/* * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "code/nmethod.hpp" #include "gc/g1/g1BlockOffsetTable.inline.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1CollectionSet.hpp" #include "gc/g1/g1HeapRegionTraceType.hpp" #include "gc/g1/g1OopClosures.inline.hpp" #include "gc/g1/heapRegion.inline.hpp" #include "gc/g1/heapRegionBounds.inline.hpp" #include "gc/g1/heapRegionManager.inline.hpp" #include "gc/g1/heapRegionRemSet.hpp" #include "gc/g1/heapRegionTracer.hpp" #include "gc/shared/genOopClosures.inline.hpp" #include "gc/shared/space.inline.hpp" #include "logging/log.hpp" #include "logging/logStream.hpp" #include "memory/iterator.inline.hpp" #include "memory/resourceArea.hpp" #include "oops/access.inline.hpp" #include "oops/compressedOops.inline.hpp" #include "oops/oop.inline.hpp" #include "runtime/atomic.hpp" #include "runtime/orderAccess.hpp" #include "utilities/growableArray.hpp" int HeapRegion::LogOfHRGrainBytes = 0; int HeapRegion::LogOfHRGrainWords = 0; size_t HeapRegion::GrainBytes = 0; size_t HeapRegion::GrainWords = 0; size_t HeapRegion::CardsPerRegion = 0; size_t HeapRegion::max_region_size() { return HeapRegionBounds::max_size(); } size_t HeapRegion::min_region_size_in_words() { return HeapRegionBounds::min_size() >> LogHeapWordSize; } void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) { size_t region_size = G1HeapRegionSize; if (FLAG_IS_DEFAULT(G1HeapRegionSize)) { size_t average_heap_size = (initial_heap_size + max_heap_size) / 2; region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(), HeapRegionBounds::min_size()); } int region_size_log = log2_long((jlong) region_size); // Recalculate the region size to make sure it's a power of // 2. This means that region_size is the largest power of 2 that's // <= what we've calculated so far. region_size = ((size_t)1 << region_size_log); // Now make sure that we don't go over or under our limits. if (region_size < HeapRegionBounds::min_size()) { region_size = HeapRegionBounds::min_size(); } else if (region_size > HeapRegionBounds::max_size()) { region_size = HeapRegionBounds::max_size(); } // And recalculate the log. region_size_log = log2_long((jlong) region_size); // Now, set up the globals. guarantee(LogOfHRGrainBytes == 0, "we should only set it once"); LogOfHRGrainBytes = region_size_log; guarantee(LogOfHRGrainWords == 0, "we should only set it once"); LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize; guarantee(GrainBytes == 0, "we should only set it once"); // The cast to int is safe, given that we've bounded region_size by // MIN_REGION_SIZE and MAX_REGION_SIZE. GrainBytes = region_size; log_info(gc, heap)("Heap region size: " SIZE_FORMAT "M", GrainBytes / M); guarantee(GrainWords == 0, "we should only set it once"); GrainWords = GrainBytes >> LogHeapWordSize; guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity"); guarantee(CardsPerRegion == 0, "we should only set it once"); CardsPerRegion = GrainBytes >> G1CardTable::card_shift; if (G1HeapRegionSize != GrainBytes) { FLAG_SET_ERGO(size_t, G1HeapRegionSize, GrainBytes); } } void HeapRegion::hr_clear(bool keep_remset, bool clear_space, bool locked) { assert(_humongous_start_region == NULL, "we should have already filtered out humongous regions"); assert(!in_collection_set(), "Should not clear heap region %u in the collection set", hrm_index()); set_young_index_in_cset(-1); clear_index_in_opt_cset(); uninstall_surv_rate_group(); set_free(); reset_pre_dummy_top(); if (!keep_remset) { if (locked) { rem_set()->clear_locked(); } else { rem_set()->clear(); } } zero_marked_bytes(); init_top_at_mark_start(); if (clear_space) clear(SpaceDecorator::Mangle); } void HeapRegion::clear_cardtable() { G1CardTable* ct = G1CollectedHeap::heap()->card_table(); ct->clear(MemRegion(bottom(), end())); } void HeapRegion::calc_gc_efficiency() { // GC efficiency is the ratio of how much space would be // reclaimed over how long we predict it would take to reclaim it. G1CollectedHeap* g1h = G1CollectedHeap::heap(); G1Policy* policy = g1h->policy(); // Retrieve a prediction of the elapsed time for this region for // a mixed gc because the region will only be evacuated during a // mixed gc. double region_elapsed_time_ms = policy->predict_region_elapsed_time_ms(this, false /* for_young_gc */); _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms; } void HeapRegion::set_free() { report_region_type_change(G1HeapRegionTraceType::Free); _type.set_free(); } void HeapRegion::set_eden() { report_region_type_change(G1HeapRegionTraceType::Eden); _type.set_eden(); } void HeapRegion::set_eden_pre_gc() { report_region_type_change(G1HeapRegionTraceType::Eden); _type.set_eden_pre_gc(); } void HeapRegion::set_survivor() { report_region_type_change(G1HeapRegionTraceType::Survivor); _type.set_survivor(); } void HeapRegion::move_to_old() { if (_type.relabel_as_old()) { report_region_type_change(G1HeapRegionTraceType::Old); } } void HeapRegion::set_old() { report_region_type_change(G1HeapRegionTraceType::Old); _type.set_old(); } void HeapRegion::set_open_archive() { report_region_type_change(G1HeapRegionTraceType::OpenArchive); _type.set_open_archive(); } void HeapRegion::set_closed_archive() { report_region_type_change(G1HeapRegionTraceType::ClosedArchive); _type.set_closed_archive(); } void HeapRegion::set_starts_humongous(HeapWord* obj_top, size_t fill_size) { assert(!is_humongous(), "sanity / pre-condition"); assert(top() == bottom(), "should be empty"); report_region_type_change(G1HeapRegionTraceType::StartsHumongous); _type.set_starts_humongous(); _humongous_start_region = this; _bot_part.set_for_starts_humongous(obj_top, fill_size); } void HeapRegion::set_continues_humongous(HeapRegion* first_hr) { assert(!is_humongous(), "sanity / pre-condition"); assert(top() == bottom(), "should be empty"); assert(first_hr->is_starts_humongous(), "pre-condition"); report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous); _type.set_continues_humongous(); _humongous_start_region = first_hr; _bot_part.set_object_can_span(true); } void HeapRegion::clear_humongous() { assert(is_humongous(), "pre-condition"); assert(capacity() == HeapRegion::GrainBytes, "pre-condition"); _humongous_start_region = NULL; _bot_part.set_object_can_span(false); } HeapRegion::HeapRegion(uint hrm_index, G1BlockOffsetTable* bot, MemRegion mr) : G1ContiguousSpace(bot), _rem_set(NULL), _hrm_index(hrm_index), _type(), _humongous_start_region(NULL), _evacuation_failed(false), _next(NULL), _prev(NULL), #ifdef ASSERT _containing_set(NULL), #endif _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0), _index_in_opt_cset(InvalidCSetIndex), _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1), _prev_top_at_mark_start(NULL), _next_top_at_mark_start(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0) { _rem_set = new HeapRegionRemSet(bot, this); initialize(mr); } void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) { assert(_rem_set->is_empty(), "Remembered set must be empty"); G1ContiguousSpace::initialize(mr, clear_space, mangle_space); hr_clear(false /*par*/, false /*clear_space*/); set_top(bottom()); } void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) { HeapRegionTracer::send_region_type_change(_hrm_index, get_trace_type(), to, (uintptr_t)bottom(), used()); } void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark, bool during_conc_mark) { // We always recreate the prev marking info and we'll explicitly // mark all objects we find to be self-forwarded on the prev // bitmap. So all objects need to be below PTAMS. _prev_marked_bytes = 0; if (during_initial_mark) { // During initial-mark, we'll also explicitly mark all objects // we find to be self-forwarded on the next bitmap. So all // objects need to be below NTAMS. _next_top_at_mark_start = top(); _next_marked_bytes = 0; } else if (during_conc_mark) { // During concurrent mark, all objects in the CSet (including // the ones we find to be self-forwarded) are implicitly live. // So all objects need to be above NTAMS. _next_top_at_mark_start = bottom(); _next_marked_bytes = 0; } } void HeapRegion::note_self_forwarding_removal_end(size_t marked_bytes) { assert(marked_bytes <= used(), "marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used()); _prev_top_at_mark_start = top(); _prev_marked_bytes = marked_bytes; } // Code roots support void HeapRegion::add_strong_code_root(nmethod* nm) { HeapRegionRemSet* hrrs = rem_set(); hrrs->add_strong_code_root(nm); } void HeapRegion::add_strong_code_root_locked(nmethod* nm) { assert_locked_or_safepoint(CodeCache_lock); HeapRegionRemSet* hrrs = rem_set(); hrrs->add_strong_code_root_locked(nm); } void HeapRegion::remove_strong_code_root(nmethod* nm) { HeapRegionRemSet* hrrs = rem_set(); hrrs->remove_strong_code_root(nm); } void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const { HeapRegionRemSet* hrrs = rem_set(); hrrs->strong_code_roots_do(blk); } class VerifyStrongCodeRootOopClosure: public OopClosure { const HeapRegion* _hr; bool _failures; bool _has_oops_in_region; template void do_oop_work(T* p) { T heap_oop = RawAccess<>::oop_load(p); if (!CompressedOops::is_null(heap_oop)) { oop obj = CompressedOops::decode_not_null(heap_oop); // Note: not all the oops embedded in the nmethod are in the // current region. We only look at those which are. if (_hr->is_in(obj)) { // Object is in the region. Check that its less than top if (_hr->top() <= (HeapWord*)obj) { // Object is above top log_error(gc, verify)("Object " PTR_FORMAT " in region " HR_FORMAT " is above top ", p2i(obj), HR_FORMAT_PARAMS(_hr)); _failures = true; return; } // Nmethod has at least one oop in the current region _has_oops_in_region = true; } } } public: VerifyStrongCodeRootOopClosure(const HeapRegion* hr): _hr(hr), _failures(false), _has_oops_in_region(false) {} void do_oop(narrowOop* p) { do_oop_work(p); } void do_oop(oop* p) { do_oop_work(p); } bool failures() { return _failures; } bool has_oops_in_region() { return _has_oops_in_region; } }; class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure { const HeapRegion* _hr; bool _failures; public: VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) : _hr(hr), _failures(false) {} void do_code_blob(CodeBlob* cb) { nmethod* nm = (cb == NULL) ? NULL : cb->as_compiled_method()->as_nmethod_or_null(); if (nm != NULL) { // Verify that the nemthod is live if (!nm->is_alive()) { log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod " PTR_FORMAT " in its strong code roots", p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm)); _failures = true; } else { VerifyStrongCodeRootOopClosure oop_cl(_hr); nm->oops_do(&oop_cl); if (!oop_cl.has_oops_in_region()) { log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod " PTR_FORMAT " in its strong code roots with no pointers into region", p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm)); _failures = true; } else if (oop_cl.failures()) { log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has other failures for nmethod " PTR_FORMAT, p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm)); _failures = true; } } } } bool failures() { return _failures; } }; void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const { if (!G1VerifyHeapRegionCodeRoots) { // We're not verifying code roots. return; } if (vo == VerifyOption_G1UseFullMarking) { // Marking verification during a full GC is performed after class // unloading, code cache unloading, etc so the strong code roots // attached to each heap region are in an inconsistent state. They won't // be consistent until the strong code roots are rebuilt after the // actual GC. Skip verifying the strong code roots in this particular // time. assert(VerifyDuringGC, "only way to get here"); return; } HeapRegionRemSet* hrrs = rem_set(); size_t strong_code_roots_length = hrrs->strong_code_roots_list_length(); // if this region is empty then there should be no entries // on its strong code root list if (is_empty()) { if (strong_code_roots_length > 0) { log_error(gc, verify)("region " HR_FORMAT " is empty but has " SIZE_FORMAT " code root entries", HR_FORMAT_PARAMS(this), strong_code_roots_length); *failures = true; } return; } if (is_continues_humongous()) { if (strong_code_roots_length > 0) { log_error(gc, verify)("region " HR_FORMAT " is a continuation of a humongous region but has " SIZE_FORMAT " code root entries", HR_FORMAT_PARAMS(this), strong_code_roots_length); *failures = true; } return; } VerifyStrongCodeRootCodeBlobClosure cb_cl(this); strong_code_roots_do(&cb_cl); if (cb_cl.failures()) { *failures = true; } } void HeapRegion::print() const { print_on(tty); } void HeapRegion::print_on(outputStream* st) const { st->print("|%4u", this->_hrm_index); st->print("|" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT, p2i(bottom()), p2i(top()), p2i(end())); st->print("|%3d%%", (int) ((double) used() * 100 / capacity())); st->print("|%2s", get_short_type_str()); if (in_collection_set()) { st->print("|CS"); } else { st->print("| "); } st->print_cr("|TAMS " PTR_FORMAT ", " PTR_FORMAT "| %s ", p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start()), rem_set()->get_state_str()); } class G1VerificationClosure : public BasicOopIterateClosure { protected: G1CollectedHeap* _g1h; G1CardTable *_ct; oop _containing_obj; bool _failures; int _n_failures; VerifyOption _vo; public: // _vo == UsePrevMarking -> use "prev" marking information, // _vo == UseNextMarking -> use "next" marking information, // _vo == UseFullMarking -> use "next" marking bitmap but no TAMS. G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) : _g1h(g1h), _ct(g1h->card_table()), _containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo) { } void set_containing_obj(oop obj) { _containing_obj = obj; } bool failures() { return _failures; } int n_failures() { return _n_failures; } void print_object(outputStream* out, oop obj) { #ifdef PRODUCT Klass* k = obj->klass(); const char* class_name = k->external_name(); out->print_cr("class name %s", class_name); #else // PRODUCT obj->print_on(out); #endif // PRODUCT } // This closure provides its own oop verification code. debug_only(virtual bool should_verify_oops() { return false; }) }; class VerifyLiveClosure : public G1VerificationClosure { public: VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {} virtual void do_oop(narrowOop* p) { do_oop_work(p); } virtual void do_oop(oop* p) { do_oop_work(p); } template void do_oop_work(T* p) { assert(_containing_obj != NULL, "Precondition"); assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo), "Precondition"); verify_liveness(p); } template void verify_liveness(T* p) { T heap_oop = RawAccess<>::oop_load(p); Log(gc, verify) log; if (!CompressedOops::is_null(heap_oop)) { oop obj = CompressedOops::decode_not_null(heap_oop); bool failed = false; if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) { MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); if (!_failures) { log.error("----------"); } ResourceMark rm; if (!_g1h->is_in_closed_subset(obj)) { HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region " HR_FORMAT, p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from)); LogStream ls(log.error()); print_object(&ls, _containing_obj); HeapRegion* const to = _g1h->heap_region_containing(obj); log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT " remset %s", p2i(obj), HR_FORMAT_PARAMS(to), to->rem_set()->get_state_str()); } else { HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj); log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region " HR_FORMAT, p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from)); LogStream ls(log.error()); print_object(&ls, _containing_obj); log.error("points to dead obj " PTR_FORMAT " in region " HR_FORMAT, p2i(obj), HR_FORMAT_PARAMS(to)); print_object(&ls, obj); } log.error("----------"); _failures = true; failed = true; _n_failures++; } } } }; class VerifyRemSetClosure : public G1VerificationClosure { public: VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {} virtual void do_oop(narrowOop* p) { do_oop_work(p); } virtual void do_oop(oop* p) { do_oop_work(p); } template void do_oop_work(T* p) { assert(_containing_obj != NULL, "Precondition"); assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo), "Precondition"); verify_remembered_set(p); } template void verify_remembered_set(T* p) { T heap_oop = RawAccess<>::oop_load(p); Log(gc, verify) log; if (!CompressedOops::is_null(heap_oop)) { oop obj = CompressedOops::decode_not_null(heap_oop); HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); HeapRegion* to = _g1h->heap_region_containing(obj); if (from != NULL && to != NULL && from != to && !to->is_pinned() && to->rem_set()->is_complete()) { jbyte cv_obj = *_ct->byte_for_const(_containing_obj); jbyte cv_field = *_ct->byte_for_const(p); const jbyte dirty = G1CardTable::dirty_card_val(); bool is_bad = !(from->is_young() || to->rem_set()->contains_reference(p) || (_containing_obj->is_objArray() ? cv_field == dirty : cv_obj == dirty || cv_field == dirty)); if (is_bad) { MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); if (!_failures) { log.error("----------"); } log.error("Missing rem set entry:"); log.error("Field " PTR_FORMAT " of obj " PTR_FORMAT " in region " HR_FORMAT, p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from)); ResourceMark rm; LogStream ls(log.error()); _containing_obj->print_on(&ls); log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT " remset %s", p2i(obj), HR_FORMAT_PARAMS(to), to->rem_set()->get_state_str()); if (oopDesc::is_oop(obj)) { obj->print_on(&ls); } log.error("Obj head CTE = %d, field CTE = %d.", cv_obj, cv_field); log.error("----------"); _failures = true; _n_failures++; } } } } }; // Closure that applies the given two closures in sequence. class G1Mux2Closure : public BasicOopIterateClosure { OopClosure* _c1; OopClosure* _c2; public: G1Mux2Closure(OopClosure *c1, OopClosure *c2) { _c1 = c1; _c2 = c2; } template inline void do_oop_work(T* p) { // Apply first closure; then apply the second. _c1->do_oop(p); _c2->do_oop(p); } virtual inline void do_oop(oop* p) { do_oop_work(p); } virtual inline void do_oop(narrowOop* p) { do_oop_work(p); } // This closure provides its own oop verification code. debug_only(virtual bool should_verify_oops() { return false; }) }; // This really ought to be commoned up into OffsetTableContigSpace somehow. // We would need a mechanism to make that code skip dead objects. void HeapRegion::verify(VerifyOption vo, bool* failures) const { G1CollectedHeap* g1h = G1CollectedHeap::heap(); *failures = false; HeapWord* p = bottom(); HeapWord* prev_p = NULL; VerifyLiveClosure vl_cl(g1h, vo); VerifyRemSetClosure vr_cl(g1h, vo); bool is_region_humongous = is_humongous(); size_t object_num = 0; while (p < top()) { oop obj = oop(p); size_t obj_size = block_size(p); object_num += 1; if (!g1h->is_obj_dead_cond(obj, this, vo)) { if (oopDesc::is_oop(obj)) { Klass* klass = obj->klass(); bool is_metaspace_object = Metaspace::contains(klass); if (!is_metaspace_object) { log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " " "not metadata", p2i(klass), p2i(obj)); *failures = true; return; } else if (!klass->is_klass()) { log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " " "not a klass", p2i(klass), p2i(obj)); *failures = true; return; } else { vl_cl.set_containing_obj(obj); if (!g1h->collector_state()->in_full_gc() || G1VerifyRSetsDuringFullGC) { // verify liveness and rem_set vr_cl.set_containing_obj(obj); G1Mux2Closure mux(&vl_cl, &vr_cl); obj->oop_iterate(&mux); if (vr_cl.failures()) { *failures = true; } if (G1MaxVerifyFailures >= 0 && vr_cl.n_failures() >= G1MaxVerifyFailures) { return; } } else { // verify only liveness obj->oop_iterate(&vl_cl); } if (vl_cl.failures()) { *failures = true; } if (G1MaxVerifyFailures >= 0 && vl_cl.n_failures() >= G1MaxVerifyFailures) { return; } } } else { log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj)); *failures = true; return; } } prev_p = p; p += obj_size; } if (!is_young() && !is_empty()) { _bot_part.verify(); } if (is_region_humongous) { oop obj = oop(this->humongous_start_region()->bottom()); if ((HeapWord*)obj > bottom() || (HeapWord*)obj + obj->size() < bottom()) { log_error(gc, verify)("this humongous region is not part of its' humongous object " PTR_FORMAT, p2i(obj)); *failures = true; return; } } if (!is_region_humongous && p != top()) { log_error(gc, verify)("end of last object " PTR_FORMAT " " "does not match top " PTR_FORMAT, p2i(p), p2i(top())); *failures = true; return; } HeapWord* the_end = end(); // Do some extra BOT consistency checking for addresses in the // range [top, end). BOT look-ups in this range should yield // top. No point in doing that if top == end (there's nothing there). if (p < the_end) { // Look up top HeapWord* addr_1 = p; HeapWord* b_start_1 = _bot_part.block_start_const(addr_1); if (b_start_1 != p) { log_error(gc, verify)("BOT look up for top: " PTR_FORMAT " " " yielded " PTR_FORMAT ", expecting " PTR_FORMAT, p2i(addr_1), p2i(b_start_1), p2i(p)); *failures = true; return; } // Look up top + 1 HeapWord* addr_2 = p + 1; if (addr_2 < the_end) { HeapWord* b_start_2 = _bot_part.block_start_const(addr_2); if (b_start_2 != p) { log_error(gc, verify)("BOT look up for top + 1: " PTR_FORMAT " " " yielded " PTR_FORMAT ", expecting " PTR_FORMAT, p2i(addr_2), p2i(b_start_2), p2i(p)); *failures = true; return; } } // Look up an address between top and end size_t diff = pointer_delta(the_end, p) / 2; HeapWord* addr_3 = p + diff; if (addr_3 < the_end) { HeapWord* b_start_3 = _bot_part.block_start_const(addr_3); if (b_start_3 != p) { log_error(gc, verify)("BOT look up for top + diff: " PTR_FORMAT " " " yielded " PTR_FORMAT ", expecting " PTR_FORMAT, p2i(addr_3), p2i(b_start_3), p2i(p)); *failures = true; return; } } // Look up end - 1 HeapWord* addr_4 = the_end - 1; HeapWord* b_start_4 = _bot_part.block_start_const(addr_4); if (b_start_4 != p) { log_error(gc, verify)("BOT look up for end - 1: " PTR_FORMAT " " " yielded " PTR_FORMAT ", expecting " PTR_FORMAT, p2i(addr_4), p2i(b_start_4), p2i(p)); *failures = true; return; } } verify_strong_code_roots(vo, failures); } void HeapRegion::verify() const { bool dummy = false; verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy); } void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const { G1CollectedHeap* g1h = G1CollectedHeap::heap(); *failures = false; HeapWord* p = bottom(); HeapWord* prev_p = NULL; VerifyRemSetClosure vr_cl(g1h, vo); while (p < top()) { oop obj = oop(p); size_t obj_size = block_size(p); if (!g1h->is_obj_dead_cond(obj, this, vo)) { if (oopDesc::is_oop(obj)) { vr_cl.set_containing_obj(obj); obj->oop_iterate(&vr_cl); if (vr_cl.failures()) { *failures = true; } if (G1MaxVerifyFailures >= 0 && vr_cl.n_failures() >= G1MaxVerifyFailures) { return; } } else { log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj)); *failures = true; return; } } prev_p = p; p += obj_size; } } void HeapRegion::verify_rem_set() const { bool failures = false; verify_rem_set(VerifyOption_G1UsePrevMarking, &failures); guarantee(!failures, "HeapRegion RemSet verification failed"); } void HeapRegion::prepare_for_compaction(CompactPoint* cp) { // Not used for G1 anymore, but pure virtual in Space. ShouldNotReachHere(); } // G1OffsetTableContigSpace code; copied from space.cpp. Hope this can go // away eventually. void G1ContiguousSpace::clear(bool mangle_space) { set_top(bottom()); CompactibleSpace::clear(mangle_space); reset_bot(); } #ifndef PRODUCT void G1ContiguousSpace::mangle_unused_area() { mangle_unused_area_complete(); } void G1ContiguousSpace::mangle_unused_area_complete() { SpaceMangler::mangle_region(MemRegion(top(), end())); } #endif void G1ContiguousSpace::print() const { print_short(); tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")", p2i(bottom()), p2i(top()), p2i(_bot_part.threshold()), p2i(end())); } HeapWord* G1ContiguousSpace::initialize_threshold() { return _bot_part.initialize_threshold(); } HeapWord* G1ContiguousSpace::cross_threshold(HeapWord* start, HeapWord* end) { _bot_part.alloc_block(start, end); return _bot_part.threshold(); } void G1ContiguousSpace::safe_object_iterate(ObjectClosure* blk) { object_iterate(blk); } void G1ContiguousSpace::object_iterate(ObjectClosure* blk) { HeapWord* p = bottom(); while (p < top()) { if (block_is_obj(p)) { blk->do_object(oop(p)); } p += block_size(p); } } G1ContiguousSpace::G1ContiguousSpace(G1BlockOffsetTable* bot) : _top(NULL), _bot_part(bot, this), _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true), _pre_dummy_top(NULL) { } void G1ContiguousSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) { CompactibleSpace::initialize(mr, clear_space, mangle_space); _top = bottom(); set_saved_mark_word(NULL); reset_bot(); }