1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_share_linux.hpp"
  42 #include "osContainer_linux.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/atomic.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.inline.hpp"
  50 #include "runtime/init.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/javaCalls.hpp"
  53 #include "runtime/mutexLocker.hpp"
  54 #include "runtime/objectMonitor.hpp"
  55 #include "runtime/orderAccess.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/threadSMR.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "semaphore_posix.hpp"
  66 #include "services/attachListener.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/runtimeService.hpp"
  69 #include "utilities/align.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/elfFile.hpp"
  74 #include "utilities/growableArray.hpp"
  75 #include "utilities/macros.hpp"
  76 #include "utilities/vmError.hpp"
  77 
  78 // put OS-includes here
  79 # include <sys/types.h>
  80 # include <sys/mman.h>
  81 # include <sys/stat.h>
  82 # include <sys/select.h>
  83 # include <pthread.h>
  84 # include <signal.h>
  85 # include <errno.h>
  86 # include <dlfcn.h>
  87 # include <stdio.h>
  88 # include <unistd.h>
  89 # include <sys/resource.h>
  90 # include <pthread.h>
  91 # include <sys/stat.h>
  92 # include <sys/time.h>
  93 # include <sys/times.h>
  94 # include <sys/utsname.h>
  95 # include <sys/socket.h>
  96 # include <sys/wait.h>
  97 # include <pwd.h>
  98 # include <poll.h>
  99 # include <fcntl.h>
 100 # include <string.h>
 101 # include <syscall.h>
 102 # include <sys/sysinfo.h>
 103 # include <gnu/libc-version.h>
 104 # include <sys/ipc.h>
 105 # include <sys/shm.h>
 106 # include <link.h>
 107 # include <stdint.h>
 108 # include <inttypes.h>
 109 # include <sys/ioctl.h>
 110 
 111 #ifndef _GNU_SOURCE
 112   #define _GNU_SOURCE
 113   #include <sched.h>
 114   #undef _GNU_SOURCE
 115 #else
 116   #include <sched.h>
 117 #endif
 118 
 119 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 120 // getrusage() is prepared to handle the associated failure.
 121 #ifndef RUSAGE_THREAD
 122   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 123 #endif
 124 
 125 #define MAX_PATH    (2 * K)
 126 
 127 #define MAX_SECS 100000000
 128 
 129 // for timer info max values which include all bits
 130 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 131 
 132 enum CoredumpFilterBit {
 133   FILE_BACKED_PVT_BIT = 1 << 2,
 134   LARGEPAGES_BIT = 1 << 6,
 135   DAX_SHARED_BIT = 1 << 8
 136 };
 137 
 138 ////////////////////////////////////////////////////////////////////////////////
 139 // global variables
 140 julong os::Linux::_physical_memory = 0;
 141 
 142 address   os::Linux::_initial_thread_stack_bottom = NULL;
 143 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 144 
 145 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 146 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 147 Mutex* os::Linux::_createThread_lock = NULL;
 148 pthread_t os::Linux::_main_thread;
 149 int os::Linux::_page_size = -1;
 150 bool os::Linux::_supports_fast_thread_cpu_time = false;
 151 uint32_t os::Linux::_os_version = 0;
 152 const char * os::Linux::_glibc_version = NULL;
 153 const char * os::Linux::_libpthread_version = NULL;
 154 
 155 static jlong initial_time_count=0;
 156 
 157 static int clock_tics_per_sec = 100;
 158 
 159 // If the VM might have been created on the primordial thread, we need to resolve the
 160 // primordial thread stack bounds and check if the current thread might be the
 161 // primordial thread in places. If we know that the primordial thread is never used,
 162 // such as when the VM was created by one of the standard java launchers, we can
 163 // avoid this
 164 static bool suppress_primordial_thread_resolution = false;
 165 
 166 // For diagnostics to print a message once. see run_periodic_checks
 167 static sigset_t check_signal_done;
 168 static bool check_signals = true;
 169 
 170 // Signal number used to suspend/resume a thread
 171 
 172 // do not use any signal number less than SIGSEGV, see 4355769
 173 static int SR_signum = SIGUSR2;
 174 sigset_t SR_sigset;
 175 
 176 // utility functions
 177 
 178 static int SR_initialize();
 179 
 180 julong os::available_memory() {
 181   return Linux::available_memory();
 182 }
 183 
 184 julong os::Linux::available_memory() {
 185   // values in struct sysinfo are "unsigned long"
 186   struct sysinfo si;
 187   julong avail_mem;
 188 
 189   if (OSContainer::is_containerized()) {
 190     jlong mem_limit, mem_usage;
 191     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 192       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 193                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 194     }
 195     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 196       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 197     }
 198     if (mem_limit > 0 && mem_usage > 0 ) {
 199       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 200       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 201       return avail_mem;
 202     }
 203   }
 204 
 205   sysinfo(&si);
 206   avail_mem = (julong)si.freeram * si.mem_unit;
 207   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 208   return avail_mem;
 209 }
 210 
 211 julong os::physical_memory() {
 212   jlong phys_mem = 0;
 213   if (OSContainer::is_containerized()) {
 214     jlong mem_limit;
 215     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 216       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 217       return mem_limit;
 218     }
 219     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 220                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 221   }
 222 
 223   phys_mem = Linux::physical_memory();
 224   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 225   return phys_mem;
 226 }
 227 
 228 // Return true if user is running as root.
 229 
 230 bool os::have_special_privileges() {
 231   static bool init = false;
 232   static bool privileges = false;
 233   if (!init) {
 234     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 235     init = true;
 236   }
 237   return privileges;
 238 }
 239 
 240 
 241 #ifndef SYS_gettid
 242 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 243   #ifdef __ia64__
 244     #define SYS_gettid 1105
 245   #else
 246     #ifdef __i386__
 247       #define SYS_gettid 224
 248     #else
 249       #ifdef __amd64__
 250         #define SYS_gettid 186
 251       #else
 252         #ifdef __sparc__
 253           #define SYS_gettid 143
 254         #else
 255           #error define gettid for the arch
 256         #endif
 257       #endif
 258     #endif
 259   #endif
 260 #endif
 261 
 262 
 263 // pid_t gettid()
 264 //
 265 // Returns the kernel thread id of the currently running thread. Kernel
 266 // thread id is used to access /proc.
 267 pid_t os::Linux::gettid() {
 268   int rslt = syscall(SYS_gettid);
 269   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 270   return (pid_t)rslt;
 271 }
 272 
 273 // Most versions of linux have a bug where the number of processors are
 274 // determined by looking at the /proc file system.  In a chroot environment,
 275 // the system call returns 1.
 276 static bool unsafe_chroot_detected = false;
 277 static const char *unstable_chroot_error = "/proc file system not found.\n"
 278                      "Java may be unstable running multithreaded in a chroot "
 279                      "environment on Linux when /proc filesystem is not mounted.";
 280 
 281 void os::Linux::initialize_system_info() {
 282   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 283   if (processor_count() == 1) {
 284     pid_t pid = os::Linux::gettid();
 285     char fname[32];
 286     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 287     FILE *fp = fopen(fname, "r");
 288     if (fp == NULL) {
 289       unsafe_chroot_detected = true;
 290     } else {
 291       fclose(fp);
 292     }
 293   }
 294   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 295   assert(processor_count() > 0, "linux error");
 296 }
 297 
 298 void os::init_system_properties_values() {
 299   // The next steps are taken in the product version:
 300   //
 301   // Obtain the JAVA_HOME value from the location of libjvm.so.
 302   // This library should be located at:
 303   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 304   //
 305   // If "/jre/lib/" appears at the right place in the path, then we
 306   // assume libjvm.so is installed in a JDK and we use this path.
 307   //
 308   // Otherwise exit with message: "Could not create the Java virtual machine."
 309   //
 310   // The following extra steps are taken in the debugging version:
 311   //
 312   // If "/jre/lib/" does NOT appear at the right place in the path
 313   // instead of exit check for $JAVA_HOME environment variable.
 314   //
 315   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 316   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 317   // it looks like libjvm.so is installed there
 318   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 319   //
 320   // Otherwise exit.
 321   //
 322   // Important note: if the location of libjvm.so changes this
 323   // code needs to be changed accordingly.
 324 
 325   // See ld(1):
 326   //      The linker uses the following search paths to locate required
 327   //      shared libraries:
 328   //        1: ...
 329   //        ...
 330   //        7: The default directories, normally /lib and /usr/lib.
 331 #ifndef OVERRIDE_LIBPATH
 332   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 333     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 334   #else
 335     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 336   #endif
 337 #else
 338   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 339 #endif
 340 
 341 // Base path of extensions installed on the system.
 342 #define SYS_EXT_DIR     "/usr/java/packages"
 343 #define EXTENSIONS_DIR  "/lib/ext"
 344 
 345   // Buffer that fits several sprintfs.
 346   // Note that the space for the colon and the trailing null are provided
 347   // by the nulls included by the sizeof operator.
 348   const size_t bufsize =
 349     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 350          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 351   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 352 
 353   // sysclasspath, java_home, dll_dir
 354   {
 355     char *pslash;
 356     os::jvm_path(buf, bufsize);
 357 
 358     // Found the full path to libjvm.so.
 359     // Now cut the path to <java_home>/jre if we can.
 360     pslash = strrchr(buf, '/');
 361     if (pslash != NULL) {
 362       *pslash = '\0';            // Get rid of /libjvm.so.
 363     }
 364     pslash = strrchr(buf, '/');
 365     if (pslash != NULL) {
 366       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 367     }
 368     Arguments::set_dll_dir(buf);
 369 
 370     if (pslash != NULL) {
 371       pslash = strrchr(buf, '/');
 372       if (pslash != NULL) {
 373         *pslash = '\0';        // Get rid of /lib.
 374       }
 375     }
 376     Arguments::set_java_home(buf);
 377     if (!set_boot_path('/', ':')) {
 378       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 379     }
 380   }
 381 
 382   // Where to look for native libraries.
 383   //
 384   // Note: Due to a legacy implementation, most of the library path
 385   // is set in the launcher. This was to accomodate linking restrictions
 386   // on legacy Linux implementations (which are no longer supported).
 387   // Eventually, all the library path setting will be done here.
 388   //
 389   // However, to prevent the proliferation of improperly built native
 390   // libraries, the new path component /usr/java/packages is added here.
 391   // Eventually, all the library path setting will be done here.
 392   {
 393     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 394     // should always exist (until the legacy problem cited above is
 395     // addressed).
 396     const char *v = ::getenv("LD_LIBRARY_PATH");
 397     const char *v_colon = ":";
 398     if (v == NULL) { v = ""; v_colon = ""; }
 399     // That's +1 for the colon and +1 for the trailing '\0'.
 400     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 401                                                      strlen(v) + 1 +
 402                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 403                                                      mtInternal);
 404     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 405     Arguments::set_library_path(ld_library_path);
 406     FREE_C_HEAP_ARRAY(char, ld_library_path);
 407   }
 408 
 409   // Extensions directories.
 410   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 411   Arguments::set_ext_dirs(buf);
 412 
 413   FREE_C_HEAP_ARRAY(char, buf);
 414 
 415 #undef DEFAULT_LIBPATH
 416 #undef SYS_EXT_DIR
 417 #undef EXTENSIONS_DIR
 418 }
 419 
 420 ////////////////////////////////////////////////////////////////////////////////
 421 // breakpoint support
 422 
 423 void os::breakpoint() {
 424   BREAKPOINT;
 425 }
 426 
 427 extern "C" void breakpoint() {
 428   // use debugger to set breakpoint here
 429 }
 430 
 431 ////////////////////////////////////////////////////////////////////////////////
 432 // signal support
 433 
 434 debug_only(static bool signal_sets_initialized = false);
 435 static sigset_t unblocked_sigs, vm_sigs;
 436 
 437 void os::Linux::signal_sets_init() {
 438   // Should also have an assertion stating we are still single-threaded.
 439   assert(!signal_sets_initialized, "Already initialized");
 440   // Fill in signals that are necessarily unblocked for all threads in
 441   // the VM. Currently, we unblock the following signals:
 442   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 443   //                         by -Xrs (=ReduceSignalUsage));
 444   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 445   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 446   // the dispositions or masks wrt these signals.
 447   // Programs embedding the VM that want to use the above signals for their
 448   // own purposes must, at this time, use the "-Xrs" option to prevent
 449   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 450   // (See bug 4345157, and other related bugs).
 451   // In reality, though, unblocking these signals is really a nop, since
 452   // these signals are not blocked by default.
 453   sigemptyset(&unblocked_sigs);
 454   sigaddset(&unblocked_sigs, SIGILL);
 455   sigaddset(&unblocked_sigs, SIGSEGV);
 456   sigaddset(&unblocked_sigs, SIGBUS);
 457   sigaddset(&unblocked_sigs, SIGFPE);
 458 #if defined(PPC64)
 459   sigaddset(&unblocked_sigs, SIGTRAP);
 460 #endif
 461   sigaddset(&unblocked_sigs, SR_signum);
 462 
 463   if (!ReduceSignalUsage) {
 464     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 465       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 466     }
 467     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 468       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 469     }
 470     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 471       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 472     }
 473   }
 474   // Fill in signals that are blocked by all but the VM thread.
 475   sigemptyset(&vm_sigs);
 476   if (!ReduceSignalUsage) {
 477     sigaddset(&vm_sigs, BREAK_SIGNAL);
 478   }
 479   debug_only(signal_sets_initialized = true);
 480 
 481 }
 482 
 483 // These are signals that are unblocked while a thread is running Java.
 484 // (For some reason, they get blocked by default.)
 485 sigset_t* os::Linux::unblocked_signals() {
 486   assert(signal_sets_initialized, "Not initialized");
 487   return &unblocked_sigs;
 488 }
 489 
 490 // These are the signals that are blocked while a (non-VM) thread is
 491 // running Java. Only the VM thread handles these signals.
 492 sigset_t* os::Linux::vm_signals() {
 493   assert(signal_sets_initialized, "Not initialized");
 494   return &vm_sigs;
 495 }
 496 
 497 void os::Linux::hotspot_sigmask(Thread* thread) {
 498 
 499   //Save caller's signal mask before setting VM signal mask
 500   sigset_t caller_sigmask;
 501   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 502 
 503   OSThread* osthread = thread->osthread();
 504   osthread->set_caller_sigmask(caller_sigmask);
 505 
 506   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 507 
 508   if (!ReduceSignalUsage) {
 509     if (thread->is_VM_thread()) {
 510       // Only the VM thread handles BREAK_SIGNAL ...
 511       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 512     } else {
 513       // ... all other threads block BREAK_SIGNAL
 514       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 515     }
 516   }
 517 }
 518 
 519 //////////////////////////////////////////////////////////////////////////////
 520 // detecting pthread library
 521 
 522 void os::Linux::libpthread_init() {
 523   // Save glibc and pthread version strings.
 524 #if !defined(_CS_GNU_LIBC_VERSION) || \
 525     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 526   #error "glibc too old (< 2.3.2)"
 527 #endif
 528 
 529   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 530   assert(n > 0, "cannot retrieve glibc version");
 531   char *str = (char *)malloc(n, mtInternal);
 532   confstr(_CS_GNU_LIBC_VERSION, str, n);
 533   os::Linux::set_glibc_version(str);
 534 
 535   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 536   assert(n > 0, "cannot retrieve pthread version");
 537   str = (char *)malloc(n, mtInternal);
 538   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 539   os::Linux::set_libpthread_version(str);
 540 }
 541 
 542 /////////////////////////////////////////////////////////////////////////////
 543 // thread stack expansion
 544 
 545 // os::Linux::manually_expand_stack() takes care of expanding the thread
 546 // stack. Note that this is normally not needed: pthread stacks allocate
 547 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 548 // committed. Therefore it is not necessary to expand the stack manually.
 549 //
 550 // Manually expanding the stack was historically needed on LinuxThreads
 551 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 552 // it is kept to deal with very rare corner cases:
 553 //
 554 // For one, user may run the VM on an own implementation of threads
 555 // whose stacks are - like the old LinuxThreads - implemented using
 556 // mmap(MAP_GROWSDOWN).
 557 //
 558 // Also, this coding may be needed if the VM is running on the primordial
 559 // thread. Normally we avoid running on the primordial thread; however,
 560 // user may still invoke the VM on the primordial thread.
 561 //
 562 // The following historical comment describes the details about running
 563 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 564 
 565 
 566 // Force Linux kernel to expand current thread stack. If "bottom" is close
 567 // to the stack guard, caller should block all signals.
 568 //
 569 // MAP_GROWSDOWN:
 570 //   A special mmap() flag that is used to implement thread stacks. It tells
 571 //   kernel that the memory region should extend downwards when needed. This
 572 //   allows early versions of LinuxThreads to only mmap the first few pages
 573 //   when creating a new thread. Linux kernel will automatically expand thread
 574 //   stack as needed (on page faults).
 575 //
 576 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 577 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 578 //   region, it's hard to tell if the fault is due to a legitimate stack
 579 //   access or because of reading/writing non-exist memory (e.g. buffer
 580 //   overrun). As a rule, if the fault happens below current stack pointer,
 581 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 582 //   application (see Linux kernel fault.c).
 583 //
 584 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 585 //   stack overflow detection.
 586 //
 587 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 588 //   not use MAP_GROWSDOWN.
 589 //
 590 // To get around the problem and allow stack banging on Linux, we need to
 591 // manually expand thread stack after receiving the SIGSEGV.
 592 //
 593 // There are two ways to expand thread stack to address "bottom", we used
 594 // both of them in JVM before 1.5:
 595 //   1. adjust stack pointer first so that it is below "bottom", and then
 596 //      touch "bottom"
 597 //   2. mmap() the page in question
 598 //
 599 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 600 // if current sp is already near the lower end of page 101, and we need to
 601 // call mmap() to map page 100, it is possible that part of the mmap() frame
 602 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 603 // That will destroy the mmap() frame and cause VM to crash.
 604 //
 605 // The following code works by adjusting sp first, then accessing the "bottom"
 606 // page to force a page fault. Linux kernel will then automatically expand the
 607 // stack mapping.
 608 //
 609 // _expand_stack_to() assumes its frame size is less than page size, which
 610 // should always be true if the function is not inlined.
 611 
 612 static void NOINLINE _expand_stack_to(address bottom) {
 613   address sp;
 614   size_t size;
 615   volatile char *p;
 616 
 617   // Adjust bottom to point to the largest address within the same page, it
 618   // gives us a one-page buffer if alloca() allocates slightly more memory.
 619   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 620   bottom += os::Linux::page_size() - 1;
 621 
 622   // sp might be slightly above current stack pointer; if that's the case, we
 623   // will alloca() a little more space than necessary, which is OK. Don't use
 624   // os::current_stack_pointer(), as its result can be slightly below current
 625   // stack pointer, causing us to not alloca enough to reach "bottom".
 626   sp = (address)&sp;
 627 
 628   if (sp > bottom) {
 629     size = sp - bottom;
 630     p = (volatile char *)alloca(size);
 631     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 632     p[0] = '\0';
 633   }
 634 }
 635 
 636 void os::Linux::expand_stack_to(address bottom) {
 637   _expand_stack_to(bottom);
 638 }
 639 
 640 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 641   assert(t!=NULL, "just checking");
 642   assert(t->osthread()->expanding_stack(), "expand should be set");
 643   assert(t->stack_base() != NULL, "stack_base was not initialized");
 644 
 645   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 646     sigset_t mask_all, old_sigset;
 647     sigfillset(&mask_all);
 648     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 649     _expand_stack_to(addr);
 650     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 651     return true;
 652   }
 653   return false;
 654 }
 655 
 656 //////////////////////////////////////////////////////////////////////////////
 657 // create new thread
 658 
 659 // Thread start routine for all newly created threads
 660 static void *thread_native_entry(Thread *thread) {
 661 
 662   thread->record_stack_base_and_size();
 663 
 664   // Try to randomize the cache line index of hot stack frames.
 665   // This helps when threads of the same stack traces evict each other's
 666   // cache lines. The threads can be either from the same JVM instance, or
 667   // from different JVM instances. The benefit is especially true for
 668   // processors with hyperthreading technology.
 669   static int counter = 0;
 670   int pid = os::current_process_id();
 671   alloca(((pid ^ counter++) & 7) * 128);
 672 
 673   thread->initialize_thread_current();
 674 
 675   OSThread* osthread = thread->osthread();
 676   Monitor* sync = osthread->startThread_lock();
 677 
 678   osthread->set_thread_id(os::current_thread_id());
 679 
 680   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 681     os::current_thread_id(), (uintx) pthread_self());
 682 
 683   if (UseNUMA) {
 684     int lgrp_id = os::numa_get_group_id();
 685     if (lgrp_id != -1) {
 686       thread->set_lgrp_id(lgrp_id);
 687     }
 688   }
 689   // initialize signal mask for this thread
 690   os::Linux::hotspot_sigmask(thread);
 691 
 692   // initialize floating point control register
 693   os::Linux::init_thread_fpu_state();
 694 
 695   // handshaking with parent thread
 696   {
 697     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 698 
 699     // notify parent thread
 700     osthread->set_state(INITIALIZED);
 701     sync->notify_all();
 702 
 703     // wait until os::start_thread()
 704     while (osthread->get_state() == INITIALIZED) {
 705       sync->wait(Mutex::_no_safepoint_check_flag);
 706     }
 707   }
 708 
 709   // call one more level start routine
 710   thread->call_run();
 711 
 712   // Note: at this point the thread object may already have deleted itself.
 713   // Prevent dereferencing it from here on out.
 714   thread = NULL;
 715 
 716   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 717     os::current_thread_id(), (uintx) pthread_self());
 718 
 719   return 0;
 720 }
 721 
 722 bool os::create_thread(Thread* thread, ThreadType thr_type,
 723                        size_t req_stack_size) {
 724   assert(thread->osthread() == NULL, "caller responsible");
 725 
 726   // Allocate the OSThread object
 727   OSThread* osthread = new OSThread(NULL, NULL);
 728   if (osthread == NULL) {
 729     return false;
 730   }
 731 
 732   // set the correct thread state
 733   osthread->set_thread_type(thr_type);
 734 
 735   // Initial state is ALLOCATED but not INITIALIZED
 736   osthread->set_state(ALLOCATED);
 737 
 738   thread->set_osthread(osthread);
 739 
 740   // init thread attributes
 741   pthread_attr_t attr;
 742   pthread_attr_init(&attr);
 743   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 744 
 745   // Calculate stack size if it's not specified by caller.
 746   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 747   // In the Linux NPTL pthread implementation the guard size mechanism
 748   // is not implemented properly. The posix standard requires adding
 749   // the size of the guard pages to the stack size, instead Linux
 750   // takes the space out of 'stacksize'. Thus we adapt the requested
 751   // stack_size by the size of the guard pages to mimick proper
 752   // behaviour. However, be careful not to end up with a size
 753   // of zero due to overflow. Don't add the guard page in that case.
 754   size_t guard_size = os::Linux::default_guard_size(thr_type);
 755   if (stack_size <= SIZE_MAX - guard_size) {
 756     stack_size += guard_size;
 757   }
 758   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 759 
 760   int status = pthread_attr_setstacksize(&attr, stack_size);
 761   assert_status(status == 0, status, "pthread_attr_setstacksize");
 762 
 763   // Configure glibc guard page.
 764   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 765 
 766   ThreadState state;
 767 
 768   {
 769     pthread_t tid;
 770     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 771 
 772     char buf[64];
 773     if (ret == 0) {
 774       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 775         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 776     } else {
 777       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 778         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 779     }
 780 
 781     pthread_attr_destroy(&attr);
 782 
 783     if (ret != 0) {
 784       // Need to clean up stuff we've allocated so far
 785       thread->set_osthread(NULL);
 786       delete osthread;
 787       return false;
 788     }
 789 
 790     // Store pthread info into the OSThread
 791     osthread->set_pthread_id(tid);
 792 
 793     // Wait until child thread is either initialized or aborted
 794     {
 795       Monitor* sync_with_child = osthread->startThread_lock();
 796       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 797       while ((state = osthread->get_state()) == ALLOCATED) {
 798         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 799       }
 800     }
 801   }
 802 
 803   // Aborted due to thread limit being reached
 804   if (state == ZOMBIE) {
 805     thread->set_osthread(NULL);
 806     delete osthread;
 807     return false;
 808   }
 809 
 810   // The thread is returned suspended (in state INITIALIZED),
 811   // and is started higher up in the call chain
 812   assert(state == INITIALIZED, "race condition");
 813   return true;
 814 }
 815 
 816 /////////////////////////////////////////////////////////////////////////////
 817 // attach existing thread
 818 
 819 // bootstrap the main thread
 820 bool os::create_main_thread(JavaThread* thread) {
 821   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 822   return create_attached_thread(thread);
 823 }
 824 
 825 bool os::create_attached_thread(JavaThread* thread) {
 826 #ifdef ASSERT
 827   thread->verify_not_published();
 828 #endif
 829 
 830   // Allocate the OSThread object
 831   OSThread* osthread = new OSThread(NULL, NULL);
 832 
 833   if (osthread == NULL) {
 834     return false;
 835   }
 836 
 837   // Store pthread info into the OSThread
 838   osthread->set_thread_id(os::Linux::gettid());
 839   osthread->set_pthread_id(::pthread_self());
 840 
 841   // initialize floating point control register
 842   os::Linux::init_thread_fpu_state();
 843 
 844   // Initial thread state is RUNNABLE
 845   osthread->set_state(RUNNABLE);
 846 
 847   thread->set_osthread(osthread);
 848 
 849   if (UseNUMA) {
 850     int lgrp_id = os::numa_get_group_id();
 851     if (lgrp_id != -1) {
 852       thread->set_lgrp_id(lgrp_id);
 853     }
 854   }
 855 
 856   if (os::is_primordial_thread()) {
 857     // If current thread is primordial thread, its stack is mapped on demand,
 858     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 859     // the entire stack region to avoid SEGV in stack banging.
 860     // It is also useful to get around the heap-stack-gap problem on SuSE
 861     // kernel (see 4821821 for details). We first expand stack to the top
 862     // of yellow zone, then enable stack yellow zone (order is significant,
 863     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 864     // is no gap between the last two virtual memory regions.
 865 
 866     JavaThread *jt = (JavaThread *)thread;
 867     address addr = jt->stack_reserved_zone_base();
 868     assert(addr != NULL, "initialization problem?");
 869     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 870 
 871     osthread->set_expanding_stack();
 872     os::Linux::manually_expand_stack(jt, addr);
 873     osthread->clear_expanding_stack();
 874   }
 875 
 876   // initialize signal mask for this thread
 877   // and save the caller's signal mask
 878   os::Linux::hotspot_sigmask(thread);
 879 
 880   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 881     os::current_thread_id(), (uintx) pthread_self());
 882 
 883   return true;
 884 }
 885 
 886 void os::pd_start_thread(Thread* thread) {
 887   OSThread * osthread = thread->osthread();
 888   assert(osthread->get_state() != INITIALIZED, "just checking");
 889   Monitor* sync_with_child = osthread->startThread_lock();
 890   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 891   sync_with_child->notify();
 892 }
 893 
 894 // Free Linux resources related to the OSThread
 895 void os::free_thread(OSThread* osthread) {
 896   assert(osthread != NULL, "osthread not set");
 897 
 898   // We are told to free resources of the argument thread,
 899   // but we can only really operate on the current thread.
 900   assert(Thread::current()->osthread() == osthread,
 901          "os::free_thread but not current thread");
 902 
 903 #ifdef ASSERT
 904   sigset_t current;
 905   sigemptyset(&current);
 906   pthread_sigmask(SIG_SETMASK, NULL, &current);
 907   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 908 #endif
 909 
 910   // Restore caller's signal mask
 911   sigset_t sigmask = osthread->caller_sigmask();
 912   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 913 
 914   delete osthread;
 915 }
 916 
 917 //////////////////////////////////////////////////////////////////////////////
 918 // primordial thread
 919 
 920 // Check if current thread is the primordial thread, similar to Solaris thr_main.
 921 bool os::is_primordial_thread(void) {
 922   if (suppress_primordial_thread_resolution) {
 923     return false;
 924   }
 925   char dummy;
 926   // If called before init complete, thread stack bottom will be null.
 927   // Can be called if fatal error occurs before initialization.
 928   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
 929   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
 930          os::Linux::initial_thread_stack_size()   != 0,
 931          "os::init did not locate primordial thread's stack region");
 932   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
 933       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
 934                         os::Linux::initial_thread_stack_size()) {
 935     return true;
 936   } else {
 937     return false;
 938   }
 939 }
 940 
 941 // Find the virtual memory area that contains addr
 942 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 943   FILE *fp = fopen("/proc/self/maps", "r");
 944   if (fp) {
 945     address low, high;
 946     while (!feof(fp)) {
 947       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 948         if (low <= addr && addr < high) {
 949           if (vma_low)  *vma_low  = low;
 950           if (vma_high) *vma_high = high;
 951           fclose(fp);
 952           return true;
 953         }
 954       }
 955       for (;;) {
 956         int ch = fgetc(fp);
 957         if (ch == EOF || ch == (int)'\n') break;
 958       }
 959     }
 960     fclose(fp);
 961   }
 962   return false;
 963 }
 964 
 965 // Locate primordial thread stack. This special handling of primordial thread stack
 966 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 967 // bogus value for the primordial process thread. While the launcher has created
 968 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 969 // JNI invocation API from a primordial thread.
 970 void os::Linux::capture_initial_stack(size_t max_size) {
 971 
 972   // max_size is either 0 (which means accept OS default for thread stacks) or
 973   // a user-specified value known to be at least the minimum needed. If we
 974   // are actually on the primordial thread we can make it appear that we have a
 975   // smaller max_size stack by inserting the guard pages at that location. But we
 976   // cannot do anything to emulate a larger stack than what has been provided by
 977   // the OS or threading library. In fact if we try to use a stack greater than
 978   // what is set by rlimit then we will crash the hosting process.
 979 
 980   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 981   // If this is "unlimited" then it will be a huge value.
 982   struct rlimit rlim;
 983   getrlimit(RLIMIT_STACK, &rlim);
 984   size_t stack_size = rlim.rlim_cur;
 985 
 986   // 6308388: a bug in ld.so will relocate its own .data section to the
 987   //   lower end of primordial stack; reduce ulimit -s value a little bit
 988   //   so we won't install guard page on ld.so's data section.
 989   //   But ensure we don't underflow the stack size - allow 1 page spare
 990   if (stack_size >= (size_t)(3 * page_size())) {
 991     stack_size -= 2 * page_size();
 992   }
 993 
 994   // Try to figure out where the stack base (top) is. This is harder.
 995   //
 996   // When an application is started, glibc saves the initial stack pointer in
 997   // a global variable "__libc_stack_end", which is then used by system
 998   // libraries. __libc_stack_end should be pretty close to stack top. The
 999   // variable is available since the very early days. However, because it is
1000   // a private interface, it could disappear in the future.
1001   //
1002   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1003   // to __libc_stack_end, it is very close to stack top, but isn't the real
1004   // stack top. Note that /proc may not exist if VM is running as a chroot
1005   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1006   // /proc/<pid>/stat could change in the future (though unlikely).
1007   //
1008   // We try __libc_stack_end first. If that doesn't work, look for
1009   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1010   // as a hint, which should work well in most cases.
1011 
1012   uintptr_t stack_start;
1013 
1014   // try __libc_stack_end first
1015   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1016   if (p && *p) {
1017     stack_start = *p;
1018   } else {
1019     // see if we can get the start_stack field from /proc/self/stat
1020     FILE *fp;
1021     int pid;
1022     char state;
1023     int ppid;
1024     int pgrp;
1025     int session;
1026     int nr;
1027     int tpgrp;
1028     unsigned long flags;
1029     unsigned long minflt;
1030     unsigned long cminflt;
1031     unsigned long majflt;
1032     unsigned long cmajflt;
1033     unsigned long utime;
1034     unsigned long stime;
1035     long cutime;
1036     long cstime;
1037     long prio;
1038     long nice;
1039     long junk;
1040     long it_real;
1041     uintptr_t start;
1042     uintptr_t vsize;
1043     intptr_t rss;
1044     uintptr_t rsslim;
1045     uintptr_t scodes;
1046     uintptr_t ecode;
1047     int i;
1048 
1049     // Figure what the primordial thread stack base is. Code is inspired
1050     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1051     // followed by command name surrounded by parentheses, state, etc.
1052     char stat[2048];
1053     int statlen;
1054 
1055     fp = fopen("/proc/self/stat", "r");
1056     if (fp) {
1057       statlen = fread(stat, 1, 2047, fp);
1058       stat[statlen] = '\0';
1059       fclose(fp);
1060 
1061       // Skip pid and the command string. Note that we could be dealing with
1062       // weird command names, e.g. user could decide to rename java launcher
1063       // to "java 1.4.2 :)", then the stat file would look like
1064       //                1234 (java 1.4.2 :)) R ... ...
1065       // We don't really need to know the command string, just find the last
1066       // occurrence of ")" and then start parsing from there. See bug 4726580.
1067       char * s = strrchr(stat, ')');
1068 
1069       i = 0;
1070       if (s) {
1071         // Skip blank chars
1072         do { s++; } while (s && isspace(*s));
1073 
1074 #define _UFM UINTX_FORMAT
1075 #define _DFM INTX_FORMAT
1076 
1077         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1078         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1079         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1080                    &state,          // 3  %c
1081                    &ppid,           // 4  %d
1082                    &pgrp,           // 5  %d
1083                    &session,        // 6  %d
1084                    &nr,             // 7  %d
1085                    &tpgrp,          // 8  %d
1086                    &flags,          // 9  %lu
1087                    &minflt,         // 10 %lu
1088                    &cminflt,        // 11 %lu
1089                    &majflt,         // 12 %lu
1090                    &cmajflt,        // 13 %lu
1091                    &utime,          // 14 %lu
1092                    &stime,          // 15 %lu
1093                    &cutime,         // 16 %ld
1094                    &cstime,         // 17 %ld
1095                    &prio,           // 18 %ld
1096                    &nice,           // 19 %ld
1097                    &junk,           // 20 %ld
1098                    &it_real,        // 21 %ld
1099                    &start,          // 22 UINTX_FORMAT
1100                    &vsize,          // 23 UINTX_FORMAT
1101                    &rss,            // 24 INTX_FORMAT
1102                    &rsslim,         // 25 UINTX_FORMAT
1103                    &scodes,         // 26 UINTX_FORMAT
1104                    &ecode,          // 27 UINTX_FORMAT
1105                    &stack_start);   // 28 UINTX_FORMAT
1106       }
1107 
1108 #undef _UFM
1109 #undef _DFM
1110 
1111       if (i != 28 - 2) {
1112         assert(false, "Bad conversion from /proc/self/stat");
1113         // product mode - assume we are the primordial thread, good luck in the
1114         // embedded case.
1115         warning("Can't detect primordial thread stack location - bad conversion");
1116         stack_start = (uintptr_t) &rlim;
1117       }
1118     } else {
1119       // For some reason we can't open /proc/self/stat (for example, running on
1120       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1121       // most cases, so don't abort:
1122       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1123       stack_start = (uintptr_t) &rlim;
1124     }
1125   }
1126 
1127   // Now we have a pointer (stack_start) very close to the stack top, the
1128   // next thing to do is to figure out the exact location of stack top. We
1129   // can find out the virtual memory area that contains stack_start by
1130   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1131   // and its upper limit is the real stack top. (again, this would fail if
1132   // running inside chroot, because /proc may not exist.)
1133 
1134   uintptr_t stack_top;
1135   address low, high;
1136   if (find_vma((address)stack_start, &low, &high)) {
1137     // success, "high" is the true stack top. (ignore "low", because initial
1138     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1139     stack_top = (uintptr_t)high;
1140   } else {
1141     // failed, likely because /proc/self/maps does not exist
1142     warning("Can't detect primordial thread stack location - find_vma failed");
1143     // best effort: stack_start is normally within a few pages below the real
1144     // stack top, use it as stack top, and reduce stack size so we won't put
1145     // guard page outside stack.
1146     stack_top = stack_start;
1147     stack_size -= 16 * page_size();
1148   }
1149 
1150   // stack_top could be partially down the page so align it
1151   stack_top = align_up(stack_top, page_size());
1152 
1153   // Allowed stack value is minimum of max_size and what we derived from rlimit
1154   if (max_size > 0) {
1155     _initial_thread_stack_size = MIN2(max_size, stack_size);
1156   } else {
1157     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1158     // clamp it at 8MB as we do on Solaris
1159     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1160   }
1161   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1162   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1163 
1164   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1165 
1166   if (log_is_enabled(Info, os, thread)) {
1167     // See if we seem to be on primordial process thread
1168     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1169                       uintptr_t(&rlim) < stack_top;
1170 
1171     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1172                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1173                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1174                          stack_top, intptr_t(_initial_thread_stack_bottom));
1175   }
1176 }
1177 
1178 ////////////////////////////////////////////////////////////////////////////////
1179 // time support
1180 
1181 #ifndef SUPPORTS_CLOCK_MONOTONIC
1182 #error "Build platform doesn't support clock_gettime and related functionality"
1183 #endif
1184 
1185 // Time since start-up in seconds to a fine granularity.
1186 // Used by VMSelfDestructTimer and the MemProfiler.
1187 double os::elapsedTime() {
1188 
1189   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1190 }
1191 
1192 jlong os::elapsed_counter() {
1193   return javaTimeNanos() - initial_time_count;
1194 }
1195 
1196 jlong os::elapsed_frequency() {
1197   return NANOSECS_PER_SEC; // nanosecond resolution
1198 }
1199 
1200 bool os::supports_vtime() { return true; }
1201 bool os::enable_vtime()   { return false; }
1202 bool os::vtime_enabled()  { return false; }
1203 
1204 double os::elapsedVTime() {
1205   struct rusage usage;
1206   int retval = getrusage(RUSAGE_THREAD, &usage);
1207   if (retval == 0) {
1208     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1209   } else {
1210     // better than nothing, but not much
1211     return elapsedTime();
1212   }
1213 }
1214 
1215 jlong os::javaTimeMillis() {
1216   timeval time;
1217   int status = gettimeofday(&time, NULL);
1218   assert(status != -1, "linux error");
1219   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1220 }
1221 
1222 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1223   timeval time;
1224   int status = gettimeofday(&time, NULL);
1225   assert(status != -1, "linux error");
1226   seconds = jlong(time.tv_sec);
1227   nanos = jlong(time.tv_usec) * 1000;
1228 }
1229 
1230 void os::Linux::fast_thread_clock_init() {
1231   if (!UseLinuxPosixThreadCPUClocks) {
1232     return;
1233   }
1234   clockid_t clockid;
1235   struct timespec tp;
1236   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1237       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1238 
1239   // Switch to using fast clocks for thread cpu time if
1240   // the clock_getres() returns 0 error code.
1241   // Note, that some kernels may support the current thread
1242   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1243   // returned by the pthread_getcpuclockid().
1244   // If the fast Posix clocks are supported then the clock_getres()
1245   // must return at least tp.tv_sec == 0 which means a resolution
1246   // better than 1 sec. This is extra check for reliability.
1247 
1248   if (pthread_getcpuclockid_func &&
1249       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1250       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1251     _supports_fast_thread_cpu_time = true;
1252     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1253   }
1254 }
1255 
1256 jlong os::javaTimeNanos() {
1257   if (os::supports_monotonic_clock()) {
1258     struct timespec tp;
1259     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1260     assert(status == 0, "gettime error");
1261     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1262     return result;
1263   } else {
1264     timeval time;
1265     int status = gettimeofday(&time, NULL);
1266     assert(status != -1, "linux error");
1267     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1268     return 1000 * usecs;
1269   }
1270 }
1271 
1272 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1273   if (os::supports_monotonic_clock()) {
1274     info_ptr->max_value = ALL_64_BITS;
1275 
1276     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1277     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1278     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1279   } else {
1280     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1281     info_ptr->max_value = ALL_64_BITS;
1282 
1283     // gettimeofday is a real time clock so it skips
1284     info_ptr->may_skip_backward = true;
1285     info_ptr->may_skip_forward = true;
1286   }
1287 
1288   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1289 }
1290 
1291 // Return the real, user, and system times in seconds from an
1292 // arbitrary fixed point in the past.
1293 bool os::getTimesSecs(double* process_real_time,
1294                       double* process_user_time,
1295                       double* process_system_time) {
1296   struct tms ticks;
1297   clock_t real_ticks = times(&ticks);
1298 
1299   if (real_ticks == (clock_t) (-1)) {
1300     return false;
1301   } else {
1302     double ticks_per_second = (double) clock_tics_per_sec;
1303     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1304     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1305     *process_real_time = ((double) real_ticks) / ticks_per_second;
1306 
1307     return true;
1308   }
1309 }
1310 
1311 
1312 char * os::local_time_string(char *buf, size_t buflen) {
1313   struct tm t;
1314   time_t long_time;
1315   time(&long_time);
1316   localtime_r(&long_time, &t);
1317   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1318                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1319                t.tm_hour, t.tm_min, t.tm_sec);
1320   return buf;
1321 }
1322 
1323 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1324   return localtime_r(clock, res);
1325 }
1326 
1327 ////////////////////////////////////////////////////////////////////////////////
1328 // runtime exit support
1329 
1330 // Note: os::shutdown() might be called very early during initialization, or
1331 // called from signal handler. Before adding something to os::shutdown(), make
1332 // sure it is async-safe and can handle partially initialized VM.
1333 void os::shutdown() {
1334 
1335   // allow PerfMemory to attempt cleanup of any persistent resources
1336   perfMemory_exit();
1337 
1338   // needs to remove object in file system
1339   AttachListener::abort();
1340 
1341   // flush buffered output, finish log files
1342   ostream_abort();
1343 
1344   // Check for abort hook
1345   abort_hook_t abort_hook = Arguments::abort_hook();
1346   if (abort_hook != NULL) {
1347     abort_hook();
1348   }
1349 
1350 }
1351 
1352 // Note: os::abort() might be called very early during initialization, or
1353 // called from signal handler. Before adding something to os::abort(), make
1354 // sure it is async-safe and can handle partially initialized VM.
1355 void os::abort(bool dump_core, void* siginfo, const void* context) {
1356   os::shutdown();
1357   if (dump_core) {
1358     if (UseSharedSpaces && DumpPrivateMappingsInCore) {
1359       ClassLoader::close_jrt_image();
1360     }
1361 #ifndef PRODUCT
1362     fdStream out(defaultStream::output_fd());
1363     out.print_raw("Current thread is ");
1364     char buf[16];
1365     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1366     out.print_raw_cr(buf);
1367     out.print_raw_cr("Dumping core ...");
1368 #endif
1369     ::abort(); // dump core
1370   }
1371 
1372   ::exit(1);
1373 }
1374 
1375 // Die immediately, no exit hook, no abort hook, no cleanup.
1376 void os::die() {
1377   ::abort();
1378 }
1379 
1380 // thread_id is kernel thread id (similar to Solaris LWP id)
1381 intx os::current_thread_id() { return os::Linux::gettid(); }
1382 int os::current_process_id() {
1383   return ::getpid();
1384 }
1385 
1386 // DLL functions
1387 
1388 const char* os::dll_file_extension() { return ".so"; }
1389 
1390 // This must be hard coded because it's the system's temporary
1391 // directory not the java application's temp directory, ala java.io.tmpdir.
1392 const char* os::get_temp_directory() { return "/tmp"; }
1393 
1394 static bool file_exists(const char* filename) {
1395   struct stat statbuf;
1396   if (filename == NULL || strlen(filename) == 0) {
1397     return false;
1398   }
1399   return os::stat(filename, &statbuf) == 0;
1400 }
1401 
1402 // check if addr is inside libjvm.so
1403 bool os::address_is_in_vm(address addr) {
1404   static address libjvm_base_addr;
1405   Dl_info dlinfo;
1406 
1407   if (libjvm_base_addr == NULL) {
1408     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1409       libjvm_base_addr = (address)dlinfo.dli_fbase;
1410     }
1411     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1412   }
1413 
1414   if (dladdr((void *)addr, &dlinfo) != 0) {
1415     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1416   }
1417 
1418   return false;
1419 }
1420 
1421 bool os::dll_address_to_function_name(address addr, char *buf,
1422                                       int buflen, int *offset,
1423                                       bool demangle) {
1424   // buf is not optional, but offset is optional
1425   assert(buf != NULL, "sanity check");
1426 
1427   Dl_info dlinfo;
1428 
1429   if (dladdr((void*)addr, &dlinfo) != 0) {
1430     // see if we have a matching symbol
1431     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1432       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1433         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1434       }
1435       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1436       return true;
1437     }
1438     // no matching symbol so try for just file info
1439     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1440       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1441                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1442         return true;
1443       }
1444     }
1445   }
1446 
1447   buf[0] = '\0';
1448   if (offset != NULL) *offset = -1;
1449   return false;
1450 }
1451 
1452 struct _address_to_library_name {
1453   address addr;          // input : memory address
1454   size_t  buflen;        //         size of fname
1455   char*   fname;         // output: library name
1456   address base;          //         library base addr
1457 };
1458 
1459 static int address_to_library_name_callback(struct dl_phdr_info *info,
1460                                             size_t size, void *data) {
1461   int i;
1462   bool found = false;
1463   address libbase = NULL;
1464   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1465 
1466   // iterate through all loadable segments
1467   for (i = 0; i < info->dlpi_phnum; i++) {
1468     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1469     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1470       // base address of a library is the lowest address of its loaded
1471       // segments.
1472       if (libbase == NULL || libbase > segbase) {
1473         libbase = segbase;
1474       }
1475       // see if 'addr' is within current segment
1476       if (segbase <= d->addr &&
1477           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1478         found = true;
1479       }
1480     }
1481   }
1482 
1483   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1484   // so dll_address_to_library_name() can fall through to use dladdr() which
1485   // can figure out executable name from argv[0].
1486   if (found && info->dlpi_name && info->dlpi_name[0]) {
1487     d->base = libbase;
1488     if (d->fname) {
1489       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1490     }
1491     return 1;
1492   }
1493   return 0;
1494 }
1495 
1496 bool os::dll_address_to_library_name(address addr, char* buf,
1497                                      int buflen, int* offset) {
1498   // buf is not optional, but offset is optional
1499   assert(buf != NULL, "sanity check");
1500 
1501   Dl_info dlinfo;
1502   struct _address_to_library_name data;
1503 
1504   // There is a bug in old glibc dladdr() implementation that it could resolve
1505   // to wrong library name if the .so file has a base address != NULL. Here
1506   // we iterate through the program headers of all loaded libraries to find
1507   // out which library 'addr' really belongs to. This workaround can be
1508   // removed once the minimum requirement for glibc is moved to 2.3.x.
1509   data.addr = addr;
1510   data.fname = buf;
1511   data.buflen = buflen;
1512   data.base = NULL;
1513   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1514 
1515   if (rslt) {
1516     // buf already contains library name
1517     if (offset) *offset = addr - data.base;
1518     return true;
1519   }
1520   if (dladdr((void*)addr, &dlinfo) != 0) {
1521     if (dlinfo.dli_fname != NULL) {
1522       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1523     }
1524     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1525       *offset = addr - (address)dlinfo.dli_fbase;
1526     }
1527     return true;
1528   }
1529 
1530   buf[0] = '\0';
1531   if (offset) *offset = -1;
1532   return false;
1533 }
1534 
1535 // Loads .dll/.so and
1536 // in case of error it checks if .dll/.so was built for the
1537 // same architecture as Hotspot is running on
1538 
1539 
1540 // Remember the stack's state. The Linux dynamic linker will change
1541 // the stack to 'executable' at most once, so we must safepoint only once.
1542 bool os::Linux::_stack_is_executable = false;
1543 
1544 // VM operation that loads a library.  This is necessary if stack protection
1545 // of the Java stacks can be lost during loading the library.  If we
1546 // do not stop the Java threads, they can stack overflow before the stacks
1547 // are protected again.
1548 class VM_LinuxDllLoad: public VM_Operation {
1549  private:
1550   const char *_filename;
1551   char *_ebuf;
1552   int _ebuflen;
1553   void *_lib;
1554  public:
1555   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1556     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1557   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1558   void doit() {
1559     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1560     os::Linux::_stack_is_executable = true;
1561   }
1562   void* loaded_library() { return _lib; }
1563 };
1564 
1565 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1566   void * result = NULL;
1567   bool load_attempted = false;
1568 
1569   // Check whether the library to load might change execution rights
1570   // of the stack. If they are changed, the protection of the stack
1571   // guard pages will be lost. We need a safepoint to fix this.
1572   //
1573   // See Linux man page execstack(8) for more info.
1574   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1575     if (!ElfFile::specifies_noexecstack(filename)) {
1576       if (!is_init_completed()) {
1577         os::Linux::_stack_is_executable = true;
1578         // This is OK - No Java threads have been created yet, and hence no
1579         // stack guard pages to fix.
1580         //
1581         // Dynamic loader will make all stacks executable after
1582         // this function returns, and will not do that again.
1583         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1584       } else {
1585         warning("You have loaded library %s which might have disabled stack guard. "
1586                 "The VM will try to fix the stack guard now.\n"
1587                 "It's highly recommended that you fix the library with "
1588                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1589                 filename);
1590 
1591         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1592         JavaThread *jt = JavaThread::current();
1593         if (jt->thread_state() != _thread_in_native) {
1594           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1595           // that requires ExecStack. Cannot enter safe point. Let's give up.
1596           warning("Unable to fix stack guard. Giving up.");
1597         } else {
1598           if (!LoadExecStackDllInVMThread) {
1599             // This is for the case where the DLL has an static
1600             // constructor function that executes JNI code. We cannot
1601             // load such DLLs in the VMThread.
1602             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1603           }
1604 
1605           ThreadInVMfromNative tiv(jt);
1606           debug_only(VMNativeEntryWrapper vew;)
1607 
1608           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1609           VMThread::execute(&op);
1610           if (LoadExecStackDllInVMThread) {
1611             result = op.loaded_library();
1612           }
1613           load_attempted = true;
1614         }
1615       }
1616     }
1617   }
1618 
1619   if (!load_attempted) {
1620     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1621   }
1622 
1623   if (result != NULL) {
1624     // Successful loading
1625     return result;
1626   }
1627 
1628   Elf32_Ehdr elf_head;
1629   int diag_msg_max_length=ebuflen-strlen(ebuf);
1630   char* diag_msg_buf=ebuf+strlen(ebuf);
1631 
1632   if (diag_msg_max_length==0) {
1633     // No more space in ebuf for additional diagnostics message
1634     return NULL;
1635   }
1636 
1637 
1638   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1639 
1640   if (file_descriptor < 0) {
1641     // Can't open library, report dlerror() message
1642     return NULL;
1643   }
1644 
1645   bool failed_to_read_elf_head=
1646     (sizeof(elf_head)!=
1647      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1648 
1649   ::close(file_descriptor);
1650   if (failed_to_read_elf_head) {
1651     // file i/o error - report dlerror() msg
1652     return NULL;
1653   }
1654 
1655   typedef struct {
1656     Elf32_Half    code;         // Actual value as defined in elf.h
1657     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1658     unsigned char elf_class;    // 32 or 64 bit
1659     unsigned char endianess;    // MSB or LSB
1660     char*         name;         // String representation
1661   } arch_t;
1662 
1663 #ifndef EM_486
1664   #define EM_486          6               /* Intel 80486 */
1665 #endif
1666 #ifndef EM_AARCH64
1667   #define EM_AARCH64    183               /* ARM AARCH64 */
1668 #endif
1669 
1670   static const arch_t arch_array[]={
1671     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1672     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1673     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1674     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1675     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1676     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1677     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1678     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1679 #if defined(VM_LITTLE_ENDIAN)
1680     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1681     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1682 #else
1683     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1684     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1685 #endif
1686     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1687     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1688     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1689     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1690     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1691     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1692     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1693     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1694   };
1695 
1696 #if  (defined IA32)
1697   static  Elf32_Half running_arch_code=EM_386;
1698 #elif   (defined AMD64) || (defined X32)
1699   static  Elf32_Half running_arch_code=EM_X86_64;
1700 #elif  (defined IA64)
1701   static  Elf32_Half running_arch_code=EM_IA_64;
1702 #elif  (defined __sparc) && (defined _LP64)
1703   static  Elf32_Half running_arch_code=EM_SPARCV9;
1704 #elif  (defined __sparc) && (!defined _LP64)
1705   static  Elf32_Half running_arch_code=EM_SPARC;
1706 #elif  (defined __powerpc64__)
1707   static  Elf32_Half running_arch_code=EM_PPC64;
1708 #elif  (defined __powerpc__)
1709   static  Elf32_Half running_arch_code=EM_PPC;
1710 #elif  (defined AARCH64)
1711   static  Elf32_Half running_arch_code=EM_AARCH64;
1712 #elif  (defined ARM)
1713   static  Elf32_Half running_arch_code=EM_ARM;
1714 #elif  (defined S390)
1715   static  Elf32_Half running_arch_code=EM_S390;
1716 #elif  (defined ALPHA)
1717   static  Elf32_Half running_arch_code=EM_ALPHA;
1718 #elif  (defined MIPSEL)
1719   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1720 #elif  (defined PARISC)
1721   static  Elf32_Half running_arch_code=EM_PARISC;
1722 #elif  (defined MIPS)
1723   static  Elf32_Half running_arch_code=EM_MIPS;
1724 #elif  (defined M68K)
1725   static  Elf32_Half running_arch_code=EM_68K;
1726 #elif  (defined SH)
1727   static  Elf32_Half running_arch_code=EM_SH;
1728 #else
1729     #error Method os::dll_load requires that one of following is defined:\
1730         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1731 #endif
1732 
1733   // Identify compatability class for VM's architecture and library's architecture
1734   // Obtain string descriptions for architectures
1735 
1736   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1737   int running_arch_index=-1;
1738 
1739   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1740     if (running_arch_code == arch_array[i].code) {
1741       running_arch_index    = i;
1742     }
1743     if (lib_arch.code == arch_array[i].code) {
1744       lib_arch.compat_class = arch_array[i].compat_class;
1745       lib_arch.name         = arch_array[i].name;
1746     }
1747   }
1748 
1749   assert(running_arch_index != -1,
1750          "Didn't find running architecture code (running_arch_code) in arch_array");
1751   if (running_arch_index == -1) {
1752     // Even though running architecture detection failed
1753     // we may still continue with reporting dlerror() message
1754     return NULL;
1755   }
1756 
1757   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1758     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1759     return NULL;
1760   }
1761 
1762 #ifndef S390
1763   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1764     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1765     return NULL;
1766   }
1767 #endif // !S390
1768 
1769   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1770     if (lib_arch.name!=NULL) {
1771       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1772                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1773                  lib_arch.name, arch_array[running_arch_index].name);
1774     } else {
1775       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1776                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1777                  lib_arch.code,
1778                  arch_array[running_arch_index].name);
1779     }
1780   }
1781 
1782   return NULL;
1783 }
1784 
1785 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1786                                 int ebuflen) {
1787   void * result = ::dlopen(filename, RTLD_LAZY);
1788   if (result == NULL) {
1789     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1790     ebuf[ebuflen-1] = '\0';
1791   }
1792   return result;
1793 }
1794 
1795 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1796                                        int ebuflen) {
1797   void * result = NULL;
1798   if (LoadExecStackDllInVMThread) {
1799     result = dlopen_helper(filename, ebuf, ebuflen);
1800   }
1801 
1802   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1803   // library that requires an executable stack, or which does not have this
1804   // stack attribute set, dlopen changes the stack attribute to executable. The
1805   // read protection of the guard pages gets lost.
1806   //
1807   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1808   // may have been queued at the same time.
1809 
1810   if (!_stack_is_executable) {
1811     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1812       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1813           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1814         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1815           warning("Attempt to reguard stack yellow zone failed.");
1816         }
1817       }
1818     }
1819   }
1820 
1821   return result;
1822 }
1823 
1824 void* os::dll_lookup(void* handle, const char* name) {
1825   void* res = dlsym(handle, name);
1826   return res;
1827 }
1828 
1829 void* os::get_default_process_handle() {
1830   return (void*)::dlopen(NULL, RTLD_LAZY);
1831 }
1832 
1833 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
1834   int fd = ::open(filename, O_RDONLY);
1835   if (fd == -1) {
1836     return false;
1837   }
1838 
1839   if (hdr != NULL) {
1840     st->print_cr("%s", hdr);
1841   }
1842 
1843   char buf[33];
1844   int bytes;
1845   buf[32] = '\0';
1846   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1847     st->print_raw(buf, bytes);
1848   }
1849 
1850   ::close(fd);
1851 
1852   return true;
1853 }
1854 
1855 void os::print_dll_info(outputStream *st) {
1856   st->print_cr("Dynamic libraries:");
1857 
1858   char fname[32];
1859   pid_t pid = os::Linux::gettid();
1860 
1861   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1862 
1863   if (!_print_ascii_file(fname, st)) {
1864     st->print("Can not get library information for pid = %d\n", pid);
1865   }
1866 }
1867 
1868 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1869   FILE *procmapsFile = NULL;
1870 
1871   // Open the procfs maps file for the current process
1872   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1873     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1874     char line[PATH_MAX + 100];
1875 
1876     // Read line by line from 'file'
1877     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1878       u8 base, top, offset, inode;
1879       char permissions[5];
1880       char device[6];
1881       char name[PATH_MAX + 1];
1882 
1883       // Parse fields from line
1884       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1885              &base, &top, permissions, &offset, device, &inode, name);
1886 
1887       // Filter by device id '00:00' so that we only get file system mapped files.
1888       if (strcmp(device, "00:00") != 0) {
1889 
1890         // Call callback with the fields of interest
1891         if(callback(name, (address)base, (address)top, param)) {
1892           // Oops abort, callback aborted
1893           fclose(procmapsFile);
1894           return 1;
1895         }
1896       }
1897     }
1898     fclose(procmapsFile);
1899   }
1900   return 0;
1901 }
1902 
1903 void os::print_os_info_brief(outputStream* st) {
1904   os::Linux::print_distro_info(st);
1905 
1906   os::Posix::print_uname_info(st);
1907 
1908   os::Linux::print_libversion_info(st);
1909 
1910 }
1911 
1912 void os::print_os_info(outputStream* st) {
1913   st->print("OS:");
1914 
1915   os::Linux::print_distro_info(st);
1916 
1917   os::Posix::print_uname_info(st);
1918 
1919   // Print warning if unsafe chroot environment detected
1920   if (unsafe_chroot_detected) {
1921     st->print("WARNING!! ");
1922     st->print_cr("%s", unstable_chroot_error);
1923   }
1924 
1925   os::Linux::print_libversion_info(st);
1926 
1927   os::Posix::print_rlimit_info(st);
1928 
1929   os::Posix::print_load_average(st);
1930 
1931   os::Linux::print_full_memory_info(st);
1932 
1933   os::Linux::print_proc_sys_info(st);
1934 
1935   os::Linux::print_ld_preload_file(st);
1936 
1937   os::Linux::print_container_info(st);
1938 }
1939 
1940 // Try to identify popular distros.
1941 // Most Linux distributions have a /etc/XXX-release file, which contains
1942 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1943 // file that also contains the OS version string. Some have more than one
1944 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1945 // /etc/redhat-release.), so the order is important.
1946 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1947 // their own specific XXX-release file as well as a redhat-release file.
1948 // Because of this the XXX-release file needs to be searched for before the
1949 // redhat-release file.
1950 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
1951 // search for redhat-release / SuSE-release needs to be before lsb-release.
1952 // Since the lsb-release file is the new standard it needs to be searched
1953 // before the older style release files.
1954 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
1955 // next to last resort.  The os-release file is a new standard that contains
1956 // distribution information and the system-release file seems to be an old
1957 // standard that has been replaced by the lsb-release and os-release files.
1958 // Searching for the debian_version file is the last resort.  It contains
1959 // an informative string like "6.0.6" or "wheezy/sid". Because of this
1960 // "Debian " is printed before the contents of the debian_version file.
1961 
1962 const char* distro_files[] = {
1963   "/etc/oracle-release",
1964   "/etc/mandriva-release",
1965   "/etc/mandrake-release",
1966   "/etc/sun-release",
1967   "/etc/redhat-release",
1968   "/etc/SuSE-release",
1969   "/etc/lsb-release",
1970   "/etc/turbolinux-release",
1971   "/etc/gentoo-release",
1972   "/etc/ltib-release",
1973   "/etc/angstrom-version",
1974   "/etc/system-release",
1975   "/etc/os-release",
1976   NULL };
1977 
1978 void os::Linux::print_distro_info(outputStream* st) {
1979   for (int i = 0;; i++) {
1980     const char* file = distro_files[i];
1981     if (file == NULL) {
1982       break;  // done
1983     }
1984     // If file prints, we found it.
1985     if (_print_ascii_file(file, st)) {
1986       return;
1987     }
1988   }
1989 
1990   if (file_exists("/etc/debian_version")) {
1991     st->print("Debian ");
1992     _print_ascii_file("/etc/debian_version", st);
1993   } else {
1994     st->print("Linux");
1995   }
1996   st->cr();
1997 }
1998 
1999 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2000   char buf[256];
2001   while (fgets(buf, sizeof(buf), fp)) {
2002     // Edit out extra stuff in expected format
2003     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2004       char* ptr = strstr(buf, "\"");  // the name is in quotes
2005       if (ptr != NULL) {
2006         ptr++; // go beyond first quote
2007         char* nl = strchr(ptr, '\"');
2008         if (nl != NULL) *nl = '\0';
2009         strncpy(distro, ptr, length);
2010       } else {
2011         ptr = strstr(buf, "=");
2012         ptr++; // go beyond equals then
2013         char* nl = strchr(ptr, '\n');
2014         if (nl != NULL) *nl = '\0';
2015         strncpy(distro, ptr, length);
2016       }
2017       return;
2018     } else if (get_first_line) {
2019       char* nl = strchr(buf, '\n');
2020       if (nl != NULL) *nl = '\0';
2021       strncpy(distro, buf, length);
2022       return;
2023     }
2024   }
2025   // print last line and close
2026   char* nl = strchr(buf, '\n');
2027   if (nl != NULL) *nl = '\0';
2028   strncpy(distro, buf, length);
2029 }
2030 
2031 static void parse_os_info(char* distro, size_t length, const char* file) {
2032   FILE* fp = fopen(file, "r");
2033   if (fp != NULL) {
2034     // if suse format, print out first line
2035     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2036     parse_os_info_helper(fp, distro, length, get_first_line);
2037     fclose(fp);
2038   }
2039 }
2040 
2041 void os::get_summary_os_info(char* buf, size_t buflen) {
2042   for (int i = 0;; i++) {
2043     const char* file = distro_files[i];
2044     if (file == NULL) {
2045       break; // ran out of distro_files
2046     }
2047     if (file_exists(file)) {
2048       parse_os_info(buf, buflen, file);
2049       return;
2050     }
2051   }
2052   // special case for debian
2053   if (file_exists("/etc/debian_version")) {
2054     strncpy(buf, "Debian ", buflen);
2055     if (buflen > 7) {
2056       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2057     }
2058   } else {
2059     strncpy(buf, "Linux", buflen);
2060   }
2061 }
2062 
2063 void os::Linux::print_libversion_info(outputStream* st) {
2064   // libc, pthread
2065   st->print("libc:");
2066   st->print("%s ", os::Linux::glibc_version());
2067   st->print("%s ", os::Linux::libpthread_version());
2068   st->cr();
2069 }
2070 
2071 void os::Linux::print_proc_sys_info(outputStream* st) {
2072   st->cr();
2073   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2074   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2075   st->cr();
2076   st->cr();
2077 
2078   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2079   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2080   st->cr();
2081   st->cr();
2082 
2083   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2084   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2085   st->cr();
2086   st->cr();
2087 }
2088 
2089 void os::Linux::print_full_memory_info(outputStream* st) {
2090   st->print("\n/proc/meminfo:\n");
2091   _print_ascii_file("/proc/meminfo", st);
2092   st->cr();
2093 }
2094 
2095 void os::Linux::print_ld_preload_file(outputStream* st) {
2096   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2097   st->cr();
2098 }
2099 
2100 void os::Linux::print_container_info(outputStream* st) {
2101   if (!OSContainer::is_containerized()) {
2102     return;
2103   }
2104 
2105   st->print("container (cgroup) information:\n");
2106 
2107   const char *p_ct = OSContainer::container_type();
2108   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2109 
2110   char *p = OSContainer::cpu_cpuset_cpus();
2111   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2112   free(p);
2113 
2114   p = OSContainer::cpu_cpuset_memory_nodes();
2115   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2116   free(p);
2117 
2118   int i = OSContainer::active_processor_count();
2119   if (i > 0) {
2120     st->print("active_processor_count: %d\n", i);
2121   } else {
2122     st->print("active_processor_count: failed\n");
2123   }
2124 
2125   i = OSContainer::cpu_quota();
2126   st->print("cpu_quota: %d\n", i);
2127 
2128   i = OSContainer::cpu_period();
2129   st->print("cpu_period: %d\n", i);
2130 
2131   i = OSContainer::cpu_shares();
2132   st->print("cpu_shares: %d\n", i);
2133 
2134   jlong j = OSContainer::memory_limit_in_bytes();
2135   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2136 
2137   j = OSContainer::memory_and_swap_limit_in_bytes();
2138   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2139 
2140   j = OSContainer::memory_soft_limit_in_bytes();
2141   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2142 
2143   j = OSContainer::OSContainer::memory_usage_in_bytes();
2144   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2145 
2146   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2147   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2148   st->cr();
2149 }
2150 
2151 void os::print_memory_info(outputStream* st) {
2152 
2153   st->print("Memory:");
2154   st->print(" %dk page", os::vm_page_size()>>10);
2155 
2156   // values in struct sysinfo are "unsigned long"
2157   struct sysinfo si;
2158   sysinfo(&si);
2159 
2160   st->print(", physical " UINT64_FORMAT "k",
2161             os::physical_memory() >> 10);
2162   st->print("(" UINT64_FORMAT "k free)",
2163             os::available_memory() >> 10);
2164   st->print(", swap " UINT64_FORMAT "k",
2165             ((jlong)si.totalswap * si.mem_unit) >> 10);
2166   st->print("(" UINT64_FORMAT "k free)",
2167             ((jlong)si.freeswap * si.mem_unit) >> 10);
2168   st->cr();
2169 }
2170 
2171 // Print the first "model name" line and the first "flags" line
2172 // that we find and nothing more. We assume "model name" comes
2173 // before "flags" so if we find a second "model name", then the
2174 // "flags" field is considered missing.
2175 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2176 #if defined(IA32) || defined(AMD64)
2177   // Other platforms have less repetitive cpuinfo files
2178   FILE *fp = fopen("/proc/cpuinfo", "r");
2179   if (fp) {
2180     while (!feof(fp)) {
2181       if (fgets(buf, buflen, fp)) {
2182         // Assume model name comes before flags
2183         bool model_name_printed = false;
2184         if (strstr(buf, "model name") != NULL) {
2185           if (!model_name_printed) {
2186             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2187             st->print_raw(buf);
2188             model_name_printed = true;
2189           } else {
2190             // model name printed but not flags?  Odd, just return
2191             fclose(fp);
2192             return true;
2193           }
2194         }
2195         // print the flags line too
2196         if (strstr(buf, "flags") != NULL) {
2197           st->print_raw(buf);
2198           fclose(fp);
2199           return true;
2200         }
2201       }
2202     }
2203     fclose(fp);
2204   }
2205 #endif // x86 platforms
2206   return false;
2207 }
2208 
2209 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2210   // Only print the model name if the platform provides this as a summary
2211   if (!print_model_name_and_flags(st, buf, buflen)) {
2212     st->print("\n/proc/cpuinfo:\n");
2213     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2214       st->print_cr("  <Not Available>");
2215     }
2216   }
2217 }
2218 
2219 #if defined(AMD64) || defined(IA32) || defined(X32)
2220 const char* search_string = "model name";
2221 #elif defined(M68K)
2222 const char* search_string = "CPU";
2223 #elif defined(PPC64)
2224 const char* search_string = "cpu";
2225 #elif defined(S390)
2226 const char* search_string = "processor";
2227 #elif defined(SPARC)
2228 const char* search_string = "cpu";
2229 #else
2230 const char* search_string = "Processor";
2231 #endif
2232 
2233 // Parses the cpuinfo file for string representing the model name.
2234 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2235   FILE* fp = fopen("/proc/cpuinfo", "r");
2236   if (fp != NULL) {
2237     while (!feof(fp)) {
2238       char buf[256];
2239       if (fgets(buf, sizeof(buf), fp)) {
2240         char* start = strstr(buf, search_string);
2241         if (start != NULL) {
2242           char *ptr = start + strlen(search_string);
2243           char *end = buf + strlen(buf);
2244           while (ptr != end) {
2245              // skip whitespace and colon for the rest of the name.
2246              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2247                break;
2248              }
2249              ptr++;
2250           }
2251           if (ptr != end) {
2252             // reasonable string, get rid of newline and keep the rest
2253             char* nl = strchr(buf, '\n');
2254             if (nl != NULL) *nl = '\0';
2255             strncpy(cpuinfo, ptr, length);
2256             fclose(fp);
2257             return;
2258           }
2259         }
2260       }
2261     }
2262     fclose(fp);
2263   }
2264   // cpuinfo not found or parsing failed, just print generic string.  The entire
2265   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2266 #if   defined(AARCH64)
2267   strncpy(cpuinfo, "AArch64", length);
2268 #elif defined(AMD64)
2269   strncpy(cpuinfo, "x86_64", length);
2270 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2271   strncpy(cpuinfo, "ARM", length);
2272 #elif defined(IA32)
2273   strncpy(cpuinfo, "x86_32", length);
2274 #elif defined(IA64)
2275   strncpy(cpuinfo, "IA64", length);
2276 #elif defined(PPC)
2277   strncpy(cpuinfo, "PPC64", length);
2278 #elif defined(S390)
2279   strncpy(cpuinfo, "S390", length);
2280 #elif defined(SPARC)
2281   strncpy(cpuinfo, "sparcv9", length);
2282 #elif defined(ZERO_LIBARCH)
2283   strncpy(cpuinfo, ZERO_LIBARCH, length);
2284 #else
2285   strncpy(cpuinfo, "unknown", length);
2286 #endif
2287 }
2288 
2289 static void print_signal_handler(outputStream* st, int sig,
2290                                  char* buf, size_t buflen);
2291 
2292 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2293   st->print_cr("Signal Handlers:");
2294   print_signal_handler(st, SIGSEGV, buf, buflen);
2295   print_signal_handler(st, SIGBUS , buf, buflen);
2296   print_signal_handler(st, SIGFPE , buf, buflen);
2297   print_signal_handler(st, SIGPIPE, buf, buflen);
2298   print_signal_handler(st, SIGXFSZ, buf, buflen);
2299   print_signal_handler(st, SIGILL , buf, buflen);
2300   print_signal_handler(st, SR_signum, buf, buflen);
2301   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2302   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2303   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2304   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2305 #if defined(PPC64)
2306   print_signal_handler(st, SIGTRAP, buf, buflen);
2307 #endif
2308 }
2309 
2310 static char saved_jvm_path[MAXPATHLEN] = {0};
2311 
2312 // Find the full path to the current module, libjvm.so
2313 void os::jvm_path(char *buf, jint buflen) {
2314   // Error checking.
2315   if (buflen < MAXPATHLEN) {
2316     assert(false, "must use a large-enough buffer");
2317     buf[0] = '\0';
2318     return;
2319   }
2320   // Lazy resolve the path to current module.
2321   if (saved_jvm_path[0] != 0) {
2322     strcpy(buf, saved_jvm_path);
2323     return;
2324   }
2325 
2326   char dli_fname[MAXPATHLEN];
2327   bool ret = dll_address_to_library_name(
2328                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2329                                          dli_fname, sizeof(dli_fname), NULL);
2330   assert(ret, "cannot locate libjvm");
2331   char *rp = NULL;
2332   if (ret && dli_fname[0] != '\0') {
2333     rp = os::Posix::realpath(dli_fname, buf, buflen);
2334   }
2335   if (rp == NULL) {
2336     return;
2337   }
2338 
2339   if (Arguments::sun_java_launcher_is_altjvm()) {
2340     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2341     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2342     // If "/jre/lib/" appears at the right place in the string, then
2343     // assume we are installed in a JDK and we're done. Otherwise, check
2344     // for a JAVA_HOME environment variable and fix up the path so it
2345     // looks like libjvm.so is installed there (append a fake suffix
2346     // hotspot/libjvm.so).
2347     const char *p = buf + strlen(buf) - 1;
2348     for (int count = 0; p > buf && count < 5; ++count) {
2349       for (--p; p > buf && *p != '/'; --p)
2350         /* empty */ ;
2351     }
2352 
2353     if (strncmp(p, "/jre/lib/", 9) != 0) {
2354       // Look for JAVA_HOME in the environment.
2355       char* java_home_var = ::getenv("JAVA_HOME");
2356       if (java_home_var != NULL && java_home_var[0] != 0) {
2357         char* jrelib_p;
2358         int len;
2359 
2360         // Check the current module name "libjvm.so".
2361         p = strrchr(buf, '/');
2362         if (p == NULL) {
2363           return;
2364         }
2365         assert(strstr(p, "/libjvm") == p, "invalid library name");
2366 
2367         rp = os::Posix::realpath(java_home_var, buf, buflen);
2368         if (rp == NULL) {
2369           return;
2370         }
2371 
2372         // determine if this is a legacy image or modules image
2373         // modules image doesn't have "jre" subdirectory
2374         len = strlen(buf);
2375         assert(len < buflen, "Ran out of buffer room");
2376         jrelib_p = buf + len;
2377         snprintf(jrelib_p, buflen-len, "/jre/lib");
2378         if (0 != access(buf, F_OK)) {
2379           snprintf(jrelib_p, buflen-len, "/lib");
2380         }
2381 
2382         if (0 == access(buf, F_OK)) {
2383           // Use current module name "libjvm.so"
2384           len = strlen(buf);
2385           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2386         } else {
2387           // Go back to path of .so
2388           rp = os::Posix::realpath(dli_fname, buf, buflen);
2389           if (rp == NULL) {
2390             return;
2391           }
2392         }
2393       }
2394     }
2395   }
2396 
2397   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2398   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2399 }
2400 
2401 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2402   // no prefix required, not even "_"
2403 }
2404 
2405 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2406   // no suffix required
2407 }
2408 
2409 ////////////////////////////////////////////////////////////////////////////////
2410 // sun.misc.Signal support
2411 
2412 static volatile jint sigint_count = 0;
2413 
2414 static void UserHandler(int sig, void *siginfo, void *context) {
2415   // 4511530 - sem_post is serialized and handled by the manager thread. When
2416   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2417   // don't want to flood the manager thread with sem_post requests.
2418   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2419     return;
2420   }
2421 
2422   // Ctrl-C is pressed during error reporting, likely because the error
2423   // handler fails to abort. Let VM die immediately.
2424   if (sig == SIGINT && VMError::is_error_reported()) {
2425     os::die();
2426   }
2427 
2428   os::signal_notify(sig);
2429 }
2430 
2431 void* os::user_handler() {
2432   return CAST_FROM_FN_PTR(void*, UserHandler);
2433 }
2434 
2435 static struct timespec create_semaphore_timespec(unsigned int sec, int nsec) {
2436   struct timespec ts;
2437   // Semaphore's are always associated with CLOCK_REALTIME
2438   os::Posix::clock_gettime(CLOCK_REALTIME, &ts);
2439   // see os_posix.cpp for discussion on overflow checking
2440   if (sec >= MAX_SECS) {
2441     ts.tv_sec += MAX_SECS;
2442     ts.tv_nsec = 0;
2443   } else {
2444     ts.tv_sec += sec;
2445     ts.tv_nsec += nsec;
2446     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2447       ts.tv_nsec -= NANOSECS_PER_SEC;
2448       ++ts.tv_sec; // note: this must be <= max_secs
2449     }
2450   }
2451 
2452   return ts;
2453 }
2454 
2455 extern "C" {
2456   typedef void (*sa_handler_t)(int);
2457   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2458 }
2459 
2460 void* os::signal(int signal_number, void* handler) {
2461   struct sigaction sigAct, oldSigAct;
2462 
2463   sigfillset(&(sigAct.sa_mask));
2464   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2465   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2466 
2467   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2468     // -1 means registration failed
2469     return (void *)-1;
2470   }
2471 
2472   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2473 }
2474 
2475 void os::signal_raise(int signal_number) {
2476   ::raise(signal_number);
2477 }
2478 
2479 // The following code is moved from os.cpp for making this
2480 // code platform specific, which it is by its very nature.
2481 
2482 // Will be modified when max signal is changed to be dynamic
2483 int os::sigexitnum_pd() {
2484   return NSIG;
2485 }
2486 
2487 // a counter for each possible signal value
2488 static volatile jint pending_signals[NSIG+1] = { 0 };
2489 
2490 // Linux(POSIX) specific hand shaking semaphore.
2491 static Semaphore* sig_sem = NULL;
2492 static PosixSemaphore sr_semaphore;
2493 
2494 static void jdk_misc_signal_init() {
2495   // Initialize signal structures
2496   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2497 
2498   // Initialize signal semaphore
2499   sig_sem = new Semaphore();
2500 }
2501 
2502 void os::signal_notify(int sig) {
2503   if (sig_sem != NULL) {
2504     Atomic::inc(&pending_signals[sig]);
2505     sig_sem->signal();
2506   } else {
2507     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2508     // initialization isn't called.
2509     assert(ReduceSignalUsage, "signal semaphore should be created");
2510   }
2511 }
2512 
2513 static int check_pending_signals() {
2514   Atomic::store(0, &sigint_count);
2515   for (;;) {
2516     for (int i = 0; i < NSIG + 1; i++) {
2517       jint n = pending_signals[i];
2518       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2519         return i;
2520       }
2521     }
2522     JavaThread *thread = JavaThread::current();
2523     ThreadBlockInVM tbivm(thread);
2524 
2525     bool threadIsSuspended;
2526     do {
2527       thread->set_suspend_equivalent();
2528       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2529       sig_sem->wait();
2530 
2531       // were we externally suspended while we were waiting?
2532       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2533       if (threadIsSuspended) {
2534         // The semaphore has been incremented, but while we were waiting
2535         // another thread suspended us. We don't want to continue running
2536         // while suspended because that would surprise the thread that
2537         // suspended us.
2538         sig_sem->signal();
2539 
2540         thread->java_suspend_self();
2541       }
2542     } while (threadIsSuspended);
2543   }
2544 }
2545 
2546 int os::signal_wait() {
2547   return check_pending_signals();
2548 }
2549 
2550 ////////////////////////////////////////////////////////////////////////////////
2551 // Virtual Memory
2552 
2553 int os::vm_page_size() {
2554   // Seems redundant as all get out
2555   assert(os::Linux::page_size() != -1, "must call os::init");
2556   return os::Linux::page_size();
2557 }
2558 
2559 // Solaris allocates memory by pages.
2560 int os::vm_allocation_granularity() {
2561   assert(os::Linux::page_size() != -1, "must call os::init");
2562   return os::Linux::page_size();
2563 }
2564 
2565 // Rationale behind this function:
2566 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2567 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2568 //  samples for JITted code. Here we create private executable mapping over the code cache
2569 //  and then we can use standard (well, almost, as mapping can change) way to provide
2570 //  info for the reporting script by storing timestamp and location of symbol
2571 void linux_wrap_code(char* base, size_t size) {
2572   static volatile jint cnt = 0;
2573 
2574   if (!UseOprofile) {
2575     return;
2576   }
2577 
2578   char buf[PATH_MAX+1];
2579   int num = Atomic::add(1, &cnt);
2580 
2581   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2582            os::get_temp_directory(), os::current_process_id(), num);
2583   unlink(buf);
2584 
2585   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2586 
2587   if (fd != -1) {
2588     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2589     if (rv != (off_t)-1) {
2590       if (::write(fd, "", 1) == 1) {
2591         mmap(base, size,
2592              PROT_READ|PROT_WRITE|PROT_EXEC,
2593              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2594       }
2595     }
2596     ::close(fd);
2597     unlink(buf);
2598   }
2599 }
2600 
2601 static bool recoverable_mmap_error(int err) {
2602   // See if the error is one we can let the caller handle. This
2603   // list of errno values comes from JBS-6843484. I can't find a
2604   // Linux man page that documents this specific set of errno
2605   // values so while this list currently matches Solaris, it may
2606   // change as we gain experience with this failure mode.
2607   switch (err) {
2608   case EBADF:
2609   case EINVAL:
2610   case ENOTSUP:
2611     // let the caller deal with these errors
2612     return true;
2613 
2614   default:
2615     // Any remaining errors on this OS can cause our reserved mapping
2616     // to be lost. That can cause confusion where different data
2617     // structures think they have the same memory mapped. The worst
2618     // scenario is if both the VM and a library think they have the
2619     // same memory mapped.
2620     return false;
2621   }
2622 }
2623 
2624 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2625                                     int err) {
2626   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2627           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2628           os::strerror(err), err);
2629 }
2630 
2631 static void warn_fail_commit_memory(char* addr, size_t size,
2632                                     size_t alignment_hint, bool exec,
2633                                     int err) {
2634   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2635           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2636           alignment_hint, exec, os::strerror(err), err);
2637 }
2638 
2639 // NOTE: Linux kernel does not really reserve the pages for us.
2640 //       All it does is to check if there are enough free pages
2641 //       left at the time of mmap(). This could be a potential
2642 //       problem.
2643 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2644   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2645   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2646                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2647   if (res != (uintptr_t) MAP_FAILED) {
2648     if (UseNUMAInterleaving) {
2649       numa_make_global(addr, size);
2650     }
2651     return 0;
2652   }
2653 
2654   int err = errno;  // save errno from mmap() call above
2655 
2656   if (!recoverable_mmap_error(err)) {
2657     warn_fail_commit_memory(addr, size, exec, err);
2658     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2659   }
2660 
2661   return err;
2662 }
2663 
2664 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2665   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2666 }
2667 
2668 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2669                                   const char* mesg) {
2670   assert(mesg != NULL, "mesg must be specified");
2671   int err = os::Linux::commit_memory_impl(addr, size, exec);
2672   if (err != 0) {
2673     // the caller wants all commit errors to exit with the specified mesg:
2674     warn_fail_commit_memory(addr, size, exec, err);
2675     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2676   }
2677 }
2678 
2679 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2680 #ifndef MAP_HUGETLB
2681   #define MAP_HUGETLB 0x40000
2682 #endif
2683 
2684 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2685 #ifndef MADV_HUGEPAGE
2686   #define MADV_HUGEPAGE 14
2687 #endif
2688 
2689 int os::Linux::commit_memory_impl(char* addr, size_t size,
2690                                   size_t alignment_hint, bool exec) {
2691   int err = os::Linux::commit_memory_impl(addr, size, exec);
2692   if (err == 0) {
2693     realign_memory(addr, size, alignment_hint);
2694   }
2695   return err;
2696 }
2697 
2698 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2699                           bool exec) {
2700   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2701 }
2702 
2703 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2704                                   size_t alignment_hint, bool exec,
2705                                   const char* mesg) {
2706   assert(mesg != NULL, "mesg must be specified");
2707   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2708   if (err != 0) {
2709     // the caller wants all commit errors to exit with the specified mesg:
2710     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2711     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2712   }
2713 }
2714 
2715 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2716   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2717     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2718     // be supported or the memory may already be backed by huge pages.
2719     ::madvise(addr, bytes, MADV_HUGEPAGE);
2720   }
2721 }
2722 
2723 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2724   // This method works by doing an mmap over an existing mmaping and effectively discarding
2725   // the existing pages. However it won't work for SHM-based large pages that cannot be
2726   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2727   // small pages on top of the SHM segment. This method always works for small pages, so we
2728   // allow that in any case.
2729   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2730     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2731   }
2732 }
2733 
2734 void os::numa_make_global(char *addr, size_t bytes) {
2735   Linux::numa_interleave_memory(addr, bytes);
2736 }
2737 
2738 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2739 // bind policy to MPOL_PREFERRED for the current thread.
2740 #define USE_MPOL_PREFERRED 0
2741 
2742 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2743   // To make NUMA and large pages more robust when both enabled, we need to ease
2744   // the requirements on where the memory should be allocated. MPOL_BIND is the
2745   // default policy and it will force memory to be allocated on the specified
2746   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2747   // the specified node, but will not force it. Using this policy will prevent
2748   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2749   // free large pages.
2750   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2751   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2752 }
2753 
2754 bool os::numa_topology_changed() { return false; }
2755 
2756 size_t os::numa_get_groups_num() {
2757   // Return just the number of nodes in which it's possible to allocate memory
2758   // (in numa terminology, configured nodes).
2759   return Linux::numa_num_configured_nodes();
2760 }
2761 
2762 int os::numa_get_group_id() {
2763   int cpu_id = Linux::sched_getcpu();
2764   if (cpu_id != -1) {
2765     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2766     if (lgrp_id != -1) {
2767       return lgrp_id;
2768     }
2769   }
2770   return 0;
2771 }
2772 
2773 int os::Linux::get_existing_num_nodes() {
2774   int node;
2775   int highest_node_number = Linux::numa_max_node();
2776   int num_nodes = 0;
2777 
2778   // Get the total number of nodes in the system including nodes without memory.
2779   for (node = 0; node <= highest_node_number; node++) {
2780     if (is_node_in_existing_nodes(node)) {
2781       num_nodes++;
2782     }
2783   }
2784   return num_nodes;
2785 }
2786 
2787 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2788   int highest_node_number = Linux::numa_max_node();
2789   size_t i = 0;
2790 
2791   // Map all node ids in which it is possible to allocate memory. Also nodes are
2792   // not always consecutively available, i.e. available from 0 to the highest
2793   // node number. If the nodes have been bound explicitly using numactl membind,
2794   // then allocate memory from those nodes only.
2795   for (int node = 0; node <= highest_node_number; node++) {
2796     if (Linux::is_node_in_bound_nodes((unsigned int)node)) {
2797       ids[i++] = node;
2798     }
2799   }
2800   return i;
2801 }
2802 
2803 bool os::get_page_info(char *start, page_info* info) {
2804   return false;
2805 }
2806 
2807 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2808                      page_info* page_found) {
2809   return end;
2810 }
2811 
2812 
2813 int os::Linux::sched_getcpu_syscall(void) {
2814   unsigned int cpu = 0;
2815   int retval = -1;
2816 
2817 #if defined(IA32)
2818   #ifndef SYS_getcpu
2819     #define SYS_getcpu 318
2820   #endif
2821   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2822 #elif defined(AMD64)
2823 // Unfortunately we have to bring all these macros here from vsyscall.h
2824 // to be able to compile on old linuxes.
2825   #define __NR_vgetcpu 2
2826   #define VSYSCALL_START (-10UL << 20)
2827   #define VSYSCALL_SIZE 1024
2828   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2829   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2830   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2831   retval = vgetcpu(&cpu, NULL, NULL);
2832 #endif
2833 
2834   return (retval == -1) ? retval : cpu;
2835 }
2836 
2837 void os::Linux::sched_getcpu_init() {
2838   // sched_getcpu() should be in libc.
2839   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2840                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2841 
2842   // If it's not, try a direct syscall.
2843   if (sched_getcpu() == -1) {
2844     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2845                                     (void*)&sched_getcpu_syscall));
2846   }
2847 
2848   if (sched_getcpu() == -1) {
2849     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
2850   }
2851 }
2852 
2853 // Something to do with the numa-aware allocator needs these symbols
2854 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2855 extern "C" JNIEXPORT void numa_error(char *where) { }
2856 
2857 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2858 // load symbol from base version instead.
2859 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2860   void *f = dlvsym(handle, name, "libnuma_1.1");
2861   if (f == NULL) {
2862     f = dlsym(handle, name);
2863   }
2864   return f;
2865 }
2866 
2867 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2868 // Return NULL if the symbol is not defined in this particular version.
2869 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2870   return dlvsym(handle, name, "libnuma_1.2");
2871 }
2872 
2873 bool os::Linux::libnuma_init() {
2874   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2875     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2876     if (handle != NULL) {
2877       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2878                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2879       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2880                                        libnuma_dlsym(handle, "numa_max_node")));
2881       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2882                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2883       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2884                                         libnuma_dlsym(handle, "numa_available")));
2885       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2886                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2887       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2888                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2889       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2890                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2891       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2892                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2893       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2894                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2895       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2896                                        libnuma_dlsym(handle, "numa_distance")));
2897       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
2898                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
2899       set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
2900                                           libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
2901 
2902       if (numa_available() != -1) {
2903         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2904         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2905         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2906         set_numa_interleave_bitmask(_numa_get_interleave_mask());
2907         set_numa_membind_bitmask(_numa_get_membind());
2908         // Create an index -> node mapping, since nodes are not always consecutive
2909         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2910         rebuild_nindex_to_node_map();
2911         // Create a cpu -> node mapping
2912         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2913         rebuild_cpu_to_node_map();
2914         return true;
2915       }
2916     }
2917   }
2918   return false;
2919 }
2920 
2921 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2922   // Creating guard page is very expensive. Java thread has HotSpot
2923   // guard pages, only enable glibc guard page for non-Java threads.
2924   // (Remember: compiler thread is a Java thread, too!)
2925   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2926 }
2927 
2928 void os::Linux::rebuild_nindex_to_node_map() {
2929   int highest_node_number = Linux::numa_max_node();
2930 
2931   nindex_to_node()->clear();
2932   for (int node = 0; node <= highest_node_number; node++) {
2933     if (Linux::is_node_in_existing_nodes(node)) {
2934       nindex_to_node()->append(node);
2935     }
2936   }
2937 }
2938 
2939 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2940 // The table is later used in get_node_by_cpu().
2941 void os::Linux::rebuild_cpu_to_node_map() {
2942   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2943                               // in libnuma (possible values are starting from 16,
2944                               // and continuing up with every other power of 2, but less
2945                               // than the maximum number of CPUs supported by kernel), and
2946                               // is a subject to change (in libnuma version 2 the requirements
2947                               // are more reasonable) we'll just hardcode the number they use
2948                               // in the library.
2949   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2950 
2951   size_t cpu_num = processor_count();
2952   size_t cpu_map_size = NCPUS / BitsPerCLong;
2953   size_t cpu_map_valid_size =
2954     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2955 
2956   cpu_to_node()->clear();
2957   cpu_to_node()->at_grow(cpu_num - 1);
2958 
2959   size_t node_num = get_existing_num_nodes();
2960 
2961   int distance = 0;
2962   int closest_distance = INT_MAX;
2963   int closest_node = 0;
2964   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2965   for (size_t i = 0; i < node_num; i++) {
2966     // Check if node is configured (not a memory-less node). If it is not, find
2967     // the closest configured node. Check also if node is bound, i.e. it's allowed
2968     // to allocate memory from the node. If it's not allowed, map cpus in that node
2969     // to the closest node from which memory allocation is allowed.
2970     if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) ||
2971         !is_node_in_bound_nodes(nindex_to_node()->at(i))) {
2972       closest_distance = INT_MAX;
2973       // Check distance from all remaining nodes in the system. Ignore distance
2974       // from itself, from another non-configured node, and from another non-bound
2975       // node.
2976       for (size_t m = 0; m < node_num; m++) {
2977         if (m != i &&
2978             is_node_in_configured_nodes(nindex_to_node()->at(m)) &&
2979             is_node_in_bound_nodes(nindex_to_node()->at(m))) {
2980           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2981           // If a closest node is found, update. There is always at least one
2982           // configured and bound node in the system so there is always at least
2983           // one node close.
2984           if (distance != 0 && distance < closest_distance) {
2985             closest_distance = distance;
2986             closest_node = nindex_to_node()->at(m);
2987           }
2988         }
2989       }
2990      } else {
2991        // Current node is already a configured node.
2992        closest_node = nindex_to_node()->at(i);
2993      }
2994 
2995     // Get cpus from the original node and map them to the closest node. If node
2996     // is a configured node (not a memory-less node), then original node and
2997     // closest node are the same.
2998     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2999       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3000         if (cpu_map[j] != 0) {
3001           for (size_t k = 0; k < BitsPerCLong; k++) {
3002             if (cpu_map[j] & (1UL << k)) {
3003               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3004             }
3005           }
3006         }
3007       }
3008     }
3009   }
3010   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3011 }
3012 
3013 int os::Linux::get_node_by_cpu(int cpu_id) {
3014   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3015     return cpu_to_node()->at(cpu_id);
3016   }
3017   return -1;
3018 }
3019 
3020 GrowableArray<int>* os::Linux::_cpu_to_node;
3021 GrowableArray<int>* os::Linux::_nindex_to_node;
3022 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3023 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3024 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3025 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3026 os::Linux::numa_available_func_t os::Linux::_numa_available;
3027 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3028 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3029 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3030 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3031 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3032 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3033 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3034 os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
3035 os::Linux::Numa_allocation_policy os::Linux::_current_numa_policy;
3036 unsigned long* os::Linux::_numa_all_nodes;
3037 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3038 struct bitmask* os::Linux::_numa_nodes_ptr;
3039 struct bitmask* os::Linux::_numa_interleave_bitmask;
3040 struct bitmask* os::Linux::_numa_membind_bitmask;
3041 
3042 bool os::pd_uncommit_memory(char* addr, size_t size) {
3043   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3044                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3045   return res  != (uintptr_t) MAP_FAILED;
3046 }
3047 
3048 static address get_stack_commited_bottom(address bottom, size_t size) {
3049   address nbot = bottom;
3050   address ntop = bottom + size;
3051 
3052   size_t page_sz = os::vm_page_size();
3053   unsigned pages = size / page_sz;
3054 
3055   unsigned char vec[1];
3056   unsigned imin = 1, imax = pages + 1, imid;
3057   int mincore_return_value = 0;
3058 
3059   assert(imin <= imax, "Unexpected page size");
3060 
3061   while (imin < imax) {
3062     imid = (imax + imin) / 2;
3063     nbot = ntop - (imid * page_sz);
3064 
3065     // Use a trick with mincore to check whether the page is mapped or not.
3066     // mincore sets vec to 1 if page resides in memory and to 0 if page
3067     // is swapped output but if page we are asking for is unmapped
3068     // it returns -1,ENOMEM
3069     mincore_return_value = mincore(nbot, page_sz, vec);
3070 
3071     if (mincore_return_value == -1) {
3072       // Page is not mapped go up
3073       // to find first mapped page
3074       if (errno != EAGAIN) {
3075         assert(errno == ENOMEM, "Unexpected mincore errno");
3076         imax = imid;
3077       }
3078     } else {
3079       // Page is mapped go down
3080       // to find first not mapped page
3081       imin = imid + 1;
3082     }
3083   }
3084 
3085   nbot = nbot + page_sz;
3086 
3087   // Adjust stack bottom one page up if last checked page is not mapped
3088   if (mincore_return_value == -1) {
3089     nbot = nbot + page_sz;
3090   }
3091 
3092   return nbot;
3093 }
3094 
3095 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3096   int mincore_return_value;
3097   const size_t stripe = 1024;  // query this many pages each time
3098   unsigned char vec[stripe + 1];
3099   // set a guard
3100   vec[stripe] = 'X';
3101 
3102   const size_t page_sz = os::vm_page_size();
3103   size_t pages = size / page_sz;
3104 
3105   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3106   assert(is_aligned(size, page_sz), "Size must be page aligned");
3107 
3108   committed_start = NULL;
3109 
3110   int loops = (pages + stripe - 1) / stripe;
3111   int committed_pages = 0;
3112   address loop_base = start;
3113   bool found_range = false;
3114 
3115   for (int index = 0; index < loops && !found_range; index ++) {
3116     assert(pages > 0, "Nothing to do");
3117     int pages_to_query = (pages >= stripe) ? stripe : pages;
3118     pages -= pages_to_query;
3119 
3120     // Get stable read
3121     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3122 
3123     // During shutdown, some memory goes away without properly notifying NMT,
3124     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3125     // Bailout and return as not committed for now.
3126     if (mincore_return_value == -1 && errno == ENOMEM) {
3127       return false;
3128     }
3129 
3130     assert(vec[stripe] == 'X', "overflow guard");
3131     assert(mincore_return_value == 0, "Range must be valid");
3132     // Process this stripe
3133     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3134       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3135         // End of current contiguous region
3136         if (committed_start != NULL) {
3137           found_range = true;
3138           break;
3139         }
3140       } else { // committed
3141         // Start of region
3142         if (committed_start == NULL) {
3143           committed_start = loop_base + page_sz * vecIdx;
3144         }
3145         committed_pages ++;
3146       }
3147     }
3148 
3149     loop_base += pages_to_query * page_sz;
3150   }
3151 
3152   if (committed_start != NULL) {
3153     assert(committed_pages > 0, "Must have committed region");
3154     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3155     assert(committed_start >= start && committed_start < start + size, "Out of range");
3156     committed_size = page_sz * committed_pages;
3157     return true;
3158   } else {
3159     assert(committed_pages == 0, "Should not have committed region");
3160     return false;
3161   }
3162 }
3163 
3164 
3165 // Linux uses a growable mapping for the stack, and if the mapping for
3166 // the stack guard pages is not removed when we detach a thread the
3167 // stack cannot grow beyond the pages where the stack guard was
3168 // mapped.  If at some point later in the process the stack expands to
3169 // that point, the Linux kernel cannot expand the stack any further
3170 // because the guard pages are in the way, and a segfault occurs.
3171 //
3172 // However, it's essential not to split the stack region by unmapping
3173 // a region (leaving a hole) that's already part of the stack mapping,
3174 // so if the stack mapping has already grown beyond the guard pages at
3175 // the time we create them, we have to truncate the stack mapping.
3176 // So, we need to know the extent of the stack mapping when
3177 // create_stack_guard_pages() is called.
3178 
3179 // We only need this for stacks that are growable: at the time of
3180 // writing thread stacks don't use growable mappings (i.e. those
3181 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3182 // only applies to the main thread.
3183 
3184 // If the (growable) stack mapping already extends beyond the point
3185 // where we're going to put our guard pages, truncate the mapping at
3186 // that point by munmap()ping it.  This ensures that when we later
3187 // munmap() the guard pages we don't leave a hole in the stack
3188 // mapping. This only affects the main/primordial thread
3189 
3190 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3191   if (os::is_primordial_thread()) {
3192     // As we manually grow stack up to bottom inside create_attached_thread(),
3193     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3194     // we don't need to do anything special.
3195     // Check it first, before calling heavy function.
3196     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3197     unsigned char vec[1];
3198 
3199     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3200       // Fallback to slow path on all errors, including EAGAIN
3201       stack_extent = (uintptr_t) get_stack_commited_bottom(
3202                                                            os::Linux::initial_thread_stack_bottom(),
3203                                                            (size_t)addr - stack_extent);
3204     }
3205 
3206     if (stack_extent < (uintptr_t)addr) {
3207       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3208     }
3209   }
3210 
3211   return os::commit_memory(addr, size, !ExecMem);
3212 }
3213 
3214 // If this is a growable mapping, remove the guard pages entirely by
3215 // munmap()ping them.  If not, just call uncommit_memory(). This only
3216 // affects the main/primordial thread, but guard against future OS changes.
3217 // It's safe to always unmap guard pages for primordial thread because we
3218 // always place it right after end of the mapped region.
3219 
3220 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3221   uintptr_t stack_extent, stack_base;
3222 
3223   if (os::is_primordial_thread()) {
3224     return ::munmap(addr, size) == 0;
3225   }
3226 
3227   return os::uncommit_memory(addr, size);
3228 }
3229 
3230 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3231 // at 'requested_addr'. If there are existing memory mappings at the same
3232 // location, however, they will be overwritten. If 'fixed' is false,
3233 // 'requested_addr' is only treated as a hint, the return value may or
3234 // may not start from the requested address. Unlike Linux mmap(), this
3235 // function returns NULL to indicate failure.
3236 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3237   char * addr;
3238   int flags;
3239 
3240   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3241   if (fixed) {
3242     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3243     flags |= MAP_FIXED;
3244   }
3245 
3246   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3247   // touch an uncommitted page. Otherwise, the read/write might
3248   // succeed if we have enough swap space to back the physical page.
3249   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3250                        flags, -1, 0);
3251 
3252   return addr == MAP_FAILED ? NULL : addr;
3253 }
3254 
3255 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3256 //   (req_addr != NULL) or with a given alignment.
3257 //  - bytes shall be a multiple of alignment.
3258 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3259 //  - alignment sets the alignment at which memory shall be allocated.
3260 //     It must be a multiple of allocation granularity.
3261 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3262 //  req_addr or NULL.
3263 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3264 
3265   size_t extra_size = bytes;
3266   if (req_addr == NULL && alignment > 0) {
3267     extra_size += alignment;
3268   }
3269 
3270   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3271     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3272     -1, 0);
3273   if (start == MAP_FAILED) {
3274     start = NULL;
3275   } else {
3276     if (req_addr != NULL) {
3277       if (start != req_addr) {
3278         ::munmap(start, extra_size);
3279         start = NULL;
3280       }
3281     } else {
3282       char* const start_aligned = align_up(start, alignment);
3283       char* const end_aligned = start_aligned + bytes;
3284       char* const end = start + extra_size;
3285       if (start_aligned > start) {
3286         ::munmap(start, start_aligned - start);
3287       }
3288       if (end_aligned < end) {
3289         ::munmap(end_aligned, end - end_aligned);
3290       }
3291       start = start_aligned;
3292     }
3293   }
3294   return start;
3295 }
3296 
3297 static int anon_munmap(char * addr, size_t size) {
3298   return ::munmap(addr, size) == 0;
3299 }
3300 
3301 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3302                             size_t alignment_hint) {
3303   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3304 }
3305 
3306 bool os::pd_release_memory(char* addr, size_t size) {
3307   return anon_munmap(addr, size);
3308 }
3309 
3310 static bool linux_mprotect(char* addr, size_t size, int prot) {
3311   // Linux wants the mprotect address argument to be page aligned.
3312   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3313 
3314   // According to SUSv3, mprotect() should only be used with mappings
3315   // established by mmap(), and mmap() always maps whole pages. Unaligned
3316   // 'addr' likely indicates problem in the VM (e.g. trying to change
3317   // protection of malloc'ed or statically allocated memory). Check the
3318   // caller if you hit this assert.
3319   assert(addr == bottom, "sanity check");
3320 
3321   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3322   return ::mprotect(bottom, size, prot) == 0;
3323 }
3324 
3325 // Set protections specified
3326 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3327                         bool is_committed) {
3328   unsigned int p = 0;
3329   switch (prot) {
3330   case MEM_PROT_NONE: p = PROT_NONE; break;
3331   case MEM_PROT_READ: p = PROT_READ; break;
3332   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3333   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3334   default:
3335     ShouldNotReachHere();
3336   }
3337   // is_committed is unused.
3338   return linux_mprotect(addr, bytes, p);
3339 }
3340 
3341 bool os::guard_memory(char* addr, size_t size) {
3342   return linux_mprotect(addr, size, PROT_NONE);
3343 }
3344 
3345 bool os::unguard_memory(char* addr, size_t size) {
3346   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3347 }
3348 
3349 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3350                                                     size_t page_size) {
3351   bool result = false;
3352   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3353                  MAP_ANONYMOUS|MAP_PRIVATE,
3354                  -1, 0);
3355   if (p != MAP_FAILED) {
3356     void *aligned_p = align_up(p, page_size);
3357 
3358     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3359 
3360     munmap(p, page_size * 2);
3361   }
3362 
3363   if (warn && !result) {
3364     warning("TransparentHugePages is not supported by the operating system.");
3365   }
3366 
3367   return result;
3368 }
3369 
3370 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3371   bool result = false;
3372   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3373                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3374                  -1, 0);
3375 
3376   if (p != MAP_FAILED) {
3377     // We don't know if this really is a huge page or not.
3378     FILE *fp = fopen("/proc/self/maps", "r");
3379     if (fp) {
3380       while (!feof(fp)) {
3381         char chars[257];
3382         long x = 0;
3383         if (fgets(chars, sizeof(chars), fp)) {
3384           if (sscanf(chars, "%lx-%*x", &x) == 1
3385               && x == (long)p) {
3386             if (strstr (chars, "hugepage")) {
3387               result = true;
3388               break;
3389             }
3390           }
3391         }
3392       }
3393       fclose(fp);
3394     }
3395     munmap(p, page_size);
3396   }
3397 
3398   if (warn && !result) {
3399     warning("HugeTLBFS is not supported by the operating system.");
3400   }
3401 
3402   return result;
3403 }
3404 
3405 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3406 //
3407 // From the coredump_filter documentation:
3408 //
3409 // - (bit 0) anonymous private memory
3410 // - (bit 1) anonymous shared memory
3411 // - (bit 2) file-backed private memory
3412 // - (bit 3) file-backed shared memory
3413 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3414 //           effective only if the bit 2 is cleared)
3415 // - (bit 5) hugetlb private memory
3416 // - (bit 6) hugetlb shared memory
3417 // - (bit 7) dax private memory
3418 // - (bit 8) dax shared memory
3419 //
3420 static void set_coredump_filter(CoredumpFilterBit bit) {
3421   FILE *f;
3422   long cdm;
3423 
3424   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3425     return;
3426   }
3427 
3428   if (fscanf(f, "%lx", &cdm) != 1) {
3429     fclose(f);
3430     return;
3431   }
3432 
3433   long saved_cdm = cdm;
3434   rewind(f);
3435   cdm |= bit;
3436 
3437   if (cdm != saved_cdm) {
3438     fprintf(f, "%#lx", cdm);
3439   }
3440 
3441   fclose(f);
3442 }
3443 
3444 // Large page support
3445 
3446 static size_t _large_page_size = 0;
3447 
3448 size_t os::Linux::find_large_page_size() {
3449   size_t large_page_size = 0;
3450 
3451   // large_page_size on Linux is used to round up heap size. x86 uses either
3452   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3453   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3454   // page as large as 256M.
3455   //
3456   // Here we try to figure out page size by parsing /proc/meminfo and looking
3457   // for a line with the following format:
3458   //    Hugepagesize:     2048 kB
3459   //
3460   // If we can't determine the value (e.g. /proc is not mounted, or the text
3461   // format has been changed), we'll use the largest page size supported by
3462   // the processor.
3463 
3464 #ifndef ZERO
3465   large_page_size =
3466     AARCH64_ONLY(2 * M)
3467     AMD64_ONLY(2 * M)
3468     ARM32_ONLY(2 * M)
3469     IA32_ONLY(4 * M)
3470     IA64_ONLY(256 * M)
3471     PPC_ONLY(4 * M)
3472     S390_ONLY(1 * M)
3473     SPARC_ONLY(4 * M);
3474 #endif // ZERO
3475 
3476   FILE *fp = fopen("/proc/meminfo", "r");
3477   if (fp) {
3478     while (!feof(fp)) {
3479       int x = 0;
3480       char buf[16];
3481       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3482         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3483           large_page_size = x * K;
3484           break;
3485         }
3486       } else {
3487         // skip to next line
3488         for (;;) {
3489           int ch = fgetc(fp);
3490           if (ch == EOF || ch == (int)'\n') break;
3491         }
3492       }
3493     }
3494     fclose(fp);
3495   }
3496 
3497   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3498     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3499             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3500             proper_unit_for_byte_size(large_page_size));
3501   }
3502 
3503   return large_page_size;
3504 }
3505 
3506 size_t os::Linux::setup_large_page_size() {
3507   _large_page_size = Linux::find_large_page_size();
3508   const size_t default_page_size = (size_t)Linux::page_size();
3509   if (_large_page_size > default_page_size) {
3510     _page_sizes[0] = _large_page_size;
3511     _page_sizes[1] = default_page_size;
3512     _page_sizes[2] = 0;
3513   }
3514 
3515   return _large_page_size;
3516 }
3517 
3518 bool os::Linux::setup_large_page_type(size_t page_size) {
3519   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3520       FLAG_IS_DEFAULT(UseSHM) &&
3521       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3522 
3523     // The type of large pages has not been specified by the user.
3524 
3525     // Try UseHugeTLBFS and then UseSHM.
3526     UseHugeTLBFS = UseSHM = true;
3527 
3528     // Don't try UseTransparentHugePages since there are known
3529     // performance issues with it turned on. This might change in the future.
3530     UseTransparentHugePages = false;
3531   }
3532 
3533   if (UseTransparentHugePages) {
3534     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3535     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3536       UseHugeTLBFS = false;
3537       UseSHM = false;
3538       return true;
3539     }
3540     UseTransparentHugePages = false;
3541   }
3542 
3543   if (UseHugeTLBFS) {
3544     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3545     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3546       UseSHM = false;
3547       return true;
3548     }
3549     UseHugeTLBFS = false;
3550   }
3551 
3552   return UseSHM;
3553 }
3554 
3555 void os::large_page_init() {
3556   if (!UseLargePages &&
3557       !UseTransparentHugePages &&
3558       !UseHugeTLBFS &&
3559       !UseSHM) {
3560     // Not using large pages.
3561     return;
3562   }
3563 
3564   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3565     // The user explicitly turned off large pages.
3566     // Ignore the rest of the large pages flags.
3567     UseTransparentHugePages = false;
3568     UseHugeTLBFS = false;
3569     UseSHM = false;
3570     return;
3571   }
3572 
3573   size_t large_page_size = Linux::setup_large_page_size();
3574   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3575 
3576   set_coredump_filter(LARGEPAGES_BIT);
3577 }
3578 
3579 #ifndef SHM_HUGETLB
3580   #define SHM_HUGETLB 04000
3581 #endif
3582 
3583 #define shm_warning_format(format, ...)              \
3584   do {                                               \
3585     if (UseLargePages &&                             \
3586         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3587          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3588          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3589       warning(format, __VA_ARGS__);                  \
3590     }                                                \
3591   } while (0)
3592 
3593 #define shm_warning(str) shm_warning_format("%s", str)
3594 
3595 #define shm_warning_with_errno(str)                \
3596   do {                                             \
3597     int err = errno;                               \
3598     shm_warning_format(str " (error = %d)", err);  \
3599   } while (0)
3600 
3601 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3602   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3603 
3604   if (!is_aligned(alignment, SHMLBA)) {
3605     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3606     return NULL;
3607   }
3608 
3609   // To ensure that we get 'alignment' aligned memory from shmat,
3610   // we pre-reserve aligned virtual memory and then attach to that.
3611 
3612   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3613   if (pre_reserved_addr == NULL) {
3614     // Couldn't pre-reserve aligned memory.
3615     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3616     return NULL;
3617   }
3618 
3619   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3620   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3621 
3622   if ((intptr_t)addr == -1) {
3623     int err = errno;
3624     shm_warning_with_errno("Failed to attach shared memory.");
3625 
3626     assert(err != EACCES, "Unexpected error");
3627     assert(err != EIDRM,  "Unexpected error");
3628     assert(err != EINVAL, "Unexpected error");
3629 
3630     // Since we don't know if the kernel unmapped the pre-reserved memory area
3631     // we can't unmap it, since that would potentially unmap memory that was
3632     // mapped from other threads.
3633     return NULL;
3634   }
3635 
3636   return addr;
3637 }
3638 
3639 static char* shmat_at_address(int shmid, char* req_addr) {
3640   if (!is_aligned(req_addr, SHMLBA)) {
3641     assert(false, "Requested address needs to be SHMLBA aligned");
3642     return NULL;
3643   }
3644 
3645   char* addr = (char*)shmat(shmid, req_addr, 0);
3646 
3647   if ((intptr_t)addr == -1) {
3648     shm_warning_with_errno("Failed to attach shared memory.");
3649     return NULL;
3650   }
3651 
3652   return addr;
3653 }
3654 
3655 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3656   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3657   if (req_addr != NULL) {
3658     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3659     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3660     return shmat_at_address(shmid, req_addr);
3661   }
3662 
3663   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3664   // return large page size aligned memory addresses when req_addr == NULL.
3665   // However, if the alignment is larger than the large page size, we have
3666   // to manually ensure that the memory returned is 'alignment' aligned.
3667   if (alignment > os::large_page_size()) {
3668     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3669     return shmat_with_alignment(shmid, bytes, alignment);
3670   } else {
3671     return shmat_at_address(shmid, NULL);
3672   }
3673 }
3674 
3675 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3676                                             char* req_addr, bool exec) {
3677   // "exec" is passed in but not used.  Creating the shared image for
3678   // the code cache doesn't have an SHM_X executable permission to check.
3679   assert(UseLargePages && UseSHM, "only for SHM large pages");
3680   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3681   assert(is_aligned(req_addr, alignment), "Unaligned address");
3682 
3683   if (!is_aligned(bytes, os::large_page_size())) {
3684     return NULL; // Fallback to small pages.
3685   }
3686 
3687   // Create a large shared memory region to attach to based on size.
3688   // Currently, size is the total size of the heap.
3689   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3690   if (shmid == -1) {
3691     // Possible reasons for shmget failure:
3692     // 1. shmmax is too small for Java heap.
3693     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3694     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3695     // 2. not enough large page memory.
3696     //    > check available large pages: cat /proc/meminfo
3697     //    > increase amount of large pages:
3698     //          echo new_value > /proc/sys/vm/nr_hugepages
3699     //      Note 1: different Linux may use different name for this property,
3700     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3701     //      Note 2: it's possible there's enough physical memory available but
3702     //            they are so fragmented after a long run that they can't
3703     //            coalesce into large pages. Try to reserve large pages when
3704     //            the system is still "fresh".
3705     shm_warning_with_errno("Failed to reserve shared memory.");
3706     return NULL;
3707   }
3708 
3709   // Attach to the region.
3710   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3711 
3712   // Remove shmid. If shmat() is successful, the actual shared memory segment
3713   // will be deleted when it's detached by shmdt() or when the process
3714   // terminates. If shmat() is not successful this will remove the shared
3715   // segment immediately.
3716   shmctl(shmid, IPC_RMID, NULL);
3717 
3718   return addr;
3719 }
3720 
3721 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3722                                         int error) {
3723   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3724 
3725   bool warn_on_failure = UseLargePages &&
3726       (!FLAG_IS_DEFAULT(UseLargePages) ||
3727        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3728        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3729 
3730   if (warn_on_failure) {
3731     char msg[128];
3732     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3733                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3734     warning("%s", msg);
3735   }
3736 }
3737 
3738 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3739                                                         char* req_addr,
3740                                                         bool exec) {
3741   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3742   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3743   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3744 
3745   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3746   char* addr = (char*)::mmap(req_addr, bytes, prot,
3747                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3748                              -1, 0);
3749 
3750   if (addr == MAP_FAILED) {
3751     warn_on_large_pages_failure(req_addr, bytes, errno);
3752     return NULL;
3753   }
3754 
3755   assert(is_aligned(addr, os::large_page_size()), "Must be");
3756 
3757   return addr;
3758 }
3759 
3760 // Reserve memory using mmap(MAP_HUGETLB).
3761 //  - bytes shall be a multiple of alignment.
3762 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3763 //  - alignment sets the alignment at which memory shall be allocated.
3764 //     It must be a multiple of allocation granularity.
3765 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3766 //  req_addr or NULL.
3767 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3768                                                          size_t alignment,
3769                                                          char* req_addr,
3770                                                          bool exec) {
3771   size_t large_page_size = os::large_page_size();
3772   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3773 
3774   assert(is_aligned(req_addr, alignment), "Must be");
3775   assert(is_aligned(bytes, alignment), "Must be");
3776 
3777   // First reserve - but not commit - the address range in small pages.
3778   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3779 
3780   if (start == NULL) {
3781     return NULL;
3782   }
3783 
3784   assert(is_aligned(start, alignment), "Must be");
3785 
3786   char* end = start + bytes;
3787 
3788   // Find the regions of the allocated chunk that can be promoted to large pages.
3789   char* lp_start = align_up(start, large_page_size);
3790   char* lp_end   = align_down(end, large_page_size);
3791 
3792   size_t lp_bytes = lp_end - lp_start;
3793 
3794   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3795 
3796   if (lp_bytes == 0) {
3797     // The mapped region doesn't even span the start and the end of a large page.
3798     // Fall back to allocate a non-special area.
3799     ::munmap(start, end - start);
3800     return NULL;
3801   }
3802 
3803   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3804 
3805   void* result;
3806 
3807   // Commit small-paged leading area.
3808   if (start != lp_start) {
3809     result = ::mmap(start, lp_start - start, prot,
3810                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3811                     -1, 0);
3812     if (result == MAP_FAILED) {
3813       ::munmap(lp_start, end - lp_start);
3814       return NULL;
3815     }
3816   }
3817 
3818   // Commit large-paged area.
3819   result = ::mmap(lp_start, lp_bytes, prot,
3820                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3821                   -1, 0);
3822   if (result == MAP_FAILED) {
3823     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3824     // If the mmap above fails, the large pages region will be unmapped and we
3825     // have regions before and after with small pages. Release these regions.
3826     //
3827     // |  mapped  |  unmapped  |  mapped  |
3828     // ^          ^            ^          ^
3829     // start      lp_start     lp_end     end
3830     //
3831     ::munmap(start, lp_start - start);
3832     ::munmap(lp_end, end - lp_end);
3833     return NULL;
3834   }
3835 
3836   // Commit small-paged trailing area.
3837   if (lp_end != end) {
3838     result = ::mmap(lp_end, end - lp_end, prot,
3839                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3840                     -1, 0);
3841     if (result == MAP_FAILED) {
3842       ::munmap(start, lp_end - start);
3843       return NULL;
3844     }
3845   }
3846 
3847   return start;
3848 }
3849 
3850 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3851                                                    size_t alignment,
3852                                                    char* req_addr,
3853                                                    bool exec) {
3854   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3855   assert(is_aligned(req_addr, alignment), "Must be");
3856   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3857   assert(is_power_of_2(os::large_page_size()), "Must be");
3858   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3859 
3860   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3861     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3862   } else {
3863     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3864   }
3865 }
3866 
3867 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3868                                  char* req_addr, bool exec) {
3869   assert(UseLargePages, "only for large pages");
3870 
3871   char* addr;
3872   if (UseSHM) {
3873     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3874   } else {
3875     assert(UseHugeTLBFS, "must be");
3876     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3877   }
3878 
3879   if (addr != NULL) {
3880     if (UseNUMAInterleaving) {
3881       numa_make_global(addr, bytes);
3882     }
3883 
3884     // The memory is committed
3885     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3886   }
3887 
3888   return addr;
3889 }
3890 
3891 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3892   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3893   return shmdt(base) == 0;
3894 }
3895 
3896 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3897   return pd_release_memory(base, bytes);
3898 }
3899 
3900 bool os::release_memory_special(char* base, size_t bytes) {
3901   bool res;
3902   if (MemTracker::tracking_level() > NMT_minimal) {
3903     Tracker tkr(Tracker::release);
3904     res = os::Linux::release_memory_special_impl(base, bytes);
3905     if (res) {
3906       tkr.record((address)base, bytes);
3907     }
3908 
3909   } else {
3910     res = os::Linux::release_memory_special_impl(base, bytes);
3911   }
3912   return res;
3913 }
3914 
3915 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3916   assert(UseLargePages, "only for large pages");
3917   bool res;
3918 
3919   if (UseSHM) {
3920     res = os::Linux::release_memory_special_shm(base, bytes);
3921   } else {
3922     assert(UseHugeTLBFS, "must be");
3923     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3924   }
3925   return res;
3926 }
3927 
3928 size_t os::large_page_size() {
3929   return _large_page_size;
3930 }
3931 
3932 // With SysV SHM the entire memory region must be allocated as shared
3933 // memory.
3934 // HugeTLBFS allows application to commit large page memory on demand.
3935 // However, when committing memory with HugeTLBFS fails, the region
3936 // that was supposed to be committed will lose the old reservation
3937 // and allow other threads to steal that memory region. Because of this
3938 // behavior we can't commit HugeTLBFS memory.
3939 bool os::can_commit_large_page_memory() {
3940   return UseTransparentHugePages;
3941 }
3942 
3943 bool os::can_execute_large_page_memory() {
3944   return UseTransparentHugePages || UseHugeTLBFS;
3945 }
3946 
3947 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3948   assert(file_desc >= 0, "file_desc is not valid");
3949   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
3950   if (result != NULL) {
3951     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
3952       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3953     }
3954   }
3955   return result;
3956 }
3957 
3958 // Reserve memory at an arbitrary address, only if that area is
3959 // available (and not reserved for something else).
3960 
3961 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3962   const int max_tries = 10;
3963   char* base[max_tries];
3964   size_t size[max_tries];
3965   const size_t gap = 0x000000;
3966 
3967   // Assert only that the size is a multiple of the page size, since
3968   // that's all that mmap requires, and since that's all we really know
3969   // about at this low abstraction level.  If we need higher alignment,
3970   // we can either pass an alignment to this method or verify alignment
3971   // in one of the methods further up the call chain.  See bug 5044738.
3972   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3973 
3974   // Repeatedly allocate blocks until the block is allocated at the
3975   // right spot.
3976 
3977   // Linux mmap allows caller to pass an address as hint; give it a try first,
3978   // if kernel honors the hint then we can return immediately.
3979   char * addr = anon_mmap(requested_addr, bytes, false);
3980   if (addr == requested_addr) {
3981     return requested_addr;
3982   }
3983 
3984   if (addr != NULL) {
3985     // mmap() is successful but it fails to reserve at the requested address
3986     anon_munmap(addr, bytes);
3987   }
3988 
3989   int i;
3990   for (i = 0; i < max_tries; ++i) {
3991     base[i] = reserve_memory(bytes);
3992 
3993     if (base[i] != NULL) {
3994       // Is this the block we wanted?
3995       if (base[i] == requested_addr) {
3996         size[i] = bytes;
3997         break;
3998       }
3999 
4000       // Does this overlap the block we wanted? Give back the overlapped
4001       // parts and try again.
4002 
4003       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
4004       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
4005         unmap_memory(base[i], top_overlap);
4006         base[i] += top_overlap;
4007         size[i] = bytes - top_overlap;
4008       } else {
4009         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
4010         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
4011           unmap_memory(requested_addr, bottom_overlap);
4012           size[i] = bytes - bottom_overlap;
4013         } else {
4014           size[i] = bytes;
4015         }
4016       }
4017     }
4018   }
4019 
4020   // Give back the unused reserved pieces.
4021 
4022   for (int j = 0; j < i; ++j) {
4023     if (base[j] != NULL) {
4024       unmap_memory(base[j], size[j]);
4025     }
4026   }
4027 
4028   if (i < max_tries) {
4029     return requested_addr;
4030   } else {
4031     return NULL;
4032   }
4033 }
4034 
4035 size_t os::read(int fd, void *buf, unsigned int nBytes) {
4036   return ::read(fd, buf, nBytes);
4037 }
4038 
4039 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4040   return ::pread(fd, buf, nBytes, offset);
4041 }
4042 
4043 // Short sleep, direct OS call.
4044 //
4045 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4046 // sched_yield(2) will actually give up the CPU:
4047 //
4048 //   * Alone on this pariticular CPU, keeps running.
4049 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4050 //     (pre 2.6.39).
4051 //
4052 // So calling this with 0 is an alternative.
4053 //
4054 void os::naked_short_sleep(jlong ms) {
4055   struct timespec req;
4056 
4057   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4058   req.tv_sec = 0;
4059   if (ms > 0) {
4060     req.tv_nsec = (ms % 1000) * 1000000;
4061   } else {
4062     req.tv_nsec = 1;
4063   }
4064 
4065   nanosleep(&req, NULL);
4066 
4067   return;
4068 }
4069 
4070 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4071 void os::infinite_sleep() {
4072   while (true) {    // sleep forever ...
4073     ::sleep(100);   // ... 100 seconds at a time
4074   }
4075 }
4076 
4077 // Used to convert frequent JVM_Yield() to nops
4078 bool os::dont_yield() {
4079   return DontYieldALot;
4080 }
4081 
4082 void os::naked_yield() {
4083   sched_yield();
4084 }
4085 
4086 ////////////////////////////////////////////////////////////////////////////////
4087 // thread priority support
4088 
4089 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4090 // only supports dynamic priority, static priority must be zero. For real-time
4091 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4092 // However, for large multi-threaded applications, SCHED_RR is not only slower
4093 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4094 // of 5 runs - Sep 2005).
4095 //
4096 // The following code actually changes the niceness of kernel-thread/LWP. It
4097 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4098 // not the entire user process, and user level threads are 1:1 mapped to kernel
4099 // threads. It has always been the case, but could change in the future. For
4100 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4101 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4102 
4103 int os::java_to_os_priority[CriticalPriority + 1] = {
4104   19,              // 0 Entry should never be used
4105 
4106    4,              // 1 MinPriority
4107    3,              // 2
4108    2,              // 3
4109 
4110    1,              // 4
4111    0,              // 5 NormPriority
4112   -1,              // 6
4113 
4114   -2,              // 7
4115   -3,              // 8
4116   -4,              // 9 NearMaxPriority
4117 
4118   -5,              // 10 MaxPriority
4119 
4120   -5               // 11 CriticalPriority
4121 };
4122 
4123 static int prio_init() {
4124   if (ThreadPriorityPolicy == 1) {
4125     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4126     // if effective uid is not root. Perhaps, a more elegant way of doing
4127     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4128     if (geteuid() != 0) {
4129       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4130         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4131       }
4132       ThreadPriorityPolicy = 0;
4133     }
4134   }
4135   if (UseCriticalJavaThreadPriority) {
4136     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4137   }
4138   return 0;
4139 }
4140 
4141 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4142   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4143 
4144   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4145   return (ret == 0) ? OS_OK : OS_ERR;
4146 }
4147 
4148 OSReturn os::get_native_priority(const Thread* const thread,
4149                                  int *priority_ptr) {
4150   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4151     *priority_ptr = java_to_os_priority[NormPriority];
4152     return OS_OK;
4153   }
4154 
4155   errno = 0;
4156   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4157   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4158 }
4159 
4160 ////////////////////////////////////////////////////////////////////////////////
4161 // suspend/resume support
4162 
4163 //  The low-level signal-based suspend/resume support is a remnant from the
4164 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4165 //  within hotspot. Currently used by JFR's OSThreadSampler
4166 //
4167 //  The remaining code is greatly simplified from the more general suspension
4168 //  code that used to be used.
4169 //
4170 //  The protocol is quite simple:
4171 //  - suspend:
4172 //      - sends a signal to the target thread
4173 //      - polls the suspend state of the osthread using a yield loop
4174 //      - target thread signal handler (SR_handler) sets suspend state
4175 //        and blocks in sigsuspend until continued
4176 //  - resume:
4177 //      - sets target osthread state to continue
4178 //      - sends signal to end the sigsuspend loop in the SR_handler
4179 //
4180 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4181 //  but is checked for NULL in SR_handler as a thread termination indicator.
4182 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4183 //
4184 //  Note that resume_clear_context() and suspend_save_context() are needed
4185 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4186 //  which in part is used by:
4187 //    - Forte Analyzer: AsyncGetCallTrace()
4188 //    - StackBanging: get_frame_at_stack_banging_point()
4189 
4190 static void resume_clear_context(OSThread *osthread) {
4191   osthread->set_ucontext(NULL);
4192   osthread->set_siginfo(NULL);
4193 }
4194 
4195 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4196                                  ucontext_t* context) {
4197   osthread->set_ucontext(context);
4198   osthread->set_siginfo(siginfo);
4199 }
4200 
4201 // Handler function invoked when a thread's execution is suspended or
4202 // resumed. We have to be careful that only async-safe functions are
4203 // called here (Note: most pthread functions are not async safe and
4204 // should be avoided.)
4205 //
4206 // Note: sigwait() is a more natural fit than sigsuspend() from an
4207 // interface point of view, but sigwait() prevents the signal hander
4208 // from being run. libpthread would get very confused by not having
4209 // its signal handlers run and prevents sigwait()'s use with the
4210 // mutex granting granting signal.
4211 //
4212 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4213 //
4214 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4215   // Save and restore errno to avoid confusing native code with EINTR
4216   // after sigsuspend.
4217   int old_errno = errno;
4218 
4219   Thread* thread = Thread::current_or_null_safe();
4220   assert(thread != NULL, "Missing current thread in SR_handler");
4221 
4222   // On some systems we have seen signal delivery get "stuck" until the signal
4223   // mask is changed as part of thread termination. Check that the current thread
4224   // has not already terminated (via SR_lock()) - else the following assertion
4225   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4226   // destructor has completed.
4227 
4228   if (thread->SR_lock() == NULL) {
4229     return;
4230   }
4231 
4232   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4233 
4234   OSThread* osthread = thread->osthread();
4235 
4236   os::SuspendResume::State current = osthread->sr.state();
4237   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4238     suspend_save_context(osthread, siginfo, context);
4239 
4240     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4241     os::SuspendResume::State state = osthread->sr.suspended();
4242     if (state == os::SuspendResume::SR_SUSPENDED) {
4243       sigset_t suspend_set;  // signals for sigsuspend()
4244       sigemptyset(&suspend_set);
4245       // get current set of blocked signals and unblock resume signal
4246       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4247       sigdelset(&suspend_set, SR_signum);
4248 
4249       sr_semaphore.signal();
4250       // wait here until we are resumed
4251       while (1) {
4252         sigsuspend(&suspend_set);
4253 
4254         os::SuspendResume::State result = osthread->sr.running();
4255         if (result == os::SuspendResume::SR_RUNNING) {
4256           sr_semaphore.signal();
4257           break;
4258         }
4259       }
4260 
4261     } else if (state == os::SuspendResume::SR_RUNNING) {
4262       // request was cancelled, continue
4263     } else {
4264       ShouldNotReachHere();
4265     }
4266 
4267     resume_clear_context(osthread);
4268   } else if (current == os::SuspendResume::SR_RUNNING) {
4269     // request was cancelled, continue
4270   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4271     // ignore
4272   } else {
4273     // ignore
4274   }
4275 
4276   errno = old_errno;
4277 }
4278 
4279 static int SR_initialize() {
4280   struct sigaction act;
4281   char *s;
4282 
4283   // Get signal number to use for suspend/resume
4284   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4285     int sig = ::strtol(s, 0, 10);
4286     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4287         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4288       SR_signum = sig;
4289     } else {
4290       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4291               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4292     }
4293   }
4294 
4295   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4296          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4297 
4298   sigemptyset(&SR_sigset);
4299   sigaddset(&SR_sigset, SR_signum);
4300 
4301   // Set up signal handler for suspend/resume
4302   act.sa_flags = SA_RESTART|SA_SIGINFO;
4303   act.sa_handler = (void (*)(int)) SR_handler;
4304 
4305   // SR_signum is blocked by default.
4306   // 4528190 - We also need to block pthread restart signal (32 on all
4307   // supported Linux platforms). Note that LinuxThreads need to block
4308   // this signal for all threads to work properly. So we don't have
4309   // to use hard-coded signal number when setting up the mask.
4310   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4311 
4312   if (sigaction(SR_signum, &act, 0) == -1) {
4313     return -1;
4314   }
4315 
4316   // Save signal flag
4317   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4318   return 0;
4319 }
4320 
4321 static int sr_notify(OSThread* osthread) {
4322   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4323   assert_status(status == 0, status, "pthread_kill");
4324   return status;
4325 }
4326 
4327 // "Randomly" selected value for how long we want to spin
4328 // before bailing out on suspending a thread, also how often
4329 // we send a signal to a thread we want to resume
4330 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4331 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4332 
4333 // returns true on success and false on error - really an error is fatal
4334 // but this seems the normal response to library errors
4335 static bool do_suspend(OSThread* osthread) {
4336   assert(osthread->sr.is_running(), "thread should be running");
4337   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4338 
4339   // mark as suspended and send signal
4340   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4341     // failed to switch, state wasn't running?
4342     ShouldNotReachHere();
4343     return false;
4344   }
4345 
4346   if (sr_notify(osthread) != 0) {
4347     ShouldNotReachHere();
4348   }
4349 
4350   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4351   while (true) {
4352     if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4353       break;
4354     } else {
4355       // timeout
4356       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4357       if (cancelled == os::SuspendResume::SR_RUNNING) {
4358         return false;
4359       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4360         // make sure that we consume the signal on the semaphore as well
4361         sr_semaphore.wait();
4362         break;
4363       } else {
4364         ShouldNotReachHere();
4365         return false;
4366       }
4367     }
4368   }
4369 
4370   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4371   return true;
4372 }
4373 
4374 static void do_resume(OSThread* osthread) {
4375   assert(osthread->sr.is_suspended(), "thread should be suspended");
4376   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4377 
4378   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4379     // failed to switch to WAKEUP_REQUEST
4380     ShouldNotReachHere();
4381     return;
4382   }
4383 
4384   while (true) {
4385     if (sr_notify(osthread) == 0) {
4386       if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4387         if (osthread->sr.is_running()) {
4388           return;
4389         }
4390       }
4391     } else {
4392       ShouldNotReachHere();
4393     }
4394   }
4395 
4396   guarantee(osthread->sr.is_running(), "Must be running!");
4397 }
4398 
4399 ///////////////////////////////////////////////////////////////////////////////////
4400 // signal handling (except suspend/resume)
4401 
4402 // This routine may be used by user applications as a "hook" to catch signals.
4403 // The user-defined signal handler must pass unrecognized signals to this
4404 // routine, and if it returns true (non-zero), then the signal handler must
4405 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4406 // routine will never retun false (zero), but instead will execute a VM panic
4407 // routine kill the process.
4408 //
4409 // If this routine returns false, it is OK to call it again.  This allows
4410 // the user-defined signal handler to perform checks either before or after
4411 // the VM performs its own checks.  Naturally, the user code would be making
4412 // a serious error if it tried to handle an exception (such as a null check
4413 // or breakpoint) that the VM was generating for its own correct operation.
4414 //
4415 // This routine may recognize any of the following kinds of signals:
4416 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4417 // It should be consulted by handlers for any of those signals.
4418 //
4419 // The caller of this routine must pass in the three arguments supplied
4420 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4421 // field of the structure passed to sigaction().  This routine assumes that
4422 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4423 //
4424 // Note that the VM will print warnings if it detects conflicting signal
4425 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4426 //
4427 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4428                                                  siginfo_t* siginfo,
4429                                                  void* ucontext,
4430                                                  int abort_if_unrecognized);
4431 
4432 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4433   assert(info != NULL && uc != NULL, "it must be old kernel");
4434   int orig_errno = errno;  // Preserve errno value over signal handler.
4435   JVM_handle_linux_signal(sig, info, uc, true);
4436   errno = orig_errno;
4437 }
4438 
4439 
4440 // This boolean allows users to forward their own non-matching signals
4441 // to JVM_handle_linux_signal, harmlessly.
4442 bool os::Linux::signal_handlers_are_installed = false;
4443 
4444 // For signal-chaining
4445 struct sigaction sigact[NSIG];
4446 uint64_t sigs = 0;
4447 #if (64 < NSIG-1)
4448 #error "Not all signals can be encoded in sigs. Adapt its type!"
4449 #endif
4450 bool os::Linux::libjsig_is_loaded = false;
4451 typedef struct sigaction *(*get_signal_t)(int);
4452 get_signal_t os::Linux::get_signal_action = NULL;
4453 
4454 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4455   struct sigaction *actp = NULL;
4456 
4457   if (libjsig_is_loaded) {
4458     // Retrieve the old signal handler from libjsig
4459     actp = (*get_signal_action)(sig);
4460   }
4461   if (actp == NULL) {
4462     // Retrieve the preinstalled signal handler from jvm
4463     actp = get_preinstalled_handler(sig);
4464   }
4465 
4466   return actp;
4467 }
4468 
4469 static bool call_chained_handler(struct sigaction *actp, int sig,
4470                                  siginfo_t *siginfo, void *context) {
4471   // Call the old signal handler
4472   if (actp->sa_handler == SIG_DFL) {
4473     // It's more reasonable to let jvm treat it as an unexpected exception
4474     // instead of taking the default action.
4475     return false;
4476   } else if (actp->sa_handler != SIG_IGN) {
4477     if ((actp->sa_flags & SA_NODEFER) == 0) {
4478       // automaticlly block the signal
4479       sigaddset(&(actp->sa_mask), sig);
4480     }
4481 
4482     sa_handler_t hand = NULL;
4483     sa_sigaction_t sa = NULL;
4484     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4485     // retrieve the chained handler
4486     if (siginfo_flag_set) {
4487       sa = actp->sa_sigaction;
4488     } else {
4489       hand = actp->sa_handler;
4490     }
4491 
4492     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4493       actp->sa_handler = SIG_DFL;
4494     }
4495 
4496     // try to honor the signal mask
4497     sigset_t oset;
4498     sigemptyset(&oset);
4499     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4500 
4501     // call into the chained handler
4502     if (siginfo_flag_set) {
4503       (*sa)(sig, siginfo, context);
4504     } else {
4505       (*hand)(sig);
4506     }
4507 
4508     // restore the signal mask
4509     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4510   }
4511   // Tell jvm's signal handler the signal is taken care of.
4512   return true;
4513 }
4514 
4515 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4516   bool chained = false;
4517   // signal-chaining
4518   if (UseSignalChaining) {
4519     struct sigaction *actp = get_chained_signal_action(sig);
4520     if (actp != NULL) {
4521       chained = call_chained_handler(actp, sig, siginfo, context);
4522     }
4523   }
4524   return chained;
4525 }
4526 
4527 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4528   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4529     return &sigact[sig];
4530   }
4531   return NULL;
4532 }
4533 
4534 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4535   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4536   sigact[sig] = oldAct;
4537   sigs |= (uint64_t)1 << (sig-1);
4538 }
4539 
4540 // for diagnostic
4541 int sigflags[NSIG];
4542 
4543 int os::Linux::get_our_sigflags(int sig) {
4544   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4545   return sigflags[sig];
4546 }
4547 
4548 void os::Linux::set_our_sigflags(int sig, int flags) {
4549   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4550   if (sig > 0 && sig < NSIG) {
4551     sigflags[sig] = flags;
4552   }
4553 }
4554 
4555 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4556   // Check for overwrite.
4557   struct sigaction oldAct;
4558   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4559 
4560   void* oldhand = oldAct.sa_sigaction
4561                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4562                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4563   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4564       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4565       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4566     if (AllowUserSignalHandlers || !set_installed) {
4567       // Do not overwrite; user takes responsibility to forward to us.
4568       return;
4569     } else if (UseSignalChaining) {
4570       // save the old handler in jvm
4571       save_preinstalled_handler(sig, oldAct);
4572       // libjsig also interposes the sigaction() call below and saves the
4573       // old sigaction on it own.
4574     } else {
4575       fatal("Encountered unexpected pre-existing sigaction handler "
4576             "%#lx for signal %d.", (long)oldhand, sig);
4577     }
4578   }
4579 
4580   struct sigaction sigAct;
4581   sigfillset(&(sigAct.sa_mask));
4582   sigAct.sa_handler = SIG_DFL;
4583   if (!set_installed) {
4584     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4585   } else {
4586     sigAct.sa_sigaction = signalHandler;
4587     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4588   }
4589   // Save flags, which are set by ours
4590   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4591   sigflags[sig] = sigAct.sa_flags;
4592 
4593   int ret = sigaction(sig, &sigAct, &oldAct);
4594   assert(ret == 0, "check");
4595 
4596   void* oldhand2  = oldAct.sa_sigaction
4597                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4598                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4599   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4600 }
4601 
4602 // install signal handlers for signals that HotSpot needs to
4603 // handle in order to support Java-level exception handling.
4604 
4605 void os::Linux::install_signal_handlers() {
4606   if (!signal_handlers_are_installed) {
4607     signal_handlers_are_installed = true;
4608 
4609     // signal-chaining
4610     typedef void (*signal_setting_t)();
4611     signal_setting_t begin_signal_setting = NULL;
4612     signal_setting_t end_signal_setting = NULL;
4613     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4614                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4615     if (begin_signal_setting != NULL) {
4616       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4617                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4618       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4619                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4620       libjsig_is_loaded = true;
4621       assert(UseSignalChaining, "should enable signal-chaining");
4622     }
4623     if (libjsig_is_loaded) {
4624       // Tell libjsig jvm is setting signal handlers
4625       (*begin_signal_setting)();
4626     }
4627 
4628     set_signal_handler(SIGSEGV, true);
4629     set_signal_handler(SIGPIPE, true);
4630     set_signal_handler(SIGBUS, true);
4631     set_signal_handler(SIGILL, true);
4632     set_signal_handler(SIGFPE, true);
4633 #if defined(PPC64)
4634     set_signal_handler(SIGTRAP, true);
4635 #endif
4636     set_signal_handler(SIGXFSZ, true);
4637 
4638     if (libjsig_is_loaded) {
4639       // Tell libjsig jvm finishes setting signal handlers
4640       (*end_signal_setting)();
4641     }
4642 
4643     // We don't activate signal checker if libjsig is in place, we trust ourselves
4644     // and if UserSignalHandler is installed all bets are off.
4645     // Log that signal checking is off only if -verbose:jni is specified.
4646     if (CheckJNICalls) {
4647       if (libjsig_is_loaded) {
4648         if (PrintJNIResolving) {
4649           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4650         }
4651         check_signals = false;
4652       }
4653       if (AllowUserSignalHandlers) {
4654         if (PrintJNIResolving) {
4655           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4656         }
4657         check_signals = false;
4658       }
4659     }
4660   }
4661 }
4662 
4663 // This is the fastest way to get thread cpu time on Linux.
4664 // Returns cpu time (user+sys) for any thread, not only for current.
4665 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4666 // It might work on 2.6.10+ with a special kernel/glibc patch.
4667 // For reference, please, see IEEE Std 1003.1-2004:
4668 //   http://www.unix.org/single_unix_specification
4669 
4670 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4671   struct timespec tp;
4672   int rc = os::Posix::clock_gettime(clockid, &tp);
4673   assert(rc == 0, "clock_gettime is expected to return 0 code");
4674 
4675   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4676 }
4677 
4678 void os::Linux::initialize_os_info() {
4679   assert(_os_version == 0, "OS info already initialized");
4680 
4681   struct utsname _uname;
4682 
4683   uint32_t major;
4684   uint32_t minor;
4685   uint32_t fix;
4686 
4687   int rc;
4688 
4689   // Kernel version is unknown if
4690   // verification below fails.
4691   _os_version = 0x01000000;
4692 
4693   rc = uname(&_uname);
4694   if (rc != -1) {
4695 
4696     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4697     if (rc == 3) {
4698 
4699       if (major < 256 && minor < 256 && fix < 256) {
4700         // Kernel version format is as expected,
4701         // set it overriding unknown state.
4702         _os_version = (major << 16) |
4703                       (minor << 8 ) |
4704                       (fix   << 0 ) ;
4705       }
4706     }
4707   }
4708 }
4709 
4710 uint32_t os::Linux::os_version() {
4711   assert(_os_version != 0, "not initialized");
4712   return _os_version & 0x00FFFFFF;
4713 }
4714 
4715 bool os::Linux::os_version_is_known() {
4716   assert(_os_version != 0, "not initialized");
4717   return _os_version & 0x01000000 ? false : true;
4718 }
4719 
4720 /////
4721 // glibc on Linux platform uses non-documented flag
4722 // to indicate, that some special sort of signal
4723 // trampoline is used.
4724 // We will never set this flag, and we should
4725 // ignore this flag in our diagnostic
4726 #ifdef SIGNIFICANT_SIGNAL_MASK
4727   #undef SIGNIFICANT_SIGNAL_MASK
4728 #endif
4729 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4730 
4731 static const char* get_signal_handler_name(address handler,
4732                                            char* buf, int buflen) {
4733   int offset = 0;
4734   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4735   if (found) {
4736     // skip directory names
4737     const char *p1, *p2;
4738     p1 = buf;
4739     size_t len = strlen(os::file_separator());
4740     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4741     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4742   } else {
4743     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4744   }
4745   return buf;
4746 }
4747 
4748 static void print_signal_handler(outputStream* st, int sig,
4749                                  char* buf, size_t buflen) {
4750   struct sigaction sa;
4751 
4752   sigaction(sig, NULL, &sa);
4753 
4754   // See comment for SIGNIFICANT_SIGNAL_MASK define
4755   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4756 
4757   st->print("%s: ", os::exception_name(sig, buf, buflen));
4758 
4759   address handler = (sa.sa_flags & SA_SIGINFO)
4760     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4761     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4762 
4763   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4764     st->print("SIG_DFL");
4765   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4766     st->print("SIG_IGN");
4767   } else {
4768     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4769   }
4770 
4771   st->print(", sa_mask[0]=");
4772   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4773 
4774   address rh = VMError::get_resetted_sighandler(sig);
4775   // May be, handler was resetted by VMError?
4776   if (rh != NULL) {
4777     handler = rh;
4778     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4779   }
4780 
4781   st->print(", sa_flags=");
4782   os::Posix::print_sa_flags(st, sa.sa_flags);
4783 
4784   // Check: is it our handler?
4785   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4786       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4787     // It is our signal handler
4788     // check for flags, reset system-used one!
4789     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4790       st->print(
4791                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4792                 os::Linux::get_our_sigflags(sig));
4793     }
4794   }
4795   st->cr();
4796 }
4797 
4798 
4799 #define DO_SIGNAL_CHECK(sig)                      \
4800   do {                                            \
4801     if (!sigismember(&check_signal_done, sig)) {  \
4802       os::Linux::check_signal_handler(sig);       \
4803     }                                             \
4804   } while (0)
4805 
4806 // This method is a periodic task to check for misbehaving JNI applications
4807 // under CheckJNI, we can add any periodic checks here
4808 
4809 void os::run_periodic_checks() {
4810   if (check_signals == false) return;
4811 
4812   // SEGV and BUS if overridden could potentially prevent
4813   // generation of hs*.log in the event of a crash, debugging
4814   // such a case can be very challenging, so we absolutely
4815   // check the following for a good measure:
4816   DO_SIGNAL_CHECK(SIGSEGV);
4817   DO_SIGNAL_CHECK(SIGILL);
4818   DO_SIGNAL_CHECK(SIGFPE);
4819   DO_SIGNAL_CHECK(SIGBUS);
4820   DO_SIGNAL_CHECK(SIGPIPE);
4821   DO_SIGNAL_CHECK(SIGXFSZ);
4822 #if defined(PPC64)
4823   DO_SIGNAL_CHECK(SIGTRAP);
4824 #endif
4825 
4826   // ReduceSignalUsage allows the user to override these handlers
4827   // see comments at the very top and jvm_md.h
4828   if (!ReduceSignalUsage) {
4829     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4830     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4831     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4832     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4833   }
4834 
4835   DO_SIGNAL_CHECK(SR_signum);
4836 }
4837 
4838 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4839 
4840 static os_sigaction_t os_sigaction = NULL;
4841 
4842 void os::Linux::check_signal_handler(int sig) {
4843   char buf[O_BUFLEN];
4844   address jvmHandler = NULL;
4845 
4846 
4847   struct sigaction act;
4848   if (os_sigaction == NULL) {
4849     // only trust the default sigaction, in case it has been interposed
4850     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4851     if (os_sigaction == NULL) return;
4852   }
4853 
4854   os_sigaction(sig, (struct sigaction*)NULL, &act);
4855 
4856 
4857   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4858 
4859   address thisHandler = (act.sa_flags & SA_SIGINFO)
4860     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4861     : CAST_FROM_FN_PTR(address, act.sa_handler);
4862 
4863 
4864   switch (sig) {
4865   case SIGSEGV:
4866   case SIGBUS:
4867   case SIGFPE:
4868   case SIGPIPE:
4869   case SIGILL:
4870   case SIGXFSZ:
4871     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4872     break;
4873 
4874   case SHUTDOWN1_SIGNAL:
4875   case SHUTDOWN2_SIGNAL:
4876   case SHUTDOWN3_SIGNAL:
4877   case BREAK_SIGNAL:
4878     jvmHandler = (address)user_handler();
4879     break;
4880 
4881   default:
4882     if (sig == SR_signum) {
4883       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4884     } else {
4885       return;
4886     }
4887     break;
4888   }
4889 
4890   if (thisHandler != jvmHandler) {
4891     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4892     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4893     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4894     // No need to check this sig any longer
4895     sigaddset(&check_signal_done, sig);
4896     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4897     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4898       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4899                     exception_name(sig, buf, O_BUFLEN));
4900     }
4901   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4902     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4903     tty->print("expected:");
4904     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4905     tty->cr();
4906     tty->print("  found:");
4907     os::Posix::print_sa_flags(tty, act.sa_flags);
4908     tty->cr();
4909     // No need to check this sig any longer
4910     sigaddset(&check_signal_done, sig);
4911   }
4912 
4913   // Dump all the signal
4914   if (sigismember(&check_signal_done, sig)) {
4915     print_signal_handlers(tty, buf, O_BUFLEN);
4916   }
4917 }
4918 
4919 extern void report_error(char* file_name, int line_no, char* title,
4920                          char* format, ...);
4921 
4922 // this is called _before_ most of the global arguments have been parsed
4923 void os::init(void) {
4924   char dummy;   // used to get a guess on initial stack address
4925 
4926   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4927 
4928   init_random(1234567);
4929 
4930   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4931   if (Linux::page_size() == -1) {
4932     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4933           os::strerror(errno));
4934   }
4935   init_page_sizes((size_t) Linux::page_size());
4936 
4937   Linux::initialize_system_info();
4938 
4939   Linux::initialize_os_info();
4940 
4941   // _main_thread points to the thread that created/loaded the JVM.
4942   Linux::_main_thread = pthread_self();
4943 
4944   // retrieve entry point for pthread_setname_np
4945   Linux::_pthread_setname_np =
4946     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4947 
4948   os::Posix::init();
4949 
4950   initial_time_count = javaTimeNanos();
4951 
4952   // Always warn if no monotonic clock available
4953   if (!os::Posix::supports_monotonic_clock()) {
4954     warning("No monotonic clock was available - timed services may "    \
4955             "be adversely affected if the time-of-day clock changes");
4956   }
4957 }
4958 
4959 // To install functions for atexit system call
4960 extern "C" {
4961   static void perfMemory_exit_helper() {
4962     perfMemory_exit();
4963   }
4964 }
4965 
4966 void os::pd_init_container_support() {
4967   OSContainer::init();
4968 }
4969 
4970 void os::Linux::numa_init() {
4971 
4972   // Java can be invoked as
4973   // 1. Without numactl and heap will be allocated/configured on all nodes as
4974   //    per the system policy.
4975   // 2. With numactl --interleave: 
4976   //      Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same
4977   //      API for membind case bitmask is reset.
4978   //      Interleave is only hint and Kernel can fallback to other nodes if 
4979   //      no memory is available on the target nodes.
4980   // 3. With numactl --membind: 
4981   //      Use numa_get_membind(v2) API to get nodes bitmask. The same API for
4982   //      interleave case returns bitmask of all nodes.
4983   // numa_all_nodes_ptr holds bitmask of all nodes. 
4984   // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct
4985   // bitmask when externally configured to run on all or fewer nodes.
4986 
4987   if (!Linux::libnuma_init()) {
4988     UseNUMA = false;
4989   } else {
4990     if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) {
4991       // If there's only one node (they start from 0) or if the process
4992       // is bound explicitly to a single node using membind, disable NUMA.
4993       UseNUMA = false;
4994     } else {
4995 
4996       LogTarget(Info,os) log;
4997       LogStream ls(log);
4998 
4999       Linux::set_configured_numa_policy (Linux::identify_numa_policy());
5000 
5001       struct bitmask* bmp = Linux::_numa_membind_bitmask;
5002       const char* numa_mode = "membind";
5003 
5004       if (Linux::is_running_in_interleave_mode()) {
5005         bmp = Linux::_numa_interleave_bitmask;
5006         numa_mode = "interleave";
5007       }
5008 
5009       ls.print("UseNUMA is enabled and invoked in '%s' mode."
5010                " Heap will be configured using NUMA memory nodes:", numa_mode);
5011 
5012       for (int node = 0; node < Linux::numa_max_node(); node++) {
5013         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5014           ls.print(" %d", node);
5015         }
5016       }
5017     }
5018   }
5019 
5020   if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5021     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5022     // we can make the adaptive lgrp chunk resizing work. If the user specified both
5023     // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5024     // and disable adaptive resizing.
5025     if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5026       warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5027               "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5028       UseAdaptiveSizePolicy = false;
5029       UseAdaptiveNUMAChunkSizing = false;
5030     }
5031   }
5032 
5033   if (!UseNUMA && ForceNUMA) {
5034     UseNUMA = true;
5035   }
5036 }
5037 
5038 // this is called _after_ the global arguments have been parsed
5039 jint os::init_2(void) {
5040 
5041   // This could be set after os::Posix::init() but all platforms
5042   // have to set it the same so we have to mirror Solaris.
5043   DEBUG_ONLY(os::set_mutex_init_done();)
5044 
5045   os::Posix::init_2();
5046 
5047   Linux::fast_thread_clock_init();
5048 
5049   // initialize suspend/resume support - must do this before signal_sets_init()
5050   if (SR_initialize() != 0) {
5051     perror("SR_initialize failed");
5052     return JNI_ERR;
5053   }
5054 
5055   Linux::signal_sets_init();
5056   Linux::install_signal_handlers();
5057   // Initialize data for jdk.internal.misc.Signal
5058   if (!ReduceSignalUsage) {
5059     jdk_misc_signal_init();
5060   }
5061 
5062   // Check and sets minimum stack sizes against command line options
5063   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5064     return JNI_ERR;
5065   }
5066 
5067   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5068   if (!suppress_primordial_thread_resolution) {
5069     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5070   }
5071 
5072 #if defined(IA32)
5073   workaround_expand_exec_shield_cs_limit();
5074 #endif
5075 
5076   Linux::libpthread_init();
5077   Linux::sched_getcpu_init();
5078   log_info(os)("HotSpot is running with %s, %s",
5079                Linux::glibc_version(), Linux::libpthread_version());
5080 
5081   if (UseNUMA) {
5082     Linux::numa_init();
5083   }
5084 
5085   if (MaxFDLimit) {
5086     // set the number of file descriptors to max. print out error
5087     // if getrlimit/setrlimit fails but continue regardless.
5088     struct rlimit nbr_files;
5089     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5090     if (status != 0) {
5091       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5092     } else {
5093       nbr_files.rlim_cur = nbr_files.rlim_max;
5094       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5095       if (status != 0) {
5096         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5097       }
5098     }
5099   }
5100 
5101   // Initialize lock used to serialize thread creation (see os::create_thread)
5102   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5103 
5104   // at-exit methods are called in the reverse order of their registration.
5105   // atexit functions are called on return from main or as a result of a
5106   // call to exit(3C). There can be only 32 of these functions registered
5107   // and atexit() does not set errno.
5108 
5109   if (PerfAllowAtExitRegistration) {
5110     // only register atexit functions if PerfAllowAtExitRegistration is set.
5111     // atexit functions can be delayed until process exit time, which
5112     // can be problematic for embedded VM situations. Embedded VMs should
5113     // call DestroyJavaVM() to assure that VM resources are released.
5114 
5115     // note: perfMemory_exit_helper atexit function may be removed in
5116     // the future if the appropriate cleanup code can be added to the
5117     // VM_Exit VMOperation's doit method.
5118     if (atexit(perfMemory_exit_helper) != 0) {
5119       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5120     }
5121   }
5122 
5123   // initialize thread priority policy
5124   prio_init();
5125 
5126   if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
5127     set_coredump_filter(DAX_SHARED_BIT);
5128   }
5129 
5130   if (UseSharedSpaces && DumpPrivateMappingsInCore) {
5131     set_coredump_filter(FILE_BACKED_PVT_BIT);
5132   }
5133 
5134   return JNI_OK;
5135 }
5136 
5137 // Mark the polling page as unreadable
5138 void os::make_polling_page_unreadable(void) {
5139   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5140     fatal("Could not disable polling page");
5141   }
5142 }
5143 
5144 // Mark the polling page as readable
5145 void os::make_polling_page_readable(void) {
5146   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5147     fatal("Could not enable polling page");
5148   }
5149 }
5150 
5151 // older glibc versions don't have this macro (which expands to
5152 // an optimized bit-counting function) so we have to roll our own
5153 #ifndef CPU_COUNT
5154 
5155 static int _cpu_count(const cpu_set_t* cpus) {
5156   int count = 0;
5157   // only look up to the number of configured processors
5158   for (int i = 0; i < os::processor_count(); i++) {
5159     if (CPU_ISSET(i, cpus)) {
5160       count++;
5161     }
5162   }
5163   return count;
5164 }
5165 
5166 #define CPU_COUNT(cpus) _cpu_count(cpus)
5167 
5168 #endif // CPU_COUNT
5169 
5170 // Get the current number of available processors for this process.
5171 // This value can change at any time during a process's lifetime.
5172 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5173 // If it appears there may be more than 1024 processors then we do a
5174 // dynamic check - see 6515172 for details.
5175 // If anything goes wrong we fallback to returning the number of online
5176 // processors - which can be greater than the number available to the process.
5177 int os::Linux::active_processor_count() {
5178   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5179   cpu_set_t* cpus_p = &cpus;
5180   int cpus_size = sizeof(cpu_set_t);
5181 
5182   int configured_cpus = os::processor_count();  // upper bound on available cpus
5183   int cpu_count = 0;
5184 
5185 // old build platforms may not support dynamic cpu sets
5186 #ifdef CPU_ALLOC
5187 
5188   // To enable easy testing of the dynamic path on different platforms we
5189   // introduce a diagnostic flag: UseCpuAllocPath
5190   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5191     // kernel may use a mask bigger than cpu_set_t
5192     log_trace(os)("active_processor_count: using dynamic path %s"
5193                   "- configured processors: %d",
5194                   UseCpuAllocPath ? "(forced) " : "",
5195                   configured_cpus);
5196     cpus_p = CPU_ALLOC(configured_cpus);
5197     if (cpus_p != NULL) {
5198       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5199       // zero it just to be safe
5200       CPU_ZERO_S(cpus_size, cpus_p);
5201     }
5202     else {
5203        // failed to allocate so fallback to online cpus
5204        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5205        log_trace(os)("active_processor_count: "
5206                      "CPU_ALLOC failed (%s) - using "
5207                      "online processor count: %d",
5208                      os::strerror(errno), online_cpus);
5209        return online_cpus;
5210     }
5211   }
5212   else {
5213     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5214                   configured_cpus);
5215   }
5216 #else // CPU_ALLOC
5217 // these stubs won't be executed
5218 #define CPU_COUNT_S(size, cpus) -1
5219 #define CPU_FREE(cpus)
5220 
5221   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5222                 configured_cpus);
5223 #endif // CPU_ALLOC
5224 
5225   // pid 0 means the current thread - which we have to assume represents the process
5226   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5227     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5228       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5229     }
5230     else {
5231       cpu_count = CPU_COUNT(cpus_p);
5232     }
5233     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5234   }
5235   else {
5236     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5237     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5238             "which may exceed available processors", os::strerror(errno), cpu_count);
5239   }
5240 
5241   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5242     CPU_FREE(cpus_p);
5243   }
5244 
5245   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5246   return cpu_count;
5247 }
5248 
5249 // Determine the active processor count from one of
5250 // three different sources:
5251 //
5252 // 1. User option -XX:ActiveProcessorCount
5253 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5254 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5255 //
5256 // Option 1, if specified, will always override.
5257 // If the cgroup subsystem is active and configured, we
5258 // will return the min of the cgroup and option 2 results.
5259 // This is required since tools, such as numactl, that
5260 // alter cpu affinity do not update cgroup subsystem
5261 // cpuset configuration files.
5262 int os::active_processor_count() {
5263   // User has overridden the number of active processors
5264   if (ActiveProcessorCount > 0) {
5265     log_trace(os)("active_processor_count: "
5266                   "active processor count set by user : %d",
5267                   ActiveProcessorCount);
5268     return ActiveProcessorCount;
5269   }
5270 
5271   int active_cpus;
5272   if (OSContainer::is_containerized()) {
5273     active_cpus = OSContainer::active_processor_count();
5274     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5275                    active_cpus);
5276   } else {
5277     active_cpus = os::Linux::active_processor_count();
5278   }
5279 
5280   return active_cpus;
5281 }
5282 
5283 uint os::processor_id() {
5284   const int id = Linux::sched_getcpu();
5285   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5286   return (uint)id;
5287 }
5288 
5289 void os::set_native_thread_name(const char *name) {
5290   if (Linux::_pthread_setname_np) {
5291     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5292     snprintf(buf, sizeof(buf), "%s", name);
5293     buf[sizeof(buf) - 1] = '\0';
5294     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5295     // ERANGE should not happen; all other errors should just be ignored.
5296     assert(rc != ERANGE, "pthread_setname_np failed");
5297   }
5298 }
5299 
5300 bool os::distribute_processes(uint length, uint* distribution) {
5301   // Not yet implemented.
5302   return false;
5303 }
5304 
5305 bool os::bind_to_processor(uint processor_id) {
5306   // Not yet implemented.
5307   return false;
5308 }
5309 
5310 ///
5311 
5312 void os::SuspendedThreadTask::internal_do_task() {
5313   if (do_suspend(_thread->osthread())) {
5314     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5315     do_task(context);
5316     do_resume(_thread->osthread());
5317   }
5318 }
5319 
5320 ////////////////////////////////////////////////////////////////////////////////
5321 // debug support
5322 
5323 bool os::find(address addr, outputStream* st) {
5324   Dl_info dlinfo;
5325   memset(&dlinfo, 0, sizeof(dlinfo));
5326   if (dladdr(addr, &dlinfo) != 0) {
5327     st->print(PTR_FORMAT ": ", p2i(addr));
5328     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5329       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5330                 p2i(addr) - p2i(dlinfo.dli_saddr));
5331     } else if (dlinfo.dli_fbase != NULL) {
5332       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5333     } else {
5334       st->print("<absolute address>");
5335     }
5336     if (dlinfo.dli_fname != NULL) {
5337       st->print(" in %s", dlinfo.dli_fname);
5338     }
5339     if (dlinfo.dli_fbase != NULL) {
5340       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5341     }
5342     st->cr();
5343 
5344     if (Verbose) {
5345       // decode some bytes around the PC
5346       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5347       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5348       address       lowest = (address) dlinfo.dli_sname;
5349       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5350       if (begin < lowest)  begin = lowest;
5351       Dl_info dlinfo2;
5352       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5353           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5354         end = (address) dlinfo2.dli_saddr;
5355       }
5356       Disassembler::decode(begin, end, st);
5357     }
5358     return true;
5359   }
5360   return false;
5361 }
5362 
5363 ////////////////////////////////////////////////////////////////////////////////
5364 // misc
5365 
5366 // This does not do anything on Linux. This is basically a hook for being
5367 // able to use structured exception handling (thread-local exception filters)
5368 // on, e.g., Win32.
5369 void
5370 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5371                          JavaCallArguments* args, Thread* thread) {
5372   f(value, method, args, thread);
5373 }
5374 
5375 void os::print_statistics() {
5376 }
5377 
5378 bool os::message_box(const char* title, const char* message) {
5379   int i;
5380   fdStream err(defaultStream::error_fd());
5381   for (i = 0; i < 78; i++) err.print_raw("=");
5382   err.cr();
5383   err.print_raw_cr(title);
5384   for (i = 0; i < 78; i++) err.print_raw("-");
5385   err.cr();
5386   err.print_raw_cr(message);
5387   for (i = 0; i < 78; i++) err.print_raw("=");
5388   err.cr();
5389 
5390   char buf[16];
5391   // Prevent process from exiting upon "read error" without consuming all CPU
5392   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5393 
5394   return buf[0] == 'y' || buf[0] == 'Y';
5395 }
5396 
5397 // Is a (classpath) directory empty?
5398 bool os::dir_is_empty(const char* path) {
5399   DIR *dir = NULL;
5400   struct dirent *ptr;
5401 
5402   dir = opendir(path);
5403   if (dir == NULL) return true;
5404 
5405   // Scan the directory
5406   bool result = true;
5407   while (result && (ptr = readdir(dir)) != NULL) {
5408     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5409       result = false;
5410     }
5411   }
5412   closedir(dir);
5413   return result;
5414 }
5415 
5416 // This code originates from JDK's sysOpen and open64_w
5417 // from src/solaris/hpi/src/system_md.c
5418 
5419 int os::open(const char *path, int oflag, int mode) {
5420   if (strlen(path) > MAX_PATH - 1) {
5421     errno = ENAMETOOLONG;
5422     return -1;
5423   }
5424 
5425   // All file descriptors that are opened in the Java process and not
5426   // specifically destined for a subprocess should have the close-on-exec
5427   // flag set.  If we don't set it, then careless 3rd party native code
5428   // might fork and exec without closing all appropriate file descriptors
5429   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5430   // turn might:
5431   //
5432   // - cause end-of-file to fail to be detected on some file
5433   //   descriptors, resulting in mysterious hangs, or
5434   //
5435   // - might cause an fopen in the subprocess to fail on a system
5436   //   suffering from bug 1085341.
5437   //
5438   // (Yes, the default setting of the close-on-exec flag is a Unix
5439   // design flaw)
5440   //
5441   // See:
5442   // 1085341: 32-bit stdio routines should support file descriptors >255
5443   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5444   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5445   //
5446   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5447   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5448   // because it saves a system call and removes a small window where the flag
5449   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5450   // and we fall back to using FD_CLOEXEC (see below).
5451 #ifdef O_CLOEXEC
5452   oflag |= O_CLOEXEC;
5453 #endif
5454 
5455   int fd = ::open64(path, oflag, mode);
5456   if (fd == -1) return -1;
5457 
5458   //If the open succeeded, the file might still be a directory
5459   {
5460     struct stat64 buf64;
5461     int ret = ::fstat64(fd, &buf64);
5462     int st_mode = buf64.st_mode;
5463 
5464     if (ret != -1) {
5465       if ((st_mode & S_IFMT) == S_IFDIR) {
5466         errno = EISDIR;
5467         ::close(fd);
5468         return -1;
5469       }
5470     } else {
5471       ::close(fd);
5472       return -1;
5473     }
5474   }
5475 
5476 #ifdef FD_CLOEXEC
5477   // Validate that the use of the O_CLOEXEC flag on open above worked.
5478   // With recent kernels, we will perform this check exactly once.
5479   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5480   if (!O_CLOEXEC_is_known_to_work) {
5481     int flags = ::fcntl(fd, F_GETFD);
5482     if (flags != -1) {
5483       if ((flags & FD_CLOEXEC) != 0)
5484         O_CLOEXEC_is_known_to_work = 1;
5485       else
5486         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5487     }
5488   }
5489 #endif
5490 
5491   return fd;
5492 }
5493 
5494 
5495 // create binary file, rewriting existing file if required
5496 int os::create_binary_file(const char* path, bool rewrite_existing) {
5497   int oflags = O_WRONLY | O_CREAT;
5498   if (!rewrite_existing) {
5499     oflags |= O_EXCL;
5500   }
5501   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5502 }
5503 
5504 // return current position of file pointer
5505 jlong os::current_file_offset(int fd) {
5506   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5507 }
5508 
5509 // move file pointer to the specified offset
5510 jlong os::seek_to_file_offset(int fd, jlong offset) {
5511   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5512 }
5513 
5514 // This code originates from JDK's sysAvailable
5515 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5516 
5517 int os::available(int fd, jlong *bytes) {
5518   jlong cur, end;
5519   int mode;
5520   struct stat64 buf64;
5521 
5522   if (::fstat64(fd, &buf64) >= 0) {
5523     mode = buf64.st_mode;
5524     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5525       int n;
5526       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5527         *bytes = n;
5528         return 1;
5529       }
5530     }
5531   }
5532   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5533     return 0;
5534   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5535     return 0;
5536   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5537     return 0;
5538   }
5539   *bytes = end - cur;
5540   return 1;
5541 }
5542 
5543 // Map a block of memory.
5544 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5545                         char *addr, size_t bytes, bool read_only,
5546                         bool allow_exec) {
5547   int prot;
5548   int flags = MAP_PRIVATE;
5549 
5550   if (read_only) {
5551     prot = PROT_READ;
5552   } else {
5553     prot = PROT_READ | PROT_WRITE;
5554   }
5555 
5556   if (allow_exec) {
5557     prot |= PROT_EXEC;
5558   }
5559 
5560   if (addr != NULL) {
5561     flags |= MAP_FIXED;
5562   }
5563 
5564   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5565                                      fd, file_offset);
5566   if (mapped_address == MAP_FAILED) {
5567     return NULL;
5568   }
5569   return mapped_address;
5570 }
5571 
5572 
5573 // Remap a block of memory.
5574 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5575                           char *addr, size_t bytes, bool read_only,
5576                           bool allow_exec) {
5577   // same as map_memory() on this OS
5578   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5579                         allow_exec);
5580 }
5581 
5582 
5583 // Unmap a block of memory.
5584 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5585   return munmap(addr, bytes) == 0;
5586 }
5587 
5588 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5589 
5590 static jlong fast_cpu_time(Thread *thread) {
5591     clockid_t clockid;
5592     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5593                                               &clockid);
5594     if (rc == 0) {
5595       return os::Linux::fast_thread_cpu_time(clockid);
5596     } else {
5597       // It's possible to encounter a terminated native thread that failed
5598       // to detach itself from the VM - which should result in ESRCH.
5599       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5600       return -1;
5601     }
5602 }
5603 
5604 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5605 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5606 // of a thread.
5607 //
5608 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5609 // the fast estimate available on the platform.
5610 
5611 jlong os::current_thread_cpu_time() {
5612   if (os::Linux::supports_fast_thread_cpu_time()) {
5613     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5614   } else {
5615     // return user + sys since the cost is the same
5616     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5617   }
5618 }
5619 
5620 jlong os::thread_cpu_time(Thread* thread) {
5621   // consistent with what current_thread_cpu_time() returns
5622   if (os::Linux::supports_fast_thread_cpu_time()) {
5623     return fast_cpu_time(thread);
5624   } else {
5625     return slow_thread_cpu_time(thread, true /* user + sys */);
5626   }
5627 }
5628 
5629 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5630   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5631     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5632   } else {
5633     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5634   }
5635 }
5636 
5637 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5638   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5639     return fast_cpu_time(thread);
5640   } else {
5641     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5642   }
5643 }
5644 
5645 //  -1 on error.
5646 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5647   pid_t  tid = thread->osthread()->thread_id();
5648   char *s;
5649   char stat[2048];
5650   int statlen;
5651   char proc_name[64];
5652   int count;
5653   long sys_time, user_time;
5654   char cdummy;
5655   int idummy;
5656   long ldummy;
5657   FILE *fp;
5658 
5659   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5660   fp = fopen(proc_name, "r");
5661   if (fp == NULL) return -1;
5662   statlen = fread(stat, 1, 2047, fp);
5663   stat[statlen] = '\0';
5664   fclose(fp);
5665 
5666   // Skip pid and the command string. Note that we could be dealing with
5667   // weird command names, e.g. user could decide to rename java launcher
5668   // to "java 1.4.2 :)", then the stat file would look like
5669   //                1234 (java 1.4.2 :)) R ... ...
5670   // We don't really need to know the command string, just find the last
5671   // occurrence of ")" and then start parsing from there. See bug 4726580.
5672   s = strrchr(stat, ')');
5673   if (s == NULL) return -1;
5674 
5675   // Skip blank chars
5676   do { s++; } while (s && isspace(*s));
5677 
5678   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5679                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5680                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5681                  &user_time, &sys_time);
5682   if (count != 13) return -1;
5683   if (user_sys_cpu_time) {
5684     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5685   } else {
5686     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5687   }
5688 }
5689 
5690 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5691   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5692   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5693   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5694   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5695 }
5696 
5697 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5698   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5699   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5700   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5701   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5702 }
5703 
5704 bool os::is_thread_cpu_time_supported() {
5705   return true;
5706 }
5707 
5708 // System loadavg support.  Returns -1 if load average cannot be obtained.
5709 // Linux doesn't yet have a (official) notion of processor sets,
5710 // so just return the system wide load average.
5711 int os::loadavg(double loadavg[], int nelem) {
5712   return ::getloadavg(loadavg, nelem);
5713 }
5714 
5715 void os::pause() {
5716   char filename[MAX_PATH];
5717   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5718     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5719   } else {
5720     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5721   }
5722 
5723   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5724   if (fd != -1) {
5725     struct stat buf;
5726     ::close(fd);
5727     while (::stat(filename, &buf) == 0) {
5728       (void)::poll(NULL, 0, 100);
5729     }
5730   } else {
5731     jio_fprintf(stderr,
5732                 "Could not open pause file '%s', continuing immediately.\n", filename);
5733   }
5734 }
5735 
5736 extern char** environ;
5737 
5738 // Run the specified command in a separate process. Return its exit value,
5739 // or -1 on failure (e.g. can't fork a new process).
5740 // Unlike system(), this function can be called from signal handler. It
5741 // doesn't block SIGINT et al.
5742 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5743   const char * argv[4] = {"sh", "-c", cmd, NULL};
5744 
5745   pid_t pid ;
5746 
5747   if (use_vfork_if_available) {
5748     pid = vfork();
5749   } else {
5750     pid = fork();
5751   }
5752 
5753   if (pid < 0) {
5754     // fork failed
5755     return -1;
5756 
5757   } else if (pid == 0) {
5758     // child process
5759 
5760     execve("/bin/sh", (char* const*)argv, environ);
5761 
5762     // execve failed
5763     _exit(-1);
5764 
5765   } else  {
5766     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5767     // care about the actual exit code, for now.
5768 
5769     int status;
5770 
5771     // Wait for the child process to exit.  This returns immediately if
5772     // the child has already exited. */
5773     while (waitpid(pid, &status, 0) < 0) {
5774       switch (errno) {
5775       case ECHILD: return 0;
5776       case EINTR: break;
5777       default: return -1;
5778       }
5779     }
5780 
5781     if (WIFEXITED(status)) {
5782       // The child exited normally; get its exit code.
5783       return WEXITSTATUS(status);
5784     } else if (WIFSIGNALED(status)) {
5785       // The child exited because of a signal
5786       // The best value to return is 0x80 + signal number,
5787       // because that is what all Unix shells do, and because
5788       // it allows callers to distinguish between process exit and
5789       // process death by signal.
5790       return 0x80 + WTERMSIG(status);
5791     } else {
5792       // Unknown exit code; pass it through
5793       return status;
5794     }
5795   }
5796 }
5797 
5798 // Get the default path to the core file
5799 // Returns the length of the string
5800 int os::get_core_path(char* buffer, size_t bufferSize) {
5801   /*
5802    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5803    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5804    */
5805   const int core_pattern_len = 129;
5806   char core_pattern[core_pattern_len] = {0};
5807 
5808   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5809   if (core_pattern_file == -1) {
5810     return -1;
5811   }
5812 
5813   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5814   ::close(core_pattern_file);
5815   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5816     return -1;
5817   }
5818   if (core_pattern[ret-1] == '\n') {
5819     core_pattern[ret-1] = '\0';
5820   } else {
5821     core_pattern[ret] = '\0';
5822   }
5823 
5824   // Replace the %p in the core pattern with the process id. NOTE: we do this
5825   // only if the pattern doesn't start with "|", and we support only one %p in
5826   // the pattern.
5827   char *pid_pos = strstr(core_pattern, "%p");
5828   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5829   int written;
5830 
5831   if (core_pattern[0] == '/') {
5832     if (pid_pos != NULL) {
5833       *pid_pos = '\0';
5834       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5835                              current_process_id(), tail);
5836     } else {
5837       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5838     }
5839   } else {
5840     char cwd[PATH_MAX];
5841 
5842     const char* p = get_current_directory(cwd, PATH_MAX);
5843     if (p == NULL) {
5844       return -1;
5845     }
5846 
5847     if (core_pattern[0] == '|') {
5848       written = jio_snprintf(buffer, bufferSize,
5849                              "\"%s\" (or dumping to %s/core.%d)",
5850                              &core_pattern[1], p, current_process_id());
5851     } else if (pid_pos != NULL) {
5852       *pid_pos = '\0';
5853       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
5854                              current_process_id(), tail);
5855     } else {
5856       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5857     }
5858   }
5859 
5860   if (written < 0) {
5861     return -1;
5862   }
5863 
5864   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5865     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5866 
5867     if (core_uses_pid_file != -1) {
5868       char core_uses_pid = 0;
5869       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5870       ::close(core_uses_pid_file);
5871 
5872       if (core_uses_pid == '1') {
5873         jio_snprintf(buffer + written, bufferSize - written,
5874                                           ".%d", current_process_id());
5875       }
5876     }
5877   }
5878 
5879   return strlen(buffer);
5880 }
5881 
5882 bool os::start_debugging(char *buf, int buflen) {
5883   int len = (int)strlen(buf);
5884   char *p = &buf[len];
5885 
5886   jio_snprintf(p, buflen-len,
5887                "\n\n"
5888                "Do you want to debug the problem?\n\n"
5889                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5890                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5891                "Otherwise, press RETURN to abort...",
5892                os::current_process_id(), os::current_process_id(),
5893                os::current_thread_id(), os::current_thread_id());
5894 
5895   bool yes = os::message_box("Unexpected Error", buf);
5896 
5897   if (yes) {
5898     // yes, user asked VM to launch debugger
5899     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5900                  os::current_process_id(), os::current_process_id());
5901 
5902     os::fork_and_exec(buf);
5903     yes = false;
5904   }
5905   return yes;
5906 }
5907 
5908 
5909 // Java/Compiler thread:
5910 //
5911 //   Low memory addresses
5912 // P0 +------------------------+
5913 //    |                        |\  Java thread created by VM does not have glibc
5914 //    |    glibc guard page    | - guard page, attached Java thread usually has
5915 //    |                        |/  1 glibc guard page.
5916 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5917 //    |                        |\
5918 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5919 //    |                        |/
5920 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5921 //    |                        |\
5922 //    |      Normal Stack      | -
5923 //    |                        |/
5924 // P2 +------------------------+ Thread::stack_base()
5925 //
5926 // Non-Java thread:
5927 //
5928 //   Low memory addresses
5929 // P0 +------------------------+
5930 //    |                        |\
5931 //    |  glibc guard page      | - usually 1 page
5932 //    |                        |/
5933 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5934 //    |                        |\
5935 //    |      Normal Stack      | -
5936 //    |                        |/
5937 // P2 +------------------------+ Thread::stack_base()
5938 //
5939 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5940 //    returned from pthread_attr_getstack().
5941 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5942 //    of the stack size given in pthread_attr. We work around this for
5943 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5944 //
5945 #ifndef ZERO
5946 static void current_stack_region(address * bottom, size_t * size) {
5947   if (os::is_primordial_thread()) {
5948     // primordial thread needs special handling because pthread_getattr_np()
5949     // may return bogus value.
5950     *bottom = os::Linux::initial_thread_stack_bottom();
5951     *size   = os::Linux::initial_thread_stack_size();
5952   } else {
5953     pthread_attr_t attr;
5954 
5955     int rslt = pthread_getattr_np(pthread_self(), &attr);
5956 
5957     // JVM needs to know exact stack location, abort if it fails
5958     if (rslt != 0) {
5959       if (rslt == ENOMEM) {
5960         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5961       } else {
5962         fatal("pthread_getattr_np failed with error = %d", rslt);
5963       }
5964     }
5965 
5966     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5967       fatal("Cannot locate current stack attributes!");
5968     }
5969 
5970     // Work around NPTL stack guard error.
5971     size_t guard_size = 0;
5972     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5973     if (rslt != 0) {
5974       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5975     }
5976     *bottom += guard_size;
5977     *size   -= guard_size;
5978 
5979     pthread_attr_destroy(&attr);
5980 
5981   }
5982   assert(os::current_stack_pointer() >= *bottom &&
5983          os::current_stack_pointer() < *bottom + *size, "just checking");
5984 }
5985 
5986 address os::current_stack_base() {
5987   address bottom;
5988   size_t size;
5989   current_stack_region(&bottom, &size);
5990   return (bottom + size);
5991 }
5992 
5993 size_t os::current_stack_size() {
5994   // This stack size includes the usable stack and HotSpot guard pages
5995   // (for the threads that have Hotspot guard pages).
5996   address bottom;
5997   size_t size;
5998   current_stack_region(&bottom, &size);
5999   return size;
6000 }
6001 #endif
6002 
6003 static inline struct timespec get_mtime(const char* filename) {
6004   struct stat st;
6005   int ret = os::stat(filename, &st);
6006   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
6007   return st.st_mtim;
6008 }
6009 
6010 int os::compare_file_modified_times(const char* file1, const char* file2) {
6011   struct timespec filetime1 = get_mtime(file1);
6012   struct timespec filetime2 = get_mtime(file2);
6013   int diff = filetime1.tv_sec - filetime2.tv_sec;
6014   if (diff == 0) {
6015     return filetime1.tv_nsec - filetime2.tv_nsec;
6016   }
6017   return diff;
6018 }
6019 
6020 /////////////// Unit tests ///////////////
6021 
6022 #ifndef PRODUCT
6023 
6024 class TestReserveMemorySpecial : AllStatic {
6025  public:
6026   static void small_page_write(void* addr, size_t size) {
6027     size_t page_size = os::vm_page_size();
6028 
6029     char* end = (char*)addr + size;
6030     for (char* p = (char*)addr; p < end; p += page_size) {
6031       *p = 1;
6032     }
6033   }
6034 
6035   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6036     if (!UseHugeTLBFS) {
6037       return;
6038     }
6039 
6040     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6041 
6042     if (addr != NULL) {
6043       small_page_write(addr, size);
6044 
6045       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6046     }
6047   }
6048 
6049   static void test_reserve_memory_special_huge_tlbfs_only() {
6050     if (!UseHugeTLBFS) {
6051       return;
6052     }
6053 
6054     size_t lp = os::large_page_size();
6055 
6056     for (size_t size = lp; size <= lp * 10; size += lp) {
6057       test_reserve_memory_special_huge_tlbfs_only(size);
6058     }
6059   }
6060 
6061   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6062     size_t lp = os::large_page_size();
6063     size_t ag = os::vm_allocation_granularity();
6064 
6065     // sizes to test
6066     const size_t sizes[] = {
6067       lp, lp + ag, lp + lp / 2, lp * 2,
6068       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6069       lp * 10, lp * 10 + lp / 2
6070     };
6071     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6072 
6073     // For each size/alignment combination, we test three scenarios:
6074     // 1) with req_addr == NULL
6075     // 2) with a non-null req_addr at which we expect to successfully allocate
6076     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6077     //    expect the allocation to either fail or to ignore req_addr
6078 
6079     // Pre-allocate two areas; they shall be as large as the largest allocation
6080     //  and aligned to the largest alignment we will be testing.
6081     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6082     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6083       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6084       -1, 0);
6085     assert(mapping1 != MAP_FAILED, "should work");
6086 
6087     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6088       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6089       -1, 0);
6090     assert(mapping2 != MAP_FAILED, "should work");
6091 
6092     // Unmap the first mapping, but leave the second mapping intact: the first
6093     // mapping will serve as a value for a "good" req_addr (case 2). The second
6094     // mapping, still intact, as "bad" req_addr (case 3).
6095     ::munmap(mapping1, mapping_size);
6096 
6097     // Case 1
6098     for (int i = 0; i < num_sizes; i++) {
6099       const size_t size = sizes[i];
6100       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6101         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6102         if (p != NULL) {
6103           assert(is_aligned(p, alignment), "must be");
6104           small_page_write(p, size);
6105           os::Linux::release_memory_special_huge_tlbfs(p, size);
6106         }
6107       }
6108     }
6109 
6110     // Case 2
6111     for (int i = 0; i < num_sizes; i++) {
6112       const size_t size = sizes[i];
6113       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6114         char* const req_addr = align_up(mapping1, alignment);
6115         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6116         if (p != NULL) {
6117           assert(p == req_addr, "must be");
6118           small_page_write(p, size);
6119           os::Linux::release_memory_special_huge_tlbfs(p, size);
6120         }
6121       }
6122     }
6123 
6124     // Case 3
6125     for (int i = 0; i < num_sizes; i++) {
6126       const size_t size = sizes[i];
6127       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6128         char* const req_addr = align_up(mapping2, alignment);
6129         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6130         // as the area around req_addr contains already existing mappings, the API should always
6131         // return NULL (as per contract, it cannot return another address)
6132         assert(p == NULL, "must be");
6133       }
6134     }
6135 
6136     ::munmap(mapping2, mapping_size);
6137 
6138   }
6139 
6140   static void test_reserve_memory_special_huge_tlbfs() {
6141     if (!UseHugeTLBFS) {
6142       return;
6143     }
6144 
6145     test_reserve_memory_special_huge_tlbfs_only();
6146     test_reserve_memory_special_huge_tlbfs_mixed();
6147   }
6148 
6149   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6150     if (!UseSHM) {
6151       return;
6152     }
6153 
6154     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6155 
6156     if (addr != NULL) {
6157       assert(is_aligned(addr, alignment), "Check");
6158       assert(is_aligned(addr, os::large_page_size()), "Check");
6159 
6160       small_page_write(addr, size);
6161 
6162       os::Linux::release_memory_special_shm(addr, size);
6163     }
6164   }
6165 
6166   static void test_reserve_memory_special_shm() {
6167     size_t lp = os::large_page_size();
6168     size_t ag = os::vm_allocation_granularity();
6169 
6170     for (size_t size = ag; size < lp * 3; size += ag) {
6171       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6172         test_reserve_memory_special_shm(size, alignment);
6173       }
6174     }
6175   }
6176 
6177   static void test() {
6178     test_reserve_memory_special_huge_tlbfs();
6179     test_reserve_memory_special_shm();
6180   }
6181 };
6182 
6183 void TestReserveMemorySpecial_test() {
6184   TestReserveMemorySpecial::test();
6185 }
6186 
6187 #endif