1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/evacuationInfo.hpp"
  29 #include "gc/g1/g1BarrierSet.hpp"
  30 #include "gc/g1/g1BiasedArray.hpp"
  31 #include "gc/g1/g1CardTable.hpp"
  32 #include "gc/g1/g1CollectionSet.hpp"
  33 #include "gc/g1/g1CollectorState.hpp"
  34 #include "gc/g1/g1ConcurrentMark.hpp"
  35 #include "gc/g1/g1EdenRegions.hpp"
  36 #include "gc/g1/g1EvacFailure.hpp"
  37 #include "gc/g1/g1EvacStats.hpp"
  38 #include "gc/g1/g1HeapTransition.hpp"
  39 #include "gc/g1/g1HeapVerifier.hpp"
  40 #include "gc/g1/g1HRPrinter.hpp"
  41 #include "gc/g1/g1InCSetState.hpp"
  42 #include "gc/g1/g1MonitoringSupport.hpp"
  43 #include "gc/g1/g1SurvivorRegions.hpp"
  44 #include "gc/g1/g1YCTypes.hpp"
  45 #include "gc/g1/heapRegionManager.hpp"
  46 #include "gc/g1/heapRegionSet.hpp"
  47 #include "gc/shared/barrierSet.hpp"
  48 #include "gc/shared/collectedHeap.hpp"
  49 #include "gc/shared/gcHeapSummary.hpp"
  50 #include "gc/shared/plab.hpp"
  51 #include "gc/shared/preservedMarks.hpp"
  52 #include "gc/shared/softRefPolicy.hpp"
  53 #include "memory/memRegion.hpp"
  54 #include "utilities/stack.hpp"
  55 
  56 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  57 // It uses the "Garbage First" heap organization and algorithm, which
  58 // may combine concurrent marking with parallel, incremental compaction of
  59 // heap subsets that will yield large amounts of garbage.
  60 
  61 // Forward declarations
  62 class HeapRegion;
  63 class GenerationSpec;
  64 class G1ParScanThreadState;
  65 class G1ParScanThreadStateSet;
  66 class G1ParScanThreadState;
  67 class MemoryPool;
  68 class MemoryManager;
  69 class ObjectClosure;
  70 class SpaceClosure;
  71 class CompactibleSpaceClosure;
  72 class Space;
  73 class G1CollectionSet;
  74 class G1CollectorPolicy;
  75 class G1Policy;
  76 class G1HotCardCache;
  77 class G1RemSet;
  78 class G1YoungRemSetSamplingThread;
  79 class HeapRegionRemSetIterator;
  80 class G1ConcurrentMark;
  81 class G1ConcurrentMarkThread;
  82 class G1ConcurrentRefine;
  83 class GenerationCounters;
  84 class STWGCTimer;
  85 class G1NewTracer;
  86 class EvacuationFailedInfo;
  87 class nmethod;
  88 class WorkGang;
  89 class G1Allocator;
  90 class G1ArchiveAllocator;
  91 class G1FullGCScope;
  92 class G1HeapVerifier;
  93 class G1HeapSizingPolicy;
  94 class G1HeapSummary;
  95 class G1EvacSummary;
  96 
  97 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  98 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  99 
 100 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
 101 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 102 
 103 // The G1 STW is alive closure.
 104 // An instance is embedded into the G1CH and used as the
 105 // (optional) _is_alive_non_header closure in the STW
 106 // reference processor. It is also extensively used during
 107 // reference processing during STW evacuation pauses.
 108 class G1STWIsAliveClosure : public BoolObjectClosure {
 109   G1CollectedHeap* _g1h;
 110 public:
 111   G1STWIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 112   bool do_object_b(oop p);
 113 };
 114 
 115 class G1STWSubjectToDiscoveryClosure : public BoolObjectClosure {
 116   G1CollectedHeap* _g1h;
 117 public:
 118   G1STWSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 119   bool do_object_b(oop p);
 120 };
 121 
 122 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 123  private:
 124   void reset_from_card_cache(uint start_idx, size_t num_regions);
 125  public:
 126   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 127 };
 128 
 129 class G1CollectedHeap : public CollectedHeap {
 130   friend class G1FreeCollectionSetTask;
 131   friend class VM_CollectForMetadataAllocation;
 132   friend class VM_G1CollectForAllocation;
 133   friend class VM_G1CollectFull;
 134   friend class VMStructs;
 135   friend class MutatorAllocRegion;
 136   friend class G1FullCollector;
 137   friend class G1GCAllocRegion;
 138   friend class G1HeapVerifier;
 139 
 140   // Closures used in implementation.
 141   friend class G1ParScanThreadState;
 142   friend class G1ParScanThreadStateSet;
 143   friend class G1ParTask;
 144   friend class G1PLABAllocator;
 145   friend class G1PrepareCompactClosure;
 146 
 147   // Other related classes.
 148   friend class HeapRegionClaimer;
 149 
 150   // Testing classes.
 151   friend class G1CheckCSetFastTableClosure;
 152 
 153 private:
 154   G1YoungRemSetSamplingThread* _young_gen_sampling_thread;
 155 
 156   WorkGang* _workers;
 157   G1CollectorPolicy* _collector_policy;
 158   G1CardTable* _card_table;
 159 
 160   SoftRefPolicy      _soft_ref_policy;
 161 
 162   static size_t _humongous_object_threshold_in_words;
 163 
 164   // These sets keep track of old, archive and humongous regions respectively.
 165   HeapRegionSet _old_set;
 166   HeapRegionSet _archive_set;
 167   HeapRegionSet _humongous_set;
 168 
 169   void eagerly_reclaim_humongous_regions();
 170   // Start a new incremental collection set for the next pause.
 171   void start_new_collection_set();
 172 
 173   // The block offset table for the G1 heap.
 174   G1BlockOffsetTable* _bot;
 175 
 176   // Tears down the region sets / lists so that they are empty and the
 177   // regions on the heap do not belong to a region set / list. The
 178   // only exception is the humongous set which we leave unaltered. If
 179   // free_list_only is true, it will only tear down the master free
 180   // list. It is called before a Full GC (free_list_only == false) or
 181   // before heap shrinking (free_list_only == true).
 182   void tear_down_region_sets(bool free_list_only);
 183 
 184   // Rebuilds the region sets / lists so that they are repopulated to
 185   // reflect the contents of the heap. The only exception is the
 186   // humongous set which was not torn down in the first place. If
 187   // free_list_only is true, it will only rebuild the master free
 188   // list. It is called after a Full GC (free_list_only == false) or
 189   // after heap shrinking (free_list_only == true).
 190   void rebuild_region_sets(bool free_list_only);
 191 
 192   // Callback for region mapping changed events.
 193   G1RegionMappingChangedListener _listener;
 194 
 195   // The sequence of all heap regions in the heap.
 196   HeapRegionManager _hrm;
 197 
 198   // Manages all allocations with regions except humongous object allocations.
 199   G1Allocator* _allocator;
 200 
 201   // Manages all heap verification.
 202   G1HeapVerifier* _verifier;
 203 
 204   // Outside of GC pauses, the number of bytes used in all regions other
 205   // than the current allocation region(s).
 206   size_t _summary_bytes_used;
 207 
 208   void increase_used(size_t bytes);
 209   void decrease_used(size_t bytes);
 210 
 211   void set_used(size_t bytes);
 212 
 213   // Class that handles archive allocation ranges.
 214   G1ArchiveAllocator* _archive_allocator;
 215 
 216   // GC allocation statistics policy for survivors.
 217   G1EvacStats _survivor_evac_stats;
 218 
 219   // GC allocation statistics policy for tenured objects.
 220   G1EvacStats _old_evac_stats;
 221 
 222   // It specifies whether we should attempt to expand the heap after a
 223   // region allocation failure. If heap expansion fails we set this to
 224   // false so that we don't re-attempt the heap expansion (it's likely
 225   // that subsequent expansion attempts will also fail if one fails).
 226   // Currently, it is only consulted during GC and it's reset at the
 227   // start of each GC.
 228   bool _expand_heap_after_alloc_failure;
 229 
 230   // Helper for monitoring and management support.
 231   G1MonitoringSupport* _g1mm;
 232 
 233   // Records whether the region at the given index is (still) a
 234   // candidate for eager reclaim.  Only valid for humongous start
 235   // regions; other regions have unspecified values.  Humongous start
 236   // regions are initialized at start of collection pause, with
 237   // candidates removed from the set as they are found reachable from
 238   // roots or the young generation.
 239   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 240    protected:
 241     bool default_value() const { return false; }
 242    public:
 243     void clear() { G1BiasedMappedArray<bool>::clear(); }
 244     void set_candidate(uint region, bool value) {
 245       set_by_index(region, value);
 246     }
 247     bool is_candidate(uint region) {
 248       return get_by_index(region);
 249     }
 250   };
 251 
 252   HumongousReclaimCandidates _humongous_reclaim_candidates;
 253   // Stores whether during humongous object registration we found candidate regions.
 254   // If not, we can skip a few steps.
 255   bool _has_humongous_reclaim_candidates;
 256 
 257   G1HRPrinter _hr_printer;
 258 
 259   // It decides whether an explicit GC should start a concurrent cycle
 260   // instead of doing a STW GC. Currently, a concurrent cycle is
 261   // explicitly started if:
 262   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 263   // (b) cause == _g1_humongous_allocation
 264   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 265   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 266   // (e) cause == _wb_conc_mark
 267   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 268 
 269   // indicates whether we are in young or mixed GC mode
 270   G1CollectorState _collector_state;
 271 
 272   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 273   // concurrent cycles) we have started.
 274   volatile uint _old_marking_cycles_started;
 275 
 276   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 277   // concurrent cycles) we have completed.
 278   volatile uint _old_marking_cycles_completed;
 279 
 280   // This is a non-product method that is helpful for testing. It is
 281   // called at the end of a GC and artificially expands the heap by
 282   // allocating a number of dead regions. This way we can induce very
 283   // frequent marking cycles and stress the cleanup / concurrent
 284   // cleanup code more (as all the regions that will be allocated by
 285   // this method will be found dead by the marking cycle).
 286   void allocate_dummy_regions() PRODUCT_RETURN;
 287 
 288   // If the HR printer is active, dump the state of the regions in the
 289   // heap after a compaction.
 290   void print_hrm_post_compaction();
 291 
 292   // Create a memory mapper for auxiliary data structures of the given size and
 293   // translation factor.
 294   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 295                                                          size_t size,
 296                                                          size_t translation_factor);
 297 
 298   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 299 
 300   // These are macros so that, if the assert fires, we get the correct
 301   // line number, file, etc.
 302 
 303 #define heap_locking_asserts_params(_extra_message_)                          \
 304   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 305   (_extra_message_),                                                          \
 306   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 307   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 308   BOOL_TO_STR(Thread::current()->is_VM_thread())
 309 
 310 #define assert_heap_locked()                                                  \
 311   do {                                                                        \
 312     assert(Heap_lock->owned_by_self(),                                        \
 313            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 314   } while (0)
 315 
 316 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 317   do {                                                                        \
 318     assert(Heap_lock->owned_by_self() ||                                      \
 319            (SafepointSynchronize::is_at_safepoint() &&                        \
 320              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 321            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 322                                         "should be at a safepoint"));         \
 323   } while (0)
 324 
 325 #define assert_heap_locked_and_not_at_safepoint()                             \
 326   do {                                                                        \
 327     assert(Heap_lock->owned_by_self() &&                                      \
 328                                     !SafepointSynchronize::is_at_safepoint(), \
 329           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 330                                        "should not be at a safepoint"));      \
 331   } while (0)
 332 
 333 #define assert_heap_not_locked()                                              \
 334   do {                                                                        \
 335     assert(!Heap_lock->owned_by_self(),                                       \
 336         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 337   } while (0)
 338 
 339 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 340   do {                                                                        \
 341     assert(!Heap_lock->owned_by_self() &&                                     \
 342                                     !SafepointSynchronize::is_at_safepoint(), \
 343       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 344                                    "should not be at a safepoint"));          \
 345   } while (0)
 346 
 347 #define assert_at_safepoint_on_vm_thread()                                    \
 348   do {                                                                        \
 349     assert_at_safepoint();                                                    \
 350     assert(Thread::current_or_null() != NULL, "no current thread");           \
 351     assert(Thread::current()->is_VM_thread(), "current thread is not VM thread"); \
 352   } while (0)
 353 
 354   // The young region list.
 355   G1EdenRegions _eden;
 356   G1SurvivorRegions _survivor;
 357 
 358   STWGCTimer* _gc_timer_stw;
 359 
 360   G1NewTracer* _gc_tracer_stw;
 361 
 362   // The current policy object for the collector.
 363   G1Policy* _g1_policy;
 364   G1HeapSizingPolicy* _heap_sizing_policy;
 365 
 366   G1CollectionSet _collection_set;
 367 
 368   // Try to allocate a single non-humongous HeapRegion sufficient for
 369   // an allocation of the given word_size. If do_expand is true,
 370   // attempt to expand the heap if necessary to satisfy the allocation
 371   // request. If the region is to be used as an old region or for a
 372   // humongous object, set is_old to true. If not, to false.
 373   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 374 
 375   // Initialize a contiguous set of free regions of length num_regions
 376   // and starting at index first so that they appear as a single
 377   // humongous region.
 378   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 379                                                       uint num_regions,
 380                                                       size_t word_size);
 381 
 382   // Attempt to allocate a humongous object of the given size. Return
 383   // NULL if unsuccessful.
 384   HeapWord* humongous_obj_allocate(size_t word_size);
 385 
 386   // The following two methods, allocate_new_tlab() and
 387   // mem_allocate(), are the two main entry points from the runtime
 388   // into the G1's allocation routines. They have the following
 389   // assumptions:
 390   //
 391   // * They should both be called outside safepoints.
 392   //
 393   // * They should both be called without holding the Heap_lock.
 394   //
 395   // * All allocation requests for new TLABs should go to
 396   //   allocate_new_tlab().
 397   //
 398   // * All non-TLAB allocation requests should go to mem_allocate().
 399   //
 400   // * If either call cannot satisfy the allocation request using the
 401   //   current allocating region, they will try to get a new one. If
 402   //   this fails, they will attempt to do an evacuation pause and
 403   //   retry the allocation.
 404   //
 405   // * If all allocation attempts fail, even after trying to schedule
 406   //   an evacuation pause, allocate_new_tlab() will return NULL,
 407   //   whereas mem_allocate() will attempt a heap expansion and/or
 408   //   schedule a Full GC.
 409   //
 410   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 411   //   should never be called with word_size being humongous. All
 412   //   humongous allocation requests should go to mem_allocate() which
 413   //   will satisfy them with a special path.
 414 
 415   virtual HeapWord* allocate_new_tlab(size_t min_size,
 416                                       size_t requested_size,
 417                                       size_t* actual_size);
 418 
 419   virtual HeapWord* mem_allocate(size_t word_size,
 420                                  bool*  gc_overhead_limit_was_exceeded);
 421 
 422   // First-level mutator allocation attempt: try to allocate out of
 423   // the mutator alloc region without taking the Heap_lock. This
 424   // should only be used for non-humongous allocations.
 425   inline HeapWord* attempt_allocation(size_t min_word_size,
 426                                       size_t desired_word_size,
 427                                       size_t* actual_word_size);
 428 
 429   // Second-level mutator allocation attempt: take the Heap_lock and
 430   // retry the allocation attempt, potentially scheduling a GC
 431   // pause. This should only be used for non-humongous allocations.
 432   HeapWord* attempt_allocation_slow(size_t word_size);
 433 
 434   // Takes the Heap_lock and attempts a humongous allocation. It can
 435   // potentially schedule a GC pause.
 436   HeapWord* attempt_allocation_humongous(size_t word_size);
 437 
 438   // Allocation attempt that should be called during safepoints (e.g.,
 439   // at the end of a successful GC). expect_null_mutator_alloc_region
 440   // specifies whether the mutator alloc region is expected to be NULL
 441   // or not.
 442   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 443                                             bool expect_null_mutator_alloc_region);
 444 
 445   // These methods are the "callbacks" from the G1AllocRegion class.
 446 
 447   // For mutator alloc regions.
 448   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 449   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 450                                    size_t allocated_bytes);
 451 
 452   // For GC alloc regions.
 453   bool has_more_regions(InCSetState dest);
 454   HeapRegion* new_gc_alloc_region(size_t word_size, InCSetState dest);
 455   void retire_gc_alloc_region(HeapRegion* alloc_region,
 456                               size_t allocated_bytes, InCSetState dest);
 457 
 458   // - if explicit_gc is true, the GC is for a System.gc() etc,
 459   //   otherwise it's for a failed allocation.
 460   // - if clear_all_soft_refs is true, all soft references should be
 461   //   cleared during the GC.
 462   // - it returns false if it is unable to do the collection due to the
 463   //   GC locker being active, true otherwise.
 464   bool do_full_collection(bool explicit_gc,
 465                           bool clear_all_soft_refs);
 466 
 467   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 468   virtual void do_full_collection(bool clear_all_soft_refs);
 469 
 470   // Callback from VM_G1CollectForAllocation operation.
 471   // This function does everything necessary/possible to satisfy a
 472   // failed allocation request (including collection, expansion, etc.)
 473   HeapWord* satisfy_failed_allocation(size_t word_size,
 474                                       bool* succeeded);
 475   // Internal helpers used during full GC to split it up to
 476   // increase readability.
 477   void abort_concurrent_cycle();
 478   void verify_before_full_collection(bool explicit_gc);
 479   void prepare_heap_for_full_collection();
 480   void prepare_heap_for_mutators();
 481   void abort_refinement();
 482   void verify_after_full_collection();
 483   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 484 
 485   // Helper method for satisfy_failed_allocation()
 486   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 487                                              bool do_gc,
 488                                              bool clear_all_soft_refs,
 489                                              bool expect_null_mutator_alloc_region,
 490                                              bool* gc_succeeded);
 491 
 492   // Attempting to expand the heap sufficiently
 493   // to support an allocation of the given "word_size".  If
 494   // successful, perform the allocation and return the address of the
 495   // allocated block, or else "NULL".
 496   HeapWord* expand_and_allocate(size_t word_size);
 497 
 498   // Process any reference objects discovered.
 499   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 500 
 501   // If during an initial mark pause we may install a pending list head which is not
 502   // otherwise reachable ensure that it is marked in the bitmap for concurrent marking
 503   // to discover.
 504   void make_pending_list_reachable();
 505 
 506   // Merges the information gathered on a per-thread basis for all worker threads
 507   // during GC into global variables.
 508   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 509 public:
 510   G1YoungRemSetSamplingThread* sampling_thread() const { return _young_gen_sampling_thread; }
 511 
 512   WorkGang* workers() const { return _workers; }
 513 
 514   G1Allocator* allocator() {
 515     return _allocator;
 516   }
 517 
 518   G1HeapVerifier* verifier() {
 519     return _verifier;
 520   }
 521 
 522   G1MonitoringSupport* g1mm() {
 523     assert(_g1mm != NULL, "should have been initialized");
 524     return _g1mm;
 525   }
 526 
 527   void resize_heap_if_necessary();
 528 
 529   // Expand the garbage-first heap by at least the given size (in bytes!).
 530   // Returns true if the heap was expanded by the requested amount;
 531   // false otherwise.
 532   // (Rounds up to a HeapRegion boundary.)
 533   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 534 
 535   // Returns the PLAB statistics for a given destination.
 536   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 537 
 538   // Determines PLAB size for a given destination.
 539   inline size_t desired_plab_sz(InCSetState dest);
 540 
 541   // Do anything common to GC's.
 542   void gc_prologue(bool full);
 543   void gc_epilogue(bool full);
 544 
 545   // Does the given region fulfill remembered set based eager reclaim candidate requirements?
 546   bool is_potential_eager_reclaim_candidate(HeapRegion* r) const;
 547 
 548   // Modify the reclaim candidate set and test for presence.
 549   // These are only valid for starts_humongous regions.
 550   inline void set_humongous_reclaim_candidate(uint region, bool value);
 551   inline bool is_humongous_reclaim_candidate(uint region);
 552 
 553   // Remove from the reclaim candidate set.  Also remove from the
 554   // collection set so that later encounters avoid the slow path.
 555   inline void set_humongous_is_live(oop obj);
 556 
 557   // Register the given region to be part of the collection set.
 558   inline void register_humongous_region_with_cset(uint index);
 559   // Register regions with humongous objects (actually on the start region) in
 560   // the in_cset_fast_test table.
 561   void register_humongous_regions_with_cset();
 562   // We register a region with the fast "in collection set" test. We
 563   // simply set to true the array slot corresponding to this region.
 564   void register_young_region_with_cset(HeapRegion* r) {
 565     _in_cset_fast_test.set_in_young(r->hrm_index());
 566   }
 567   void register_old_region_with_cset(HeapRegion* r) {
 568     _in_cset_fast_test.set_in_old(r->hrm_index());
 569   }
 570   void clear_in_cset(const HeapRegion* hr) {
 571     _in_cset_fast_test.clear(hr);
 572   }
 573 
 574   void clear_cset_fast_test() {
 575     _in_cset_fast_test.clear();
 576   }
 577 
 578   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 579 
 580   // This is called at the start of either a concurrent cycle or a Full
 581   // GC to update the number of old marking cycles started.
 582   void increment_old_marking_cycles_started();
 583 
 584   // This is called at the end of either a concurrent cycle or a Full
 585   // GC to update the number of old marking cycles completed. Those two
 586   // can happen in a nested fashion, i.e., we start a concurrent
 587   // cycle, a Full GC happens half-way through it which ends first,
 588   // and then the cycle notices that a Full GC happened and ends
 589   // too. The concurrent parameter is a boolean to help us do a bit
 590   // tighter consistency checking in the method. If concurrent is
 591   // false, the caller is the inner caller in the nesting (i.e., the
 592   // Full GC). If concurrent is true, the caller is the outer caller
 593   // in this nesting (i.e., the concurrent cycle). Further nesting is
 594   // not currently supported. The end of this call also notifies
 595   // the FullGCCount_lock in case a Java thread is waiting for a full
 596   // GC to happen (e.g., it called System.gc() with
 597   // +ExplicitGCInvokesConcurrent).
 598   void increment_old_marking_cycles_completed(bool concurrent);
 599 
 600   uint old_marking_cycles_completed() {
 601     return _old_marking_cycles_completed;
 602   }
 603 
 604   G1HRPrinter* hr_printer() { return &_hr_printer; }
 605 
 606   // Allocates a new heap region instance.
 607   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 608 
 609   // Allocate the highest free region in the reserved heap. This will commit
 610   // regions as necessary.
 611   HeapRegion* alloc_highest_free_region();
 612 
 613   // Frees a non-humongous region by initializing its contents and
 614   // adding it to the free list that's passed as a parameter (this is
 615   // usually a local list which will be appended to the master free
 616   // list later). The used bytes of freed regions are accumulated in
 617   // pre_used. If skip_remset is true, the region's RSet will not be freed
 618   // up. If skip_hot_card_cache is true, the region's hot card cache will not
 619   // be freed up. The assumption is that this will be done later.
 620   // The locked parameter indicates if the caller has already taken
 621   // care of proper synchronization. This may allow some optimizations.
 622   void free_region(HeapRegion* hr,
 623                    FreeRegionList* free_list,
 624                    bool skip_remset,
 625                    bool skip_hot_card_cache = false,
 626                    bool locked = false);
 627 
 628   // It dirties the cards that cover the block so that the post
 629   // write barrier never queues anything when updating objects on this
 630   // block. It is assumed (and in fact we assert) that the block
 631   // belongs to a young region.
 632   inline void dirty_young_block(HeapWord* start, size_t word_size);
 633 
 634   // Frees a humongous region by collapsing it into individual regions
 635   // and calling free_region() for each of them. The freed regions
 636   // will be added to the free list that's passed as a parameter (this
 637   // is usually a local list which will be appended to the master free
 638   // list later).
 639   // The method assumes that only a single thread is ever calling
 640   // this for a particular region at once.
 641   void free_humongous_region(HeapRegion* hr,
 642                              FreeRegionList* free_list);
 643 
 644   // Facility for allocating in 'archive' regions in high heap memory and
 645   // recording the allocated ranges. These should all be called from the
 646   // VM thread at safepoints, without the heap lock held. They can be used
 647   // to create and archive a set of heap regions which can be mapped at the
 648   // same fixed addresses in a subsequent JVM invocation.
 649   void begin_archive_alloc_range(bool open = false);
 650 
 651   // Check if the requested size would be too large for an archive allocation.
 652   bool is_archive_alloc_too_large(size_t word_size);
 653 
 654   // Allocate memory of the requested size from the archive region. This will
 655   // return NULL if the size is too large or if no memory is available. It
 656   // does not trigger a garbage collection.
 657   HeapWord* archive_mem_allocate(size_t word_size);
 658 
 659   // Optionally aligns the end address and returns the allocated ranges in
 660   // an array of MemRegions in order of ascending addresses.
 661   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 662                                size_t end_alignment_in_bytes = 0);
 663 
 664   // Facility for allocating a fixed range within the heap and marking
 665   // the containing regions as 'archive'. For use at JVM init time, when the
 666   // caller may mmap archived heap data at the specified range(s).
 667   // Verify that the MemRegions specified in the argument array are within the
 668   // reserved heap.
 669   bool check_archive_addresses(MemRegion* range, size_t count);
 670 
 671   // Commit the appropriate G1 regions containing the specified MemRegions
 672   // and mark them as 'archive' regions. The regions in the array must be
 673   // non-overlapping and in order of ascending address.
 674   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 675 
 676   // Insert any required filler objects in the G1 regions around the specified
 677   // ranges to make the regions parseable. This must be called after
 678   // alloc_archive_regions, and after class loading has occurred.
 679   void fill_archive_regions(MemRegion* range, size_t count);
 680 
 681   // For each of the specified MemRegions, uncommit the containing G1 regions
 682   // which had been allocated by alloc_archive_regions. This should be called
 683   // rather than fill_archive_regions at JVM init time if the archive file
 684   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 685   void dealloc_archive_regions(MemRegion* range, size_t count);
 686 
 687   oop materialize_archived_object(oop obj);
 688 
 689 private:
 690 
 691   // Shrink the garbage-first heap by at most the given size (in bytes!).
 692   // (Rounds down to a HeapRegion boundary.)
 693   void shrink(size_t expand_bytes);
 694   void shrink_helper(size_t expand_bytes);
 695 
 696   #if TASKQUEUE_STATS
 697   static void print_taskqueue_stats_hdr(outputStream* const st);
 698   void print_taskqueue_stats() const;
 699   void reset_taskqueue_stats();
 700   #endif // TASKQUEUE_STATS
 701 
 702   // Schedule the VM operation that will do an evacuation pause to
 703   // satisfy an allocation request of word_size. *succeeded will
 704   // return whether the VM operation was successful (it did do an
 705   // evacuation pause) or not (another thread beat us to it or the GC
 706   // locker was active). Given that we should not be holding the
 707   // Heap_lock when we enter this method, we will pass the
 708   // gc_count_before (i.e., total_collections()) as a parameter since
 709   // it has to be read while holding the Heap_lock. Currently, both
 710   // methods that call do_collection_pause() release the Heap_lock
 711   // before the call, so it's easy to read gc_count_before just before.
 712   HeapWord* do_collection_pause(size_t         word_size,
 713                                 uint           gc_count_before,
 714                                 bool*          succeeded,
 715                                 GCCause::Cause gc_cause);
 716 
 717   void wait_for_root_region_scanning();
 718 
 719   // The guts of the incremental collection pause, executed by the vm
 720   // thread. It returns false if it is unable to do the collection due
 721   // to the GC locker being active, true otherwise
 722   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 723 
 724   // Actually do the work of evacuating the collection set.
 725   void evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states);
 726 
 727   void pre_evacuate_collection_set();
 728   void post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 729 
 730   // Print the header for the per-thread termination statistics.
 731   static void print_termination_stats_hdr();
 732   // Print actual per-thread termination statistics.
 733   void print_termination_stats(uint worker_id,
 734                                double elapsed_ms,
 735                                double strong_roots_ms,
 736                                double term_ms,
 737                                size_t term_attempts,
 738                                size_t alloc_buffer_waste,
 739                                size_t undo_waste) const;
 740   // Update object copying statistics.
 741   void record_obj_copy_mem_stats();
 742 
 743   // The hot card cache for remembered set insertion optimization.
 744   G1HotCardCache* _hot_card_cache;
 745 
 746   // The g1 remembered set of the heap.
 747   G1RemSet* _g1_rem_set;
 748 
 749   // A set of cards that cover the objects for which the Rsets should be updated
 750   // concurrently after the collection.
 751   DirtyCardQueueSet _dirty_card_queue_set;
 752 
 753   // After a collection pause, convert the regions in the collection set into free
 754   // regions.
 755   void free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 756 
 757   // Abandon the current collection set without recording policy
 758   // statistics or updating free lists.
 759   void abandon_collection_set(G1CollectionSet* collection_set);
 760 
 761   // The concurrent marker (and the thread it runs in.)
 762   G1ConcurrentMark* _cm;
 763   G1ConcurrentMarkThread* _cm_thread;
 764 
 765   // The concurrent refiner.
 766   G1ConcurrentRefine* _cr;
 767 
 768   // The parallel task queues
 769   RefToScanQueueSet *_task_queues;
 770 
 771   // True iff a evacuation has failed in the current collection.
 772   bool _evacuation_failed;
 773 
 774   EvacuationFailedInfo* _evacuation_failed_info_array;
 775 
 776   // Failed evacuations cause some logical from-space objects to have
 777   // forwarding pointers to themselves.  Reset them.
 778   void remove_self_forwarding_pointers();
 779 
 780   // Restore the objects in the regions in the collection set after an
 781   // evacuation failure.
 782   void restore_after_evac_failure();
 783 
 784   PreservedMarksSet _preserved_marks_set;
 785 
 786   // Preserve the mark of "obj", if necessary, in preparation for its mark
 787   // word being overwritten with a self-forwarding-pointer.
 788   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 789 
 790 #ifndef PRODUCT
 791   // Support for forcing evacuation failures. Analogous to
 792   // PromotionFailureALot for the other collectors.
 793 
 794   // Records whether G1EvacuationFailureALot should be in effect
 795   // for the current GC
 796   bool _evacuation_failure_alot_for_current_gc;
 797 
 798   // Used to record the GC number for interval checking when
 799   // determining whether G1EvaucationFailureALot is in effect
 800   // for the current GC.
 801   size_t _evacuation_failure_alot_gc_number;
 802 
 803   // Count of the number of evacuations between failures.
 804   volatile size_t _evacuation_failure_alot_count;
 805 
 806   // Set whether G1EvacuationFailureALot should be in effect
 807   // for the current GC (based upon the type of GC and which
 808   // command line flags are set);
 809   inline bool evacuation_failure_alot_for_gc_type(bool for_young_gc,
 810                                                   bool during_initial_mark,
 811                                                   bool mark_or_rebuild_in_progress);
 812 
 813   inline void set_evacuation_failure_alot_for_current_gc();
 814 
 815   // Return true if it's time to cause an evacuation failure.
 816   inline bool evacuation_should_fail();
 817 
 818   // Reset the G1EvacuationFailureALot counters.  Should be called at
 819   // the end of an evacuation pause in which an evacuation failure occurred.
 820   inline void reset_evacuation_should_fail();
 821 #endif // !PRODUCT
 822 
 823   // ("Weak") Reference processing support.
 824   //
 825   // G1 has 2 instances of the reference processor class. One
 826   // (_ref_processor_cm) handles reference object discovery
 827   // and subsequent processing during concurrent marking cycles.
 828   //
 829   // The other (_ref_processor_stw) handles reference object
 830   // discovery and processing during full GCs and incremental
 831   // evacuation pauses.
 832   //
 833   // During an incremental pause, reference discovery will be
 834   // temporarily disabled for _ref_processor_cm and will be
 835   // enabled for _ref_processor_stw. At the end of the evacuation
 836   // pause references discovered by _ref_processor_stw will be
 837   // processed and discovery will be disabled. The previous
 838   // setting for reference object discovery for _ref_processor_cm
 839   // will be re-instated.
 840   //
 841   // At the start of marking:
 842   //  * Discovery by the CM ref processor is verified to be inactive
 843   //    and it's discovered lists are empty.
 844   //  * Discovery by the CM ref processor is then enabled.
 845   //
 846   // At the end of marking:
 847   //  * Any references on the CM ref processor's discovered
 848   //    lists are processed (possibly MT).
 849   //
 850   // At the start of full GC we:
 851   //  * Disable discovery by the CM ref processor and
 852   //    empty CM ref processor's discovered lists
 853   //    (without processing any entries).
 854   //  * Verify that the STW ref processor is inactive and it's
 855   //    discovered lists are empty.
 856   //  * Temporarily set STW ref processor discovery as single threaded.
 857   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 858   //    field.
 859   //  * Finally enable discovery by the STW ref processor.
 860   //
 861   // The STW ref processor is used to record any discovered
 862   // references during the full GC.
 863   //
 864   // At the end of a full GC we:
 865   //  * Enqueue any reference objects discovered by the STW ref processor
 866   //    that have non-live referents. This has the side-effect of
 867   //    making the STW ref processor inactive by disabling discovery.
 868   //  * Verify that the CM ref processor is still inactive
 869   //    and no references have been placed on it's discovered
 870   //    lists (also checked as a precondition during initial marking).
 871 
 872   // The (stw) reference processor...
 873   ReferenceProcessor* _ref_processor_stw;
 874 
 875   // During reference object discovery, the _is_alive_non_header
 876   // closure (if non-null) is applied to the referent object to
 877   // determine whether the referent is live. If so then the
 878   // reference object does not need to be 'discovered' and can
 879   // be treated as a regular oop. This has the benefit of reducing
 880   // the number of 'discovered' reference objects that need to
 881   // be processed.
 882   //
 883   // Instance of the is_alive closure for embedding into the
 884   // STW reference processor as the _is_alive_non_header field.
 885   // Supplying a value for the _is_alive_non_header field is
 886   // optional but doing so prevents unnecessary additions to
 887   // the discovered lists during reference discovery.
 888   G1STWIsAliveClosure _is_alive_closure_stw;
 889 
 890   G1STWSubjectToDiscoveryClosure _is_subject_to_discovery_stw;
 891 
 892   // The (concurrent marking) reference processor...
 893   ReferenceProcessor* _ref_processor_cm;
 894 
 895   // Instance of the concurrent mark is_alive closure for embedding
 896   // into the Concurrent Marking reference processor as the
 897   // _is_alive_non_header field. Supplying a value for the
 898   // _is_alive_non_header field is optional but doing so prevents
 899   // unnecessary additions to the discovered lists during reference
 900   // discovery.
 901   G1CMIsAliveClosure _is_alive_closure_cm;
 902 
 903   G1CMSubjectToDiscoveryClosure _is_subject_to_discovery_cm;
 904 public:
 905 
 906   RefToScanQueue *task_queue(uint i) const;
 907 
 908   uint num_task_queues() const;
 909 
 910   // A set of cards where updates happened during the GC
 911   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 912 
 913   // Create a G1CollectedHeap with the specified policy.
 914   // Must call the initialize method afterwards.
 915   // May not return if something goes wrong.
 916   G1CollectedHeap(G1CollectorPolicy* policy);
 917 
 918 private:
 919   jint initialize_concurrent_refinement();
 920   jint initialize_young_gen_sampling_thread();
 921 public:
 922   // Initialize the G1CollectedHeap to have the initial and
 923   // maximum sizes and remembered and barrier sets
 924   // specified by the policy object.
 925   jint initialize();
 926 
 927   virtual void stop();
 928   virtual void safepoint_synchronize_begin();
 929   virtual void safepoint_synchronize_end();
 930 
 931   // Return the (conservative) maximum heap alignment for any G1 heap
 932   static size_t conservative_max_heap_alignment();
 933 
 934   // Does operations required after initialization has been done.
 935   void post_initialize();
 936 
 937   // Initialize weak reference processing.
 938   void ref_processing_init();
 939 
 940   virtual Name kind() const {
 941     return CollectedHeap::G1;
 942   }
 943 
 944   virtual const char* name() const {
 945     return "G1";
 946   }
 947 
 948   const G1CollectorState* collector_state() const { return &_collector_state; }
 949   G1CollectorState* collector_state() { return &_collector_state; }
 950 
 951   // The current policy object for the collector.
 952   G1Policy* g1_policy() const { return _g1_policy; }
 953 
 954   const G1CollectionSet* collection_set() const { return &_collection_set; }
 955   G1CollectionSet* collection_set() { return &_collection_set; }
 956 
 957   virtual CollectorPolicy* collector_policy() const;
 958 
 959   virtual SoftRefPolicy* soft_ref_policy();
 960 
 961   virtual void initialize_serviceability();
 962   virtual MemoryUsage memory_usage();
 963   virtual GrowableArray<GCMemoryManager*> memory_managers();
 964   virtual GrowableArray<MemoryPool*> memory_pools();
 965 
 966   // The rem set and barrier set.
 967   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
 968 
 969   // Try to minimize the remembered set.
 970   void scrub_rem_set();
 971 
 972   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
 973   void iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i);
 974 
 975   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
 976   void iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i);
 977 
 978   // The shared block offset table array.
 979   G1BlockOffsetTable* bot() const { return _bot; }
 980 
 981   // Reference Processing accessors
 982 
 983   // The STW reference processor....
 984   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
 985 
 986   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
 987 
 988   // The Concurrent Marking reference processor...
 989   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
 990 
 991   size_t unused_committed_regions_in_bytes() const;
 992   virtual size_t capacity() const;
 993   virtual size_t used() const;
 994   // This should be called when we're not holding the heap lock. The
 995   // result might be a bit inaccurate.
 996   size_t used_unlocked() const;
 997   size_t recalculate_used() const;
 998 
 999   // These virtual functions do the actual allocation.
1000   // Some heaps may offer a contiguous region for shared non-blocking
1001   // allocation, via inlined code (by exporting the address of the top and
1002   // end fields defining the extent of the contiguous allocation region.)
1003   // But G1CollectedHeap doesn't yet support this.
1004 
1005   virtual bool is_maximal_no_gc() const {
1006     return _hrm.available() == 0;
1007   }
1008 
1009   // Returns whether there are any regions left in the heap for allocation.
1010   bool has_regions_left_for_allocation() const {
1011     return !is_maximal_no_gc() || num_free_regions() != 0;
1012   }
1013 
1014   // The current number of regions in the heap.
1015   uint num_regions() const { return _hrm.length(); }
1016 
1017   // The max number of regions in the heap.
1018   uint max_regions() const { return _hrm.max_length(); }
1019 
1020   // The number of regions that are completely free.
1021   uint num_free_regions() const { return _hrm.num_free_regions(); }
1022 
1023   MemoryUsage get_auxiliary_data_memory_usage() const {
1024     return _hrm.get_auxiliary_data_memory_usage();
1025   }
1026 
1027   // The number of regions that are not completely free.
1028   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1029 
1030 #ifdef ASSERT
1031   bool is_on_master_free_list(HeapRegion* hr) {
1032     return _hrm.is_free(hr);
1033   }
1034 #endif // ASSERT
1035 
1036   inline void old_set_add(HeapRegion* hr);
1037   inline void old_set_remove(HeapRegion* hr);
1038 
1039   inline void archive_set_add(HeapRegion* hr);
1040 
1041   size_t non_young_capacity_bytes() {
1042     return (old_regions_count() + _archive_set.length() + humongous_regions_count()) * HeapRegion::GrainBytes;
1043   }
1044 
1045   // Determine whether the given region is one that we are using as an
1046   // old GC alloc region.
1047   bool is_old_gc_alloc_region(HeapRegion* hr);
1048 
1049   // Perform a collection of the heap; intended for use in implementing
1050   // "System.gc".  This probably implies as full a collection as the
1051   // "CollectedHeap" supports.
1052   virtual void collect(GCCause::Cause cause);
1053 
1054   // True iff an evacuation has failed in the most-recent collection.
1055   bool evacuation_failed() { return _evacuation_failed; }
1056 
1057   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1058   void prepend_to_freelist(FreeRegionList* list);
1059   void decrement_summary_bytes(size_t bytes);
1060 
1061   virtual bool is_in(const void* p) const;
1062 #ifdef ASSERT
1063   // Returns whether p is in one of the available areas of the heap. Slow but
1064   // extensive version.
1065   bool is_in_exact(const void* p) const;
1066 #endif
1067 
1068   // Return "TRUE" iff the given object address is within the collection
1069   // set. Assumes that the reference points into the heap.
1070   inline bool is_in_cset(const HeapRegion *hr);
1071   inline bool is_in_cset(oop obj);
1072   inline bool is_in_cset(HeapWord* addr);
1073 
1074   inline bool is_in_cset_or_humongous(const oop obj);
1075 
1076  private:
1077   // This array is used for a quick test on whether a reference points into
1078   // the collection set or not. Each of the array's elements denotes whether the
1079   // corresponding region is in the collection set or not.
1080   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1081 
1082  public:
1083 
1084   inline InCSetState in_cset_state(const oop obj);
1085 
1086   // Return "TRUE" iff the given object address is in the reserved
1087   // region of g1.
1088   bool is_in_g1_reserved(const void* p) const {
1089     return _hrm.reserved().contains(p);
1090   }
1091 
1092   // Returns a MemRegion that corresponds to the space that has been
1093   // reserved for the heap
1094   MemRegion g1_reserved() const {
1095     return _hrm.reserved();
1096   }
1097 
1098   virtual bool is_in_closed_subset(const void* p) const;
1099 
1100   G1HotCardCache* g1_hot_card_cache() const { return _hot_card_cache; }
1101 
1102   G1CardTable* card_table() const {
1103     return _card_table;
1104   }
1105 
1106   // Iteration functions.
1107 
1108   // Iterate over all objects, calling "cl.do_object" on each.
1109   virtual void object_iterate(ObjectClosure* cl);
1110 
1111   virtual void safe_object_iterate(ObjectClosure* cl) {
1112     object_iterate(cl);
1113   }
1114 
1115   // Iterate over heap regions, in address order, terminating the
1116   // iteration early if the "do_heap_region" method returns "true".
1117   void heap_region_iterate(HeapRegionClosure* blk) const;
1118 
1119   // Return the region with the given index. It assumes the index is valid.
1120   inline HeapRegion* region_at(uint index) const;
1121   inline HeapRegion* region_at_or_null(uint index) const;
1122 
1123   // Return the next region (by index) that is part of the same
1124   // humongous object that hr is part of.
1125   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1126 
1127   // Calculate the region index of the given address. Given address must be
1128   // within the heap.
1129   inline uint addr_to_region(HeapWord* addr) const;
1130 
1131   inline HeapWord* bottom_addr_for_region(uint index) const;
1132 
1133   // Two functions to iterate over the heap regions in parallel. Threads
1134   // compete using the HeapRegionClaimer to claim the regions before
1135   // applying the closure on them.
1136   // The _from_worker_offset version uses the HeapRegionClaimer and
1137   // the worker id to calculate a start offset to prevent all workers to
1138   // start from the point.
1139   void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
1140                                                   HeapRegionClaimer* hrclaimer,
1141                                                   uint worker_id) const;
1142 
1143   void heap_region_par_iterate_from_start(HeapRegionClosure* cl,
1144                                           HeapRegionClaimer* hrclaimer) const;
1145 
1146   // Iterate over the regions (if any) in the current collection set.
1147   void collection_set_iterate(HeapRegionClosure* blk);
1148 
1149   // Iterate over the regions (if any) in the current collection set. Starts the
1150   // iteration over the entire collection set so that the start regions of a given
1151   // worker id over the set active_workers are evenly spread across the set of
1152   // collection set regions.
1153   void collection_set_iterate_from(HeapRegionClosure *blk, uint worker_id);
1154 
1155   // Returns the HeapRegion that contains addr. addr must not be NULL.
1156   template <class T>
1157   inline HeapRegion* heap_region_containing(const T addr) const;
1158 
1159   // Returns the HeapRegion that contains addr, or NULL if that is an uncommitted
1160   // region. addr must not be NULL.
1161   template <class T>
1162   inline HeapRegion* heap_region_containing_or_null(const T addr) const;
1163 
1164   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1165   // each address in the (reserved) heap is a member of exactly
1166   // one block.  The defining characteristic of a block is that it is
1167   // possible to find its size, and thus to progress forward to the next
1168   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1169   // represent Java objects, or they might be free blocks in a
1170   // free-list-based heap (or subheap), as long as the two kinds are
1171   // distinguishable and the size of each is determinable.
1172 
1173   // Returns the address of the start of the "block" that contains the
1174   // address "addr".  We say "blocks" instead of "object" since some heaps
1175   // may not pack objects densely; a chunk may either be an object or a
1176   // non-object.
1177   virtual HeapWord* block_start(const void* addr) const;
1178 
1179   // Requires "addr" to be the start of a chunk, and returns its size.
1180   // "addr + size" is required to be the start of a new chunk, or the end
1181   // of the active area of the heap.
1182   virtual size_t block_size(const HeapWord* addr) const;
1183 
1184   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1185   // the block is an object.
1186   virtual bool block_is_obj(const HeapWord* addr) const;
1187 
1188   // Section on thread-local allocation buffers (TLABs)
1189   // See CollectedHeap for semantics.
1190 
1191   bool supports_tlab_allocation() const;
1192   size_t tlab_capacity(Thread* ignored) const;
1193   size_t tlab_used(Thread* ignored) const;
1194   size_t max_tlab_size() const;
1195   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1196 
1197   inline bool is_in_young(const oop obj);
1198 
1199   // Returns "true" iff the given word_size is "very large".
1200   static bool is_humongous(size_t word_size) {
1201     // Note this has to be strictly greater-than as the TLABs
1202     // are capped at the humongous threshold and we want to
1203     // ensure that we don't try to allocate a TLAB as
1204     // humongous and that we don't allocate a humongous
1205     // object in a TLAB.
1206     return word_size > _humongous_object_threshold_in_words;
1207   }
1208 
1209   // Returns the humongous threshold for a specific region size
1210   static size_t humongous_threshold_for(size_t region_size) {
1211     return (region_size / 2);
1212   }
1213 
1214   // Returns the number of regions the humongous object of the given word size
1215   // requires.
1216   static size_t humongous_obj_size_in_regions(size_t word_size);
1217 
1218   // Print the maximum heap capacity.
1219   virtual size_t max_capacity() const;
1220 
1221   virtual jlong millis_since_last_gc();
1222 
1223 
1224   // Convenience function to be used in situations where the heap type can be
1225   // asserted to be this type.
1226   static G1CollectedHeap* heap();
1227 
1228   void set_region_short_lived_locked(HeapRegion* hr);
1229   // add appropriate methods for any other surv rate groups
1230 
1231   const G1SurvivorRegions* survivor() const { return &_survivor; }
1232 
1233   uint eden_regions_count() const { return _eden.length(); }
1234   uint survivor_regions_count() const { return _survivor.length(); }
1235   uint young_regions_count() const { return _eden.length() + _survivor.length(); }
1236   uint old_regions_count() const { return _old_set.length(); }
1237   uint archive_regions_count() const { return _archive_set.length(); }
1238   uint humongous_regions_count() const { return _humongous_set.length(); }
1239 
1240 #ifdef ASSERT
1241   bool check_young_list_empty();
1242 #endif
1243 
1244   // *** Stuff related to concurrent marking.  It's not clear to me that so
1245   // many of these need to be public.
1246 
1247   // The functions below are helper functions that a subclass of
1248   // "CollectedHeap" can use in the implementation of its virtual
1249   // functions.
1250   // This performs a concurrent marking of the live objects in a
1251   // bitmap off to the side.
1252   void do_concurrent_mark();
1253 
1254   bool is_marked_next(oop obj) const;
1255 
1256   // Determine if an object is dead, given the object and also
1257   // the region to which the object belongs. An object is dead
1258   // iff a) it was not allocated since the last mark, b) it
1259   // is not marked, and c) it is not in an archive region.
1260   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1261     return
1262       hr->is_obj_dead(obj, _cm->prev_mark_bitmap()) &&
1263       !hr->is_archive();
1264   }
1265 
1266   // This function returns true when an object has been
1267   // around since the previous marking and hasn't yet
1268   // been marked during this marking, and is not in an archive region.
1269   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1270     return
1271       !hr->obj_allocated_since_next_marking(obj) &&
1272       !is_marked_next(obj) &&
1273       !hr->is_archive();
1274   }
1275 
1276   // Determine if an object is dead, given only the object itself.
1277   // This will find the region to which the object belongs and
1278   // then call the region version of the same function.
1279 
1280   // Added if it is NULL it isn't dead.
1281 
1282   inline bool is_obj_dead(const oop obj) const;
1283 
1284   inline bool is_obj_ill(const oop obj) const;
1285 
1286   inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const;
1287   inline bool is_obj_dead_full(const oop obj) const;
1288 
1289   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1290 
1291   // Refinement
1292 
1293   G1ConcurrentRefine* concurrent_refine() const { return _cr; }
1294 
1295   // Optimized nmethod scanning support routines
1296 
1297   // Is an oop scavengeable
1298   virtual bool is_scavengable(oop obj);
1299 
1300   // Register the given nmethod with the G1 heap.
1301   virtual void register_nmethod(nmethod* nm);
1302 
1303   // Unregister the given nmethod from the G1 heap.
1304   virtual void unregister_nmethod(nmethod* nm);
1305 
1306   // Free up superfluous code root memory.
1307   void purge_code_root_memory();
1308 
1309   // Rebuild the strong code root lists for each region
1310   // after a full GC.
1311   void rebuild_strong_code_roots();
1312 
1313   // Partial cleaning used when class unloading is disabled.
1314   // Let the caller choose what structures to clean out:
1315   // - StringTable
1316   // - StringDeduplication structures
1317   void partial_cleaning(BoolObjectClosure* is_alive, bool unlink_strings, bool unlink_string_dedup);
1318 
1319   // Complete cleaning used when class unloading is enabled.
1320   // Cleans out all structures handled by partial_cleaning and also the CodeCache.
1321   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1322 
1323   // Redirty logged cards in the refinement queue.
1324   void redirty_logged_cards();
1325   // Verification
1326 
1327   // Deduplicate the string
1328   virtual void deduplicate_string(oop str);
1329 
1330   // Perform any cleanup actions necessary before allowing a verification.
1331   virtual void prepare_for_verify();
1332 
1333   // Perform verification.
1334 
1335   // vo == UsePrevMarking -> use "prev" marking information,
1336   // vo == UseNextMarking -> use "next" marking information
1337   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
1338   //
1339   // NOTE: Only the "prev" marking information is guaranteed to be
1340   // consistent most of the time, so most calls to this should use
1341   // vo == UsePrevMarking.
1342   // Currently, there is only one case where this is called with
1343   // vo == UseNextMarking, which is to verify the "next" marking
1344   // information at the end of remark.
1345   // Currently there is only one place where this is called with
1346   // vo == UseFullMarking, which is to verify the marking during a
1347   // full GC.
1348   void verify(VerifyOption vo);
1349 
1350   // WhiteBox testing support.
1351   virtual bool supports_concurrent_phase_control() const;
1352   virtual const char* const* concurrent_phases() const;
1353   virtual bool request_concurrent_phase(const char* phase);
1354 
1355   virtual WorkGang* get_safepoint_workers() { return _workers; }
1356 
1357   // The methods below are here for convenience and dispatch the
1358   // appropriate method depending on value of the given VerifyOption
1359   // parameter. The values for that parameter, and their meanings,
1360   // are the same as those above.
1361 
1362   bool is_obj_dead_cond(const oop obj,
1363                         const HeapRegion* hr,
1364                         const VerifyOption vo) const;
1365 
1366   bool is_obj_dead_cond(const oop obj,
1367                         const VerifyOption vo) const;
1368 
1369   G1HeapSummary create_g1_heap_summary();
1370   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1371 
1372   // Printing
1373 private:
1374   void print_heap_regions() const;
1375   void print_regions_on(outputStream* st) const;
1376 
1377 public:
1378   virtual void print_on(outputStream* st) const;
1379   virtual void print_extended_on(outputStream* st) const;
1380   virtual void print_on_error(outputStream* st) const;
1381 
1382   virtual void print_gc_threads_on(outputStream* st) const;
1383   virtual void gc_threads_do(ThreadClosure* tc) const;
1384 
1385   // Override
1386   void print_tracing_info() const;
1387 
1388   // The following two methods are helpful for debugging RSet issues.
1389   void print_cset_rsets() PRODUCT_RETURN;
1390   void print_all_rsets() PRODUCT_RETURN;
1391 
1392   size_t pending_card_num();
1393 };
1394 
1395 class G1ParEvacuateFollowersClosure : public VoidClosure {
1396 private:
1397   double _start_term;
1398   double _term_time;
1399   size_t _term_attempts;
1400 
1401   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1402   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
1403 protected:
1404   G1CollectedHeap*              _g1h;
1405   G1ParScanThreadState*         _par_scan_state;
1406   RefToScanQueueSet*            _queues;
1407   ParallelTaskTerminator*       _terminator;
1408 
1409   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1410   RefToScanQueueSet*      queues()         { return _queues; }
1411   ParallelTaskTerminator* terminator()     { return _terminator; }
1412 
1413 public:
1414   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1415                                 G1ParScanThreadState* par_scan_state,
1416                                 RefToScanQueueSet* queues,
1417                                 ParallelTaskTerminator* terminator)
1418     : _start_term(0.0), _term_time(0.0), _term_attempts(0),
1419       _g1h(g1h), _par_scan_state(par_scan_state),
1420       _queues(queues), _terminator(terminator) {}
1421 
1422   void do_void();
1423 
1424   double term_time() const { return _term_time; }
1425   size_t term_attempts() const { return _term_attempts; }
1426 
1427 private:
1428   inline bool offer_termination();
1429 };
1430 
1431 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP