1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Analytics.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/g1CollectionSet.hpp"
  29 #include "gc/g1/g1ConcurrentMark.hpp"
  30 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  31 #include "gc/g1/g1ConcurrentRefine.hpp"
  32 #include "gc/g1/g1HeterogeneousHeapPolicy.hpp"
  33 #include "gc/g1/g1HotCardCache.hpp"
  34 #include "gc/g1/g1IHOPControl.hpp"
  35 #include "gc/g1/g1GCPhaseTimes.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1SurvivorRegions.hpp"
  38 #include "gc/g1/g1YoungGenSizer.hpp"
  39 #include "gc/g1/heapRegion.inline.hpp"
  40 #include "gc/g1/heapRegionRemSet.hpp"
  41 #include "gc/shared/gcPolicyCounters.hpp"
  42 #include "logging/logStream.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "utilities/debug.hpp"
  47 #include "utilities/growableArray.hpp"
  48 #include "utilities/pair.hpp"
  49 
  50 G1Policy::G1Policy(G1CollectorPolicy* policy, STWGCTimer* gc_timer) :
  51   _predictor(G1ConfidencePercent / 100.0),
  52   _analytics(new G1Analytics(&_predictor)),
  53   _remset_tracker(),
  54   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  55   _ihop_control(create_ihop_control(&_predictor)),
  56   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
  57   _full_collection_start_sec(0.0),
  58   _collection_pause_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC),
  59   _young_list_target_length(0),
  60   _young_list_fixed_length(0),
  61   _young_list_max_length(0),
  62   _short_lived_surv_rate_group(new SurvRateGroup()),
  63   _survivor_surv_rate_group(new SurvRateGroup()),
  64   _reserve_factor((double) G1ReservePercent / 100.0),
  65   _reserve_regions(0),
  66   _young_gen_sizer(G1YoungGenSizer::create_gen_sizer(policy)),
  67   _free_regions_at_end_of_collection(0),
  68   _max_rs_lengths(0),
  69   _rs_lengths_prediction(0),
  70   _pending_cards(0),
  71   _bytes_allocated_in_old_since_last_gc(0),
  72   _initial_mark_to_mixed(),
  73   _collection_set(NULL),
  74   _bytes_copied_during_gc(0),
  75   _g1h(NULL),
  76   _phase_times(new G1GCPhaseTimes(gc_timer, ParallelGCThreads)),
  77   _mark_remark_start_sec(0),
  78   _mark_cleanup_start_sec(0),
  79   _tenuring_threshold(MaxTenuringThreshold),
  80   _max_survivor_regions(0),
  81   _survivors_age_table(true)
  82 {
  83 }
  84 
  85 G1Policy::~G1Policy() {
  86   delete _ihop_control;
  87   delete _young_gen_sizer;
  88 }
  89 
  90 G1Policy* G1Policy::create_policy(G1CollectorPolicy* policy, STWGCTimer* gc_timer_stw) {
  91   if (policy->is_hetero_heap()) {
  92     return new G1HeterogeneousHeapPolicy(policy, gc_timer_stw);
  93   } else {
  94     return new G1Policy(policy, gc_timer_stw);
  95   }
  96 }
  97 
  98 G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
  99 
 100 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
 101   _g1h = g1h;
 102   _collection_set = collection_set;
 103 
 104   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 105 
 106   if (!adaptive_young_list_length()) {
 107     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 108   }
 109   _young_gen_sizer->adjust_max_new_size(_g1h->max_expandable_regions());
 110 
 111   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 112 
 113   update_young_list_max_and_target_length();
 114   // We may immediately start allocating regions and placing them on the
 115   // collection set list. Initialize the per-collection set info
 116   _collection_set->start_incremental_building();
 117 }
 118 
 119 void G1Policy::note_gc_start() {
 120   phase_times()->note_gc_start();
 121 }
 122 
 123 class G1YoungLengthPredictor {
 124   const bool _during_cm;
 125   const double _base_time_ms;
 126   const double _base_free_regions;
 127   const double _target_pause_time_ms;
 128   const G1Policy* const _policy;
 129 
 130  public:
 131   G1YoungLengthPredictor(bool during_cm,
 132                          double base_time_ms,
 133                          double base_free_regions,
 134                          double target_pause_time_ms,
 135                          const G1Policy* policy) :
 136     _during_cm(during_cm),
 137     _base_time_ms(base_time_ms),
 138     _base_free_regions(base_free_regions),
 139     _target_pause_time_ms(target_pause_time_ms),
 140     _policy(policy) {}
 141 
 142   bool will_fit(uint young_length) const {
 143     if (young_length >= _base_free_regions) {
 144       // end condition 1: not enough space for the young regions
 145       return false;
 146     }
 147 
 148     const double accum_surv_rate = _policy->accum_yg_surv_rate_pred((int) young_length - 1);
 149     const size_t bytes_to_copy =
 150                  (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 151     const double copy_time_ms =
 152       _policy->analytics()->predict_object_copy_time_ms(bytes_to_copy, _during_cm);
 153     const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
 154     const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
 155     if (pause_time_ms > _target_pause_time_ms) {
 156       // end condition 2: prediction is over the target pause time
 157       return false;
 158     }
 159 
 160     const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
 161 
 162     // When copying, we will likely need more bytes free than is live in the region.
 163     // Add some safety margin to factor in the confidence of our guess, and the
 164     // natural expected waste.
 165     // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 166     // of the calculation: the lower the confidence, the more headroom.
 167     // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 168     // copying due to anticipated waste in the PLABs.
 169     const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 170     const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 171 
 172     if (expected_bytes_to_copy > free_bytes) {
 173       // end condition 3: out-of-space
 174       return false;
 175     }
 176 
 177     // success!
 178     return true;
 179   }
 180 };
 181 
 182 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
 183   // re-calculate the necessary reserve
 184   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 185   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 186   // smaller than 1.0) we'll get 1.
 187   _reserve_regions = (uint) ceil(reserve_regions_d);
 188 
 189   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 190 
 191   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 192 }
 193 
 194 uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const {
 195   uint desired_min_length = 0;
 196   if (adaptive_young_list_length()) {
 197     if (_analytics->num_alloc_rate_ms() > 3) {
 198       double now_sec = os::elapsedTime();
 199       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 200       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 201       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 202     } else {
 203       // otherwise we don't have enough info to make the prediction
 204     }
 205   }
 206   desired_min_length += base_min_length;
 207   // make sure we don't go below any user-defined minimum bound
 208   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 209 }
 210 
 211 uint G1Policy::calculate_young_list_desired_max_length() const {
 212   // Here, we might want to also take into account any additional
 213   // constraints (i.e., user-defined minimum bound). Currently, we
 214   // effectively don't set this bound.
 215   return _young_gen_sizer->max_desired_young_length();
 216 }
 217 
 218 uint G1Policy::update_young_list_max_and_target_length() {
 219   return update_young_list_max_and_target_length(_analytics->predict_rs_lengths());
 220 }
 221 
 222 uint G1Policy::update_young_list_max_and_target_length(size_t rs_lengths) {
 223   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 224   update_max_gc_locker_expansion();
 225   return unbounded_target_length;
 226 }
 227 
 228 uint G1Policy::update_young_list_target_length(size_t rs_lengths) {
 229   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 230   _young_list_target_length = young_lengths.first;
 231 
 232   return young_lengths.second;
 233 }
 234 
 235 G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_lengths) const {
 236   YoungTargetLengths result;
 237 
 238   // Calculate the absolute and desired min bounds first.
 239 
 240   // This is how many young regions we already have (currently: the survivors).
 241   const uint base_min_length = _g1h->survivor_regions_count();
 242   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 243   // This is the absolute minimum young length. Ensure that we
 244   // will at least have one eden region available for allocation.
 245   uint absolute_min_length = base_min_length + MAX2(_g1h->eden_regions_count(), (uint)1);
 246   // If we shrank the young list target it should not shrink below the current size.
 247   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 248   // Calculate the absolute and desired max bounds.
 249 
 250   uint desired_max_length = calculate_young_list_desired_max_length();
 251 
 252   uint young_list_target_length = 0;
 253   if (adaptive_young_list_length()) {
 254     if (collector_state()->in_young_only_phase()) {
 255       young_list_target_length =
 256                         calculate_young_list_target_length(rs_lengths,
 257                                                            base_min_length,
 258                                                            desired_min_length,
 259                                                            desired_max_length);
 260     } else {
 261       // Don't calculate anything and let the code below bound it to
 262       // the desired_min_length, i.e., do the next GC as soon as
 263       // possible to maximize how many old regions we can add to it.
 264     }
 265   } else {
 266     // The user asked for a fixed young gen so we'll fix the young gen
 267     // whether the next GC is young or mixed.
 268     young_list_target_length = _young_list_fixed_length;
 269   }
 270 
 271   result.second = young_list_target_length;
 272 
 273   // We will try our best not to "eat" into the reserve.
 274   uint absolute_max_length = 0;
 275   if (_free_regions_at_end_of_collection > _reserve_regions) {
 276     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 277   }
 278   if (desired_max_length > absolute_max_length) {
 279     desired_max_length = absolute_max_length;
 280   }
 281 
 282   // Make sure we don't go over the desired max length, nor under the
 283   // desired min length. In case they clash, desired_min_length wins
 284   // which is why that test is second.
 285   if (young_list_target_length > desired_max_length) {
 286     young_list_target_length = desired_max_length;
 287   }
 288   if (young_list_target_length < desired_min_length) {
 289     young_list_target_length = desired_min_length;
 290   }
 291 
 292   assert(young_list_target_length > base_min_length,
 293          "we should be able to allocate at least one eden region");
 294   assert(young_list_target_length >= absolute_min_length, "post-condition");
 295 
 296   result.first = young_list_target_length;
 297   return result;
 298 }
 299 
 300 uint
 301 G1Policy::calculate_young_list_target_length(size_t rs_lengths,
 302                                                     uint base_min_length,
 303                                                     uint desired_min_length,
 304                                                     uint desired_max_length) const {
 305   assert(adaptive_young_list_length(), "pre-condition");
 306   assert(collector_state()->in_young_only_phase(), "only call this for young GCs");
 307 
 308   // In case some edge-condition makes the desired max length too small...
 309   if (desired_max_length <= desired_min_length) {
 310     return desired_min_length;
 311   }
 312 
 313   // We'll adjust min_young_length and max_young_length not to include
 314   // the already allocated young regions (i.e., so they reflect the
 315   // min and max eden regions we'll allocate). The base_min_length
 316   // will be reflected in the predictions by the
 317   // survivor_regions_evac_time prediction.
 318   assert(desired_min_length > base_min_length, "invariant");
 319   uint min_young_length = desired_min_length - base_min_length;
 320   assert(desired_max_length > base_min_length, "invariant");
 321   uint max_young_length = desired_max_length - base_min_length;
 322 
 323   const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 324   const double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 325   const size_t pending_cards = _analytics->predict_pending_cards();
 326   const size_t adj_rs_lengths = rs_lengths + _analytics->predict_rs_length_diff();
 327   const size_t scanned_cards = _analytics->predict_card_num(adj_rs_lengths, true /* for_young_gc */);
 328   const double base_time_ms =
 329     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 330     survivor_regions_evac_time;
 331   const uint available_free_regions = _free_regions_at_end_of_collection;
 332   const uint base_free_regions =
 333     available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
 334 
 335   // Here, we will make sure that the shortest young length that
 336   // makes sense fits within the target pause time.
 337 
 338   G1YoungLengthPredictor p(collector_state()->mark_or_rebuild_in_progress(),
 339                            base_time_ms,
 340                            base_free_regions,
 341                            target_pause_time_ms,
 342                            this);
 343   if (p.will_fit(min_young_length)) {
 344     // The shortest young length will fit into the target pause time;
 345     // we'll now check whether the absolute maximum number of young
 346     // regions will fit in the target pause time. If not, we'll do
 347     // a binary search between min_young_length and max_young_length.
 348     if (p.will_fit(max_young_length)) {
 349       // The maximum young length will fit into the target pause time.
 350       // We are done so set min young length to the maximum length (as
 351       // the result is assumed to be returned in min_young_length).
 352       min_young_length = max_young_length;
 353     } else {
 354       // The maximum possible number of young regions will not fit within
 355       // the target pause time so we'll search for the optimal
 356       // length. The loop invariants are:
 357       //
 358       // min_young_length < max_young_length
 359       // min_young_length is known to fit into the target pause time
 360       // max_young_length is known not to fit into the target pause time
 361       //
 362       // Going into the loop we know the above hold as we've just
 363       // checked them. Every time around the loop we check whether
 364       // the middle value between min_young_length and
 365       // max_young_length fits into the target pause time. If it
 366       // does, it becomes the new min. If it doesn't, it becomes
 367       // the new max. This way we maintain the loop invariants.
 368 
 369       assert(min_young_length < max_young_length, "invariant");
 370       uint diff = (max_young_length - min_young_length) / 2;
 371       while (diff > 0) {
 372         uint young_length = min_young_length + diff;
 373         if (p.will_fit(young_length)) {
 374           min_young_length = young_length;
 375         } else {
 376           max_young_length = young_length;
 377         }
 378         assert(min_young_length <  max_young_length, "invariant");
 379         diff = (max_young_length - min_young_length) / 2;
 380       }
 381       // The results is min_young_length which, according to the
 382       // loop invariants, should fit within the target pause time.
 383 
 384       // These are the post-conditions of the binary search above:
 385       assert(min_young_length < max_young_length,
 386              "otherwise we should have discovered that max_young_length "
 387              "fits into the pause target and not done the binary search");
 388       assert(p.will_fit(min_young_length),
 389              "min_young_length, the result of the binary search, should "
 390              "fit into the pause target");
 391       assert(!p.will_fit(min_young_length + 1),
 392              "min_young_length, the result of the binary search, should be "
 393              "optimal, so no larger length should fit into the pause target");
 394     }
 395   } else {
 396     // Even the minimum length doesn't fit into the pause time
 397     // target, return it as the result nevertheless.
 398   }
 399   return base_min_length + min_young_length;
 400 }
 401 
 402 double G1Policy::predict_survivor_regions_evac_time() const {
 403   double survivor_regions_evac_time = 0.0;
 404   const GrowableArray<HeapRegion*>* survivor_regions = _g1h->survivor()->regions();
 405 
 406   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 407        it != survivor_regions->end();
 408        ++it) {
 409     survivor_regions_evac_time += predict_region_elapsed_time_ms(*it, collector_state()->in_young_only_phase());
 410   }
 411   return survivor_regions_evac_time;
 412 }
 413 
 414 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_lengths) {
 415   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 416 
 417   if (rs_lengths > _rs_lengths_prediction) {
 418     // add 10% to avoid having to recalculate often
 419     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 420     update_rs_lengths_prediction(rs_lengths_prediction);
 421 
 422     update_young_list_max_and_target_length(rs_lengths_prediction);
 423   }
 424 }
 425 
 426 void G1Policy::update_rs_lengths_prediction() {
 427   update_rs_lengths_prediction(_analytics->predict_rs_lengths());
 428 }
 429 
 430 void G1Policy::update_rs_lengths_prediction(size_t prediction) {
 431   if (collector_state()->in_young_only_phase() && adaptive_young_list_length()) {
 432     _rs_lengths_prediction = prediction;
 433   }
 434 }
 435 
 436 void G1Policy::record_full_collection_start() {
 437   _full_collection_start_sec = os::elapsedTime();
 438   // Release the future to-space so that it is available for compaction into.
 439   collector_state()->set_in_young_only_phase(false);
 440   collector_state()->set_in_full_gc(true);
 441   cset_chooser()->clear();
 442 }
 443 
 444 void G1Policy::record_full_collection_end() {
 445   // Consider this like a collection pause for the purposes of allocation
 446   // since last pause.
 447   double end_sec = os::elapsedTime();
 448   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 449   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 450 
 451   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 452 
 453   collector_state()->set_in_full_gc(false);
 454 
 455   // "Nuke" the heuristics that control the young/mixed GC
 456   // transitions and make sure we start with young GCs after the Full GC.
 457   collector_state()->set_in_young_only_phase(true);
 458   collector_state()->set_in_young_gc_before_mixed(false);
 459   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 460   collector_state()->set_in_initial_mark_gc(false);
 461   collector_state()->set_mark_or_rebuild_in_progress(false);
 462   collector_state()->set_clearing_next_bitmap(false);
 463 
 464   _short_lived_surv_rate_group->start_adding_regions();
 465   // also call this on any additional surv rate groups
 466 
 467   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 468   // Reset survivors SurvRateGroup.
 469   _survivor_surv_rate_group->reset();
 470   update_young_list_max_and_target_length();
 471   update_rs_lengths_prediction();
 472 
 473   _bytes_allocated_in_old_since_last_gc = 0;
 474 
 475   record_pause(FullGC, _full_collection_start_sec, end_sec);
 476 }
 477 
 478 void G1Policy::record_collection_pause_start(double start_time_sec) {
 479   // We only need to do this here as the policy will only be applied
 480   // to the GC we're about to start. so, no point is calculating this
 481   // every time we calculate / recalculate the target young length.
 482   update_survivors_policy();
 483 
 484   assert(max_survivor_regions() + _g1h->num_used_regions() <= _g1h->max_regions(),
 485          "Maximum survivor regions %u plus used regions %u exceeds max regions %u",
 486          max_survivor_regions(), _g1h->num_used_regions(), _g1h->max_regions());
 487 
 488   assert(_g1h->used() == _g1h->recalculate_used(),
 489          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 490          _g1h->used(), _g1h->recalculate_used());
 491 
 492   phase_times()->record_cur_collection_start_sec(start_time_sec);
 493   _pending_cards = _g1h->pending_card_num();
 494 
 495   _collection_set->reset_bytes_used_before();
 496   _bytes_copied_during_gc = 0;
 497 
 498   // do that for any other surv rate groups
 499   _short_lived_surv_rate_group->stop_adding_regions();
 500   _survivors_age_table.clear();
 501 
 502   assert(_g1h->collection_set()->verify_young_ages(), "region age verification failed");
 503 }
 504 
 505 void G1Policy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
 506   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 507   collector_state()->set_in_initial_mark_gc(false);
 508 }
 509 
 510 void G1Policy::record_concurrent_mark_remark_start() {
 511   _mark_remark_start_sec = os::elapsedTime();
 512 }
 513 
 514 void G1Policy::record_concurrent_mark_remark_end() {
 515   double end_time_sec = os::elapsedTime();
 516   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 517   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 518   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 519 
 520   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 521 }
 522 
 523 void G1Policy::record_concurrent_mark_cleanup_start() {
 524   _mark_cleanup_start_sec = os::elapsedTime();
 525 }
 526 
 527 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 528   return phase_times()->average_time_ms(phase);
 529 }
 530 
 531 double G1Policy::young_other_time_ms() const {
 532   return phase_times()->young_cset_choice_time_ms() +
 533          phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
 534 }
 535 
 536 double G1Policy::non_young_other_time_ms() const {
 537   return phase_times()->non_young_cset_choice_time_ms() +
 538          phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
 539 }
 540 
 541 double G1Policy::other_time_ms(double pause_time_ms) const {
 542   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
 543 }
 544 
 545 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
 546   return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms();
 547 }
 548 
 549 CollectionSetChooser* G1Policy::cset_chooser() const {
 550   return _collection_set->cset_chooser();
 551 }
 552 
 553 bool G1Policy::about_to_start_mixed_phase() const {
 554   return _g1h->concurrent_mark()->cm_thread()->during_cycle() || collector_state()->in_young_gc_before_mixed();
 555 }
 556 
 557 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 558   if (about_to_start_mixed_phase()) {
 559     return false;
 560   }
 561 
 562   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 563 
 564   size_t cur_used_bytes = _g1h->non_young_capacity_bytes();
 565   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 566   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 567 
 568   bool result = false;
 569   if (marking_request_bytes > marking_initiating_used_threshold) {
 570     result = collector_state()->in_young_only_phase() && !collector_state()->in_young_gc_before_mixed();
 571     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 572                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 573                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1h->capacity() * 100, source);
 574   }
 575 
 576   return result;
 577 }
 578 
 579 // Anything below that is considered to be zero
 580 #define MIN_TIMER_GRANULARITY 0.0000001
 581 
 582 void G1Policy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
 583   double end_time_sec = os::elapsedTime();
 584 
 585   size_t cur_used_bytes = _g1h->used();
 586   assert(cur_used_bytes == _g1h->recalculate_used(), "It should!");
 587   bool this_pause_included_initial_mark = false;
 588   bool this_pause_was_young_only = collector_state()->in_young_only_phase();
 589 
 590   bool update_stats = !_g1h->evacuation_failed();
 591 
 592   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 593 
 594   _collection_pause_end_millis = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 595 
 596   this_pause_included_initial_mark = collector_state()->in_initial_mark_gc();
 597   if (this_pause_included_initial_mark) {
 598     record_concurrent_mark_init_end(0.0);
 599   } else {
 600     maybe_start_marking();
 601   }
 602 
 603   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
 604   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 605     // This usually happens due to the timer not having the required
 606     // granularity. Some Linuxes are the usual culprits.
 607     // We'll just set it to something (arbitrarily) small.
 608     app_time_ms = 1.0;
 609   }
 610 
 611   if (update_stats) {
 612     // We maintain the invariant that all objects allocated by mutator
 613     // threads will be allocated out of eden regions. So, we can use
 614     // the eden region number allocated since the previous GC to
 615     // calculate the application's allocate rate. The only exception
 616     // to that is humongous objects that are allocated separately. But
 617     // given that humongous object allocations do not really affect
 618     // either the pause's duration nor when the next pause will take
 619     // place we can safely ignore them here.
 620     uint regions_allocated = _collection_set->eden_region_length();
 621     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 622     _analytics->report_alloc_rate_ms(alloc_rate_ms);
 623 
 624     double interval_ms =
 625       (end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0;
 626     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
 627     _analytics->compute_pause_time_ratio(interval_ms, pause_time_ms);
 628   }
 629 
 630   if (collector_state()->in_young_gc_before_mixed()) {
 631     assert(!this_pause_included_initial_mark, "The young GC before mixed is not allowed to be an initial mark GC");
 632     // This has been the young GC before we start doing mixed GCs. We already
 633     // decided to start mixed GCs much earlier, so there is nothing to do except
 634     // advancing the state.
 635     collector_state()->set_in_young_only_phase(false);
 636     collector_state()->set_in_young_gc_before_mixed(false);
 637   } else if (!this_pause_was_young_only) {
 638     // This is a mixed GC. Here we decide whether to continue doing more
 639     // mixed GCs or not.
 640     if (!next_gc_should_be_mixed("continue mixed GCs",
 641                                  "do not continue mixed GCs")) {
 642       collector_state()->set_in_young_only_phase(true);
 643 
 644       clear_collection_set_candidates();
 645       maybe_start_marking();
 646     }
 647   }
 648 
 649   _short_lived_surv_rate_group->start_adding_regions();
 650   // Do that for any other surv rate groups
 651 
 652   double scan_hcc_time_ms = G1HotCardCache::default_use_cache() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
 653 
 654   if (update_stats) {
 655     double cost_per_card_ms = 0.0;
 656     if (_pending_cards > 0) {
 657       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS)) / (double) _pending_cards;
 658       _analytics->report_cost_per_card_ms(cost_per_card_ms);
 659     }
 660     _analytics->report_cost_scan_hcc(scan_hcc_time_ms);
 661 
 662     double cost_per_entry_ms = 0.0;
 663     if (cards_scanned > 10) {
 664       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
 665       _analytics->report_cost_per_entry_ms(cost_per_entry_ms, this_pause_was_young_only);
 666     }
 667 
 668     if (_max_rs_lengths > 0) {
 669       double cards_per_entry_ratio =
 670         (double) cards_scanned / (double) _max_rs_lengths;
 671       _analytics->report_cards_per_entry_ratio(cards_per_entry_ratio, this_pause_was_young_only);
 672     }
 673 
 674     // This is defensive. For a while _max_rs_lengths could get
 675     // smaller than _recorded_rs_lengths which was causing
 676     // rs_length_diff to get very large and mess up the RSet length
 677     // predictions. The reason was unsafe concurrent updates to the
 678     // _inc_cset_recorded_rs_lengths field which the code below guards
 679     // against (see CR 7118202). This bug has now been fixed (see CR
 680     // 7119027). However, I'm still worried that
 681     // _inc_cset_recorded_rs_lengths might still end up somewhat
 682     // inaccurate. The concurrent refinement thread calculates an
 683     // RSet's length concurrently with other CR threads updating it
 684     // which might cause it to calculate the length incorrectly (if,
 685     // say, it's in mid-coarsening). So I'll leave in the defensive
 686     // conditional below just in case.
 687     size_t rs_length_diff = 0;
 688     size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths();
 689     if (_max_rs_lengths > recorded_rs_lengths) {
 690       rs_length_diff = _max_rs_lengths - recorded_rs_lengths;
 691     }
 692     _analytics->report_rs_length_diff((double) rs_length_diff);
 693 
 694     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
 695     size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes;
 696     double cost_per_byte_ms = 0.0;
 697 
 698     if (copied_bytes > 0) {
 699       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
 700       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->mark_or_rebuild_in_progress());
 701     }
 702 
 703     if (_collection_set->young_region_length() > 0) {
 704       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
 705                                                         _collection_set->young_region_length());
 706     }
 707 
 708     if (_collection_set->old_region_length() > 0) {
 709       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 710                                                             _collection_set->old_region_length());
 711     }
 712 
 713     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 714 
 715     // Do not update RS lengths and the number of pending cards with information from mixed gc:
 716     // these are is wildly different to during young only gc and mess up young gen sizing right
 717     // after the mixed gc phase.
 718     // During mixed gc we do not use them for young gen sizing.
 719     if (this_pause_was_young_only) {
 720       _analytics->report_pending_cards((double) _pending_cards);
 721       _analytics->report_rs_lengths((double) _max_rs_lengths);
 722     }
 723   }
 724 
 725   assert(!(this_pause_included_initial_mark && collector_state()->mark_or_rebuild_in_progress()),
 726          "If the last pause has been an initial mark, we should not have been in the marking window");
 727   if (this_pause_included_initial_mark) {
 728     collector_state()->set_mark_or_rebuild_in_progress(true);
 729   }
 730 
 731   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 732 
 733   update_rs_lengths_prediction();
 734 
 735   // Do not update dynamic IHOP due to G1 periodic collection as it is highly likely
 736   // that in this case we are not running in a "normal" operating mode.
 737   if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
 738     // IHOP control wants to know the expected young gen length if it were not
 739     // restrained by the heap reserve. Using the actual length would make the
 740     // prediction too small and the limit the young gen every time we get to the
 741     // predicted target occupancy.
 742     size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 743 
 744     update_ihop_prediction(app_time_ms / 1000.0,
 745                            _bytes_allocated_in_old_since_last_gc,
 746                            last_unrestrained_young_length * HeapRegion::GrainBytes,
 747                            this_pause_was_young_only);
 748     _bytes_allocated_in_old_since_last_gc = 0;
 749 
 750     _ihop_control->send_trace_event(_g1h->gc_tracer_stw());
 751   } else {
 752     // Any garbage collection triggered as periodic collection resets the time-to-mixed
 753     // measurement. Periodic collection typically means that the application is "inactive", i.e.
 754     // the marking threads may have received an uncharacterisic amount of cpu time
 755     // for completing the marking, i.e. are faster than expected.
 756     // This skews the predicted marking length towards smaller values which might cause
 757     // the mark start being too late.
 758     _initial_mark_to_mixed.reset();
 759   }
 760 
 761   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 762   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 763 
 764   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
 765     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 766                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
 767                                 update_rs_time_goal_ms, scan_hcc_time_ms);
 768 
 769     update_rs_time_goal_ms = 0;
 770   } else {
 771     update_rs_time_goal_ms -= scan_hcc_time_ms;
 772   }
 773   _g1h->concurrent_refine()->adjust(average_time_ms(G1GCPhaseTimes::UpdateRS),
 774                                     phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
 775                                     update_rs_time_goal_ms);
 776 
 777   cset_chooser()->verify();
 778 }
 779 
 780 G1IHOPControl* G1Policy::create_ihop_control(const G1Predictions* predictor){
 781   if (G1UseAdaptiveIHOP) {
 782     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 783                                      predictor,
 784                                      G1ReservePercent,
 785                                      G1HeapWastePercent);
 786   } else {
 787     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 788   }
 789 }
 790 
 791 void G1Policy::update_ihop_prediction(double mutator_time_s,
 792                                       size_t mutator_alloc_bytes,
 793                                       size_t young_gen_size,
 794                                       bool this_gc_was_young_only) {
 795   // Always try to update IHOP prediction. Even evacuation failures give information
 796   // about e.g. whether to start IHOP earlier next time.
 797 
 798   // Avoid using really small application times that might create samples with
 799   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 800   double const min_valid_time = 1e-6;
 801 
 802   bool report = false;
 803 
 804   double marking_to_mixed_time = -1.0;
 805   if (!this_gc_was_young_only && _initial_mark_to_mixed.has_result()) {
 806     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
 807     assert(marking_to_mixed_time > 0.0,
 808            "Initial mark to mixed time must be larger than zero but is %.3f",
 809            marking_to_mixed_time);
 810     if (marking_to_mixed_time > min_valid_time) {
 811       _ihop_control->update_marking_length(marking_to_mixed_time);
 812       report = true;
 813     }
 814   }
 815 
 816   // As an approximation for the young gc promotion rates during marking we use
 817   // all of them. In many applications there are only a few if any young gcs during
 818   // marking, which makes any prediction useless. This increases the accuracy of the
 819   // prediction.
 820   if (this_gc_was_young_only && mutator_time_s > min_valid_time) {
 821     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 822     report = true;
 823   }
 824 
 825   if (report) {
 826     report_ihop_statistics();
 827   }
 828 }
 829 
 830 void G1Policy::report_ihop_statistics() {
 831   _ihop_control->print();
 832 }
 833 
 834 void G1Policy::print_phases() {
 835   phase_times()->print();
 836 }
 837 
 838 double G1Policy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
 839   TruncatedSeq* seq = surv_rate_group->get_seq(age);
 840   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
 841   double pred = _predictor.get_new_prediction(seq);
 842   if (pred > 1.0) {
 843     pred = 1.0;
 844   }
 845   return pred;
 846 }
 847 
 848 double G1Policy::accum_yg_surv_rate_pred(int age) const {
 849   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 850 }
 851 
 852 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
 853                                               size_t scanned_cards) const {
 854   return
 855     _analytics->predict_rs_update_time_ms(pending_cards) +
 856     _analytics->predict_rs_scan_time_ms(scanned_cards, collector_state()->in_young_only_phase()) +
 857     _analytics->predict_constant_other_time_ms();
 858 }
 859 
 860 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
 861   size_t rs_length = _analytics->predict_rs_lengths() + _analytics->predict_rs_length_diff();
 862   size_t card_num = _analytics->predict_card_num(rs_length, collector_state()->in_young_only_phase());
 863   return predict_base_elapsed_time_ms(pending_cards, card_num);
 864 }
 865 
 866 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
 867   size_t bytes_to_copy;
 868   if (!hr->is_young()) {
 869     bytes_to_copy = hr->max_live_bytes();
 870   } else {
 871     assert(hr->age_in_surv_rate_group() != -1, "invariant");
 872     int age = hr->age_in_surv_rate_group();
 873     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
 874     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
 875   }
 876   return bytes_to_copy;
 877 }
 878 
 879 double G1Policy::predict_region_elapsed_time_ms(HeapRegion* hr,
 880                                                 bool for_young_gc) const {
 881   size_t rs_length = hr->rem_set()->occupied();
 882   // Predicting the number of cards is based on which type of GC
 883   // we're predicting for.
 884   size_t card_num = _analytics->predict_card_num(rs_length, for_young_gc);
 885   size_t bytes_to_copy = predict_bytes_to_copy(hr);
 886 
 887   double region_elapsed_time_ms =
 888     _analytics->predict_rs_scan_time_ms(card_num, collector_state()->in_young_only_phase()) +
 889     _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->mark_or_rebuild_in_progress());
 890 
 891   // The prediction of the "other" time for this region is based
 892   // upon the region type and NOT the GC type.
 893   if (hr->is_young()) {
 894     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
 895   } else {
 896     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
 897   }
 898   return region_elapsed_time_ms;
 899 }
 900 
 901 bool G1Policy::should_allocate_mutator_region() const {
 902   uint young_list_length = _g1h->young_regions_count();
 903   uint young_list_target_length = _young_list_target_length;
 904   return young_list_length < young_list_target_length;
 905 }
 906 
 907 bool G1Policy::can_expand_young_list() const {
 908   uint young_list_length = _g1h->young_regions_count();
 909   uint young_list_max_length = _young_list_max_length;
 910   return young_list_length < young_list_max_length;
 911 }
 912 
 913 bool G1Policy::adaptive_young_list_length() const {
 914   return _young_gen_sizer->adaptive_young_list_length();
 915 }
 916 
 917 size_t G1Policy::desired_survivor_size(uint max_regions) const {
 918   size_t const survivor_capacity = HeapRegion::GrainWords * max_regions;
 919   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
 920 }
 921 
 922 void G1Policy::print_age_table() {
 923   _survivors_age_table.print_age_table(_tenuring_threshold);
 924 }
 925 
 926 void G1Policy::update_max_gc_locker_expansion() {
 927   uint expansion_region_num = 0;
 928   if (GCLockerEdenExpansionPercent > 0) {
 929     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
 930     double expansion_region_num_d = perc * (double) _young_list_target_length;
 931     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
 932     // less than 1.0) we'll get 1.
 933     expansion_region_num = (uint) ceil(expansion_region_num_d);
 934   } else {
 935     assert(expansion_region_num == 0, "sanity");
 936   }
 937   _young_list_max_length = _young_list_target_length + expansion_region_num;
 938   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
 939 }
 940 
 941 // Calculates survivor space parameters.
 942 void G1Policy::update_survivors_policy() {
 943   double max_survivor_regions_d =
 944                  (double) _young_list_target_length / (double) SurvivorRatio;
 945 
 946   // Calculate desired survivor size based on desired max survivor regions (unconstrained
 947   // by remaining heap). Otherwise we may cause undesired promotions as we are
 948   // already getting close to end of the heap, impacting performance even more.
 949   uint const desired_max_survivor_regions = ceil(max_survivor_regions_d);
 950   size_t const survivor_size = desired_survivor_size(desired_max_survivor_regions);
 951 
 952   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(survivor_size);
 953   if (UsePerfData) {
 954     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
 955     _policy_counters->desired_survivor_size()->set_value(survivor_size * oopSize);
 956   }
 957   // The real maximum survivor size is bounded by the number of regions that can
 958   // be allocated into.
 959   _max_survivor_regions = MIN2(desired_max_survivor_regions,
 960                                _g1h->num_free_or_available_regions());
 961 }
 962 
 963 bool G1Policy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
 964   // We actually check whether we are marking here and not if we are in a
 965   // reclamation phase. This means that we will schedule a concurrent mark
 966   // even while we are still in the process of reclaiming memory.
 967   bool during_cycle = _g1h->concurrent_mark()->cm_thread()->during_cycle();
 968   if (!during_cycle) {
 969     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
 970     collector_state()->set_initiate_conc_mark_if_possible(true);
 971     return true;
 972   } else {
 973     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
 974     return false;
 975   }
 976 }
 977 
 978 void G1Policy::initiate_conc_mark() {
 979   collector_state()->set_in_initial_mark_gc(true);
 980   collector_state()->set_initiate_conc_mark_if_possible(false);
 981 }
 982 
 983 void G1Policy::decide_on_conc_mark_initiation() {
 984   // We are about to decide on whether this pause will be an
 985   // initial-mark pause.
 986 
 987   // First, collector_state()->in_initial_mark_gc() should not be already set. We
 988   // will set it here if we have to. However, it should be cleared by
 989   // the end of the pause (it's only set for the duration of an
 990   // initial-mark pause).
 991   assert(!collector_state()->in_initial_mark_gc(), "pre-condition");
 992 
 993   if (collector_state()->initiate_conc_mark_if_possible()) {
 994     // We had noticed on a previous pause that the heap occupancy has
 995     // gone over the initiating threshold and we should start a
 996     // concurrent marking cycle. So we might initiate one.
 997 
 998     if (!about_to_start_mixed_phase() && collector_state()->in_young_only_phase()) {
 999       // Initiate a new initial mark if there is no marking or reclamation going on.
1000       initiate_conc_mark();
1001       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1002     } else if (_g1h->is_user_requested_concurrent_full_gc(_g1h->gc_cause())) {
1003       // Initiate a user requested initial mark. An initial mark must be young only
1004       // GC, so the collector state must be updated to reflect this.
1005       collector_state()->set_in_young_only_phase(true);
1006       collector_state()->set_in_young_gc_before_mixed(false);
1007 
1008       // We might have ended up coming here about to start a mixed phase with a collection set
1009       // active. The following remark might change the change the "evacuation efficiency" of
1010       // the regions in this set, leading to failing asserts later.
1011       // Since the concurrent cycle will recreate the collection set anyway, simply drop it here.
1012       clear_collection_set_candidates();
1013       abort_time_to_mixed_tracking();
1014       initiate_conc_mark();
1015       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1016     } else {
1017       // The concurrent marking thread is still finishing up the
1018       // previous cycle. If we start one right now the two cycles
1019       // overlap. In particular, the concurrent marking thread might
1020       // be in the process of clearing the next marking bitmap (which
1021       // we will use for the next cycle if we start one). Starting a
1022       // cycle now will be bad given that parts of the marking
1023       // information might get cleared by the marking thread. And we
1024       // cannot wait for the marking thread to finish the cycle as it
1025       // periodically yields while clearing the next marking bitmap
1026       // and, if it's in a yield point, it's waiting for us to
1027       // finish. So, at this point we will not start a cycle and we'll
1028       // let the concurrent marking thread complete the last one.
1029       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1030     }
1031   }
1032 }
1033 
1034 void G1Policy::record_concurrent_mark_cleanup_end() {
1035   cset_chooser()->rebuild(_g1h->workers(), _g1h->num_regions());
1036 
1037   bool mixed_gc_pending = next_gc_should_be_mixed("request mixed gcs", "request young-only gcs");
1038   if (!mixed_gc_pending) {
1039     clear_collection_set_candidates();
1040     abort_time_to_mixed_tracking();
1041   }
1042   collector_state()->set_in_young_gc_before_mixed(mixed_gc_pending);
1043   collector_state()->set_mark_or_rebuild_in_progress(false);
1044 
1045   double end_sec = os::elapsedTime();
1046   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1047   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1048   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1049 
1050   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1051 }
1052 
1053 double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const {
1054   return percent_of(reclaimable_bytes, _g1h->capacity());
1055 }
1056 
1057 class G1ClearCollectionSetCandidateRemSets : public HeapRegionClosure {
1058   virtual bool do_heap_region(HeapRegion* r) {
1059     r->rem_set()->clear_locked(true /* only_cardset */);
1060     return false;
1061   }
1062 };
1063 
1064 void G1Policy::clear_collection_set_candidates() {
1065   // Clear remembered sets of remaining candidate regions and the actual candidate
1066   // list.
1067   G1ClearCollectionSetCandidateRemSets cl;
1068   cset_chooser()->iterate(&cl);
1069   cset_chooser()->clear();
1070 }
1071 
1072 void G1Policy::maybe_start_marking() {
1073   if (need_to_start_conc_mark("end of GC")) {
1074     // Note: this might have already been set, if during the last
1075     // pause we decided to start a cycle but at the beginning of
1076     // this pause we decided to postpone it. That's OK.
1077     collector_state()->set_initiate_conc_mark_if_possible(true);
1078   }
1079 }
1080 
1081 G1Policy::PauseKind G1Policy::young_gc_pause_kind() const {
1082   assert(!collector_state()->in_full_gc(), "must be");
1083   if (collector_state()->in_initial_mark_gc()) {
1084     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1085     return InitialMarkGC;
1086   } else if (collector_state()->in_young_gc_before_mixed()) {
1087     assert(!collector_state()->in_initial_mark_gc(), "must be");
1088     return LastYoungGC;
1089   } else if (collector_state()->in_mixed_phase()) {
1090     assert(!collector_state()->in_initial_mark_gc(), "must be");
1091     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1092     return MixedGC;
1093   } else {
1094     assert(!collector_state()->in_initial_mark_gc(), "must be");
1095     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1096     return YoungOnlyGC;
1097   }
1098 }
1099 
1100 void G1Policy::record_pause(PauseKind kind, double start, double end) {
1101   // Manage the MMU tracker. For some reason it ignores Full GCs.
1102   if (kind != FullGC) {
1103     _mmu_tracker->add_pause(start, end);
1104   }
1105   // Manage the mutator time tracking from initial mark to first mixed gc.
1106   switch (kind) {
1107     case FullGC:
1108       abort_time_to_mixed_tracking();
1109       break;
1110     case Cleanup:
1111     case Remark:
1112     case YoungOnlyGC:
1113     case LastYoungGC:
1114       _initial_mark_to_mixed.add_pause(end - start);
1115       break;
1116     case InitialMarkGC:
1117       if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
1118         _initial_mark_to_mixed.record_initial_mark_end(end);
1119       }
1120       break;
1121     case MixedGC:
1122       _initial_mark_to_mixed.record_mixed_gc_start(start);
1123       break;
1124     default:
1125       ShouldNotReachHere();
1126   }
1127 }
1128 
1129 void G1Policy::abort_time_to_mixed_tracking() {
1130   _initial_mark_to_mixed.reset();
1131 }
1132 
1133 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1134                                        const char* false_action_str) const {
1135   if (cset_chooser()->is_empty()) {
1136     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1137     return false;
1138   }
1139 
1140   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1141   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
1142   double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1143   double threshold = (double) G1HeapWastePercent;
1144   if (reclaimable_percent <= threshold) {
1145     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1146                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1147     return false;
1148   }
1149   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1150                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1151   return true;
1152 }
1153 
1154 uint G1Policy::calc_min_old_cset_length() const {
1155   // The min old CSet region bound is based on the maximum desired
1156   // number of mixed GCs after a cycle. I.e., even if some old regions
1157   // look expensive, we should add them to the CSet anyway to make
1158   // sure we go through the available old regions in no more than the
1159   // maximum desired number of mixed GCs.
1160   //
1161   // The calculation is based on the number of marked regions we added
1162   // to the CSet chooser in the first place, not how many remain, so
1163   // that the result is the same during all mixed GCs that follow a cycle.
1164 
1165   const size_t region_num = (size_t) cset_chooser()->length();
1166   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1167   size_t result = region_num / gc_num;
1168   // emulate ceiling
1169   if (result * gc_num < region_num) {
1170     result += 1;
1171   }
1172   return (uint) result;
1173 }
1174 
1175 uint G1Policy::calc_max_old_cset_length() const {
1176   // The max old CSet region bound is based on the threshold expressed
1177   // as a percentage of the heap size. I.e., it should bound the
1178   // number of old regions added to the CSet irrespective of how many
1179   // of them are available.
1180 
1181   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1182   const size_t region_num = g1h->num_regions();
1183   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1184   size_t result = region_num * perc / 100;
1185   // emulate ceiling
1186   if (100 * result < region_num * perc) {
1187     result += 1;
1188   }
1189   return (uint) result;
1190 }
1191 
1192 void G1Policy::finalize_collection_set(double target_pause_time_ms, G1SurvivorRegions* survivor) {
1193   double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms, survivor);
1194   _collection_set->finalize_old_part(time_remaining_ms);
1195 }
1196 
1197 void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1198 
1199   // Add survivor regions to SurvRateGroup.
1200   note_start_adding_survivor_regions();
1201   finished_recalculating_age_indexes(true /* is_survivors */);
1202 
1203   HeapRegion* last = NULL;
1204   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1205        it != survivors->regions()->end();
1206        ++it) {
1207     HeapRegion* curr = *it;
1208     set_region_survivor(curr);
1209 
1210     // The region is a non-empty survivor so let's add it to
1211     // the incremental collection set for the next evacuation
1212     // pause.
1213     _collection_set->add_survivor_regions(curr);
1214 
1215     last = curr;
1216   }
1217   note_stop_adding_survivor_regions();
1218 
1219   // Don't clear the survivor list handles until the start of
1220   // the next evacuation pause - we need it in order to re-tag
1221   // the survivor regions from this evacuation pause as 'young'
1222   // at the start of the next.
1223 
1224   finished_recalculating_age_indexes(false /* is_survivors */);
1225 }