1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorState.hpp"
  31 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1HeapVerifier.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1Policy.hpp"
  36 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/g1ThreadLocalData.hpp"
  39 #include "gc/g1/heapRegion.inline.hpp"
  40 #include "gc/g1/heapRegionRemSet.hpp"
  41 #include "gc/g1/heapRegionSet.inline.hpp"
  42 #include "gc/shared/adaptiveSizePolicy.hpp"
  43 #include "gc/shared/gcId.hpp"
  44 #include "gc/shared/gcTimer.hpp"
  45 #include "gc/shared/gcTrace.hpp"
  46 #include "gc/shared/gcTraceTime.inline.hpp"
  47 #include "gc/shared/genOopClosures.inline.hpp"
  48 #include "gc/shared/referencePolicy.hpp"
  49 #include "gc/shared/strongRootsScope.hpp"
  50 #include "gc/shared/suspendibleThreadSet.hpp"
  51 #include "gc/shared/taskqueue.inline.hpp"
  52 #include "gc/shared/vmGCOperations.hpp"
  53 #include "gc/shared/weakProcessor.inline.hpp"
  54 #include "include/jvm.h"
  55 #include "logging/log.hpp"
  56 #include "memory/allocation.hpp"
  57 #include "memory/resourceArea.hpp"
  58 #include "oops/access.inline.hpp"
  59 #include "oops/oop.inline.hpp"
  60 #include "runtime/atomic.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/java.hpp"
  63 #include "runtime/prefetch.inline.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "utilities/align.hpp"
  66 #include "utilities/growableArray.hpp"
  67 
  68 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  69   assert(addr < _cm->finger(), "invariant");
  70   assert(addr >= _task->finger(), "invariant");
  71 
  72   // We move that task's local finger along.
  73   _task->move_finger_to(addr);
  74 
  75   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  76   // we only partially drain the local queue and global stack
  77   _task->drain_local_queue(true);
  78   _task->drain_global_stack(true);
  79 
  80   // if the has_aborted flag has been raised, we need to bail out of
  81   // the iteration
  82   return !_task->has_aborted();
  83 }
  84 
  85 G1CMMarkStack::G1CMMarkStack() :
  86   _max_chunk_capacity(0),
  87   _base(NULL),
  88   _chunk_capacity(0) {
  89   set_empty();
  90 }
  91 
  92 bool G1CMMarkStack::resize(size_t new_capacity) {
  93   assert(is_empty(), "Only resize when stack is empty.");
  94   assert(new_capacity <= _max_chunk_capacity,
  95          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
  96 
  97   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
  98 
  99   if (new_base == NULL) {
 100     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
 101     return false;
 102   }
 103   // Release old mapping.
 104   if (_base != NULL) {
 105     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 106   }
 107 
 108   _base = new_base;
 109   _chunk_capacity = new_capacity;
 110   set_empty();
 111 
 112   return true;
 113 }
 114 
 115 size_t G1CMMarkStack::capacity_alignment() {
 116   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 117 }
 118 
 119 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 120   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 121 
 122   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 123 
 124   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 125   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 126 
 127   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 128             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 129             _max_chunk_capacity,
 130             initial_chunk_capacity);
 131 
 132   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 133                 initial_chunk_capacity, _max_chunk_capacity);
 134 
 135   return resize(initial_chunk_capacity);
 136 }
 137 
 138 void G1CMMarkStack::expand() {
 139   if (_chunk_capacity == _max_chunk_capacity) {
 140     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 141     return;
 142   }
 143   size_t old_capacity = _chunk_capacity;
 144   // Double capacity if possible
 145   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 146 
 147   if (resize(new_capacity)) {
 148     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 149                   old_capacity, new_capacity);
 150   } else {
 151     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 152                     old_capacity, new_capacity);
 153   }
 154 }
 155 
 156 G1CMMarkStack::~G1CMMarkStack() {
 157   if (_base != NULL) {
 158     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 159   }
 160 }
 161 
 162 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 163   elem->next = *list;
 164   *list = elem;
 165 }
 166 
 167 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 168   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 169   add_chunk_to_list(&_chunk_list, elem);
 170   _chunks_in_chunk_list++;
 171 }
 172 
 173 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 174   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 175   add_chunk_to_list(&_free_list, elem);
 176 }
 177 
 178 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 179   TaskQueueEntryChunk* result = *list;
 180   if (result != NULL) {
 181     *list = (*list)->next;
 182   }
 183   return result;
 184 }
 185 
 186 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 187   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 188   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 189   if (result != NULL) {
 190     _chunks_in_chunk_list--;
 191   }
 192   return result;
 193 }
 194 
 195 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 196   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 197   return remove_chunk_from_list(&_free_list);
 198 }
 199 
 200 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 201   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 202   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 203   // wraparound of _hwm.
 204   if (_hwm >= _chunk_capacity) {
 205     return NULL;
 206   }
 207 
 208   size_t cur_idx = Atomic::add(1u, &_hwm) - 1;
 209   if (cur_idx >= _chunk_capacity) {
 210     return NULL;
 211   }
 212 
 213   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 214   result->next = NULL;
 215   return result;
 216 }
 217 
 218 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 219   // Get a new chunk.
 220   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 221 
 222   if (new_chunk == NULL) {
 223     // Did not get a chunk from the free list. Allocate from backing memory.
 224     new_chunk = allocate_new_chunk();
 225 
 226     if (new_chunk == NULL) {
 227       return false;
 228     }
 229   }
 230 
 231   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 232 
 233   add_chunk_to_chunk_list(new_chunk);
 234 
 235   return true;
 236 }
 237 
 238 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 239   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 240 
 241   if (cur == NULL) {
 242     return false;
 243   }
 244 
 245   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 246 
 247   add_chunk_to_free_list(cur);
 248   return true;
 249 }
 250 
 251 void G1CMMarkStack::set_empty() {
 252   _chunks_in_chunk_list = 0;
 253   _hwm = 0;
 254   _chunk_list = NULL;
 255   _free_list = NULL;
 256 }
 257 
 258 G1CMRootRegions::G1CMRootRegions() :
 259   _survivors(NULL), _cm(NULL), _scan_in_progress(false),
 260   _should_abort(false), _claimed_survivor_index(0) { }
 261 
 262 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 263   _survivors = survivors;
 264   _cm = cm;
 265 }
 266 
 267 void G1CMRootRegions::prepare_for_scan() {
 268   assert(!scan_in_progress(), "pre-condition");
 269 
 270   // Currently, only survivors can be root regions.
 271   _claimed_survivor_index = 0;
 272   _scan_in_progress = _survivors->regions()->is_nonempty();
 273   _should_abort = false;
 274 }
 275 
 276 HeapRegion* G1CMRootRegions::claim_next() {
 277   if (_should_abort) {
 278     // If someone has set the should_abort flag, we return NULL to
 279     // force the caller to bail out of their loop.
 280     return NULL;
 281   }
 282 
 283   // Currently, only survivors can be root regions.
 284   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 285 
 286   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 287   if (claimed_index < survivor_regions->length()) {
 288     return survivor_regions->at(claimed_index);
 289   }
 290   return NULL;
 291 }
 292 
 293 uint G1CMRootRegions::num_root_regions() const {
 294   return (uint)_survivors->regions()->length();
 295 }
 296 
 297 void G1CMRootRegions::notify_scan_done() {
 298   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 299   _scan_in_progress = false;
 300   RootRegionScan_lock->notify_all();
 301 }
 302 
 303 void G1CMRootRegions::cancel_scan() {
 304   notify_scan_done();
 305 }
 306 
 307 void G1CMRootRegions::scan_finished() {
 308   assert(scan_in_progress(), "pre-condition");
 309 
 310   // Currently, only survivors can be root regions.
 311   if (!_should_abort) {
 312     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 313     assert((uint)_claimed_survivor_index >= _survivors->length(),
 314            "we should have claimed all survivors, claimed index = %u, length = %u",
 315            (uint)_claimed_survivor_index, _survivors->length());
 316   }
 317 
 318   notify_scan_done();
 319 }
 320 
 321 bool G1CMRootRegions::wait_until_scan_finished() {
 322   if (!scan_in_progress()) {
 323     return false;
 324   }
 325 
 326   {
 327     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 328     while (scan_in_progress()) {
 329       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 330     }
 331   }
 332   return true;
 333 }
 334 
 335 // Returns the maximum number of workers to be used in a concurrent
 336 // phase based on the number of GC workers being used in a STW
 337 // phase.
 338 static uint scale_concurrent_worker_threads(uint num_gc_workers) {
 339   return MAX2((num_gc_workers + 2) / 4, 1U);
 340 }
 341 
 342 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 343                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 344                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 345   // _cm_thread set inside the constructor
 346   _g1h(g1h),
 347   _completed_initialization(false),
 348 
 349   _mark_bitmap_1(),
 350   _mark_bitmap_2(),
 351   _prev_mark_bitmap(&_mark_bitmap_1),
 352   _next_mark_bitmap(&_mark_bitmap_2),
 353 
 354   _heap(_g1h->reserved_region()),
 355 
 356   _root_regions(),
 357 
 358   _global_mark_stack(),
 359 
 360   // _finger set in set_non_marking_state
 361 
 362   _worker_id_offset(DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads),
 363   _max_num_tasks(ParallelGCThreads),
 364   // _num_active_tasks set in set_non_marking_state()
 365   // _tasks set inside the constructor
 366 
 367   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 368   _terminator(ParallelTaskTerminator((int) _max_num_tasks, _task_queues)),
 369 
 370   _first_overflow_barrier_sync(),
 371   _second_overflow_barrier_sync(),
 372 
 373   _has_overflown(false),
 374   _concurrent(false),
 375   _has_aborted(false),
 376   _restart_for_overflow(false),
 377   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 378   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 379 
 380   // _verbose_level set below
 381 
 382   _init_times(),
 383   _remark_times(),
 384   _remark_mark_times(),
 385   _remark_weak_ref_times(),
 386   _cleanup_times(),
 387   _total_cleanup_time(0.0),
 388 
 389   _accum_task_vtime(NULL),
 390 
 391   _concurrent_workers(NULL),
 392   _num_concurrent_workers(0),
 393   _max_concurrent_workers(0),
 394 
 395   _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)),
 396   _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC))
 397 {
 398   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 399   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 400 
 401   // Create & start ConcurrentMark thread.
 402   _cm_thread = new G1ConcurrentMarkThread(this);
 403   if (_cm_thread->osthread() == NULL) {
 404     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 405   }
 406 
 407   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 408 
 409   SATBMarkQueueSet& satb_qs = G1BarrierSet::satb_mark_queue_set();
 410   satb_qs.set_buffer_size(G1SATBBufferSize);
 411 
 412   _root_regions.init(_g1h->survivor(), this);
 413 
 414   if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) {
 415     // Calculate the number of concurrent worker threads by scaling
 416     // the number of parallel GC threads.
 417     uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads);
 418     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 419   }
 420 
 421   assert(ConcGCThreads > 0, "ConcGCThreads have been set.");
 422   if (ConcGCThreads > ParallelGCThreads) {
 423     log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).",
 424                     ConcGCThreads, ParallelGCThreads);
 425     return;
 426   }
 427 
 428   log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset);
 429   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 430 
 431   _num_concurrent_workers = ConcGCThreads;
 432   _max_concurrent_workers = _num_concurrent_workers;
 433 
 434   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 435   _concurrent_workers->initialize_workers();
 436 
 437   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 438     size_t mark_stack_size =
 439       MIN2(MarkStackSizeMax,
 440           MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE)));
 441     // Verify that the calculated value for MarkStackSize is in range.
 442     // It would be nice to use the private utility routine from Arguments.
 443     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 444       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 445                       "must be between 1 and " SIZE_FORMAT,
 446                       mark_stack_size, MarkStackSizeMax);
 447       return;
 448     }
 449     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 450   } else {
 451     // Verify MarkStackSize is in range.
 452     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 453       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 454         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 455           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 456                           "must be between 1 and " SIZE_FORMAT,
 457                           MarkStackSize, MarkStackSizeMax);
 458           return;
 459         }
 460       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 461         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 462           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 463                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 464                           MarkStackSize, MarkStackSizeMax);
 465           return;
 466         }
 467       }
 468     }
 469   }
 470 
 471   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 472     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 473   }
 474 
 475   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 476   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 477 
 478   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 479   _num_active_tasks = _max_num_tasks;
 480 
 481   for (uint i = 0; i < _max_num_tasks; ++i) {
 482     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 483     task_queue->initialize();
 484     _task_queues->register_queue(i, task_queue);
 485 
 486     _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions());
 487 
 488     _accum_task_vtime[i] = 0.0;
 489   }
 490 
 491   reset_at_marking_complete();
 492   _completed_initialization = true;
 493 }
 494 
 495 void G1ConcurrentMark::reset() {
 496   _has_aborted = false;
 497 
 498   reset_marking_for_restart();
 499 
 500   // Reset all tasks, since different phases will use different number of active
 501   // threads. So, it's easiest to have all of them ready.
 502   for (uint i = 0; i < _max_num_tasks; ++i) {
 503     _tasks[i]->reset(_next_mark_bitmap);
 504   }
 505 
 506   uint max_regions = _g1h->max_regions();
 507   for (uint i = 0; i < max_regions; i++) {
 508     _top_at_rebuild_starts[i] = NULL;
 509     _region_mark_stats[i].clear();
 510   }
 511 }
 512 
 513 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) {
 514   for (uint j = 0; j < _max_num_tasks; ++j) {
 515     _tasks[j]->clear_mark_stats_cache(region_idx);
 516   }
 517   _top_at_rebuild_starts[region_idx] = NULL;
 518   _region_mark_stats[region_idx].clear();
 519 }
 520 
 521 void G1ConcurrentMark::clear_statistics(HeapRegion* r) {
 522   uint const region_idx = r->hrm_index();
 523   if (r->is_humongous()) {
 524     assert(r->is_starts_humongous(), "Got humongous continues region here");
 525     uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size());
 526     for (uint j = region_idx; j < (region_idx + size_in_regions); j++) {
 527       clear_statistics_in_region(j);
 528     }
 529   } else {
 530     clear_statistics_in_region(region_idx);
 531   }
 532 }
 533 
 534 static void clear_mark_if_set(G1CMBitMap* bitmap, HeapWord* addr) {
 535   if (bitmap->is_marked(addr)) {
 536     bitmap->clear(addr);
 537   }
 538 }
 539 
 540 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) {
 541   assert_at_safepoint_on_vm_thread();
 542 
 543   // Need to clear all mark bits of the humongous object.
 544   clear_mark_if_set(_prev_mark_bitmap, r->bottom());
 545   clear_mark_if_set(_next_mark_bitmap, r->bottom());
 546 
 547   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
 548     return;
 549   }
 550 
 551   // Clear any statistics about the region gathered so far.
 552   clear_statistics(r);
 553 }
 554 
 555 void G1ConcurrentMark::reset_marking_for_restart() {
 556   _global_mark_stack.set_empty();
 557 
 558   // Expand the marking stack, if we have to and if we can.
 559   if (has_overflown()) {
 560     _global_mark_stack.expand();
 561 
 562     uint max_regions = _g1h->max_regions();
 563     for (uint i = 0; i < max_regions; i++) {
 564       _region_mark_stats[i].clear_during_overflow();
 565     }
 566   }
 567 
 568   clear_has_overflown();
 569   _finger = _heap.start();
 570 
 571   for (uint i = 0; i < _max_num_tasks; ++i) {
 572     G1CMTaskQueue* queue = _task_queues->queue(i);
 573     queue->set_empty();
 574   }
 575 }
 576 
 577 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 578   assert(active_tasks <= _max_num_tasks, "we should not have more");
 579 
 580   _num_active_tasks = active_tasks;
 581   // Need to update the three data structures below according to the
 582   // number of active threads for this phase.
 583   _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
 584   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 585   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 586 }
 587 
 588 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 589   set_concurrency(active_tasks);
 590 
 591   _concurrent = concurrent;
 592 
 593   if (!concurrent) {
 594     // At this point we should be in a STW phase, and completed marking.
 595     assert_at_safepoint_on_vm_thread();
 596     assert(out_of_regions(),
 597            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 598            p2i(_finger), p2i(_heap.end()));
 599   }
 600 }
 601 
 602 void G1ConcurrentMark::reset_at_marking_complete() {
 603   // We set the global marking state to some default values when we're
 604   // not doing marking.
 605   reset_marking_for_restart();
 606   _num_active_tasks = 0;
 607 }
 608 
 609 G1ConcurrentMark::~G1ConcurrentMark() {
 610   FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts);
 611   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats);
 612   // The G1ConcurrentMark instance is never freed.
 613   ShouldNotReachHere();
 614 }
 615 
 616 class G1ClearBitMapTask : public AbstractGangTask {
 617 public:
 618   static size_t chunk_size() { return M; }
 619 
 620 private:
 621   // Heap region closure used for clearing the given mark bitmap.
 622   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 623   private:
 624     G1CMBitMap* _bitmap;
 625     G1ConcurrentMark* _cm;
 626   public:
 627     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _bitmap(bitmap), _cm(cm) {
 628     }
 629 
 630     virtual bool do_heap_region(HeapRegion* r) {
 631       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 632 
 633       HeapWord* cur = r->bottom();
 634       HeapWord* const end = r->end();
 635 
 636       while (cur < end) {
 637         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 638         _bitmap->clear_range(mr);
 639 
 640         cur += chunk_size_in_words;
 641 
 642         // Abort iteration if after yielding the marking has been aborted.
 643         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 644           return true;
 645         }
 646         // Repeat the asserts from before the start of the closure. We will do them
 647         // as asserts here to minimize their overhead on the product. However, we
 648         // will have them as guarantees at the beginning / end of the bitmap
 649         // clearing to get some checking in the product.
 650         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 651         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 652       }
 653       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 654 
 655       return false;
 656     }
 657   };
 658 
 659   G1ClearBitmapHRClosure _cl;
 660   HeapRegionClaimer _hr_claimer;
 661   bool _suspendible; // If the task is suspendible, workers must join the STS.
 662 
 663 public:
 664   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 665     AbstractGangTask("G1 Clear Bitmap"),
 666     _cl(bitmap, suspendible ? cm : NULL),
 667     _hr_claimer(n_workers),
 668     _suspendible(suspendible)
 669   { }
 670 
 671   void work(uint worker_id) {
 672     SuspendibleThreadSetJoiner sts_join(_suspendible);
 673     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 674   }
 675 
 676   bool is_complete() {
 677     return _cl.is_complete();
 678   }
 679 };
 680 
 681 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 682   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 683 
 684   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 685   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 686 
 687   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 688 
 689   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 690 
 691   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 692   workers->run_task(&cl, num_workers);
 693   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 694 }
 695 
 696 void G1ConcurrentMark::cleanup_for_next_mark() {
 697   // Make sure that the concurrent mark thread looks to still be in
 698   // the current cycle.
 699   guarantee(cm_thread()->during_cycle(), "invariant");
 700 
 701   // We are finishing up the current cycle by clearing the next
 702   // marking bitmap and getting it ready for the next cycle. During
 703   // this time no other cycle can start. So, let's make sure that this
 704   // is the case.
 705   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 706 
 707   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 708 
 709   // Repeat the asserts from above.
 710   guarantee(cm_thread()->during_cycle(), "invariant");
 711   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 712 }
 713 
 714 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 715   assert_at_safepoint_on_vm_thread();
 716   clear_bitmap(_prev_mark_bitmap, workers, false);
 717 }
 718 
 719 class NoteStartOfMarkHRClosure : public HeapRegionClosure {
 720 public:
 721   bool do_heap_region(HeapRegion* r) {
 722     r->note_start_of_marking();
 723     return false;
 724   }
 725 };
 726 
 727 void G1ConcurrentMark::pre_initial_mark() {
 728   // Initialize marking structures. This has to be done in a STW phase.
 729   reset();
 730 
 731   // For each region note start of marking.
 732   NoteStartOfMarkHRClosure startcl;
 733   _g1h->heap_region_iterate(&startcl);
 734 }
 735 
 736 
 737 void G1ConcurrentMark::post_initial_mark() {
 738   // Start Concurrent Marking weak-reference discovery.
 739   ReferenceProcessor* rp = _g1h->ref_processor_cm();
 740   // enable ("weak") refs discovery
 741   rp->enable_discovery();
 742   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 743 
 744   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
 745   // This is the start of  the marking cycle, we're expected all
 746   // threads to have SATB queues with active set to false.
 747   satb_mq_set.set_active_all_threads(true, /* new active value */
 748                                      false /* expected_active */);
 749 
 750   _root_regions.prepare_for_scan();
 751 
 752   // update_g1_committed() will be called at the end of an evac pause
 753   // when marking is on. So, it's also called at the end of the
 754   // initial-mark pause to update the heap end, if the heap expands
 755   // during it. No need to call it here.
 756 }
 757 
 758 /*
 759  * Notice that in the next two methods, we actually leave the STS
 760  * during the barrier sync and join it immediately afterwards. If we
 761  * do not do this, the following deadlock can occur: one thread could
 762  * be in the barrier sync code, waiting for the other thread to also
 763  * sync up, whereas another one could be trying to yield, while also
 764  * waiting for the other threads to sync up too.
 765  *
 766  * Note, however, that this code is also used during remark and in
 767  * this case we should not attempt to leave / enter the STS, otherwise
 768  * we'll either hit an assert (debug / fastdebug) or deadlock
 769  * (product). So we should only leave / enter the STS if we are
 770  * operating concurrently.
 771  *
 772  * Because the thread that does the sync barrier has left the STS, it
 773  * is possible to be suspended for a Full GC or an evacuation pause
 774  * could occur. This is actually safe, since the entering the sync
 775  * barrier is one of the last things do_marking_step() does, and it
 776  * doesn't manipulate any data structures afterwards.
 777  */
 778 
 779 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 780   bool barrier_aborted;
 781   {
 782     SuspendibleThreadSetLeaver sts_leave(concurrent());
 783     barrier_aborted = !_first_overflow_barrier_sync.enter();
 784   }
 785 
 786   // at this point everyone should have synced up and not be doing any
 787   // more work
 788 
 789   if (barrier_aborted) {
 790     // If the barrier aborted we ignore the overflow condition and
 791     // just abort the whole marking phase as quickly as possible.
 792     return;
 793   }
 794 }
 795 
 796 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 797   SuspendibleThreadSetLeaver sts_leave(concurrent());
 798   _second_overflow_barrier_sync.enter();
 799 
 800   // at this point everything should be re-initialized and ready to go
 801 }
 802 
 803 class G1CMConcurrentMarkingTask : public AbstractGangTask {
 804   G1ConcurrentMark*     _cm;
 805 
 806 public:
 807   void work(uint worker_id) {
 808     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 809     ResourceMark rm;
 810 
 811     double start_vtime = os::elapsedVTime();
 812 
 813     {
 814       SuspendibleThreadSetJoiner sts_join;
 815 
 816       assert(worker_id < _cm->active_tasks(), "invariant");
 817 
 818       G1CMTask* task = _cm->task(worker_id);
 819       task->record_start_time();
 820       if (!_cm->has_aborted()) {
 821         do {
 822           task->do_marking_step(G1ConcMarkStepDurationMillis,
 823                                 true  /* do_termination */,
 824                                 false /* is_serial*/);
 825 
 826           _cm->do_yield_check();
 827         } while (!_cm->has_aborted() && task->has_aborted());
 828       }
 829       task->record_end_time();
 830       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 831     }
 832 
 833     double end_vtime = os::elapsedVTime();
 834     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 835   }
 836 
 837   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) :
 838       AbstractGangTask("Concurrent Mark"), _cm(cm) { }
 839 
 840   ~G1CMConcurrentMarkingTask() { }
 841 };
 842 
 843 uint G1ConcurrentMark::calc_active_marking_workers() {
 844   uint result = 0;
 845   if (!UseDynamicNumberOfGCThreads ||
 846       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 847        !ForceDynamicNumberOfGCThreads)) {
 848     result = _max_concurrent_workers;
 849   } else {
 850     result =
 851       AdaptiveSizePolicy::calc_default_active_workers(_max_concurrent_workers,
 852                                                       1, /* Minimum workers */
 853                                                       _num_concurrent_workers,
 854                                                       Threads::number_of_non_daemon_threads());
 855     // Don't scale the result down by scale_concurrent_workers() because
 856     // that scaling has already gone into "_max_concurrent_workers".
 857   }
 858   assert(result > 0 && result <= _max_concurrent_workers,
 859          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 860          _max_concurrent_workers, result);
 861   return result;
 862 }
 863 
 864 void G1ConcurrentMark::scan_root_region(HeapRegion* hr, uint worker_id) {
 865   // Currently, only survivors can be root regions.
 866   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 867   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 868 
 869   const uintx interval = PrefetchScanIntervalInBytes;
 870   HeapWord* curr = hr->bottom();
 871   const HeapWord* end = hr->top();
 872   while (curr < end) {
 873     Prefetch::read(curr, interval);
 874     oop obj = oop(curr);
 875     int size = obj->oop_iterate_size(&cl);
 876     assert(size == obj->size(), "sanity");
 877     curr += size;
 878   }
 879 }
 880 
 881 class G1CMRootRegionScanTask : public AbstractGangTask {
 882   G1ConcurrentMark* _cm;
 883 public:
 884   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 885     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 886 
 887   void work(uint worker_id) {
 888     assert(Thread::current()->is_ConcurrentGC_thread(),
 889            "this should only be done by a conc GC thread");
 890 
 891     G1CMRootRegions* root_regions = _cm->root_regions();
 892     HeapRegion* hr = root_regions->claim_next();
 893     while (hr != NULL) {
 894       _cm->scan_root_region(hr, worker_id);
 895       hr = root_regions->claim_next();
 896     }
 897   }
 898 };
 899 
 900 void G1ConcurrentMark::scan_root_regions() {
 901   // scan_in_progress() will have been set to true only if there was
 902   // at least one root region to scan. So, if it's false, we
 903   // should not attempt to do any further work.
 904   if (root_regions()->scan_in_progress()) {
 905     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 906 
 907     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 908                                    // We distribute work on a per-region basis, so starting
 909                                    // more threads than that is useless.
 910                                    root_regions()->num_root_regions());
 911     assert(_num_concurrent_workers <= _max_concurrent_workers,
 912            "Maximum number of marking threads exceeded");
 913 
 914     G1CMRootRegionScanTask task(this);
 915     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 916                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 917     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 918 
 919     // It's possible that has_aborted() is true here without actually
 920     // aborting the survivor scan earlier. This is OK as it's
 921     // mainly used for sanity checking.
 922     root_regions()->scan_finished();
 923   }
 924 }
 925 
 926 void G1ConcurrentMark::concurrent_cycle_start() {
 927   _gc_timer_cm->register_gc_start();
 928 
 929   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 930 
 931   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 932 }
 933 
 934 void G1ConcurrentMark::concurrent_cycle_end() {
 935   _g1h->collector_state()->set_clearing_next_bitmap(false);
 936 
 937   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 938 
 939   if (has_aborted()) {
 940     log_info(gc, marking)("Concurrent Mark Abort");
 941     _gc_tracer_cm->report_concurrent_mode_failure();
 942   }
 943 
 944   _gc_timer_cm->register_gc_end();
 945 
 946   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 947 }
 948 
 949 void G1ConcurrentMark::mark_from_roots() {
 950   _restart_for_overflow = false;
 951 
 952   _num_concurrent_workers = calc_active_marking_workers();
 953 
 954   uint active_workers = MAX2(1U, _num_concurrent_workers);
 955 
 956   // Setting active workers is not guaranteed since fewer
 957   // worker threads may currently exist and more may not be
 958   // available.
 959   active_workers = _concurrent_workers->update_active_workers(active_workers);
 960   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 961 
 962   // Parallel task terminator is set in "set_concurrency_and_phase()"
 963   set_concurrency_and_phase(active_workers, true /* concurrent */);
 964 
 965   G1CMConcurrentMarkingTask marking_task(this);
 966   _concurrent_workers->run_task(&marking_task);
 967   print_stats();
 968 }
 969 
 970 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) {
 971   G1HeapVerifier* verifier = _g1h->verifier();
 972 
 973   verifier->verify_region_sets_optional();
 974 
 975   if (VerifyDuringGC) {
 976     GCTraceTime(Debug, gc, phases) debug(caller, _gc_timer_cm);
 977 
 978     size_t const BufLen = 512;
 979     char buffer[BufLen];
 980 
 981     jio_snprintf(buffer, BufLen, "During GC (%s)", caller);
 982     verifier->verify(type, vo, buffer);
 983   }
 984 
 985   verifier->check_bitmaps(caller);
 986 }
 987 
 988 class G1UpdateRemSetTrackingBeforeRebuildTask : public AbstractGangTask {
 989   G1CollectedHeap* _g1h;
 990   G1ConcurrentMark* _cm;
 991   HeapRegionClaimer _hrclaimer;
 992   uint volatile _total_selected_for_rebuild;
 993 
 994   G1PrintRegionLivenessInfoClosure _cl;
 995 
 996   class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure {
 997     G1CollectedHeap* _g1h;
 998     G1ConcurrentMark* _cm;
 999 
1000     G1PrintRegionLivenessInfoClosure* _cl;
1001 
1002     uint _num_regions_selected_for_rebuild;  // The number of regions actually selected for rebuild.
1003 
1004     void update_remset_before_rebuild(HeapRegion* hr) {
1005       G1RemSetTrackingPolicy* tracking_policy = _g1h->g1_policy()->remset_tracker();
1006 
1007       bool selected_for_rebuild;
1008       if (hr->is_humongous()) {
1009         bool const is_live = _cm->liveness(hr->humongous_start_region()->hrm_index()) > 0;
1010         selected_for_rebuild = tracking_policy->update_humongous_before_rebuild(hr, is_live);
1011       } else {
1012         size_t const live_bytes = _cm->liveness(hr->hrm_index());
1013         selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes);
1014       }
1015       if (selected_for_rebuild) {
1016         _num_regions_selected_for_rebuild++;
1017       }
1018       _cm->update_top_at_rebuild_start(hr);
1019     }
1020 
1021     // Distribute the given words across the humongous object starting with hr and
1022     // note end of marking.
1023     void distribute_marked_bytes(HeapRegion* hr, size_t marked_words) {
1024       uint const region_idx = hr->hrm_index();
1025       size_t const obj_size_in_words = (size_t)oop(hr->bottom())->size();
1026       uint const num_regions_in_humongous = (uint)G1CollectedHeap::humongous_obj_size_in_regions(obj_size_in_words);
1027 
1028       // "Distributing" zero words means that we only note end of marking for these
1029       // regions.
1030       assert(marked_words == 0 || obj_size_in_words == marked_words,
1031              "Marked words should either be 0 or the same as humongous object (" SIZE_FORMAT ") but is " SIZE_FORMAT,
1032              obj_size_in_words, marked_words);
1033 
1034       for (uint i = region_idx; i < (region_idx + num_regions_in_humongous); i++) {
1035         HeapRegion* const r = _g1h->region_at(i);
1036         size_t const words_to_add = MIN2(HeapRegion::GrainWords, marked_words);
1037 
1038         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to humongous region %u (%s)",
1039                                words_to_add, i, r->get_type_str());
1040         add_marked_bytes_and_note_end(r, words_to_add * HeapWordSize);
1041         marked_words -= words_to_add;
1042       }
1043       assert(marked_words == 0,
1044              SIZE_FORMAT " words left after distributing space across %u regions",
1045              marked_words, num_regions_in_humongous);
1046     }
1047 
1048     void update_marked_bytes(HeapRegion* hr) {
1049       uint const region_idx = hr->hrm_index();
1050       size_t const marked_words = _cm->liveness(region_idx);
1051       // The marking attributes the object's size completely to the humongous starts
1052       // region. We need to distribute this value across the entire set of regions a
1053       // humongous object spans.
1054       if (hr->is_humongous()) {
1055         assert(hr->is_starts_humongous() || marked_words == 0,
1056                "Should not have marked words " SIZE_FORMAT " in non-starts humongous region %u (%s)",
1057                marked_words, region_idx, hr->get_type_str());
1058         if (hr->is_starts_humongous()) {
1059           distribute_marked_bytes(hr, marked_words);
1060         }
1061       } else {
1062         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to region %u (%s)", marked_words, region_idx, hr->get_type_str());
1063         add_marked_bytes_and_note_end(hr, marked_words * HeapWordSize);
1064       }
1065     }
1066 
1067     void add_marked_bytes_and_note_end(HeapRegion* hr, size_t marked_bytes) {
1068       hr->add_to_marked_bytes(marked_bytes);
1069       _cl->do_heap_region(hr);
1070       hr->note_end_of_marking();
1071     }
1072 
1073   public:
1074     G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm, G1PrintRegionLivenessInfoClosure* cl) :
1075       _g1h(g1h), _cm(cm), _cl(cl), _num_regions_selected_for_rebuild(0) { }
1076 
1077     virtual bool do_heap_region(HeapRegion* r) {
1078       update_remset_before_rebuild(r);
1079       update_marked_bytes(r);
1080 
1081       return false;
1082     }
1083 
1084     uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; }
1085   };
1086 
1087 public:
1088   G1UpdateRemSetTrackingBeforeRebuildTask(G1CollectedHeap* g1h, G1ConcurrentMark* cm, uint num_workers) :
1089     AbstractGangTask("G1 Update RemSet Tracking Before Rebuild"),
1090     _g1h(g1h), _cm(cm), _hrclaimer(num_workers), _total_selected_for_rebuild(0), _cl("Post-Marking") { }
1091 
1092   virtual void work(uint worker_id) {
1093     G1UpdateRemSetTrackingBeforeRebuild update_cl(_g1h, _cm, &_cl);
1094     _g1h->heap_region_par_iterate_from_worker_offset(&update_cl, &_hrclaimer, worker_id);
1095     Atomic::add(update_cl.num_selected_for_rebuild(), &_total_selected_for_rebuild);
1096   }
1097 
1098   uint total_selected_for_rebuild() const { return _total_selected_for_rebuild; }
1099 
1100   // Number of regions for which roughly one thread should be spawned for this work.
1101   static const uint RegionsPerThread = 384;
1102 };
1103 
1104 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure {
1105   G1CollectedHeap* _g1h;
1106 public:
1107   G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { }
1108 
1109   virtual bool do_heap_region(HeapRegion* r) {
1110     _g1h->g1_policy()->remset_tracker()->update_after_rebuild(r);
1111     return false;
1112   }
1113 };
1114 
1115 void G1ConcurrentMark::remark() {
1116   assert_at_safepoint_on_vm_thread();
1117 
1118   // If a full collection has happened, we should not continue. However we might
1119   // have ended up here as the Remark VM operation has been scheduled already.
1120   if (has_aborted()) {
1121     return;
1122   }
1123 
1124   G1Policy* g1p = _g1h->g1_policy();
1125   g1p->record_concurrent_mark_remark_start();
1126 
1127   double start = os::elapsedTime();
1128 
1129   verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before");
1130 
1131   {
1132     GCTraceTime(Debug, gc, phases) debug("Finalize Marking", _gc_timer_cm);
1133     finalize_marking();
1134   }
1135 
1136   double mark_work_end = os::elapsedTime();
1137 
1138   bool const mark_finished = !has_overflown();
1139   if (mark_finished) {
1140     weak_refs_work(false /* clear_all_soft_refs */);
1141 
1142     SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1143     // We're done with marking.
1144     // This is the end of the marking cycle, we're expected all
1145     // threads to have SATB queues with active set to true.
1146     satb_mq_set.set_active_all_threads(false, /* new active value */
1147                                        true /* expected_active */);
1148 
1149     {
1150       GCTraceTime(Debug, gc, phases) debug("Flush Task Caches", _gc_timer_cm);
1151       flush_all_task_caches();
1152     }
1153 
1154     // Install newly created mark bitmap as "prev".
1155     swap_mark_bitmaps();
1156     {
1157       GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking Before Rebuild", _gc_timer_cm);
1158 
1159       uint const workers_by_capacity = (_g1h->num_regions() + G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread - 1) /
1160                                        G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread;
1161       uint const num_workers = MIN2(_g1h->workers()->active_workers(), workers_by_capacity);
1162 
1163       G1UpdateRemSetTrackingBeforeRebuildTask cl(_g1h, this, num_workers);
1164       log_debug(gc,ergo)("Running %s using %u workers for %u regions in heap", cl.name(), num_workers, _g1h->num_regions());
1165       _g1h->workers()->run_task(&cl, num_workers);
1166 
1167       log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u",
1168                                       _g1h->num_regions(), cl.total_selected_for_rebuild());
1169     }
1170     {
1171       GCTraceTime(Debug, gc, phases) debug("Reclaim Empty Regions", _gc_timer_cm);
1172       reclaim_empty_regions();
1173     }
1174 
1175     // Clean out dead classes
1176     if (ClassUnloadingWithConcurrentMark) {
1177       GCTraceTime(Debug, gc, phases) debug("Purge Metaspace", _gc_timer_cm);
1178       ClassLoaderDataGraph::purge();
1179     }
1180 
1181     _g1h->resize_heap_if_necessary();
1182 
1183     compute_new_sizes();
1184 
1185     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark after");
1186 
1187     assert(!restart_for_overflow(), "sanity");
1188     // Completely reset the marking state since marking completed
1189     reset_at_marking_complete();
1190   } else {
1191     // We overflowed.  Restart concurrent marking.
1192     _restart_for_overflow = true;
1193 
1194     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow");
1195 
1196     // Clear the marking state because we will be restarting
1197     // marking due to overflowing the global mark stack.
1198     reset_marking_for_restart();
1199   }
1200 
1201   {
1202     GCTraceTime(Debug, gc, phases) debug("Report Object Count", _gc_timer_cm);
1203     report_object_count(mark_finished);
1204   }
1205 
1206   // Statistics
1207   double now = os::elapsedTime();
1208   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1209   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1210   _remark_times.add((now - start) * 1000.0);
1211 
1212   g1p->record_concurrent_mark_remark_end();
1213 }
1214 
1215 class G1ReclaimEmptyRegionsTask : public AbstractGangTask {
1216   // Per-region work during the Cleanup pause.
1217   class G1ReclaimEmptyRegionsClosure : public HeapRegionClosure {
1218     G1CollectedHeap* _g1h;
1219     size_t _freed_bytes;
1220     FreeRegionList* _local_cleanup_list;
1221     uint _old_regions_removed;
1222     uint _humongous_regions_removed;
1223 
1224   public:
1225     G1ReclaimEmptyRegionsClosure(G1CollectedHeap* g1h,
1226                                  FreeRegionList* local_cleanup_list) :
1227       _g1h(g1h),
1228       _freed_bytes(0),
1229       _local_cleanup_list(local_cleanup_list),
1230       _old_regions_removed(0),
1231       _humongous_regions_removed(0) { }
1232 
1233     size_t freed_bytes() { return _freed_bytes; }
1234     const uint old_regions_removed() { return _old_regions_removed; }
1235     const uint humongous_regions_removed() { return _humongous_regions_removed; }
1236 
1237     bool do_heap_region(HeapRegion *hr) {
1238       if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1239         _freed_bytes += hr->used();
1240         hr->set_containing_set(NULL);
1241         if (hr->is_humongous()) {
1242           _humongous_regions_removed++;
1243           _g1h->free_humongous_region(hr, _local_cleanup_list);
1244         } else {
1245           _old_regions_removed++;
1246           _g1h->free_region(hr, _local_cleanup_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
1247         }
1248         hr->clear_cardtable();
1249         _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index());
1250         log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom()));
1251       }
1252 
1253       return false;
1254     }
1255   };
1256 
1257   G1CollectedHeap* _g1h;
1258   FreeRegionList* _cleanup_list;
1259   HeapRegionClaimer _hrclaimer;
1260 
1261 public:
1262   G1ReclaimEmptyRegionsTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1263     AbstractGangTask("G1 Cleanup"),
1264     _g1h(g1h),
1265     _cleanup_list(cleanup_list),
1266     _hrclaimer(n_workers) {
1267   }
1268 
1269   void work(uint worker_id) {
1270     FreeRegionList local_cleanup_list("Local Cleanup List");
1271     G1ReclaimEmptyRegionsClosure cl(_g1h, &local_cleanup_list);
1272     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
1273     assert(cl.is_complete(), "Shouldn't have aborted!");
1274 
1275     // Now update the old/humongous region sets
1276     _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed());
1277     {
1278       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1279       _g1h->decrement_summary_bytes(cl.freed_bytes());
1280 
1281       _cleanup_list->add_ordered(&local_cleanup_list);
1282       assert(local_cleanup_list.is_empty(), "post-condition");
1283     }
1284   }
1285 };
1286 
1287 void G1ConcurrentMark::reclaim_empty_regions() {
1288   WorkGang* workers = _g1h->workers();
1289   FreeRegionList empty_regions_list("Empty Regions After Mark List");
1290 
1291   G1ReclaimEmptyRegionsTask cl(_g1h, &empty_regions_list, workers->active_workers());
1292   workers->run_task(&cl);
1293 
1294   if (!empty_regions_list.is_empty()) {
1295     log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length());
1296     // Now print the empty regions list.
1297     G1HRPrinter* hrp = _g1h->hr_printer();
1298     if (hrp->is_active()) {
1299       FreeRegionListIterator iter(&empty_regions_list);
1300       while (iter.more_available()) {
1301         HeapRegion* hr = iter.get_next();
1302         hrp->cleanup(hr);
1303       }
1304     }
1305     // And actually make them available.
1306     _g1h->prepend_to_freelist(&empty_regions_list);
1307   }
1308 }
1309 
1310 void G1ConcurrentMark::compute_new_sizes() {
1311   MetaspaceGC::compute_new_size();
1312 
1313   // Cleanup will have freed any regions completely full of garbage.
1314   // Update the soft reference policy with the new heap occupancy.
1315   Universe::update_heap_info_at_gc();
1316 
1317   // We reclaimed old regions so we should calculate the sizes to make
1318   // sure we update the old gen/space data.
1319   _g1h->g1mm()->update_sizes();
1320 }
1321 
1322 void G1ConcurrentMark::cleanup() {
1323   assert_at_safepoint_on_vm_thread();
1324 
1325   // If a full collection has happened, we shouldn't do this.
1326   if (has_aborted()) {
1327     return;
1328   }
1329 
1330   G1Policy* g1p = _g1h->g1_policy();
1331   g1p->record_concurrent_mark_cleanup_start();
1332 
1333   double start = os::elapsedTime();
1334 
1335   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup before");
1336 
1337   {
1338     GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking After Rebuild", _gc_timer_cm);
1339     G1UpdateRemSetTrackingAfterRebuild cl(_g1h);
1340     _g1h->heap_region_iterate(&cl);
1341   }
1342 
1343   if (log_is_enabled(Trace, gc, liveness)) {
1344     G1PrintRegionLivenessInfoClosure cl("Post-Cleanup");
1345     _g1h->heap_region_iterate(&cl);
1346   }
1347 
1348   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after");
1349 
1350   // We need to make this be a "collection" so any collection pause that
1351   // races with it goes around and waits for Cleanup to finish.
1352   _g1h->increment_total_collections();
1353 
1354   // Local statistics
1355   double recent_cleanup_time = (os::elapsedTime() - start);
1356   _total_cleanup_time += recent_cleanup_time;
1357   _cleanup_times.add(recent_cleanup_time);
1358 
1359   {
1360     GCTraceTime(Debug, gc, phases) debug("Finalize Concurrent Mark Cleanup", _gc_timer_cm);
1361     _g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1362   }
1363 }
1364 
1365 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1366 // Uses the G1CMTask associated with a worker thread (for serial reference
1367 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1368 // trace referent objects.
1369 //
1370 // Using the G1CMTask and embedded local queues avoids having the worker
1371 // threads operating on the global mark stack. This reduces the risk
1372 // of overflowing the stack - which we would rather avoid at this late
1373 // state. Also using the tasks' local queues removes the potential
1374 // of the workers interfering with each other that could occur if
1375 // operating on the global stack.
1376 
1377 class G1CMKeepAliveAndDrainClosure : public OopClosure {
1378   G1ConcurrentMark* _cm;
1379   G1CMTask*         _task;
1380   uint              _ref_counter_limit;
1381   uint              _ref_counter;
1382   bool              _is_serial;
1383 public:
1384   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1385     _cm(cm), _task(task), _ref_counter_limit(G1RefProcDrainInterval),
1386     _ref_counter(_ref_counter_limit), _is_serial(is_serial) {
1387     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1388   }
1389 
1390   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1391   virtual void do_oop(      oop* p) { do_oop_work(p); }
1392 
1393   template <class T> void do_oop_work(T* p) {
1394     if (_cm->has_overflown()) {
1395       return;
1396     }
1397     if (!_task->deal_with_reference(p)) {
1398       // We did not add anything to the mark bitmap (or mark stack), so there is
1399       // no point trying to drain it.
1400       return;
1401     }
1402     _ref_counter--;
1403 
1404     if (_ref_counter == 0) {
1405       // We have dealt with _ref_counter_limit references, pushing them
1406       // and objects reachable from them on to the local stack (and
1407       // possibly the global stack). Call G1CMTask::do_marking_step() to
1408       // process these entries.
1409       //
1410       // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1411       // there's nothing more to do (i.e. we're done with the entries that
1412       // were pushed as a result of the G1CMTask::deal_with_reference() calls
1413       // above) or we overflow.
1414       //
1415       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1416       // flag while there may still be some work to do. (See the comment at
1417       // the beginning of G1CMTask::do_marking_step() for those conditions -
1418       // one of which is reaching the specified time target.) It is only
1419       // when G1CMTask::do_marking_step() returns without setting the
1420       // has_aborted() flag that the marking step has completed.
1421       do {
1422         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1423         _task->do_marking_step(mark_step_duration_ms,
1424                                false      /* do_termination */,
1425                                _is_serial);
1426       } while (_task->has_aborted() && !_cm->has_overflown());
1427       _ref_counter = _ref_counter_limit;
1428     }
1429   }
1430 };
1431 
1432 // 'Drain' oop closure used by both serial and parallel reference processing.
1433 // Uses the G1CMTask associated with a given worker thread (for serial
1434 // reference processing the G1CMtask for worker 0 is used). Calls the
1435 // do_marking_step routine, with an unbelievably large timeout value,
1436 // to drain the marking data structures of the remaining entries
1437 // added by the 'keep alive' oop closure above.
1438 
1439 class G1CMDrainMarkingStackClosure : public VoidClosure {
1440   G1ConcurrentMark* _cm;
1441   G1CMTask*         _task;
1442   bool              _is_serial;
1443  public:
1444   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1445     _cm(cm), _task(task), _is_serial(is_serial) {
1446     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1447   }
1448 
1449   void do_void() {
1450     do {
1451       // We call G1CMTask::do_marking_step() to completely drain the local
1452       // and global marking stacks of entries pushed by the 'keep alive'
1453       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1454       //
1455       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1456       // if there's nothing more to do (i.e. we've completely drained the
1457       // entries that were pushed as a a result of applying the 'keep alive'
1458       // closure to the entries on the discovered ref lists) or we overflow
1459       // the global marking stack.
1460       //
1461       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1462       // flag while there may still be some work to do. (See the comment at
1463       // the beginning of G1CMTask::do_marking_step() for those conditions -
1464       // one of which is reaching the specified time target.) It is only
1465       // when G1CMTask::do_marking_step() returns without setting the
1466       // has_aborted() flag that the marking step has completed.
1467 
1468       _task->do_marking_step(1000000000.0 /* something very large */,
1469                              true         /* do_termination */,
1470                              _is_serial);
1471     } while (_task->has_aborted() && !_cm->has_overflown());
1472   }
1473 };
1474 
1475 // Implementation of AbstractRefProcTaskExecutor for parallel
1476 // reference processing at the end of G1 concurrent marking
1477 
1478 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor {
1479 private:
1480   G1CollectedHeap*  _g1h;
1481   G1ConcurrentMark* _cm;
1482   WorkGang*         _workers;
1483   uint              _active_workers;
1484 
1485 public:
1486   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1487                           G1ConcurrentMark* cm,
1488                           WorkGang* workers,
1489                           uint n_workers) :
1490     _g1h(g1h), _cm(cm),
1491     _workers(workers), _active_workers(n_workers) { }
1492 
1493   virtual void execute(ProcessTask& task, uint ergo_workers);
1494 };
1495 
1496 class G1CMRefProcTaskProxy : public AbstractGangTask {
1497   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1498   ProcessTask&      _proc_task;
1499   G1CollectedHeap*  _g1h;
1500   G1ConcurrentMark* _cm;
1501 
1502 public:
1503   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1504                        G1CollectedHeap* g1h,
1505                        G1ConcurrentMark* cm) :
1506     AbstractGangTask("Process reference objects in parallel"),
1507     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1508     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1509     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1510   }
1511 
1512   virtual void work(uint worker_id) {
1513     ResourceMark rm;
1514     HandleMark hm;
1515     G1CMTask* task = _cm->task(worker_id);
1516     G1CMIsAliveClosure g1_is_alive(_g1h);
1517     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1518     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1519 
1520     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1521   }
1522 };
1523 
1524 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
1525   assert(_workers != NULL, "Need parallel worker threads.");
1526   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1527   assert(_workers->active_workers() >= ergo_workers,
1528          "Ergonomically chosen workers(%u) should be less than or equal to active workers(%u)",
1529          ergo_workers, _workers->active_workers());
1530 
1531   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1532 
1533   // We need to reset the concurrency level before each
1534   // proxy task execution, so that the termination protocol
1535   // and overflow handling in G1CMTask::do_marking_step() knows
1536   // how many workers to wait for.
1537   _cm->set_concurrency(ergo_workers);
1538   _workers->run_task(&proc_task_proxy, ergo_workers);
1539 }
1540 
1541 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1542   ResourceMark rm;
1543   HandleMark   hm;
1544 
1545   // Is alive closure.
1546   G1CMIsAliveClosure g1_is_alive(_g1h);
1547 
1548   // Inner scope to exclude the cleaning of the string table
1549   // from the displayed time.
1550   {
1551     GCTraceTime(Debug, gc, phases) debug("Reference Processing", _gc_timer_cm);
1552 
1553     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1554 
1555     // See the comment in G1CollectedHeap::ref_processing_init()
1556     // about how reference processing currently works in G1.
1557 
1558     // Set the soft reference policy
1559     rp->setup_policy(clear_all_soft_refs);
1560     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1561 
1562     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1563     // in serial reference processing. Note these closures are also
1564     // used for serially processing (by the the current thread) the
1565     // JNI references during parallel reference processing.
1566     //
1567     // These closures do not need to synchronize with the worker
1568     // threads involved in parallel reference processing as these
1569     // instances are executed serially by the current thread (e.g.
1570     // reference processing is not multi-threaded and is thus
1571     // performed by the current thread instead of a gang worker).
1572     //
1573     // The gang tasks involved in parallel reference processing create
1574     // their own instances of these closures, which do their own
1575     // synchronization among themselves.
1576     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1577     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1578 
1579     // We need at least one active thread. If reference processing
1580     // is not multi-threaded we use the current (VMThread) thread,
1581     // otherwise we use the work gang from the G1CollectedHeap and
1582     // we utilize all the worker threads we can.
1583     bool processing_is_mt = rp->processing_is_mt();
1584     uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U);
1585     active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U);
1586 
1587     // Parallel processing task executor.
1588     G1CMRefProcTaskExecutor par_task_executor(_g1h, this,
1589                                               _g1h->workers(), active_workers);
1590     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1591 
1592     // Set the concurrency level. The phase was already set prior to
1593     // executing the remark task.
1594     set_concurrency(active_workers);
1595 
1596     // Set the degree of MT processing here.  If the discovery was done MT,
1597     // the number of threads involved during discovery could differ from
1598     // the number of active workers.  This is OK as long as the discovered
1599     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1600     rp->set_active_mt_degree(active_workers);
1601 
1602     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->max_num_queues());
1603 
1604     // Process the weak references.
1605     const ReferenceProcessorStats& stats =
1606         rp->process_discovered_references(&g1_is_alive,
1607                                           &g1_keep_alive,
1608                                           &g1_drain_mark_stack,
1609                                           executor,
1610                                           &pt);
1611     _gc_tracer_cm->report_gc_reference_stats(stats);
1612     pt.print_all_references();
1613 
1614     // The do_oop work routines of the keep_alive and drain_marking_stack
1615     // oop closures will set the has_overflown flag if we overflow the
1616     // global marking stack.
1617 
1618     assert(has_overflown() || _global_mark_stack.is_empty(),
1619            "Mark stack should be empty (unless it has overflown)");
1620 
1621     assert(rp->num_queues() == active_workers, "why not");
1622 
1623     rp->verify_no_references_recorded();
1624     assert(!rp->discovery_enabled(), "Post condition");
1625   }
1626 
1627   if (has_overflown()) {
1628     // We can not trust g1_is_alive and the contents of the heap if the marking stack
1629     // overflowed while processing references. Exit the VM.
1630     fatal("Overflow during reference processing, can not continue. Please "
1631           "increase MarkStackSizeMax (current value: " SIZE_FORMAT ") and "
1632           "restart.", MarkStackSizeMax);
1633     return;
1634   }
1635 
1636   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1637 
1638   {
1639     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1640     WeakProcessor::weak_oops_do(_g1h->workers(), &g1_is_alive, &do_nothing_cl, 1);
1641   }
1642 
1643   // Unload Klasses, String, Code Cache, etc.
1644   if (ClassUnloadingWithConcurrentMark) {
1645     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1646     bool purged_classes = SystemDictionary::do_unloading(_gc_timer_cm);
1647     _g1h->complete_cleaning(&g1_is_alive, purged_classes);
1648   } else {
1649     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1650     // No need to clean string table as it is treated as strong roots when
1651     // class unloading is disabled.
1652     _g1h->partial_cleaning(&g1_is_alive, false, G1StringDedup::is_enabled());
1653   }
1654 }
1655 
1656 class G1PrecleanYieldClosure : public YieldClosure {
1657   G1ConcurrentMark* _cm;
1658 
1659 public:
1660   G1PrecleanYieldClosure(G1ConcurrentMark* cm) : _cm(cm) { }
1661 
1662   virtual bool should_return() {
1663     return _cm->has_aborted();
1664   }
1665 
1666   virtual bool should_return_fine_grain() {
1667     _cm->do_yield_check();
1668     return _cm->has_aborted();
1669   }
1670 };
1671 
1672 void G1ConcurrentMark::preclean() {
1673   assert(G1UseReferencePrecleaning, "Precleaning must be enabled.");
1674 
1675   SuspendibleThreadSetJoiner joiner;
1676 
1677   G1CMKeepAliveAndDrainClosure keep_alive(this, task(0), true /* is_serial */);
1678   G1CMDrainMarkingStackClosure drain_mark_stack(this, task(0), true /* is_serial */);
1679 
1680   set_concurrency_and_phase(1, true);
1681 
1682   G1PrecleanYieldClosure yield_cl(this);
1683 
1684   ReferenceProcessor* rp = _g1h->ref_processor_cm();
1685   // Precleaning is single threaded. Temporarily disable MT discovery.
1686   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
1687   rp->preclean_discovered_references(rp->is_alive_non_header(),
1688                                      &keep_alive,
1689                                      &drain_mark_stack,
1690                                      &yield_cl,
1691                                      _gc_timer_cm);
1692 }
1693 
1694 // When sampling object counts, we already swapped the mark bitmaps, so we need to use
1695 // the prev bitmap determining liveness.
1696 class G1ObjectCountIsAliveClosure: public BoolObjectClosure {
1697   G1CollectedHeap* _g1h;
1698 public:
1699   G1ObjectCountIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
1700 
1701   bool do_object_b(oop obj) {
1702     HeapWord* addr = (HeapWord*)obj;
1703     return addr != NULL &&
1704            (!_g1h->is_in_g1_reserved(addr) || !_g1h->is_obj_dead(obj));
1705   }
1706 };
1707 
1708 void G1ConcurrentMark::report_object_count(bool mark_completed) {
1709   // Depending on the completion of the marking liveness needs to be determined
1710   // using either the next or prev bitmap.
1711   if (mark_completed) {
1712     G1ObjectCountIsAliveClosure is_alive(_g1h);
1713     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1714   } else {
1715     G1CMIsAliveClosure is_alive(_g1h);
1716     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1717   }
1718 }
1719 
1720 
1721 void G1ConcurrentMark::swap_mark_bitmaps() {
1722   G1CMBitMap* temp = _prev_mark_bitmap;
1723   _prev_mark_bitmap = _next_mark_bitmap;
1724   _next_mark_bitmap = temp;
1725   _g1h->collector_state()->set_clearing_next_bitmap(true);
1726 }
1727 
1728 // Closure for marking entries in SATB buffers.
1729 class G1CMSATBBufferClosure : public SATBBufferClosure {
1730 private:
1731   G1CMTask* _task;
1732   G1CollectedHeap* _g1h;
1733 
1734   // This is very similar to G1CMTask::deal_with_reference, but with
1735   // more relaxed requirements for the argument, so this must be more
1736   // circumspect about treating the argument as an object.
1737   void do_entry(void* entry) const {
1738     _task->increment_refs_reached();
1739     oop const obj = static_cast<oop>(entry);
1740     _task->make_reference_grey(obj);
1741   }
1742 
1743 public:
1744   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1745     : _task(task), _g1h(g1h) { }
1746 
1747   virtual void do_buffer(void** buffer, size_t size) {
1748     for (size_t i = 0; i < size; ++i) {
1749       do_entry(buffer[i]);
1750     }
1751   }
1752 };
1753 
1754 class G1RemarkThreadsClosure : public ThreadClosure {
1755   G1CMSATBBufferClosure _cm_satb_cl;
1756   G1CMOopClosure _cm_cl;
1757   MarkingCodeBlobClosure _code_cl;
1758   int _thread_parity;
1759 
1760  public:
1761   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1762     _cm_satb_cl(task, g1h),
1763     _cm_cl(g1h, task),
1764     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1765     _thread_parity(Threads::thread_claim_parity()) {}
1766 
1767   void do_thread(Thread* thread) {
1768     if (thread->is_Java_thread()) {
1769       if (thread->claim_oops_do(true, _thread_parity)) {
1770         JavaThread* jt = (JavaThread*)thread;
1771 
1772         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1773         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1774         // * Alive if on the stack of an executing method
1775         // * Weakly reachable otherwise
1776         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1777         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1778         jt->nmethods_do(&_code_cl);
1779 
1780         G1ThreadLocalData::satb_mark_queue(jt).apply_closure_and_empty(&_cm_satb_cl);
1781       }
1782     } else if (thread->is_VM_thread()) {
1783       if (thread->claim_oops_do(true, _thread_parity)) {
1784         G1BarrierSet::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1785       }
1786     }
1787   }
1788 };
1789 
1790 class G1CMRemarkTask : public AbstractGangTask {
1791   G1ConcurrentMark* _cm;
1792 public:
1793   void work(uint worker_id) {
1794     G1CMTask* task = _cm->task(worker_id);
1795     task->record_start_time();
1796     {
1797       ResourceMark rm;
1798       HandleMark hm;
1799 
1800       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1801       Threads::threads_do(&threads_f);
1802     }
1803 
1804     do {
1805       task->do_marking_step(1000000000.0 /* something very large */,
1806                             true         /* do_termination       */,
1807                             false        /* is_serial            */);
1808     } while (task->has_aborted() && !_cm->has_overflown());
1809     // If we overflow, then we do not want to restart. We instead
1810     // want to abort remark and do concurrent marking again.
1811     task->record_end_time();
1812   }
1813 
1814   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1815     AbstractGangTask("Par Remark"), _cm(cm) {
1816     _cm->terminator()->reset_for_reuse(active_workers);
1817   }
1818 };
1819 
1820 void G1ConcurrentMark::finalize_marking() {
1821   ResourceMark rm;
1822   HandleMark   hm;
1823 
1824   _g1h->ensure_parsability(false);
1825 
1826   // this is remark, so we'll use up all active threads
1827   uint active_workers = _g1h->workers()->active_workers();
1828   set_concurrency_and_phase(active_workers, false /* concurrent */);
1829   // Leave _parallel_marking_threads at it's
1830   // value originally calculated in the G1ConcurrentMark
1831   // constructor and pass values of the active workers
1832   // through the gang in the task.
1833 
1834   {
1835     StrongRootsScope srs(active_workers);
1836 
1837     G1CMRemarkTask remarkTask(this, active_workers);
1838     // We will start all available threads, even if we decide that the
1839     // active_workers will be fewer. The extra ones will just bail out
1840     // immediately.
1841     _g1h->workers()->run_task(&remarkTask);
1842   }
1843 
1844   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1845   guarantee(has_overflown() ||
1846             satb_mq_set.completed_buffers_num() == 0,
1847             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1848             BOOL_TO_STR(has_overflown()),
1849             satb_mq_set.completed_buffers_num());
1850 
1851   print_stats();
1852 }
1853 
1854 void G1ConcurrentMark::flush_all_task_caches() {
1855   size_t hits = 0;
1856   size_t misses = 0;
1857   for (uint i = 0; i < _max_num_tasks; i++) {
1858     Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache();
1859     hits += stats.first;
1860     misses += stats.second;
1861   }
1862   size_t sum = hits + misses;
1863   log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf",
1864                        hits, misses, percent_of(hits, sum));
1865 }
1866 
1867 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1868   _prev_mark_bitmap->clear_range(mr);
1869 }
1870 
1871 HeapRegion*
1872 G1ConcurrentMark::claim_region(uint worker_id) {
1873   // "checkpoint" the finger
1874   HeapWord* finger = _finger;
1875 
1876   while (finger < _heap.end()) {
1877     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1878 
1879     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1880     // Make sure that the reads below do not float before loading curr_region.
1881     OrderAccess::loadload();
1882     // Above heap_region_containing may return NULL as we always scan claim
1883     // until the end of the heap. In this case, just jump to the next region.
1884     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1885 
1886     // Is the gap between reading the finger and doing the CAS too long?
1887     HeapWord* res = Atomic::cmpxchg(end, &_finger, finger);
1888     if (res == finger && curr_region != NULL) {
1889       // we succeeded
1890       HeapWord*   bottom        = curr_region->bottom();
1891       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1892 
1893       // notice that _finger == end cannot be guaranteed here since,
1894       // someone else might have moved the finger even further
1895       assert(_finger >= end, "the finger should have moved forward");
1896 
1897       if (limit > bottom) {
1898         return curr_region;
1899       } else {
1900         assert(limit == bottom,
1901                "the region limit should be at bottom");
1902         // we return NULL and the caller should try calling
1903         // claim_region() again.
1904         return NULL;
1905       }
1906     } else {
1907       assert(_finger > finger, "the finger should have moved forward");
1908       // read it again
1909       finger = _finger;
1910     }
1911   }
1912 
1913   return NULL;
1914 }
1915 
1916 #ifndef PRODUCT
1917 class VerifyNoCSetOops {
1918   G1CollectedHeap* _g1h;
1919   const char* _phase;
1920   int _info;
1921 
1922 public:
1923   VerifyNoCSetOops(const char* phase, int info = -1) :
1924     _g1h(G1CollectedHeap::heap()),
1925     _phase(phase),
1926     _info(info)
1927   { }
1928 
1929   void operator()(G1TaskQueueEntry task_entry) const {
1930     if (task_entry.is_array_slice()) {
1931       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1932       return;
1933     }
1934     guarantee(oopDesc::is_oop(task_entry.obj()),
1935               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1936               p2i(task_entry.obj()), _phase, _info);
1937     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1938               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1939               p2i(task_entry.obj()), _phase, _info);
1940   }
1941 };
1942 
1943 void G1ConcurrentMark::verify_no_cset_oops() {
1944   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1945   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
1946     return;
1947   }
1948 
1949   // Verify entries on the global mark stack
1950   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1951 
1952   // Verify entries on the task queues
1953   for (uint i = 0; i < _max_num_tasks; ++i) {
1954     G1CMTaskQueue* queue = _task_queues->queue(i);
1955     queue->iterate(VerifyNoCSetOops("Queue", i));
1956   }
1957 
1958   // Verify the global finger
1959   HeapWord* global_finger = finger();
1960   if (global_finger != NULL && global_finger < _heap.end()) {
1961     // Since we always iterate over all regions, we might get a NULL HeapRegion
1962     // here.
1963     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1964     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1965               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1966               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1967   }
1968 
1969   // Verify the task fingers
1970   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1971   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1972     G1CMTask* task = _tasks[i];
1973     HeapWord* task_finger = task->finger();
1974     if (task_finger != NULL && task_finger < _heap.end()) {
1975       // See above note on the global finger verification.
1976       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
1977       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
1978                 !task_hr->in_collection_set(),
1979                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1980                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
1981     }
1982   }
1983 }
1984 #endif // PRODUCT
1985 
1986 void G1ConcurrentMark::rebuild_rem_set_concurrently() {
1987   _g1h->g1_rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset);
1988 }
1989 
1990 void G1ConcurrentMark::print_stats() {
1991   if (!log_is_enabled(Debug, gc, stats)) {
1992     return;
1993   }
1994   log_debug(gc, stats)("---------------------------------------------------------------------");
1995   for (size_t i = 0; i < _num_active_tasks; ++i) {
1996     _tasks[i]->print_stats();
1997     log_debug(gc, stats)("---------------------------------------------------------------------");
1998   }
1999 }
2000 
2001 void G1ConcurrentMark::concurrent_cycle_abort() {
2002   if (!cm_thread()->during_cycle() || _has_aborted) {
2003     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2004     return;
2005   }
2006 
2007   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2008   // concurrent bitmap clearing.
2009   {
2010     GCTraceTime(Debug, gc) debug("Clear Next Bitmap");
2011     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
2012   }
2013   // Note we cannot clear the previous marking bitmap here
2014   // since VerifyDuringGC verifies the objects marked during
2015   // a full GC against the previous bitmap.
2016 
2017   // Empty mark stack
2018   reset_marking_for_restart();
2019   for (uint i = 0; i < _max_num_tasks; ++i) {
2020     _tasks[i]->clear_region_fields();
2021   }
2022   _first_overflow_barrier_sync.abort();
2023   _second_overflow_barrier_sync.abort();
2024   _has_aborted = true;
2025 
2026   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2027   satb_mq_set.abandon_partial_marking();
2028   // This can be called either during or outside marking, we'll read
2029   // the expected_active value from the SATB queue set.
2030   satb_mq_set.set_active_all_threads(
2031                                  false, /* new active value */
2032                                  satb_mq_set.is_active() /* expected_active */);
2033 }
2034 
2035 static void print_ms_time_info(const char* prefix, const char* name,
2036                                NumberSeq& ns) {
2037   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2038                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2039   if (ns.num() > 0) {
2040     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2041                            prefix, ns.sd(), ns.maximum());
2042   }
2043 }
2044 
2045 void G1ConcurrentMark::print_summary_info() {
2046   Log(gc, marking) log;
2047   if (!log.is_trace()) {
2048     return;
2049   }
2050 
2051   log.trace(" Concurrent marking:");
2052   print_ms_time_info("  ", "init marks", _init_times);
2053   print_ms_time_info("  ", "remarks", _remark_times);
2054   {
2055     print_ms_time_info("     ", "final marks", _remark_mark_times);
2056     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2057 
2058   }
2059   print_ms_time_info("  ", "cleanups", _cleanup_times);
2060   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2061             _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2062   log.trace("  Total stop_world time = %8.2f s.",
2063             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2064   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2065             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2066 }
2067 
2068 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2069   _concurrent_workers->print_worker_threads_on(st);
2070 }
2071 
2072 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2073   _concurrent_workers->threads_do(tc);
2074 }
2075 
2076 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2077   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2078                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2079   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2080   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2081 }
2082 
2083 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2084   ReferenceProcessor* result = g1h->ref_processor_cm();
2085   assert(result != NULL, "CM reference processor should not be NULL");
2086   return result;
2087 }
2088 
2089 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2090                                G1CMTask* task)
2091   : MetadataVisitingOopIterateClosure(get_cm_oop_closure_ref_processor(g1h)),
2092     _g1h(g1h), _task(task)
2093 { }
2094 
2095 void G1CMTask::setup_for_region(HeapRegion* hr) {
2096   assert(hr != NULL,
2097         "claim_region() should have filtered out NULL regions");
2098   _curr_region  = hr;
2099   _finger       = hr->bottom();
2100   update_region_limit();
2101 }
2102 
2103 void G1CMTask::update_region_limit() {
2104   HeapRegion* hr            = _curr_region;
2105   HeapWord* bottom          = hr->bottom();
2106   HeapWord* limit           = hr->next_top_at_mark_start();
2107 
2108   if (limit == bottom) {
2109     // The region was collected underneath our feet.
2110     // We set the finger to bottom to ensure that the bitmap
2111     // iteration that will follow this will not do anything.
2112     // (this is not a condition that holds when we set the region up,
2113     // as the region is not supposed to be empty in the first place)
2114     _finger = bottom;
2115   } else if (limit >= _region_limit) {
2116     assert(limit >= _finger, "peace of mind");
2117   } else {
2118     assert(limit < _region_limit, "only way to get here");
2119     // This can happen under some pretty unusual circumstances.  An
2120     // evacuation pause empties the region underneath our feet (NTAMS
2121     // at bottom). We then do some allocation in the region (NTAMS
2122     // stays at bottom), followed by the region being used as a GC
2123     // alloc region (NTAMS will move to top() and the objects
2124     // originally below it will be grayed). All objects now marked in
2125     // the region are explicitly grayed, if below the global finger,
2126     // and we do not need in fact to scan anything else. So, we simply
2127     // set _finger to be limit to ensure that the bitmap iteration
2128     // doesn't do anything.
2129     _finger = limit;
2130   }
2131 
2132   _region_limit = limit;
2133 }
2134 
2135 void G1CMTask::giveup_current_region() {
2136   assert(_curr_region != NULL, "invariant");
2137   clear_region_fields();
2138 }
2139 
2140 void G1CMTask::clear_region_fields() {
2141   // Values for these three fields that indicate that we're not
2142   // holding on to a region.
2143   _curr_region   = NULL;
2144   _finger        = NULL;
2145   _region_limit  = NULL;
2146 }
2147 
2148 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2149   if (cm_oop_closure == NULL) {
2150     assert(_cm_oop_closure != NULL, "invariant");
2151   } else {
2152     assert(_cm_oop_closure == NULL, "invariant");
2153   }
2154   _cm_oop_closure = cm_oop_closure;
2155 }
2156 
2157 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2158   guarantee(next_mark_bitmap != NULL, "invariant");
2159   _next_mark_bitmap              = next_mark_bitmap;
2160   clear_region_fields();
2161 
2162   _calls                         = 0;
2163   _elapsed_time_ms               = 0.0;
2164   _termination_time_ms           = 0.0;
2165   _termination_start_time_ms     = 0.0;
2166 
2167   _mark_stats_cache.reset();
2168 }
2169 
2170 bool G1CMTask::should_exit_termination() {
2171   regular_clock_call();
2172   // This is called when we are in the termination protocol. We should
2173   // quit if, for some reason, this task wants to abort or the global
2174   // stack is not empty (this means that we can get work from it).
2175   return !_cm->mark_stack_empty() || has_aborted();
2176 }
2177 
2178 void G1CMTask::reached_limit() {
2179   assert(_words_scanned >= _words_scanned_limit ||
2180          _refs_reached >= _refs_reached_limit ,
2181          "shouldn't have been called otherwise");
2182   regular_clock_call();
2183 }
2184 
2185 void G1CMTask::regular_clock_call() {
2186   if (has_aborted()) {
2187     return;
2188   }
2189 
2190   // First, we need to recalculate the words scanned and refs reached
2191   // limits for the next clock call.
2192   recalculate_limits();
2193 
2194   // During the regular clock call we do the following
2195 
2196   // (1) If an overflow has been flagged, then we abort.
2197   if (_cm->has_overflown()) {
2198     set_has_aborted();
2199     return;
2200   }
2201 
2202   // If we are not concurrent (i.e. we're doing remark) we don't need
2203   // to check anything else. The other steps are only needed during
2204   // the concurrent marking phase.
2205   if (!_cm->concurrent()) {
2206     return;
2207   }
2208 
2209   // (2) If marking has been aborted for Full GC, then we also abort.
2210   if (_cm->has_aborted()) {
2211     set_has_aborted();
2212     return;
2213   }
2214 
2215   double curr_time_ms = os::elapsedVTime() * 1000.0;
2216 
2217   // (4) We check whether we should yield. If we have to, then we abort.
2218   if (SuspendibleThreadSet::should_yield()) {
2219     // We should yield. To do this we abort the task. The caller is
2220     // responsible for yielding.
2221     set_has_aborted();
2222     return;
2223   }
2224 
2225   // (5) We check whether we've reached our time quota. If we have,
2226   // then we abort.
2227   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2228   if (elapsed_time_ms > _time_target_ms) {
2229     set_has_aborted();
2230     _has_timed_out = true;
2231     return;
2232   }
2233 
2234   // (6) Finally, we check whether there are enough completed STAB
2235   // buffers available for processing. If there are, we abort.
2236   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2237   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2238     // we do need to process SATB buffers, we'll abort and restart
2239     // the marking task to do so
2240     set_has_aborted();
2241     return;
2242   }
2243 }
2244 
2245 void G1CMTask::recalculate_limits() {
2246   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2247   _words_scanned_limit      = _real_words_scanned_limit;
2248 
2249   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2250   _refs_reached_limit       = _real_refs_reached_limit;
2251 }
2252 
2253 void G1CMTask::decrease_limits() {
2254   // This is called when we believe that we're going to do an infrequent
2255   // operation which will increase the per byte scanned cost (i.e. move
2256   // entries to/from the global stack). It basically tries to decrease the
2257   // scanning limit so that the clock is called earlier.
2258 
2259   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2260   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2261 }
2262 
2263 void G1CMTask::move_entries_to_global_stack() {
2264   // Local array where we'll store the entries that will be popped
2265   // from the local queue.
2266   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2267 
2268   size_t n = 0;
2269   G1TaskQueueEntry task_entry;
2270   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2271     buffer[n] = task_entry;
2272     ++n;
2273   }
2274   if (n < G1CMMarkStack::EntriesPerChunk) {
2275     buffer[n] = G1TaskQueueEntry();
2276   }
2277 
2278   if (n > 0) {
2279     if (!_cm->mark_stack_push(buffer)) {
2280       set_has_aborted();
2281     }
2282   }
2283 
2284   // This operation was quite expensive, so decrease the limits.
2285   decrease_limits();
2286 }
2287 
2288 bool G1CMTask::get_entries_from_global_stack() {
2289   // Local array where we'll store the entries that will be popped
2290   // from the global stack.
2291   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2292 
2293   if (!_cm->mark_stack_pop(buffer)) {
2294     return false;
2295   }
2296 
2297   // We did actually pop at least one entry.
2298   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2299     G1TaskQueueEntry task_entry = buffer[i];
2300     if (task_entry.is_null()) {
2301       break;
2302     }
2303     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2304     bool success = _task_queue->push(task_entry);
2305     // We only call this when the local queue is empty or under a
2306     // given target limit. So, we do not expect this push to fail.
2307     assert(success, "invariant");
2308   }
2309 
2310   // This operation was quite expensive, so decrease the limits
2311   decrease_limits();
2312   return true;
2313 }
2314 
2315 void G1CMTask::drain_local_queue(bool partially) {
2316   if (has_aborted()) {
2317     return;
2318   }
2319 
2320   // Decide what the target size is, depending whether we're going to
2321   // drain it partially (so that other tasks can steal if they run out
2322   // of things to do) or totally (at the very end).
2323   size_t target_size;
2324   if (partially) {
2325     target_size = MIN2((size_t)_task_queue->max_elems()/3, (size_t)GCDrainStackTargetSize);
2326   } else {
2327     target_size = 0;
2328   }
2329 
2330   if (_task_queue->size() > target_size) {
2331     G1TaskQueueEntry entry;
2332     bool ret = _task_queue->pop_local(entry);
2333     while (ret) {
2334       scan_task_entry(entry);
2335       if (_task_queue->size() <= target_size || has_aborted()) {
2336         ret = false;
2337       } else {
2338         ret = _task_queue->pop_local(entry);
2339       }
2340     }
2341   }
2342 }
2343 
2344 void G1CMTask::drain_global_stack(bool partially) {
2345   if (has_aborted()) {
2346     return;
2347   }
2348 
2349   // We have a policy to drain the local queue before we attempt to
2350   // drain the global stack.
2351   assert(partially || _task_queue->size() == 0, "invariant");
2352 
2353   // Decide what the target size is, depending whether we're going to
2354   // drain it partially (so that other tasks can steal if they run out
2355   // of things to do) or totally (at the very end).
2356   // Notice that when draining the global mark stack partially, due to the racyness
2357   // of the mark stack size update we might in fact drop below the target. But,
2358   // this is not a problem.
2359   // In case of total draining, we simply process until the global mark stack is
2360   // totally empty, disregarding the size counter.
2361   if (partially) {
2362     size_t const target_size = _cm->partial_mark_stack_size_target();
2363     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2364       if (get_entries_from_global_stack()) {
2365         drain_local_queue(partially);
2366       }
2367     }
2368   } else {
2369     while (!has_aborted() && get_entries_from_global_stack()) {
2370       drain_local_queue(partially);
2371     }
2372   }
2373 }
2374 
2375 // SATB Queue has several assumptions on whether to call the par or
2376 // non-par versions of the methods. this is why some of the code is
2377 // replicated. We should really get rid of the single-threaded version
2378 // of the code to simplify things.
2379 void G1CMTask::drain_satb_buffers() {
2380   if (has_aborted()) {
2381     return;
2382   }
2383 
2384   // We set this so that the regular clock knows that we're in the
2385   // middle of draining buffers and doesn't set the abort flag when it
2386   // notices that SATB buffers are available for draining. It'd be
2387   // very counter productive if it did that. :-)
2388   _draining_satb_buffers = true;
2389 
2390   G1CMSATBBufferClosure satb_cl(this, _g1h);
2391   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2392 
2393   // This keeps claiming and applying the closure to completed buffers
2394   // until we run out of buffers or we need to abort.
2395   while (!has_aborted() &&
2396          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2397     regular_clock_call();
2398   }
2399 
2400   _draining_satb_buffers = false;
2401 
2402   assert(has_aborted() ||
2403          _cm->concurrent() ||
2404          satb_mq_set.completed_buffers_num() == 0, "invariant");
2405 
2406   // again, this was a potentially expensive operation, decrease the
2407   // limits to get the regular clock call early
2408   decrease_limits();
2409 }
2410 
2411 void G1CMTask::clear_mark_stats_cache(uint region_idx) {
2412   _mark_stats_cache.reset(region_idx);
2413 }
2414 
2415 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() {
2416   return _mark_stats_cache.evict_all();
2417 }
2418 
2419 void G1CMTask::print_stats() {
2420   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls);
2421   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2422                        _elapsed_time_ms, _termination_time_ms);
2423   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms",
2424                        _step_times_ms.num(),
2425                        _step_times_ms.avg(),
2426                        _step_times_ms.sd(),
2427                        _step_times_ms.maximum(),
2428                        _step_times_ms.sum());
2429   size_t const hits = _mark_stats_cache.hits();
2430   size_t const misses = _mark_stats_cache.misses();
2431   log_debug(gc, stats)("  Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f",
2432                        hits, misses, percent_of(hits, hits + misses));
2433 }
2434 
2435 bool G1ConcurrentMark::try_stealing(uint worker_id, G1TaskQueueEntry& task_entry) {
2436   return _task_queues->steal(worker_id, task_entry);
2437 }
2438 
2439 /*****************************************************************************
2440 
2441     The do_marking_step(time_target_ms, ...) method is the building
2442     block of the parallel marking framework. It can be called in parallel
2443     with other invocations of do_marking_step() on different tasks
2444     (but only one per task, obviously) and concurrently with the
2445     mutator threads, or during remark, hence it eliminates the need
2446     for two versions of the code. When called during remark, it will
2447     pick up from where the task left off during the concurrent marking
2448     phase. Interestingly, tasks are also claimable during evacuation
2449     pauses too, since do_marking_step() ensures that it aborts before
2450     it needs to yield.
2451 
2452     The data structures that it uses to do marking work are the
2453     following:
2454 
2455       (1) Marking Bitmap. If there are gray objects that appear only
2456       on the bitmap (this happens either when dealing with an overflow
2457       or when the initial marking phase has simply marked the roots
2458       and didn't push them on the stack), then tasks claim heap
2459       regions whose bitmap they then scan to find gray objects. A
2460       global finger indicates where the end of the last claimed region
2461       is. A local finger indicates how far into the region a task has
2462       scanned. The two fingers are used to determine how to gray an
2463       object (i.e. whether simply marking it is OK, as it will be
2464       visited by a task in the future, or whether it needs to be also
2465       pushed on a stack).
2466 
2467       (2) Local Queue. The local queue of the task which is accessed
2468       reasonably efficiently by the task. Other tasks can steal from
2469       it when they run out of work. Throughout the marking phase, a
2470       task attempts to keep its local queue short but not totally
2471       empty, so that entries are available for stealing by other
2472       tasks. Only when there is no more work, a task will totally
2473       drain its local queue.
2474 
2475       (3) Global Mark Stack. This handles local queue overflow. During
2476       marking only sets of entries are moved between it and the local
2477       queues, as access to it requires a mutex and more fine-grain
2478       interaction with it which might cause contention. If it
2479       overflows, then the marking phase should restart and iterate
2480       over the bitmap to identify gray objects. Throughout the marking
2481       phase, tasks attempt to keep the global mark stack at a small
2482       length but not totally empty, so that entries are available for
2483       popping by other tasks. Only when there is no more work, tasks
2484       will totally drain the global mark stack.
2485 
2486       (4) SATB Buffer Queue. This is where completed SATB buffers are
2487       made available. Buffers are regularly removed from this queue
2488       and scanned for roots, so that the queue doesn't get too
2489       long. During remark, all completed buffers are processed, as
2490       well as the filled in parts of any uncompleted buffers.
2491 
2492     The do_marking_step() method tries to abort when the time target
2493     has been reached. There are a few other cases when the
2494     do_marking_step() method also aborts:
2495 
2496       (1) When the marking phase has been aborted (after a Full GC).
2497 
2498       (2) When a global overflow (on the global stack) has been
2499       triggered. Before the task aborts, it will actually sync up with
2500       the other tasks to ensure that all the marking data structures
2501       (local queues, stacks, fingers etc.)  are re-initialized so that
2502       when do_marking_step() completes, the marking phase can
2503       immediately restart.
2504 
2505       (3) When enough completed SATB buffers are available. The
2506       do_marking_step() method only tries to drain SATB buffers right
2507       at the beginning. So, if enough buffers are available, the
2508       marking step aborts and the SATB buffers are processed at
2509       the beginning of the next invocation.
2510 
2511       (4) To yield. when we have to yield then we abort and yield
2512       right at the end of do_marking_step(). This saves us from a lot
2513       of hassle as, by yielding we might allow a Full GC. If this
2514       happens then objects will be compacted underneath our feet, the
2515       heap might shrink, etc. We save checking for this by just
2516       aborting and doing the yield right at the end.
2517 
2518     From the above it follows that the do_marking_step() method should
2519     be called in a loop (or, otherwise, regularly) until it completes.
2520 
2521     If a marking step completes without its has_aborted() flag being
2522     true, it means it has completed the current marking phase (and
2523     also all other marking tasks have done so and have all synced up).
2524 
2525     A method called regular_clock_call() is invoked "regularly" (in
2526     sub ms intervals) throughout marking. It is this clock method that
2527     checks all the abort conditions which were mentioned above and
2528     decides when the task should abort. A work-based scheme is used to
2529     trigger this clock method: when the number of object words the
2530     marking phase has scanned or the number of references the marking
2531     phase has visited reach a given limit. Additional invocations to
2532     the method clock have been planted in a few other strategic places
2533     too. The initial reason for the clock method was to avoid calling
2534     vtime too regularly, as it is quite expensive. So, once it was in
2535     place, it was natural to piggy-back all the other conditions on it
2536     too and not constantly check them throughout the code.
2537 
2538     If do_termination is true then do_marking_step will enter its
2539     termination protocol.
2540 
2541     The value of is_serial must be true when do_marking_step is being
2542     called serially (i.e. by the VMThread) and do_marking_step should
2543     skip any synchronization in the termination and overflow code.
2544     Examples include the serial remark code and the serial reference
2545     processing closures.
2546 
2547     The value of is_serial must be false when do_marking_step is
2548     being called by any of the worker threads in a work gang.
2549     Examples include the concurrent marking code (CMMarkingTask),
2550     the MT remark code, and the MT reference processing closures.
2551 
2552  *****************************************************************************/
2553 
2554 void G1CMTask::do_marking_step(double time_target_ms,
2555                                bool do_termination,
2556                                bool is_serial) {
2557   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2558 
2559   _start_time_ms = os::elapsedVTime() * 1000.0;
2560 
2561   // If do_stealing is true then do_marking_step will attempt to
2562   // steal work from the other G1CMTasks. It only makes sense to
2563   // enable stealing when the termination protocol is enabled
2564   // and do_marking_step() is not being called serially.
2565   bool do_stealing = do_termination && !is_serial;
2566 
2567   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2568   _time_target_ms = time_target_ms - diff_prediction_ms;
2569 
2570   // set up the variables that are used in the work-based scheme to
2571   // call the regular clock method
2572   _words_scanned = 0;
2573   _refs_reached  = 0;
2574   recalculate_limits();
2575 
2576   // clear all flags
2577   clear_has_aborted();
2578   _has_timed_out = false;
2579   _draining_satb_buffers = false;
2580 
2581   ++_calls;
2582 
2583   // Set up the bitmap and oop closures. Anything that uses them is
2584   // eventually called from this method, so it is OK to allocate these
2585   // statically.
2586   G1CMBitMapClosure bitmap_closure(this, _cm);
2587   G1CMOopClosure cm_oop_closure(_g1h, this);
2588   set_cm_oop_closure(&cm_oop_closure);
2589 
2590   if (_cm->has_overflown()) {
2591     // This can happen if the mark stack overflows during a GC pause
2592     // and this task, after a yield point, restarts. We have to abort
2593     // as we need to get into the overflow protocol which happens
2594     // right at the end of this task.
2595     set_has_aborted();
2596   }
2597 
2598   // First drain any available SATB buffers. After this, we will not
2599   // look at SATB buffers before the next invocation of this method.
2600   // If enough completed SATB buffers are queued up, the regular clock
2601   // will abort this task so that it restarts.
2602   drain_satb_buffers();
2603   // ...then partially drain the local queue and the global stack
2604   drain_local_queue(true);
2605   drain_global_stack(true);
2606 
2607   do {
2608     if (!has_aborted() && _curr_region != NULL) {
2609       // This means that we're already holding on to a region.
2610       assert(_finger != NULL, "if region is not NULL, then the finger "
2611              "should not be NULL either");
2612 
2613       // We might have restarted this task after an evacuation pause
2614       // which might have evacuated the region we're holding on to
2615       // underneath our feet. Let's read its limit again to make sure
2616       // that we do not iterate over a region of the heap that
2617       // contains garbage (update_region_limit() will also move
2618       // _finger to the start of the region if it is found empty).
2619       update_region_limit();
2620       // We will start from _finger not from the start of the region,
2621       // as we might be restarting this task after aborting half-way
2622       // through scanning this region. In this case, _finger points to
2623       // the address where we last found a marked object. If this is a
2624       // fresh region, _finger points to start().
2625       MemRegion mr = MemRegion(_finger, _region_limit);
2626 
2627       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2628              "humongous regions should go around loop once only");
2629 
2630       // Some special cases:
2631       // If the memory region is empty, we can just give up the region.
2632       // If the current region is humongous then we only need to check
2633       // the bitmap for the bit associated with the start of the object,
2634       // scan the object if it's live, and give up the region.
2635       // Otherwise, let's iterate over the bitmap of the part of the region
2636       // that is left.
2637       // If the iteration is successful, give up the region.
2638       if (mr.is_empty()) {
2639         giveup_current_region();
2640         regular_clock_call();
2641       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2642         if (_next_mark_bitmap->is_marked(mr.start())) {
2643           // The object is marked - apply the closure
2644           bitmap_closure.do_addr(mr.start());
2645         }
2646         // Even if this task aborted while scanning the humongous object
2647         // we can (and should) give up the current region.
2648         giveup_current_region();
2649         regular_clock_call();
2650       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2651         giveup_current_region();
2652         regular_clock_call();
2653       } else {
2654         assert(has_aborted(), "currently the only way to do so");
2655         // The only way to abort the bitmap iteration is to return
2656         // false from the do_bit() method. However, inside the
2657         // do_bit() method we move the _finger to point to the
2658         // object currently being looked at. So, if we bail out, we
2659         // have definitely set _finger to something non-null.
2660         assert(_finger != NULL, "invariant");
2661 
2662         // Region iteration was actually aborted. So now _finger
2663         // points to the address of the object we last scanned. If we
2664         // leave it there, when we restart this task, we will rescan
2665         // the object. It is easy to avoid this. We move the finger by
2666         // enough to point to the next possible object header.
2667         assert(_finger < _region_limit, "invariant");
2668         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2669         // Check if bitmap iteration was aborted while scanning the last object
2670         if (new_finger >= _region_limit) {
2671           giveup_current_region();
2672         } else {
2673           move_finger_to(new_finger);
2674         }
2675       }
2676     }
2677     // At this point we have either completed iterating over the
2678     // region we were holding on to, or we have aborted.
2679 
2680     // We then partially drain the local queue and the global stack.
2681     // (Do we really need this?)
2682     drain_local_queue(true);
2683     drain_global_stack(true);
2684 
2685     // Read the note on the claim_region() method on why it might
2686     // return NULL with potentially more regions available for
2687     // claiming and why we have to check out_of_regions() to determine
2688     // whether we're done or not.
2689     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2690       // We are going to try to claim a new region. We should have
2691       // given up on the previous one.
2692       // Separated the asserts so that we know which one fires.
2693       assert(_curr_region  == NULL, "invariant");
2694       assert(_finger       == NULL, "invariant");
2695       assert(_region_limit == NULL, "invariant");
2696       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2697       if (claimed_region != NULL) {
2698         // Yes, we managed to claim one
2699         setup_for_region(claimed_region);
2700         assert(_curr_region == claimed_region, "invariant");
2701       }
2702       // It is important to call the regular clock here. It might take
2703       // a while to claim a region if, for example, we hit a large
2704       // block of empty regions. So we need to call the regular clock
2705       // method once round the loop to make sure it's called
2706       // frequently enough.
2707       regular_clock_call();
2708     }
2709 
2710     if (!has_aborted() && _curr_region == NULL) {
2711       assert(_cm->out_of_regions(),
2712              "at this point we should be out of regions");
2713     }
2714   } while ( _curr_region != NULL && !has_aborted());
2715 
2716   if (!has_aborted()) {
2717     // We cannot check whether the global stack is empty, since other
2718     // tasks might be pushing objects to it concurrently.
2719     assert(_cm->out_of_regions(),
2720            "at this point we should be out of regions");
2721     // Try to reduce the number of available SATB buffers so that
2722     // remark has less work to do.
2723     drain_satb_buffers();
2724   }
2725 
2726   // Since we've done everything else, we can now totally drain the
2727   // local queue and global stack.
2728   drain_local_queue(false);
2729   drain_global_stack(false);
2730 
2731   // Attempt at work stealing from other task's queues.
2732   if (do_stealing && !has_aborted()) {
2733     // We have not aborted. This means that we have finished all that
2734     // we could. Let's try to do some stealing...
2735 
2736     // We cannot check whether the global stack is empty, since other
2737     // tasks might be pushing objects to it concurrently.
2738     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2739            "only way to reach here");
2740     while (!has_aborted()) {
2741       G1TaskQueueEntry entry;
2742       if (_cm->try_stealing(_worker_id, entry)) {
2743         scan_task_entry(entry);
2744 
2745         // And since we're towards the end, let's totally drain the
2746         // local queue and global stack.
2747         drain_local_queue(false);
2748         drain_global_stack(false);
2749       } else {
2750         break;
2751       }
2752     }
2753   }
2754 
2755   // We still haven't aborted. Now, let's try to get into the
2756   // termination protocol.
2757   if (do_termination && !has_aborted()) {
2758     // We cannot check whether the global stack is empty, since other
2759     // tasks might be concurrently pushing objects on it.
2760     // Separated the asserts so that we know which one fires.
2761     assert(_cm->out_of_regions(), "only way to reach here");
2762     assert(_task_queue->size() == 0, "only way to reach here");
2763     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2764 
2765     // The G1CMTask class also extends the TerminatorTerminator class,
2766     // hence its should_exit_termination() method will also decide
2767     // whether to exit the termination protocol or not.
2768     bool finished = (is_serial ||
2769                      _cm->terminator()->offer_termination(this));
2770     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2771     _termination_time_ms +=
2772       termination_end_time_ms - _termination_start_time_ms;
2773 
2774     if (finished) {
2775       // We're all done.
2776 
2777       // We can now guarantee that the global stack is empty, since
2778       // all other tasks have finished. We separated the guarantees so
2779       // that, if a condition is false, we can immediately find out
2780       // which one.
2781       guarantee(_cm->out_of_regions(), "only way to reach here");
2782       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2783       guarantee(_task_queue->size() == 0, "only way to reach here");
2784       guarantee(!_cm->has_overflown(), "only way to reach here");
2785     } else {
2786       // Apparently there's more work to do. Let's abort this task. It
2787       // will restart it and we can hopefully find more things to do.
2788       set_has_aborted();
2789     }
2790   }
2791 
2792   // Mainly for debugging purposes to make sure that a pointer to the
2793   // closure which was statically allocated in this frame doesn't
2794   // escape it by accident.
2795   set_cm_oop_closure(NULL);
2796   double end_time_ms = os::elapsedVTime() * 1000.0;
2797   double elapsed_time_ms = end_time_ms - _start_time_ms;
2798   // Update the step history.
2799   _step_times_ms.add(elapsed_time_ms);
2800 
2801   if (has_aborted()) {
2802     // The task was aborted for some reason.
2803     if (_has_timed_out) {
2804       double diff_ms = elapsed_time_ms - _time_target_ms;
2805       // Keep statistics of how well we did with respect to hitting
2806       // our target only if we actually timed out (if we aborted for
2807       // other reasons, then the results might get skewed).
2808       _marking_step_diffs_ms.add(diff_ms);
2809     }
2810 
2811     if (_cm->has_overflown()) {
2812       // This is the interesting one. We aborted because a global
2813       // overflow was raised. This means we have to restart the
2814       // marking phase and start iterating over regions. However, in
2815       // order to do this we have to make sure that all tasks stop
2816       // what they are doing and re-initialize in a safe manner. We
2817       // will achieve this with the use of two barrier sync points.
2818 
2819       if (!is_serial) {
2820         // We only need to enter the sync barrier if being called
2821         // from a parallel context
2822         _cm->enter_first_sync_barrier(_worker_id);
2823 
2824         // When we exit this sync barrier we know that all tasks have
2825         // stopped doing marking work. So, it's now safe to
2826         // re-initialize our data structures.
2827       }
2828 
2829       clear_region_fields();
2830       flush_mark_stats_cache();
2831 
2832       if (!is_serial) {
2833         // If we're executing the concurrent phase of marking, reset the marking
2834         // state; otherwise the marking state is reset after reference processing,
2835         // during the remark pause.
2836         // If we reset here as a result of an overflow during the remark we will
2837         // see assertion failures from any subsequent set_concurrency_and_phase()
2838         // calls.
2839         if (_cm->concurrent() && _worker_id == 0) {
2840           // Worker 0 is responsible for clearing the global data structures because
2841           // of an overflow. During STW we should not clear the overflow flag (in
2842           // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit
2843           // method to abort the pause and restart concurrent marking.
2844           _cm->reset_marking_for_restart();
2845 
2846           log_info(gc, marking)("Concurrent Mark reset for overflow");
2847         }
2848 
2849         // ...and enter the second barrier.
2850         _cm->enter_second_sync_barrier(_worker_id);
2851       }
2852       // At this point, if we're during the concurrent phase of
2853       // marking, everything has been re-initialized and we're
2854       // ready to restart.
2855     }
2856   }
2857 }
2858 
2859 G1CMTask::G1CMTask(uint worker_id,
2860                    G1ConcurrentMark* cm,
2861                    G1CMTaskQueue* task_queue,
2862                    G1RegionMarkStats* mark_stats,
2863                    uint max_regions) :
2864   _objArray_processor(this),
2865   _worker_id(worker_id),
2866   _g1h(G1CollectedHeap::heap()),
2867   _cm(cm),
2868   _next_mark_bitmap(NULL),
2869   _task_queue(task_queue),
2870   _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize),
2871   _calls(0),
2872   _time_target_ms(0.0),
2873   _start_time_ms(0.0),
2874   _cm_oop_closure(NULL),
2875   _curr_region(NULL),
2876   _finger(NULL),
2877   _region_limit(NULL),
2878   _words_scanned(0),
2879   _words_scanned_limit(0),
2880   _real_words_scanned_limit(0),
2881   _refs_reached(0),
2882   _refs_reached_limit(0),
2883   _real_refs_reached_limit(0),
2884   _has_aborted(false),
2885   _has_timed_out(false),
2886   _draining_satb_buffers(false),
2887   _step_times_ms(),
2888   _elapsed_time_ms(0.0),
2889   _termination_time_ms(0.0),
2890   _termination_start_time_ms(0.0),
2891   _marking_step_diffs_ms()
2892 {
2893   guarantee(task_queue != NULL, "invariant");
2894 
2895   _marking_step_diffs_ms.add(0.5);
2896 }
2897 
2898 // These are formatting macros that are used below to ensure
2899 // consistent formatting. The *_H_* versions are used to format the
2900 // header for a particular value and they should be kept consistent
2901 // with the corresponding macro. Also note that most of the macros add
2902 // the necessary white space (as a prefix) which makes them a bit
2903 // easier to compose.
2904 
2905 // All the output lines are prefixed with this string to be able to
2906 // identify them easily in a large log file.
2907 #define G1PPRL_LINE_PREFIX            "###"
2908 
2909 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2910 #ifdef _LP64
2911 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2912 #else // _LP64
2913 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2914 #endif // _LP64
2915 
2916 // For per-region info
2917 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2918 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2919 #define G1PPRL_STATE_FORMAT           "   %-5s"
2920 #define G1PPRL_STATE_H_FORMAT         "   %5s"
2921 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2922 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2923 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2924 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2925 
2926 // For summary info
2927 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2928 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2929 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2930 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2931 
2932 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2933   _total_used_bytes(0), _total_capacity_bytes(0),
2934   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2935   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2936 {
2937   if (!log_is_enabled(Trace, gc, liveness)) {
2938     return;
2939   }
2940 
2941   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2942   MemRegion g1_reserved = g1h->g1_reserved();
2943   double now = os::elapsedTime();
2944 
2945   // Print the header of the output.
2946   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2947   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2948                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2949                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2950                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2951                           HeapRegion::GrainBytes);
2952   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2953   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2954                           G1PPRL_TYPE_H_FORMAT
2955                           G1PPRL_ADDR_BASE_H_FORMAT
2956                           G1PPRL_BYTE_H_FORMAT
2957                           G1PPRL_BYTE_H_FORMAT
2958                           G1PPRL_BYTE_H_FORMAT
2959                           G1PPRL_DOUBLE_H_FORMAT
2960                           G1PPRL_BYTE_H_FORMAT
2961                           G1PPRL_STATE_H_FORMAT
2962                           G1PPRL_BYTE_H_FORMAT,
2963                           "type", "address-range",
2964                           "used", "prev-live", "next-live", "gc-eff",
2965                           "remset", "state", "code-roots");
2966   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2967                           G1PPRL_TYPE_H_FORMAT
2968                           G1PPRL_ADDR_BASE_H_FORMAT
2969                           G1PPRL_BYTE_H_FORMAT
2970                           G1PPRL_BYTE_H_FORMAT
2971                           G1PPRL_BYTE_H_FORMAT
2972                           G1PPRL_DOUBLE_H_FORMAT
2973                           G1PPRL_BYTE_H_FORMAT
2974                           G1PPRL_STATE_H_FORMAT
2975                           G1PPRL_BYTE_H_FORMAT,
2976                           "", "",
2977                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2978                           "(bytes)", "", "(bytes)");
2979 }
2980 
2981 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2982   if (!log_is_enabled(Trace, gc, liveness)) {
2983     return false;
2984   }
2985 
2986   const char* type       = r->get_type_str();
2987   HeapWord* bottom       = r->bottom();
2988   HeapWord* end          = r->end();
2989   size_t capacity_bytes  = r->capacity();
2990   size_t used_bytes      = r->used();
2991   size_t prev_live_bytes = r->live_bytes();
2992   size_t next_live_bytes = r->next_live_bytes();
2993   double gc_eff          = r->gc_efficiency();
2994   size_t remset_bytes    = r->rem_set()->mem_size();
2995   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
2996   const char* remset_type = r->rem_set()->get_short_state_str();
2997 
2998   _total_used_bytes      += used_bytes;
2999   _total_capacity_bytes  += capacity_bytes;
3000   _total_prev_live_bytes += prev_live_bytes;
3001   _total_next_live_bytes += next_live_bytes;
3002   _total_remset_bytes    += remset_bytes;
3003   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3004 
3005   // Print a line for this particular region.
3006   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3007                           G1PPRL_TYPE_FORMAT
3008                           G1PPRL_ADDR_BASE_FORMAT
3009                           G1PPRL_BYTE_FORMAT
3010                           G1PPRL_BYTE_FORMAT
3011                           G1PPRL_BYTE_FORMAT
3012                           G1PPRL_DOUBLE_FORMAT
3013                           G1PPRL_BYTE_FORMAT
3014                           G1PPRL_STATE_FORMAT
3015                           G1PPRL_BYTE_FORMAT,
3016                           type, p2i(bottom), p2i(end),
3017                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3018                           remset_bytes, remset_type, strong_code_roots_bytes);
3019 
3020   return false;
3021 }
3022 
3023 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3024   if (!log_is_enabled(Trace, gc, liveness)) {
3025     return;
3026   }
3027 
3028   // add static memory usages to remembered set sizes
3029   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3030   // Print the footer of the output.
3031   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3032   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3033                          " SUMMARY"
3034                          G1PPRL_SUM_MB_FORMAT("capacity")
3035                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3036                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3037                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3038                          G1PPRL_SUM_MB_FORMAT("remset")
3039                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3040                          bytes_to_mb(_total_capacity_bytes),
3041                          bytes_to_mb(_total_used_bytes),
3042                          percent_of(_total_used_bytes, _total_capacity_bytes),
3043                          bytes_to_mb(_total_prev_live_bytes),
3044                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
3045                          bytes_to_mb(_total_next_live_bytes),
3046                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
3047                          bytes_to_mb(_total_remset_bytes),
3048                          bytes_to_mb(_total_strong_code_roots_bytes));
3049 }