }
 468   }
 469   // Fill in signals that are blocked by all but the VM thread.
 470   sigemptyset(&vm_sigs);
 471   if (!ReduceSignalUsage) {
 472     sigaddset(&vm_sigs, BREAK_SIGNAL);
 473   }
 474   debug_only(signal_sets_initialized = true);
 475 
 476 }
 477 
 478 // These are signals that are unblocked while a thread is running Java.
 479 // (For some reason, they get blocked by default.)
 480 sigset_t* os::Linux::unblocked_signals() {
 481   assert(signal_sets_initialized, "Not initialized");
 482   return &unblocked_sigs;
 483 }
 484 
 485 // These are the signals that are blocked while a (non-VM) thread is
 486 // running Java. Only the VM thread handles these signals.
 487 sigset_t* os::Linux::vm_signals() {
 488   assert(signal_sets_initialized, "Not initialized");
 489   return &vm_sigs;
 490 }
 491 
 492 void os::Linux::hotspot_sigmask(Thread* thread) {
 493 
 494   //Save caller's signal mask before setting VM signal mask
 495   sigset_t caller_sigmask;
 496   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 497 
 498   OSThread* osthread = thread->osthread();
 499   osthread->set_caller_sigmask(caller_sigmask);
 500 
 501   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 502 
 503   if (!ReduceSignalUsage) {
 504     if (thread->is_VM_thread()) {
 505       // Only the VM thread handles BREAK_SIGNAL ...
 506       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 507     } else {
 508       // ... all other threads block BREAK_SIGNAL
 509       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 510     }
 511   }
 512 }
 513 
 514 //////////////////////////////////////////////////////////////////////////////
 515 // detecting pthread library
 516 
 517 void os::Linux::libpthread_init() {
 518   // Save glibc and pthread version strings.
 519 #if !defined(_CS_GNU_LIBC_VERSION) || \
 520     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 521   #error "glibc too old (< 2.3.2)"
 522 #endif
 523 
 524   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 525   assert(n > 0, "cannot retrieve glibc version");
 526   char *str = (char *)malloc(n, mtInternal);
 527   confstr(_CS_GNU_LIBC_VERSION, str, n);
 528   os::Linux::set_glibc_version(str);
 529 
 530   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 531   assert(n > 0, "cannot retrieve pthread version");
 532   str = (char *)malloc(n, mtInternal);
 533   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 534   os::Linux::set_libpthread_version(str);
 535 }
 536 
 537 /////////////////////////////////////////////////////////////////////////////
 538 // thread stack expansion
 539 
 540 // os::Linux::manually_expand_stack() takes care of expanding the thread
 541 // stack. Note that this is normally not needed: pthread stacks allocate
 542 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 543 // committed. Therefore it is not necessary to expand the stack manually.
 544 //
 545 // Manually expanding the stack was historically needed on LinuxThreads
 546 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 547 // it is kept to deal with very rare corner cases:
 548 //
 549 // For one, user may run the VM on an own implementation of threads
 550 // whose stacks are - like the old LinuxThreads - implemented using
 551 // mmap(MAP_GROWSDOWN).
 552 //
 553 // Also, this coding may be needed if the VM is running on the primordial
 554 // thread. Normally we avoid running on the primordial thread; however,
 555 // user may still invoke the VM on the primordial thread.
 556 //
 557 // The following historical comment describes the details about running
 558 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 559 
 560 
 561 // Force Linux kernel to expand current thread stack. If "bottom" is close
 562 // to the stack guard, caller should block all signals.
 563 //
 564 // MAP_GROWSDOWN:
 565 //   A special mmap() flag that is used to implement thread stacks. It tells
 566 //   kernel that the memory region should extend downwards when needed. This
 567 //   allows early versions of LinuxThreads to only mmap the first few pages
 568 //   when creating a new thread. Linux kernel will automatically expand thread
 569 //   stack as needed (on page faults).
 570 //
 571 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 572 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 573 //   region, it's hard to tell if the fault is due to a legitimate stack
 574 //   access or because of reading/writing non-exist memory (e.g. buffer
 575 //   overrun). As a rule, if the fault happens below current stack pointer,
 576 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 577 //   application (see Linux kernel fault.c).
 578 //
 579 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 580 //   stack overflow detection.
 581 //
 582 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 583 //   not use MAP_GROWSDOWN.
 584 //
 585 // To get around the problem and allow stack banging on Linux, we need to
 586 // manually expand thread stack after receiving the SIGSEGV.
 587 //
 588 // There are two ways to expand thread stack to address "bottom", we used
 589 // both of them in JVM before 1.5:
 590 //   1. adjust stack pointer first so that it is below "bottom", and then
 591 //      touch "bottom"
 592 //   2. mmap() the page in question
 593 //
 594 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 595 // if current sp is already near the lower end of page 101, and we need to
 596 // call mmap() to map page 100, it is possible that part of the mmap() frame
 597 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 598 // That will destroy the mmap() frame and cause VM to crash.
 599 //
 600 // The following code works by adjusting sp first, then accessing the "bottom"
 601 // page to force a page fault. Linux kernel will then automatically expand the
 602 // stack mapping.
 603 //
 604 // _expand_stack_to() assumes its frame size is less than page size, which
 605 // should always be true if the function is not inlined.
 606 
 607 static void NOINLINE _expand_stack_to(address bottom) {
 608   address sp;
 609   size_t size;
 610   volatile char *p;
 611 
 612   // Adjust bottom to point to the largest address within the same page, it
 613   // gives us a one-page buffer if alloca() allocates slightly more memory.
 614   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 615   bottom += os::Linux::page_size() - 1;
 616 
 617   // sp might be slightly above current stack pointer; if that's the case, we
 618   // will alloca() a little more space than necessary, which is OK. Don't use
 619   // os::current_stack_pointer(), as its result can be slightly below current
 620   // stack pointer, causing us to not alloca enough to reach "bottom".
 621   sp = (address)&sp;
 622 
 623   if (sp > bottom) {
 624     size = sp - bottom;
 625     p = (volatile char *)alloca(size);
 626     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 627     p[0] = '\0';
 628   }
 629 }
 630 
 631 void os::Linux::expand_stack_to(address bottom) {
 632   _expand_stack_to(bottom);
 633 }
 634 
 635 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 636   assert(t!=NULL, "just checking");
 637   assert(t->osthread()->expanding_stack(), "expand should be set");
 638   assert(t->stack_base() != NULL, "stack_base was not initialized");
 639 
 640   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 641     sigset_t mask_all, old_sigset;
 642     sigfillset(&mask_all);
 643     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 644     _expand_stack_to(addr);
 645     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 646     return true;
 647   }
 648   return false;
 649 }
 650 
 651 //////////////////////////////////////////////////////////////////////////////
 652 // create new thread
 653 
 654 // Thread start routine for all newly created threads
 655 static void *thread_native_entry(Thread *thread) {
 656 
 657   thread->record_stack_base_and_size();
 658 
 659   // Try to randomize the cache line index of hot stack frames.
 660   // This helps when threads of the same stack traces evict each other's
 661   // cache lines. The threads can be either from the same JVM instance, or
 662   // from different JVM instances. The benefit is especially true for
 663   // processors with hyperthreading technology.
 664   static int counter = 0;
 665   int pid = os::current_process_id();
 666   alloca(((pid ^ counter++) & 7) * 128);
 667 
 668   thread->initialize_thread_current();
 669 
 670   OSThread* osthread = thread->osthread();
 671   Monitor* sync = osthread->startThread_lock();
 672 
 673   osthread->set_thread_id(os::current_thread_id());
 674 
 675   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 676     os::current_thread_id(), (uintx) pthread_self());
 677 
 678   if (UseNUMA) {
 679     int lgrp_id = os::numa_get_group_id();
 680     if (lgrp_id != -1) {
 681       thread->set_lgrp_id(lgrp_id);
 682     }
 683   }
 684   // initialize signal mask for this thread
 685   os::Linux::hotspot_sigmask(thread);
 686 
 687   // initialize floating point control register
 688   os::Linux::init_thread_fpu_state();
 689 
 690   // handshaking with parent thread
 691   {
 692     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 693 
 694     // notify parent thread
 695     osthread->set_state(INITIALIZED);
 696     sync->notify_all();
 697 
 698     // wait until os::start_thread()
 699     while (osthread->get_state() == INITIALIZED) {
 700       sync->wait(Mutex::_no_safepoint_check_flag);
 701     }
 702   }
 703 
 704   // call one more level start routine
 705   thread->call_run();
 706 
 707   // Note: at this point the thread object may already have deleted itself.
 708   // Prevent dereferencing it from here on out.
 709   thread = NULL;
 710 
 711   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 712     os::current_thread_id(), (uintx) pthread_self());
 713 
 714   return 0;
 715 }
 716 
 717 bool os::create_thread(Thread* thread, ThreadType thr_type,
 718                        size_t req_stack_size) {
 719   assert(thread->osthread() == NULL, "caller responsible");
 720 
 721   // Allocate the OSThread object
 722   OSThread* osthread = new OSThread(NULL, NULL);
 723   if (osthread == NULL) {
 724     return false;
 725   }
 726 
 727   // set the correct thread state
 728   osthread->set_thread_type(thr_type);
 729 
 730   // Initial state is ALLOCATED but not INITIALIZED
 731   osthread->set_state(ALLOCATED);
 732 
 733   thread->set_osthread(osthread);
 734 
 735   // init thread attributes
 736   pthread_attr_t attr;
 737   pthread_attr_init(&attr);
 738   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 739 
 740   // Calculate stack size if it's not specified by caller.
 741   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 742   // In the Linux NPTL pthread implementation the guard size mechanism
 743   // is not implemented properly. The posix standard requires adding
 744   // the size of the guard pages to the stack size, instead Linux
 745   // takes the space out of 'stacksize'. Thus we adapt the requested
 746   // stack_size by the size of the guard pages to mimick proper
 747   // behaviour. However, be careful not to end up with a size
 748   // of zero due to overflow. Don't add the guard page in that case.
 749   size_t guard_size = os::Linux::default_guard_size(thr_type);
 750   if (stack_size <= SIZE_MAX - guard_size) {
 751     stack_size += guard_size;
 752   }
 753   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 754 
 755   int status = pthread_attr_setstacksize(&attr, stack_size);
 756   assert_status(status == 0, status, "pthread_attr_setstacksize");
 757 
 758   // Configure glibc guard page.
 759   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 760 
 761   ThreadState state;
 762 
 763   {
 764     pthread_t tid;
 765     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 766 
 767     char buf[64];
 768     if (ret == 0) {
 769       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 770         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 771     } else {
 772       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 773         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 774     }
 775 
 776     pthread_attr_destroy(&attr);
 777 
 778     if (ret != 0) {
 779       // Need to clean up stuff we've allocated so far
 780       thread->set_osthread(NULL);
 781       delete osthread;
 782       return false;
 783     }
 784 
 785     // Store pthread info into the OSThread
 786     osthread->set_pthread_id(tid);
 787 
 788     // Wait until child thread is either initialized or aborted
 789     {
 790       Monitor* sync_with_child = osthread->startThread_lock();
 791       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 792       while ((state = osthread->get_state()) == ALLOCATED) {
 793         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 794       }
 795     }
 796   }
 797 
 798   // Aborted due to thread limit being reached
 799   if (state == ZOMBIE) {
 800     thread->set_osthread(NULL);
 801     delete osthread;
 802     return false;
 803   }
 804 
 805   // The thread is returned suspended (in state INITIALIZED),
 806   // and is started higher up in the call chain
 807   assert(state == INITIALIZED, "race condition");
 808   return true;
 809 }
 810 
 811 /////////////////////////////////////////////////////////////////////////////
 812 // attach existing thread
 813 
 814 // bootstrap the main thread
 815 bool os::create_main_thread(JavaThread* thread) {
 816   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 817   return create_attached_thread(thread);
 818 }
 819 
 820 bool os::create_attached_thread(JavaThread* thread) {
 821 #ifdef ASSERT
 822   thread->verify_not_published();
 823 #endif
 824 
 825   // Allocate the OSThread object
 826   OSThread* osthread = new OSThread(NULL, NULL);
 827 
 828   if (osthread == NULL) {
 829     return false;
 830   }
 831 
 832   // Store pthread info into the OSThread
 833   osthread->set_thread_id(os::Linux::gettid());
 834   osthread->set_pthread_id(::pthread_self());
 835 
 836   // initialize floating point control register
 837   os::Linux::init_thread_fpu_state();
 838 
 839   // Initial thread state is RUNNABLE
 840   osthread->set_state(RUNNABLE);
 841 
 842   thread->set_osthread(osthread);
 843 
 844   if (UseNUMA) {
 845     int lgrp_id = os::numa_get_group_id();
 846     if (lgrp_id != -1) {
 847       thread->set_lgrp_id(lgrp_id);
 848     }
 849   }
 850 
 851   if (os::is_primordial_thread()) {
 852     // If current thread is primordial thread, its stack is mapped on demand,
 853     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 854     // the entire stack region to avoid SEGV in stack banging.
 855     // It is also useful to get around the heap-stack-gap problem on SuSE
 856     // kernel (see 4821821 for details). We first expand stack to the top
 857     // of yellow zone, then enable stack yellow zone (order is significant,
 858     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 859     // is no gap between the last two virtual memory regions.
 860 
 861     JavaThread *jt = (JavaThread *)thread;
 862     address addr = jt->stack_reserved_zone_base();
 863     assert(addr != NULL, "initialization problem?");
 864     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 865 
 866     osthread->set_expanding_stack();
 867     os::Linux::manually_expand_stack(jt, addr);
 868     osthread->clear_expanding_stack();
 869   }
 870 
 871   // initialize signal mask for this thread
 872   // and save the caller's signal mask
 873   os::Linux::hotspot_sigmask(thread);
 874 
 875   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 876     os::current_thread_id(), (uintx) pthread_self());
 877 
 878   return true;
 879 }
 880 
 881 void os::pd_start_thread(Thread* thread) {
 882   OSThread * osthread = thread->osthread();
 883   assert(osthread->get_state() != INITIALIZED, "just checking");
 884   Monitor* sync_with_child = osthread->startThread_lock();
 885   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 886   sync_with_child->notify();
 887 }
 888 
 889 // Free Linux resources related to the OSThread
 890 void os::free_thread(OSThread* osthread) {
 891   assert(osthread != NULL, "osthread not set");
 892 
 893   // We are told to free resources of the argument thread,
 894   // but we can only really operate on the current thread.
 895   assert(Thread::current()->osthread() == osthread,
 896          "os::free_thread but not current thread");
 897 
 898 #ifdef ASSERT
 899   sigset_t current;
 900   sigemptyset(&current);
 901   pthread_sigmask(SIG_SETMASK, NULL, &current);
 902   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 903 #endif
 904 
 905   // Restore caller's signal mask
 906   sigset_t sigmask = osthread->caller_sigmask();
 907   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 908 
 909   delete osthread;
 910 }
 911 
 912 //////////////////////////////////////////////////////////////////////////////
 913 // primordial thread
 914 
 915 // Check if current thread is the primordial thread, similar to Solaris thr_main.
 916 bool os::is_primordial_thread(void) {
 917   if (suppress_primordial_thread_resolution) {
 918     return false;
 919   }
 920   char dummy;
 921   // If called before init complete, thread stack bottom will be null.
 922   // Can be called if fatal error occurs before initialization.
 923   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
 924   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
 925          os::Linux::initial_thread_stack_size()   != 0,
 926          "os::init did not locate primordial thread's stack region");
 927   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
 928       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
 929                         os::Linux::initial_thread_stack_size()) {
 930     return true;
 931   } else {
 932     return false;
 933   }
 934 }
 935 
 936 // Find the virtual memory area that contains addr
 937 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 938   FILE *fp = fopen("/proc/self/maps", "r");
 939   if (fp) {
 940     address low, high;
 941     while (!feof(fp)) {
 942       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 943         if (low <= addr && addr < high) {
 944           if (vma_low)  *vma_low  = low;
 945           if (vma_high) *vma_high = high;
 946           fclose(fp);
 947           return true;
 948         }
 949       }
 950       for (;;) {
 951         int ch = fgetc(fp);
 952         if (ch == EOF || ch == (int)'\n') break;
 953       }
 954     }
 955     fclose(fp);
 956   }
 957   return false;
 958 }
 959 
 960 // Locate primordial thread stack. This special handling of primordial thread stack
 961 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 962 // bogus value for the primordial process thread. While the launcher has created
 963 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 964 // JNI invocation API from a primordial thread.
 965 void os::Linux::capture_initial_stack(size_t max_size) {
 966 
 967   // max_size is either 0 (which means accept OS default for thread stacks) or
 968   // a user-specified value known to be at least the minimum needed. If we
 969   // are actually on the primordial thread we can make it appear that we have a
 970   // smaller max_size stack by inserting the guard pages at that location. But we
 971   // cannot do anything to emulate a larger stack than what has been provided by
 972   // the OS or threading library. In fact if we try to use a stack greater than
 973   // what is set by rlimit then we will crash the hosting process.
 974 
 975   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 976   // If this is "unlimited" then it will be a huge value.
 977   struct rlimit rlim;
 978   getrlimit(RLIMIT_STACK, &rlim);
 979   size_t stack_size = rlim.rlim_cur;
 980 
 981   // 6308388: a bug in ld.so will relocate its own .data section to the
 982   //   lower end of primordial stack; reduce ulimit -s value a little bit
 983   //   so we won't install guard page on ld.so's data section.
 984   //   But ensure we don't underflow the stack size - allow 1 page spare
 985   if (stack_size >= (size_t)(3 * page_size())) {
 986     stack_size -= 2 * page_size();
 987   }
 988 
 989   // Try to figure out where the stack base (top) is. This is harder.
 990   //
 991   // When an application is started, glibc saves the initial stack pointer in
 992   // a global variable "__libc_stack_end", which is then used by system
 993   // libraries. __libc_stack_end should be pretty close to stack top. The
 994   // variable is available since the very early days. However, because it is
 995   // a private interface, it could disappear in the future.
 996   //
 997   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 998   // to __libc_stack_end, it is very close to stack top, but isn't the real
 999   // stack top. Note that /proc may not exist if VM is running as a chroot
1000   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1001   // /proc/<pid>/stat could change in the future (though unlikely).
1002   //
1003   // We try __libc_stack_end first. If that doesn't work, look for
1004   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1005   // as a hint, which should work well in most cases.
1006 
1007   uintptr_t stack_start;
1008 
1009   // try __libc_stack_end first
1010   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1011   if (p && *p) {
1012     stack_start = *p;
1013   } else {
1014     // see if we can get the start_stack field from /proc/self/stat
1015     FILE *fp;
1016     int pid;
1017     char state;
1018     int ppid;
1019     int pgrp;
1020     int session;
1021     int nr;
1022     int tpgrp;
1023     unsigned long flags;
1024     unsigned long minflt;
1025     unsigned long cminflt;
1026     unsigned long majflt;
1027     unsigned long cmajflt;
1028     unsigned long utime;
1029     unsigned long stime;
1030     long cutime;
1031     long cstime;
1032     long prio;
1033     long nice;
1034     long junk;
1035     long it_real;
1036     uintptr_t start;
1037     uintptr_t vsize;
1038     intptr_t rss;
1039     uintptr_t rsslim;
1040     uintptr_t scodes;
1041     uintptr_t ecode;
1042     int i;
1043 
1044     // Figure what the primordial thread stack base is. Code is inspired
1045     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1046     // followed by command name surrounded by parentheses, state, etc.
1047     char stat[2048];
1048     int statlen;
1049 
1050     fp = fopen("/proc/self/stat", "r");
1051     if (fp) {
1052       statlen = fread(stat, 1, 2047, fp);
1053       stat[statlen] = '\0';
1054       fclose(fp);
1055 
1056       // Skip pid and the command string. Note that we could be dealing with
1057       // weird command names, e.g. user could decide to rename java launcher
1058       // to "java 1.4.2 :)", then the stat file would look like
1059       //                1234 (java 1.4.2 :)) R ... ...
1060       // We don't really need to know the command string, just find the last
1061       // occurrence of ")" and then start parsing from there. See bug 4726580.
1062       char * s = strrchr(stat, ')');
1063 
1064       i = 0;
1065       if (s) {
1066         // Skip blank chars
1067         do { s++; } while (s && isspace(*s));
1068 
1069 #define _UFM UINTX_FORMAT
1070 #define _DFM INTX_FORMAT
1071 
1072         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1073         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1074         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1075                    &state,          // 3  %c
1076                    &ppid,           // 4  %d
1077                    &pgrp,           // 5  %d
1078                    &session,        // 6  %d
1079                    &nr,             // 7  %d
1080                    &tpgrp,          // 8  %d
1081                    &flags,          // 9  %lu
1082                    &minflt,         // 10 %lu
1083                    &cminflt,        // 11 %lu
1084                    &majflt,         // 12 %lu
1085                    &cmajflt,        // 13 %lu
1086                    &utime,          // 14 %lu
1087                    &stime,          // 15 %lu
1088                    &cutime,         // 16 %ld
1089                    &cstime,         // 17 %ld
1090                    &prio,           // 18 %ld
1091                    &nice,           // 19 %ld
1092                    &junk,           // 20 %ld
1093                    &it_real,        // 21 %ld
1094                    &start,          // 22 UINTX_FORMAT
1095                    &vsize,          // 23 UINTX_FORMAT
1096                    &rss,            // 24 INTX_FORMAT
1097                    &rsslim,         // 25 UINTX_FORMAT
1098                    &scodes,         // 26 UINTX_FORMAT
1099                    &ecode,          // 27 UINTX_FORMAT
1100                    &stack_start);   // 28 UINTX_FORMAT
1101       }
1102 
1103 #undef _UFM
1104 #undef _DFM
1105 
1106       if (i != 28 - 2) {
1107         assert(false, "Bad conversion from /proc/self/stat");
1108         // product mode - assume we are the primordial thread, good luck in the
1109         // embedded case.
1110         warning("Can't detect primordial thread stack location - bad conversion");
1111         stack_start = (uintptr_t) &rlim;
1112       }
1113     } else {
1114       // For some reason we can't open /proc/self/stat (for example, running on
1115       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1116       // most cases, so don't abort:
1117       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1118       stack_start = (uintptr_t) &rlim;
1119     }
1120   }
1121 
1122   // Now we have a pointer (stack_start) very close to the stack top, the
1123   // next thing to do is to figure out the exact location of stack top. We
1124   // can find out the virtual memory area that contains stack_start by
1125   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1126   // and its upper limit is the real stack top. (again, this would fail if
1127   // running inside chroot, because /proc may not exist.)
1128 
1129   uintptr_t stack_top;
1130   address low, high;
1131   if (find_vma((address)stack_start, &low, &high)) {
1132     // success, "high" is the true stack top. (ignore "low", because initial
1133     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1134     stack_top = (uintptr_t)high;
1135   } else {
1136     // failed, likely because /proc/self/maps does not exist
1137     warning("Can't detect primordial thread stack location - find_vma failed");
1138     // best effort: stack_start is normally within a few pages below the real
1139     // stack top, use it as stack top, and reduce stack size so we won't put
1140     // guard page outside stack.
1141     stack_top = stack_start;
1142     stack_size -= 16 * page_size();
1143   }
1144 
1145   // stack_top could be partially down the page so align it
1146   stack_top = align_up(stack_top, page_size());
1147 
1148   // Allowed stack value is minimum of max_size and what we derived from rlimit
1149   if (max_size > 0) {
1150     _initial_thread_stack_size = MIN2(max_size, stack_size);
1151   } else {
1152     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1153     // clamp it at 8MB as we do on Solaris
1154     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1155   }
1156   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1157   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1158 
1159   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1160 
1161   if (log_is_enabled(Info, os, thread)) {
1162     // See if we seem to be on primordial process thread
1163     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1164                       uintptr_t(&rlim) < stack_top;
1165 
1166     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1167                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1168                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1169                          stack_top, intptr_t(_initial_thread_stack_bottom));
1170   }
1171 }
1172 
1173 ////////////////////////////////////////////////////////////////////////////////
1174 // time support
1175 
1176 #ifndef SUPPORTS_CLOCK_MONOTONIC
1177 #error "Build platform doesn't support clock_gettime and related functionality"
1178 #endif
1179 
1180 // Time since start-up in seconds to a fine granularity.
1181 // Used by VMSelfDestructTimer and the MemProfiler.
1182 double os::elapsedTime() {
1183 
1184   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1185 }
1186 
1187 jlong os::elapsed_counter() {
1188   return javaTimeNanos() - initial_time_count;
1189 }
1190 
1191 jlong os::elapsed_frequency() {
1192   return NANOSECS_PER_SEC; // nanosecond resolution
1193 }
1194 
1195 bool os::supports_vtime() { return true; }
1196 bool os::enable_vtime()   { return false; }
1197 bool os::vtime_enabled()  { return false; }
1198 
1199 double os::elapsedVTime() {
1200   struct rusage usage;
1201   int retval = getrusage(RUSAGE_THREAD, &usage);
1202   if (retval == 0) {
1203     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1204   } else {
1205     // better than nothing, but not much
1206     return elapsedTime();
1207   }
1208 }
1209 
1210 jlong os::javaTimeMillis() {
1211   timeval time;
1212   int status = gettimeofday(&time, NULL);
1213   assert(status != -1, "linux error");
1214   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1215 }
1216 
1217 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1218   timeval time;
1219   int status = gettimeofday(&time, NULL);
1220   assert(status != -1, "linux error");
1221   seconds = jlong(time.tv_sec);
1222   nanos = jlong(time.tv_usec) * 1000;
1223 }
1224 
1225 void os::Linux::fast_thread_clock_init() {
1226   if (!UseLinuxPosixThreadCPUClocks) {
1227     return;
1228   }
1229   clockid_t clockid;
1230   struct timespec tp;
1231   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1232       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1233 
1234   // Switch to using fast clocks for thread cpu time if
1235   // the clock_getres() returns 0 error code.
1236   // Note, that some kernels may support the current thread
1237   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1238   // returned by the pthread_getcpuclockid().
1239   // If the fast Posix clocks are supported then the clock_getres()
1240   // must return at least tp.tv_sec == 0 which means a resolution
1241   // better than 1 sec. This is extra check for reliability.
1242 
1243   if (pthread_getcpuclockid_func &&
1244       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1245       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1246     _supports_fast_thread_cpu_time = true;
1247     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1248   }
1249 }
1250 
1251 jlong os::javaTimeNanos() {
1252   if (os::supports_monotonic_clock()) {
1253     struct timespec tp;
1254     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1255     assert(status == 0, "gettime error");
1256     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1257     return result;
1258   } else {
1259     timeval time;
1260     int status = gettimeofday(&time, NULL);
1261     assert(status != -1, "linux error");
1262     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1263     return 1000 * usecs;
1264   }
1265 }
1266 
1267 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1268   if (os::supports_monotonic_clock()) {
1269     info_ptr->max_value = ALL_64_BITS;
1270 
1271     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1272     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1273     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1274   } else {
1275     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1276     info_ptr->max_value = ALL_64_BITS;
1277 
1278     // gettimeofday is a real time clock so it skips
1279     info_ptr->may_skip_backward = true;
1280     info_ptr->may_skip_forward = true;
1281   }
1282 
1283   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1284 }
1285 
1286 // Return the real, user, and system times in seconds from an
1287 // arbitrary fixed point in the past.
1288 bool os::getTimesSecs(double* process_real_time,
1289                       double* process_user_time,
1290                       double* process_system_time) {
1291   struct tms ticks;
1292   clock_t real_ticks = times(&ticks);
1293 
1294   if (real_ticks == (clock_t) (-1)) {
1295     return false;
1296   } else {
1297     double ticks_per_second = (double) clock_tics_per_sec;
1298     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1299     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1300     *process_real_time = ((double) real_ticks) / ticks_per_second;
1301 
1302     return true;
1303   }
1304 }
1305 
1306 
1307 char * os::local_time_string(char *buf, size_t buflen) {
1308   struct tm t;
1309   time_t long_time;
1310   time(&long_time);
1311   localtime_r(&long_time, &t);
1312   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1313                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1314                t.tm_hour, t.tm_min, t.tm_sec);
1315   return buf;
1316 }
1317 
1318 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1319   return localtime_r(clock, res);
1320 }
1321 
1322 ////////////////////////////////////////////////////////////////////////////////
1323 // runtime exit support
1324 
1325 // Note: os::shutdown() might be called very early during initialization, or
1326 // called from signal handler. Before adding something to os::shutdown(), make
1327 // sure it is async-safe and can handle partially initialized VM.
1328 void os::shutdown() {
1329 
1330   // allow PerfMemory to attempt cleanup of any persistent resources
1331   perfMemory_exit();
1332 
1333   // needs to remove object in file system
1334   AttachListener::abort();
1335 
1336   // flush buffered output, finish log files
1337   ostream_abort();
1338 
1339   // Check for abort hook
1340   abort_hook_t abort_hook = Arguments::abort_hook();
1341   if (abort_hook != NULL) {
1342     abort_hook();
1343   }
1344 
1345 }
1346 
1347 // Note: os::abort() might be called very early during initialization, or
1348 // called from signal handler. Before adding something to os::abort(), make
1349 // sure it is async-safe and can handle partially initialized VM.
1350 void os::abort(bool dump_core, void* siginfo, const void* context) {
1351   os::shutdown();
1352   if (dump_core) {
1353 #ifndef PRODUCT
1354     fdStream out(defaultStream::output_fd());
1355     out.print_raw("Current thread is ");
1356     char buf[16];
1357     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1358     out.print_raw_cr(buf);
1359     out.print_raw_cr("Dumping core ...");
1360 #endif
1361     ::abort(); // dump core
1362   }
1363 
1364   ::exit(1);
1365 }
1366 
1367 // Die immediately, no exit hook, no abort hook, no cleanup.
1368 void os::die() {
1369   ::abort();
1370 }
1371 
1372 // thread_id is kernel thread id (similar to Solaris LWP id)
1373 intx os::current_thread_id() { return os::Linux::gettid(); }
1374 int os::current_process_id() {
1375   return ::getpid();
1376 }
1377 
1378 // DLL functions
1379 
1380 const char* os::dll_file_extension() { return ".so"; }
1381 
1382 // This must be hard coded because it's the system's temporary
1383 // directory not the java application's temp directory, ala java.io.tmpdir.
1384 const char* os::get_temp_directory() { return "/tmp"; }
1385 
1386 static bool file_exists(const char* filename) {
1387   struct stat statbuf;
1388   if (filename == NULL || strlen(filename) == 0) {
1389     return false;
1390   }
1391   return os::stat(filename, &statbuf) == 0;
1392 }
1393 
1394 // check if addr is inside libjvm.so
1395 bool os::address_is_in_vm(address addr) {
1396   static address libjvm_base_addr;
1397   Dl_info dlinfo;
1398 
1399   if (libjvm_base_addr == NULL) {
1400     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1401       libjvm_base_addr = (address)dlinfo.dli_fbase;
1402     }
1403     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1404   }
1405 
1406   if (dladdr((void *)addr, &dlinfo) != 0) {
1407     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1408   }
1409 
1410   return false;
1411 }
1412 
1413 bool os::dll_address_to_function_name(address addr, char *buf,
1414                                       int buflen, int *offset,
1415                                       bool demangle) {
1416   // buf is not optional, but offset is optional
1417   assert(buf != NULL, "sanity check");
1418 
1419   Dl_info dlinfo;
1420 
1421   if (dladdr((void*)addr, &dlinfo) != 0) {
1422     // see if we have a matching symbol
1423     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1424       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1425         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1426       }
1427       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1428       return true;
1429     }
1430     // no matching symbol so try for just file info
1431     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1432       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1433                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1434         return true;
1435       }
1436     }
1437   }
1438 
1439   buf[0] = '\0';
1440   if (offset != NULL) *offset = -1;
1441   return false;
1442 }
1443 
1444 struct _address_to_library_name {
1445   address addr;          // input : memory address
1446   size_t  buflen;        //         size of fname
1447   char*   fname;         // output: library name
1448   address base;          //         library base addr
1449 };
1450 
1451 static int address_to_library_name_callback(struct dl_phdr_info *info,
1452                                             size_t size, void *data) {
1453   int i;
1454   bool found = false;
1455   address libbase = NULL;
1456   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1457 
1458   // iterate through all loadable segments
1459   for (i = 0; i < info->dlpi_phnum; i++) {
1460     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1461     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1462       // base address of a library is the lowest address of its loaded
1463       // segments.
1464       if (libbase == NULL || libbase > segbase) {
1465         libbase = segbase;
1466       }
1467       // see if 'addr' is within current segment
1468       if (segbase <= d->addr &&
1469           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1470         found = true;
1471       }
1472     }
1473   }
1474 
1475   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1476   // so dll_address_to_library_name() can fall through to use dladdr() which
1477   // can figure out executable name from argv[0].
1478   if (found && info->dlpi_name && info->dlpi_name[0]) {
1479     d->base = libbase;
1480     if (d->fname) {
1481       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1482     }
1483     return 1;
1484   }
1485   return 0;
1486 }
1487 
1488 bool os::dll_address_to_library_name(address addr, char* buf,
1489                                      int buflen, int* offset) {
1490   // buf is not optional, but offset is optional
1491   assert(buf != NULL, "sanity check");
1492 
1493   Dl_info dlinfo;
1494   struct _address_to_library_name data;
1495 
1496   // There is a bug in old glibc dladdr() implementation that it could resolve
1497   // to wrong library name if the .so file has a base address != NULL. Here
1498   // we iterate through the program headers of all loaded libraries to find
1499   // out which library 'addr' really belongs to. This workaround can be
1500   // removed once the minimum requirement for glibc is moved to 2.3.x.
1501   data.addr = addr;
1502   data.fname = buf;
1503   data.buflen = buflen;
1504   data.base = NULL;
1505   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1506 
1507   if (rslt) {
1508     // buf already contains library name
1509     if (offset) *offset = addr - data.base;
1510     return true;
1511   }
1512   if (dladdr((void*)addr, &dlinfo) != 0) {
1513     if (dlinfo.dli_fname != NULL) {
1514       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1515     }
1516     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1517       *offset = addr - (address)dlinfo.dli_fbase;
1518     }
1519     return true;
1520   }
1521 
1522   buf[0] = '\0';
1523   if (offset) *offset = -1;
1524   return false;
1525 }
1526 
1527 // Loads .dll/.so and
1528 // in case of error it checks if .dll/.so was built for the
1529 // same architecture as Hotspot is running on
1530 
1531 
1532 // Remember the stack's state. The Linux dynamic linker will change
1533 // the stack to 'executable' at most once, so we must safepoint only once.
1534 bool os::Linux::_stack_is_executable = false;
1535 
1536 // VM operation that loads a library.  This is necessary if stack protection
1537 // of the Java stacks can be lost during loading the library.  If we
1538 // do not stop the Java threads, they can stack overflow before the stacks
1539 // are protected again.
1540 class VM_LinuxDllLoad: public VM_Operation {
1541  private:
1542   const char *_filename;
1543   char *_ebuf;
1544   int _ebuflen;
1545   void *_lib;
1546  public:
1547   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1548     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1549   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1550   void doit() {
1551     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1552     os::Linux::_stack_is_executable = true;
1553   }
1554   void* loaded_library() { return _lib; }
1555 };
1556 
1557 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1558   void * result = NULL;
1559   bool load_attempted = false;
1560 
1561   // Check whether the library to load might change execution rights
1562   // of the stack. If they are changed, the protection of the stack
1563   // guard pages will be lost. We need a safepoint to fix this.
1564   //
1565   // See Linux man page execstack(8) for more info.
1566   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1567     if (!ElfFile::specifies_noexecstack(filename)) {
1568       if (!is_init_completed()) {
1569         os::Linux::_stack_is_executable = true;
1570         // This is OK - No Java threads have been created yet, and hence no
1571         // stack guard pages to fix.
1572         //
1573         // Dynamic loader will make all stacks executable after
1574         // this function returns, and will not do that again.
1575         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1576       } else {
1577         warning("You have loaded library %s which might have disabled stack guard. "
1578                 "The VM will try to fix the stack guard now.\n"
1579                 "It's highly recommended that you fix the library with "
1580                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1581                 filename);
1582 
1583         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1584         JavaThread *jt = JavaThread::current();
1585         if (jt->thread_state() != _thread_in_native) {
1586           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1587           // that requires ExecStack. Cannot enter safe point. Let's give up.
1588           warning("Unable to fix stack guard. Giving up.");
1589         } else {
1590           if (!LoadExecStackDllInVMThread) {
1591             // This is for the case where the DLL has an static
1592             // constructor function that executes JNI code. We cannot
1593             // load such DLLs in the VMThread.
1594             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1595           }
1596 
1597           ThreadInVMfromNative tiv(jt);
1598           debug_only(VMNativeEntryWrapper vew;)
1599 
1600           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1601           VMThread::execute(&op);
1602           if (LoadExecStackDllInVMThread) {
1603             result = op.loaded_library();
1604           }
1605           load_attempted = true;
1606         }
1607       }
1608     }
1609   }
1610 
1611   if (!load_attempted) {
1612     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1613   }
1614 
1615   if (result != NULL) {
1616     // Successful loading
1617     return result;
1618   }
1619 
1620   Elf32_Ehdr elf_head;
1621   int diag_msg_max_length=ebuflen-strlen(ebuf);
1622   char* diag_msg_buf=ebuf+strlen(ebuf);
1623 
1624   if (diag_msg_max_length==0) {
1625     // No more space in ebuf for additional diagnostics message
1626     return NULL;
1627   }
1628 
1629 
1630   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1631 
1632   if (file_descriptor < 0) {
1633     // Can't open library, report dlerror() message
1634     return NULL;
1635   }
1636 
1637   bool failed_to_read_elf_head=
1638     (sizeof(elf_head)!=
1639      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1640 
1641   ::close(file_descriptor);
1642   if (failed_to_read_elf_head) {
1643     // file i/o error - report dlerror() msg
1644     return NULL;
1645   }
1646 
1647   typedef struct {
1648     Elf32_Half    code;         // Actual value as defined in elf.h
1649     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1650     unsigned char elf_class;    // 32 or 64 bit
1651     unsigned char endianess;    // MSB or LSB
1652     char*         name;         // String representation
1653   } arch_t;
1654 
1655 #ifndef EM_486
1656   #define EM_486          6               /* Intel 80486 */
1657 #endif
1658 #ifndef EM_AARCH64
1659   #define EM_AARCH64    183               /* ARM AARCH64 */
1660 #endif
1661 
1662   static const arch_t arch_array[]={
1663     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1664     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1665     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1666     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1667     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1668     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1669     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1670     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1671 #if defined(VM_LITTLE_ENDIAN)
1672     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1673     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1674 #else
1675     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1676     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1677 #endif
1678     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1679     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1680     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1681     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1682     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1683     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1684     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1685     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1686   };
1687 
1688 #if  (defined IA32)
1689   static  Elf32_Half running_arch_code=EM_386;
1690 #elif   (defined AMD64) || (defined X32)
1691   static  Elf32_Half running_arch_code=EM_X86_64;
1692 #elif  (defined IA64)
1693   static  Elf32_Half running_arch_code=EM_IA_64;
1694 #elif  (defined __sparc) && (defined _LP64)
1695   static  Elf32_Half running_arch_code=EM_SPARCV9;
1696 #elif  (defined __sparc) && (!defined _LP64)
1697   static  Elf32_Half running_arch_code=EM_SPARC;
1698 #elif  (defined __powerpc64__)
1699   static  Elf32_Half running_arch_code=EM_PPC64;
1700 #elif  (defined __powerpc__)
1701   static  Elf32_Half running_arch_code=EM_PPC;
1702 #elif  (defined AARCH64)
1703   static  Elf32_Half running_arch_code=EM_AARCH64;
1704 #elif  (defined ARM)
1705   static  Elf32_Half running_arch_code=EM_ARM;
1706 #elif  (defined S390)
1707   static  Elf32_Half running_arch_code=EM_S390;
1708 #elif  (defined ALPHA)
1709   static  Elf32_Half running_arch_code=EM_ALPHA;
1710 #elif  (defined MIPSEL)
1711   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1712 #elif  (defined PARISC)
1713   static  Elf32_Half running_arch_code=EM_PARISC;
1714 #elif  (defined MIPS)
1715   static  Elf32_Half running_arch_code=EM_MIPS;
1716 #elif  (defined M68K)
1717   static  Elf32_Half running_arch_code=EM_68K;
1718 #elif  (defined SH)
1719   static  Elf32_Half running_arch_code=EM_SH;
1720 #else
1721     #error Method os::dll_load requires that one of following is defined:\
1722         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1723 #endif
1724 
1725   // Identify compatability class for VM's architecture and library's architecture
1726   // Obtain string descriptions for architectures
1727 
1728   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1729   int running_arch_index=-1;
1730 
1731   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1732     if (running_arch_code == arch_array[i].code) {
1733       running_arch_index    = i;
1734     }
1735     if (lib_arch.code == arch_array[i].code) {
1736       lib_arch.compat_class = arch_array[i].compat_class;
1737       lib_arch.name         = arch_array[i].name;
1738     }
1739   }
1740 
1741   assert(running_arch_index != -1,
1742          "Didn't find running architecture code (running_arch_code) in arch_array");
1743   if (running_arch_index == -1) {
1744     // Even though running architecture detection failed
1745     // we may still continue with reporting dlerror() message
1746     return NULL;
1747   }
1748 
1749   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1750     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1751     return NULL;
1752   }
1753 
1754 #ifndef S390
1755   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1756     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1757     return NULL;
1758   }
1759 #endif // !S390
1760 
1761   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1762     if (lib_arch.name!=NULL) {
1763       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1764                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1765                  lib_arch.name, arch_array[running_arch_index].name);
1766     } else {
1767       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1768                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1769                  lib_arch.code,
1770                  arch_array[running_arch_index].name);
1771     }
1772   }
1773 
1774   return NULL;
1775 }
1776 
1777 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1778                                 int ebuflen) {
1779   void * result = ::dlopen(filename, RTLD_LAZY);
1780   if (result == NULL) {
1781     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1782     ebuf[ebuflen-1] = '\0';
1783   }
1784   return result;
1785 }
1786 
1787 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1788                                        int ebuflen) {
1789   void * result = NULL;
1790   if (LoadExecStackDllInVMThread) {
1791     result = dlopen_helper(filename, ebuf, ebuflen);
1792   }
1793 
1794   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1795   // library that requires an executable stack, or which does not have this
1796   // stack attribute set, dlopen changes the stack attribute to executable. The
1797   // read protection of the guard pages gets lost.
1798   //
1799   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1800   // may have been queued at the same time.
1801 
1802   if (!_stack_is_executable) {
1803     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1804       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1805           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1806         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1807           warning("Attempt to reguard stack yellow zone failed.");
1808         }
1809       }
1810     }
1811   }
1812 
1813   return result;
1814 }
1815 
1816 void* os::dll_lookup(void* handle, const char* name) {
1817   void* res = dlsym(handle, name);
1818   return res;
1819 }
1820 
1821 void* os::get_default_process_handle() {
1822   return (void*)::dlopen(NULL, RTLD_LAZY);
1823 }
1824 
1825 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
1826   int fd = ::open(filename, O_RDONLY);
1827   if (fd == -1) {
1828     return false;
1829   }
1830 
1831   if (hdr != NULL) {
1832     st->print_cr("%s", hdr);
1833   }
1834 
1835   char buf[33];
1836   int bytes;
1837   buf[32] = '\0';
1838   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1839     st->print_raw(buf, bytes);
1840   }
1841 
1842   ::close(fd);
1843 
1844   return true;
1845 }
1846 
1847 void os::print_dll_info(outputStream *st) {
1848   st->print_cr("Dynamic libraries:");
1849 
1850   char fname[32];
1851   pid_t pid = os::Linux::gettid();
1852 
1853   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1854 
1855   if (!_print_ascii_file(fname, st)) {
1856     st->print("Can not get library information for pid = %d\n", pid);
1857   }
1858 }
1859 
1860 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1861   FILE *procmapsFile = NULL;
1862 
1863   // Open the procfs maps file for the current process
1864   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1865     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1866     char line[PATH_MAX + 100];
1867 
1868     // Read line by line from 'file'
1869     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1870       u8 base, top, offset, inode;
1871       char permissions[5];
1872       char device[6];
1873       char name[PATH_MAX + 1];
1874 
1875       // Parse fields from line
1876       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1877              &base, &top, permissions, &offset, device, &inode, name);
1878 
1879       // Filter by device id '00:00' so that we only get file system mapped files.
1880       if (strcmp(device, "00:00") != 0) {
1881 
1882         // Call callback with the fields of interest
1883         if(callback(name, (address)base, (address)top, param)) {
1884           // Oops abort, callback aborted
1885           fclose(procmapsFile);
1886           return 1;
1887         }
1888       }
1889     }
1890     fclose(procmapsFile);
1891   }
1892   return 0;
1893 }
1894 
1895 void os::print_os_info_brief(outputStream* st) {
1896   os::Linux::print_distro_info(st);
1897 
1898   os::Posix::print_uname_info(st);
1899 
1900   os::Linux::print_libversion_info(st);
1901 
1902 }
1903 
1904 void os::print_os_info(outputStream* st) {
1905   st->print("OS:");
1906 
1907   os::Linux::print_distro_info(st);
1908 
1909   os::Posix::print_uname_info(st);
1910 
1911   // Print warning if unsafe chroot environment detected
1912   if (unsafe_chroot_detected) {
1913     st->print("WARNING!! ");
1914     st->print_cr("%s", unstable_chroot_error);
1915   }
1916 
1917   os::Linux::print_libversion_info(st);
1918 
1919   os::Posix::print_rlimit_info(st);
1920 
1921   os::Posix::print_load_average(st);
1922 
1923   os::Linux::print_full_memory_info(st);
1924 
1925   os::Linux::print_proc_sys_info(st);
1926 
1927   os::Linux::print_ld_preload_file(st);
1928 
1929   os::Linux::print_container_info(st);
1930 }
1931 
1932 // Try to identify popular distros.
1933 // Most Linux distributions have a /etc/XXX-release file, which contains
1934 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1935 // file that also contains the OS version string. Some have more than one
1936 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1937 // /etc/redhat-release.), so the order is important.
1938 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1939 // their own specific XXX-release file as well as a redhat-release file.
1940 // Because of this the XXX-release file needs to be searched for before the
1941 // redhat-release file.
1942 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
1943 // search for redhat-release / SuSE-release needs to be before lsb-release.
1944 // Since the lsb-release file is the new standard it needs to be searched
1945 // before the older style release files.
1946 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
1947 // next to last resort.  The os-release file is a new standard that contains
1948 // distribution information and the system-release file seems to be an old
1949 // standard that has been replaced by the lsb-release and os-release files.
1950 // Searching for the debian_version file is the last resort.  It contains
1951 // an informative string like "6.0.6" or "wheezy/sid". Because of this
1952 // "Debian " is printed before the contents of the debian_version file.
1953 
1954 const char* distro_files[] = {
1955   "/etc/oracle-release",
1956   "/etc/mandriva-release",
1957   "/etc/mandrake-release",
1958   "/etc/sun-release",
1959   "/etc/redhat-release",
1960   "/etc/SuSE-release",
1961   "/etc/lsb-release",
1962   "/etc/turbolinux-release",
1963   "/etc/gentoo-release",
1964   "/etc/ltib-release",
1965   "/etc/angstrom-version",
1966   "/etc/system-release",
1967   "/etc/os-release",
1968   NULL };
1969 
1970 void os::Linux::print_distro_info(outputStream* st) {
1971   for (int i = 0;; i++) {
1972     const char* file = distro_files[i];
1973     if (file == NULL) {
1974       break;  // done
1975     }
1976     // If file prints, we found it.
1977     if (_print_ascii_file(file, st)) {
1978       return;
1979     }
1980   }
1981 
1982   if (file_exists("/etc/debian_version")) {
1983     st->print("Debian ");
1984     _print_ascii_file("/etc/debian_version", st);
1985   } else {
1986     st->print("Linux");
1987   }
1988   st->cr();
1989 }
1990 
1991 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
1992   char buf[256];
1993   while (fgets(buf, sizeof(buf), fp)) {
1994     // Edit out extra stuff in expected format
1995     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
1996       char* ptr = strstr(buf, "\"");  // the name is in quotes
1997       if (ptr != NULL) {
1998         ptr++; // go beyond first quote
1999         char* nl = strchr(ptr, '\"');
2000         if (nl != NULL) *nl = '\0';
2001         strncpy(distro, ptr, length);
2002       } else {
2003         ptr = strstr(buf, "=");
2004         ptr++; // go beyond equals then
2005         char* nl = strchr(ptr, '\n');
2006         if (nl != NULL) *nl = '\0';
2007         strncpy(distro, ptr, length);
2008       }
2009       return;
2010     } else if (get_first_line) {
2011       char* nl = strchr(buf, '\n');
2012       if (nl != NULL) *nl = '\0';
2013       strncpy(distro, buf, length);
2014       return;
2015     }
2016   }
2017   // print last line and close
2018   char* nl = strchr(buf, '\n');
2019   if (nl != NULL) *nl = '\0';
2020   strncpy(distro, buf, length);
2021 }
2022 
2023 static void parse_os_info(char* distro, size_t length, const char* file) {
2024   FILE* fp = fopen(file, "r");
2025   if (fp != NULL) {
2026     // if suse format, print out first line
2027     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2028     parse_os_info_helper(fp, distro, length, get_first_line);
2029     fclose(fp);
2030   }
2031 }
2032 
2033 void os::get_summary_os_info(char* buf, size_t buflen) {
2034   for (int i = 0;; i++) {
2035     const char* file = distro_files[i];
2036     if (file == NULL) {
2037       break; // ran out of distro_files
2038     }
2039     if (file_exists(file)) {
2040       parse_os_info(buf, buflen, file);
2041       return;
2042     }
2043   }
2044   // special case for debian
2045   if (file_exists("/etc/debian_version")) {
2046     strncpy(buf, "Debian ", buflen);
2047     if (buflen > 7) {
2048       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2049     }
2050   } else {
2051     strncpy(buf, "Linux", buflen);
2052   }
2053 }
2054 
2055 void os::Linux::print_libversion_info(outputStream* st) {
2056   // libc, pthread
2057   st->print("libc:");
2058   st->print("%s ", os::Linux::glibc_version());
2059   st->print("%s ", os::Linux::libpthread_version());
2060   st->cr();
2061 }
2062 
2063 void os::Linux::print_proc_sys_info(outputStream* st) {
2064   st->cr();
2065   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2066   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2067   st->cr();
2068   st->cr();
2069 
2070   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2071   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2072   st->cr();
2073   st->cr();
2074 
2075   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2076   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2077   st->cr();
2078   st->cr();
2079 }
2080 
2081 void os::Linux::print_full_memory_info(outputStream* st) {
2082   st->print("\n/proc/meminfo:\n");
2083   _print_ascii_file("/proc/meminfo", st);
2084   st->cr();
2085 }
2086 
2087 void os::Linux::print_ld_preload_file(outputStream* st) {
2088   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2089   st->cr();
2090 }
2091 
2092 void os::Linux::print_container_info(outputStream* st) {
2093   if (!OSContainer::is_containerized()) {
2094     return;
2095   }
2096 
2097   st->print("container (cgroup) information:\n");
2098 
2099   const char *p_ct = OSContainer::container_type();
2100   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2101 
2102   char *p = OSContainer::cpu_cpuset_cpus();
2103   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2104   free(p);
2105 
2106   p = OSContainer::cpu_cpuset_memory_nodes();
2107   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2108   free(p);
2109 
2110   int i = OSContainer::active_processor_count();
2111   if (i > 0) {
2112     st->print("active_processor_count: %d\n", i);
2113   } else {
2114     st->print("active_processor_count: failed\n");
2115   }
2116 
2117   i = OSContainer::cpu_quota();
2118   st->print("cpu_quota: %d\n", i);
2119 
2120   i = OSContainer::cpu_period();
2121   st->print("cpu_period: %d\n", i);
2122 
2123   i = OSContainer::cpu_shares();
2124   st->print("cpu_shares: %d\n", i);
2125 
2126   jlong j = OSContainer::memory_limit_in_bytes();
2127   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2128 
2129   j = OSContainer::memory_and_swap_limit_in_bytes();
2130   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2131 
2132   j = OSContainer::memory_soft_limit_in_bytes();
2133   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2134 
2135   j = OSContainer::OSContainer::memory_usage_in_bytes();
2136   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2137 
2138   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2139   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2140   st->cr();
2141 }
2142 
2143 void os::print_memory_info(outputStream* st) {
2144 
2145   st->print("Memory:");
2146   st->print(" %dk page", os::vm_page_size()>>10);
2147 
2148   // values in struct sysinfo are "unsigned long"
2149   struct sysinfo si;
2150   sysinfo(&si);
2151 
2152   st->print(", physical " UINT64_FORMAT "k",
2153             os::physical_memory() >> 10);
2154   st->print("(" UINT64_FORMAT "k free)",
2155             os::available_memory() >> 10);
2156   st->print(", swap " UINT64_FORMAT "k",
2157             ((jlong)si.totalswap * si.mem_unit) >> 10);
2158   st->print("(" UINT64_FORMAT "k free)",
2159             ((jlong)si.freeswap * si.mem_unit) >> 10);
2160   st->cr();
2161 }
2162 
2163 // Print the first "model name" line and the first "flags" line
2164 // that we find and nothing more. We assume "model name" comes
2165 // before "flags" so if we find a second "model name", then the
2166 // "flags" field is considered missing.
2167 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2168 #if defined(IA32) || defined(AMD64)
2169   // Other platforms have less repetitive cpuinfo files
2170   FILE *fp = fopen("/proc/cpuinfo", "r");
2171   if (fp) {
2172     while (!feof(fp)) {
2173       if (fgets(buf, buflen, fp)) {
2174         // Assume model name comes before flags
2175         bool model_name_printed = false;
2176         if (strstr(buf, "model name") != NULL) {
2177           if (!model_name_printed) {
2178             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2179             st->print_raw(buf);
2180             model_name_printed = true;
2181           } else {
2182             // model name printed but not flags?  Odd, just return
2183             fclose(fp);
2184             return true;
2185           }
2186         }
2187         // print the flags line too
2188         if (strstr(buf, "flags") != NULL) {
2189           st->print_raw(buf);
2190           fclose(fp);
2191           return true;
2192         }
2193       }
2194     }
2195     fclose(fp);
2196   }
2197 #endif // x86 platforms
2198   return false;
2199 }
2200 
2201 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2202   // Only print the model name if the platform provides this as a summary
2203   if (!print_model_name_and_flags(st, buf, buflen)) {
2204     st->print("\n/proc/cpuinfo:\n");
2205     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2206       st->print_cr("  <Not Available>");
2207     }
2208   }
2209 }
2210 
2211 #if defined(AMD64) || defined(IA32) || defined(X32)
2212 const char* search_string = "model name";
2213 #elif defined(M68K)
2214 const char* search_string = "CPU";
2215 #elif defined(PPC64)
2216 const char* search_string = "cpu";
2217 #elif defined(S390)
2218 const char* search_string = "processor";
2219 #elif defined(SPARC)
2220 const char* search_string = "cpu";
2221 #else
2222 const char* search_string = "Processor";
2223 #endif
2224 
2225 // Parses the cpuinfo file for string representing the model name.
2226 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2227   FILE* fp = fopen("/proc/cpuinfo", "r");
2228   if (fp != NULL) {
2229     while (!feof(fp)) {
2230       char buf[256];
2231       if (fgets(buf, sizeof(buf), fp)) {
2232         char* start = strstr(buf, search_string);
2233         if (start != NULL) {
2234           char *ptr = start + strlen(search_string);
2235           char *end = buf + strlen(buf);
2236           while (ptr != end) {
2237              // skip whitespace and colon for the rest of the name.
2238              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2239                break;
2240              }
2241              ptr++;
2242           }
2243           if (ptr != end) {
2244             // reasonable string, get rid of newline and keep the rest
2245             char* nl = strchr(buf, '\n');
2246             if (nl != NULL) *nl = '\0';
2247             strncpy(cpuinfo, ptr, length);
2248             fclose(fp);
2249             return;
2250           }
2251         }
2252       }
2253     }
2254     fclose(fp);
2255   }
2256   // cpuinfo not found or parsing failed, just print generic string.  The entire
2257   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2258 #if   defined(AARCH64)
2259   strncpy(cpuinfo, "AArch64", length);
2260 #elif defined(AMD64)
2261   strncpy(cpuinfo, "x86_64", length);
2262 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2263   strncpy(cpuinfo, "ARM", length);
2264 #elif defined(IA32)
2265   strncpy(cpuinfo, "x86_32", length);
2266 #elif defined(IA64)
2267   strncpy(cpuinfo, "IA64", length);
2268 #elif defined(PPC)
2269   strncpy(cpuinfo, "PPC64", length);
2270 #elif defined(S390)
2271   strncpy(cpuinfo, "S390", length);
2272 #elif defined(SPARC)
2273   strncpy(cpuinfo, "sparcv9", length);
2274 #elif defined(ZERO_LIBARCH)
2275   strncpy(cpuinfo, ZERO_LIBARCH, length);
2276 #else
2277   strncpy(cpuinfo, "unknown", length);
2278 #endif
2279 }
2280 
2281 static void print_signal_handler(outputStream* st, int sig,
2282                                  char* buf, size_t buflen);
2283 
2284 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2285   st->print_cr("Signal Handlers:");
2286   print_signal_handler(st, SIGSEGV, buf, buflen);
2287   print_signal_handler(st, SIGBUS , buf, buflen);
2288   print_signal_handler(st, SIGFPE , buf, buflen);
2289   print_signal_handler(st, SIGPIPE, buf, buflen);
2290   print_signal_handler(st, SIGXFSZ, buf, buflen);
2291   print_signal_handler(st, SIGILL , buf, buflen);
2292   print_signal_handler(st, SR_signum, buf, buflen);
2293   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2294   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2295   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2296   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2297 #if defined(PPC64)
2298   print_signal_handler(st, SIGTRAP, buf, buflen);
2299 #endif
2300 }
2301 
2302 static char saved_jvm_path[MAXPATHLEN] = {0};
2303 
2304 // Find the full path to the current module, libjvm.so
2305 void os::jvm_path(char *buf, jint buflen) {
2306   // Error checking.
2307   if (buflen < MAXPATHLEN) {
2308     assert(false, "must use a large-enough buffer");
2309     buf[0] = '\0';
2310     return;
2311   }
2312   // Lazy resolve the path to current module.
2313   if (saved_jvm_path[0] != 0) {
2314     strcpy(buf, saved_jvm_path);
2315     return;
2316   }
2317 
2318   char dli_fname[MAXPATHLEN];
2319   bool ret = dll_address_to_library_name(
2320                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2321                                          dli_fname, sizeof(dli_fname), NULL);
2322   assert(ret, "cannot locate libjvm");
2323   char *rp = NULL;
2324   if (ret && dli_fname[0] != '\0') {
2325     rp = os::Posix::realpath(dli_fname, buf, buflen);
2326   }
2327   if (rp == NULL) {
2328     return;
2329   }
2330 
2331   if (Arguments::sun_java_launcher_is_altjvm()) {
2332     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2333     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2334     // If "/jre/lib/" appears at the right place in the string, then
2335     // assume we are installed in a JDK and we're done. Otherwise, check
2336     // for a JAVA_HOME environment variable and fix up the path so it
2337     // looks like libjvm.so is installed there (append a fake suffix
2338     // hotspot/libjvm.so).
2339     const char *p = buf + strlen(buf) - 1;
2340     for (int count = 0; p > buf && count < 5; ++count) {
2341       for (--p; p > buf && *p != '/'; --p)
2342         /* empty */ ;
2343     }
2344 
2345     if (strncmp(p, "/jre/lib/", 9) != 0) {
2346       // Look for JAVA_HOME in the environment.
2347       char* java_home_var = ::getenv("JAVA_HOME");
2348       if (java_home_var != NULL && java_home_var[0] != 0) {
2349         char* jrelib_p;
2350         int len;
2351 
2352         // Check the current module name "libjvm.so".
2353         p = strrchr(buf, '/');
2354         if (p == NULL) {
2355           return;
2356         }
2357         assert(strstr(p, "/libjvm") == p, "invalid library name");
2358 
2359         rp = os::Posix::realpath(java_home_var, buf, buflen);
2360         if (rp == NULL) {
2361           return;
2362         }
2363 
2364         // determine if this is a legacy image or modules image
2365         // modules image doesn't have "jre" subdirectory
2366         len = strlen(buf);
2367         assert(len < buflen, "Ran out of buffer room");
2368         jrelib_p = buf + len;
2369         snprintf(jrelib_p, buflen-len, "/jre/lib");
2370         if (0 != access(buf, F_OK)) {
2371           snprintf(jrelib_p, buflen-len, "/lib");
2372         }
2373 
2374         if (0 == access(buf, F_OK)) {
2375           // Use current module name "libjvm.so"
2376           len = strlen(buf);
2377           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2378         } else {
2379           // Go back to path of .so
2380           rp = os::Posix::realpath(dli_fname, buf, buflen);
2381           if (rp == NULL) {
2382             return;
2383           }
2384         }
2385       }
2386     }
2387   }
2388 
2389   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2390   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2391 }
2392 
2393 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2394   // no prefix required, not even "_"
2395 }
2396 
2397 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2398   // no suffix required
2399 }
2400 
2401 ////////////////////////////////////////////////////////////////////////////////
2402 // sun.misc.Signal support
2403 
2404 static volatile jint sigint_count = 0;
2405 
2406 static void UserHandler(int sig, void *siginfo, void *context) {
2407   // 4511530 - sem_post is serialized and handled by the manager thread. When
2408   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2409   // don't want to flood the manager thread with sem_post requests.
2410   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2411     return;
2412   }
2413 
2414   // Ctrl-C is pressed during error reporting, likely because the error
2415   // handler fails to abort. Let VM die immediately.
2416   if (sig == SIGINT && VMError::is_error_reported()) {
2417     os::die();
2418   }
2419 
2420   os::signal_notify(sig);
2421 }
2422 
2423 void* os::user_handler() {
2424   return CAST_FROM_FN_PTR(void*, UserHandler);
2425 }
2426 
2427 static struct timespec create_semaphore_timespec(unsigned int sec, int nsec) {
2428   struct timespec ts;
2429   // Semaphore's are always associated with CLOCK_REALTIME
2430   os::Posix::clock_gettime(CLOCK_REALTIME, &ts);
2431   // see os_posix.cpp for discussion on overflow checking
2432   if (sec >= MAX_SECS) {
2433     ts.tv_sec += MAX_SECS;
2434     ts.tv_nsec = 0;
2435   } else {
2436     ts.tv_sec += sec;
2437     ts.tv_nsec += nsec;
2438     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2439       ts.tv_nsec -= NANOSECS_PER_SEC;
2440       ++ts.tv_sec; // note: this must be <= max_secs
2441     }
2442   }
2443 
2444   return ts;
2445 }
2446 
2447 extern "C" {
2448   typedef void (*sa_handler_t)(int);
2449   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2450 }
2451 
2452 void* os::signal(int signal_number, void* handler) {
2453   struct sigaction sigAct, oldSigAct;
2454 
2455   sigfillset(&(sigAct.sa_mask));
2456   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2457   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2458 
2459   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2460     // -1 means registration failed
2461     return (void *)-1;
2462   }
2463 
2464   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2465 }
2466 
2467 void os::signal_raise(int signal_number) {
2468   ::raise(signal_number);
2469 }
2470 
2471 // The following code is moved from os.cpp for making this
2472 // code platform specific, which it is by its very nature.
2473 
2474 // Will be modified when max signal is changed to be dynamic
2475 int os::sigexitnum_pd() {
2476   return NSIG;
2477 }
2478 
2479 // a counter for each possible signal value
2480 static volatile jint pending_signals[NSIG+1] = { 0 };
2481 
2482 // Linux(POSIX) specific hand shaking semaphore.
2483 static Semaphore* sig_sem = NULL;
2484 static PosixSemaphore sr_semaphore;
2485 
2486 static void jdk_misc_signal_init() {
2487   // Initialize signal structures
2488   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2489 
2490   // Initialize signal semaphore
2491   sig_sem = new Semaphore();
2492 }
2493 
2494 void os::signal_notify(int sig) {
2495   if (sig_sem != NULL) {
2496     Atomic::inc(&pending_signals[sig]);
2497     sig_sem->signal();
2498   } else {
2499     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2500     // initialization isn't called.
2501     assert(ReduceSignalUsage, "signal semaphore should be created");
2502   }
2503 }
2504 
2505 static int check_pending_signals() {
2506   Atomic::store(0, &sigint_count);
2507   for (;;) {
2508     for (int i = 0; i < NSIG + 1; i++) {
2509       jint n = pending_signals[i];
2510       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2511         return i;
2512       }
2513     }
2514     JavaThread *thread = JavaThread::current();
2515     ThreadBlockInVM tbivm(thread);
2516 
2517     bool threadIsSuspended;
2518     do {
2519       thread->set_suspend_equivalent();
2520       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2521       sig_sem->wait();
2522 
2523       // were we externally suspended while we were waiting?
2524       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2525       if (threadIsSuspended) {
2526         // The semaphore has been incremented, but while we were waiting
2527         // another thread suspended us. We don't want to continue running
2528         // while suspended because that would surprise the thread that
2529         // suspended us.
2530         sig_sem->signal();
2531 
2532         thread->java_suspend_self();
2533       }
2534     } while (threadIsSuspended);
2535   }
2536 }
2537 
2538 int os::signal_wait() {
2539   return check_pending_signals();
2540 }
2541 
2542 ////////////////////////////////////////////////////////////////////////////////
2543 // Virtual Memory
2544 
2545 int os::vm_page_size() {
2546   // Seems redundant as all get out
2547   assert(os::Linux::page_size() != -1, "must call os::init");
2548   return os::Linux::page_size();
2549 }
2550 
2551 // Solaris allocates memory by pages.
2552 int os::vm_allocation_granularity() {
2553   assert(os::Linux::page_size() != -1, "must call os::init");
2554   return os::Linux::page_size();
2555 }
2556 
2557 // Rationale behind this function:
2558 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2559 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2560 //  samples for JITted code. Here we create private executable mapping over the code cache
2561 //  and then we can use standard (well, almost, as mapping can change) way to provide
2562 //  info for the reporting script by storing timestamp and location of symbol
2563 void linux_wrap_code(char* base, size_t size) {
2564   static volatile jint cnt = 0;
2565 
2566   if (!UseOprofile) {
2567     return;
2568   }
2569 
2570   char buf[PATH_MAX+1];
2571   int num = Atomic::add(1, &cnt);
2572 
2573   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2574            os::get_temp_directory(), os::current_process_id(), num);
2575   unlink(buf);
2576 
2577   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2578 
2579   if (fd != -1) {
2580     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2581     if (rv != (off_t)-1) {
2582       if (::write(fd, "", 1) == 1) {
2583         mmap(base, size,
2584              PROT_READ|PROT_WRITE|PROT_EXEC,
2585              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2586       }
2587     }
2588     ::close(fd);
2589     unlink(buf);
2590   }
2591 }
2592 
2593 static bool recoverable_mmap_error(int err) {
2594   // See if the error is one we can let the caller handle. This
2595   // list of errno values comes from JBS-6843484. I can't find a
2596   // Linux man page that documents this specific set of errno
2597   // values so while this list currently matches Solaris, it may
2598   // change as we gain experience with this failure mode.
2599   switch (err) {
2600   case EBADF:
2601   case EINVAL:
2602   case ENOTSUP:
2603     // let the caller deal with these errors
2604     return true;
2605 
2606   default:
2607     // Any remaining errors on this OS can cause our reserved mapping
2608     // to be lost. That can cause confusion where different data
2609     // structures think they have the same memory mapped. The worst
2610     // scenario is if both the VM and a library think they have the
2611     // same memory mapped.
2612     return false;
2613   }
2614 }
2615 
2616 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2617                                     int err) {
2618   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2619           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2620           os::strerror(err), err);
2621 }
2622 
2623 static void warn_fail_commit_memory(char* addr, size_t size,
2624                                     size_t alignment_hint, bool exec,
2625                                     int err) {
2626   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2627           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2628           alignment_hint, exec, os::strerror(err), err);
2629 }
2630 
2631 // NOTE: Linux kernel does not really reserve the pages for us.
2632 //       All it does is to check if there are enough free pages
2633 //       left at the time of mmap(). This could be a potential
2634 //       problem.
2635 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2636   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2637   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2638                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2639   if (res != (uintptr_t) MAP_FAILED) {
2640     if (UseNUMAInterleaving) {
2641       numa_make_global(addr, size);
2642     }
2643     return 0;
2644   }
2645 
2646   int err = errno;  // save errno from mmap() call above
2647 
2648   if (!recoverable_mmap_error(err)) {
2649     warn_fail_commit_memory(addr, size, exec, err);
2650     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2651   }
2652 
2653   return err;
2654 }
2655 
2656 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2657   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2658 }
2659 
2660 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2661                                   const char* mesg) {
2662   assert(mesg != NULL, "mesg must be specified");
2663   int err = os::Linux::commit_memory_impl(addr, size, exec);
2664   if (err != 0) {
2665     // the caller wants all commit errors to exit with the specified mesg:
2666     warn_fail_commit_memory(addr, size, exec, err);
2667     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2668   }
2669 }
2670 
2671 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2672 #ifndef MAP_HUGETLB
2673   #define MAP_HUGETLB 0x40000
2674 #endif
2675 
2676 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2677 #ifndef MADV_HUGEPAGE
2678   #define MADV_HUGEPAGE 14
2679 #endif
2680 
2681 int os::Linux::commit_memory_impl(char* addr, size_t size,
2682                                   size_t alignment_hint, bool exec) {
2683   int err = os::Linux::commit_memory_impl(addr, size, exec);
2684   if (err == 0) {
2685     realign_memory(addr, size, alignment_hint);
2686   }
2687   return err;
2688 }
2689 
2690 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2691                           bool exec) {
2692   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2693 }
2694 
2695 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2696                                   size_t alignment_hint, bool exec,
2697                                   const char* mesg) {
2698   assert(mesg != NULL, "mesg must be specified");
2699   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2700   if (err != 0) {
2701     // the caller wants all commit errors to exit with the specified mesg:
2702     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2703     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2704   }
2705 }
2706 
2707 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2708   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2709     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2710     // be supported or the memory may already be backed by huge pages.
2711     ::madvise(addr, bytes, MADV_HUGEPAGE);
2712   }
2713 }
2714 
2715 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2716   // This method works by doing an mmap over an existing mmaping and effectively discarding
2717   // the existing pages. However it won't work for SHM-based large pages that cannot be
2718   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2719   // small pages on top of the SHM segment. This method always works for small pages, so we
2720   // allow that in any case.
2721   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2722     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2723   }
2724 }
2725 
2726 void os::numa_make_global(char *addr, size_t bytes) {
2727   if (!UseNUMAInterleaving)
2728     return ;
2729   Linux::numa_interleave_memory(addr, bytes);
2730 }
2731 
2732 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2733 // bind policy to MPOL_PREFERRED for the current thread.
2734 #define USE_MPOL_PREFERRED 0
2735 
2736 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2737   // To make NUMA and large pages more robust when both enabled, we need to ease
2738   // the requirements on where the memory should be allocated. MPOL_BIND is the
2739   // default policy and it will force memory to be allocated on the specified
2740   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2741   // the specified node, but will not force it. Using this policy will prevent
2742   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2743   // free large pages.
2744   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2745   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2746 }
2747 
2748 bool os::numa_topology_changed() { return false; }
2749 
2750 size_t os::numa_get_groups_num() {
2751   // Return just the number of nodes in which it's possible to allocate memory
2752   // (in numa terminology, configured nodes).
2753   return Linux::numa_num_configured_nodes();
2754 }
2755 
2756 int os::numa_get_group_id() {
2757   int cpu_id = Linux::sched_getcpu();
2758   if (cpu_id != -1) {
2759     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2760     if (lgrp_id != -1) {
2761       return lgrp_id;
2762     }
2763   }
2764   return 0;
2765 }
2766 
2767 int os::Linux::get_existing_num_nodes() {
2768   int node;
2769   int highest_node_number = Linux::numa_max_node();
2770   int num_nodes = 0;
2771 
2772   // Get the total number of nodes in the system including nodes without memory.
2773   for (node = 0; node <= highest_node_number; node++) {
2774     if (isnode_in_existing_nodes(node)) {
2775       num_nodes++;
2776     }
2777   }
2778   return num_nodes;
2779 }
2780 
2781 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2782   int highest_node_number = Linux::numa_max_node();
2783   size_t i = 0;
2784 
2785   // Map all node ids in which it is possible to allocate memory. Also nodes are
2786   // not always consecutively available, i.e. available from 0 to the highest
2787   // node number. If the nodes have been bound explicitly using numactl membind,
2788   // then allocate memory from those nodes only.
2789   for (int node = 0; node <= highest_node_number; node++) {
2790     if (Linux::isnode_in_bound_nodes((unsigned int)node)) {
2791       ids[i++] = node;
2792     }
2793   }
2794 
2795   // If externally invoked in interleave mode then get node bitmasks from interleave mode pointer.
2796   if (Linux::_numa_interleave_ptr != NULL ) {
2797     i = 0;
2798     for (int node = 0; node <= highest_node_number; node++) {
2799       if (Linux::_numa_bitmask_isbitset(Linux::_numa_interleave_ptr, node)) {
2800         ids[i++] = node;
2801       }
2802     }
2803   }
2804   return i;
2805 }
2806 
2807 bool os::get_page_info(char *start, page_info* info) {
2808   return false;
2809 }
2810 
2811 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2812                      page_info* page_found) {
2813   return end;
2814 }
2815 
2816 
2817 int os::Linux::sched_getcpu_syscall(void) {
2818   unsigned int cpu = 0;
2819   int retval = -1;
2820 
2821 #if defined(IA32)
2822   #ifndef SYS_getcpu
2823     #define SYS_getcpu 318
2824   #endif
2825   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2826 #elif defined(AMD64)
2827 // Unfortunately we have to bring all these macros here from vsyscall.h
2828 // to be able to compile on old linuxes.
2829   #define __NR_vgetcpu 2
2830   #define VSYSCALL_START (-10UL << 20)
2831   #define VSYSCALL_SIZE 1024
2832   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2833   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2834   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2835   retval = vgetcpu(&cpu, NULL, NULL);
2836 #endif
2837 
2838   return (retval == -1) ? retval : cpu;
2839 }
2840 
2841 void os::Linux::sched_getcpu_init() {
2842   // sched_getcpu() should be in libc.
2843   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2844                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2845 
2846   // If it's not, try a direct syscall.
2847   if (sched_getcpu() == -1) {
2848     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2849                                     (void*)&sched_getcpu_syscall));
2850   }
2851 
2852   if (sched_getcpu() == -1) {
2853     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
2854   }
2855 }
2856 
2857 // Something to do with the numa-aware allocator needs these symbols
2858 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2859 extern "C" JNIEXPORT void numa_error(char *where) { }
2860 
2861 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2862 // load symbol from base version instead.
2863 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2864   void *f = dlvsym(handle, name, "libnuma_1.1");
2865   if (f == NULL) {
2866     f = dlsym(handle, name);
2867   }
2868   return f;
2869 }
2870 
2871 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2872 // Return NULL if the symbol is not defined in this particular version.
2873 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2874   return dlvsym(handle, name, "libnuma_1.2");
2875 }
2876 
2877 bool os::Linux::libnuma_init() {
2878   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2879     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2880     if (handle != NULL) {
2881       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2882                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2883       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2884                                        libnuma_dlsym(handle, "numa_max_node")));
2885       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2886                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2887       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2888                                         libnuma_dlsym(handle, "numa_available")));
2889       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2890                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2891       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2892                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2893       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2894                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2895       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2896                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2897       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2898                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2899       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2900                                        libnuma_dlsym(handle, "numa_distance")));
2901       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
2902                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
2903       set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
2904                                           libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
2905 
2906       if (numa_available() != -1) {
2907         struct bitmask *bmp;
2908         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2909         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2910         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2911         bmp = _numa_get_interleave_mask();
2912         set_numa_interleave_ptr(&bmp);
2913         bmp = _numa_get_membind();
2914         set_numa_membind_ptr(&bmp);
2915         // Create an index -> node mapping, since nodes are not always consecutive
2916         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2917         rebuild_nindex_to_node_map();
2918         // Create a cpu -> node mapping
2919         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2920         rebuild_cpu_to_node_map();
2921         return true;
2922       }
2923     }
2924   }
2925   return false;
2926 }
2927 
2928 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2929   // Creating guard page is very expensive. Java thread has HotSpot
2930   // guard pages, only enable glibc guard page for non-Java threads.
2931   // (Remember: compiler thread is a Java thread, too!)
2932   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2933 }
2934 
2935 void os::Linux::rebuild_nindex_to_node_map() {
2936   int highest_node_number = Linux::numa_max_node();
2937 
2938   nindex_to_node()->clear();
2939   for (int node = 0; node <= highest_node_number; node++) {
2940     if (Linux::isnode_in_existing_nodes(node)) {
2941       nindex_to_node()->append(node);
2942     }
2943   }
2944 }
2945 
2946 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2947 // The table is later used in get_node_by_cpu().
2948 void os::Linux::rebuild_cpu_to_node_map() {
2949   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2950                               // in libnuma (possible values are starting from 16,
2951                               // and continuing up with every other power of 2, but less
2952                               // than the maximum number of CPUs supported by kernel), and
2953                               // is a subject to change (in libnuma version 2 the requirements
2954                               // are more reasonable) we'll just hardcode the number they use
2955                               // in the library.
2956   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2957 
2958   size_t cpu_num = processor_count();
2959   size_t cpu_map_size = NCPUS / BitsPerCLong;
2960   size_t cpu_map_valid_size =
2961     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2962 
2963   cpu_to_node()->clear();
2964   cpu_to_node()->at_grow(cpu_num - 1);
2965 
2966   size_t node_num = get_existing_num_nodes();
2967 
2968   int distance = 0;
2969   int closest_distance = INT_MAX;
2970   int closest_node = 0;
2971   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2972   for (size_t i = 0; i < node_num; i++) {
2973     // Check if node is configured (not a memory-less node). If it is not, find
2974     // the closest configured node. Check also if node is bound, i.e. it's allowed
2975     // to allocate memory from the node. If it's not allowed, map cpus in that node
2976     // to the closest node from which memory allocation is allowed.
2977     if (!isnode_in_configured_nodes(nindex_to_node()->at(i)) ||
2978         !isnode_in_bound_nodes(nindex_to_node()->at(i))) {
2979       closest_distance = INT_MAX;
2980       // Check distance from all remaining nodes in the system. Ignore distance
2981       // from itself, from another non-configured node, and from another non-bound
2982       // node.
2983       for (size_t m = 0; m < node_num; m++) {
2984         if (m != i &&
2985             isnode_in_configured_nodes(nindex_to_node()->at(m)) &&
2986             isnode_in_bound_nodes(nindex_to_node()->at(m))) {
2987           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2988           // If a closest node is found, update. There is always at least one
2989           // configured and bound node in the system so there is always at least
2990           // one node close.
2991           if (distance != 0 && distance < closest_distance) {
2992             closest_distance = distance;
2993             closest_node = nindex_to_node()->at(m);
2994           }
2995         }
2996       }
2997      } else {
2998        // Current node is already a configured node.
2999        closest_node = nindex_to_node()->at(i);
3000      }
3001 
3002     // Get cpus from the original node and map them to the closest node. If node
3003     // is a configured node (not a memory-less node), then original node and
3004     // closest node are the same.
3005     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3006       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3007         if (cpu_map[j] != 0) {
3008           for (size_t k = 0; k < BitsPerCLong; k++) {
3009             if (cpu_map[j] & (1UL << k)) {
3010               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3011             }
3012           }
3013         }
3014       }
3015     }
3016   }
3017   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3018 }
3019 
3020 int os::Linux::get_node_by_cpu(int cpu_id) {
3021   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3022     return cpu_to_node()->at(cpu_id);
3023   }
3024   return -1;
3025 }
3026 
3027 GrowableArray<int>* os::Linux::_cpu_to_node;
3028 GrowableArray<int>* os::Linux::_nindex_to_node;
3029 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3030 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3031 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3032 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3033 os::Linux::numa_available_func_t os::Linux::_numa_available;
3034 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3035 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3036 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3037 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3038 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3039 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3040 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3041 os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
3042 unsigned long* os::Linux::_numa_all_nodes;
3043 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3044 struct bitmask* os::Linux::_numa_nodes_ptr;
3045 struct bitmask* os::Linux::_numa_interleave_ptr;
3046 struct bitmask* os::Linux::_numa_membind_ptr;
3047 
3048 bool os::pd_uncommit_memory(char* addr, size_t size) {
3049   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3050                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3051   return res  != (uintptr_t) MAP_FAILED;
3052 }
3053 
3054 static address get_stack_commited_bottom(address bottom, size_t size) {
3055   address nbot = bottom;
3056   address ntop = bottom + size;
3057 
3058   size_t page_sz = os::vm_page_size();
3059   unsigned pages = size / page_sz;
3060 
3061   unsigned char vec[1];
3062   unsigned imin = 1, imax = pages + 1, imid;
3063   int mincore_return_value = 0;
3064 
3065   assert(imin <= imax, "Unexpected page size");
3066 
3067   while (imin < imax) {
3068     imid = (imax + imin) / 2;
3069     nbot = ntop - (imid * page_sz);
3070 
3071     // Use a trick with mincore to check whether the page is mapped or not.
3072     // mincore sets vec to 1 if page resides in memory and to 0 if page
3073     // is swapped output but if page we are asking for is unmapped
3074     // it returns -1,ENOMEM
3075     mincore_return_value = mincore(nbot, page_sz, vec);
3076 
3077     if (mincore_return_value == -1) {
3078       // Page is not mapped go up
3079       // to find first mapped page
3080       if (errno != EAGAIN) {
3081         assert(errno == ENOMEM, "Unexpected mincore errno");
3082         imax = imid;
3083       }
3084     } else {
3085       // Page is mapped go down
3086       // to find first not mapped page
3087       imin = imid + 1;
3088     }
3089   }
3090 
3091   nbot = nbot + page_sz;
3092 
3093   // Adjust stack bottom one page up if last checked page is not mapped
3094   if (mincore_return_value == -1) {
3095     nbot = nbot + page_sz;
3096   }
3097 
3098   return nbot;
3099 }
3100 
3101 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3102   int mincore_return_value;
3103   const size_t stripe = 1024;  // query this many pages each time
3104   unsigned char vec[stripe + 1];
3105   // set a guard
3106   vec[stripe] = 'X';
3107 
3108   const size_t page_sz = os::vm_page_size();
3109   size_t pages = size / page_sz;
3110 
3111   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3112   assert(is_aligned(size, page_sz), "Size must be page aligned");
3113 
3114   committed_start = NULL;
3115 
3116   int loops = (pages + stripe - 1) / stripe;
3117   int committed_pages = 0;
3118   address loop_base = start;
3119   bool found_range = false;
3120 
3121   for (int index = 0; index < loops && !found_range; index ++) {
3122     assert(pages > 0, "Nothing to do");
3123     int pages_to_query = (pages >= stripe) ? stripe : pages;
3124     pages -= pages_to_query;
3125 
3126     // Get stable read
3127     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3128 
3129     // During shutdown, some memory goes away without properly notifying NMT,
3130     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3131     // Bailout and return as not committed for now.
3132     if (mincore_return_value == -1 && errno == ENOMEM) {
3133       return false;
3134     }
3135 
3136     assert(vec[stripe] == 'X', "overflow guard");
3137     assert(mincore_return_value == 0, "Range must be valid");
3138     // Process this stripe
3139     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3140       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3141         // End of current contiguous region
3142         if (committed_start != NULL) {
3143           found_range = true;
3144           break;
3145         }
3146       } else { // committed
3147         // Start of region
3148         if (committed_start == NULL) {
3149           committed_start = loop_base + page_sz * vecIdx;
3150         }
3151         committed_pages ++;
3152       }
3153     }
3154 
3155     loop_base += pages_to_query * page_sz;
3156   }
3157 
3158   if (committed_start != NULL) {
3159     assert(committed_pages > 0, "Must have committed region");
3160     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3161     assert(committed_start >= start && committed_start < start + size, "Out of range");
3162     committed_size = page_sz * committed_pages;
3163     return true;
3164   } else {
3165     assert(committed_pages == 0, "Should not have committed region");
3166     return false;
3167   }
3168 }
3169 
3170 
3171 // Linux uses a growable mapping for the stack, and if the mapping for
3172 // the stack guard pages is not removed when we detach a thread the
3173 // stack cannot grow beyond the pages where the stack guard was
3174 // mapped.  If at some point later in the process the stack expands to
3175 // that point, the Linux kernel cannot expand the stack any further
3176 // because the guard pages are in the way, and a segfault occurs.
3177 //
3178 // However, it's essential not to split the stack region by unmapping
3179 // a region (leaving a hole) that's already part of the stack mapping,
3180 // so if the stack mapping has already grown beyond the guard pages at
3181 // the time we create them, we have to truncate the stack mapping.
3182 // So, we need to know the extent of the stack mapping when
3183 // create_stack_guard_pages() is called.
3184 
3185 // We only need this for stacks that are growable: at the time of
3186 // writing thread stacks don't use growable mappings (i.e. those
3187 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3188 // only applies to the main thread.
3189 
3190 // If the (growable) stack mapping already extends beyond the point
3191 // where we're going to put our guard pages, truncate the mapping at
3192 // that point by munmap()ping it.  This ensures that when we later
3193 // munmap() the guard pages we don't leave a hole in the stack
3194 // mapping. This only affects the main/primordial thread
3195 
3196 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3197   if (os::is_primordial_thread()) {
3198     // As we manually grow stack up to bottom inside create_attached_thread(),
3199     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3200     // we don't need to do anything special.
3201     // Check it first, before calling heavy function.
3202     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3203     unsigned char vec[1];
3204 
3205     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3206       // Fallback to slow path on all errors, including EAGAIN
3207       stack_extent = (uintptr_t) get_stack_commited_bottom(
3208                                                            os::Linux::initial_thread_stack_bottom(),
3209                                                            (size_t)addr - stack_extent);
3210     }
3211 
3212     if (stack_extent < (uintptr_t)addr) {
3213       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3214     }
3215   }
3216 
3217   return os::commit_memory(addr, size, !ExecMem);
3218 }
3219 
3220 // If this is a growable mapping, remove the guard pages entirely by
3221 // munmap()ping them.  If not, just call uncommit_memory(). This only
3222 // affects the main/primordial thread, but guard against future OS changes.
3223 // It's safe to always unmap guard pages for primordial thread because we
3224 // always place it right after end of the mapped region.
3225 
3226 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3227   uintptr_t stack_extent, stack_base;
3228 
3229   if (os::is_primordial_thread()) {
3230     return ::munmap(addr, size) == 0;
3231   }
3232 
3233   return os::uncommit_memory(addr, size);
3234 }
3235 
3236 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3237 // at 'requested_addr'. If there are existing memory mappings at the same
3238 // location, however, they will be overwritten. If 'fixed' is false,
3239 // 'requested_addr' is only treated as a hint, the return value may or
3240 // may not start from the requested address. Unlike Linux mmap(), this
3241 // function returns NULL to indicate failure.
3242 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3243   char * addr;
3244   int flags;
3245 
3246   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3247   if (fixed) {
3248     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3249     flags |= MAP_FIXED;
3250   }
3251 
3252   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3253   // touch an uncommitted page. Otherwise, the read/write might
3254   // succeed if we have enough swap space to back the physical page.
3255   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3256                        flags, -1, 0);
3257 
3258   return addr == MAP_FAILED ? NULL : addr;
3259 }
3260 
3261 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3262 //   (req_addr != NULL) or with a given alignment.
3263 //  - bytes shall be a multiple of alignment.
3264 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3265 //  - alignment sets the alignment at which memory shall be allocated.
3266 //     It must be a multiple of allocation granularity.
3267 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3268 //  req_addr or NULL.
3269 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3270 
3271   size_t extra_size = bytes;
3272   if (req_addr == NULL && alignment > 0) {
3273     extra_size += alignment;
3274   }
3275 
3276   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3277     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3278     -1, 0);
3279   if (start == MAP_FAILED) {
3280     start = NULL;
3281   } else {
3282     if (req_addr != NULL) {
3283       if (start != req_addr) {
3284         ::munmap(start, extra_size);
3285         start = NULL;
3286       }
3287     } else {
3288       char* const start_aligned = align_up(start, alignment);
3289       char* const end_aligned = start_aligned + bytes;
3290       char* const end = start + extra_size;
3291       if (start_aligned > start) {
3292         ::munmap(start, start_aligned - start);
3293       }
3294       if (end_aligned < end) {
3295         ::munmap(end_aligned, end - end_aligned);
3296       }
3297       start = start_aligned;
3298     }
3299   }
3300   return start;
3301 }
3302 
3303 static int anon_munmap(char * addr, size_t size) {
3304   return ::munmap(addr, size) == 0;
3305 }
3306 
3307 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3308                             size_t alignment_hint) {
3309   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3310 }
3311 
3312 bool os::pd_release_memory(char* addr, size_t size) {
3313   return anon_munmap(addr, size);
3314 }
3315 
3316 static bool linux_mprotect(char* addr, size_t size, int prot) {
3317   // Linux wants the mprotect address argument to be page aligned.
3318   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3319 
3320   // According to SUSv3, mprotect() should only be used with mappings
3321   // established by mmap(), and mmap() always maps whole pages. Unaligned
3322   // 'addr' likely indicates problem in the VM (e.g. trying to change
3323   // protection of malloc'ed or statically allocated memory). Check the
3324   // caller if you hit this assert.
3325   assert(addr == bottom, "sanity check");
3326 
3327   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3328   return ::mprotect(bottom, size, prot) == 0;
3329 }
3330 
3331 // Set protections specified
3332 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3333                         bool is_committed) {
3334   unsigned int p = 0;
3335   switch (prot) {
3336   case MEM_PROT_NONE: p = PROT_NONE; break;
3337   case MEM_PROT_READ: p = PROT_READ; break;
3338   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3339   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3340   default:
3341     ShouldNotReachHere();
3342   }
3343   // is_committed is unused.
3344   return linux_mprotect(addr, bytes, p);
3345 }
3346 
3347 bool os::guard_memory(char* addr, size_t size) {
3348   return linux_mprotect(addr, size, PROT_NONE);
3349 }
3350 
3351 bool os::unguard_memory(char* addr, size_t size) {
3352   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3353 }
3354 
3355 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3356                                                     size_t page_size) {
3357   bool result = false;
3358   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3359                  MAP_ANONYMOUS|MAP_PRIVATE,
3360                  -1, 0);
3361   if (p != MAP_FAILED) {
3362     void *aligned_p = align_up(p, page_size);
3363 
3364     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3365 
3366     munmap(p, page_size * 2);
3367   }
3368 
3369   if (warn && !result) {
3370     warning("TransparentHugePages is not supported by the operating system.");
3371   }
3372 
3373   return result;
3374 }
3375 
3376 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3377   bool result = false;
3378   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3379                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3380                  -1, 0);
3381 
3382   if (p != MAP_FAILED) {
3383     // We don't know if this really is a huge page or not.
3384     FILE *fp = fopen("/proc/self/maps", "r");
3385     if (fp) {
3386       while (!feof(fp)) {
3387         char chars[257];
3388         long x = 0;
3389         if (fgets(chars, sizeof(chars), fp)) {
3390           if (sscanf(chars, "%lx-%*x", &x) == 1
3391               && x == (long)p) {
3392             if (strstr (chars, "hugepage")) {
3393               result = true;
3394               break;
3395             }
3396           }
3397         }
3398       }
3399       fclose(fp);
3400     }
3401     munmap(p, page_size);
3402   }
3403 
3404   if (warn && !result) {
3405     warning("HugeTLBFS is not supported by the operating system.");
3406   }
3407 
3408   return result;
3409 }
3410 
3411 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3412 //
3413 // From the coredump_filter documentation:
3414 //
3415 // - (bit 0) anonymous private memory
3416 // - (bit 1) anonymous shared memory
3417 // - (bit 2) file-backed private memory
3418 // - (bit 3) file-backed shared memory
3419 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3420 //           effective only if the bit 2 is cleared)
3421 // - (bit 5) hugetlb private memory
3422 // - (bit 6) hugetlb shared memory
3423 // - (bit 7) dax private memory
3424 // - (bit 8) dax shared memory
3425 //
3426 static void set_coredump_filter(bool largepages, bool dax_shared) {
3427   FILE *f;
3428   long cdm;
3429   bool filter_changed = false;
3430 
3431   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3432     return;
3433   }
3434 
3435   if (fscanf(f, "%lx", &cdm) != 1) {
3436     fclose(f);
3437     return;
3438   }
3439 
3440   rewind(f);
3441 
3442   if (largepages && (cdm & LARGEPAGES_BIT) == 0) {
3443     cdm |= LARGEPAGES_BIT;
3444     filter_changed = true;
3445   }
3446   if (dax_shared && (cdm & DAX_SHARED_BIT) == 0) {
3447     cdm |= DAX_SHARED_BIT;
3448     filter_changed = true;
3449   }
3450   if (filter_changed) {
3451     fprintf(f, "%#lx", cdm);
3452   }
3453 
3454   fclose(f);
3455 }
3456 
3457 // Large page support
3458 
3459 static size_t _large_page_size = 0;
3460 
3461 size_t os::Linux::find_large_page_size() {
3462   size_t large_page_size = 0;
3463 
3464   // large_page_size on Linux is used to round up heap size. x86 uses either
3465   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3466   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3467   // page as large as 256M.
3468   //
3469   // Here we try to figure out page size by parsing /proc/meminfo and looking
3470   // for a line with the following format:
3471   //    Hugepagesize:     2048 kB
3472   //
3473   // If we can't determine the value (e.g. /proc is not mounted, or the text
3474   // format has been changed), we'll use the largest page size supported by
3475   // the processor.
3476 
3477 #ifndef ZERO
3478   large_page_size =
3479     AARCH64_ONLY(2 * M)
3480     AMD64_ONLY(2 * M)
3481     ARM32_ONLY(2 * M)
3482     IA32_ONLY(4 * M)
3483     IA64_ONLY(256 * M)
3484     PPC_ONLY(4 * M)
3485     S390_ONLY(1 * M)
3486     SPARC_ONLY(4 * M);
3487 #endif // ZERO
3488 
3489   FILE *fp = fopen("/proc/meminfo", "r");
3490   if (fp) {
3491     while (!feof(fp)) {
3492       int x = 0;
3493       char buf[16];
3494       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3495         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3496           large_page_size = x * K;
3497           break;
3498         }
3499       } else {
3500         // skip to next line
3501         for (;;) {
3502           int ch = fgetc(fp);
3503           if (ch == EOF || ch == (int)'\n') break;
3504         }
3505       }
3506     }
3507     fclose(fp);
3508   }
3509 
3510   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3511     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3512             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3513             proper_unit_for_byte_size(large_page_size));
3514   }
3515 
3516   return large_page_size;
3517 }
3518 
3519 size_t os::Linux::setup_large_page_size() {
3520   _large_page_size = Linux::find_large_page_size();
3521   const size_t default_page_size = (size_t)Linux::page_size();
3522   if (_large_page_size > default_page_size) {
3523     _page_sizes[0] = _large_page_size;
3524     _page_sizes[1] = default_page_size;
3525     _page_sizes[2] = 0;
3526   }
3527 
3528   return _large_page_size;
3529 }
3530 
3531 bool os::Linux::setup_large_page_type(size_t page_size) {
3532   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3533       FLAG_IS_DEFAULT(UseSHM) &&
3534       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3535 
3536     // The type of large pages has not been specified by the user.
3537 
3538     // Try UseHugeTLBFS and then UseSHM.
3539     UseHugeTLBFS = UseSHM = true;
3540 
3541     // Don't try UseTransparentHugePages since there are known
3542     // performance issues with it turned on. This might change in the future.
3543     UseTransparentHugePages = false;
3544   }
3545 
3546   if (UseTransparentHugePages) {
3547     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3548     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3549       UseHugeTLBFS = false;
3550       UseSHM = false;
3551       return true;
3552     }
3553     UseTransparentHugePages = false;
3554   }
3555 
3556   if (UseHugeTLBFS) {
3557     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3558     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3559       UseSHM = false;
3560       return true;
3561     }
3562     UseHugeTLBFS = false;
3563   }
3564 
3565   return UseSHM;
3566 }
3567 
3568 void os::large_page_init() {
3569   if (!UseLargePages &&
3570       !UseTransparentHugePages &&
3571       !UseHugeTLBFS &&
3572       !UseSHM) {
3573     // Not using large pages.
3574     return;
3575   }
3576 
3577   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3578     // The user explicitly turned off large pages.
3579     // Ignore the rest of the large pages flags.
3580     UseTransparentHugePages = false;
3581     UseHugeTLBFS = false;
3582     UseSHM = false;
3583     return;
3584   }
3585 
3586   size_t large_page_size = Linux::setup_large_page_size();
3587   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3588 
3589   set_coredump_filter(true /*largepages*/, false /*dax_shared*/);
3590 }
3591 
3592 #ifndef SHM_HUGETLB
3593   #define SHM_HUGETLB 04000
3594 #endif
3595 
3596 #define shm_warning_format(format, ...)              \
3597   do {                                               \
3598     if (UseLargePages &&                             \
3599         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3600          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3601          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3602       warning(format, __VA_ARGS__);                  \
3603     }                                                \
3604   } while (0)
3605 
3606 #define shm_warning(str) shm_warning_format("%s", str)
3607 
3608 #define shm_warning_with_errno(str)                \
3609   do {                                             \
3610     int err = errno;                               \
3611     shm_warning_format(str " (error = %d)", err);  \
3612   } while (0)
3613 
3614 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3615   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3616 
3617   if (!is_aligned(alignment, SHMLBA)) {
3618     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3619     return NULL;
3620   }
3621 
3622   // To ensure that we get 'alignment' aligned memory from shmat,
3623   // we pre-reserve aligned virtual memory and then attach to that.
3624 
3625   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3626   if (pre_reserved_addr == NULL) {
3627     // Couldn't pre-reserve aligned memory.
3628     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3629     return NULL;
3630   }
3631 
3632   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3633   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3634 
3635   if ((intptr_t)addr == -1) {
3636     int err = errno;
3637     shm_warning_with_errno("Failed to attach shared memory.");
3638 
3639     assert(err != EACCES, "Unexpected error");
3640     assert(err != EIDRM,  "Unexpected error");
3641     assert(err != EINVAL, "Unexpected error");
3642 
3643     // Since we don't know if the kernel unmapped the pre-reserved memory area
3644     // we can't unmap it, since that would potentially unmap memory that was
3645     // mapped from other threads.
3646     return NULL;
3647   }
3648 
3649   return addr;
3650 }
3651 
3652 static char* shmat_at_address(int shmid, char* req_addr) {
3653   if (!is_aligned(req_addr, SHMLBA)) {
3654     assert(false, "Requested address needs to be SHMLBA aligned");
3655     return NULL;
3656   }
3657 
3658   char* addr = (char*)shmat(shmid, req_addr, 0);
3659 
3660   if ((intptr_t)addr == -1) {
3661     shm_warning_with_errno("Failed to attach shared memory.");
3662     return NULL;
3663   }
3664 
3665   return addr;
3666 }
3667 
3668 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3669   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3670   if (req_addr != NULL) {
3671     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3672     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3673     return shmat_at_address(shmid, req_addr);
3674   }
3675 
3676   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3677   // return large page size aligned memory addresses when req_addr == NULL.
3678   // However, if the alignment is larger than the large page size, we have
3679   // to manually ensure that the memory returned is 'alignment' aligned.
3680   if (alignment > os::large_page_size()) {
3681     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3682     return shmat_with_alignment(shmid, bytes, alignment);
3683   } else {
3684     return shmat_at_address(shmid, NULL);
3685   }
3686 }
3687 
3688 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3689                                             char* req_addr, bool exec) {
3690   // "exec" is passed in but not used.  Creating the shared image for
3691   // the code cache doesn't have an SHM_X executable permission to check.
3692   assert(UseLargePages && UseSHM, "only for SHM large pages");
3693   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3694   assert(is_aligned(req_addr, alignment), "Unaligned address");
3695 
3696   if (!is_aligned(bytes, os::large_page_size())) {
3697     return NULL; // Fallback to small pages.
3698   }
3699 
3700   // Create a large shared memory region to attach to based on size.
3701   // Currently, size is the total size of the heap.
3702   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3703   if (shmid == -1) {
3704     // Possible reasons for shmget failure:
3705     // 1. shmmax is too small for Java heap.
3706     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3707     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3708     // 2. not enough large page memory.
3709     //    > check available large pages: cat /proc/meminfo
3710     //    > increase amount of large pages:
3711     //          echo new_value > /proc/sys/vm/nr_hugepages
3712     //      Note 1: different Linux may use different name for this property,
3713     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3714     //      Note 2: it's possible there's enough physical memory available but
3715     //            they are so fragmented after a long run that they can't
3716     //            coalesce into large pages. Try to reserve large pages when
3717     //            the system is still "fresh".
3718     shm_warning_with_errno("Failed to reserve shared memory.");
3719     return NULL;
3720   }
3721 
3722   // Attach to the region.
3723   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3724 
3725   // Remove shmid. If shmat() is successful, the actual shared memory segment
3726   // will be deleted when it's detached by shmdt() or when the process
3727   // terminates. If shmat() is not successful this will remove the shared
3728   // segment immediately.
3729   shmctl(shmid, IPC_RMID, NULL);
3730 
3731   return addr;
3732 }
3733 
3734 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3735                                         int error) {
3736   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3737 
3738   bool warn_on_failure = UseLargePages &&
3739       (!FLAG_IS_DEFAULT(UseLargePages) ||
3740        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3741        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3742 
3743   if (warn_on_failure) {
3744     char msg[128];
3745     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3746                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3747     warning("%s", msg);
3748   }
3749 }
3750 
3751 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3752                                                         char* req_addr,
3753                                                         bool exec) {
3754   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3755   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3756   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3757 
3758   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3759   char* addr = (char*)::mmap(req_addr, bytes, prot,
3760                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3761                              -1, 0);
3762 
3763   if (addr == MAP_FAILED) {
3764     warn_on_large_pages_failure(req_addr, bytes, errno);
3765     return NULL;
3766   }
3767 
3768   assert(is_aligned(addr, os::large_page_size()), "Must be");
3769 
3770   return addr;
3771 }
3772 
3773 // Reserve memory using mmap(MAP_HUGETLB).
3774 //  - bytes shall be a multiple of alignment.
3775 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3776 //  - alignment sets the alignment at which memory shall be allocated.
3777 //     It must be a multiple of allocation granularity.
3778 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3779 //  req_addr or NULL.
3780 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3781                                                          size_t alignment,
3782                                                          char* req_addr,
3783                                                          bool exec) {
3784   size_t large_page_size = os::large_page_size();
3785   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3786 
3787   assert(is_aligned(req_addr, alignment), "Must be");
3788   assert(is_aligned(bytes, alignment), "Must be");
3789 
3790   // First reserve - but not commit - the address range in small pages.
3791   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3792 
3793   if (start == NULL) {
3794     return NULL;
3795   }
3796 
3797   assert(is_aligned(start, alignment), "Must be");
3798 
3799   char* end = start + bytes;
3800 
3801   // Find the regions of the allocated chunk that can be promoted to large pages.
3802   char* lp_start = align_up(start, large_page_size);
3803   char* lp_end   = align_down(end, large_page_size);
3804 
3805   size_t lp_bytes = lp_end - lp_start;
3806 
3807   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3808 
3809   if (lp_bytes == 0) {
3810     // The mapped region doesn't even span the start and the end of a large page.
3811     // Fall back to allocate a non-special area.
3812     ::munmap(start, end - start);
3813     return NULL;
3814   }
3815 
3816   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3817 
3818   void* result;
3819 
3820   // Commit small-paged leading area.
3821   if (start != lp_start) {
3822     result = ::mmap(start, lp_start - start, prot,
3823                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3824                     -1, 0);
3825     if (result == MAP_FAILED) {
3826       ::munmap(lp_start, end - lp_start);
3827       return NULL;
3828     }
3829   }
3830 
3831   // Commit large-paged area.
3832   result = ::mmap(lp_start, lp_bytes, prot,
3833                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3834                   -1, 0);
3835   if (result == MAP_FAILED) {
3836     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3837     // If the mmap above fails, the large pages region will be unmapped and we
3838     // have regions before and after with small pages. Release these regions.
3839     //
3840     // |  mapped  |  unmapped  |  mapped  |
3841     // ^          ^            ^          ^
3842     // start      lp_start     lp_end     end
3843     //
3844     ::munmap(start, lp_start - start);
3845     ::munmap(lp_end, end - lp_end);
3846     return NULL;
3847   }
3848 
3849   // Commit small-paged trailing area.
3850   if (lp_end != end) {
3851     result = ::mmap(lp_end, end - lp_end, prot,
3852                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3853                     -1, 0);
3854     if (result == MAP_FAILED) {
3855       ::munmap(start, lp_end - start);
3856       return NULL;
3857     }
3858   }
3859 
3860   return start;
3861 }
3862 
3863 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3864                                                    size_t alignment,
3865                                                    char* req_addr,
3866                                                    bool exec) {
3867   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3868   assert(is_aligned(req_addr, alignment), "Must be");
3869   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3870   assert(is_power_of_2(os::large_page_size()), "Must be");
3871   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3872 
3873   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3874     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3875   } else {
3876     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3877   }
3878 }
3879 
3880 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3881                                  char* req_addr, bool exec) {
3882   assert(UseLargePages, "only for large pages");
3883 
3884   char* addr;
3885   if (UseSHM) {
3886     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3887   } else {
3888     assert(UseHugeTLBFS, "must be");
3889     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3890   }
3891 
3892   if (addr != NULL) {
3893     if (UseNUMAInterleaving) {
3894       numa_make_global(addr, bytes);
3895     }
3896 
3897     // The memory is committed
3898     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3899   }
3900 
3901   return addr;
3902 }
3903 
3904 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3905   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3906   return shmdt(base) == 0;
3907 }
3908 
3909 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3910   return pd_release_memory(base, bytes);
3911 }
3912 
3913 bool os::release_memory_special(char* base, size_t bytes) {
3914   bool res;
3915   if (MemTracker::tracking_level() > NMT_minimal) {
3916     Tracker tkr(Tracker::release);
3917     res = os::Linux::release_memory_special_impl(base, bytes);
3918     if (res) {
3919       tkr.record((address)base, bytes);
3920     }
3921 
3922   } else {
3923     res = os::Linux::release_memory_special_impl(base, bytes);
3924   }
3925   return res;
3926 }
3927 
3928 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3929   assert(UseLargePages, "only for large pages");
3930   bool res;
3931 
3932   if (UseSHM) {
3933     res = os::Linux::release_memory_special_shm(base, bytes);
3934   } else {
3935     assert(UseHugeTLBFS, "must be");
3936     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3937   }
3938   return res;
3939 }
3940 
3941 size_t os::large_page_size() {
3942   return _large_page_size;
3943 }
3944 
3945 // With SysV SHM the entire memory region must be allocated as shared
3946 // memory.
3947 // HugeTLBFS allows application to commit large page memory on demand.
3948 // However, when committing memory with HugeTLBFS fails, the region
3949 // that was supposed to be committed will lose the old reservation
3950 // and allow other threads to steal that memory region. Because of this
3951 // behavior we can't commit HugeTLBFS memory.
3952 bool os::can_commit_large_page_memory() {
3953   return UseTransparentHugePages;
3954 }
3955 
3956 bool os::can_execute_large_page_memory() {
3957   return UseTransparentHugePages || UseHugeTLBFS;
3958 }
3959 
3960 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3961   assert(file_desc >= 0, "file_desc is not valid");
3962   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
3963   if (result != NULL) {
3964     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
3965       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3966     }
3967   }
3968   return result;
3969 }
3970 
3971 // Reserve memory at an arbitrary address, only if that area is
3972 // available (and not reserved for something else).
3973 
3974 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3975   const int max_tries = 10;
3976   char* base[max_tries];
3977   size_t size[max_tries];
3978   const size_t gap = 0x000000;
3979 
3980   // Assert only that the size is a multiple of the page size, since
3981   // that's all that mmap requires, and since that's all we really know
3982   // about at this low abstraction level.  If we need higher alignment,
3983   // we can either pass an alignment to this method or verify alignment
3984   // in one of the methods further up the call chain.  See bug 5044738.
3985   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3986 
3987   // Repeatedly allocate blocks until the block is allocated at the
3988   // right spot.
3989 
3990   // Linux mmap allows caller to pass an address as hint; give it a try first,
3991   // if kernel honors the hint then we can return immediately.
3992   char * addr = anon_mmap(requested_addr, bytes, false);
3993   if (addr == requested_addr) {
3994     return requested_addr;
3995   }
3996 
3997   if (addr != NULL) {
3998     // mmap() is successful but it fails to reserve at the requested address
3999     anon_munmap(addr, bytes);
4000   }
4001 
4002   int i;
4003   for (i = 0; i < max_tries; ++i) {
4004     base[i] = reserve_memory(bytes);
4005 
4006     if (base[i] != NULL) {
4007       // Is this the block we wanted?
4008       if (base[i] == requested_addr) {
4009         size[i] = bytes;
4010         break;
4011       }
4012 
4013       // Does this overlap the block we wanted? Give back the overlapped
4014       // parts and try again.
4015 
4016       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
4017       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
4018         unmap_memory(base[i], top_overlap);
4019         base[i] += top_overlap;
4020         size[i] = bytes - top_overlap;
4021       } else {
4022         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
4023         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
4024           unmap_memory(requested_addr, bottom_overlap);
4025           size[i] = bytes - bottom_overlap;
4026         } else {
4027           size[i] = bytes;
4028         }
4029       }
4030     }
4031   }
4032 
4033   // Give back the unused reserved pieces.
4034 
4035   for (int j = 0; j < i; ++j) {
4036     if (base[j] != NULL) {
4037       unmap_memory(base[j], size[j]);
4038     }
4039   }
4040 
4041   if (i < max_tries) {
4042     return requested_addr;
4043   } else {
4044     return NULL;
4045   }
4046 }
4047 
4048 size_t os::read(int fd, void *buf, unsigned int nBytes) {
4049   return ::read(fd, buf, nBytes);
4050 }
4051 
4052 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4053   return ::pread(fd, buf, nBytes, offset);
4054 }
4055 
4056 // Short sleep, direct OS call.
4057 //
4058 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4059 // sched_yield(2) will actually give up the CPU:
4060 //
4061 //   * Alone on this pariticular CPU, keeps running.
4062 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4063 //     (pre 2.6.39).
4064 //
4065 // So calling this with 0 is an alternative.
4066 //
4067 void os::naked_short_sleep(jlong ms) {
4068   struct timespec req;
4069 
4070   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4071   req.tv_sec = 0;
4072   if (ms > 0) {
4073     req.tv_nsec = (ms % 1000) * 1000000;
4074   } else {
4075     req.tv_nsec = 1;
4076   }
4077 
4078   nanosleep(&req, NULL);
4079 
4080   return;
4081 }
4082 
4083 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4084 void os::infinite_sleep() {
4085   while (true) {    // sleep forever ...
4086     ::sleep(100);   // ... 100 seconds at a time
4087   }
4088 }
4089 
4090 // Used to convert frequent JVM_Yield() to nops
4091 bool os::dont_yield() {
4092   return DontYieldALot;
4093 }
4094 
4095 void os::naked_yield() {
4096   sched_yield();
4097 }
4098 
4099 ////////////////////////////////////////////////////////////////////////////////
4100 // thread priority support
4101 
4102 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4103 // only supports dynamic priority, static priority must be zero. For real-time
4104 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4105 // However, for large multi-threaded applications, SCHED_RR is not only slower
4106 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4107 // of 5 runs - Sep 2005).
4108 //
4109 // The following code actually changes the niceness of kernel-thread/LWP. It
4110 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4111 // not the entire user process, and user level threads are 1:1 mapped to kernel
4112 // threads. It has always been the case, but could change in the future. For
4113 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4114 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4115 
4116 int os::java_to_os_priority[CriticalPriority + 1] = {
4117   19,              // 0 Entry should never be used
4118 
4119    4,              // 1 MinPriority
4120    3,              // 2
4121    2,              // 3
4122 
4123    1,              // 4
4124    0,              // 5 NormPriority
4125   -1,              // 6
4126 
4127   -2,              // 7
4128   -3,              // 8
4129   -4,              // 9 NearMaxPriority
4130 
4131   -5,              // 10 MaxPriority
4132 
4133   -5               // 11 CriticalPriority
4134 };
4135 
4136 static int prio_init() {
4137   if (ThreadPriorityPolicy == 1) {
4138     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4139     // if effective uid is not root. Perhaps, a more elegant way of doing
4140     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4141     if (geteuid() != 0) {
4142       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4143         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4144       }
4145       ThreadPriorityPolicy = 0;
4146     }
4147   }
4148   if (UseCriticalJavaThreadPriority) {
4149     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4150   }
4151   return 0;
4152 }
4153 
4154 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4155   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4156 
4157   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4158   return (ret == 0) ? OS_OK : OS_ERR;
4159 }
4160 
4161 OSReturn os::get_native_priority(const Thread* const thread,
4162                                  int *priority_ptr) {
4163   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4164     *priority_ptr = java_to_os_priority[NormPriority];
4165     return OS_OK;
4166   }
4167 
4168   errno = 0;
4169   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4170   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4171 }
4172 
4173 ////////////////////////////////////////////////////////////////////////////////
4174 // suspend/resume support
4175 
4176 //  The low-level signal-based suspend/resume support is a remnant from the
4177 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4178 //  within hotspot. Currently used by JFR's OSThreadSampler
4179 //
4180 //  The remaining code is greatly simplified from the more general suspension
4181 //  code that used to be used.
4182 //
4183 //  The protocol is quite simple:
4184 //  - suspend:
4185 //      - sends a signal to the target thread
4186 //      - polls the suspend state of the osthread using a yield loop
4187 //      - target thread signal handler (SR_handler) sets suspend state
4188 //        and blocks in sigsuspend until continued
4189 //  - resume:
4190 //      - sets target osthread state to continue
4191 //      - sends signal to end the sigsuspend loop in the SR_handler
4192 //
4193 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4194 //  but is checked for NULL in SR_handler as a thread termination indicator.
4195 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4196 //
4197 //  Note that resume_clear_context() and suspend_save_context() are needed
4198 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4199 //  which in part is used by:
4200 //    - Forte Analyzer: AsyncGetCallTrace()
4201 //    - StackBanging: get_frame_at_stack_banging_point()
4202 
4203 static void resume_clear_context(OSThread *osthread) {
4204   osthread->set_ucontext(NULL);
4205   osthread->set_siginfo(NULL);
4206 }
4207 
4208 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4209                                  ucontext_t* context) {
4210   osthread->set_ucontext(context);
4211   osthread->set_siginfo(siginfo);
4212 }
4213 
4214 // Handler function invoked when a thread's execution is suspended or
4215 // resumed. We have to be careful that only async-safe functions are
4216 // called here (Note: most pthread functions are not async safe and
4217 // should be avoided.)
4218 //
4219 // Note: sigwait() is a more natural fit than sigsuspend() from an
4220 // interface point of view, but sigwait() prevents the signal hander
4221 // from being run. libpthread would get very confused by not having
4222 // its signal handlers run and prevents sigwait()'s use with the
4223 // mutex granting granting signal.
4224 //
4225 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4226 //
4227 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4228   // Save and restore errno to avoid confusing native code with EINTR
4229   // after sigsuspend.
4230   int old_errno = errno;
4231 
4232   Thread* thread = Thread::current_or_null_safe();
4233   assert(thread != NULL, "Missing current thread in SR_handler");
4234 
4235   // On some systems we have seen signal delivery get "stuck" until the signal
4236   // mask is changed as part of thread termination. Check that the current thread
4237   // has not already terminated (via SR_lock()) - else the following assertion
4238   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4239   // destructor has completed.
4240 
4241   if (thread->SR_lock() == NULL) {
4242     return;
4243   }
4244 
4245   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4246 
4247   OSThread* osthread = thread->osthread();
4248 
4249   os::SuspendResume::State current = osthread->sr.state();
4250   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4251     suspend_save_context(osthread, siginfo, context);
4252 
4253     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4254     os::SuspendResume::State state = osthread->sr.suspended();
4255     if (state == os::SuspendResume::SR_SUSPENDED) {
4256       sigset_t suspend_set;  // signals for sigsuspend()
4257       sigemptyset(&suspend_set);
4258       // get current set of blocked signals and unblock resume signal
4259       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4260       sigdelset(&suspend_set, SR_signum);
4261 
4262       sr_semaphore.signal();
4263       // wait here until we are resumed
4264       while (1) {
4265         sigsuspend(&suspend_set);
4266 
4267         os::SuspendResume::State result = osthread->sr.running();
4268         if (result == os::SuspendResume::SR_RUNNING) {
4269           sr_semaphore.signal();
4270           break;
4271         }
4272       }
4273 
4274     } else if (state == os::SuspendResume::SR_RUNNING) {
4275       // request was cancelled, continue
4276     } else {
4277       ShouldNotReachHere();
4278     }
4279 
4280     resume_clear_context(osthread);
4281   } else if (current == os::SuspendResume::SR_RUNNING) {
4282     // request was cancelled, continue
4283   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4284     // ignore
4285   } else {
4286     // ignore
4287   }
4288 
4289   errno = old_errno;
4290 }
4291 
4292 static int SR_initialize() {
4293   struct sigaction act;
4294   char *s;
4295 
4296   // Get signal number to use for suspend/resume
4297   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4298     int sig = ::strtol(s, 0, 10);
4299     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4300         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4301       SR_signum = sig;
4302     } else {
4303       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4304               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4305     }
4306   }
4307 
4308   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4309          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4310 
4311   sigemptyset(&SR_sigset);
4312   sigaddset(&SR_sigset, SR_signum);
4313 
4314   // Set up signal handler for suspend/resume
4315   act.sa_flags = SA_RESTART|SA_SIGINFO;
4316   act.sa_handler = (void (*)(int)) SR_handler;
4317 
4318   // SR_signum is blocked by default.
4319   // 4528190 - We also need to block pthread restart signal (32 on all
4320   // supported Linux platforms). Note that LinuxThreads need to block
4321   // this signal for all threads to work properly. So we don't have
4322   // to use hard-coded signal number when setting up the mask.
4323   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4324 
4325   if (sigaction(SR_signum, &act, 0) == -1) {
4326     return -1;
4327   }
4328 
4329   // Save signal flag
4330   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4331   return 0;
4332 }
4333 
4334 static int sr_notify(OSThread* osthread) {
4335   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4336   assert_status(status == 0, status, "pthread_kill");
4337   return status;
4338 }
4339 
4340 // "Randomly" selected value for how long we want to spin
4341 // before bailing out on suspending a thread, also how often
4342 // we send a signal to a thread we want to resume
4343 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4344 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4345 
4346 // returns true on success and false on error - really an error is fatal
4347 // but this seems the normal response to library errors
4348 static bool do_suspend(OSThread* osthread) {
4349   assert(osthread->sr.is_running(), "thread should be running");
4350   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4351 
4352   // mark as suspended and send signal
4353   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4354     // failed to switch, state wasn't running?
4355     ShouldNotReachHere();
4356     return false;
4357   }
4358 
4359   if (sr_notify(osthread) != 0) {
4360     ShouldNotReachHere();
4361   }
4362 
4363   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4364   while (true) {
4365     if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4366       break;
4367     } else {
4368       // timeout
4369       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4370       if (cancelled == os::SuspendResume::SR_RUNNING) {
4371         return false;
4372       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4373         // make sure that we consume the signal on the semaphore as well
4374         sr_semaphore.wait();
4375         break;
4376       } else {
4377         ShouldNotReachHere();
4378         return false;
4379       }
4380     }
4381   }
4382 
4383   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4384   return true;
4385 }
4386 
4387 static void do_resume(OSThread* osthread) {
4388   assert(osthread->sr.is_suspended(), "thread should be suspended");
4389   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4390 
4391   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4392     // failed to switch to WAKEUP_REQUEST
4393     ShouldNotReachHere();
4394     return;
4395   }
4396 
4397   while (true) {
4398     if (sr_notify(osthread) == 0) {
4399       if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4400         if (osthread->sr.is_running()) {
4401           return;
4402         }
4403       }
4404     } else {
4405       ShouldNotReachHere();
4406     }
4407   }
4408 
4409   guarantee(osthread->sr.is_running(), "Must be running!");
4410 }
4411 
4412 ///////////////////////////////////////////////////////////////////////////////////
4413 // signal handling (except suspend/resume)
4414 
4415 // This routine may be used by user applications as a "hook" to catch signals.
4416 // The user-defined signal handler must pass unrecognized signals to this
4417 // routine, and if it returns true (non-zero), then the signal handler must
4418 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4419 // routine will never retun false (zero), but instead will execute a VM panic
4420 // routine kill the process.
4421 //
4422 // If this routine returns false, it is OK to call it again.  This allows
4423 // the user-defined signal handler to perform checks either before or after
4424 // the VM performs its own checks.  Naturally, the user code would be making
4425 // a serious error if it tried to handle an exception (such as a null check
4426 // or breakpoint) that the VM was generating for its own correct operation.
4427 //
4428 // This routine may recognize any of the following kinds of signals:
4429 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4430 // It should be consulted by handlers for any of those signals.
4431 //
4432 // The caller of this routine must pass in the three arguments supplied
4433 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4434 // field of the structure passed to sigaction().  This routine assumes that
4435 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4436 //
4437 // Note that the VM will print warnings if it detects conflicting signal
4438 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4439 //
4440 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4441                                                  siginfo_t* siginfo,
4442                                                  void* ucontext,
4443                                                  int abort_if_unrecognized);
4444 
4445 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4446   assert(info != NULL && uc != NULL, "it must be old kernel");
4447   int orig_errno = errno;  // Preserve errno value over signal handler.
4448   JVM_handle_linux_signal(sig, info, uc, true);
4449   errno = orig_errno;
4450 }
4451 
4452 
4453 // This boolean allows users to forward their own non-matching signals
4454 // to JVM_handle_linux_signal, harmlessly.
4455 bool os::Linux::signal_handlers_are_installed = false;
4456 
4457 // For signal-chaining
4458 struct sigaction sigact[NSIG];
4459 uint64_t sigs = 0;
4460 #if (64 < NSIG-1)
4461 #error "Not all signals can be encoded in sigs. Adapt its type!"
4462 #endif
4463 bool os::Linux::libjsig_is_loaded = false;
4464 typedef struct sigaction *(*get_signal_t)(int);
4465 get_signal_t os::Linux::get_signal_action = NULL;
4466 
4467 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4468   struct sigaction *actp = NULL;
4469 
4470   if (libjsig_is_loaded) {
4471     // Retrieve the old signal handler from libjsig
4472     actp = (*get_signal_action)(sig);
4473   }
4474   if (actp == NULL) {
4475     // Retrieve the preinstalled signal handler from jvm
4476     actp = get_preinstalled_handler(sig);
4477   }
4478 
4479   return actp;
4480 }
4481 
4482 static bool call_chained_handler(struct sigaction *actp, int sig,
4483                                  siginfo_t *siginfo, void *context) {
4484   // Call the old signal handler
4485   if (actp->sa_handler == SIG_DFL) {
4486     // It's more reasonable to let jvm treat it as an unexpected exception
4487     // instead of taking the default action.
4488     return false;
4489   } else if (actp->sa_handler != SIG_IGN) {
4490     if ((actp->sa_flags & SA_NODEFER) == 0) {
4491       // automaticlly block the signal
4492       sigaddset(&(actp->sa_mask), sig);
4493     }
4494 
4495     sa_handler_t hand = NULL;
4496     sa_sigaction_t sa = NULL;
4497     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4498     // retrieve the chained handler
4499     if (siginfo_flag_set) {
4500       sa = actp->sa_sigaction;
4501     } else {
4502       hand = actp->sa_handler;
4503     }
4504 
4505     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4506       actp->sa_handler = SIG_DFL;
4507     }
4508 
4509     // try to honor the signal mask
4510     sigset_t oset;
4511     sigemptyset(&oset);
4512     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4513 
4514     // call into the chained handler
4515     if (siginfo_flag_set) {
4516       (*sa)(sig, siginfo, context);
4517     } else {
4518       (*hand)(sig);
4519     }
4520 
4521     // restore the signal mask
4522     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4523   }
4524   // Tell jvm's signal handler the signal is taken care of.
4525   return true;
4526 }
4527 
4528 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4529   bool chained = false;
4530   // signal-chaining
4531   if (UseSignalChaining) {
4532     struct sigaction *actp = get_chained_signal_action(sig);
4533     if (actp != NULL) {
4534       chained = call_chained_handler(actp, sig, siginfo, context);
4535     }
4536   }
4537   return chained;
4538 }
4539 
4540 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4541   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4542     return &sigact[sig];
4543   }
4544   return NULL;
4545 }
4546 
4547 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4548   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4549   sigact[sig] = oldAct;
4550   sigs |= (uint64_t)1 << (sig-1);
4551 }
4552 
4553 // for diagnostic
4554 int sigflags[NSIG];
4555 
4556 int os::Linux::get_our_sigflags(int sig) {
4557   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4558   return sigflags[sig];
4559 }
4560 
4561 void os::Linux::set_our_sigflags(int sig, int flags) {
4562   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4563   if (sig > 0 && sig < NSIG) {
4564     sigflags[sig] = flags;
4565   }
4566 }
4567 
4568 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4569   // Check for overwrite.
4570   struct sigaction oldAct;
4571   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4572 
4573   void* oldhand = oldAct.sa_sigaction
4574                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4575                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4576   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4577       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4578       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4579     if (AllowUserSignalHandlers || !set_installed) {
4580       // Do not overwrite; user takes responsibility to forward to us.
4581       return;
4582     } else if (UseSignalChaining) {
4583       // save the old handler in jvm
4584       save_preinstalled_handler(sig, oldAct);
4585       // libjsig also interposes the sigaction() call below and saves the
4586       // old sigaction on it own.
4587     } else {
4588       fatal("Encountered unexpected pre-existing sigaction handler "
4589             "%#lx for signal %d.", (long)oldhand, sig);
4590     }
4591   }
4592 
4593   struct sigaction sigAct;
4594   sigfillset(&(sigAct.sa_mask));
4595   sigAct.sa_handler = SIG_DFL;
4596   if (!set_installed) {
4597     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4598   } else {
4599     sigAct.sa_sigaction = signalHandler;
4600     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4601   }
4602   // Save flags, which are set by ours
4603   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4604   sigflags[sig] = sigAct.sa_flags;
4605 
4606   int ret = sigaction(sig, &sigAct, &oldAct);
4607   assert(ret == 0, "check");
4608 
4609   void* oldhand2  = oldAct.sa_sigaction
4610                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4611                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4612   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4613 }
4614 
4615 // install signal handlers for signals that HotSpot needs to
4616 // handle in order to support Java-level exception handling.
4617 
4618 void os::Linux::install_signal_handlers() {
4619   if (!signal_handlers_are_installed) {
4620     signal_handlers_are_installed = true;
4621 
4622     // signal-chaining
4623     typedef void (*signal_setting_t)();
4624     signal_setting_t begin_signal_setting = NULL;
4625     signal_setting_t end_signal_setting = NULL;
4626     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4627                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4628     if (begin_signal_setting != NULL) {
4629       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4630                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4631       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4632                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4633       libjsig_is_loaded = true;
4634       assert(UseSignalChaining, "should enable signal-chaining");
4635     }
4636     if (libjsig_is_loaded) {
4637       // Tell libjsig jvm is setting signal handlers
4638       (*begin_signal_setting)();
4639     }
4640 
4641     set_signal_handler(SIGSEGV, true);
4642     set_signal_handler(SIGPIPE, true);
4643     set_signal_handler(SIGBUS, true);
4644     set_signal_handler(SIGILL, true);
4645     set_signal_handler(SIGFPE, true);
4646 #if defined(PPC64)
4647     set_signal_handler(SIGTRAP, true);
4648 #endif
4649     set_signal_handler(SIGXFSZ, true);
4650 
4651     if (libjsig_is_loaded) {
4652       // Tell libjsig jvm finishes setting signal handlers
4653       (*end_signal_setting)();
4654     }
4655 
4656     // We don't activate signal checker if libjsig is in place, we trust ourselves
4657     // and if UserSignalHandler is installed all bets are off.
4658     // Log that signal checking is off only if -verbose:jni is specified.
4659     if (CheckJNICalls) {
4660       if (libjsig_is_loaded) {
4661         if (PrintJNIResolving) {
4662           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4663         }
4664         check_signals = false;
4665       }
4666       if (AllowUserSignalHandlers) {
4667         if (PrintJNIResolving) {
4668           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4669         }
4670         check_signals = false;
4671       }
4672     }
4673   }
4674 }
4675 
4676 // This is the fastest way to get thread cpu time on Linux.
4677 // Returns cpu time (user+sys) for any thread, not only for current.
4678 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4679 // It might work on 2.6.10+ with a special kernel/glibc patch.
4680 // For reference, please, see IEEE Std 1003.1-2004:
4681 //   http://www.unix.org/single_unix_specification
4682 
4683 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4684   struct timespec tp;
4685   int rc = os::Posix::clock_gettime(clockid, &tp);
4686   assert(rc == 0, "clock_gettime is expected to return 0 code");
4687 
4688   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4689 }
4690 
4691 void os::Linux::initialize_os_info() {
4692   assert(_os_version == 0, "OS info already initialized");
4693 
4694   struct utsname _uname;
4695 
4696   uint32_t major;
4697   uint32_t minor;
4698   uint32_t fix;
4699 
4700   int rc;
4701 
4702   // Kernel version is unknown if
4703   // verification below fails.
4704   _os_version = 0x01000000;
4705 
4706   rc = uname(&_uname);
4707   if (rc != -1) {
4708 
4709     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4710     if (rc == 3) {
4711 
4712       if (major < 256 && minor < 256 && fix < 256) {
4713         // Kernel version format is as expected,
4714         // set it overriding unknown state.
4715         _os_version = (major << 16) |
4716                       (minor << 8 ) |
4717                       (fix   << 0 ) ;
4718       }
4719     }
4720   }
4721 }
4722 
4723 uint32_t os::Linux::os_version() {
4724   assert(_os_version != 0, "not initialized");
4725   return _os_version & 0x00FFFFFF;
4726 }
4727 
4728 bool os::Linux::os_version_is_known() {
4729   assert(_os_version != 0, "not initialized");
4730   return _os_version & 0x01000000 ? false : true;
4731 }
4732 
4733 /////
4734 // glibc on Linux platform uses non-documented flag
4735 // to indicate, that some special sort of signal
4736 // trampoline is used.
4737 // We will never set this flag, and we should
4738 // ignore this flag in our diagnostic
4739 #ifdef SIGNIFICANT_SIGNAL_MASK
4740   #undef SIGNIFICANT_SIGNAL_MASK
4741 #endif
4742 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4743 
4744 static const char* get_signal_handler_name(address handler,
4745                                            char* buf, int buflen) {
4746   int offset = 0;
4747   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4748   if (found) {
4749     // skip directory names
4750     const char *p1, *p2;
4751     p1 = buf;
4752     size_t len = strlen(os::file_separator());
4753     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4754     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4755   } else {
4756     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4757   }
4758   return buf;
4759 }
4760 
4761 static void print_signal_handler(outputStream* st, int sig,
4762                                  char* buf, size_t buflen) {
4763   struct sigaction sa;
4764 
4765   sigaction(sig, NULL, &sa);
4766 
4767   // See comment for SIGNIFICANT_SIGNAL_MASK define
4768   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4769 
4770   st->print("%s: ", os::exception_name(sig, buf, buflen));
4771 
4772   address handler = (sa.sa_flags & SA_SIGINFO)
4773     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4774     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4775 
4776   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4777     st->print("SIG_DFL");
4778   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4779     st->print("SIG_IGN");
4780   } else {
4781     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4782   }
4783 
4784   st->print(", sa_mask[0]=");
4785   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4786 
4787   address rh = VMError::get_resetted_sighandler(sig);
4788   // May be, handler was resetted by VMError?
4789   if (rh != NULL) {
4790     handler = rh;
4791     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4792   }
4793 
4794   st->print(", sa_flags=");
4795   os::Posix::print_sa_flags(st, sa.sa_flags);
4796 
4797   // Check: is it our handler?
4798   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4799       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4800     // It is our signal handler
4801     // check for flags, reset system-used one!
4802     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4803       st->print(
4804                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4805                 os::Linux::get_our_sigflags(sig));
4806     }
4807   }
4808   st->cr();
4809 }
4810 
4811 
4812 #define DO_SIGNAL_CHECK(sig)                      \
4813   do {                                            \
4814     if (!sigismember(&check_signal_done, sig)) {  \
4815       os::Linux::check_signal_handler(sig);       \
4816     }                                             \
4817   } while (0)
4818 
4819 // This method is a periodic task to check for misbehaving JNI applications
4820 // under CheckJNI, we can add any periodic checks here
4821 
4822 void os::run_periodic_checks() {
4823   if (check_signals == false) return;
4824 
4825   // SEGV and BUS if overridden could potentially prevent
4826   // generation of hs*.log in the event of a crash, debugging
4827   // such a case can be very challenging, so we absolutely
4828   // check the following for a good measure:
4829   DO_SIGNAL_CHECK(SIGSEGV);
4830   DO_SIGNAL_CHECK(SIGILL);
4831   DO_SIGNAL_CHECK(SIGFPE);
4832   DO_SIGNAL_CHECK(SIGBUS);
4833   DO_SIGNAL_CHECK(SIGPIPE);
4834   DO_SIGNAL_CHECK(SIGXFSZ);
4835 #if defined(PPC64)
4836   DO_SIGNAL_CHECK(SIGTRAP);
4837 #endif
4838 
4839   // ReduceSignalUsage allows the user to override these handlers
4840   // see comments at the very top and jvm_md.h
4841   if (!ReduceSignalUsage) {
4842     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4843     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4844     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4845     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4846   }
4847 
4848   DO_SIGNAL_CHECK(SR_signum);
4849 }
4850 
4851 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4852 
4853 static os_sigaction_t os_sigaction = NULL;
4854 
4855 void os::Linux::check_signal_handler(int sig) {
4856   char buf[O_BUFLEN];
4857   address jvmHandler = NULL;
4858 
4859 
4860   struct sigaction act;
4861   if (os_sigaction == NULL) {
4862     // only trust the default sigaction, in case it has been interposed
4863     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4864     if (os_sigaction == NULL) return;
4865   }
4866 
4867   os_sigaction(sig, (struct sigaction*)NULL, &act);
4868 
4869 
4870   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4871 
4872   address thisHandler = (act.sa_flags & SA_SIGINFO)
4873     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4874     : CAST_FROM_FN_PTR(address, act.sa_handler);
4875 
4876 
4877   switch (sig) {
4878   case SIGSEGV:
4879   case SIGBUS:
4880   case SIGFPE:
4881   case SIGPIPE:
4882   case SIGILL:
4883   case SIGXFSZ:
4884     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4885     break;
4886 
4887   case SHUTDOWN1_SIGNAL:
4888   case SHUTDOWN2_SIGNAL:
4889   case SHUTDOWN3_SIGNAL:
4890   case BREAK_SIGNAL:
4891     jvmHandler = (address)user_handler();
4892     break;
4893 
4894   default:
4895     if (sig == SR_signum) {
4896       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4897     } else {
4898       return;
4899     }
4900     break;
4901   }
4902 
4903   if (thisHandler != jvmHandler) {
4904     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4905     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4906     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4907     // No need to check this sig any longer
4908     sigaddset(&check_signal_done, sig);
4909     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4910     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4911       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4912                     exception_name(sig, buf, O_BUFLEN));
4913     }
4914   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4915     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4916     tty->print("expected:");
4917     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4918     tty->cr();
4919     tty->print("  found:");
4920     os::Posix::print_sa_flags(tty, act.sa_flags);
4921     tty->cr();
4922     // No need to check this sig any longer
4923     sigaddset(&check_signal_done, sig);
4924   }
4925 
4926   // Dump all the signal
4927   if (sigismember(&check_signal_done, sig)) {
4928     print_signal_handlers(tty, buf, O_BUFLEN);
4929   }
4930 }
4931 
4932 extern void report_error(char* file_name, int line_no, char* title,
4933                          char* format, ...);
4934 
4935 // this is called _before_ most of the global arguments have been parsed
4936 void os::init(void) {
4937   char dummy;   // used to get a guess on initial stack address
4938 
4939   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4940 
4941   init_random(1234567);
4942 
4943   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4944   if (Linux::page_size() == -1) {
4945     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4946           os::strerror(errno));
4947   }
4948   init_page_sizes((size_t) Linux::page_size());
4949 
4950   Linux::initialize_system_info();
4951 
4952   Linux::initialize_os_info();
4953 
4954   // _main_thread points to the thread that created/loaded the JVM.
4955   Linux::_main_thread = pthread_self();
4956 
4957   // retrieve entry point for pthread_setname_np
4958   Linux::_pthread_setname_np =
4959     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4960 
4961   os::Posix::init();
4962 
4963   initial_time_count = javaTimeNanos();
4964 
4965   // Always warn if no monotonic clock available
4966   if (!os::Posix::supports_monotonic_clock()) {
4967     warning("No monotonic clock was available - timed services may "    \
4968             "be adversely affected if the time-of-day clock changes");
4969   }
4970 }
4971 
4972 // To install functions for atexit system call
4973 extern "C" {
4974   static void perfMemory_exit_helper() {
4975     perfMemory_exit();
4976   }
4977 }
4978 
4979 void os::pd_init_container_support() {
4980   OSContainer::init();
4981 }
4982 
4983 // this is called _after_ the global arguments have been parsed
4984 jint os::init_2(void) {
4985 
4986   // This could be set after os::Posix::init() but all platforms
4987   // have to set it the same so we have to mirror Solaris.
4988   DEBUG_ONLY(os::set_mutex_init_done();)
4989 
4990   os::Posix::init_2();
4991 
4992   Linux::fast_thread_clock_init();
4993 
4994   // initialize suspend/resume support - must do this before signal_sets_init()
4995   if (SR_initialize() != 0) {
4996     perror("SR_initialize failed");
4997     return JNI_ERR;
4998   }
4999 
5000   Linux::signal_sets_init();
5001   Linux::install_signal_handlers();
5002   // Initialize data for jdk.internal.misc.Signal
5003   if (!ReduceSignalUsage) {
5004     jdk_misc_signal_init();
5005   }
5006 
5007   // Check and sets minimum stack sizes against command line options
5008   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5009     return JNI_ERR;
5010   }
5011 
5012   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5013   if (!suppress_primordial_thread_resolution) {
5014     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5015   }
5016 
5017 #if defined(IA32)
5018   workaround_expand_exec_shield_cs_limit();
5019 #endif
5020 
5021   Linux::libpthread_init();
5022   Linux::sched_getcpu_init();
5023   log_info(os)("HotSpot is running with %s, %s",
5024                Linux::glibc_version(), Linux::libpthread_version());
5025 
5026   if (UseNUMA) {
5027     if (!Linux::libnuma_init()) {
5028       UseNUMA = false;
5029     } else {
5030 
5031       // Identify whether running in membind or interleave mode.
5032       struct bitmask *bmp;
5033       bool _is_membind = false;
5034       bool _is_interleaved = false;
5035       char _buf[BUFSIZ] = {'\0'};
5036       char *_bufptr = _buf;
5037 
5038       log_info(os)("UseNUMA is enabled");
5039       // Check for membind mode.
5040       bmp = Linux::_numa_membind_ptr;
5041       for (int node = 0; node <= Linux::numa_max_node() ; node++) {
5042         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5043           _is_membind = true;
5044         }
5045       }
5046 
5047       // Check for interleave mode.
5048       bmp = Linux::_numa_interleave_ptr;
5049       for (int node = 0; node <= Linux::numa_max_node() ; node++) {
5050         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5051           _is_interleaved = true;
5052           // Set membind to false as interleave mode allows all nodes to be used.
5053           _is_membind = false;
5054         }
5055       }
5056 
5057       if (_is_membind) {
5058         bmp = Linux::_numa_membind_ptr;
5059         Linux::set_numa_interleave_ptr (NULL);
5060         log_info(os) ("  Java is configured to run in membind mode");
5061       }
5062 
5063       if (_is_interleaved) {
5064         bmp = Linux::_numa_interleave_ptr;
5065         Linux::set_numa_membind_ptr (NULL);
5066         log_info(os) ("  Java is configured to run in interleave mode");
5067       }
5068 
5069       for (int node = 0; node <= Linux::numa_max_node() ; node++) {
5070         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5071           _bufptr += sprintf (_bufptr, "%d, ", node);
5072         }
5073       }
5074       _bufptr[-2 ] = '\0';
5075       log_info(os) ("  Heap will be configured using NUMA memory nodes: %s", _buf);
5076     }
5077 
5078 
5079     if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5080       // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5081       // we can make the adaptive lgrp chunk resizing work. If the user specified both
5082       // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5083       // and disable adaptive resizing.
5084       if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5085         warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5086                 "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5087         UseAdaptiveSizePolicy = false;
5088         UseAdaptiveNUMAChunkSizing = false;
5089       }
5090     }
5091 
5092     if (!UseNUMA && ForceNUMA) {
5093       UseNUMA = true;
5094     }
5095   }
5096 
5097   if (MaxFDLimit) {
5098     // set the number of file descriptors to max. print out error
5099     // if getrlimit/setrlimit fails but continue regardless.
5100     struct rlimit nbr_files;
5101     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5102     if (status != 0) {
5103       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5104     } else {
5105       nbr_files.rlim_cur = nbr_files.rlim_max;
5106       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5107       if (status != 0) {
5108         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5109       }
5110     }
5111   }
5112 
5113   // Initialize lock used to serialize thread creation (see os::create_thread)
5114   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5115 
5116   // at-exit methods are called in the reverse order of their registration.
5117   // atexit functions are called on return from main or as a result of a
5118   // call to exit(3C). There can be only 32 of these functions registered
5119   // and atexit() does not set errno.
5120 
5121   if (PerfAllowAtExitRegistration) {
5122     // only register atexit functions if PerfAllowAtExitRegistration is set.
5123     // atexit functions can be delayed until process exit time, which
5124     // can be problematic for embedded VM situations. Embedded VMs should
5125     // call DestroyJavaVM() to assure that VM resources are released.
5126 
5127     // note: perfMemory_exit_helper atexit function may be removed in
5128     // the future if the appropriate cleanup code can be added to the
5129     // VM_Exit VMOperation's doit method.
5130     if (atexit(perfMemory_exit_helper) != 0) {
5131       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5132     }
5133   }
5134 
5135   // initialize thread priority policy
5136   prio_init();
5137 
5138   if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
5139     set_coredump_filter(false /*largepages*/, true /*dax_shared*/);
5140   }
5141   return JNI_OK;
5142 }
5143 
5144 // Mark the polling page as unreadable
5145 void os::make_polling_page_unreadable(void) {
5146   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5147     fatal("Could not disable polling page");
5148   }
5149 }
5150 
5151 // Mark the polling page as readable
5152 void os::make_polling_page_readable(void) {
5153   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5154     fatal("Could not enable polling page");
5155   }
5156 }
5157 
5158 // older glibc versions don't have this macro (which expands to
5159 // an optimized bit-counting function) so we have to roll our own
5160 #ifndef CPU_COUNT
5161 
5162 static int _cpu_count(const cpu_set_t* cpus) {
5163   int count = 0;
5164   // only look up to the number of configured processors
5165   for (int i = 0; i < os::processor_count(); i++) {
5166     if (CPU_ISSET(i, cpus)) {
5167       count++;
5168     }
5169   }
5170   return count;
5171 }
5172 
5173 #define CPU_COUNT(cpus) _cpu_count(cpus)
5174 
5175 #endif // CPU_COUNT
5176 
5177 // Get the current number of available processors for this process.
5178 // This value can change at any time during a process's lifetime.
5179 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5180 // If it appears there may be more than 1024 processors then we do a
5181 // dynamic check - see 6515172 for details.
5182 // If anything goes wrong we fallback to returning the number of online
5183 // processors - which can be greater than the number available to the process.
5184 int os::Linux::active_processor_count() {
5185   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5186   cpu_set_t* cpus_p = &cpus;
5187   int cpus_size = sizeof(cpu_set_t);
5188 
5189   int configured_cpus = os::processor_count();  // upper bound on available cpus
5190   int cpu_count = 0;
5191 
5192 // old build platforms may not support dynamic cpu sets
5193 #ifdef CPU_ALLOC
5194 
5195   // To enable easy testing of the dynamic path on different platforms we
5196   // introduce a diagnostic flag: UseCpuAllocPath
5197   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5198     // kernel may use a mask bigger than cpu_set_t
5199     log_trace(os)("active_processor_count: using dynamic path %s"
5200                   "- configured processors: %d",
5201                   UseCpuAllocPath ? "(forced) " : "",
5202                   configured_cpus);
5203     cpus_p = CPU_ALLOC(configured_cpus);
5204     if (cpus_p != NULL) {
5205       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5206       // zero it just to be safe
5207       CPU_ZERO_S(cpus_size, cpus_p);
5208     }
5209     else {
5210        // failed to allocate so fallback to online cpus
5211        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5212        log_trace(os)("active_processor_count: "
5213                      "CPU_ALLOC failed (%s) - using "
5214                      "online processor count: %d",
5215                      os::strerror(errno), online_cpus);
5216        return online_cpus;
5217     }
5218   }
5219   else {
5220     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5221                   configured_cpus);
5222   }
5223 #else // CPU_ALLOC
5224 // these stubs won't be executed
5225 #define CPU_COUNT_S(size, cpus) -1
5226 #define CPU_FREE(cpus)
5227 
5228   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5229                 configured_cpus);
5230 #endif // CPU_ALLOC
5231 
5232   // pid 0 means the current thread - which we have to assume represents the process
5233   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5234     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5235       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5236     }
5237     else {
5238       cpu_count = CPU_COUNT(cpus_p);
5239     }
5240     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5241   }
5242   else {
5243     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5244     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5245             "which may exceed available processors", os::strerror(errno), cpu_count);
5246   }
5247 
5248   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5249     CPU_FREE(cpus_p);
5250   }
5251 
5252   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5253   return cpu_count;
5254 }
5255 
5256 // Determine the active processor count from one of
5257 // three different sources:
5258 //
5259 // 1. User option -XX:ActiveProcessorCount
5260 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5261 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5262 //
5263 // Option 1, if specified, will always override.
5264 // If the cgroup subsystem is active and configured, we
5265 // will return the min of the cgroup and option 2 results.
5266 // This is required since tools, such as numactl, that
5267 // alter cpu affinity do not update cgroup subsystem
5268 // cpuset configuration files.
5269 int os::active_processor_count() {
5270   // User has overridden the number of active processors
5271   if (ActiveProcessorCount > 0) {
5272     log_trace(os)("active_processor_count: "
5273                   "active processor count set by user : %d",
5274                   ActiveProcessorCount);
5275     return ActiveProcessorCount;
5276   }
5277 
5278   int active_cpus;
5279   if (OSContainer::is_containerized()) {
5280     active_cpus = OSContainer::active_processor_count();
5281     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5282                    active_cpus);
5283   } else {
5284     active_cpus = os::Linux::active_processor_count();
5285   }
5286 
5287   return active_cpus;
5288 }
5289 
5290 uint os::processor_id() {
5291   const int id = Linux::sched_getcpu();
5292   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5293   return (uint)id;
5294 }
5295 
5296 void os::set_native_thread_name(const char *name) {
5297   if (Linux::_pthread_setname_np) {
5298     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5299     snprintf(buf, sizeof(buf), "%s", name);
5300     buf[sizeof(buf) - 1] = '\0';
5301     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5302     // ERANGE should not happen; all other errors should just be ignored.
5303     assert(rc != ERANGE, "pthread_setname_np failed");
5304   }
5305 }
5306 
5307 bool os::distribute_processes(uint length, uint* distribution) {
5308   // Not yet implemented.
5309   return false;
5310 }
5311 
5312 bool os::bind_to_processor(uint processor_id) {
5313   // Not yet implemented.
5314   return false;
5315 }
5316 
5317 ///
5318 
5319 void os::SuspendedThreadTask::internal_do_task() {
5320   if (do_suspend(_thread->osthread())) {
5321     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5322     do_task(context);
5323     do_resume(_thread->osthread());
5324   }
5325 }
5326 
5327 ////////////////////////////////////////////////////////////////////////////////
5328 // debug support
5329 
5330 bool os::find(address addr, outputStream* st) {
5331   Dl_info dlinfo;
5332   memset(&dlinfo, 0, sizeof(dlinfo));
5333   if (dladdr(addr, &dlinfo) != 0) {
5334     st->print(PTR_FORMAT ": ", p2i(addr));
5335     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5336       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5337                 p2i(addr) - p2i(dlinfo.dli_saddr));
5338     } else if (dlinfo.dli_fbase != NULL) {
5339       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5340     } else {
5341       st->print("<absolute address>");
5342     }
5343     if (dlinfo.dli_fname != NULL) {
5344       st->print(" in %s", dlinfo.dli_fname);
5345     }
5346     if (dlinfo.dli_fbase != NULL) {
5347       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5348     }
5349     st->cr();
5350 
5351     if (Verbose) {
5352       // decode some bytes around the PC
5353       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5354       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5355       address       lowest = (address) dlinfo.dli_sname;
5356       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5357       if (begin < lowest)  begin = lowest;
5358       Dl_info dlinfo2;
5359       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5360           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5361         end = (address) dlinfo2.dli_saddr;
5362       }
5363       Disassembler::decode(begin, end, st);
5364     }
5365     return true;
5366   }
5367   return false;
5368 }
5369 
5370 ////////////////////////////////////////////////////////////////////////////////
5371 // misc
5372 
5373 // This does not do anything on Linux. This is basically a hook for being
5374 // able to use structured exception handling (thread-local exception filters)
5375 // on, e.g., Win32.
5376 void
5377 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5378                          JavaCallArguments* args, Thread* thread) {
5379   f(value, method, args, thread);
5380 }
5381 
5382 void os::print_statistics() {
5383 }
5384 
5385 bool os::message_box(const char* title, const char* message) {
5386   int i;
5387   fdStream err(defaultStream::error_fd());
5388   for (i = 0; i < 78; i++) err.print_raw("=");
5389   err.cr();
5390   err.print_raw_cr(title);
5391   for (i = 0; i < 78; i++) err.print_raw("-");
5392   err.cr();
5393   err.print_raw_cr(message);
5394   for (i = 0; i < 78; i++) err.print_raw("=");
5395   err.cr();
5396 
5397   char buf[16];
5398   // Prevent process from exiting upon "read error" without consuming all CPU
5399   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5400 
5401   return buf[0] == 'y' || buf[0] == 'Y';
5402 }
5403 
5404 // Is a (classpath) directory empty?
5405 bool os::dir_is_empty(const char* path) {
5406   DIR *dir = NULL;
5407   struct dirent *ptr;
5408 
5409   dir = opendir(path);
5410   if (dir == NULL) return true;
5411 
5412   // Scan the directory
5413   bool result = true;
5414   while (result && (ptr = readdir(dir)) != NULL) {
5415     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5416       result = false;
5417     }
5418   }
5419   closedir(dir);
5420   return result;
5421 }
5422 
5423 // This code originates from JDK's sysOpen and open64_w
5424 // from src/solaris/hpi/src/system_md.c
5425 
5426 int os::open(const char *path, int oflag, int mode) {
5427   if (strlen(path) > MAX_PATH - 1) {
5428     errno = ENAMETOOLONG;
5429     return -1;
5430   }
5431 
5432   // All file descriptors that are opened in the Java process and not
5433   // specifically destined for a subprocess should have the close-on-exec
5434   // flag set.  If we don't set it, then careless 3rd party native code
5435   // might fork and exec without closing all appropriate file descriptors
5436   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5437   // turn might:
5438   //
5439   // - cause end-of-file to fail to be detected on some file
5440   //   descriptors, resulting in mysterious hangs, or
5441   //
5442   // - might cause an fopen in the subprocess to fail on a system
5443   //   suffering from bug 1085341.
5444   //
5445   // (Yes, the default setting of the close-on-exec flag is a Unix
5446   // design flaw)
5447   //
5448   // See:
5449   // 1085341: 32-bit stdio routines should support file descriptors >255
5450   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5451   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5452   //
5453   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5454   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5455   // because it saves a system call and removes a small window where the flag
5456   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5457   // and we fall back to using FD_CLOEXEC (see below).
5458 #ifdef O_CLOEXEC
5459   oflag |= O_CLOEXEC;
5460 #endif
5461 
5462   int fd = ::open64(path, oflag, mode);
5463   if (fd == -1) return -1;
5464 
5465   //If the open succeeded, the file might still be a directory
5466   {
5467     struct stat64 buf64;
5468     int ret = ::fstat64(fd, &buf64);
5469     int st_mode = buf64.st_mode;
5470 
5471     if (ret != -1) {
5472       if ((st_mode & S_IFMT) == S_IFDIR) {
5473         errno = EISDIR;
5474         ::close(fd);
5475         return -1;
5476       }
5477     } else {
5478       ::close(fd);
5479       return -1;
5480     }
5481   }
5482 
5483 #ifdef FD_CLOEXEC
5484   // Validate that the use of the O_CLOEXEC flag on open above worked.
5485   // With recent kernels, we will perform this check exactly once.
5486   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5487   if (!O_CLOEXEC_is_known_to_work) {
5488     int flags = ::fcntl(fd, F_GETFD);
5489     if (flags != -1) {
5490       if ((flags & FD_CLOEXEC) != 0)
5491         O_CLOEXEC_is_known_to_work = 1;
5492       else
5493         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5494     }
5495   }
5496 #endif
5497 
5498   return fd;
5499 }
5500 
5501 
5502 // create binary file, rewriting existing file if required
5503 int os::create_binary_file(const char* path, bool rewrite_existing) {
5504   int oflags = O_WRONLY | O_CREAT;
5505   if (!rewrite_existing) {
5506     oflags |= O_EXCL;
5507   }
5508   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5509 }
5510 
5511 // return current position of file pointer
5512 jlong os::current_file_offset(int fd) {
5513   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5514 }
5515 
5516 // move file pointer to the specified offset
5517 jlong os::seek_to_file_offset(int fd, jlong offset) {
5518   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5519 }
5520 
5521 // This code originates from JDK's sysAvailable
5522 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5523 
5524 int os::available(int fd, jlong *bytes) {
5525   jlong cur, end;
5526   int mode;
5527   struct stat64 buf64;
5528 
5529   if (::fstat64(fd, &buf64) >= 0) {
5530     mode = buf64.st_mode;
5531     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5532       int n;
5533       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5534         *bytes = n;
5535         return 1;
5536       }
5537     }
5538   }
5539   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5540     return 0;
5541   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5542     return 0;
5543   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5544     return 0;
5545   }
5546   *bytes = end - cur;
5547   return 1;
5548 }
5549 
5550 // Map a block of memory.
5551 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5552                         char *addr, size_t bytes, bool read_only,
5553                         bool allow_exec) {
5554   int prot;
5555   int flags = MAP_PRIVATE;
5556 
5557   if (read_only) {
5558     prot = PROT_READ;
5559   } else {
5560     prot = PROT_READ | PROT_WRITE;
5561   }
5562 
5563   if (allow_exec) {
5564     prot |= PROT_EXEC;
5565   }
5566 
5567   if (addr != NULL) {
5568     flags |= MAP_FIXED;
5569   }
5570 
5571   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5572                                      fd, file_offset);
5573   if (mapped_address == MAP_FAILED) {
5574     return NULL;
5575   }
5576   return mapped_address;
5577 }
5578 
5579 
5580 // Remap a block of memory.
5581 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5582                           char *addr, size_t bytes, bool read_only,
5583                           bool allow_exec) {
5584   // same as map_memory() on this OS
5585   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5586                         allow_exec);
5587 }
5588 
5589 
5590 // Unmap a block of memory.
5591 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5592   return munmap(addr, bytes) == 0;
5593 }
5594 
5595 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5596 
5597 static jlong fast_cpu_time(Thread *thread) {
5598     clockid_t clockid;
5599     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5600                                               &clockid);
5601     if (rc == 0) {
5602       return os::Linux::fast_thread_cpu_time(clockid);
5603     } else {
5604       // It's possible to encounter a terminated native thread that failed
5605       // to detach itself from the VM - which should result in ESRCH.
5606       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5607       return -1;
5608     }
5609 }
5610 
5611 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5612 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5613 // of a thread.
5614 //
5615 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5616 // the fast estimate available on the platform.
5617 
5618 jlong os::current_thread_cpu_time() {
5619   if (os::Linux::supports_fast_thread_cpu_time()) {
5620     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5621   } else {
5622     // return user + sys since the cost is the same
5623     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5624   }
5625 }
5626 
5627 jlong os::thread_cpu_time(Thread* thread) {
5628   // consistent with what current_thread_cpu_time() returns
5629   if (os::Linux::supports_fast_thread_cpu_time()) {
5630     return fast_cpu_time(thread);
5631   } else {
5632     return slow_thread_cpu_time(thread, true /* user + sys */);
5633   }
5634 }
5635 
5636 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5637   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5638     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5639   } else {
5640     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5641   }
5642 }
5643 
5644 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5645   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5646     return fast_cpu_time(thread);
5647   } else {
5648     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5649   }
5650 }
5651 
5652 //  -1 on error.
5653 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5654   pid_t  tid = thread->osthread()->thread_id();
5655   char *s;
5656   char stat[2048];
5657   int statlen;
5658   char proc_name[64];
5659   int count;
5660   long sys_time, user_time;
5661   char cdummy;
5662   int idummy;
5663   long ldummy;
5664   FILE *fp;
5665 
5666   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5667   fp = fopen(proc_name, "r");
5668   if (fp == NULL) return -1;
5669   statlen = fread(stat, 1, 2047, fp);
5670   stat[statlen] = '\0';
5671   fclose(fp);
5672 
5673   // Skip pid and the command string. Note that we could be dealing with
5674   // weird command names, e.g. user could decide to rename java launcher
5675   // to "java 1.4.2 :)", then the stat file would look like
5676   //                1234 (java 1.4.2 :)) R ... ...
5677   // We don't really need to know the command string, just find the last
5678   // occurrence of ")" and then start parsing from there. See bug 4726580.
5679   s = strrchr(stat, ')');
5680   if (s == NULL) return -1;
5681 
5682   // Skip blank chars
5683   do { s++; } while (s && isspace(*s));
5684 
5685   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5686                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5687                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5688                  &user_time, &sys_time);
5689   if (count != 13) return -1;
5690   if (user_sys_cpu_time) {
5691     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5692   } else {
5693     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5694   }
5695 }
5696 
5697 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5698   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5699   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5700   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5701   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5702 }
5703 
5704 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5705   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5706   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5707   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5708   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5709 }
5710 
5711 bool os::is_thread_cpu_time_supported() {
5712   return true;
5713 }
5714 
5715 // System loadavg support.  Returns -1 if load average cannot be obtained.
5716 // Linux doesn't yet have a (official) notion of processor sets,
5717 // so just return the system wide load average.
5718 int os::loadavg(double loadavg[], int nelem) {
5719   return ::getloadavg(loadavg, nelem);
5720 }
5721 
5722 void os::pause() {
5723   char filename[MAX_PATH];
5724   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5725     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5726   } else {
5727     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5728   }
5729 
5730   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5731   if (fd != -1) {
5732     struct stat buf;
5733     ::close(fd);
5734     while (::stat(filename, &buf) == 0) {
5735       (void)::poll(NULL, 0, 100);
5736     }
5737   } else {
5738     jio_fprintf(stderr,
5739                 "Could not open pause file '%s', continuing immediately.\n", filename);
5740   }
5741 }
5742 
5743 extern char** environ;
5744 
5745 // Run the specified command in a separate process. Return its exit value,
5746 // or -1 on failure (e.g. can't fork a new process).
5747 // Unlike system(), this function can be called from signal handler. It
5748 // doesn't block SIGINT et al.
5749 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5750   const char * argv[4] = {"sh", "-c", cmd, NULL};
5751 
5752   pid_t pid ;
5753 
5754   if (use_vfork_if_available) {
5755     pid = vfork();
5756   } else {
5757     pid = fork();
5758   }
5759 
5760   if (pid < 0) {
5761     // fork failed
5762     return -1;
5763 
5764   } else if (pid == 0) {
5765     // child process
5766 
5767     execve("/bin/sh", (char* const*)argv, environ);
5768 
5769     // execve failed
5770     _exit(-1);
5771 
5772   } else  {
5773     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5774     // care about the actual exit code, for now.
5775 
5776     int status;
5777 
5778     // Wait for the child process to exit.  This returns immediately if
5779     // the child has already exited. */
5780     while (waitpid(pid, &status, 0) < 0) {
5781       switch (errno) {
5782       case ECHILD: return 0;
5783       case EINTR: break;
5784       default: return -1;
5785       }
5786     }
5787 
5788     if (WIFEXITED(status)) {
5789       // The child exited normally; get its exit code.
5790       return WEXITSTATUS(status);
5791     } else if (WIFSIGNALED(status)) {
5792       // The child exited because of a signal
5793       // The best value to return is 0x80 + signal number,
5794       // because that is what all Unix shells do, and because
5795       // it allows callers to distinguish between process exit and
5796       // process death by signal.
5797       return 0x80 + WTERMSIG(status);
5798     } else {
5799       // Unknown exit code; pass it through
5800       return status;
5801     }
5802   }
5803 }
5804 
5805 // Get the default path to the core file
5806 // Returns the length of the string
5807 int os::get_core_path(char* buffer, size_t bufferSize) {
5808   /*
5809    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5810    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5811    */
5812   const int core_pattern_len = 129;
5813   char core_pattern[core_pattern_len] = {0};
5814 
5815   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5816   if (core_pattern_file == -1) {
5817     return -1;
5818   }
5819 
5820   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5821   ::close(core_pattern_file);
5822   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5823     return -1;
5824   }
5825   if (core_pattern[ret-1] == '\n') {
5826     core_pattern[ret-1] = '\0';
5827   } else {
5828     core_pattern[ret] = '\0';
5829   }
5830 
5831   // Replace the %p in the core pattern with the process id. NOTE: we do this
5832   // only if the pattern doesn't start with "|", and we support only one %p in
5833   // the pattern.
5834   char *pid_pos = strstr(core_pattern, "%p");
5835   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5836   int written;
5837 
5838   if (core_pattern[0] == '/') {
5839     if (pid_pos != NULL) {
5840       *pid_pos = '\0';
5841       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5842                              current_process_id(), tail);
5843     } else {
5844       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5845     }
5846   } else {
5847     char cwd[PATH_MAX];
5848 
5849     const char* p = get_current_directory(cwd, PATH_MAX);
5850     if (p == NULL) {
5851       return -1;
5852     }
5853 
5854     if (core_pattern[0] == '|') {
5855       written = jio_snprintf(buffer, bufferSize,
5856                              "\"%s\" (or dumping to %s/core.%d)",
5857                              &core_pattern[1], p, current_process_id());
5858     } else if (pid_pos != NULL) {
5859       *pid_pos = '\0';
5860       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
5861                              current_process_id(), tail);
5862     } else {
5863       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5864     }
5865   }
5866 
5867   if (written < 0) {
5868     return -1;
5869   }
5870 
5871   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5872     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5873 
5874     if (core_uses_pid_file != -1) {
5875       char core_uses_pid = 0;
5876       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5877       ::close(core_uses_pid_file);
5878 
5879       if (core_uses_pid == '1') {
5880         jio_snprintf(buffer + written, bufferSize - written,
5881                                           ".%d", current_process_id());
5882       }
5883     }
5884   }
5885 
5886   return strlen(buffer);
5887 }
5888 
5889 bool os::start_debugging(char *buf, int buflen) {
5890   int len = (int)strlen(buf);
5891   char *p = &buf[len];
5892 
5893   jio_snprintf(p, buflen-len,
5894                "\n\n"
5895                "Do you want to debug the problem?\n\n"
5896                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5897                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5898                "Otherwise, press RETURN to abort...",
5899                os::current_process_id(), os::current_process_id(),
5900                os::current_thread_id(), os::current_thread_id());
5901 
5902   bool yes = os::message_box("Unexpected Error", buf);
5903 
5904   if (yes) {
5905     // yes, user asked VM to launch debugger
5906     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5907                  os::current_process_id(), os::current_process_id());
5908 
5909     os::fork_and_exec(buf);
5910     yes = false;
5911   }
5912   return yes;
5913 }
5914 
5915 
5916 // Java/Compiler thread:
5917 //
5918 //   Low memory addresses
5919 // P0 +------------------------+
5920 //    |                        |\  Java thread created by VM does not have glibc
5921 //    |    glibc guard page    | - guard page, attached Java thread usually has
5922 //    |                        |/  1 glibc guard page.
5923 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5924 //    |                        |\
5925 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5926 //    |                        |/
5927 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5928 //    |                        |\
5929 //    |      Normal Stack      | -
5930 //    |                        |/
5931 // P2 +------------------------+ Thread::stack_base()
5932 //
5933 // Non-Java thread:
5934 //
5935 //   Low memory addresses
5936 // P0 +------------------------+
5937 //    |                        |\
5938 //    |  glibc guard page      | - usually 1 page
5939 //    |                        |/
5940 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5941 //    |                        |\
5942 //    |      Normal Stack      | -
5943 //    |                        |/
5944 // P2 +------------------------+ Thread::stack_base()
5945 //
5946 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5947 //    returned from pthread_attr_getstack().
5948 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5949 //    of the stack size given in pthread_attr. We work around this for
5950 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5951 //
5952 #ifndef ZERO
5953 static void current_stack_region(address * bottom, size_t * size) {
5954   if (os::is_primordial_thread()) {
5955     // primordial thread needs special handling because pthread_getattr_np()
5956     // may return bogus value.
5957     *bottom = os::Linux::initial_thread_stack_bottom();
5958     *size   = os::Linux::initial_thread_stack_size();
5959   } else {
5960     pthread_attr_t attr;
5961 
5962     int rslt = pthread_getattr_np(pthread_self(), &attr);
5963 
5964     // JVM needs to know exact stack location, abort if it fails
5965     if (rslt != 0) {
5966       if (rslt == ENOMEM) {
5967         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5968       } else {
5969         fatal("pthread_getattr_np failed with error = %d", rslt);
5970       }
5971     }
5972 
5973     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5974       fatal("Cannot locate current stack attributes!");
5975     }
5976 
5977     // Work around NPTL stack guard error.
5978     size_t guard_size = 0;
5979     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5980     if (rslt != 0) {
5981       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5982     }
5983     *bottom += guard_size;
5984     *size   -= guard_size;
5985 
5986     pthread_attr_destroy(&attr);
5987 
5988   }
5989   assert(os::current_stack_pointer() >= *bottom &&
5990          os::current_stack_pointer() < *bottom + *size, "just checking");
5991 }
5992 
5993 address os::current_stack_base() {
5994   address bottom;
5995   size_t size;
5996   current_stack_region(&bottom, &size);
5997   return (bottom + size);
5998 }
5999 
6000 size_t os::current_stack_size() {
6001   // This stack size includes the usable stack and HotSpot guard pages
6002   // (for the threads that have Hotspot guard pages).
6003   address bottom;
6004   size_t size;
6005   current_stack_region(&bottom, &size);
6006   return size;
6007 }
6008 #endif
6009 
6010 static inline struct timespec get_mtime(const char* filename) {
6011   struct stat st;
6012   int ret = os::stat(filename, &st);
6013   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
6014   return st.st_mtim;
6015 }
6016 
6017 int os::compare_file_modified_times(const char* file1, const char* file2) {
6018   struct timespec filetime1 = get_mtime(file1);
6019   struct timespec filetime2 = get_mtime(file2);
6020   int diff = filetime1.tv_sec - filetime2.tv_sec;
6021   if (diff == 0) {
6022     return filetime1.tv_nsec - filetime2.tv_nsec;
6023   }
6024   return diff;
6025 }
6026 
6027 /////////////// Unit tests ///////////////
6028 
6029 #ifndef PRODUCT
6030 
6031 class TestReserveMemorySpecial : AllStatic {
6032  public:
6033   static void small_page_write(void* addr, size_t size) {
6034     size_t page_size = os::vm_page_size();
6035 
6036     char* end = (char*)addr + size;
6037     for (char* p = (char*)addr; p < end; p += page_size) {
6038       *p = 1;
6039     }
6040   }
6041 
6042   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6043     if (!UseHugeTLBFS) {
6044       return;
6045     }
6046 
6047     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6048 
6049     if (addr != NULL) {
6050       small_page_write(addr, size);
6051 
6052       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6053     }
6054   }
6055 
6056   static void test_reserve_memory_special_huge_tlbfs_only() {
6057     if (!UseHugeTLBFS) {
6058       return;
6059     }
6060 
6061     size_t lp = os::large_page_size();
6062 
6063     for (size_t size = lp; size <= lp * 10; size += lp) {
6064       test_reserve_memory_special_huge_tlbfs_only(size);
6065     }
6066   }
6067 
6068   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6069     size_t lp = os::large_page_size();
6070     size_t ag = os::vm_allocation_granularity();
6071 
6072     // sizes to test
6073     const size_t sizes[] = {
6074       lp, lp + ag, lp + lp / 2, lp * 2,
6075       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6076       lp * 10, lp * 10 + lp / 2
6077     };
6078     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6079 
6080     // For each size/alignment combination, we test three scenarios:
6081     // 1) with req_addr == NULL
6082     // 2) with a non-null req_addr at which we expect to successfully allocate
6083     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6084     //    expect the allocation to either fail or to ignore req_addr
6085 
6086     // Pre-allocate two areas; they shall be as large as the largest allocation
6087     //  and aligned to the largest alignment we will be testing.
6088     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6089     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6090       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6091       -1, 0);
6092     assert(mapping1 != MAP_FAILED, "should work");
6093 
6094     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6095       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6096       -1, 0);
6097     assert(mapping2 != MAP_FAILED, "should work");
6098 
6099     // Unmap the first mapping, but leave the second mapping intact: the first
6100     // mapping will serve as a value for a "good" req_addr (case 2). The second
6101     // mapping, still intact, as "bad" req_addr (case 3).
6102     ::munmap(mapping1, mapping_size);
6103 
6104     // Case 1
6105     for (int i = 0; i < num_sizes; i++) {
6106       const size_t size = sizes[i];
6107       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6108         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6109         if (p != NULL) {
6110           assert(is_aligned(p, alignment), "must be");
6111           small_page_write(p, size);
6112           os::Linux::release_memory_special_huge_tlbfs(p, size);
6113         }
6114       }
6115     }
6116 
6117     // Case 2
6118     for (int i = 0; i < num_sizes; i++) {
6119       const size_t size = sizes[i];
6120       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6121         char* const req_addr = align_up(mapping1, alignment);
6122         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6123         if (p != NULL) {
6124           assert(p == req_addr, "must be");
6125           small_page_write(p, size);
6126           os::Linux::release_memory_special_huge_tlbfs(p, size);
6127         }
6128       }
6129     }
6130 
6131     // Case 3
6132     for (int i = 0; i < num_sizes; i++) {
6133       const size_t size = sizes[i];
6134       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6135         char* const req_addr = align_up(mapping2, alignment);
6136         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6137         // as the area around req_addr contains already existing mappings, the API should always
6138         // return NULL (as per contract, it cannot return another address)
6139         assert(p == NULL, "must be");
6140       }
6141     }
6142 
6143     ::munmap(mapping2, mapping_size);
6144 
6145   }
6146 
6147   static void test_reserve_memory_special_huge_tlbfs() {
6148     if (!UseHugeTLBFS) {
6149       return;
6150     }
6151 
6152     test_reserve_memory_special_huge_tlbfs_only();
6153     test_reserve_memory_special_huge_tlbfs_mixed();
6154   }
6155 
6156   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6157     if (!UseSHM) {
6158       return;
6159     }
6160 
6161     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6162 
6163     if (addr != NULL) {
6164       assert(is_aligned(addr, alignment), "Check");
6165       assert(is_aligned(addr, os::large_page_size()), "Check");
6166 
6167       small_page_write(addr, size);
6168 
6169       os::Linux::release_memory_special_shm(addr, size);
6170     }
6171   }
6172 
6173   static void test_reserve_memory_special_shm() {
6174     size_t lp = os::large_page_size();
6175     size_t ag = os::vm_allocation_granularity();
6176 
6177     for (size_t size = ag; size < lp * 3; size += ag) {
6178       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6179         test_reserve_memory_special_shm(size, alignment);
6180       }
6181     }
6182   }
6183 
6184   static void test() {
6185     test_reserve_memory_special_huge_tlbfs();
6186     test_reserve_memory_special_shm();
6187   }
6188 };
6189 
6190 void TestReserveMemorySpecial_test() {
6191   TestReserveMemorySpecial::test();
6192 }
6193 
6194 #endif