1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "osContainer_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.inline.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/threadSMR.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/elfFile.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 // put OS-includes here
  78 # include <sys/types.h>
  79 # include <sys/mman.h>
  80 # include <sys/stat.h>
  81 # include <sys/select.h>
  82 # include <pthread.h>
  83 # include <signal.h>
  84 # include <errno.h>
  85 # include <dlfcn.h>
  86 # include <stdio.h>
  87 # include <unistd.h>
  88 # include <sys/resource.h>
  89 # include <pthread.h>
  90 # include <sys/stat.h>
  91 # include <sys/time.h>
  92 # include <sys/times.h>
  93 # include <sys/utsname.h>
  94 # include <sys/socket.h>
  95 # include <sys/wait.h>
  96 # include <pwd.h>
  97 # include <poll.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 enum CoredumpFilterBit {
 132   FILE_BACKED_PVT_BIT = 1 << 2,
 133   LARGEPAGES_BIT = 1 << 6,
 134   DAX_SHARED_BIT = 1 << 8
 135 };
 136 
 137 ////////////////////////////////////////////////////////////////////////////////
 138 // global variables
 139 julong os::Linux::_physical_memory = 0;
 140 
 141 address   os::Linux::_initial_thread_stack_bottom = NULL;
 142 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 143 
 144 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 145 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 146 Mutex* os::Linux::_createThread_lock = NULL;
 147 pthread_t os::Linux::_main_thread;
 148 int os::Linux::_page_size = -1;
 149 bool os::Linux::_supports_fast_thread_cpu_time = false;
 150 uint32_t os::Linux::_os_version = 0;
 151 const char * os::Linux::_glibc_version = NULL;
 152 const char * os::Linux::_libpthread_version = NULL;
 153 
 154 static jlong initial_time_count=0;
 155 
 156 static int clock_tics_per_sec = 100;
 157 
 158 // If the VM might have been created on the primordial thread, we need to resolve the
 159 // primordial thread stack bounds and check if the current thread might be the
 160 // primordial thread in places. If we know that the primordial thread is never used,
 161 // such as when the VM was created by one of the standard java launchers, we can
 162 // avoid this
 163 static bool suppress_primordial_thread_resolution = false;
 164 
 165 // For diagnostics to print a message once. see run_periodic_checks
 166 static sigset_t check_signal_done;
 167 static bool check_signals = true;
 168 
 169 // Signal number used to suspend/resume a thread
 170 
 171 // do not use any signal number less than SIGSEGV, see 4355769
 172 static int SR_signum = SIGUSR2;
 173 sigset_t SR_sigset;
 174 
 175 // utility functions
 176 
 177 static int SR_initialize();
 178 
 179 julong os::available_memory() {
 180   return Linux::available_memory();
 181 }
 182 
 183 julong os::Linux::available_memory() {
 184   // values in struct sysinfo are "unsigned long"
 185   struct sysinfo si;
 186   julong avail_mem;
 187 
 188   if (OSContainer::is_containerized()) {
 189     jlong mem_limit, mem_usage;
 190     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 191       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 192                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 193     }
 194     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 195       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 196     }
 197     if (mem_limit > 0 && mem_usage > 0 ) {
 198       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 199       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 200       return avail_mem;
 201     }
 202   }
 203 
 204   sysinfo(&si);
 205   avail_mem = (julong)si.freeram * si.mem_unit;
 206   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 207   return avail_mem;
 208 }
 209 
 210 julong os::physical_memory() {
 211   jlong phys_mem = 0;
 212   if (OSContainer::is_containerized()) {
 213     jlong mem_limit;
 214     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 215       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 216       return mem_limit;
 217     }
 218     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 219                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 220   }
 221 
 222   phys_mem = Linux::physical_memory();
 223   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 224   return phys_mem;
 225 }
 226 
 227 // Return true if user is running as root.
 228 
 229 bool os::have_special_privileges() {
 230   static bool init = false;
 231   static bool privileges = false;
 232   if (!init) {
 233     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 234     init = true;
 235   }
 236   return privileges;
 237 }
 238 
 239 
 240 #ifndef SYS_gettid
 241 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 242   #ifdef __ia64__
 243     #define SYS_gettid 1105
 244   #else
 245     #ifdef __i386__
 246       #define SYS_gettid 224
 247     #else
 248       #ifdef __amd64__
 249         #define SYS_gettid 186
 250       #else
 251         #ifdef __sparc__
 252           #define SYS_gettid 143
 253         #else
 254           #error define gettid for the arch
 255         #endif
 256       #endif
 257     #endif
 258   #endif
 259 #endif
 260 
 261 
 262 // pid_t gettid()
 263 //
 264 // Returns the kernel thread id of the currently running thread. Kernel
 265 // thread id is used to access /proc.
 266 pid_t os::Linux::gettid() {
 267   int rslt = syscall(SYS_gettid);
 268   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 269   return (pid_t)rslt;
 270 }
 271 
 272 // Most versions of linux have a bug where the number of processors are
 273 // determined by looking at the /proc file system.  In a chroot environment,
 274 // the system call returns 1.
 275 static bool unsafe_chroot_detected = false;
 276 static const char *unstable_chroot_error = "/proc file system not found.\n"
 277                      "Java may be unstable running multithreaded in a chroot "
 278                      "environment on Linux when /proc filesystem is not mounted.";
 279 
 280 void os::Linux::initialize_system_info() {
 281   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 282   if (processor_count() == 1) {
 283     pid_t pid = os::Linux::gettid();
 284     char fname[32];
 285     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 286     FILE *fp = fopen(fname, "r");
 287     if (fp == NULL) {
 288       unsafe_chroot_detected = true;
 289     } else {
 290       fclose(fp);
 291     }
 292   }
 293   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 294   assert(processor_count() > 0, "linux error");
 295 }
 296 
 297 void os::init_system_properties_values() {
 298   // The next steps are taken in the product version:
 299   //
 300   // Obtain the JAVA_HOME value from the location of libjvm.so.
 301   // This library should be located at:
 302   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 303   //
 304   // If "/jre/lib/" appears at the right place in the path, then we
 305   // assume libjvm.so is installed in a JDK and we use this path.
 306   //
 307   // Otherwise exit with message: "Could not create the Java virtual machine."
 308   //
 309   // The following extra steps are taken in the debugging version:
 310   //
 311   // If "/jre/lib/" does NOT appear at the right place in the path
 312   // instead of exit check for $JAVA_HOME environment variable.
 313   //
 314   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 315   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 316   // it looks like libjvm.so is installed there
 317   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 318   //
 319   // Otherwise exit.
 320   //
 321   // Important note: if the location of libjvm.so changes this
 322   // code needs to be changed accordingly.
 323 
 324   // See ld(1):
 325   //      The linker uses the following search paths to locate required
 326   //      shared libraries:
 327   //        1: ...
 328   //        ...
 329   //        7: The default directories, normally /lib and /usr/lib.
 330 #ifndef OVERRIDE_LIBPATH
 331   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 332     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 333   #else
 334     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 335   #endif
 336 #else
 337   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 338 #endif
 339 
 340 // Base path of extensions installed on the system.
 341 #define SYS_EXT_DIR     "/usr/java/packages"
 342 #define EXTENSIONS_DIR  "/lib/ext"
 343 
 344   // Buffer that fits several sprintfs.
 345   // Note that the space for the colon and the trailing null are provided
 346   // by the nulls included by the sizeof operator.
 347   const size_t bufsize =
 348     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 349          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 350   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 351 
 352   // sysclasspath, java_home, dll_dir
 353   {
 354     char *pslash;
 355     os::jvm_path(buf, bufsize);
 356 
 357     // Found the full path to libjvm.so.
 358     // Now cut the path to <java_home>/jre if we can.
 359     pslash = strrchr(buf, '/');
 360     if (pslash != NULL) {
 361       *pslash = '\0';            // Get rid of /libjvm.so.
 362     }
 363     pslash = strrchr(buf, '/');
 364     if (pslash != NULL) {
 365       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 366     }
 367     Arguments::set_dll_dir(buf);
 368 
 369     if (pslash != NULL) {
 370       pslash = strrchr(buf, '/');
 371       if (pslash != NULL) {
 372         *pslash = '\0';        // Get rid of /lib.
 373       }
 374     }
 375     Arguments::set_java_home(buf);
 376     if (!set_boot_path('/', ':')) {
 377       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 378     }
 379   }
 380 
 381   // Where to look for native libraries.
 382   //
 383   // Note: Due to a legacy implementation, most of the library path
 384   // is set in the launcher. This was to accomodate linking restrictions
 385   // on legacy Linux implementations (which are no longer supported).
 386   // Eventually, all the library path setting will be done here.
 387   //
 388   // However, to prevent the proliferation of improperly built native
 389   // libraries, the new path component /usr/java/packages is added here.
 390   // Eventually, all the library path setting will be done here.
 391   {
 392     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 393     // should always exist (until the legacy problem cited above is
 394     // addressed).
 395     const char *v = ::getenv("LD_LIBRARY_PATH");
 396     const char *v_colon = ":";
 397     if (v == NULL) { v = ""; v_colon = ""; }
 398     // That's +1 for the colon and +1 for the trailing '\0'.
 399     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 400                                                      strlen(v) + 1 +
 401                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 402                                                      mtInternal);
 403     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 404     Arguments::set_library_path(ld_library_path);
 405     FREE_C_HEAP_ARRAY(char, ld_library_path);
 406   }
 407 
 408   // Extensions directories.
 409   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 410   Arguments::set_ext_dirs(buf);
 411 
 412   FREE_C_HEAP_ARRAY(char, buf);
 413 
 414 #undef DEFAULT_LIBPATH
 415 #undef SYS_EXT_DIR
 416 #undef EXTENSIONS_DIR
 417 }
 418 
 419 ////////////////////////////////////////////////////////////////////////////////
 420 // breakpoint support
 421 
 422 void os::breakpoint() {
 423   BREAKPOINT;
 424 }
 425 
 426 extern "C" void breakpoint() {
 427   // use debugger to set breakpoint here
 428 }
 429 
 430 ////////////////////////////////////////////////////////////////////////////////
 431 // signal support
 432 
 433 debug_only(static bool signal_sets_initialized = false);
 434 static sigset_t unblocked_sigs, vm_sigs;
 435 
 436 void os::Linux::signal_sets_init() {
 437   // Should also have an assertion stating we are still single-threaded.
 438   assert(!signal_sets_initialized, "Already initialized");
 439   // Fill in signals that are necessarily unblocked for all threads in
 440   // the VM. Currently, we unblock the following signals:
 441   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 442   //                         by -Xrs (=ReduceSignalUsage));
 443   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 444   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 445   // the dispositions or masks wrt these signals.
 446   // Programs embedding the VM that want to use the above signals for their
 447   // own purposes must, at this time, use the "-Xrs" option to prevent
 448   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 449   // (See bug 4345157, and other related bugs).
 450   // In reality, though, unblocking these signals is really a nop, since
 451   // these signals are not blocked by default.
 452   sigemptyset(&unblocked_sigs);
 453   sigaddset(&unblocked_sigs, SIGILL);
 454   sigaddset(&unblocked_sigs, SIGSEGV);
 455   sigaddset(&unblocked_sigs, SIGBUS);
 456   sigaddset(&unblocked_sigs, SIGFPE);
 457 #if defined(PPC64)
 458   sigaddset(&unblocked_sigs, SIGTRAP);
 459 #endif
 460   sigaddset(&unblocked_sigs, SR_signum);
 461 
 462   if (!ReduceSignalUsage) {
 463     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 464       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 465     }
 466     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 467       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 468     }
 469     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 470       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 471     }
 472   }
 473   // Fill in signals that are blocked by all but the VM thread.
 474   sigemptyset(&vm_sigs);
 475   if (!ReduceSignalUsage) {
 476     sigaddset(&vm_sigs, BREAK_SIGNAL);
 477   }
 478   debug_only(signal_sets_initialized = true);
 479 
 480 }
 481 
 482 // These are signals that are unblocked while a thread is running Java.
 483 // (For some reason, they get blocked by default.)
 484 sigset_t* os::Linux::unblocked_signals() {
 485   assert(signal_sets_initialized, "Not initialized");
 486   return &unblocked_sigs;
 487 }
 488 
 489 // These are the signals that are blocked while a (non-VM) thread is
 490 // running Java. Only the VM thread handles these signals.
 491 sigset_t* os::Linux::vm_signals() {
 492   assert(signal_sets_initialized, "Not initialized");
 493   return &vm_sigs;
 494 }
 495 
 496 void os::Linux::hotspot_sigmask(Thread* thread) {
 497 
 498   //Save caller's signal mask before setting VM signal mask
 499   sigset_t caller_sigmask;
 500   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 501 
 502   OSThread* osthread = thread->osthread();
 503   osthread->set_caller_sigmask(caller_sigmask);
 504 
 505   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 506 
 507   if (!ReduceSignalUsage) {
 508     if (thread->is_VM_thread()) {
 509       // Only the VM thread handles BREAK_SIGNAL ...
 510       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 511     } else {
 512       // ... all other threads block BREAK_SIGNAL
 513       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 514     }
 515   }
 516 }
 517 
 518 //////////////////////////////////////////////////////////////////////////////
 519 // detecting pthread library
 520 
 521 void os::Linux::libpthread_init() {
 522   // Save glibc and pthread version strings.
 523 #if !defined(_CS_GNU_LIBC_VERSION) || \
 524     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 525   #error "glibc too old (< 2.3.2)"
 526 #endif
 527 
 528   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 529   assert(n > 0, "cannot retrieve glibc version");
 530   char *str = (char *)malloc(n, mtInternal);
 531   confstr(_CS_GNU_LIBC_VERSION, str, n);
 532   os::Linux::set_glibc_version(str);
 533 
 534   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 535   assert(n > 0, "cannot retrieve pthread version");
 536   str = (char *)malloc(n, mtInternal);
 537   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 538   os::Linux::set_libpthread_version(str);
 539 }
 540 
 541 /////////////////////////////////////////////////////////////////////////////
 542 // thread stack expansion
 543 
 544 // os::Linux::manually_expand_stack() takes care of expanding the thread
 545 // stack. Note that this is normally not needed: pthread stacks allocate
 546 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 547 // committed. Therefore it is not necessary to expand the stack manually.
 548 //
 549 // Manually expanding the stack was historically needed on LinuxThreads
 550 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 551 // it is kept to deal with very rare corner cases:
 552 //
 553 // For one, user may run the VM on an own implementation of threads
 554 // whose stacks are - like the old LinuxThreads - implemented using
 555 // mmap(MAP_GROWSDOWN).
 556 //
 557 // Also, this coding may be needed if the VM is running on the primordial
 558 // thread. Normally we avoid running on the primordial thread; however,
 559 // user may still invoke the VM on the primordial thread.
 560 //
 561 // The following historical comment describes the details about running
 562 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 563 
 564 
 565 // Force Linux kernel to expand current thread stack. If "bottom" is close
 566 // to the stack guard, caller should block all signals.
 567 //
 568 // MAP_GROWSDOWN:
 569 //   A special mmap() flag that is used to implement thread stacks. It tells
 570 //   kernel that the memory region should extend downwards when needed. This
 571 //   allows early versions of LinuxThreads to only mmap the first few pages
 572 //   when creating a new thread. Linux kernel will automatically expand thread
 573 //   stack as needed (on page faults).
 574 //
 575 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 576 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 577 //   region, it's hard to tell if the fault is due to a legitimate stack
 578 //   access or because of reading/writing non-exist memory (e.g. buffer
 579 //   overrun). As a rule, if the fault happens below current stack pointer,
 580 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 581 //   application (see Linux kernel fault.c).
 582 //
 583 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 584 //   stack overflow detection.
 585 //
 586 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 587 //   not use MAP_GROWSDOWN.
 588 //
 589 // To get around the problem and allow stack banging on Linux, we need to
 590 // manually expand thread stack after receiving the SIGSEGV.
 591 //
 592 // There are two ways to expand thread stack to address "bottom", we used
 593 // both of them in JVM before 1.5:
 594 //   1. adjust stack pointer first so that it is below "bottom", and then
 595 //      touch "bottom"
 596 //   2. mmap() the page in question
 597 //
 598 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 599 // if current sp is already near the lower end of page 101, and we need to
 600 // call mmap() to map page 100, it is possible that part of the mmap() frame
 601 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 602 // That will destroy the mmap() frame and cause VM to crash.
 603 //
 604 // The following code works by adjusting sp first, then accessing the "bottom"
 605 // page to force a page fault. Linux kernel will then automatically expand the
 606 // stack mapping.
 607 //
 608 // _expand_stack_to() assumes its frame size is less than page size, which
 609 // should always be true if the function is not inlined.
 610 
 611 static void NOINLINE _expand_stack_to(address bottom) {
 612   address sp;
 613   size_t size;
 614   volatile char *p;
 615 
 616   // Adjust bottom to point to the largest address within the same page, it
 617   // gives us a one-page buffer if alloca() allocates slightly more memory.
 618   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 619   bottom += os::Linux::page_size() - 1;
 620 
 621   // sp might be slightly above current stack pointer; if that's the case, we
 622   // will alloca() a little more space than necessary, which is OK. Don't use
 623   // os::current_stack_pointer(), as its result can be slightly below current
 624   // stack pointer, causing us to not alloca enough to reach "bottom".
 625   sp = (address)&sp;
 626 
 627   if (sp > bottom) {
 628     size = sp - bottom;
 629     p = (volatile char *)alloca(size);
 630     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 631     p[0] = '\0';
 632   }
 633 }
 634 
 635 void os::Linux::expand_stack_to(address bottom) {
 636   _expand_stack_to(bottom);
 637 }
 638 
 639 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 640   assert(t!=NULL, "just checking");
 641   assert(t->osthread()->expanding_stack(), "expand should be set");
 642   assert(t->stack_base() != NULL, "stack_base was not initialized");
 643 
 644   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 645     sigset_t mask_all, old_sigset;
 646     sigfillset(&mask_all);
 647     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 648     _expand_stack_to(addr);
 649     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 650     return true;
 651   }
 652   return false;
 653 }
 654 
 655 //////////////////////////////////////////////////////////////////////////////
 656 // create new thread
 657 
 658 // Thread start routine for all newly created threads
 659 static void *thread_native_entry(Thread *thread) {
 660 
 661   thread->record_stack_base_and_size();
 662 
 663   // Try to randomize the cache line index of hot stack frames.
 664   // This helps when threads of the same stack traces evict each other's
 665   // cache lines. The threads can be either from the same JVM instance, or
 666   // from different JVM instances. The benefit is especially true for
 667   // processors with hyperthreading technology.
 668   static int counter = 0;
 669   int pid = os::current_process_id();
 670   alloca(((pid ^ counter++) & 7) * 128);
 671 
 672   thread->initialize_thread_current();
 673 
 674   OSThread* osthread = thread->osthread();
 675   Monitor* sync = osthread->startThread_lock();
 676 
 677   osthread->set_thread_id(os::current_thread_id());
 678 
 679   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 680     os::current_thread_id(), (uintx) pthread_self());
 681 
 682   if (UseNUMA) {
 683     int lgrp_id = os::numa_get_group_id();
 684     if (lgrp_id != -1) {
 685       thread->set_lgrp_id(lgrp_id);
 686     }
 687   }
 688   // initialize signal mask for this thread
 689   os::Linux::hotspot_sigmask(thread);
 690 
 691   // initialize floating point control register
 692   os::Linux::init_thread_fpu_state();
 693 
 694   // handshaking with parent thread
 695   {
 696     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 697 
 698     // notify parent thread
 699     osthread->set_state(INITIALIZED);
 700     sync->notify_all();
 701 
 702     // wait until os::start_thread()
 703     while (osthread->get_state() == INITIALIZED) {
 704       sync->wait(Mutex::_no_safepoint_check_flag);
 705     }
 706   }
 707 
 708   // call one more level start routine
 709   thread->call_run();
 710 
 711   // Note: at this point the thread object may already have deleted itself.
 712   // Prevent dereferencing it from here on out.
 713   thread = NULL;
 714 
 715   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 716     os::current_thread_id(), (uintx) pthread_self());
 717 
 718   return 0;
 719 }
 720 
 721 bool os::create_thread(Thread* thread, ThreadType thr_type,
 722                        size_t req_stack_size) {
 723   assert(thread->osthread() == NULL, "caller responsible");
 724 
 725   // Allocate the OSThread object
 726   OSThread* osthread = new OSThread(NULL, NULL);
 727   if (osthread == NULL) {
 728     return false;
 729   }
 730 
 731   // set the correct thread state
 732   osthread->set_thread_type(thr_type);
 733 
 734   // Initial state is ALLOCATED but not INITIALIZED
 735   osthread->set_state(ALLOCATED);
 736 
 737   thread->set_osthread(osthread);
 738 
 739   // init thread attributes
 740   pthread_attr_t attr;
 741   pthread_attr_init(&attr);
 742   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 743 
 744   // Calculate stack size if it's not specified by caller.
 745   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 746   // In the Linux NPTL pthread implementation the guard size mechanism
 747   // is not implemented properly. The posix standard requires adding
 748   // the size of the guard pages to the stack size, instead Linux
 749   // takes the space out of 'stacksize'. Thus we adapt the requested
 750   // stack_size by the size of the guard pages to mimick proper
 751   // behaviour. However, be careful not to end up with a size
 752   // of zero due to overflow. Don't add the guard page in that case.
 753   size_t guard_size = os::Linux::default_guard_size(thr_type);
 754   if (stack_size <= SIZE_MAX - guard_size) {
 755     stack_size += guard_size;
 756   }
 757   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 758 
 759   int status = pthread_attr_setstacksize(&attr, stack_size);
 760   assert_status(status == 0, status, "pthread_attr_setstacksize");
 761 
 762   // Configure glibc guard page.
 763   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 764 
 765   ThreadState state;
 766 
 767   {
 768     pthread_t tid;
 769     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 770 
 771     char buf[64];
 772     if (ret == 0) {
 773       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 774         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 775     } else {
 776       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 777         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 778     }
 779 
 780     pthread_attr_destroy(&attr);
 781 
 782     if (ret != 0) {
 783       // Need to clean up stuff we've allocated so far
 784       thread->set_osthread(NULL);
 785       delete osthread;
 786       return false;
 787     }
 788 
 789     // Store pthread info into the OSThread
 790     osthread->set_pthread_id(tid);
 791 
 792     // Wait until child thread is either initialized or aborted
 793     {
 794       Monitor* sync_with_child = osthread->startThread_lock();
 795       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 796       while ((state = osthread->get_state()) == ALLOCATED) {
 797         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 798       }
 799     }
 800   }
 801 
 802   // Aborted due to thread limit being reached
 803   if (state == ZOMBIE) {
 804     thread->set_osthread(NULL);
 805     delete osthread;
 806     return false;
 807   }
 808 
 809   // The thread is returned suspended (in state INITIALIZED),
 810   // and is started higher up in the call chain
 811   assert(state == INITIALIZED, "race condition");
 812   return true;
 813 }
 814 
 815 /////////////////////////////////////////////////////////////////////////////
 816 // attach existing thread
 817 
 818 // bootstrap the main thread
 819 bool os::create_main_thread(JavaThread* thread) {
 820   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 821   return create_attached_thread(thread);
 822 }
 823 
 824 bool os::create_attached_thread(JavaThread* thread) {
 825 #ifdef ASSERT
 826   thread->verify_not_published();
 827 #endif
 828 
 829   // Allocate the OSThread object
 830   OSThread* osthread = new OSThread(NULL, NULL);
 831 
 832   if (osthread == NULL) {
 833     return false;
 834   }
 835 
 836   // Store pthread info into the OSThread
 837   osthread->set_thread_id(os::Linux::gettid());
 838   osthread->set_pthread_id(::pthread_self());
 839 
 840   // initialize floating point control register
 841   os::Linux::init_thread_fpu_state();
 842 
 843   // Initial thread state is RUNNABLE
 844   osthread->set_state(RUNNABLE);
 845 
 846   thread->set_osthread(osthread);
 847 
 848   if (UseNUMA) {
 849     int lgrp_id = os::numa_get_group_id();
 850     if (lgrp_id != -1) {
 851       thread->set_lgrp_id(lgrp_id);
 852     }
 853   }
 854 
 855   if (os::is_primordial_thread()) {
 856     // If current thread is primordial thread, its stack is mapped on demand,
 857     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 858     // the entire stack region to avoid SEGV in stack banging.
 859     // It is also useful to get around the heap-stack-gap problem on SuSE
 860     // kernel (see 4821821 for details). We first expand stack to the top
 861     // of yellow zone, then enable stack yellow zone (order is significant,
 862     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 863     // is no gap between the last two virtual memory regions.
 864 
 865     JavaThread *jt = (JavaThread *)thread;
 866     address addr = jt->stack_reserved_zone_base();
 867     assert(addr != NULL, "initialization problem?");
 868     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 869 
 870     osthread->set_expanding_stack();
 871     os::Linux::manually_expand_stack(jt, addr);
 872     osthread->clear_expanding_stack();
 873   }
 874 
 875   // initialize signal mask for this thread
 876   // and save the caller's signal mask
 877   os::Linux::hotspot_sigmask(thread);
 878 
 879   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 880     os::current_thread_id(), (uintx) pthread_self());
 881 
 882   return true;
 883 }
 884 
 885 void os::pd_start_thread(Thread* thread) {
 886   OSThread * osthread = thread->osthread();
 887   assert(osthread->get_state() != INITIALIZED, "just checking");
 888   Monitor* sync_with_child = osthread->startThread_lock();
 889   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 890   sync_with_child->notify();
 891 }
 892 
 893 // Free Linux resources related to the OSThread
 894 void os::free_thread(OSThread* osthread) {
 895   assert(osthread != NULL, "osthread not set");
 896 
 897   // We are told to free resources of the argument thread,
 898   // but we can only really operate on the current thread.
 899   assert(Thread::current()->osthread() == osthread,
 900          "os::free_thread but not current thread");
 901 
 902 #ifdef ASSERT
 903   sigset_t current;
 904   sigemptyset(&current);
 905   pthread_sigmask(SIG_SETMASK, NULL, &current);
 906   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 907 #endif
 908 
 909   // Restore caller's signal mask
 910   sigset_t sigmask = osthread->caller_sigmask();
 911   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 912 
 913   delete osthread;
 914 }
 915 
 916 //////////////////////////////////////////////////////////////////////////////
 917 // primordial thread
 918 
 919 // Check if current thread is the primordial thread, similar to Solaris thr_main.
 920 bool os::is_primordial_thread(void) {
 921   if (suppress_primordial_thread_resolution) {
 922     return false;
 923   }
 924   char dummy;
 925   // If called before init complete, thread stack bottom will be null.
 926   // Can be called if fatal error occurs before initialization.
 927   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
 928   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
 929          os::Linux::initial_thread_stack_size()   != 0,
 930          "os::init did not locate primordial thread's stack region");
 931   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
 932       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
 933                         os::Linux::initial_thread_stack_size()) {
 934     return true;
 935   } else {
 936     return false;
 937   }
 938 }
 939 
 940 // Find the virtual memory area that contains addr
 941 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 942   FILE *fp = fopen("/proc/self/maps", "r");
 943   if (fp) {
 944     address low, high;
 945     while (!feof(fp)) {
 946       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 947         if (low <= addr && addr < high) {
 948           if (vma_low)  *vma_low  = low;
 949           if (vma_high) *vma_high = high;
 950           fclose(fp);
 951           return true;
 952         }
 953       }
 954       for (;;) {
 955         int ch = fgetc(fp);
 956         if (ch == EOF || ch == (int)'\n') break;
 957       }
 958     }
 959     fclose(fp);
 960   }
 961   return false;
 962 }
 963 
 964 // Locate primordial thread stack. This special handling of primordial thread stack
 965 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 966 // bogus value for the primordial process thread. While the launcher has created
 967 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 968 // JNI invocation API from a primordial thread.
 969 void os::Linux::capture_initial_stack(size_t max_size) {
 970 
 971   // max_size is either 0 (which means accept OS default for thread stacks) or
 972   // a user-specified value known to be at least the minimum needed. If we
 973   // are actually on the primordial thread we can make it appear that we have a
 974   // smaller max_size stack by inserting the guard pages at that location. But we
 975   // cannot do anything to emulate a larger stack than what has been provided by
 976   // the OS or threading library. In fact if we try to use a stack greater than
 977   // what is set by rlimit then we will crash the hosting process.
 978 
 979   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 980   // If this is "unlimited" then it will be a huge value.
 981   struct rlimit rlim;
 982   getrlimit(RLIMIT_STACK, &rlim);
 983   size_t stack_size = rlim.rlim_cur;
 984 
 985   // 6308388: a bug in ld.so will relocate its own .data section to the
 986   //   lower end of primordial stack; reduce ulimit -s value a little bit
 987   //   so we won't install guard page on ld.so's data section.
 988   //   But ensure we don't underflow the stack size - allow 1 page spare
 989   if (stack_size >= (size_t)(3 * page_size())) {
 990     stack_size -= 2 * page_size();
 991   }
 992 
 993   // Try to figure out where the stack base (top) is. This is harder.
 994   //
 995   // When an application is started, glibc saves the initial stack pointer in
 996   // a global variable "__libc_stack_end", which is then used by system
 997   // libraries. __libc_stack_end should be pretty close to stack top. The
 998   // variable is available since the very early days. However, because it is
 999   // a private interface, it could disappear in the future.
1000   //
1001   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1002   // to __libc_stack_end, it is very close to stack top, but isn't the real
1003   // stack top. Note that /proc may not exist if VM is running as a chroot
1004   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1005   // /proc/<pid>/stat could change in the future (though unlikely).
1006   //
1007   // We try __libc_stack_end first. If that doesn't work, look for
1008   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1009   // as a hint, which should work well in most cases.
1010 
1011   uintptr_t stack_start;
1012 
1013   // try __libc_stack_end first
1014   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1015   if (p && *p) {
1016     stack_start = *p;
1017   } else {
1018     // see if we can get the start_stack field from /proc/self/stat
1019     FILE *fp;
1020     int pid;
1021     char state;
1022     int ppid;
1023     int pgrp;
1024     int session;
1025     int nr;
1026     int tpgrp;
1027     unsigned long flags;
1028     unsigned long minflt;
1029     unsigned long cminflt;
1030     unsigned long majflt;
1031     unsigned long cmajflt;
1032     unsigned long utime;
1033     unsigned long stime;
1034     long cutime;
1035     long cstime;
1036     long prio;
1037     long nice;
1038     long junk;
1039     long it_real;
1040     uintptr_t start;
1041     uintptr_t vsize;
1042     intptr_t rss;
1043     uintptr_t rsslim;
1044     uintptr_t scodes;
1045     uintptr_t ecode;
1046     int i;
1047 
1048     // Figure what the primordial thread stack base is. Code is inspired
1049     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1050     // followed by command name surrounded by parentheses, state, etc.
1051     char stat[2048];
1052     int statlen;
1053 
1054     fp = fopen("/proc/self/stat", "r");
1055     if (fp) {
1056       statlen = fread(stat, 1, 2047, fp);
1057       stat[statlen] = '\0';
1058       fclose(fp);
1059 
1060       // Skip pid and the command string. Note that we could be dealing with
1061       // weird command names, e.g. user could decide to rename java launcher
1062       // to "java 1.4.2 :)", then the stat file would look like
1063       //                1234 (java 1.4.2 :)) R ... ...
1064       // We don't really need to know the command string, just find the last
1065       // occurrence of ")" and then start parsing from there. See bug 4726580.
1066       char * s = strrchr(stat, ')');
1067 
1068       i = 0;
1069       if (s) {
1070         // Skip blank chars
1071         do { s++; } while (s && isspace(*s));
1072 
1073 #define _UFM UINTX_FORMAT
1074 #define _DFM INTX_FORMAT
1075 
1076         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1077         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1078         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1079                    &state,          // 3  %c
1080                    &ppid,           // 4  %d
1081                    &pgrp,           // 5  %d
1082                    &session,        // 6  %d
1083                    &nr,             // 7  %d
1084                    &tpgrp,          // 8  %d
1085                    &flags,          // 9  %lu
1086                    &minflt,         // 10 %lu
1087                    &cminflt,        // 11 %lu
1088                    &majflt,         // 12 %lu
1089                    &cmajflt,        // 13 %lu
1090                    &utime,          // 14 %lu
1091                    &stime,          // 15 %lu
1092                    &cutime,         // 16 %ld
1093                    &cstime,         // 17 %ld
1094                    &prio,           // 18 %ld
1095                    &nice,           // 19 %ld
1096                    &junk,           // 20 %ld
1097                    &it_real,        // 21 %ld
1098                    &start,          // 22 UINTX_FORMAT
1099                    &vsize,          // 23 UINTX_FORMAT
1100                    &rss,            // 24 INTX_FORMAT
1101                    &rsslim,         // 25 UINTX_FORMAT
1102                    &scodes,         // 26 UINTX_FORMAT
1103                    &ecode,          // 27 UINTX_FORMAT
1104                    &stack_start);   // 28 UINTX_FORMAT
1105       }
1106 
1107 #undef _UFM
1108 #undef _DFM
1109 
1110       if (i != 28 - 2) {
1111         assert(false, "Bad conversion from /proc/self/stat");
1112         // product mode - assume we are the primordial thread, good luck in the
1113         // embedded case.
1114         warning("Can't detect primordial thread stack location - bad conversion");
1115         stack_start = (uintptr_t) &rlim;
1116       }
1117     } else {
1118       // For some reason we can't open /proc/self/stat (for example, running on
1119       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1120       // most cases, so don't abort:
1121       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1122       stack_start = (uintptr_t) &rlim;
1123     }
1124   }
1125 
1126   // Now we have a pointer (stack_start) very close to the stack top, the
1127   // next thing to do is to figure out the exact location of stack top. We
1128   // can find out the virtual memory area that contains stack_start by
1129   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1130   // and its upper limit is the real stack top. (again, this would fail if
1131   // running inside chroot, because /proc may not exist.)
1132 
1133   uintptr_t stack_top;
1134   address low, high;
1135   if (find_vma((address)stack_start, &low, &high)) {
1136     // success, "high" is the true stack top. (ignore "low", because initial
1137     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1138     stack_top = (uintptr_t)high;
1139   } else {
1140     // failed, likely because /proc/self/maps does not exist
1141     warning("Can't detect primordial thread stack location - find_vma failed");
1142     // best effort: stack_start is normally within a few pages below the real
1143     // stack top, use it as stack top, and reduce stack size so we won't put
1144     // guard page outside stack.
1145     stack_top = stack_start;
1146     stack_size -= 16 * page_size();
1147   }
1148 
1149   // stack_top could be partially down the page so align it
1150   stack_top = align_up(stack_top, page_size());
1151 
1152   // Allowed stack value is minimum of max_size and what we derived from rlimit
1153   if (max_size > 0) {
1154     _initial_thread_stack_size = MIN2(max_size, stack_size);
1155   } else {
1156     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1157     // clamp it at 8MB as we do on Solaris
1158     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1159   }
1160   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1161   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1162 
1163   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1164 
1165   if (log_is_enabled(Info, os, thread)) {
1166     // See if we seem to be on primordial process thread
1167     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1168                       uintptr_t(&rlim) < stack_top;
1169 
1170     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1171                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1172                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1173                          stack_top, intptr_t(_initial_thread_stack_bottom));
1174   }
1175 }
1176 
1177 ////////////////////////////////////////////////////////////////////////////////
1178 // time support
1179 
1180 #ifndef SUPPORTS_CLOCK_MONOTONIC
1181 #error "Build platform doesn't support clock_gettime and related functionality"
1182 #endif
1183 
1184 // Time since start-up in seconds to a fine granularity.
1185 // Used by VMSelfDestructTimer and the MemProfiler.
1186 double os::elapsedTime() {
1187 
1188   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1189 }
1190 
1191 jlong os::elapsed_counter() {
1192   return javaTimeNanos() - initial_time_count;
1193 }
1194 
1195 jlong os::elapsed_frequency() {
1196   return NANOSECS_PER_SEC; // nanosecond resolution
1197 }
1198 
1199 bool os::supports_vtime() { return true; }
1200 bool os::enable_vtime()   { return false; }
1201 bool os::vtime_enabled()  { return false; }
1202 
1203 double os::elapsedVTime() {
1204   struct rusage usage;
1205   int retval = getrusage(RUSAGE_THREAD, &usage);
1206   if (retval == 0) {
1207     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1208   } else {
1209     // better than nothing, but not much
1210     return elapsedTime();
1211   }
1212 }
1213 
1214 jlong os::javaTimeMillis() {
1215   timeval time;
1216   int status = gettimeofday(&time, NULL);
1217   assert(status != -1, "linux error");
1218   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1219 }
1220 
1221 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1222   timeval time;
1223   int status = gettimeofday(&time, NULL);
1224   assert(status != -1, "linux error");
1225   seconds = jlong(time.tv_sec);
1226   nanos = jlong(time.tv_usec) * 1000;
1227 }
1228 
1229 void os::Linux::fast_thread_clock_init() {
1230   if (!UseLinuxPosixThreadCPUClocks) {
1231     return;
1232   }
1233   clockid_t clockid;
1234   struct timespec tp;
1235   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1236       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1237 
1238   // Switch to using fast clocks for thread cpu time if
1239   // the clock_getres() returns 0 error code.
1240   // Note, that some kernels may support the current thread
1241   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1242   // returned by the pthread_getcpuclockid().
1243   // If the fast Posix clocks are supported then the clock_getres()
1244   // must return at least tp.tv_sec == 0 which means a resolution
1245   // better than 1 sec. This is extra check for reliability.
1246 
1247   if (pthread_getcpuclockid_func &&
1248       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1249       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1250     _supports_fast_thread_cpu_time = true;
1251     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1252   }
1253 }
1254 
1255 jlong os::javaTimeNanos() {
1256   if (os::supports_monotonic_clock()) {
1257     struct timespec tp;
1258     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1259     assert(status == 0, "gettime error");
1260     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1261     return result;
1262   } else {
1263     timeval time;
1264     int status = gettimeofday(&time, NULL);
1265     assert(status != -1, "linux error");
1266     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1267     return 1000 * usecs;
1268   }
1269 }
1270 
1271 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1272   if (os::supports_monotonic_clock()) {
1273     info_ptr->max_value = ALL_64_BITS;
1274 
1275     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1276     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1277     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1278   } else {
1279     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1280     info_ptr->max_value = ALL_64_BITS;
1281 
1282     // gettimeofday is a real time clock so it skips
1283     info_ptr->may_skip_backward = true;
1284     info_ptr->may_skip_forward = true;
1285   }
1286 
1287   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1288 }
1289 
1290 // Return the real, user, and system times in seconds from an
1291 // arbitrary fixed point in the past.
1292 bool os::getTimesSecs(double* process_real_time,
1293                       double* process_user_time,
1294                       double* process_system_time) {
1295   struct tms ticks;
1296   clock_t real_ticks = times(&ticks);
1297 
1298   if (real_ticks == (clock_t) (-1)) {
1299     return false;
1300   } else {
1301     double ticks_per_second = (double) clock_tics_per_sec;
1302     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1303     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1304     *process_real_time = ((double) real_ticks) / ticks_per_second;
1305 
1306     return true;
1307   }
1308 }
1309 
1310 
1311 char * os::local_time_string(char *buf, size_t buflen) {
1312   struct tm t;
1313   time_t long_time;
1314   time(&long_time);
1315   localtime_r(&long_time, &t);
1316   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1317                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1318                t.tm_hour, t.tm_min, t.tm_sec);
1319   return buf;
1320 }
1321 
1322 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1323   return localtime_r(clock, res);
1324 }
1325 
1326 ////////////////////////////////////////////////////////////////////////////////
1327 // runtime exit support
1328 
1329 // Note: os::shutdown() might be called very early during initialization, or
1330 // called from signal handler. Before adding something to os::shutdown(), make
1331 // sure it is async-safe and can handle partially initialized VM.
1332 void os::shutdown() {
1333 
1334   // allow PerfMemory to attempt cleanup of any persistent resources
1335   perfMemory_exit();
1336 
1337   // needs to remove object in file system
1338   AttachListener::abort();
1339 
1340   // flush buffered output, finish log files
1341   ostream_abort();
1342 
1343   // Check for abort hook
1344   abort_hook_t abort_hook = Arguments::abort_hook();
1345   if (abort_hook != NULL) {
1346     abort_hook();
1347   }
1348 
1349 }
1350 
1351 // Note: os::abort() might be called very early during initialization, or
1352 // called from signal handler. Before adding something to os::abort(), make
1353 // sure it is async-safe and can handle partially initialized VM.
1354 void os::abort(bool dump_core, void* siginfo, const void* context) {
1355   os::shutdown();
1356   if (dump_core) {
1357     if (UseSharedSpaces && DumpPrivateMappingsInCore) {
1358       ClassLoader::close_jrt_image();
1359     }
1360 #ifndef PRODUCT
1361     fdStream out(defaultStream::output_fd());
1362     out.print_raw("Current thread is ");
1363     char buf[16];
1364     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1365     out.print_raw_cr(buf);
1366     out.print_raw_cr("Dumping core ...");
1367 #endif
1368     ::abort(); // dump core
1369   }
1370 
1371   ::exit(1);
1372 }
1373 
1374 // Die immediately, no exit hook, no abort hook, no cleanup.
1375 void os::die() {
1376   ::abort();
1377 }
1378 
1379 // thread_id is kernel thread id (similar to Solaris LWP id)
1380 intx os::current_thread_id() { return os::Linux::gettid(); }
1381 int os::current_process_id() {
1382   return ::getpid();
1383 }
1384 
1385 // DLL functions
1386 
1387 const char* os::dll_file_extension() { return ".so"; }
1388 
1389 // This must be hard coded because it's the system's temporary
1390 // directory not the java application's temp directory, ala java.io.tmpdir.
1391 const char* os::get_temp_directory() { return "/tmp"; }
1392 
1393 static bool file_exists(const char* filename) {
1394   struct stat statbuf;
1395   if (filename == NULL || strlen(filename) == 0) {
1396     return false;
1397   }
1398   return os::stat(filename, &statbuf) == 0;
1399 }
1400 
1401 // check if addr is inside libjvm.so
1402 bool os::address_is_in_vm(address addr) {
1403   static address libjvm_base_addr;
1404   Dl_info dlinfo;
1405 
1406   if (libjvm_base_addr == NULL) {
1407     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1408       libjvm_base_addr = (address)dlinfo.dli_fbase;
1409     }
1410     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1411   }
1412 
1413   if (dladdr((void *)addr, &dlinfo) != 0) {
1414     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1415   }
1416 
1417   return false;
1418 }
1419 
1420 bool os::dll_address_to_function_name(address addr, char *buf,
1421                                       int buflen, int *offset,
1422                                       bool demangle) {
1423   // buf is not optional, but offset is optional
1424   assert(buf != NULL, "sanity check");
1425 
1426   Dl_info dlinfo;
1427 
1428   if (dladdr((void*)addr, &dlinfo) != 0) {
1429     // see if we have a matching symbol
1430     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1431       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1432         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1433       }
1434       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1435       return true;
1436     }
1437     // no matching symbol so try for just file info
1438     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1439       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1440                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1441         return true;
1442       }
1443     }
1444   }
1445 
1446   buf[0] = '\0';
1447   if (offset != NULL) *offset = -1;
1448   return false;
1449 }
1450 
1451 struct _address_to_library_name {
1452   address addr;          // input : memory address
1453   size_t  buflen;        //         size of fname
1454   char*   fname;         // output: library name
1455   address base;          //         library base addr
1456 };
1457 
1458 static int address_to_library_name_callback(struct dl_phdr_info *info,
1459                                             size_t size, void *data) {
1460   int i;
1461   bool found = false;
1462   address libbase = NULL;
1463   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1464 
1465   // iterate through all loadable segments
1466   for (i = 0; i < info->dlpi_phnum; i++) {
1467     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1468     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1469       // base address of a library is the lowest address of its loaded
1470       // segments.
1471       if (libbase == NULL || libbase > segbase) {
1472         libbase = segbase;
1473       }
1474       // see if 'addr' is within current segment
1475       if (segbase <= d->addr &&
1476           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1477         found = true;
1478       }
1479     }
1480   }
1481 
1482   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1483   // so dll_address_to_library_name() can fall through to use dladdr() which
1484   // can figure out executable name from argv[0].
1485   if (found && info->dlpi_name && info->dlpi_name[0]) {
1486     d->base = libbase;
1487     if (d->fname) {
1488       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1489     }
1490     return 1;
1491   }
1492   return 0;
1493 }
1494 
1495 bool os::dll_address_to_library_name(address addr, char* buf,
1496                                      int buflen, int* offset) {
1497   // buf is not optional, but offset is optional
1498   assert(buf != NULL, "sanity check");
1499 
1500   Dl_info dlinfo;
1501   struct _address_to_library_name data;
1502 
1503   // There is a bug in old glibc dladdr() implementation that it could resolve
1504   // to wrong library name if the .so file has a base address != NULL. Here
1505   // we iterate through the program headers of all loaded libraries to find
1506   // out which library 'addr' really belongs to. This workaround can be
1507   // removed once the minimum requirement for glibc is moved to 2.3.x.
1508   data.addr = addr;
1509   data.fname = buf;
1510   data.buflen = buflen;
1511   data.base = NULL;
1512   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1513 
1514   if (rslt) {
1515     // buf already contains library name
1516     if (offset) *offset = addr - data.base;
1517     return true;
1518   }
1519   if (dladdr((void*)addr, &dlinfo) != 0) {
1520     if (dlinfo.dli_fname != NULL) {
1521       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1522     }
1523     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1524       *offset = addr - (address)dlinfo.dli_fbase;
1525     }
1526     return true;
1527   }
1528 
1529   buf[0] = '\0';
1530   if (offset) *offset = -1;
1531   return false;
1532 }
1533 
1534 // Loads .dll/.so and
1535 // in case of error it checks if .dll/.so was built for the
1536 // same architecture as Hotspot is running on
1537 
1538 
1539 // Remember the stack's state. The Linux dynamic linker will change
1540 // the stack to 'executable' at most once, so we must safepoint only once.
1541 bool os::Linux::_stack_is_executable = false;
1542 
1543 // VM operation that loads a library.  This is necessary if stack protection
1544 // of the Java stacks can be lost during loading the library.  If we
1545 // do not stop the Java threads, they can stack overflow before the stacks
1546 // are protected again.
1547 class VM_LinuxDllLoad: public VM_Operation {
1548  private:
1549   const char *_filename;
1550   char *_ebuf;
1551   int _ebuflen;
1552   void *_lib;
1553  public:
1554   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1555     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1556   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1557   void doit() {
1558     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1559     os::Linux::_stack_is_executable = true;
1560   }
1561   void* loaded_library() { return _lib; }
1562 };
1563 
1564 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1565   void * result = NULL;
1566   bool load_attempted = false;
1567 
1568   // Check whether the library to load might change execution rights
1569   // of the stack. If they are changed, the protection of the stack
1570   // guard pages will be lost. We need a safepoint to fix this.
1571   //
1572   // See Linux man page execstack(8) for more info.
1573   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1574     if (!ElfFile::specifies_noexecstack(filename)) {
1575       if (!is_init_completed()) {
1576         os::Linux::_stack_is_executable = true;
1577         // This is OK - No Java threads have been created yet, and hence no
1578         // stack guard pages to fix.
1579         //
1580         // Dynamic loader will make all stacks executable after
1581         // this function returns, and will not do that again.
1582         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1583       } else {
1584         warning("You have loaded library %s which might have disabled stack guard. "
1585                 "The VM will try to fix the stack guard now.\n"
1586                 "It's highly recommended that you fix the library with "
1587                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1588                 filename);
1589 
1590         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1591         JavaThread *jt = JavaThread::current();
1592         if (jt->thread_state() != _thread_in_native) {
1593           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1594           // that requires ExecStack. Cannot enter safe point. Let's give up.
1595           warning("Unable to fix stack guard. Giving up.");
1596         } else {
1597           if (!LoadExecStackDllInVMThread) {
1598             // This is for the case where the DLL has an static
1599             // constructor function that executes JNI code. We cannot
1600             // load such DLLs in the VMThread.
1601             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1602           }
1603 
1604           ThreadInVMfromNative tiv(jt);
1605           debug_only(VMNativeEntryWrapper vew;)
1606 
1607           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1608           VMThread::execute(&op);
1609           if (LoadExecStackDllInVMThread) {
1610             result = op.loaded_library();
1611           }
1612           load_attempted = true;
1613         }
1614       }
1615     }
1616   }
1617 
1618   if (!load_attempted) {
1619     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1620   }
1621 
1622   if (result != NULL) {
1623     // Successful loading
1624     return result;
1625   }
1626 
1627   Elf32_Ehdr elf_head;
1628   int diag_msg_max_length=ebuflen-strlen(ebuf);
1629   char* diag_msg_buf=ebuf+strlen(ebuf);
1630 
1631   if (diag_msg_max_length==0) {
1632     // No more space in ebuf for additional diagnostics message
1633     return NULL;
1634   }
1635 
1636 
1637   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1638 
1639   if (file_descriptor < 0) {
1640     // Can't open library, report dlerror() message
1641     return NULL;
1642   }
1643 
1644   bool failed_to_read_elf_head=
1645     (sizeof(elf_head)!=
1646      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1647 
1648   ::close(file_descriptor);
1649   if (failed_to_read_elf_head) {
1650     // file i/o error - report dlerror() msg
1651     return NULL;
1652   }
1653 
1654   typedef struct {
1655     Elf32_Half    code;         // Actual value as defined in elf.h
1656     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1657     unsigned char elf_class;    // 32 or 64 bit
1658     unsigned char endianess;    // MSB or LSB
1659     char*         name;         // String representation
1660   } arch_t;
1661 
1662 #ifndef EM_486
1663   #define EM_486          6               /* Intel 80486 */
1664 #endif
1665 #ifndef EM_AARCH64
1666   #define EM_AARCH64    183               /* ARM AARCH64 */
1667 #endif
1668 
1669   static const arch_t arch_array[]={
1670     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1671     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1672     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1673     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1674     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1675     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1676     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1677     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1678 #if defined(VM_LITTLE_ENDIAN)
1679     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1680     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1681 #else
1682     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1683     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1684 #endif
1685     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1686     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1687     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1688     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1689     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1690     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1691     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1692     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1693   };
1694 
1695 #if  (defined IA32)
1696   static  Elf32_Half running_arch_code=EM_386;
1697 #elif   (defined AMD64) || (defined X32)
1698   static  Elf32_Half running_arch_code=EM_X86_64;
1699 #elif  (defined IA64)
1700   static  Elf32_Half running_arch_code=EM_IA_64;
1701 #elif  (defined __sparc) && (defined _LP64)
1702   static  Elf32_Half running_arch_code=EM_SPARCV9;
1703 #elif  (defined __sparc) && (!defined _LP64)
1704   static  Elf32_Half running_arch_code=EM_SPARC;
1705 #elif  (defined __powerpc64__)
1706   static  Elf32_Half running_arch_code=EM_PPC64;
1707 #elif  (defined __powerpc__)
1708   static  Elf32_Half running_arch_code=EM_PPC;
1709 #elif  (defined AARCH64)
1710   static  Elf32_Half running_arch_code=EM_AARCH64;
1711 #elif  (defined ARM)
1712   static  Elf32_Half running_arch_code=EM_ARM;
1713 #elif  (defined S390)
1714   static  Elf32_Half running_arch_code=EM_S390;
1715 #elif  (defined ALPHA)
1716   static  Elf32_Half running_arch_code=EM_ALPHA;
1717 #elif  (defined MIPSEL)
1718   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1719 #elif  (defined PARISC)
1720   static  Elf32_Half running_arch_code=EM_PARISC;
1721 #elif  (defined MIPS)
1722   static  Elf32_Half running_arch_code=EM_MIPS;
1723 #elif  (defined M68K)
1724   static  Elf32_Half running_arch_code=EM_68K;
1725 #elif  (defined SH)
1726   static  Elf32_Half running_arch_code=EM_SH;
1727 #else
1728     #error Method os::dll_load requires that one of following is defined:\
1729         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1730 #endif
1731 
1732   // Identify compatability class for VM's architecture and library's architecture
1733   // Obtain string descriptions for architectures
1734 
1735   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1736   int running_arch_index=-1;
1737 
1738   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1739     if (running_arch_code == arch_array[i].code) {
1740       running_arch_index    = i;
1741     }
1742     if (lib_arch.code == arch_array[i].code) {
1743       lib_arch.compat_class = arch_array[i].compat_class;
1744       lib_arch.name         = arch_array[i].name;
1745     }
1746   }
1747 
1748   assert(running_arch_index != -1,
1749          "Didn't find running architecture code (running_arch_code) in arch_array");
1750   if (running_arch_index == -1) {
1751     // Even though running architecture detection failed
1752     // we may still continue with reporting dlerror() message
1753     return NULL;
1754   }
1755 
1756   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1757     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1758     return NULL;
1759   }
1760 
1761 #ifndef S390
1762   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1763     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1764     return NULL;
1765   }
1766 #endif // !S390
1767 
1768   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1769     if (lib_arch.name!=NULL) {
1770       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1771                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1772                  lib_arch.name, arch_array[running_arch_index].name);
1773     } else {
1774       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1775                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1776                  lib_arch.code,
1777                  arch_array[running_arch_index].name);
1778     }
1779   }
1780 
1781   return NULL;
1782 }
1783 
1784 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1785                                 int ebuflen) {
1786   void * result = ::dlopen(filename, RTLD_LAZY);
1787   if (result == NULL) {
1788     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1789     ebuf[ebuflen-1] = '\0';
1790   }
1791   return result;
1792 }
1793 
1794 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1795                                        int ebuflen) {
1796   void * result = NULL;
1797   if (LoadExecStackDllInVMThread) {
1798     result = dlopen_helper(filename, ebuf, ebuflen);
1799   }
1800 
1801   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1802   // library that requires an executable stack, or which does not have this
1803   // stack attribute set, dlopen changes the stack attribute to executable. The
1804   // read protection of the guard pages gets lost.
1805   //
1806   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1807   // may have been queued at the same time.
1808 
1809   if (!_stack_is_executable) {
1810     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1811       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1812           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1813         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1814           warning("Attempt to reguard stack yellow zone failed.");
1815         }
1816       }
1817     }
1818   }
1819 
1820   return result;
1821 }
1822 
1823 void* os::dll_lookup(void* handle, const char* name) {
1824   void* res = dlsym(handle, name);
1825   return res;
1826 }
1827 
1828 void* os::get_default_process_handle() {
1829   return (void*)::dlopen(NULL, RTLD_LAZY);
1830 }
1831 
1832 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
1833   int fd = ::open(filename, O_RDONLY);
1834   if (fd == -1) {
1835     return false;
1836   }
1837 
1838   if (hdr != NULL) {
1839     st->print_cr("%s", hdr);
1840   }
1841 
1842   char buf[33];
1843   int bytes;
1844   buf[32] = '\0';
1845   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1846     st->print_raw(buf, bytes);
1847   }
1848 
1849   ::close(fd);
1850 
1851   return true;
1852 }
1853 
1854 void os::print_dll_info(outputStream *st) {
1855   st->print_cr("Dynamic libraries:");
1856 
1857   char fname[32];
1858   pid_t pid = os::Linux::gettid();
1859 
1860   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1861 
1862   if (!_print_ascii_file(fname, st)) {
1863     st->print("Can not get library information for pid = %d\n", pid);
1864   }
1865 }
1866 
1867 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1868   FILE *procmapsFile = NULL;
1869 
1870   // Open the procfs maps file for the current process
1871   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1872     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1873     char line[PATH_MAX + 100];
1874 
1875     // Read line by line from 'file'
1876     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1877       u8 base, top, offset, inode;
1878       char permissions[5];
1879       char device[6];
1880       char name[PATH_MAX + 1];
1881 
1882       // Parse fields from line
1883       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1884              &base, &top, permissions, &offset, device, &inode, name);
1885 
1886       // Filter by device id '00:00' so that we only get file system mapped files.
1887       if (strcmp(device, "00:00") != 0) {
1888 
1889         // Call callback with the fields of interest
1890         if(callback(name, (address)base, (address)top, param)) {
1891           // Oops abort, callback aborted
1892           fclose(procmapsFile);
1893           return 1;
1894         }
1895       }
1896     }
1897     fclose(procmapsFile);
1898   }
1899   return 0;
1900 }
1901 
1902 void os::print_os_info_brief(outputStream* st) {
1903   os::Linux::print_distro_info(st);
1904 
1905   os::Posix::print_uname_info(st);
1906 
1907   os::Linux::print_libversion_info(st);
1908 
1909 }
1910 
1911 void os::print_os_info(outputStream* st) {
1912   st->print("OS:");
1913 
1914   os::Linux::print_distro_info(st);
1915 
1916   os::Posix::print_uname_info(st);
1917 
1918   // Print warning if unsafe chroot environment detected
1919   if (unsafe_chroot_detected) {
1920     st->print("WARNING!! ");
1921     st->print_cr("%s", unstable_chroot_error);
1922   }
1923 
1924   os::Linux::print_libversion_info(st);
1925 
1926   os::Posix::print_rlimit_info(st);
1927 
1928   os::Posix::print_load_average(st);
1929 
1930   os::Linux::print_full_memory_info(st);
1931 
1932   os::Linux::print_proc_sys_info(st);
1933 
1934   os::Linux::print_ld_preload_file(st);
1935 
1936   os::Linux::print_container_info(st);
1937 }
1938 
1939 // Try to identify popular distros.
1940 // Most Linux distributions have a /etc/XXX-release file, which contains
1941 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1942 // file that also contains the OS version string. Some have more than one
1943 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1944 // /etc/redhat-release.), so the order is important.
1945 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1946 // their own specific XXX-release file as well as a redhat-release file.
1947 // Because of this the XXX-release file needs to be searched for before the
1948 // redhat-release file.
1949 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
1950 // search for redhat-release / SuSE-release needs to be before lsb-release.
1951 // Since the lsb-release file is the new standard it needs to be searched
1952 // before the older style release files.
1953 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
1954 // next to last resort.  The os-release file is a new standard that contains
1955 // distribution information and the system-release file seems to be an old
1956 // standard that has been replaced by the lsb-release and os-release files.
1957 // Searching for the debian_version file is the last resort.  It contains
1958 // an informative string like "6.0.6" or "wheezy/sid". Because of this
1959 // "Debian " is printed before the contents of the debian_version file.
1960 
1961 const char* distro_files[] = {
1962   "/etc/oracle-release",
1963   "/etc/mandriva-release",
1964   "/etc/mandrake-release",
1965   "/etc/sun-release",
1966   "/etc/redhat-release",
1967   "/etc/SuSE-release",
1968   "/etc/lsb-release",
1969   "/etc/turbolinux-release",
1970   "/etc/gentoo-release",
1971   "/etc/ltib-release",
1972   "/etc/angstrom-version",
1973   "/etc/system-release",
1974   "/etc/os-release",
1975   NULL };
1976 
1977 void os::Linux::print_distro_info(outputStream* st) {
1978   for (int i = 0;; i++) {
1979     const char* file = distro_files[i];
1980     if (file == NULL) {
1981       break;  // done
1982     }
1983     // If file prints, we found it.
1984     if (_print_ascii_file(file, st)) {
1985       return;
1986     }
1987   }
1988 
1989   if (file_exists("/etc/debian_version")) {
1990     st->print("Debian ");
1991     _print_ascii_file("/etc/debian_version", st);
1992   } else {
1993     st->print("Linux");
1994   }
1995   st->cr();
1996 }
1997 
1998 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
1999   char buf[256];
2000   while (fgets(buf, sizeof(buf), fp)) {
2001     // Edit out extra stuff in expected format
2002     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2003       char* ptr = strstr(buf, "\"");  // the name is in quotes
2004       if (ptr != NULL) {
2005         ptr++; // go beyond first quote
2006         char* nl = strchr(ptr, '\"');
2007         if (nl != NULL) *nl = '\0';
2008         strncpy(distro, ptr, length);
2009       } else {
2010         ptr = strstr(buf, "=");
2011         ptr++; // go beyond equals then
2012         char* nl = strchr(ptr, '\n');
2013         if (nl != NULL) *nl = '\0';
2014         strncpy(distro, ptr, length);
2015       }
2016       return;
2017     } else if (get_first_line) {
2018       char* nl = strchr(buf, '\n');
2019       if (nl != NULL) *nl = '\0';
2020       strncpy(distro, buf, length);
2021       return;
2022     }
2023   }
2024   // print last line and close
2025   char* nl = strchr(buf, '\n');
2026   if (nl != NULL) *nl = '\0';
2027   strncpy(distro, buf, length);
2028 }
2029 
2030 static void parse_os_info(char* distro, size_t length, const char* file) {
2031   FILE* fp = fopen(file, "r");
2032   if (fp != NULL) {
2033     // if suse format, print out first line
2034     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2035     parse_os_info_helper(fp, distro, length, get_first_line);
2036     fclose(fp);
2037   }
2038 }
2039 
2040 void os::get_summary_os_info(char* buf, size_t buflen) {
2041   for (int i = 0;; i++) {
2042     const char* file = distro_files[i];
2043     if (file == NULL) {
2044       break; // ran out of distro_files
2045     }
2046     if (file_exists(file)) {
2047       parse_os_info(buf, buflen, file);
2048       return;
2049     }
2050   }
2051   // special case for debian
2052   if (file_exists("/etc/debian_version")) {
2053     strncpy(buf, "Debian ", buflen);
2054     if (buflen > 7) {
2055       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2056     }
2057   } else {
2058     strncpy(buf, "Linux", buflen);
2059   }
2060 }
2061 
2062 void os::Linux::print_libversion_info(outputStream* st) {
2063   // libc, pthread
2064   st->print("libc:");
2065   st->print("%s ", os::Linux::glibc_version());
2066   st->print("%s ", os::Linux::libpthread_version());
2067   st->cr();
2068 }
2069 
2070 void os::Linux::print_proc_sys_info(outputStream* st) {
2071   st->cr();
2072   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2073   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2074   st->cr();
2075   st->cr();
2076 
2077   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2078   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2079   st->cr();
2080   st->cr();
2081 
2082   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2083   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2084   st->cr();
2085   st->cr();
2086 }
2087 
2088 void os::Linux::print_full_memory_info(outputStream* st) {
2089   st->print("\n/proc/meminfo:\n");
2090   _print_ascii_file("/proc/meminfo", st);
2091   st->cr();
2092 }
2093 
2094 void os::Linux::print_ld_preload_file(outputStream* st) {
2095   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2096   st->cr();
2097 }
2098 
2099 void os::Linux::print_container_info(outputStream* st) {
2100   if (!OSContainer::is_containerized()) {
2101     return;
2102   }
2103 
2104   st->print("container (cgroup) information:\n");
2105 
2106   const char *p_ct = OSContainer::container_type();
2107   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2108 
2109   char *p = OSContainer::cpu_cpuset_cpus();
2110   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2111   free(p);
2112 
2113   p = OSContainer::cpu_cpuset_memory_nodes();
2114   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2115   free(p);
2116 
2117   int i = OSContainer::active_processor_count();
2118   if (i > 0) {
2119     st->print("active_processor_count: %d\n", i);
2120   } else {
2121     st->print("active_processor_count: failed\n");
2122   }
2123 
2124   i = OSContainer::cpu_quota();
2125   st->print("cpu_quota: %d\n", i);
2126 
2127   i = OSContainer::cpu_period();
2128   st->print("cpu_period: %d\n", i);
2129 
2130   i = OSContainer::cpu_shares();
2131   st->print("cpu_shares: %d\n", i);
2132 
2133   jlong j = OSContainer::memory_limit_in_bytes();
2134   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2135 
2136   j = OSContainer::memory_and_swap_limit_in_bytes();
2137   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2138 
2139   j = OSContainer::memory_soft_limit_in_bytes();
2140   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2141 
2142   j = OSContainer::OSContainer::memory_usage_in_bytes();
2143   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2144 
2145   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2146   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2147   st->cr();
2148 }
2149 
2150 void os::print_memory_info(outputStream* st) {
2151 
2152   st->print("Memory:");
2153   st->print(" %dk page", os::vm_page_size()>>10);
2154 
2155   // values in struct sysinfo are "unsigned long"
2156   struct sysinfo si;
2157   sysinfo(&si);
2158 
2159   st->print(", physical " UINT64_FORMAT "k",
2160             os::physical_memory() >> 10);
2161   st->print("(" UINT64_FORMAT "k free)",
2162             os::available_memory() >> 10);
2163   st->print(", swap " UINT64_FORMAT "k",
2164             ((jlong)si.totalswap * si.mem_unit) >> 10);
2165   st->print("(" UINT64_FORMAT "k free)",
2166             ((jlong)si.freeswap * si.mem_unit) >> 10);
2167   st->cr();
2168 }
2169 
2170 // Print the first "model name" line and the first "flags" line
2171 // that we find and nothing more. We assume "model name" comes
2172 // before "flags" so if we find a second "model name", then the
2173 // "flags" field is considered missing.
2174 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2175 #if defined(IA32) || defined(AMD64)
2176   // Other platforms have less repetitive cpuinfo files
2177   FILE *fp = fopen("/proc/cpuinfo", "r");
2178   if (fp) {
2179     while (!feof(fp)) {
2180       if (fgets(buf, buflen, fp)) {
2181         // Assume model name comes before flags
2182         bool model_name_printed = false;
2183         if (strstr(buf, "model name") != NULL) {
2184           if (!model_name_printed) {
2185             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2186             st->print_raw(buf);
2187             model_name_printed = true;
2188           } else {
2189             // model name printed but not flags?  Odd, just return
2190             fclose(fp);
2191             return true;
2192           }
2193         }
2194         // print the flags line too
2195         if (strstr(buf, "flags") != NULL) {
2196           st->print_raw(buf);
2197           fclose(fp);
2198           return true;
2199         }
2200       }
2201     }
2202     fclose(fp);
2203   }
2204 #endif // x86 platforms
2205   return false;
2206 }
2207 
2208 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2209   // Only print the model name if the platform provides this as a summary
2210   if (!print_model_name_and_flags(st, buf, buflen)) {
2211     st->print("\n/proc/cpuinfo:\n");
2212     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2213       st->print_cr("  <Not Available>");
2214     }
2215   }
2216 }
2217 
2218 #if defined(AMD64) || defined(IA32) || defined(X32)
2219 const char* search_string = "model name";
2220 #elif defined(M68K)
2221 const char* search_string = "CPU";
2222 #elif defined(PPC64)
2223 const char* search_string = "cpu";
2224 #elif defined(S390)
2225 const char* search_string = "processor";
2226 #elif defined(SPARC)
2227 const char* search_string = "cpu";
2228 #else
2229 const char* search_string = "Processor";
2230 #endif
2231 
2232 // Parses the cpuinfo file for string representing the model name.
2233 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2234   FILE* fp = fopen("/proc/cpuinfo", "r");
2235   if (fp != NULL) {
2236     while (!feof(fp)) {
2237       char buf[256];
2238       if (fgets(buf, sizeof(buf), fp)) {
2239         char* start = strstr(buf, search_string);
2240         if (start != NULL) {
2241           char *ptr = start + strlen(search_string);
2242           char *end = buf + strlen(buf);
2243           while (ptr != end) {
2244              // skip whitespace and colon for the rest of the name.
2245              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2246                break;
2247              }
2248              ptr++;
2249           }
2250           if (ptr != end) {
2251             // reasonable string, get rid of newline and keep the rest
2252             char* nl = strchr(buf, '\n');
2253             if (nl != NULL) *nl = '\0';
2254             strncpy(cpuinfo, ptr, length);
2255             fclose(fp);
2256             return;
2257           }
2258         }
2259       }
2260     }
2261     fclose(fp);
2262   }
2263   // cpuinfo not found or parsing failed, just print generic string.  The entire
2264   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2265 #if   defined(AARCH64)
2266   strncpy(cpuinfo, "AArch64", length);
2267 #elif defined(AMD64)
2268   strncpy(cpuinfo, "x86_64", length);
2269 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2270   strncpy(cpuinfo, "ARM", length);
2271 #elif defined(IA32)
2272   strncpy(cpuinfo, "x86_32", length);
2273 #elif defined(IA64)
2274   strncpy(cpuinfo, "IA64", length);
2275 #elif defined(PPC)
2276   strncpy(cpuinfo, "PPC64", length);
2277 #elif defined(S390)
2278   strncpy(cpuinfo, "S390", length);
2279 #elif defined(SPARC)
2280   strncpy(cpuinfo, "sparcv9", length);
2281 #elif defined(ZERO_LIBARCH)
2282   strncpy(cpuinfo, ZERO_LIBARCH, length);
2283 #else
2284   strncpy(cpuinfo, "unknown", length);
2285 #endif
2286 }
2287 
2288 static void print_signal_handler(outputStream* st, int sig,
2289                                  char* buf, size_t buflen);
2290 
2291 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2292   st->print_cr("Signal Handlers:");
2293   print_signal_handler(st, SIGSEGV, buf, buflen);
2294   print_signal_handler(st, SIGBUS , buf, buflen);
2295   print_signal_handler(st, SIGFPE , buf, buflen);
2296   print_signal_handler(st, SIGPIPE, buf, buflen);
2297   print_signal_handler(st, SIGXFSZ, buf, buflen);
2298   print_signal_handler(st, SIGILL , buf, buflen);
2299   print_signal_handler(st, SR_signum, buf, buflen);
2300   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2301   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2302   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2303   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2304 #if defined(PPC64)
2305   print_signal_handler(st, SIGTRAP, buf, buflen);
2306 #endif
2307 }
2308 
2309 static char saved_jvm_path[MAXPATHLEN] = {0};
2310 
2311 // Find the full path to the current module, libjvm.so
2312 void os::jvm_path(char *buf, jint buflen) {
2313   // Error checking.
2314   if (buflen < MAXPATHLEN) {
2315     assert(false, "must use a large-enough buffer");
2316     buf[0] = '\0';
2317     return;
2318   }
2319   // Lazy resolve the path to current module.
2320   if (saved_jvm_path[0] != 0) {
2321     strcpy(buf, saved_jvm_path);
2322     return;
2323   }
2324 
2325   char dli_fname[MAXPATHLEN];
2326   bool ret = dll_address_to_library_name(
2327                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2328                                          dli_fname, sizeof(dli_fname), NULL);
2329   assert(ret, "cannot locate libjvm");
2330   char *rp = NULL;
2331   if (ret && dli_fname[0] != '\0') {
2332     rp = os::Posix::realpath(dli_fname, buf, buflen);
2333   }
2334   if (rp == NULL) {
2335     return;
2336   }
2337 
2338   if (Arguments::sun_java_launcher_is_altjvm()) {
2339     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2340     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2341     // If "/jre/lib/" appears at the right place in the string, then
2342     // assume we are installed in a JDK and we're done. Otherwise, check
2343     // for a JAVA_HOME environment variable and fix up the path so it
2344     // looks like libjvm.so is installed there (append a fake suffix
2345     // hotspot/libjvm.so).
2346     const char *p = buf + strlen(buf) - 1;
2347     for (int count = 0; p > buf && count < 5; ++count) {
2348       for (--p; p > buf && *p != '/'; --p)
2349         /* empty */ ;
2350     }
2351 
2352     if (strncmp(p, "/jre/lib/", 9) != 0) {
2353       // Look for JAVA_HOME in the environment.
2354       char* java_home_var = ::getenv("JAVA_HOME");
2355       if (java_home_var != NULL && java_home_var[0] != 0) {
2356         char* jrelib_p;
2357         int len;
2358 
2359         // Check the current module name "libjvm.so".
2360         p = strrchr(buf, '/');
2361         if (p == NULL) {
2362           return;
2363         }
2364         assert(strstr(p, "/libjvm") == p, "invalid library name");
2365 
2366         rp = os::Posix::realpath(java_home_var, buf, buflen);
2367         if (rp == NULL) {
2368           return;
2369         }
2370 
2371         // determine if this is a legacy image or modules image
2372         // modules image doesn't have "jre" subdirectory
2373         len = strlen(buf);
2374         assert(len < buflen, "Ran out of buffer room");
2375         jrelib_p = buf + len;
2376         snprintf(jrelib_p, buflen-len, "/jre/lib");
2377         if (0 != access(buf, F_OK)) {
2378           snprintf(jrelib_p, buflen-len, "/lib");
2379         }
2380 
2381         if (0 == access(buf, F_OK)) {
2382           // Use current module name "libjvm.so"
2383           len = strlen(buf);
2384           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2385         } else {
2386           // Go back to path of .so
2387           rp = os::Posix::realpath(dli_fname, buf, buflen);
2388           if (rp == NULL) {
2389             return;
2390           }
2391         }
2392       }
2393     }
2394   }
2395 
2396   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2397   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2398 }
2399 
2400 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2401   // no prefix required, not even "_"
2402 }
2403 
2404 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2405   // no suffix required
2406 }
2407 
2408 ////////////////////////////////////////////////////////////////////////////////
2409 // sun.misc.Signal support
2410 
2411 static volatile jint sigint_count = 0;
2412 
2413 static void UserHandler(int sig, void *siginfo, void *context) {
2414   // 4511530 - sem_post is serialized and handled by the manager thread. When
2415   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2416   // don't want to flood the manager thread with sem_post requests.
2417   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2418     return;
2419   }
2420 
2421   // Ctrl-C is pressed during error reporting, likely because the error
2422   // handler fails to abort. Let VM die immediately.
2423   if (sig == SIGINT && VMError::is_error_reported()) {
2424     os::die();
2425   }
2426 
2427   os::signal_notify(sig);
2428 }
2429 
2430 void* os::user_handler() {
2431   return CAST_FROM_FN_PTR(void*, UserHandler);
2432 }
2433 
2434 static struct timespec create_semaphore_timespec(unsigned int sec, int nsec) {
2435   struct timespec ts;
2436   // Semaphore's are always associated with CLOCK_REALTIME
2437   os::Posix::clock_gettime(CLOCK_REALTIME, &ts);
2438   // see os_posix.cpp for discussion on overflow checking
2439   if (sec >= MAX_SECS) {
2440     ts.tv_sec += MAX_SECS;
2441     ts.tv_nsec = 0;
2442   } else {
2443     ts.tv_sec += sec;
2444     ts.tv_nsec += nsec;
2445     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2446       ts.tv_nsec -= NANOSECS_PER_SEC;
2447       ++ts.tv_sec; // note: this must be <= max_secs
2448     }
2449   }
2450 
2451   return ts;
2452 }
2453 
2454 extern "C" {
2455   typedef void (*sa_handler_t)(int);
2456   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2457 }
2458 
2459 void* os::signal(int signal_number, void* handler) {
2460   struct sigaction sigAct, oldSigAct;
2461 
2462   sigfillset(&(sigAct.sa_mask));
2463   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2464   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2465 
2466   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2467     // -1 means registration failed
2468     return (void *)-1;
2469   }
2470 
2471   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2472 }
2473 
2474 void os::signal_raise(int signal_number) {
2475   ::raise(signal_number);
2476 }
2477 
2478 // The following code is moved from os.cpp for making this
2479 // code platform specific, which it is by its very nature.
2480 
2481 // Will be modified when max signal is changed to be dynamic
2482 int os::sigexitnum_pd() {
2483   return NSIG;
2484 }
2485 
2486 // a counter for each possible signal value
2487 static volatile jint pending_signals[NSIG+1] = { 0 };
2488 
2489 // Linux(POSIX) specific hand shaking semaphore.
2490 static Semaphore* sig_sem = NULL;
2491 static PosixSemaphore sr_semaphore;
2492 
2493 static void jdk_misc_signal_init() {
2494   // Initialize signal structures
2495   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2496 
2497   // Initialize signal semaphore
2498   sig_sem = new Semaphore();
2499 }
2500 
2501 void os::signal_notify(int sig) {
2502   if (sig_sem != NULL) {
2503     Atomic::inc(&pending_signals[sig]);
2504     sig_sem->signal();
2505   } else {
2506     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2507     // initialization isn't called.
2508     assert(ReduceSignalUsage, "signal semaphore should be created");
2509   }
2510 }
2511 
2512 static int check_pending_signals() {
2513   Atomic::store(0, &sigint_count);
2514   for (;;) {
2515     for (int i = 0; i < NSIG + 1; i++) {
2516       jint n = pending_signals[i];
2517       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2518         return i;
2519       }
2520     }
2521     JavaThread *thread = JavaThread::current();
2522     ThreadBlockInVM tbivm(thread);
2523 
2524     bool threadIsSuspended;
2525     do {
2526       thread->set_suspend_equivalent();
2527       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2528       sig_sem->wait();
2529 
2530       // were we externally suspended while we were waiting?
2531       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2532       if (threadIsSuspended) {
2533         // The semaphore has been incremented, but while we were waiting
2534         // another thread suspended us. We don't want to continue running
2535         // while suspended because that would surprise the thread that
2536         // suspended us.
2537         sig_sem->signal();
2538 
2539         thread->java_suspend_self();
2540       }
2541     } while (threadIsSuspended);
2542   }
2543 }
2544 
2545 int os::signal_wait() {
2546   return check_pending_signals();
2547 }
2548 
2549 ////////////////////////////////////////////////////////////////////////////////
2550 // Virtual Memory
2551 
2552 int os::vm_page_size() {
2553   // Seems redundant as all get out
2554   assert(os::Linux::page_size() != -1, "must call os::init");
2555   return os::Linux::page_size();
2556 }
2557 
2558 // Solaris allocates memory by pages.
2559 int os::vm_allocation_granularity() {
2560   assert(os::Linux::page_size() != -1, "must call os::init");
2561   return os::Linux::page_size();
2562 }
2563 
2564 // Rationale behind this function:
2565 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2566 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2567 //  samples for JITted code. Here we create private executable mapping over the code cache
2568 //  and then we can use standard (well, almost, as mapping can change) way to provide
2569 //  info for the reporting script by storing timestamp and location of symbol
2570 void linux_wrap_code(char* base, size_t size) {
2571   static volatile jint cnt = 0;
2572 
2573   if (!UseOprofile) {
2574     return;
2575   }
2576 
2577   char buf[PATH_MAX+1];
2578   int num = Atomic::add(1, &cnt);
2579 
2580   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2581            os::get_temp_directory(), os::current_process_id(), num);
2582   unlink(buf);
2583 
2584   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2585 
2586   if (fd != -1) {
2587     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2588     if (rv != (off_t)-1) {
2589       if (::write(fd, "", 1) == 1) {
2590         mmap(base, size,
2591              PROT_READ|PROT_WRITE|PROT_EXEC,
2592              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2593       }
2594     }
2595     ::close(fd);
2596     unlink(buf);
2597   }
2598 }
2599 
2600 static bool recoverable_mmap_error(int err) {
2601   // See if the error is one we can let the caller handle. This
2602   // list of errno values comes from JBS-6843484. I can't find a
2603   // Linux man page that documents this specific set of errno
2604   // values so while this list currently matches Solaris, it may
2605   // change as we gain experience with this failure mode.
2606   switch (err) {
2607   case EBADF:
2608   case EINVAL:
2609   case ENOTSUP:
2610     // let the caller deal with these errors
2611     return true;
2612 
2613   default:
2614     // Any remaining errors on this OS can cause our reserved mapping
2615     // to be lost. That can cause confusion where different data
2616     // structures think they have the same memory mapped. The worst
2617     // scenario is if both the VM and a library think they have the
2618     // same memory mapped.
2619     return false;
2620   }
2621 }
2622 
2623 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2624                                     int err) {
2625   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2626           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2627           os::strerror(err), err);
2628 }
2629 
2630 static void warn_fail_commit_memory(char* addr, size_t size,
2631                                     size_t alignment_hint, bool exec,
2632                                     int err) {
2633   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2634           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2635           alignment_hint, exec, os::strerror(err), err);
2636 }
2637 
2638 // NOTE: Linux kernel does not really reserve the pages for us.
2639 //       All it does is to check if there are enough free pages
2640 //       left at the time of mmap(). This could be a potential
2641 //       problem.
2642 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2643   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2644   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2645                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2646   if (res != (uintptr_t) MAP_FAILED) {
2647     if (UseNUMAInterleaving) {
2648       numa_make_global(addr, size);
2649     }
2650     return 0;
2651   }
2652 
2653   int err = errno;  // save errno from mmap() call above
2654 
2655   if (!recoverable_mmap_error(err)) {
2656     warn_fail_commit_memory(addr, size, exec, err);
2657     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2658   }
2659 
2660   return err;
2661 }
2662 
2663 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2664   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2665 }
2666 
2667 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2668                                   const char* mesg) {
2669   assert(mesg != NULL, "mesg must be specified");
2670   int err = os::Linux::commit_memory_impl(addr, size, exec);
2671   if (err != 0) {
2672     // the caller wants all commit errors to exit with the specified mesg:
2673     warn_fail_commit_memory(addr, size, exec, err);
2674     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2675   }
2676 }
2677 
2678 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2679 #ifndef MAP_HUGETLB
2680   #define MAP_HUGETLB 0x40000
2681 #endif
2682 
2683 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2684 #ifndef MADV_HUGEPAGE
2685   #define MADV_HUGEPAGE 14
2686 #endif
2687 
2688 int os::Linux::commit_memory_impl(char* addr, size_t size,
2689                                   size_t alignment_hint, bool exec) {
2690   int err = os::Linux::commit_memory_impl(addr, size, exec);
2691   if (err == 0) {
2692     realign_memory(addr, size, alignment_hint);
2693   }
2694   return err;
2695 }
2696 
2697 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2698                           bool exec) {
2699   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2700 }
2701 
2702 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2703                                   size_t alignment_hint, bool exec,
2704                                   const char* mesg) {
2705   assert(mesg != NULL, "mesg must be specified");
2706   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2707   if (err != 0) {
2708     // the caller wants all commit errors to exit with the specified mesg:
2709     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2710     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2711   }
2712 }
2713 
2714 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2715   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2716     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2717     // be supported or the memory may already be backed by huge pages.
2718     ::madvise(addr, bytes, MADV_HUGEPAGE);
2719   }
2720 }
2721 
2722 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2723   // This method works by doing an mmap over an existing mmaping and effectively discarding
2724   // the existing pages. However it won't work for SHM-based large pages that cannot be
2725   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2726   // small pages on top of the SHM segment. This method always works for small pages, so we
2727   // allow that in any case.
2728   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2729     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2730   }
2731 }
2732 
2733 void os::numa_make_global(char *addr, size_t bytes) {
2734   Linux::numa_interleave_memory(addr, bytes);
2735 }
2736 
2737 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2738 // bind policy to MPOL_PREFERRED for the current thread.
2739 #define USE_MPOL_PREFERRED 0
2740 
2741 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2742   // To make NUMA and large pages more robust when both enabled, we need to ease
2743   // the requirements on where the memory should be allocated. MPOL_BIND is the
2744   // default policy and it will force memory to be allocated on the specified
2745   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2746   // the specified node, but will not force it. Using this policy will prevent
2747   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2748   // free large pages.
2749   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2750   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2751 }
2752 
2753 bool os::numa_topology_changed() { return false; }
2754 
2755 size_t os::numa_get_groups_num() {
2756   // Return just the number of nodes in which it's possible to allocate memory
2757   // (in numa terminology, configured nodes).
2758   return Linux::numa_num_configured_nodes();
2759 }
2760 
2761 int os::numa_get_group_id() {
2762   int cpu_id = Linux::sched_getcpu();
2763   if (cpu_id != -1) {
2764     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2765     if (lgrp_id != -1) {
2766       return lgrp_id;
2767     }
2768   }
2769   return 0;
2770 }
2771 
2772 int os::Linux::get_existing_num_nodes() {
2773   int node;
2774   int highest_node_number = Linux::numa_max_node();
2775   int num_nodes = 0;
2776 
2777   // Get the total number of nodes in the system including nodes without memory.
2778   for (node = 0; node <= highest_node_number; node++) {
2779     if (isnode_in_existing_nodes(node)) {
2780       num_nodes++;
2781     }
2782   }
2783   return num_nodes;
2784 }
2785 
2786 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2787   int highest_node_number = Linux::numa_max_node();
2788   size_t i = 0;
2789 
2790   // Map all node ids in which it is possible to allocate memory. Also nodes are
2791   // not always consecutively available, i.e. available from 0 to the highest
2792   // node number. If the nodes have been bound explicitly using numactl membind,
2793   // then allocate memory from those nodes only.
2794   for (int node = 0; node <= highest_node_number; node++) {
2795     if (Linux::isnode_in_bound_nodes((unsigned int)node)) {
2796       ids[i++] = node;
2797     }
2798   }
2799   return i;
2800 }
2801 
2802 bool os::get_page_info(char *start, page_info* info) {
2803   return false;
2804 }
2805 
2806 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2807                      page_info* page_found) {
2808   return end;
2809 }
2810 
2811 
2812 int os::Linux::sched_getcpu_syscall(void) {
2813   unsigned int cpu = 0;
2814   int retval = -1;
2815 
2816 #if defined(IA32)
2817   #ifndef SYS_getcpu
2818     #define SYS_getcpu 318
2819   #endif
2820   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2821 #elif defined(AMD64)
2822 // Unfortunately we have to bring all these macros here from vsyscall.h
2823 // to be able to compile on old linuxes.
2824   #define __NR_vgetcpu 2
2825   #define VSYSCALL_START (-10UL << 20)
2826   #define VSYSCALL_SIZE 1024
2827   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2828   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2829   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2830   retval = vgetcpu(&cpu, NULL, NULL);
2831 #endif
2832 
2833   return (retval == -1) ? retval : cpu;
2834 }
2835 
2836 void os::Linux::sched_getcpu_init() {
2837   // sched_getcpu() should be in libc.
2838   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2839                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2840 
2841   // If it's not, try a direct syscall.
2842   if (sched_getcpu() == -1) {
2843     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2844                                     (void*)&sched_getcpu_syscall));
2845   }
2846 
2847   if (sched_getcpu() == -1) {
2848     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
2849   }
2850 }
2851 
2852 // Something to do with the numa-aware allocator needs these symbols
2853 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2854 extern "C" JNIEXPORT void numa_error(char *where) { }
2855 
2856 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2857 // load symbol from base version instead.
2858 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2859   void *f = dlvsym(handle, name, "libnuma_1.1");
2860   if (f == NULL) {
2861     f = dlsym(handle, name);
2862   }
2863   return f;
2864 }
2865 
2866 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2867 // Return NULL if the symbol is not defined in this particular version.
2868 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2869   return dlvsym(handle, name, "libnuma_1.2");
2870 }
2871 
2872 bool os::Linux::libnuma_init() {
2873   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2874     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2875     if (handle != NULL) {
2876       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2877                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2878       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2879                                        libnuma_dlsym(handle, "numa_max_node")));
2880       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2881                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2882       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2883                                         libnuma_dlsym(handle, "numa_available")));
2884       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2885                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2886       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2887                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2888       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2889                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2890       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2891                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2892       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2893                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2894       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2895                                        libnuma_dlsym(handle, "numa_distance")));
2896       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
2897                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
2898 
2899       if (numa_available() != -1) {
2900         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2901         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2902         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2903         // Create an index -> node mapping, since nodes are not always consecutive
2904         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2905         rebuild_nindex_to_node_map();
2906         // Create a cpu -> node mapping
2907         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2908         rebuild_cpu_to_node_map();
2909         return true;
2910       }
2911     }
2912   }
2913   return false;
2914 }
2915 
2916 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2917   // Creating guard page is very expensive. Java thread has HotSpot
2918   // guard pages, only enable glibc guard page for non-Java threads.
2919   // (Remember: compiler thread is a Java thread, too!)
2920   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2921 }
2922 
2923 void os::Linux::rebuild_nindex_to_node_map() {
2924   int highest_node_number = Linux::numa_max_node();
2925 
2926   nindex_to_node()->clear();
2927   for (int node = 0; node <= highest_node_number; node++) {
2928     if (Linux::isnode_in_existing_nodes(node)) {
2929       nindex_to_node()->append(node);
2930     }
2931   }
2932 }
2933 
2934 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2935 // The table is later used in get_node_by_cpu().
2936 void os::Linux::rebuild_cpu_to_node_map() {
2937   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2938                               // in libnuma (possible values are starting from 16,
2939                               // and continuing up with every other power of 2, but less
2940                               // than the maximum number of CPUs supported by kernel), and
2941                               // is a subject to change (in libnuma version 2 the requirements
2942                               // are more reasonable) we'll just hardcode the number they use
2943                               // in the library.
2944   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2945 
2946   size_t cpu_num = processor_count();
2947   size_t cpu_map_size = NCPUS / BitsPerCLong;
2948   size_t cpu_map_valid_size =
2949     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2950 
2951   cpu_to_node()->clear();
2952   cpu_to_node()->at_grow(cpu_num - 1);
2953 
2954   size_t node_num = get_existing_num_nodes();
2955 
2956   int distance = 0;
2957   int closest_distance = INT_MAX;
2958   int closest_node = 0;
2959   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2960   for (size_t i = 0; i < node_num; i++) {
2961     // Check if node is configured (not a memory-less node). If it is not, find
2962     // the closest configured node. Check also if node is bound, i.e. it's allowed
2963     // to allocate memory from the node. If it's not allowed, map cpus in that node
2964     // to the closest node from which memory allocation is allowed.
2965     if (!isnode_in_configured_nodes(nindex_to_node()->at(i)) ||
2966         !isnode_in_bound_nodes(nindex_to_node()->at(i))) {
2967       closest_distance = INT_MAX;
2968       // Check distance from all remaining nodes in the system. Ignore distance
2969       // from itself, from another non-configured node, and from another non-bound
2970       // node.
2971       for (size_t m = 0; m < node_num; m++) {
2972         if (m != i &&
2973             isnode_in_configured_nodes(nindex_to_node()->at(m)) &&
2974             isnode_in_bound_nodes(nindex_to_node()->at(m))) {
2975           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2976           // If a closest node is found, update. There is always at least one
2977           // configured and bound node in the system so there is always at least
2978           // one node close.
2979           if (distance != 0 && distance < closest_distance) {
2980             closest_distance = distance;
2981             closest_node = nindex_to_node()->at(m);
2982           }
2983         }
2984       }
2985      } else {
2986        // Current node is already a configured node.
2987        closest_node = nindex_to_node()->at(i);
2988      }
2989 
2990     // Get cpus from the original node and map them to the closest node. If node
2991     // is a configured node (not a memory-less node), then original node and
2992     // closest node are the same.
2993     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2994       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2995         if (cpu_map[j] != 0) {
2996           for (size_t k = 0; k < BitsPerCLong; k++) {
2997             if (cpu_map[j] & (1UL << k)) {
2998               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2999             }
3000           }
3001         }
3002       }
3003     }
3004   }
3005   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3006 }
3007 
3008 int os::Linux::get_node_by_cpu(int cpu_id) {
3009   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3010     return cpu_to_node()->at(cpu_id);
3011   }
3012   return -1;
3013 }
3014 
3015 GrowableArray<int>* os::Linux::_cpu_to_node;
3016 GrowableArray<int>* os::Linux::_nindex_to_node;
3017 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3018 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3019 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3020 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3021 os::Linux::numa_available_func_t os::Linux::_numa_available;
3022 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3023 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3024 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3025 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3026 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3027 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3028 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3029 unsigned long* os::Linux::_numa_all_nodes;
3030 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3031 struct bitmask* os::Linux::_numa_nodes_ptr;
3032 
3033 bool os::pd_uncommit_memory(char* addr, size_t size) {
3034   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3035                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3036   return res  != (uintptr_t) MAP_FAILED;
3037 }
3038 
3039 static address get_stack_commited_bottom(address bottom, size_t size) {
3040   address nbot = bottom;
3041   address ntop = bottom + size;
3042 
3043   size_t page_sz = os::vm_page_size();
3044   unsigned pages = size / page_sz;
3045 
3046   unsigned char vec[1];
3047   unsigned imin = 1, imax = pages + 1, imid;
3048   int mincore_return_value = 0;
3049 
3050   assert(imin <= imax, "Unexpected page size");
3051 
3052   while (imin < imax) {
3053     imid = (imax + imin) / 2;
3054     nbot = ntop - (imid * page_sz);
3055 
3056     // Use a trick with mincore to check whether the page is mapped or not.
3057     // mincore sets vec to 1 if page resides in memory and to 0 if page
3058     // is swapped output but if page we are asking for is unmapped
3059     // it returns -1,ENOMEM
3060     mincore_return_value = mincore(nbot, page_sz, vec);
3061 
3062     if (mincore_return_value == -1) {
3063       // Page is not mapped go up
3064       // to find first mapped page
3065       if (errno != EAGAIN) {
3066         assert(errno == ENOMEM, "Unexpected mincore errno");
3067         imax = imid;
3068       }
3069     } else {
3070       // Page is mapped go down
3071       // to find first not mapped page
3072       imin = imid + 1;
3073     }
3074   }
3075 
3076   nbot = nbot + page_sz;
3077 
3078   // Adjust stack bottom one page up if last checked page is not mapped
3079   if (mincore_return_value == -1) {
3080     nbot = nbot + page_sz;
3081   }
3082 
3083   return nbot;
3084 }
3085 
3086 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3087   int mincore_return_value;
3088   const size_t stripe = 1024;  // query this many pages each time
3089   unsigned char vec[stripe + 1];
3090   // set a guard
3091   vec[stripe] = 'X';
3092 
3093   const size_t page_sz = os::vm_page_size();
3094   size_t pages = size / page_sz;
3095 
3096   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3097   assert(is_aligned(size, page_sz), "Size must be page aligned");
3098 
3099   committed_start = NULL;
3100 
3101   int loops = (pages + stripe - 1) / stripe;
3102   int committed_pages = 0;
3103   address loop_base = start;
3104   bool found_range = false;
3105 
3106   for (int index = 0; index < loops && !found_range; index ++) {
3107     assert(pages > 0, "Nothing to do");
3108     int pages_to_query = (pages >= stripe) ? stripe : pages;
3109     pages -= pages_to_query;
3110 
3111     // Get stable read
3112     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3113 
3114     // During shutdown, some memory goes away without properly notifying NMT,
3115     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3116     // Bailout and return as not committed for now.
3117     if (mincore_return_value == -1 && errno == ENOMEM) {
3118       return false;
3119     }
3120 
3121     assert(vec[stripe] == 'X', "overflow guard");
3122     assert(mincore_return_value == 0, "Range must be valid");
3123     // Process this stripe
3124     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3125       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3126         // End of current contiguous region
3127         if (committed_start != NULL) {
3128           found_range = true;
3129           break;
3130         }
3131       } else { // committed
3132         // Start of region
3133         if (committed_start == NULL) {
3134           committed_start = loop_base + page_sz * vecIdx;
3135         }
3136         committed_pages ++;
3137       }
3138     }
3139 
3140     loop_base += pages_to_query * page_sz;
3141   }
3142 
3143   if (committed_start != NULL) {
3144     assert(committed_pages > 0, "Must have committed region");
3145     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3146     assert(committed_start >= start && committed_start < start + size, "Out of range");
3147     committed_size = page_sz * committed_pages;
3148     return true;
3149   } else {
3150     assert(committed_pages == 0, "Should not have committed region");
3151     return false;
3152   }
3153 }
3154 
3155 
3156 // Linux uses a growable mapping for the stack, and if the mapping for
3157 // the stack guard pages is not removed when we detach a thread the
3158 // stack cannot grow beyond the pages where the stack guard was
3159 // mapped.  If at some point later in the process the stack expands to
3160 // that point, the Linux kernel cannot expand the stack any further
3161 // because the guard pages are in the way, and a segfault occurs.
3162 //
3163 // However, it's essential not to split the stack region by unmapping
3164 // a region (leaving a hole) that's already part of the stack mapping,
3165 // so if the stack mapping has already grown beyond the guard pages at
3166 // the time we create them, we have to truncate the stack mapping.
3167 // So, we need to know the extent of the stack mapping when
3168 // create_stack_guard_pages() is called.
3169 
3170 // We only need this for stacks that are growable: at the time of
3171 // writing thread stacks don't use growable mappings (i.e. those
3172 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3173 // only applies to the main thread.
3174 
3175 // If the (growable) stack mapping already extends beyond the point
3176 // where we're going to put our guard pages, truncate the mapping at
3177 // that point by munmap()ping it.  This ensures that when we later
3178 // munmap() the guard pages we don't leave a hole in the stack
3179 // mapping. This only affects the main/primordial thread
3180 
3181 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3182   if (os::is_primordial_thread()) {
3183     // As we manually grow stack up to bottom inside create_attached_thread(),
3184     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3185     // we don't need to do anything special.
3186     // Check it first, before calling heavy function.
3187     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3188     unsigned char vec[1];
3189 
3190     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3191       // Fallback to slow path on all errors, including EAGAIN
3192       stack_extent = (uintptr_t) get_stack_commited_bottom(
3193                                                            os::Linux::initial_thread_stack_bottom(),
3194                                                            (size_t)addr - stack_extent);
3195     }
3196 
3197     if (stack_extent < (uintptr_t)addr) {
3198       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3199     }
3200   }
3201 
3202   return os::commit_memory(addr, size, !ExecMem);
3203 }
3204 
3205 // If this is a growable mapping, remove the guard pages entirely by
3206 // munmap()ping them.  If not, just call uncommit_memory(). This only
3207 // affects the main/primordial thread, but guard against future OS changes.
3208 // It's safe to always unmap guard pages for primordial thread because we
3209 // always place it right after end of the mapped region.
3210 
3211 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3212   uintptr_t stack_extent, stack_base;
3213 
3214   if (os::is_primordial_thread()) {
3215     return ::munmap(addr, size) == 0;
3216   }
3217 
3218   return os::uncommit_memory(addr, size);
3219 }
3220 
3221 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3222 // at 'requested_addr'. If there are existing memory mappings at the same
3223 // location, however, they will be overwritten. If 'fixed' is false,
3224 // 'requested_addr' is only treated as a hint, the return value may or
3225 // may not start from the requested address. Unlike Linux mmap(), this
3226 // function returns NULL to indicate failure.
3227 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3228   char * addr;
3229   int flags;
3230 
3231   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3232   if (fixed) {
3233     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3234     flags |= MAP_FIXED;
3235   }
3236 
3237   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3238   // touch an uncommitted page. Otherwise, the read/write might
3239   // succeed if we have enough swap space to back the physical page.
3240   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3241                        flags, -1, 0);
3242 
3243   return addr == MAP_FAILED ? NULL : addr;
3244 }
3245 
3246 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3247 //   (req_addr != NULL) or with a given alignment.
3248 //  - bytes shall be a multiple of alignment.
3249 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3250 //  - alignment sets the alignment at which memory shall be allocated.
3251 //     It must be a multiple of allocation granularity.
3252 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3253 //  req_addr or NULL.
3254 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3255 
3256   size_t extra_size = bytes;
3257   if (req_addr == NULL && alignment > 0) {
3258     extra_size += alignment;
3259   }
3260 
3261   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3262     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3263     -1, 0);
3264   if (start == MAP_FAILED) {
3265     start = NULL;
3266   } else {
3267     if (req_addr != NULL) {
3268       if (start != req_addr) {
3269         ::munmap(start, extra_size);
3270         start = NULL;
3271       }
3272     } else {
3273       char* const start_aligned = align_up(start, alignment);
3274       char* const end_aligned = start_aligned + bytes;
3275       char* const end = start + extra_size;
3276       if (start_aligned > start) {
3277         ::munmap(start, start_aligned - start);
3278       }
3279       if (end_aligned < end) {
3280         ::munmap(end_aligned, end - end_aligned);
3281       }
3282       start = start_aligned;
3283     }
3284   }
3285   return start;
3286 }
3287 
3288 static int anon_munmap(char * addr, size_t size) {
3289   return ::munmap(addr, size) == 0;
3290 }
3291 
3292 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3293                             size_t alignment_hint) {
3294   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3295 }
3296 
3297 bool os::pd_release_memory(char* addr, size_t size) {
3298   return anon_munmap(addr, size);
3299 }
3300 
3301 static bool linux_mprotect(char* addr, size_t size, int prot) {
3302   // Linux wants the mprotect address argument to be page aligned.
3303   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3304 
3305   // According to SUSv3, mprotect() should only be used with mappings
3306   // established by mmap(), and mmap() always maps whole pages. Unaligned
3307   // 'addr' likely indicates problem in the VM (e.g. trying to change
3308   // protection of malloc'ed or statically allocated memory). Check the
3309   // caller if you hit this assert.
3310   assert(addr == bottom, "sanity check");
3311 
3312   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3313   return ::mprotect(bottom, size, prot) == 0;
3314 }
3315 
3316 // Set protections specified
3317 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3318                         bool is_committed) {
3319   unsigned int p = 0;
3320   switch (prot) {
3321   case MEM_PROT_NONE: p = PROT_NONE; break;
3322   case MEM_PROT_READ: p = PROT_READ; break;
3323   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3324   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3325   default:
3326     ShouldNotReachHere();
3327   }
3328   // is_committed is unused.
3329   return linux_mprotect(addr, bytes, p);
3330 }
3331 
3332 bool os::guard_memory(char* addr, size_t size) {
3333   return linux_mprotect(addr, size, PROT_NONE);
3334 }
3335 
3336 bool os::unguard_memory(char* addr, size_t size) {
3337   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3338 }
3339 
3340 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3341                                                     size_t page_size) {
3342   bool result = false;
3343   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3344                  MAP_ANONYMOUS|MAP_PRIVATE,
3345                  -1, 0);
3346   if (p != MAP_FAILED) {
3347     void *aligned_p = align_up(p, page_size);
3348 
3349     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3350 
3351     munmap(p, page_size * 2);
3352   }
3353 
3354   if (warn && !result) {
3355     warning("TransparentHugePages is not supported by the operating system.");
3356   }
3357 
3358   return result;
3359 }
3360 
3361 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3362   bool result = false;
3363   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3364                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3365                  -1, 0);
3366 
3367   if (p != MAP_FAILED) {
3368     // We don't know if this really is a huge page or not.
3369     FILE *fp = fopen("/proc/self/maps", "r");
3370     if (fp) {
3371       while (!feof(fp)) {
3372         char chars[257];
3373         long x = 0;
3374         if (fgets(chars, sizeof(chars), fp)) {
3375           if (sscanf(chars, "%lx-%*x", &x) == 1
3376               && x == (long)p) {
3377             if (strstr (chars, "hugepage")) {
3378               result = true;
3379               break;
3380             }
3381           }
3382         }
3383       }
3384       fclose(fp);
3385     }
3386     munmap(p, page_size);
3387   }
3388 
3389   if (warn && !result) {
3390     warning("HugeTLBFS is not supported by the operating system.");
3391   }
3392 
3393   return result;
3394 }
3395 
3396 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3397 //
3398 // From the coredump_filter documentation:
3399 //
3400 // - (bit 0) anonymous private memory
3401 // - (bit 1) anonymous shared memory
3402 // - (bit 2) file-backed private memory
3403 // - (bit 3) file-backed shared memory
3404 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3405 //           effective only if the bit 2 is cleared)
3406 // - (bit 5) hugetlb private memory
3407 // - (bit 6) hugetlb shared memory
3408 // - (bit 7) dax private memory
3409 // - (bit 8) dax shared memory
3410 //
3411 static void set_coredump_filter(CoredumpFilterBit bit) {
3412   FILE *f;
3413   long cdm;
3414 
3415   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3416     return;
3417   }
3418 
3419   if (fscanf(f, "%lx", &cdm) != 1) {
3420     fclose(f);
3421     return;
3422   }
3423 
3424   long saved_cdm = cdm;
3425   rewind(f);
3426   cdm |= bit;
3427 
3428   if (cdm != saved_cdm) {
3429     fprintf(f, "%#lx", cdm);
3430   }
3431 
3432   fclose(f);
3433 }
3434 
3435 // Large page support
3436 
3437 static size_t _large_page_size = 0;
3438 
3439 size_t os::Linux::find_large_page_size() {
3440   size_t large_page_size = 0;
3441 
3442   // large_page_size on Linux is used to round up heap size. x86 uses either
3443   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3444   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3445   // page as large as 256M.
3446   //
3447   // Here we try to figure out page size by parsing /proc/meminfo and looking
3448   // for a line with the following format:
3449   //    Hugepagesize:     2048 kB
3450   //
3451   // If we can't determine the value (e.g. /proc is not mounted, or the text
3452   // format has been changed), we'll use the largest page size supported by
3453   // the processor.
3454 
3455 #ifndef ZERO
3456   large_page_size =
3457     AARCH64_ONLY(2 * M)
3458     AMD64_ONLY(2 * M)
3459     ARM32_ONLY(2 * M)
3460     IA32_ONLY(4 * M)
3461     IA64_ONLY(256 * M)
3462     PPC_ONLY(4 * M)
3463     S390_ONLY(1 * M)
3464     SPARC_ONLY(4 * M);
3465 #endif // ZERO
3466 
3467   FILE *fp = fopen("/proc/meminfo", "r");
3468   if (fp) {
3469     while (!feof(fp)) {
3470       int x = 0;
3471       char buf[16];
3472       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3473         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3474           large_page_size = x * K;
3475           break;
3476         }
3477       } else {
3478         // skip to next line
3479         for (;;) {
3480           int ch = fgetc(fp);
3481           if (ch == EOF || ch == (int)'\n') break;
3482         }
3483       }
3484     }
3485     fclose(fp);
3486   }
3487 
3488   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3489     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3490             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3491             proper_unit_for_byte_size(large_page_size));
3492   }
3493 
3494   return large_page_size;
3495 }
3496 
3497 size_t os::Linux::setup_large_page_size() {
3498   _large_page_size = Linux::find_large_page_size();
3499   const size_t default_page_size = (size_t)Linux::page_size();
3500   if (_large_page_size > default_page_size) {
3501     _page_sizes[0] = _large_page_size;
3502     _page_sizes[1] = default_page_size;
3503     _page_sizes[2] = 0;
3504   }
3505 
3506   return _large_page_size;
3507 }
3508 
3509 bool os::Linux::setup_large_page_type(size_t page_size) {
3510   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3511       FLAG_IS_DEFAULT(UseSHM) &&
3512       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3513 
3514     // The type of large pages has not been specified by the user.
3515 
3516     // Try UseHugeTLBFS and then UseSHM.
3517     UseHugeTLBFS = UseSHM = true;
3518 
3519     // Don't try UseTransparentHugePages since there are known
3520     // performance issues with it turned on. This might change in the future.
3521     UseTransparentHugePages = false;
3522   }
3523 
3524   if (UseTransparentHugePages) {
3525     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3526     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3527       UseHugeTLBFS = false;
3528       UseSHM = false;
3529       return true;
3530     }
3531     UseTransparentHugePages = false;
3532   }
3533 
3534   if (UseHugeTLBFS) {
3535     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3536     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3537       UseSHM = false;
3538       return true;
3539     }
3540     UseHugeTLBFS = false;
3541   }
3542 
3543   return UseSHM;
3544 }
3545 
3546 void os::large_page_init() {
3547   if (!UseLargePages &&
3548       !UseTransparentHugePages &&
3549       !UseHugeTLBFS &&
3550       !UseSHM) {
3551     // Not using large pages.
3552     return;
3553   }
3554 
3555   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3556     // The user explicitly turned off large pages.
3557     // Ignore the rest of the large pages flags.
3558     UseTransparentHugePages = false;
3559     UseHugeTLBFS = false;
3560     UseSHM = false;
3561     return;
3562   }
3563 
3564   size_t large_page_size = Linux::setup_large_page_size();
3565   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3566 
3567   set_coredump_filter(LARGEPAGES_BIT);
3568 }
3569 
3570 #ifndef SHM_HUGETLB
3571   #define SHM_HUGETLB 04000
3572 #endif
3573 
3574 #define shm_warning_format(format, ...)              \
3575   do {                                               \
3576     if (UseLargePages &&                             \
3577         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3578          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3579          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3580       warning(format, __VA_ARGS__);                  \
3581     }                                                \
3582   } while (0)
3583 
3584 #define shm_warning(str) shm_warning_format("%s", str)
3585 
3586 #define shm_warning_with_errno(str)                \
3587   do {                                             \
3588     int err = errno;                               \
3589     shm_warning_format(str " (error = %d)", err);  \
3590   } while (0)
3591 
3592 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3593   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3594 
3595   if (!is_aligned(alignment, SHMLBA)) {
3596     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3597     return NULL;
3598   }
3599 
3600   // To ensure that we get 'alignment' aligned memory from shmat,
3601   // we pre-reserve aligned virtual memory and then attach to that.
3602 
3603   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3604   if (pre_reserved_addr == NULL) {
3605     // Couldn't pre-reserve aligned memory.
3606     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3607     return NULL;
3608   }
3609 
3610   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3611   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3612 
3613   if ((intptr_t)addr == -1) {
3614     int err = errno;
3615     shm_warning_with_errno("Failed to attach shared memory.");
3616 
3617     assert(err != EACCES, "Unexpected error");
3618     assert(err != EIDRM,  "Unexpected error");
3619     assert(err != EINVAL, "Unexpected error");
3620 
3621     // Since we don't know if the kernel unmapped the pre-reserved memory area
3622     // we can't unmap it, since that would potentially unmap memory that was
3623     // mapped from other threads.
3624     return NULL;
3625   }
3626 
3627   return addr;
3628 }
3629 
3630 static char* shmat_at_address(int shmid, char* req_addr) {
3631   if (!is_aligned(req_addr, SHMLBA)) {
3632     assert(false, "Requested address needs to be SHMLBA aligned");
3633     return NULL;
3634   }
3635 
3636   char* addr = (char*)shmat(shmid, req_addr, 0);
3637 
3638   if ((intptr_t)addr == -1) {
3639     shm_warning_with_errno("Failed to attach shared memory.");
3640     return NULL;
3641   }
3642 
3643   return addr;
3644 }
3645 
3646 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3647   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3648   if (req_addr != NULL) {
3649     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3650     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3651     return shmat_at_address(shmid, req_addr);
3652   }
3653 
3654   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3655   // return large page size aligned memory addresses when req_addr == NULL.
3656   // However, if the alignment is larger than the large page size, we have
3657   // to manually ensure that the memory returned is 'alignment' aligned.
3658   if (alignment > os::large_page_size()) {
3659     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3660     return shmat_with_alignment(shmid, bytes, alignment);
3661   } else {
3662     return shmat_at_address(shmid, NULL);
3663   }
3664 }
3665 
3666 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3667                                             char* req_addr, bool exec) {
3668   // "exec" is passed in but not used.  Creating the shared image for
3669   // the code cache doesn't have an SHM_X executable permission to check.
3670   assert(UseLargePages && UseSHM, "only for SHM large pages");
3671   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3672   assert(is_aligned(req_addr, alignment), "Unaligned address");
3673 
3674   if (!is_aligned(bytes, os::large_page_size())) {
3675     return NULL; // Fallback to small pages.
3676   }
3677 
3678   // Create a large shared memory region to attach to based on size.
3679   // Currently, size is the total size of the heap.
3680   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3681   if (shmid == -1) {
3682     // Possible reasons for shmget failure:
3683     // 1. shmmax is too small for Java heap.
3684     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3685     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3686     // 2. not enough large page memory.
3687     //    > check available large pages: cat /proc/meminfo
3688     //    > increase amount of large pages:
3689     //          echo new_value > /proc/sys/vm/nr_hugepages
3690     //      Note 1: different Linux may use different name for this property,
3691     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3692     //      Note 2: it's possible there's enough physical memory available but
3693     //            they are so fragmented after a long run that they can't
3694     //            coalesce into large pages. Try to reserve large pages when
3695     //            the system is still "fresh".
3696     shm_warning_with_errno("Failed to reserve shared memory.");
3697     return NULL;
3698   }
3699 
3700   // Attach to the region.
3701   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3702 
3703   // Remove shmid. If shmat() is successful, the actual shared memory segment
3704   // will be deleted when it's detached by shmdt() or when the process
3705   // terminates. If shmat() is not successful this will remove the shared
3706   // segment immediately.
3707   shmctl(shmid, IPC_RMID, NULL);
3708 
3709   return addr;
3710 }
3711 
3712 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3713                                         int error) {
3714   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3715 
3716   bool warn_on_failure = UseLargePages &&
3717       (!FLAG_IS_DEFAULT(UseLargePages) ||
3718        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3719        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3720 
3721   if (warn_on_failure) {
3722     char msg[128];
3723     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3724                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3725     warning("%s", msg);
3726   }
3727 }
3728 
3729 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3730                                                         char* req_addr,
3731                                                         bool exec) {
3732   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3733   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3734   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3735 
3736   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3737   char* addr = (char*)::mmap(req_addr, bytes, prot,
3738                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3739                              -1, 0);
3740 
3741   if (addr == MAP_FAILED) {
3742     warn_on_large_pages_failure(req_addr, bytes, errno);
3743     return NULL;
3744   }
3745 
3746   assert(is_aligned(addr, os::large_page_size()), "Must be");
3747 
3748   return addr;
3749 }
3750 
3751 // Reserve memory using mmap(MAP_HUGETLB).
3752 //  - bytes shall be a multiple of alignment.
3753 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3754 //  - alignment sets the alignment at which memory shall be allocated.
3755 //     It must be a multiple of allocation granularity.
3756 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3757 //  req_addr or NULL.
3758 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3759                                                          size_t alignment,
3760                                                          char* req_addr,
3761                                                          bool exec) {
3762   size_t large_page_size = os::large_page_size();
3763   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3764 
3765   assert(is_aligned(req_addr, alignment), "Must be");
3766   assert(is_aligned(bytes, alignment), "Must be");
3767 
3768   // First reserve - but not commit - the address range in small pages.
3769   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3770 
3771   if (start == NULL) {
3772     return NULL;
3773   }
3774 
3775   assert(is_aligned(start, alignment), "Must be");
3776 
3777   char* end = start + bytes;
3778 
3779   // Find the regions of the allocated chunk that can be promoted to large pages.
3780   char* lp_start = align_up(start, large_page_size);
3781   char* lp_end   = align_down(end, large_page_size);
3782 
3783   size_t lp_bytes = lp_end - lp_start;
3784 
3785   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3786 
3787   if (lp_bytes == 0) {
3788     // The mapped region doesn't even span the start and the end of a large page.
3789     // Fall back to allocate a non-special area.
3790     ::munmap(start, end - start);
3791     return NULL;
3792   }
3793 
3794   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3795 
3796   void* result;
3797 
3798   // Commit small-paged leading area.
3799   if (start != lp_start) {
3800     result = ::mmap(start, lp_start - start, prot,
3801                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3802                     -1, 0);
3803     if (result == MAP_FAILED) {
3804       ::munmap(lp_start, end - lp_start);
3805       return NULL;
3806     }
3807   }
3808 
3809   // Commit large-paged area.
3810   result = ::mmap(lp_start, lp_bytes, prot,
3811                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3812                   -1, 0);
3813   if (result == MAP_FAILED) {
3814     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3815     // If the mmap above fails, the large pages region will be unmapped and we
3816     // have regions before and after with small pages. Release these regions.
3817     //
3818     // |  mapped  |  unmapped  |  mapped  |
3819     // ^          ^            ^          ^
3820     // start      lp_start     lp_end     end
3821     //
3822     ::munmap(start, lp_start - start);
3823     ::munmap(lp_end, end - lp_end);
3824     return NULL;
3825   }
3826 
3827   // Commit small-paged trailing area.
3828   if (lp_end != end) {
3829     result = ::mmap(lp_end, end - lp_end, prot,
3830                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3831                     -1, 0);
3832     if (result == MAP_FAILED) {
3833       ::munmap(start, lp_end - start);
3834       return NULL;
3835     }
3836   }
3837 
3838   return start;
3839 }
3840 
3841 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3842                                                    size_t alignment,
3843                                                    char* req_addr,
3844                                                    bool exec) {
3845   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3846   assert(is_aligned(req_addr, alignment), "Must be");
3847   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3848   assert(is_power_of_2(os::large_page_size()), "Must be");
3849   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3850 
3851   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3852     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3853   } else {
3854     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3855   }
3856 }
3857 
3858 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3859                                  char* req_addr, bool exec) {
3860   assert(UseLargePages, "only for large pages");
3861 
3862   char* addr;
3863   if (UseSHM) {
3864     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3865   } else {
3866     assert(UseHugeTLBFS, "must be");
3867     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3868   }
3869 
3870   if (addr != NULL) {
3871     if (UseNUMAInterleaving) {
3872       numa_make_global(addr, bytes);
3873     }
3874 
3875     // The memory is committed
3876     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3877   }
3878 
3879   return addr;
3880 }
3881 
3882 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3883   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3884   return shmdt(base) == 0;
3885 }
3886 
3887 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3888   return pd_release_memory(base, bytes);
3889 }
3890 
3891 bool os::release_memory_special(char* base, size_t bytes) {
3892   bool res;
3893   if (MemTracker::tracking_level() > NMT_minimal) {
3894     Tracker tkr(Tracker::release);
3895     res = os::Linux::release_memory_special_impl(base, bytes);
3896     if (res) {
3897       tkr.record((address)base, bytes);
3898     }
3899 
3900   } else {
3901     res = os::Linux::release_memory_special_impl(base, bytes);
3902   }
3903   return res;
3904 }
3905 
3906 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3907   assert(UseLargePages, "only for large pages");
3908   bool res;
3909 
3910   if (UseSHM) {
3911     res = os::Linux::release_memory_special_shm(base, bytes);
3912   } else {
3913     assert(UseHugeTLBFS, "must be");
3914     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3915   }
3916   return res;
3917 }
3918 
3919 size_t os::large_page_size() {
3920   return _large_page_size;
3921 }
3922 
3923 // With SysV SHM the entire memory region must be allocated as shared
3924 // memory.
3925 // HugeTLBFS allows application to commit large page memory on demand.
3926 // However, when committing memory with HugeTLBFS fails, the region
3927 // that was supposed to be committed will lose the old reservation
3928 // and allow other threads to steal that memory region. Because of this
3929 // behavior we can't commit HugeTLBFS memory.
3930 bool os::can_commit_large_page_memory() {
3931   return UseTransparentHugePages;
3932 }
3933 
3934 bool os::can_execute_large_page_memory() {
3935   return UseTransparentHugePages || UseHugeTLBFS;
3936 }
3937 
3938 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3939   assert(file_desc >= 0, "file_desc is not valid");
3940   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
3941   if (result != NULL) {
3942     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
3943       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3944     }
3945   }
3946   return result;
3947 }
3948 
3949 // Reserve memory at an arbitrary address, only if that area is
3950 // available (and not reserved for something else).
3951 
3952 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3953   const int max_tries = 10;
3954   char* base[max_tries];
3955   size_t size[max_tries];
3956   const size_t gap = 0x000000;
3957 
3958   // Assert only that the size is a multiple of the page size, since
3959   // that's all that mmap requires, and since that's all we really know
3960   // about at this low abstraction level.  If we need higher alignment,
3961   // we can either pass an alignment to this method or verify alignment
3962   // in one of the methods further up the call chain.  See bug 5044738.
3963   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3964 
3965   // Repeatedly allocate blocks until the block is allocated at the
3966   // right spot.
3967 
3968   // Linux mmap allows caller to pass an address as hint; give it a try first,
3969   // if kernel honors the hint then we can return immediately.
3970   char * addr = anon_mmap(requested_addr, bytes, false);
3971   if (addr == requested_addr) {
3972     return requested_addr;
3973   }
3974 
3975   if (addr != NULL) {
3976     // mmap() is successful but it fails to reserve at the requested address
3977     anon_munmap(addr, bytes);
3978   }
3979 
3980   int i;
3981   for (i = 0; i < max_tries; ++i) {
3982     base[i] = reserve_memory(bytes);
3983 
3984     if (base[i] != NULL) {
3985       // Is this the block we wanted?
3986       if (base[i] == requested_addr) {
3987         size[i] = bytes;
3988         break;
3989       }
3990 
3991       // Does this overlap the block we wanted? Give back the overlapped
3992       // parts and try again.
3993 
3994       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3995       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3996         unmap_memory(base[i], top_overlap);
3997         base[i] += top_overlap;
3998         size[i] = bytes - top_overlap;
3999       } else {
4000         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
4001         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
4002           unmap_memory(requested_addr, bottom_overlap);
4003           size[i] = bytes - bottom_overlap;
4004         } else {
4005           size[i] = bytes;
4006         }
4007       }
4008     }
4009   }
4010 
4011   // Give back the unused reserved pieces.
4012 
4013   for (int j = 0; j < i; ++j) {
4014     if (base[j] != NULL) {
4015       unmap_memory(base[j], size[j]);
4016     }
4017   }
4018 
4019   if (i < max_tries) {
4020     return requested_addr;
4021   } else {
4022     return NULL;
4023   }
4024 }
4025 
4026 size_t os::read(int fd, void *buf, unsigned int nBytes) {
4027   return ::read(fd, buf, nBytes);
4028 }
4029 
4030 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4031   return ::pread(fd, buf, nBytes, offset);
4032 }
4033 
4034 // Short sleep, direct OS call.
4035 //
4036 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4037 // sched_yield(2) will actually give up the CPU:
4038 //
4039 //   * Alone on this pariticular CPU, keeps running.
4040 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4041 //     (pre 2.6.39).
4042 //
4043 // So calling this with 0 is an alternative.
4044 //
4045 void os::naked_short_sleep(jlong ms) {
4046   struct timespec req;
4047 
4048   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4049   req.tv_sec = 0;
4050   if (ms > 0) {
4051     req.tv_nsec = (ms % 1000) * 1000000;
4052   } else {
4053     req.tv_nsec = 1;
4054   }
4055 
4056   nanosleep(&req, NULL);
4057 
4058   return;
4059 }
4060 
4061 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4062 void os::infinite_sleep() {
4063   while (true) {    // sleep forever ...
4064     ::sleep(100);   // ... 100 seconds at a time
4065   }
4066 }
4067 
4068 // Used to convert frequent JVM_Yield() to nops
4069 bool os::dont_yield() {
4070   return DontYieldALot;
4071 }
4072 
4073 void os::naked_yield() {
4074   sched_yield();
4075 }
4076 
4077 ////////////////////////////////////////////////////////////////////////////////
4078 // thread priority support
4079 
4080 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4081 // only supports dynamic priority, static priority must be zero. For real-time
4082 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4083 // However, for large multi-threaded applications, SCHED_RR is not only slower
4084 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4085 // of 5 runs - Sep 2005).
4086 //
4087 // The following code actually changes the niceness of kernel-thread/LWP. It
4088 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4089 // not the entire user process, and user level threads are 1:1 mapped to kernel
4090 // threads. It has always been the case, but could change in the future. For
4091 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4092 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4093 
4094 int os::java_to_os_priority[CriticalPriority + 1] = {
4095   19,              // 0 Entry should never be used
4096 
4097    4,              // 1 MinPriority
4098    3,              // 2
4099    2,              // 3
4100 
4101    1,              // 4
4102    0,              // 5 NormPriority
4103   -1,              // 6
4104 
4105   -2,              // 7
4106   -3,              // 8
4107   -4,              // 9 NearMaxPriority
4108 
4109   -5,              // 10 MaxPriority
4110 
4111   -5               // 11 CriticalPriority
4112 };
4113 
4114 static int prio_init() {
4115   if (ThreadPriorityPolicy == 1) {
4116     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4117     // if effective uid is not root. Perhaps, a more elegant way of doing
4118     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4119     if (geteuid() != 0) {
4120       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4121         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4122       }
4123       ThreadPriorityPolicy = 0;
4124     }
4125   }
4126   if (UseCriticalJavaThreadPriority) {
4127     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4128   }
4129   return 0;
4130 }
4131 
4132 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4133   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4134 
4135   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4136   return (ret == 0) ? OS_OK : OS_ERR;
4137 }
4138 
4139 OSReturn os::get_native_priority(const Thread* const thread,
4140                                  int *priority_ptr) {
4141   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4142     *priority_ptr = java_to_os_priority[NormPriority];
4143     return OS_OK;
4144   }
4145 
4146   errno = 0;
4147   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4148   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4149 }
4150 
4151 ////////////////////////////////////////////////////////////////////////////////
4152 // suspend/resume support
4153 
4154 //  The low-level signal-based suspend/resume support is a remnant from the
4155 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4156 //  within hotspot. Currently used by JFR's OSThreadSampler
4157 //
4158 //  The remaining code is greatly simplified from the more general suspension
4159 //  code that used to be used.
4160 //
4161 //  The protocol is quite simple:
4162 //  - suspend:
4163 //      - sends a signal to the target thread
4164 //      - polls the suspend state of the osthread using a yield loop
4165 //      - target thread signal handler (SR_handler) sets suspend state
4166 //        and blocks in sigsuspend until continued
4167 //  - resume:
4168 //      - sets target osthread state to continue
4169 //      - sends signal to end the sigsuspend loop in the SR_handler
4170 //
4171 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4172 //  but is checked for NULL in SR_handler as a thread termination indicator.
4173 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4174 //
4175 //  Note that resume_clear_context() and suspend_save_context() are needed
4176 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4177 //  which in part is used by:
4178 //    - Forte Analyzer: AsyncGetCallTrace()
4179 //    - StackBanging: get_frame_at_stack_banging_point()
4180 
4181 static void resume_clear_context(OSThread *osthread) {
4182   osthread->set_ucontext(NULL);
4183   osthread->set_siginfo(NULL);
4184 }
4185 
4186 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4187                                  ucontext_t* context) {
4188   osthread->set_ucontext(context);
4189   osthread->set_siginfo(siginfo);
4190 }
4191 
4192 // Handler function invoked when a thread's execution is suspended or
4193 // resumed. We have to be careful that only async-safe functions are
4194 // called here (Note: most pthread functions are not async safe and
4195 // should be avoided.)
4196 //
4197 // Note: sigwait() is a more natural fit than sigsuspend() from an
4198 // interface point of view, but sigwait() prevents the signal hander
4199 // from being run. libpthread would get very confused by not having
4200 // its signal handlers run and prevents sigwait()'s use with the
4201 // mutex granting granting signal.
4202 //
4203 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4204 //
4205 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4206   // Save and restore errno to avoid confusing native code with EINTR
4207   // after sigsuspend.
4208   int old_errno = errno;
4209 
4210   Thread* thread = Thread::current_or_null_safe();
4211   assert(thread != NULL, "Missing current thread in SR_handler");
4212 
4213   // On some systems we have seen signal delivery get "stuck" until the signal
4214   // mask is changed as part of thread termination. Check that the current thread
4215   // has not already terminated (via SR_lock()) - else the following assertion
4216   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4217   // destructor has completed.
4218 
4219   if (thread->SR_lock() == NULL) {
4220     return;
4221   }
4222 
4223   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4224 
4225   OSThread* osthread = thread->osthread();
4226 
4227   os::SuspendResume::State current = osthread->sr.state();
4228   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4229     suspend_save_context(osthread, siginfo, context);
4230 
4231     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4232     os::SuspendResume::State state = osthread->sr.suspended();
4233     if (state == os::SuspendResume::SR_SUSPENDED) {
4234       sigset_t suspend_set;  // signals for sigsuspend()
4235       sigemptyset(&suspend_set);
4236       // get current set of blocked signals and unblock resume signal
4237       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4238       sigdelset(&suspend_set, SR_signum);
4239 
4240       sr_semaphore.signal();
4241       // wait here until we are resumed
4242       while (1) {
4243         sigsuspend(&suspend_set);
4244 
4245         os::SuspendResume::State result = osthread->sr.running();
4246         if (result == os::SuspendResume::SR_RUNNING) {
4247           sr_semaphore.signal();
4248           break;
4249         }
4250       }
4251 
4252     } else if (state == os::SuspendResume::SR_RUNNING) {
4253       // request was cancelled, continue
4254     } else {
4255       ShouldNotReachHere();
4256     }
4257 
4258     resume_clear_context(osthread);
4259   } else if (current == os::SuspendResume::SR_RUNNING) {
4260     // request was cancelled, continue
4261   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4262     // ignore
4263   } else {
4264     // ignore
4265   }
4266 
4267   errno = old_errno;
4268 }
4269 
4270 static int SR_initialize() {
4271   struct sigaction act;
4272   char *s;
4273 
4274   // Get signal number to use for suspend/resume
4275   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4276     int sig = ::strtol(s, 0, 10);
4277     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4278         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4279       SR_signum = sig;
4280     } else {
4281       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4282               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4283     }
4284   }
4285 
4286   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4287          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4288 
4289   sigemptyset(&SR_sigset);
4290   sigaddset(&SR_sigset, SR_signum);
4291 
4292   // Set up signal handler for suspend/resume
4293   act.sa_flags = SA_RESTART|SA_SIGINFO;
4294   act.sa_handler = (void (*)(int)) SR_handler;
4295 
4296   // SR_signum is blocked by default.
4297   // 4528190 - We also need to block pthread restart signal (32 on all
4298   // supported Linux platforms). Note that LinuxThreads need to block
4299   // this signal for all threads to work properly. So we don't have
4300   // to use hard-coded signal number when setting up the mask.
4301   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4302 
4303   if (sigaction(SR_signum, &act, 0) == -1) {
4304     return -1;
4305   }
4306 
4307   // Save signal flag
4308   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4309   return 0;
4310 }
4311 
4312 static int sr_notify(OSThread* osthread) {
4313   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4314   assert_status(status == 0, status, "pthread_kill");
4315   return status;
4316 }
4317 
4318 // "Randomly" selected value for how long we want to spin
4319 // before bailing out on suspending a thread, also how often
4320 // we send a signal to a thread we want to resume
4321 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4322 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4323 
4324 // returns true on success and false on error - really an error is fatal
4325 // but this seems the normal response to library errors
4326 static bool do_suspend(OSThread* osthread) {
4327   assert(osthread->sr.is_running(), "thread should be running");
4328   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4329 
4330   // mark as suspended and send signal
4331   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4332     // failed to switch, state wasn't running?
4333     ShouldNotReachHere();
4334     return false;
4335   }
4336 
4337   if (sr_notify(osthread) != 0) {
4338     ShouldNotReachHere();
4339   }
4340 
4341   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4342   while (true) {
4343     if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4344       break;
4345     } else {
4346       // timeout
4347       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4348       if (cancelled == os::SuspendResume::SR_RUNNING) {
4349         return false;
4350       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4351         // make sure that we consume the signal on the semaphore as well
4352         sr_semaphore.wait();
4353         break;
4354       } else {
4355         ShouldNotReachHere();
4356         return false;
4357       }
4358     }
4359   }
4360 
4361   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4362   return true;
4363 }
4364 
4365 static void do_resume(OSThread* osthread) {
4366   assert(osthread->sr.is_suspended(), "thread should be suspended");
4367   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4368 
4369   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4370     // failed to switch to WAKEUP_REQUEST
4371     ShouldNotReachHere();
4372     return;
4373   }
4374 
4375   while (true) {
4376     if (sr_notify(osthread) == 0) {
4377       if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4378         if (osthread->sr.is_running()) {
4379           return;
4380         }
4381       }
4382     } else {
4383       ShouldNotReachHere();
4384     }
4385   }
4386 
4387   guarantee(osthread->sr.is_running(), "Must be running!");
4388 }
4389 
4390 ///////////////////////////////////////////////////////////////////////////////////
4391 // signal handling (except suspend/resume)
4392 
4393 // This routine may be used by user applications as a "hook" to catch signals.
4394 // The user-defined signal handler must pass unrecognized signals to this
4395 // routine, and if it returns true (non-zero), then the signal handler must
4396 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4397 // routine will never retun false (zero), but instead will execute a VM panic
4398 // routine kill the process.
4399 //
4400 // If this routine returns false, it is OK to call it again.  This allows
4401 // the user-defined signal handler to perform checks either before or after
4402 // the VM performs its own checks.  Naturally, the user code would be making
4403 // a serious error if it tried to handle an exception (such as a null check
4404 // or breakpoint) that the VM was generating for its own correct operation.
4405 //
4406 // This routine may recognize any of the following kinds of signals:
4407 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4408 // It should be consulted by handlers for any of those signals.
4409 //
4410 // The caller of this routine must pass in the three arguments supplied
4411 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4412 // field of the structure passed to sigaction().  This routine assumes that
4413 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4414 //
4415 // Note that the VM will print warnings if it detects conflicting signal
4416 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4417 //
4418 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4419                                                  siginfo_t* siginfo,
4420                                                  void* ucontext,
4421                                                  int abort_if_unrecognized);
4422 
4423 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4424   assert(info != NULL && uc != NULL, "it must be old kernel");
4425   int orig_errno = errno;  // Preserve errno value over signal handler.
4426   JVM_handle_linux_signal(sig, info, uc, true);
4427   errno = orig_errno;
4428 }
4429 
4430 
4431 // This boolean allows users to forward their own non-matching signals
4432 // to JVM_handle_linux_signal, harmlessly.
4433 bool os::Linux::signal_handlers_are_installed = false;
4434 
4435 // For signal-chaining
4436 struct sigaction sigact[NSIG];
4437 uint64_t sigs = 0;
4438 #if (64 < NSIG-1)
4439 #error "Not all signals can be encoded in sigs. Adapt its type!"
4440 #endif
4441 bool os::Linux::libjsig_is_loaded = false;
4442 typedef struct sigaction *(*get_signal_t)(int);
4443 get_signal_t os::Linux::get_signal_action = NULL;
4444 
4445 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4446   struct sigaction *actp = NULL;
4447 
4448   if (libjsig_is_loaded) {
4449     // Retrieve the old signal handler from libjsig
4450     actp = (*get_signal_action)(sig);
4451   }
4452   if (actp == NULL) {
4453     // Retrieve the preinstalled signal handler from jvm
4454     actp = get_preinstalled_handler(sig);
4455   }
4456 
4457   return actp;
4458 }
4459 
4460 static bool call_chained_handler(struct sigaction *actp, int sig,
4461                                  siginfo_t *siginfo, void *context) {
4462   // Call the old signal handler
4463   if (actp->sa_handler == SIG_DFL) {
4464     // It's more reasonable to let jvm treat it as an unexpected exception
4465     // instead of taking the default action.
4466     return false;
4467   } else if (actp->sa_handler != SIG_IGN) {
4468     if ((actp->sa_flags & SA_NODEFER) == 0) {
4469       // automaticlly block the signal
4470       sigaddset(&(actp->sa_mask), sig);
4471     }
4472 
4473     sa_handler_t hand = NULL;
4474     sa_sigaction_t sa = NULL;
4475     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4476     // retrieve the chained handler
4477     if (siginfo_flag_set) {
4478       sa = actp->sa_sigaction;
4479     } else {
4480       hand = actp->sa_handler;
4481     }
4482 
4483     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4484       actp->sa_handler = SIG_DFL;
4485     }
4486 
4487     // try to honor the signal mask
4488     sigset_t oset;
4489     sigemptyset(&oset);
4490     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4491 
4492     // call into the chained handler
4493     if (siginfo_flag_set) {
4494       (*sa)(sig, siginfo, context);
4495     } else {
4496       (*hand)(sig);
4497     }
4498 
4499     // restore the signal mask
4500     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4501   }
4502   // Tell jvm's signal handler the signal is taken care of.
4503   return true;
4504 }
4505 
4506 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4507   bool chained = false;
4508   // signal-chaining
4509   if (UseSignalChaining) {
4510     struct sigaction *actp = get_chained_signal_action(sig);
4511     if (actp != NULL) {
4512       chained = call_chained_handler(actp, sig, siginfo, context);
4513     }
4514   }
4515   return chained;
4516 }
4517 
4518 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4519   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4520     return &sigact[sig];
4521   }
4522   return NULL;
4523 }
4524 
4525 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4526   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4527   sigact[sig] = oldAct;
4528   sigs |= (uint64_t)1 << (sig-1);
4529 }
4530 
4531 // for diagnostic
4532 int sigflags[NSIG];
4533 
4534 int os::Linux::get_our_sigflags(int sig) {
4535   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4536   return sigflags[sig];
4537 }
4538 
4539 void os::Linux::set_our_sigflags(int sig, int flags) {
4540   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4541   if (sig > 0 && sig < NSIG) {
4542     sigflags[sig] = flags;
4543   }
4544 }
4545 
4546 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4547   // Check for overwrite.
4548   struct sigaction oldAct;
4549   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4550 
4551   void* oldhand = oldAct.sa_sigaction
4552                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4553                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4554   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4555       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4556       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4557     if (AllowUserSignalHandlers || !set_installed) {
4558       // Do not overwrite; user takes responsibility to forward to us.
4559       return;
4560     } else if (UseSignalChaining) {
4561       // save the old handler in jvm
4562       save_preinstalled_handler(sig, oldAct);
4563       // libjsig also interposes the sigaction() call below and saves the
4564       // old sigaction on it own.
4565     } else {
4566       fatal("Encountered unexpected pre-existing sigaction handler "
4567             "%#lx for signal %d.", (long)oldhand, sig);
4568     }
4569   }
4570 
4571   struct sigaction sigAct;
4572   sigfillset(&(sigAct.sa_mask));
4573   sigAct.sa_handler = SIG_DFL;
4574   if (!set_installed) {
4575     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4576   } else {
4577     sigAct.sa_sigaction = signalHandler;
4578     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4579   }
4580   // Save flags, which are set by ours
4581   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4582   sigflags[sig] = sigAct.sa_flags;
4583 
4584   int ret = sigaction(sig, &sigAct, &oldAct);
4585   assert(ret == 0, "check");
4586 
4587   void* oldhand2  = oldAct.sa_sigaction
4588                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4589                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4590   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4591 }
4592 
4593 // install signal handlers for signals that HotSpot needs to
4594 // handle in order to support Java-level exception handling.
4595 
4596 void os::Linux::install_signal_handlers() {
4597   if (!signal_handlers_are_installed) {
4598     signal_handlers_are_installed = true;
4599 
4600     // signal-chaining
4601     typedef void (*signal_setting_t)();
4602     signal_setting_t begin_signal_setting = NULL;
4603     signal_setting_t end_signal_setting = NULL;
4604     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4605                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4606     if (begin_signal_setting != NULL) {
4607       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4608                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4609       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4610                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4611       libjsig_is_loaded = true;
4612       assert(UseSignalChaining, "should enable signal-chaining");
4613     }
4614     if (libjsig_is_loaded) {
4615       // Tell libjsig jvm is setting signal handlers
4616       (*begin_signal_setting)();
4617     }
4618 
4619     set_signal_handler(SIGSEGV, true);
4620     set_signal_handler(SIGPIPE, true);
4621     set_signal_handler(SIGBUS, true);
4622     set_signal_handler(SIGILL, true);
4623     set_signal_handler(SIGFPE, true);
4624 #if defined(PPC64)
4625     set_signal_handler(SIGTRAP, true);
4626 #endif
4627     set_signal_handler(SIGXFSZ, true);
4628 
4629     if (libjsig_is_loaded) {
4630       // Tell libjsig jvm finishes setting signal handlers
4631       (*end_signal_setting)();
4632     }
4633 
4634     // We don't activate signal checker if libjsig is in place, we trust ourselves
4635     // and if UserSignalHandler is installed all bets are off.
4636     // Log that signal checking is off only if -verbose:jni is specified.
4637     if (CheckJNICalls) {
4638       if (libjsig_is_loaded) {
4639         if (PrintJNIResolving) {
4640           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4641         }
4642         check_signals = false;
4643       }
4644       if (AllowUserSignalHandlers) {
4645         if (PrintJNIResolving) {
4646           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4647         }
4648         check_signals = false;
4649       }
4650     }
4651   }
4652 }
4653 
4654 // This is the fastest way to get thread cpu time on Linux.
4655 // Returns cpu time (user+sys) for any thread, not only for current.
4656 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4657 // It might work on 2.6.10+ with a special kernel/glibc patch.
4658 // For reference, please, see IEEE Std 1003.1-2004:
4659 //   http://www.unix.org/single_unix_specification
4660 
4661 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4662   struct timespec tp;
4663   int rc = os::Posix::clock_gettime(clockid, &tp);
4664   assert(rc == 0, "clock_gettime is expected to return 0 code");
4665 
4666   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4667 }
4668 
4669 void os::Linux::initialize_os_info() {
4670   assert(_os_version == 0, "OS info already initialized");
4671 
4672   struct utsname _uname;
4673 
4674   uint32_t major;
4675   uint32_t minor;
4676   uint32_t fix;
4677 
4678   int rc;
4679 
4680   // Kernel version is unknown if
4681   // verification below fails.
4682   _os_version = 0x01000000;
4683 
4684   rc = uname(&_uname);
4685   if (rc != -1) {
4686 
4687     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4688     if (rc == 3) {
4689 
4690       if (major < 256 && minor < 256 && fix < 256) {
4691         // Kernel version format is as expected,
4692         // set it overriding unknown state.
4693         _os_version = (major << 16) |
4694                       (minor << 8 ) |
4695                       (fix   << 0 ) ;
4696       }
4697     }
4698   }
4699 }
4700 
4701 uint32_t os::Linux::os_version() {
4702   assert(_os_version != 0, "not initialized");
4703   return _os_version & 0x00FFFFFF;
4704 }
4705 
4706 bool os::Linux::os_version_is_known() {
4707   assert(_os_version != 0, "not initialized");
4708   return _os_version & 0x01000000 ? false : true;
4709 }
4710 
4711 /////
4712 // glibc on Linux platform uses non-documented flag
4713 // to indicate, that some special sort of signal
4714 // trampoline is used.
4715 // We will never set this flag, and we should
4716 // ignore this flag in our diagnostic
4717 #ifdef SIGNIFICANT_SIGNAL_MASK
4718   #undef SIGNIFICANT_SIGNAL_MASK
4719 #endif
4720 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4721 
4722 static const char* get_signal_handler_name(address handler,
4723                                            char* buf, int buflen) {
4724   int offset = 0;
4725   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4726   if (found) {
4727     // skip directory names
4728     const char *p1, *p2;
4729     p1 = buf;
4730     size_t len = strlen(os::file_separator());
4731     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4732     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4733   } else {
4734     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4735   }
4736   return buf;
4737 }
4738 
4739 static void print_signal_handler(outputStream* st, int sig,
4740                                  char* buf, size_t buflen) {
4741   struct sigaction sa;
4742 
4743   sigaction(sig, NULL, &sa);
4744 
4745   // See comment for SIGNIFICANT_SIGNAL_MASK define
4746   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4747 
4748   st->print("%s: ", os::exception_name(sig, buf, buflen));
4749 
4750   address handler = (sa.sa_flags & SA_SIGINFO)
4751     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4752     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4753 
4754   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4755     st->print("SIG_DFL");
4756   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4757     st->print("SIG_IGN");
4758   } else {
4759     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4760   }
4761 
4762   st->print(", sa_mask[0]=");
4763   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4764 
4765   address rh = VMError::get_resetted_sighandler(sig);
4766   // May be, handler was resetted by VMError?
4767   if (rh != NULL) {
4768     handler = rh;
4769     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4770   }
4771 
4772   st->print(", sa_flags=");
4773   os::Posix::print_sa_flags(st, sa.sa_flags);
4774 
4775   // Check: is it our handler?
4776   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4777       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4778     // It is our signal handler
4779     // check for flags, reset system-used one!
4780     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4781       st->print(
4782                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4783                 os::Linux::get_our_sigflags(sig));
4784     }
4785   }
4786   st->cr();
4787 }
4788 
4789 
4790 #define DO_SIGNAL_CHECK(sig)                      \
4791   do {                                            \
4792     if (!sigismember(&check_signal_done, sig)) {  \
4793       os::Linux::check_signal_handler(sig);       \
4794     }                                             \
4795   } while (0)
4796 
4797 // This method is a periodic task to check for misbehaving JNI applications
4798 // under CheckJNI, we can add any periodic checks here
4799 
4800 void os::run_periodic_checks() {
4801   if (check_signals == false) return;
4802 
4803   // SEGV and BUS if overridden could potentially prevent
4804   // generation of hs*.log in the event of a crash, debugging
4805   // such a case can be very challenging, so we absolutely
4806   // check the following for a good measure:
4807   DO_SIGNAL_CHECK(SIGSEGV);
4808   DO_SIGNAL_CHECK(SIGILL);
4809   DO_SIGNAL_CHECK(SIGFPE);
4810   DO_SIGNAL_CHECK(SIGBUS);
4811   DO_SIGNAL_CHECK(SIGPIPE);
4812   DO_SIGNAL_CHECK(SIGXFSZ);
4813 #if defined(PPC64)
4814   DO_SIGNAL_CHECK(SIGTRAP);
4815 #endif
4816 
4817   // ReduceSignalUsage allows the user to override these handlers
4818   // see comments at the very top and jvm_md.h
4819   if (!ReduceSignalUsage) {
4820     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4821     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4822     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4823     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4824   }
4825 
4826   DO_SIGNAL_CHECK(SR_signum);
4827 }
4828 
4829 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4830 
4831 static os_sigaction_t os_sigaction = NULL;
4832 
4833 void os::Linux::check_signal_handler(int sig) {
4834   char buf[O_BUFLEN];
4835   address jvmHandler = NULL;
4836 
4837 
4838   struct sigaction act;
4839   if (os_sigaction == NULL) {
4840     // only trust the default sigaction, in case it has been interposed
4841     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4842     if (os_sigaction == NULL) return;
4843   }
4844 
4845   os_sigaction(sig, (struct sigaction*)NULL, &act);
4846 
4847 
4848   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4849 
4850   address thisHandler = (act.sa_flags & SA_SIGINFO)
4851     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4852     : CAST_FROM_FN_PTR(address, act.sa_handler);
4853 
4854 
4855   switch (sig) {
4856   case SIGSEGV:
4857   case SIGBUS:
4858   case SIGFPE:
4859   case SIGPIPE:
4860   case SIGILL:
4861   case SIGXFSZ:
4862     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4863     break;
4864 
4865   case SHUTDOWN1_SIGNAL:
4866   case SHUTDOWN2_SIGNAL:
4867   case SHUTDOWN3_SIGNAL:
4868   case BREAK_SIGNAL:
4869     jvmHandler = (address)user_handler();
4870     break;
4871 
4872   default:
4873     if (sig == SR_signum) {
4874       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4875     } else {
4876       return;
4877     }
4878     break;
4879   }
4880 
4881   if (thisHandler != jvmHandler) {
4882     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4883     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4884     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4885     // No need to check this sig any longer
4886     sigaddset(&check_signal_done, sig);
4887     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4888     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4889       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4890                     exception_name(sig, buf, O_BUFLEN));
4891     }
4892   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4893     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4894     tty->print("expected:");
4895     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4896     tty->cr();
4897     tty->print("  found:");
4898     os::Posix::print_sa_flags(tty, act.sa_flags);
4899     tty->cr();
4900     // No need to check this sig any longer
4901     sigaddset(&check_signal_done, sig);
4902   }
4903 
4904   // Dump all the signal
4905   if (sigismember(&check_signal_done, sig)) {
4906     print_signal_handlers(tty, buf, O_BUFLEN);
4907   }
4908 }
4909 
4910 extern void report_error(char* file_name, int line_no, char* title,
4911                          char* format, ...);
4912 
4913 // this is called _before_ most of the global arguments have been parsed
4914 void os::init(void) {
4915   char dummy;   // used to get a guess on initial stack address
4916 
4917   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4918 
4919   init_random(1234567);
4920 
4921   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4922   if (Linux::page_size() == -1) {
4923     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4924           os::strerror(errno));
4925   }
4926   init_page_sizes((size_t) Linux::page_size());
4927 
4928   Linux::initialize_system_info();
4929 
4930   Linux::initialize_os_info();
4931 
4932   // _main_thread points to the thread that created/loaded the JVM.
4933   Linux::_main_thread = pthread_self();
4934 
4935   // retrieve entry point for pthread_setname_np
4936   Linux::_pthread_setname_np =
4937     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4938 
4939   os::Posix::init();
4940 
4941   initial_time_count = javaTimeNanos();
4942 
4943   // Always warn if no monotonic clock available
4944   if (!os::Posix::supports_monotonic_clock()) {
4945     warning("No monotonic clock was available - timed services may "    \
4946             "be adversely affected if the time-of-day clock changes");
4947   }
4948 }
4949 
4950 // To install functions for atexit system call
4951 extern "C" {
4952   static void perfMemory_exit_helper() {
4953     perfMemory_exit();
4954   }
4955 }
4956 
4957 void os::pd_init_container_support() {
4958   OSContainer::init();
4959 }
4960 
4961 // this is called _after_ the global arguments have been parsed
4962 jint os::init_2(void) {
4963 
4964   // This could be set after os::Posix::init() but all platforms
4965   // have to set it the same so we have to mirror Solaris.
4966   DEBUG_ONLY(os::set_mutex_init_done();)
4967 
4968   os::Posix::init_2();
4969 
4970   Linux::fast_thread_clock_init();
4971 
4972   // initialize suspend/resume support - must do this before signal_sets_init()
4973   if (SR_initialize() != 0) {
4974     perror("SR_initialize failed");
4975     return JNI_ERR;
4976   }
4977 
4978   Linux::signal_sets_init();
4979   Linux::install_signal_handlers();
4980   // Initialize data for jdk.internal.misc.Signal
4981   if (!ReduceSignalUsage) {
4982     jdk_misc_signal_init();
4983   }
4984 
4985   // Check and sets minimum stack sizes against command line options
4986   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4987     return JNI_ERR;
4988   }
4989 
4990   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
4991   if (!suppress_primordial_thread_resolution) {
4992     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4993   }
4994 
4995 #if defined(IA32)
4996   workaround_expand_exec_shield_cs_limit();
4997 #endif
4998 
4999   Linux::libpthread_init();
5000   Linux::sched_getcpu_init();
5001   log_info(os)("HotSpot is running with %s, %s",
5002                Linux::glibc_version(), Linux::libpthread_version());
5003 
5004   if (UseNUMA) {
5005     if (!Linux::libnuma_init()) {
5006       UseNUMA = false;
5007     } else {
5008       if ((Linux::numa_max_node() < 1) || Linux::isbound_to_single_node()) {
5009         // If there's only one node (they start from 0) or if the process
5010         // is bound explicitly to a single node using membind, disable NUMA.
5011         UseNUMA = false;
5012       }
5013     }
5014 
5015     if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5016       // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5017       // we can make the adaptive lgrp chunk resizing work. If the user specified both
5018       // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5019       // and disable adaptive resizing.
5020       if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5021         warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5022                 "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5023         UseAdaptiveSizePolicy = false;
5024         UseAdaptiveNUMAChunkSizing = false;
5025       }
5026     }
5027 
5028     if (!UseNUMA && ForceNUMA) {
5029       UseNUMA = true;
5030     }
5031   }
5032 
5033   if (MaxFDLimit) {
5034     // set the number of file descriptors to max. print out error
5035     // if getrlimit/setrlimit fails but continue regardless.
5036     struct rlimit nbr_files;
5037     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5038     if (status != 0) {
5039       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5040     } else {
5041       nbr_files.rlim_cur = nbr_files.rlim_max;
5042       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5043       if (status != 0) {
5044         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5045       }
5046     }
5047   }
5048 
5049   // Initialize lock used to serialize thread creation (see os::create_thread)
5050   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5051 
5052   // at-exit methods are called in the reverse order of their registration.
5053   // atexit functions are called on return from main or as a result of a
5054   // call to exit(3C). There can be only 32 of these functions registered
5055   // and atexit() does not set errno.
5056 
5057   if (PerfAllowAtExitRegistration) {
5058     // only register atexit functions if PerfAllowAtExitRegistration is set.
5059     // atexit functions can be delayed until process exit time, which
5060     // can be problematic for embedded VM situations. Embedded VMs should
5061     // call DestroyJavaVM() to assure that VM resources are released.
5062 
5063     // note: perfMemory_exit_helper atexit function may be removed in
5064     // the future if the appropriate cleanup code can be added to the
5065     // VM_Exit VMOperation's doit method.
5066     if (atexit(perfMemory_exit_helper) != 0) {
5067       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5068     }
5069   }
5070 
5071   // initialize thread priority policy
5072   prio_init();
5073 
5074   if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
5075     set_coredump_filter(DAX_SHARED_BIT);
5076   }
5077 
5078   if (UseSharedSpaces && DumpPrivateMappingsInCore) {
5079     set_coredump_filter(FILE_BACKED_PVT_BIT);
5080   }
5081 
5082   return JNI_OK;
5083 }
5084 
5085 // Mark the polling page as unreadable
5086 void os::make_polling_page_unreadable(void) {
5087   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5088     fatal("Could not disable polling page");
5089   }
5090 }
5091 
5092 // Mark the polling page as readable
5093 void os::make_polling_page_readable(void) {
5094   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5095     fatal("Could not enable polling page");
5096   }
5097 }
5098 
5099 // older glibc versions don't have this macro (which expands to
5100 // an optimized bit-counting function) so we have to roll our own
5101 #ifndef CPU_COUNT
5102 
5103 static int _cpu_count(const cpu_set_t* cpus) {
5104   int count = 0;
5105   // only look up to the number of configured processors
5106   for (int i = 0; i < os::processor_count(); i++) {
5107     if (CPU_ISSET(i, cpus)) {
5108       count++;
5109     }
5110   }
5111   return count;
5112 }
5113 
5114 #define CPU_COUNT(cpus) _cpu_count(cpus)
5115 
5116 #endif // CPU_COUNT
5117 
5118 // Get the current number of available processors for this process.
5119 // This value can change at any time during a process's lifetime.
5120 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5121 // If it appears there may be more than 1024 processors then we do a
5122 // dynamic check - see 6515172 for details.
5123 // If anything goes wrong we fallback to returning the number of online
5124 // processors - which can be greater than the number available to the process.
5125 int os::Linux::active_processor_count() {
5126   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5127   cpu_set_t* cpus_p = &cpus;
5128   int cpus_size = sizeof(cpu_set_t);
5129 
5130   int configured_cpus = os::processor_count();  // upper bound on available cpus
5131   int cpu_count = 0;
5132 
5133 // old build platforms may not support dynamic cpu sets
5134 #ifdef CPU_ALLOC
5135 
5136   // To enable easy testing of the dynamic path on different platforms we
5137   // introduce a diagnostic flag: UseCpuAllocPath
5138   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5139     // kernel may use a mask bigger than cpu_set_t
5140     log_trace(os)("active_processor_count: using dynamic path %s"
5141                   "- configured processors: %d",
5142                   UseCpuAllocPath ? "(forced) " : "",
5143                   configured_cpus);
5144     cpus_p = CPU_ALLOC(configured_cpus);
5145     if (cpus_p != NULL) {
5146       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5147       // zero it just to be safe
5148       CPU_ZERO_S(cpus_size, cpus_p);
5149     }
5150     else {
5151        // failed to allocate so fallback to online cpus
5152        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5153        log_trace(os)("active_processor_count: "
5154                      "CPU_ALLOC failed (%s) - using "
5155                      "online processor count: %d",
5156                      os::strerror(errno), online_cpus);
5157        return online_cpus;
5158     }
5159   }
5160   else {
5161     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5162                   configured_cpus);
5163   }
5164 #else // CPU_ALLOC
5165 // these stubs won't be executed
5166 #define CPU_COUNT_S(size, cpus) -1
5167 #define CPU_FREE(cpus)
5168 
5169   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5170                 configured_cpus);
5171 #endif // CPU_ALLOC
5172 
5173   // pid 0 means the current thread - which we have to assume represents the process
5174   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5175     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5176       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5177     }
5178     else {
5179       cpu_count = CPU_COUNT(cpus_p);
5180     }
5181     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5182   }
5183   else {
5184     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5185     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5186             "which may exceed available processors", os::strerror(errno), cpu_count);
5187   }
5188 
5189   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5190     CPU_FREE(cpus_p);
5191   }
5192 
5193   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5194   return cpu_count;
5195 }
5196 
5197 // Determine the active processor count from one of
5198 // three different sources:
5199 //
5200 // 1. User option -XX:ActiveProcessorCount
5201 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5202 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5203 //
5204 // Option 1, if specified, will always override.
5205 // If the cgroup subsystem is active and configured, we
5206 // will return the min of the cgroup and option 2 results.
5207 // This is required since tools, such as numactl, that
5208 // alter cpu affinity do not update cgroup subsystem
5209 // cpuset configuration files.
5210 int os::active_processor_count() {
5211   // User has overridden the number of active processors
5212   if (ActiveProcessorCount > 0) {
5213     log_trace(os)("active_processor_count: "
5214                   "active processor count set by user : %d",
5215                   ActiveProcessorCount);
5216     return ActiveProcessorCount;
5217   }
5218 
5219   int active_cpus;
5220   if (OSContainer::is_containerized()) {
5221     active_cpus = OSContainer::active_processor_count();
5222     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5223                    active_cpus);
5224   } else {
5225     active_cpus = os::Linux::active_processor_count();
5226   }
5227 
5228   return active_cpus;
5229 }
5230 
5231 uint os::processor_id() {
5232   const int id = Linux::sched_getcpu();
5233   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5234   return (uint)id;
5235 }
5236 
5237 void os::set_native_thread_name(const char *name) {
5238   if (Linux::_pthread_setname_np) {
5239     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5240     snprintf(buf, sizeof(buf), "%s", name);
5241     buf[sizeof(buf) - 1] = '\0';
5242     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5243     // ERANGE should not happen; all other errors should just be ignored.
5244     assert(rc != ERANGE, "pthread_setname_np failed");
5245   }
5246 }
5247 
5248 bool os::distribute_processes(uint length, uint* distribution) {
5249   // Not yet implemented.
5250   return false;
5251 }
5252 
5253 bool os::bind_to_processor(uint processor_id) {
5254   // Not yet implemented.
5255   return false;
5256 }
5257 
5258 ///
5259 
5260 void os::SuspendedThreadTask::internal_do_task() {
5261   if (do_suspend(_thread->osthread())) {
5262     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5263     do_task(context);
5264     do_resume(_thread->osthread());
5265   }
5266 }
5267 
5268 ////////////////////////////////////////////////////////////////////////////////
5269 // debug support
5270 
5271 bool os::find(address addr, outputStream* st) {
5272   Dl_info dlinfo;
5273   memset(&dlinfo, 0, sizeof(dlinfo));
5274   if (dladdr(addr, &dlinfo) != 0) {
5275     st->print(PTR_FORMAT ": ", p2i(addr));
5276     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5277       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5278                 p2i(addr) - p2i(dlinfo.dli_saddr));
5279     } else if (dlinfo.dli_fbase != NULL) {
5280       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5281     } else {
5282       st->print("<absolute address>");
5283     }
5284     if (dlinfo.dli_fname != NULL) {
5285       st->print(" in %s", dlinfo.dli_fname);
5286     }
5287     if (dlinfo.dli_fbase != NULL) {
5288       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5289     }
5290     st->cr();
5291 
5292     if (Verbose) {
5293       // decode some bytes around the PC
5294       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5295       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5296       address       lowest = (address) dlinfo.dli_sname;
5297       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5298       if (begin < lowest)  begin = lowest;
5299       Dl_info dlinfo2;
5300       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5301           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5302         end = (address) dlinfo2.dli_saddr;
5303       }
5304       Disassembler::decode(begin, end, st);
5305     }
5306     return true;
5307   }
5308   return false;
5309 }
5310 
5311 ////////////////////////////////////////////////////////////////////////////////
5312 // misc
5313 
5314 // This does not do anything on Linux. This is basically a hook for being
5315 // able to use structured exception handling (thread-local exception filters)
5316 // on, e.g., Win32.
5317 void
5318 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5319                          JavaCallArguments* args, Thread* thread) {
5320   f(value, method, args, thread);
5321 }
5322 
5323 void os::print_statistics() {
5324 }
5325 
5326 bool os::message_box(const char* title, const char* message) {
5327   int i;
5328   fdStream err(defaultStream::error_fd());
5329   for (i = 0; i < 78; i++) err.print_raw("=");
5330   err.cr();
5331   err.print_raw_cr(title);
5332   for (i = 0; i < 78; i++) err.print_raw("-");
5333   err.cr();
5334   err.print_raw_cr(message);
5335   for (i = 0; i < 78; i++) err.print_raw("=");
5336   err.cr();
5337 
5338   char buf[16];
5339   // Prevent process from exiting upon "read error" without consuming all CPU
5340   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5341 
5342   return buf[0] == 'y' || buf[0] == 'Y';
5343 }
5344 
5345 // Is a (classpath) directory empty?
5346 bool os::dir_is_empty(const char* path) {
5347   DIR *dir = NULL;
5348   struct dirent *ptr;
5349 
5350   dir = opendir(path);
5351   if (dir == NULL) return true;
5352 
5353   // Scan the directory
5354   bool result = true;
5355   while (result && (ptr = readdir(dir)) != NULL) {
5356     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5357       result = false;
5358     }
5359   }
5360   closedir(dir);
5361   return result;
5362 }
5363 
5364 // This code originates from JDK's sysOpen and open64_w
5365 // from src/solaris/hpi/src/system_md.c
5366 
5367 int os::open(const char *path, int oflag, int mode) {
5368   if (strlen(path) > MAX_PATH - 1) {
5369     errno = ENAMETOOLONG;
5370     return -1;
5371   }
5372 
5373   // All file descriptors that are opened in the Java process and not
5374   // specifically destined for a subprocess should have the close-on-exec
5375   // flag set.  If we don't set it, then careless 3rd party native code
5376   // might fork and exec without closing all appropriate file descriptors
5377   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5378   // turn might:
5379   //
5380   // - cause end-of-file to fail to be detected on some file
5381   //   descriptors, resulting in mysterious hangs, or
5382   //
5383   // - might cause an fopen in the subprocess to fail on a system
5384   //   suffering from bug 1085341.
5385   //
5386   // (Yes, the default setting of the close-on-exec flag is a Unix
5387   // design flaw)
5388   //
5389   // See:
5390   // 1085341: 32-bit stdio routines should support file descriptors >255
5391   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5392   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5393   //
5394   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5395   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5396   // because it saves a system call and removes a small window where the flag
5397   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5398   // and we fall back to using FD_CLOEXEC (see below).
5399 #ifdef O_CLOEXEC
5400   oflag |= O_CLOEXEC;
5401 #endif
5402 
5403   int fd = ::open64(path, oflag, mode);
5404   if (fd == -1) return -1;
5405 
5406   //If the open succeeded, the file might still be a directory
5407   {
5408     struct stat64 buf64;
5409     int ret = ::fstat64(fd, &buf64);
5410     int st_mode = buf64.st_mode;
5411 
5412     if (ret != -1) {
5413       if ((st_mode & S_IFMT) == S_IFDIR) {
5414         errno = EISDIR;
5415         ::close(fd);
5416         return -1;
5417       }
5418     } else {
5419       ::close(fd);
5420       return -1;
5421     }
5422   }
5423 
5424 #ifdef FD_CLOEXEC
5425   // Validate that the use of the O_CLOEXEC flag on open above worked.
5426   // With recent kernels, we will perform this check exactly once.
5427   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5428   if (!O_CLOEXEC_is_known_to_work) {
5429     int flags = ::fcntl(fd, F_GETFD);
5430     if (flags != -1) {
5431       if ((flags & FD_CLOEXEC) != 0)
5432         O_CLOEXEC_is_known_to_work = 1;
5433       else
5434         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5435     }
5436   }
5437 #endif
5438 
5439   return fd;
5440 }
5441 
5442 
5443 // create binary file, rewriting existing file if required
5444 int os::create_binary_file(const char* path, bool rewrite_existing) {
5445   int oflags = O_WRONLY | O_CREAT;
5446   if (!rewrite_existing) {
5447     oflags |= O_EXCL;
5448   }
5449   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5450 }
5451 
5452 // return current position of file pointer
5453 jlong os::current_file_offset(int fd) {
5454   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5455 }
5456 
5457 // move file pointer to the specified offset
5458 jlong os::seek_to_file_offset(int fd, jlong offset) {
5459   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5460 }
5461 
5462 // This code originates from JDK's sysAvailable
5463 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5464 
5465 int os::available(int fd, jlong *bytes) {
5466   jlong cur, end;
5467   int mode;
5468   struct stat64 buf64;
5469 
5470   if (::fstat64(fd, &buf64) >= 0) {
5471     mode = buf64.st_mode;
5472     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5473       int n;
5474       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5475         *bytes = n;
5476         return 1;
5477       }
5478     }
5479   }
5480   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5481     return 0;
5482   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5483     return 0;
5484   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5485     return 0;
5486   }
5487   *bytes = end - cur;
5488   return 1;
5489 }
5490 
5491 // Map a block of memory.
5492 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5493                         char *addr, size_t bytes, bool read_only,
5494                         bool allow_exec) {
5495   int prot;
5496   int flags = MAP_PRIVATE;
5497 
5498   if (read_only) {
5499     prot = PROT_READ;
5500   } else {
5501     prot = PROT_READ | PROT_WRITE;
5502   }
5503 
5504   if (allow_exec) {
5505     prot |= PROT_EXEC;
5506   }
5507 
5508   if (addr != NULL) {
5509     flags |= MAP_FIXED;
5510   }
5511 
5512   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5513                                      fd, file_offset);
5514   if (mapped_address == MAP_FAILED) {
5515     return NULL;
5516   }
5517   return mapped_address;
5518 }
5519 
5520 
5521 // Remap a block of memory.
5522 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5523                           char *addr, size_t bytes, bool read_only,
5524                           bool allow_exec) {
5525   // same as map_memory() on this OS
5526   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5527                         allow_exec);
5528 }
5529 
5530 
5531 // Unmap a block of memory.
5532 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5533   return munmap(addr, bytes) == 0;
5534 }
5535 
5536 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5537 
5538 static jlong fast_cpu_time(Thread *thread) {
5539     clockid_t clockid;
5540     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5541                                               &clockid);
5542     if (rc == 0) {
5543       return os::Linux::fast_thread_cpu_time(clockid);
5544     } else {
5545       // It's possible to encounter a terminated native thread that failed
5546       // to detach itself from the VM - which should result in ESRCH.
5547       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5548       return -1;
5549     }
5550 }
5551 
5552 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5553 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5554 // of a thread.
5555 //
5556 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5557 // the fast estimate available on the platform.
5558 
5559 jlong os::current_thread_cpu_time() {
5560   if (os::Linux::supports_fast_thread_cpu_time()) {
5561     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5562   } else {
5563     // return user + sys since the cost is the same
5564     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5565   }
5566 }
5567 
5568 jlong os::thread_cpu_time(Thread* thread) {
5569   // consistent with what current_thread_cpu_time() returns
5570   if (os::Linux::supports_fast_thread_cpu_time()) {
5571     return fast_cpu_time(thread);
5572   } else {
5573     return slow_thread_cpu_time(thread, true /* user + sys */);
5574   }
5575 }
5576 
5577 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5578   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5579     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5580   } else {
5581     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5582   }
5583 }
5584 
5585 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5586   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5587     return fast_cpu_time(thread);
5588   } else {
5589     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5590   }
5591 }
5592 
5593 //  -1 on error.
5594 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5595   pid_t  tid = thread->osthread()->thread_id();
5596   char *s;
5597   char stat[2048];
5598   int statlen;
5599   char proc_name[64];
5600   int count;
5601   long sys_time, user_time;
5602   char cdummy;
5603   int idummy;
5604   long ldummy;
5605   FILE *fp;
5606 
5607   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5608   fp = fopen(proc_name, "r");
5609   if (fp == NULL) return -1;
5610   statlen = fread(stat, 1, 2047, fp);
5611   stat[statlen] = '\0';
5612   fclose(fp);
5613 
5614   // Skip pid and the command string. Note that we could be dealing with
5615   // weird command names, e.g. user could decide to rename java launcher
5616   // to "java 1.4.2 :)", then the stat file would look like
5617   //                1234 (java 1.4.2 :)) R ... ...
5618   // We don't really need to know the command string, just find the last
5619   // occurrence of ")" and then start parsing from there. See bug 4726580.
5620   s = strrchr(stat, ')');
5621   if (s == NULL) return -1;
5622 
5623   // Skip blank chars
5624   do { s++; } while (s && isspace(*s));
5625 
5626   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5627                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5628                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5629                  &user_time, &sys_time);
5630   if (count != 13) return -1;
5631   if (user_sys_cpu_time) {
5632     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5633   } else {
5634     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5635   }
5636 }
5637 
5638 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5639   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5640   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5641   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5642   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5643 }
5644 
5645 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5646   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5647   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5648   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5649   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5650 }
5651 
5652 bool os::is_thread_cpu_time_supported() {
5653   return true;
5654 }
5655 
5656 // System loadavg support.  Returns -1 if load average cannot be obtained.
5657 // Linux doesn't yet have a (official) notion of processor sets,
5658 // so just return the system wide load average.
5659 int os::loadavg(double loadavg[], int nelem) {
5660   return ::getloadavg(loadavg, nelem);
5661 }
5662 
5663 void os::pause() {
5664   char filename[MAX_PATH];
5665   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5666     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5667   } else {
5668     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5669   }
5670 
5671   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5672   if (fd != -1) {
5673     struct stat buf;
5674     ::close(fd);
5675     while (::stat(filename, &buf) == 0) {
5676       (void)::poll(NULL, 0, 100);
5677     }
5678   } else {
5679     jio_fprintf(stderr,
5680                 "Could not open pause file '%s', continuing immediately.\n", filename);
5681   }
5682 }
5683 
5684 extern char** environ;
5685 
5686 // Run the specified command in a separate process. Return its exit value,
5687 // or -1 on failure (e.g. can't fork a new process).
5688 // Unlike system(), this function can be called from signal handler. It
5689 // doesn't block SIGINT et al.
5690 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5691   const char * argv[4] = {"sh", "-c", cmd, NULL};
5692 
5693   pid_t pid ;
5694 
5695   if (use_vfork_if_available) {
5696     pid = vfork();
5697   } else {
5698     pid = fork();
5699   }
5700 
5701   if (pid < 0) {
5702     // fork failed
5703     return -1;
5704 
5705   } else if (pid == 0) {
5706     // child process
5707 
5708     execve("/bin/sh", (char* const*)argv, environ);
5709 
5710     // execve failed
5711     _exit(-1);
5712 
5713   } else  {
5714     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5715     // care about the actual exit code, for now.
5716 
5717     int status;
5718 
5719     // Wait for the child process to exit.  This returns immediately if
5720     // the child has already exited. */
5721     while (waitpid(pid, &status, 0) < 0) {
5722       switch (errno) {
5723       case ECHILD: return 0;
5724       case EINTR: break;
5725       default: return -1;
5726       }
5727     }
5728 
5729     if (WIFEXITED(status)) {
5730       // The child exited normally; get its exit code.
5731       return WEXITSTATUS(status);
5732     } else if (WIFSIGNALED(status)) {
5733       // The child exited because of a signal
5734       // The best value to return is 0x80 + signal number,
5735       // because that is what all Unix shells do, and because
5736       // it allows callers to distinguish between process exit and
5737       // process death by signal.
5738       return 0x80 + WTERMSIG(status);
5739     } else {
5740       // Unknown exit code; pass it through
5741       return status;
5742     }
5743   }
5744 }
5745 
5746 // Get the default path to the core file
5747 // Returns the length of the string
5748 int os::get_core_path(char* buffer, size_t bufferSize) {
5749   /*
5750    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5751    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5752    */
5753   const int core_pattern_len = 129;
5754   char core_pattern[core_pattern_len] = {0};
5755 
5756   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5757   if (core_pattern_file == -1) {
5758     return -1;
5759   }
5760 
5761   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5762   ::close(core_pattern_file);
5763   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5764     return -1;
5765   }
5766   if (core_pattern[ret-1] == '\n') {
5767     core_pattern[ret-1] = '\0';
5768   } else {
5769     core_pattern[ret] = '\0';
5770   }
5771 
5772   // Replace the %p in the core pattern with the process id. NOTE: we do this
5773   // only if the pattern doesn't start with "|", and we support only one %p in
5774   // the pattern.
5775   char *pid_pos = strstr(core_pattern, "%p");
5776   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5777   int written;
5778 
5779   if (core_pattern[0] == '/') {
5780     if (pid_pos != NULL) {
5781       *pid_pos = '\0';
5782       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5783                              current_process_id(), tail);
5784     } else {
5785       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5786     }
5787   } else {
5788     char cwd[PATH_MAX];
5789 
5790     const char* p = get_current_directory(cwd, PATH_MAX);
5791     if (p == NULL) {
5792       return -1;
5793     }
5794 
5795     if (core_pattern[0] == '|') {
5796       written = jio_snprintf(buffer, bufferSize,
5797                              "\"%s\" (or dumping to %s/core.%d)",
5798                              &core_pattern[1], p, current_process_id());
5799     } else if (pid_pos != NULL) {
5800       *pid_pos = '\0';
5801       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
5802                              current_process_id(), tail);
5803     } else {
5804       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5805     }
5806   }
5807 
5808   if (written < 0) {
5809     return -1;
5810   }
5811 
5812   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5813     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5814 
5815     if (core_uses_pid_file != -1) {
5816       char core_uses_pid = 0;
5817       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5818       ::close(core_uses_pid_file);
5819 
5820       if (core_uses_pid == '1') {
5821         jio_snprintf(buffer + written, bufferSize - written,
5822                                           ".%d", current_process_id());
5823       }
5824     }
5825   }
5826 
5827   return strlen(buffer);
5828 }
5829 
5830 bool os::start_debugging(char *buf, int buflen) {
5831   int len = (int)strlen(buf);
5832   char *p = &buf[len];
5833 
5834   jio_snprintf(p, buflen-len,
5835                "\n\n"
5836                "Do you want to debug the problem?\n\n"
5837                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5838                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5839                "Otherwise, press RETURN to abort...",
5840                os::current_process_id(), os::current_process_id(),
5841                os::current_thread_id(), os::current_thread_id());
5842 
5843   bool yes = os::message_box("Unexpected Error", buf);
5844 
5845   if (yes) {
5846     // yes, user asked VM to launch debugger
5847     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5848                  os::current_process_id(), os::current_process_id());
5849 
5850     os::fork_and_exec(buf);
5851     yes = false;
5852   }
5853   return yes;
5854 }
5855 
5856 
5857 // Java/Compiler thread:
5858 //
5859 //   Low memory addresses
5860 // P0 +------------------------+
5861 //    |                        |\  Java thread created by VM does not have glibc
5862 //    |    glibc guard page    | - guard page, attached Java thread usually has
5863 //    |                        |/  1 glibc guard page.
5864 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5865 //    |                        |\
5866 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5867 //    |                        |/
5868 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5869 //    |                        |\
5870 //    |      Normal Stack      | -
5871 //    |                        |/
5872 // P2 +------------------------+ Thread::stack_base()
5873 //
5874 // Non-Java thread:
5875 //
5876 //   Low memory addresses
5877 // P0 +------------------------+
5878 //    |                        |\
5879 //    |  glibc guard page      | - usually 1 page
5880 //    |                        |/
5881 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5882 //    |                        |\
5883 //    |      Normal Stack      | -
5884 //    |                        |/
5885 // P2 +------------------------+ Thread::stack_base()
5886 //
5887 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5888 //    returned from pthread_attr_getstack().
5889 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5890 //    of the stack size given in pthread_attr. We work around this for
5891 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5892 //
5893 #ifndef ZERO
5894 static void current_stack_region(address * bottom, size_t * size) {
5895   if (os::is_primordial_thread()) {
5896     // primordial thread needs special handling because pthread_getattr_np()
5897     // may return bogus value.
5898     *bottom = os::Linux::initial_thread_stack_bottom();
5899     *size   = os::Linux::initial_thread_stack_size();
5900   } else {
5901     pthread_attr_t attr;
5902 
5903     int rslt = pthread_getattr_np(pthread_self(), &attr);
5904 
5905     // JVM needs to know exact stack location, abort if it fails
5906     if (rslt != 0) {
5907       if (rslt == ENOMEM) {
5908         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5909       } else {
5910         fatal("pthread_getattr_np failed with error = %d", rslt);
5911       }
5912     }
5913 
5914     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5915       fatal("Cannot locate current stack attributes!");
5916     }
5917 
5918     // Work around NPTL stack guard error.
5919     size_t guard_size = 0;
5920     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5921     if (rslt != 0) {
5922       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5923     }
5924     *bottom += guard_size;
5925     *size   -= guard_size;
5926 
5927     pthread_attr_destroy(&attr);
5928 
5929   }
5930   assert(os::current_stack_pointer() >= *bottom &&
5931          os::current_stack_pointer() < *bottom + *size, "just checking");
5932 }
5933 
5934 address os::current_stack_base() {
5935   address bottom;
5936   size_t size;
5937   current_stack_region(&bottom, &size);
5938   return (bottom + size);
5939 }
5940 
5941 size_t os::current_stack_size() {
5942   // This stack size includes the usable stack and HotSpot guard pages
5943   // (for the threads that have Hotspot guard pages).
5944   address bottom;
5945   size_t size;
5946   current_stack_region(&bottom, &size);
5947   return size;
5948 }
5949 #endif
5950 
5951 static inline struct timespec get_mtime(const char* filename) {
5952   struct stat st;
5953   int ret = os::stat(filename, &st);
5954   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
5955   return st.st_mtim;
5956 }
5957 
5958 int os::compare_file_modified_times(const char* file1, const char* file2) {
5959   struct timespec filetime1 = get_mtime(file1);
5960   struct timespec filetime2 = get_mtime(file2);
5961   int diff = filetime1.tv_sec - filetime2.tv_sec;
5962   if (diff == 0) {
5963     return filetime1.tv_nsec - filetime2.tv_nsec;
5964   }
5965   return diff;
5966 }
5967 
5968 /////////////// Unit tests ///////////////
5969 
5970 #ifndef PRODUCT
5971 
5972 class TestReserveMemorySpecial : AllStatic {
5973  public:
5974   static void small_page_write(void* addr, size_t size) {
5975     size_t page_size = os::vm_page_size();
5976 
5977     char* end = (char*)addr + size;
5978     for (char* p = (char*)addr; p < end; p += page_size) {
5979       *p = 1;
5980     }
5981   }
5982 
5983   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5984     if (!UseHugeTLBFS) {
5985       return;
5986     }
5987 
5988     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5989 
5990     if (addr != NULL) {
5991       small_page_write(addr, size);
5992 
5993       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5994     }
5995   }
5996 
5997   static void test_reserve_memory_special_huge_tlbfs_only() {
5998     if (!UseHugeTLBFS) {
5999       return;
6000     }
6001 
6002     size_t lp = os::large_page_size();
6003 
6004     for (size_t size = lp; size <= lp * 10; size += lp) {
6005       test_reserve_memory_special_huge_tlbfs_only(size);
6006     }
6007   }
6008 
6009   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6010     size_t lp = os::large_page_size();
6011     size_t ag = os::vm_allocation_granularity();
6012 
6013     // sizes to test
6014     const size_t sizes[] = {
6015       lp, lp + ag, lp + lp / 2, lp * 2,
6016       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6017       lp * 10, lp * 10 + lp / 2
6018     };
6019     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6020 
6021     // For each size/alignment combination, we test three scenarios:
6022     // 1) with req_addr == NULL
6023     // 2) with a non-null req_addr at which we expect to successfully allocate
6024     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6025     //    expect the allocation to either fail or to ignore req_addr
6026 
6027     // Pre-allocate two areas; they shall be as large as the largest allocation
6028     //  and aligned to the largest alignment we will be testing.
6029     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6030     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6031       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6032       -1, 0);
6033     assert(mapping1 != MAP_FAILED, "should work");
6034 
6035     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6036       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6037       -1, 0);
6038     assert(mapping2 != MAP_FAILED, "should work");
6039 
6040     // Unmap the first mapping, but leave the second mapping intact: the first
6041     // mapping will serve as a value for a "good" req_addr (case 2). The second
6042     // mapping, still intact, as "bad" req_addr (case 3).
6043     ::munmap(mapping1, mapping_size);
6044 
6045     // Case 1
6046     for (int i = 0; i < num_sizes; i++) {
6047       const size_t size = sizes[i];
6048       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6049         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6050         if (p != NULL) {
6051           assert(is_aligned(p, alignment), "must be");
6052           small_page_write(p, size);
6053           os::Linux::release_memory_special_huge_tlbfs(p, size);
6054         }
6055       }
6056     }
6057 
6058     // Case 2
6059     for (int i = 0; i < num_sizes; i++) {
6060       const size_t size = sizes[i];
6061       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6062         char* const req_addr = align_up(mapping1, alignment);
6063         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6064         if (p != NULL) {
6065           assert(p == req_addr, "must be");
6066           small_page_write(p, size);
6067           os::Linux::release_memory_special_huge_tlbfs(p, size);
6068         }
6069       }
6070     }
6071 
6072     // Case 3
6073     for (int i = 0; i < num_sizes; i++) {
6074       const size_t size = sizes[i];
6075       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6076         char* const req_addr = align_up(mapping2, alignment);
6077         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6078         // as the area around req_addr contains already existing mappings, the API should always
6079         // return NULL (as per contract, it cannot return another address)
6080         assert(p == NULL, "must be");
6081       }
6082     }
6083 
6084     ::munmap(mapping2, mapping_size);
6085 
6086   }
6087 
6088   static void test_reserve_memory_special_huge_tlbfs() {
6089     if (!UseHugeTLBFS) {
6090       return;
6091     }
6092 
6093     test_reserve_memory_special_huge_tlbfs_only();
6094     test_reserve_memory_special_huge_tlbfs_mixed();
6095   }
6096 
6097   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6098     if (!UseSHM) {
6099       return;
6100     }
6101 
6102     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6103 
6104     if (addr != NULL) {
6105       assert(is_aligned(addr, alignment), "Check");
6106       assert(is_aligned(addr, os::large_page_size()), "Check");
6107 
6108       small_page_write(addr, size);
6109 
6110       os::Linux::release_memory_special_shm(addr, size);
6111     }
6112   }
6113 
6114   static void test_reserve_memory_special_shm() {
6115     size_t lp = os::large_page_size();
6116     size_t ag = os::vm_allocation_granularity();
6117 
6118     for (size_t size = ag; size < lp * 3; size += ag) {
6119       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6120         test_reserve_memory_special_shm(size, alignment);
6121       }
6122     }
6123   }
6124 
6125   static void test() {
6126     test_reserve_memory_special_huge_tlbfs();
6127     test_reserve_memory_special_shm();
6128   }
6129 };
6130 
6131 void TestReserveMemorySpecial_test() {
6132   TestReserveMemorySpecial::test();
6133 }
6134 
6135 #endif