1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc/g1/g1CollectionSet.hpp"
  35 #include "gc/g1/g1CollectorPolicy.hpp"
  36 #include "gc/g1/g1CollectorState.hpp"
  37 #include "gc/g1/g1ConcurrentRefine.hpp"
  38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  40 #include "gc/g1/g1DirtyCardQueue.hpp"
  41 #include "gc/g1/g1EvacStats.inline.hpp"
  42 #include "gc/g1/g1FullCollector.hpp"
  43 #include "gc/g1/g1GCPhaseTimes.hpp"
  44 #include "gc/g1/g1HeapSizingPolicy.hpp"
  45 #include "gc/g1/g1HeapTransition.hpp"
  46 #include "gc/g1/g1HeapVerifier.hpp"
  47 #include "gc/g1/g1HotCardCache.hpp"
  48 #include "gc/g1/g1MemoryPool.hpp"
  49 #include "gc/g1/g1OopClosures.inline.hpp"
  50 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  51 #include "gc/g1/g1Policy.hpp"
  52 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  53 #include "gc/g1/g1RemSet.hpp"
  54 #include "gc/g1/g1RootClosures.hpp"
  55 #include "gc/g1/g1RootProcessor.hpp"
  56 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  57 #include "gc/g1/g1StringDedup.hpp"
  58 #include "gc/g1/g1ThreadLocalData.hpp"
  59 #include "gc/g1/g1YCTypes.hpp"
  60 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  61 #include "gc/g1/g1VMOperations.hpp"
  62 #include "gc/g1/heapRegion.inline.hpp"
  63 #include "gc/g1/heapRegionRemSet.hpp"
  64 #include "gc/g1/heapRegionSet.inline.hpp"
  65 #include "gc/shared/gcBehaviours.hpp"
  66 #include "gc/shared/gcHeapSummary.hpp"
  67 #include "gc/shared/gcId.hpp"
  68 #include "gc/shared/gcLocker.hpp"
  69 #include "gc/shared/gcTimer.hpp"
  70 #include "gc/shared/gcTrace.hpp"
  71 #include "gc/shared/gcTraceTime.inline.hpp"
  72 #include "gc/shared/generationSpec.hpp"
  73 #include "gc/shared/isGCActiveMark.hpp"
  74 #include "gc/shared/oopStorageParState.hpp"
  75 #include "gc/shared/parallelCleaning.hpp"
  76 #include "gc/shared/preservedMarks.inline.hpp"
  77 #include "gc/shared/suspendibleThreadSet.hpp"
  78 #include "gc/shared/referenceProcessor.inline.hpp"
  79 #include "gc/shared/taskqueue.inline.hpp"
  80 #include "gc/shared/weakProcessor.inline.hpp"
  81 #include "gc/shared/workerPolicy.hpp"
  82 #include "logging/log.hpp"
  83 #include "memory/allocation.hpp"
  84 #include "memory/iterator.hpp"
  85 #include "memory/resourceArea.hpp"
  86 #include "oops/access.inline.hpp"
  87 #include "oops/compressedOops.inline.hpp"
  88 #include "oops/oop.inline.hpp"
  89 #include "runtime/atomic.hpp"
  90 #include "runtime/flags/flagSetting.hpp"
  91 #include "runtime/handles.inline.hpp"
  92 #include "runtime/init.hpp"
  93 #include "runtime/orderAccess.hpp"
  94 #include "runtime/threadSMR.hpp"
  95 #include "runtime/vmThread.hpp"
  96 #include "utilities/align.hpp"
  97 #include "utilities/globalDefinitions.hpp"
  98 #include "utilities/stack.inline.hpp"
  99 
 100 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 101 
 102 // INVARIANTS/NOTES
 103 //
 104 // All allocation activity covered by the G1CollectedHeap interface is
 105 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 106 // and allocate_new_tlab, which are the "entry" points to the
 107 // allocation code from the rest of the JVM.  (Note that this does not
 108 // apply to TLAB allocation, which is not part of this interface: it
 109 // is done by clients of this interface.)
 110 
 111 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 112  private:
 113   size_t _num_dirtied;
 114   G1CollectedHeap* _g1h;
 115   G1CardTable* _g1_ct;
 116 
 117   HeapRegion* region_for_card(CardValue* card_ptr) const {
 118     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 119   }
 120 
 121   bool will_become_free(HeapRegion* hr) const {
 122     // A region will be freed by free_collection_set if the region is in the
 123     // collection set and has not had an evacuation failure.
 124     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 125   }
 126 
 127  public:
 128   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 129     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 130 
 131   bool do_card_ptr(CardValue* card_ptr, uint worker_i) {
 132     HeapRegion* hr = region_for_card(card_ptr);
 133 
 134     // Should only dirty cards in regions that won't be freed.
 135     if (!will_become_free(hr)) {
 136       *card_ptr = G1CardTable::dirty_card_val();
 137       _num_dirtied++;
 138     }
 139 
 140     return true;
 141   }
 142 
 143   size_t num_dirtied()   const { return _num_dirtied; }
 144 };
 145 
 146 
 147 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 148   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 149 }
 150 
 151 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 152   // The from card cache is not the memory that is actually committed. So we cannot
 153   // take advantage of the zero_filled parameter.
 154   reset_from_card_cache(start_idx, num_regions);
 155 }
 156 
 157 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task, uint num_workers) {
 158   Ticks start = Ticks::now();
 159   workers()->run_task(task, num_workers == 0 ? workers()->active_workers() : num_workers);
 160   return Ticks::now() - start;
 161 }
 162 
 163 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 164                                              MemRegion mr) {
 165   return new HeapRegion(hrs_index, bot(), mr);
 166 }
 167 
 168 // Private methods.
 169 
 170 HeapRegion* G1CollectedHeap::new_region(size_t word_size, HeapRegionType type, bool do_expand) {
 171   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 172          "the only time we use this to allocate a humongous region is "
 173          "when we are allocating a single humongous region");
 174 
 175   HeapRegion* res = _hrm->allocate_free_region(type);
 176 
 177   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 178     // Currently, only attempts to allocate GC alloc regions set
 179     // do_expand to true. So, we should only reach here during a
 180     // safepoint. If this assumption changes we might have to
 181     // reconsider the use of _expand_heap_after_alloc_failure.
 182     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 183 
 184     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 185                               word_size * HeapWordSize);
 186 
 187     if (expand(word_size * HeapWordSize)) {
 188       // Given that expand() succeeded in expanding the heap, and we
 189       // always expand the heap by an amount aligned to the heap
 190       // region size, the free list should in theory not be empty.
 191       // In either case allocate_free_region() will check for NULL.
 192       res = _hrm->allocate_free_region(type);
 193     } else {
 194       _expand_heap_after_alloc_failure = false;
 195     }
 196   }
 197   return res;
 198 }
 199 
 200 HeapWord*
 201 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 202                                                            uint num_regions,
 203                                                            size_t word_size) {
 204   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 205   assert(is_humongous(word_size), "word_size should be humongous");
 206   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 207 
 208   // Index of last region in the series.
 209   uint last = first + num_regions - 1;
 210 
 211   // We need to initialize the region(s) we just discovered. This is
 212   // a bit tricky given that it can happen concurrently with
 213   // refinement threads refining cards on these regions and
 214   // potentially wanting to refine the BOT as they are scanning
 215   // those cards (this can happen shortly after a cleanup; see CR
 216   // 6991377). So we have to set up the region(s) carefully and in
 217   // a specific order.
 218 
 219   // The word size sum of all the regions we will allocate.
 220   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 221   assert(word_size <= word_size_sum, "sanity");
 222 
 223   // This will be the "starts humongous" region.
 224   HeapRegion* first_hr = region_at(first);
 225   // The header of the new object will be placed at the bottom of
 226   // the first region.
 227   HeapWord* new_obj = first_hr->bottom();
 228   // This will be the new top of the new object.
 229   HeapWord* obj_top = new_obj + word_size;
 230 
 231   // First, we need to zero the header of the space that we will be
 232   // allocating. When we update top further down, some refinement
 233   // threads might try to scan the region. By zeroing the header we
 234   // ensure that any thread that will try to scan the region will
 235   // come across the zero klass word and bail out.
 236   //
 237   // NOTE: It would not have been correct to have used
 238   // CollectedHeap::fill_with_object() and make the space look like
 239   // an int array. The thread that is doing the allocation will
 240   // later update the object header to a potentially different array
 241   // type and, for a very short period of time, the klass and length
 242   // fields will be inconsistent. This could cause a refinement
 243   // thread to calculate the object size incorrectly.
 244   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 245 
 246   // Next, pad out the unused tail of the last region with filler
 247   // objects, for improved usage accounting.
 248   // How many words we use for filler objects.
 249   size_t word_fill_size = word_size_sum - word_size;
 250 
 251   // How many words memory we "waste" which cannot hold a filler object.
 252   size_t words_not_fillable = 0;
 253 
 254   if (word_fill_size >= min_fill_size()) {
 255     fill_with_objects(obj_top, word_fill_size);
 256   } else if (word_fill_size > 0) {
 257     // We have space to fill, but we cannot fit an object there.
 258     words_not_fillable = word_fill_size;
 259     word_fill_size = 0;
 260   }
 261 
 262   // We will set up the first region as "starts humongous". This
 263   // will also update the BOT covering all the regions to reflect
 264   // that there is a single object that starts at the bottom of the
 265   // first region.
 266   first_hr->set_starts_humongous(obj_top, word_fill_size);
 267   _policy->remset_tracker()->update_at_allocate(first_hr);
 268   // Then, if there are any, we will set up the "continues
 269   // humongous" regions.
 270   HeapRegion* hr = NULL;
 271   for (uint i = first + 1; i <= last; ++i) {
 272     hr = region_at(i);
 273     hr->set_continues_humongous(first_hr);
 274     _policy->remset_tracker()->update_at_allocate(hr);
 275   }
 276 
 277   // Up to this point no concurrent thread would have been able to
 278   // do any scanning on any region in this series. All the top
 279   // fields still point to bottom, so the intersection between
 280   // [bottom,top] and [card_start,card_end] will be empty. Before we
 281   // update the top fields, we'll do a storestore to make sure that
 282   // no thread sees the update to top before the zeroing of the
 283   // object header and the BOT initialization.
 284   OrderAccess::storestore();
 285 
 286   // Now, we will update the top fields of the "continues humongous"
 287   // regions except the last one.
 288   for (uint i = first; i < last; ++i) {
 289     hr = region_at(i);
 290     hr->set_top(hr->end());
 291   }
 292 
 293   hr = region_at(last);
 294   // If we cannot fit a filler object, we must set top to the end
 295   // of the humongous object, otherwise we cannot iterate the heap
 296   // and the BOT will not be complete.
 297   hr->set_top(hr->end() - words_not_fillable);
 298 
 299   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 300          "obj_top should be in last region");
 301 
 302   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 303 
 304   assert(words_not_fillable == 0 ||
 305          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 306          "Miscalculation in humongous allocation");
 307 
 308   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 309 
 310   for (uint i = first; i <= last; ++i) {
 311     hr = region_at(i);
 312     _humongous_set.add(hr);
 313     _hr_printer.alloc(hr);
 314   }
 315 
 316   return new_obj;
 317 }
 318 
 319 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 320   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 321   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 322 }
 323 
 324 // If could fit into free regions w/o expansion, try.
 325 // Otherwise, if can expand, do so.
 326 // Otherwise, if using ex regions might help, try with ex given back.
 327 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 328   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 329 
 330   _verifier->verify_region_sets_optional();
 331 
 332   uint first = G1_NO_HRM_INDEX;
 333   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 334 
 335   if (obj_regions == 1) {
 336     // Only one region to allocate, try to use a fast path by directly allocating
 337     // from the free lists. Do not try to expand here, we will potentially do that
 338     // later.
 339     HeapRegion* hr = new_region(word_size, HeapRegionType::Humongous, false /* do_expand */);
 340     if (hr != NULL) {
 341       first = hr->hrm_index();
 342     }
 343   } else {
 344     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 345     // are lucky enough to find some.
 346     first = _hrm->find_contiguous_only_empty(obj_regions);
 347     if (first != G1_NO_HRM_INDEX) {
 348       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 349     }
 350   }
 351 
 352   if (first == G1_NO_HRM_INDEX) {
 353     // Policy: We could not find enough regions for the humongous object in the
 354     // free list. Look through the heap to find a mix of free and uncommitted regions.
 355     // If so, try expansion.
 356     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
 357     if (first != G1_NO_HRM_INDEX) {
 358       // We found something. Make sure these regions are committed, i.e. expand
 359       // the heap. Alternatively we could do a defragmentation GC.
 360       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 361                                     word_size * HeapWordSize);
 362 
 363       _hrm->expand_at(first, obj_regions, workers());
 364       policy()->record_new_heap_size(num_regions());
 365 
 366 #ifdef ASSERT
 367       for (uint i = first; i < first + obj_regions; ++i) {
 368         HeapRegion* hr = region_at(i);
 369         assert(hr->is_free(), "sanity");
 370         assert(hr->is_empty(), "sanity");
 371         assert(is_on_master_free_list(hr), "sanity");
 372       }
 373 #endif
 374       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 375     } else {
 376       // Policy: Potentially trigger a defragmentation GC.
 377     }
 378   }
 379 
 380   HeapWord* result = NULL;
 381   if (first != G1_NO_HRM_INDEX) {
 382     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 383     assert(result != NULL, "it should always return a valid result");
 384 
 385     // A successful humongous object allocation changes the used space
 386     // information of the old generation so we need to recalculate the
 387     // sizes and update the jstat counters here.
 388     g1mm()->update_sizes();
 389   }
 390 
 391   _verifier->verify_region_sets_optional();
 392 
 393   return result;
 394 }
 395 
 396 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 397                                              size_t requested_size,
 398                                              size_t* actual_size) {
 399   assert_heap_not_locked_and_not_at_safepoint();
 400   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 401 
 402   return attempt_allocation(min_size, requested_size, actual_size);
 403 }
 404 
 405 HeapWord*
 406 G1CollectedHeap::mem_allocate(size_t word_size,
 407                               bool*  gc_overhead_limit_was_exceeded) {
 408   assert_heap_not_locked_and_not_at_safepoint();
 409 
 410   if (is_humongous(word_size)) {
 411     return attempt_allocation_humongous(word_size);
 412   }
 413   size_t dummy = 0;
 414   return attempt_allocation(word_size, word_size, &dummy);
 415 }
 416 
 417 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 418   ResourceMark rm; // For retrieving the thread names in log messages.
 419 
 420   // Make sure you read the note in attempt_allocation_humongous().
 421 
 422   assert_heap_not_locked_and_not_at_safepoint();
 423   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 424          "be called for humongous allocation requests");
 425 
 426   // We should only get here after the first-level allocation attempt
 427   // (attempt_allocation()) failed to allocate.
 428 
 429   // We will loop until a) we manage to successfully perform the
 430   // allocation or b) we successfully schedule a collection which
 431   // fails to perform the allocation. b) is the only case when we'll
 432   // return NULL.
 433   HeapWord* result = NULL;
 434   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 435     bool should_try_gc;
 436     uint gc_count_before;
 437 
 438     {
 439       MutexLockerEx x(Heap_lock);
 440       result = _allocator->attempt_allocation_locked(word_size);
 441       if (result != NULL) {
 442         return result;
 443       }
 444 
 445       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 446       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 447       // waiting because the GCLocker is active to not wait too long.
 448       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 449         // No need for an ergo message here, can_expand_young_list() does this when
 450         // it returns true.
 451         result = _allocator->attempt_allocation_force(word_size);
 452         if (result != NULL) {
 453           return result;
 454         }
 455       }
 456       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 457       // the GCLocker initiated GC has been performed and then retry. This includes
 458       // the case when the GC Locker is not active but has not been performed.
 459       should_try_gc = !GCLocker::needs_gc();
 460       // Read the GC count while still holding the Heap_lock.
 461       gc_count_before = total_collections();
 462     }
 463 
 464     if (should_try_gc) {
 465       bool succeeded;
 466       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 467                                    GCCause::_g1_inc_collection_pause);
 468       if (result != NULL) {
 469         assert(succeeded, "only way to get back a non-NULL result");
 470         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 471                              Thread::current()->name(), p2i(result));
 472         return result;
 473       }
 474 
 475       if (succeeded) {
 476         // We successfully scheduled a collection which failed to allocate. No
 477         // point in trying to allocate further. We'll just return NULL.
 478         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 479                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 480         return NULL;
 481       }
 482       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 483                            Thread::current()->name(), word_size);
 484     } else {
 485       // Failed to schedule a collection.
 486       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 487         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 488                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 489         return NULL;
 490       }
 491       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 492       // The GCLocker is either active or the GCLocker initiated
 493       // GC has not yet been performed. Stall until it is and
 494       // then retry the allocation.
 495       GCLocker::stall_until_clear();
 496       gclocker_retry_count += 1;
 497     }
 498 
 499     // We can reach here if we were unsuccessful in scheduling a
 500     // collection (because another thread beat us to it) or if we were
 501     // stalled due to the GC locker. In either can we should retry the
 502     // allocation attempt in case another thread successfully
 503     // performed a collection and reclaimed enough space. We do the
 504     // first attempt (without holding the Heap_lock) here and the
 505     // follow-on attempt will be at the start of the next loop
 506     // iteration (after taking the Heap_lock).
 507     size_t dummy = 0;
 508     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 509     if (result != NULL) {
 510       return result;
 511     }
 512 
 513     // Give a warning if we seem to be looping forever.
 514     if ((QueuedAllocationWarningCount > 0) &&
 515         (try_count % QueuedAllocationWarningCount == 0)) {
 516       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 517                              Thread::current()->name(), try_count, word_size);
 518     }
 519   }
 520 
 521   ShouldNotReachHere();
 522   return NULL;
 523 }
 524 
 525 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 526   assert_at_safepoint_on_vm_thread();
 527   if (_archive_allocator == NULL) {
 528     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 529   }
 530 }
 531 
 532 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 533   // Allocations in archive regions cannot be of a size that would be considered
 534   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 535   // may be different at archive-restore time.
 536   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 537 }
 538 
 539 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 540   assert_at_safepoint_on_vm_thread();
 541   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 542   if (is_archive_alloc_too_large(word_size)) {
 543     return NULL;
 544   }
 545   return _archive_allocator->archive_mem_allocate(word_size);
 546 }
 547 
 548 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 549                                               size_t end_alignment_in_bytes) {
 550   assert_at_safepoint_on_vm_thread();
 551   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 552 
 553   // Call complete_archive to do the real work, filling in the MemRegion
 554   // array with the archive regions.
 555   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 556   delete _archive_allocator;
 557   _archive_allocator = NULL;
 558 }
 559 
 560 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 561   assert(ranges != NULL, "MemRegion array NULL");
 562   assert(count != 0, "No MemRegions provided");
 563   MemRegion reserved = _hrm->reserved();
 564   for (size_t i = 0; i < count; i++) {
 565     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 566       return false;
 567     }
 568   }
 569   return true;
 570 }
 571 
 572 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 573                                             size_t count,
 574                                             bool open) {
 575   assert(!is_init_completed(), "Expect to be called at JVM init time");
 576   assert(ranges != NULL, "MemRegion array NULL");
 577   assert(count != 0, "No MemRegions provided");
 578   MutexLockerEx x(Heap_lock);
 579 
 580   MemRegion reserved = _hrm->reserved();
 581   HeapWord* prev_last_addr = NULL;
 582   HeapRegion* prev_last_region = NULL;
 583 
 584   // Temporarily disable pretouching of heap pages. This interface is used
 585   // when mmap'ing archived heap data in, so pre-touching is wasted.
 586   FlagSetting fs(AlwaysPreTouch, false);
 587 
 588   // Enable archive object checking used by G1MarkSweep. We have to let it know
 589   // about each archive range, so that objects in those ranges aren't marked.
 590   G1ArchiveAllocator::enable_archive_object_check();
 591 
 592   // For each specified MemRegion range, allocate the corresponding G1
 593   // regions and mark them as archive regions. We expect the ranges
 594   // in ascending starting address order, without overlap.
 595   for (size_t i = 0; i < count; i++) {
 596     MemRegion curr_range = ranges[i];
 597     HeapWord* start_address = curr_range.start();
 598     size_t word_size = curr_range.word_size();
 599     HeapWord* last_address = curr_range.last();
 600     size_t commits = 0;
 601 
 602     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 603               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 604               p2i(start_address), p2i(last_address));
 605     guarantee(start_address > prev_last_addr,
 606               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 607               p2i(start_address), p2i(prev_last_addr));
 608     prev_last_addr = last_address;
 609 
 610     // Check for ranges that start in the same G1 region in which the previous
 611     // range ended, and adjust the start address so we don't try to allocate
 612     // the same region again. If the current range is entirely within that
 613     // region, skip it, just adjusting the recorded top.
 614     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 615     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 616       start_address = start_region->end();
 617       if (start_address > last_address) {
 618         increase_used(word_size * HeapWordSize);
 619         start_region->set_top(last_address + 1);
 620         continue;
 621       }
 622       start_region->set_top(start_address);
 623       curr_range = MemRegion(start_address, last_address + 1);
 624       start_region = _hrm->addr_to_region(start_address);
 625     }
 626 
 627     // Perform the actual region allocation, exiting if it fails.
 628     // Then note how much new space we have allocated.
 629     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 630       return false;
 631     }
 632     increase_used(word_size * HeapWordSize);
 633     if (commits != 0) {
 634       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 635                                 HeapRegion::GrainWords * HeapWordSize * commits);
 636 
 637     }
 638 
 639     // Mark each G1 region touched by the range as archive, add it to
 640     // the old set, and set top.
 641     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 642     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 643     prev_last_region = last_region;
 644 
 645     while (curr_region != NULL) {
 646       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 647              "Region already in use (index %u)", curr_region->hrm_index());
 648       if (open) {
 649         curr_region->set_open_archive();
 650       } else {
 651         curr_region->set_closed_archive();
 652       }
 653       _hr_printer.alloc(curr_region);
 654       _archive_set.add(curr_region);
 655       HeapWord* top;
 656       HeapRegion* next_region;
 657       if (curr_region != last_region) {
 658         top = curr_region->end();
 659         next_region = _hrm->next_region_in_heap(curr_region);
 660       } else {
 661         top = last_address + 1;
 662         next_region = NULL;
 663       }
 664       curr_region->set_top(top);
 665       curr_region->set_first_dead(top);
 666       curr_region->set_end_of_live(top);
 667       curr_region = next_region;
 668     }
 669 
 670     // Notify mark-sweep of the archive
 671     G1ArchiveAllocator::set_range_archive(curr_range, open);
 672   }
 673   return true;
 674 }
 675 
 676 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 677   assert(!is_init_completed(), "Expect to be called at JVM init time");
 678   assert(ranges != NULL, "MemRegion array NULL");
 679   assert(count != 0, "No MemRegions provided");
 680   MemRegion reserved = _hrm->reserved();
 681   HeapWord *prev_last_addr = NULL;
 682   HeapRegion* prev_last_region = NULL;
 683 
 684   // For each MemRegion, create filler objects, if needed, in the G1 regions
 685   // that contain the address range. The address range actually within the
 686   // MemRegion will not be modified. That is assumed to have been initialized
 687   // elsewhere, probably via an mmap of archived heap data.
 688   MutexLockerEx x(Heap_lock);
 689   for (size_t i = 0; i < count; i++) {
 690     HeapWord* start_address = ranges[i].start();
 691     HeapWord* last_address = ranges[i].last();
 692 
 693     assert(reserved.contains(start_address) && reserved.contains(last_address),
 694            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 695            p2i(start_address), p2i(last_address));
 696     assert(start_address > prev_last_addr,
 697            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 698            p2i(start_address), p2i(prev_last_addr));
 699 
 700     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 701     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 702     HeapWord* bottom_address = start_region->bottom();
 703 
 704     // Check for a range beginning in the same region in which the
 705     // previous one ended.
 706     if (start_region == prev_last_region) {
 707       bottom_address = prev_last_addr + 1;
 708     }
 709 
 710     // Verify that the regions were all marked as archive regions by
 711     // alloc_archive_regions.
 712     HeapRegion* curr_region = start_region;
 713     while (curr_region != NULL) {
 714       guarantee(curr_region->is_archive(),
 715                 "Expected archive region at index %u", curr_region->hrm_index());
 716       if (curr_region != last_region) {
 717         curr_region = _hrm->next_region_in_heap(curr_region);
 718       } else {
 719         curr_region = NULL;
 720       }
 721     }
 722 
 723     prev_last_addr = last_address;
 724     prev_last_region = last_region;
 725 
 726     // Fill the memory below the allocated range with dummy object(s),
 727     // if the region bottom does not match the range start, or if the previous
 728     // range ended within the same G1 region, and there is a gap.
 729     if (start_address != bottom_address) {
 730       size_t fill_size = pointer_delta(start_address, bottom_address);
 731       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 732       increase_used(fill_size * HeapWordSize);
 733     }
 734   }
 735 }
 736 
 737 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 738                                                      size_t desired_word_size,
 739                                                      size_t* actual_word_size) {
 740   assert_heap_not_locked_and_not_at_safepoint();
 741   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 742          "be called for humongous allocation requests");
 743 
 744   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 745 
 746   if (result == NULL) {
 747     *actual_word_size = desired_word_size;
 748     result = attempt_allocation_slow(desired_word_size);
 749   }
 750 
 751   assert_heap_not_locked();
 752   if (result != NULL) {
 753     assert(*actual_word_size != 0, "Actual size must have been set here");
 754     dirty_young_block(result, *actual_word_size);
 755   } else {
 756     *actual_word_size = 0;
 757   }
 758 
 759   return result;
 760 }
 761 
 762 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count, bool is_open) {
 763   assert(!is_init_completed(), "Expect to be called at JVM init time");
 764   assert(ranges != NULL, "MemRegion array NULL");
 765   assert(count != 0, "No MemRegions provided");
 766   MemRegion reserved = _hrm->reserved();
 767   HeapWord* prev_last_addr = NULL;
 768   HeapRegion* prev_last_region = NULL;
 769   size_t size_used = 0;
 770   size_t uncommitted_regions = 0;
 771 
 772   // For each Memregion, free the G1 regions that constitute it, and
 773   // notify mark-sweep that the range is no longer to be considered 'archive.'
 774   MutexLockerEx x(Heap_lock);
 775   for (size_t i = 0; i < count; i++) {
 776     HeapWord* start_address = ranges[i].start();
 777     HeapWord* last_address = ranges[i].last();
 778 
 779     assert(reserved.contains(start_address) && reserved.contains(last_address),
 780            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 781            p2i(start_address), p2i(last_address));
 782     assert(start_address > prev_last_addr,
 783            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 784            p2i(start_address), p2i(prev_last_addr));
 785     size_used += ranges[i].byte_size();
 786     prev_last_addr = last_address;
 787 
 788     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 789     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 790 
 791     // Check for ranges that start in the same G1 region in which the previous
 792     // range ended, and adjust the start address so we don't try to free
 793     // the same region again. If the current range is entirely within that
 794     // region, skip it.
 795     if (start_region == prev_last_region) {
 796       start_address = start_region->end();
 797       if (start_address > last_address) {
 798         continue;
 799       }
 800       start_region = _hrm->addr_to_region(start_address);
 801     }
 802     prev_last_region = last_region;
 803 
 804     // After verifying that each region was marked as an archive region by
 805     // alloc_archive_regions, set it free and empty and uncommit it.
 806     HeapRegion* curr_region = start_region;
 807     while (curr_region != NULL) {
 808       guarantee(curr_region->is_archive(),
 809                 "Expected archive region at index %u", curr_region->hrm_index());
 810       uint curr_index = curr_region->hrm_index();
 811       _archive_set.remove(curr_region);
 812       curr_region->set_free();
 813       curr_region->set_top(curr_region->bottom());
 814       if (curr_region != last_region) {
 815         curr_region = _hrm->next_region_in_heap(curr_region);
 816       } else {
 817         curr_region = NULL;
 818       }
 819       _hrm->shrink_at(curr_index, 1);
 820       uncommitted_regions++;
 821     }
 822 
 823     // Notify mark-sweep that this is no longer an archive range.
 824     G1ArchiveAllocator::clear_range_archive(ranges[i], is_open);
 825   }
 826 
 827   if (uncommitted_regions != 0) {
 828     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 829                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 830   }
 831   decrease_used(size_used);
 832 }
 833 
 834 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 835   assert(obj != NULL, "archived obj is NULL");
 836   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 837 
 838   // Loading an archived object makes it strongly reachable. If it is
 839   // loaded during concurrent marking, it must be enqueued to the SATB
 840   // queue, shading the previously white object gray.
 841   G1BarrierSet::enqueue(obj);
 842 
 843   return obj;
 844 }
 845 
 846 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 847   ResourceMark rm; // For retrieving the thread names in log messages.
 848 
 849   // The structure of this method has a lot of similarities to
 850   // attempt_allocation_slow(). The reason these two were not merged
 851   // into a single one is that such a method would require several "if
 852   // allocation is not humongous do this, otherwise do that"
 853   // conditional paths which would obscure its flow. In fact, an early
 854   // version of this code did use a unified method which was harder to
 855   // follow and, as a result, it had subtle bugs that were hard to
 856   // track down. So keeping these two methods separate allows each to
 857   // be more readable. It will be good to keep these two in sync as
 858   // much as possible.
 859 
 860   assert_heap_not_locked_and_not_at_safepoint();
 861   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 862          "should only be called for humongous allocations");
 863 
 864   // Humongous objects can exhaust the heap quickly, so we should check if we
 865   // need to start a marking cycle at each humongous object allocation. We do
 866   // the check before we do the actual allocation. The reason for doing it
 867   // before the allocation is that we avoid having to keep track of the newly
 868   // allocated memory while we do a GC.
 869   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 870                                            word_size)) {
 871     collect(GCCause::_g1_humongous_allocation);
 872   }
 873 
 874   // We will loop until a) we manage to successfully perform the
 875   // allocation or b) we successfully schedule a collection which
 876   // fails to perform the allocation. b) is the only case when we'll
 877   // return NULL.
 878   HeapWord* result = NULL;
 879   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 880     bool should_try_gc;
 881     uint gc_count_before;
 882 
 883 
 884     {
 885       MutexLockerEx x(Heap_lock);
 886 
 887       // Given that humongous objects are not allocated in young
 888       // regions, we'll first try to do the allocation without doing a
 889       // collection hoping that there's enough space in the heap.
 890       result = humongous_obj_allocate(word_size);
 891       if (result != NULL) {
 892         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 893         policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 894         return result;
 895       }
 896 
 897       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 898       // the GCLocker initiated GC has been performed and then retry. This includes
 899       // the case when the GC Locker is not active but has not been performed.
 900       should_try_gc = !GCLocker::needs_gc();
 901       // Read the GC count while still holding the Heap_lock.
 902       gc_count_before = total_collections();
 903     }
 904 
 905     if (should_try_gc) {
 906       bool succeeded;
 907       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 908                                    GCCause::_g1_humongous_allocation);
 909       if (result != NULL) {
 910         assert(succeeded, "only way to get back a non-NULL result");
 911         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 912                              Thread::current()->name(), p2i(result));
 913         return result;
 914       }
 915 
 916       if (succeeded) {
 917         // We successfully scheduled a collection which failed to allocate. No
 918         // point in trying to allocate further. We'll just return NULL.
 919         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 920                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 921         return NULL;
 922       }
 923       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 924                            Thread::current()->name(), word_size);
 925     } else {
 926       // Failed to schedule a collection.
 927       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 928         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 929                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 930         return NULL;
 931       }
 932       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 933       // The GCLocker is either active or the GCLocker initiated
 934       // GC has not yet been performed. Stall until it is and
 935       // then retry the allocation.
 936       GCLocker::stall_until_clear();
 937       gclocker_retry_count += 1;
 938     }
 939 
 940 
 941     // We can reach here if we were unsuccessful in scheduling a
 942     // collection (because another thread beat us to it) or if we were
 943     // stalled due to the GC locker. In either can we should retry the
 944     // allocation attempt in case another thread successfully
 945     // performed a collection and reclaimed enough space.
 946     // Humongous object allocation always needs a lock, so we wait for the retry
 947     // in the next iteration of the loop, unlike for the regular iteration case.
 948     // Give a warning if we seem to be looping forever.
 949 
 950     if ((QueuedAllocationWarningCount > 0) &&
 951         (try_count % QueuedAllocationWarningCount == 0)) {
 952       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 953                              Thread::current()->name(), try_count, word_size);
 954     }
 955   }
 956 
 957   ShouldNotReachHere();
 958   return NULL;
 959 }
 960 
 961 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 962                                                            bool expect_null_mutator_alloc_region) {
 963   assert_at_safepoint_on_vm_thread();
 964   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 965          "the current alloc region was unexpectedly found to be non-NULL");
 966 
 967   if (!is_humongous(word_size)) {
 968     return _allocator->attempt_allocation_locked(word_size);
 969   } else {
 970     HeapWord* result = humongous_obj_allocate(word_size);
 971     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 972       collector_state()->set_initiate_conc_mark_if_possible(true);
 973     }
 974     return result;
 975   }
 976 
 977   ShouldNotReachHere();
 978 }
 979 
 980 class PostCompactionPrinterClosure: public HeapRegionClosure {
 981 private:
 982   G1HRPrinter* _hr_printer;
 983 public:
 984   bool do_heap_region(HeapRegion* hr) {
 985     assert(!hr->is_young(), "not expecting to find young regions");
 986     _hr_printer->post_compaction(hr);
 987     return false;
 988   }
 989 
 990   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 991     : _hr_printer(hr_printer) { }
 992 };
 993 
 994 void G1CollectedHeap::print_hrm_post_compaction() {
 995   if (_hr_printer.is_active()) {
 996     PostCompactionPrinterClosure cl(hr_printer());
 997     heap_region_iterate(&cl);
 998   }
 999 }
1000 
1001 void G1CollectedHeap::abort_concurrent_cycle() {
1002   // If we start the compaction before the CM threads finish
1003   // scanning the root regions we might trip them over as we'll
1004   // be moving objects / updating references. So let's wait until
1005   // they are done. By telling them to abort, they should complete
1006   // early.
1007   _cm->root_regions()->abort();
1008   _cm->root_regions()->wait_until_scan_finished();
1009 
1010   // Disable discovery and empty the discovered lists
1011   // for the CM ref processor.
1012   _ref_processor_cm->disable_discovery();
1013   _ref_processor_cm->abandon_partial_discovery();
1014   _ref_processor_cm->verify_no_references_recorded();
1015 
1016   // Abandon current iterations of concurrent marking and concurrent
1017   // refinement, if any are in progress.
1018   concurrent_mark()->concurrent_cycle_abort();
1019 }
1020 
1021 void G1CollectedHeap::prepare_heap_for_full_collection() {
1022   // Make sure we'll choose a new allocation region afterwards.
1023   _allocator->release_mutator_alloc_region();
1024   _allocator->abandon_gc_alloc_regions();
1025 
1026   // We may have added regions to the current incremental collection
1027   // set between the last GC or pause and now. We need to clear the
1028   // incremental collection set and then start rebuilding it afresh
1029   // after this full GC.
1030   abandon_collection_set(collection_set());
1031 
1032   tear_down_region_sets(false /* free_list_only */);
1033 
1034   hrm()->prepare_for_full_collection_start();
1035 }
1036 
1037 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1038   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1039   assert(used() == recalculate_used(), "Should be equal");
1040   _verifier->verify_region_sets_optional();
1041   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1042   _verifier->check_bitmaps("Full GC Start");
1043 }
1044 
1045 void G1CollectedHeap::prepare_heap_for_mutators() {
1046   hrm()->prepare_for_full_collection_end();
1047 
1048   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1049   ClassLoaderDataGraph::purge();
1050   MetaspaceUtils::verify_metrics();
1051 
1052   // Prepare heap for normal collections.
1053   assert(num_free_regions() == 0, "we should not have added any free regions");
1054   rebuild_region_sets(false /* free_list_only */);
1055   abort_refinement();
1056   resize_heap_if_necessary();
1057 
1058   // Rebuild the strong code root lists for each region
1059   rebuild_strong_code_roots();
1060 
1061   // Purge code root memory
1062   purge_code_root_memory();
1063 
1064   // Start a new incremental collection set for the next pause
1065   start_new_collection_set();
1066 
1067   _allocator->init_mutator_alloc_region();
1068 
1069   // Post collection state updates.
1070   MetaspaceGC::compute_new_size();
1071 }
1072 
1073 void G1CollectedHeap::abort_refinement() {
1074   if (_hot_card_cache->use_cache()) {
1075     _hot_card_cache->reset_hot_cache();
1076   }
1077 
1078   // Discard all remembered set updates.
1079   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1080   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1081 }
1082 
1083 void G1CollectedHeap::verify_after_full_collection() {
1084   _hrm->verify_optional();
1085   _verifier->verify_region_sets_optional();
1086   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1087   // Clear the previous marking bitmap, if needed for bitmap verification.
1088   // Note we cannot do this when we clear the next marking bitmap in
1089   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1090   // objects marked during a full GC against the previous bitmap.
1091   // But we need to clear it before calling check_bitmaps below since
1092   // the full GC has compacted objects and updated TAMS but not updated
1093   // the prev bitmap.
1094   if (G1VerifyBitmaps) {
1095     GCTraceTime(Debug, gc)("Clear Prev Bitmap for Verification");
1096     _cm->clear_prev_bitmap(workers());
1097   }
1098   // This call implicitly verifies that the next bitmap is clear after Full GC.
1099   _verifier->check_bitmaps("Full GC End");
1100 
1101   // At this point there should be no regions in the
1102   // entire heap tagged as young.
1103   assert(check_young_list_empty(), "young list should be empty at this point");
1104 
1105   // Note: since we've just done a full GC, concurrent
1106   // marking is no longer active. Therefore we need not
1107   // re-enable reference discovery for the CM ref processor.
1108   // That will be done at the start of the next marking cycle.
1109   // We also know that the STW processor should no longer
1110   // discover any new references.
1111   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1112   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1113   _ref_processor_stw->verify_no_references_recorded();
1114   _ref_processor_cm->verify_no_references_recorded();
1115 }
1116 
1117 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1118   // Post collection logging.
1119   // We should do this after we potentially resize the heap so
1120   // that all the COMMIT / UNCOMMIT events are generated before
1121   // the compaction events.
1122   print_hrm_post_compaction();
1123   heap_transition->print();
1124   print_heap_after_gc();
1125   print_heap_regions();
1126 #ifdef TRACESPINNING
1127   ParallelTaskTerminator::print_termination_counts();
1128 #endif
1129 }
1130 
1131 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1132                                          bool clear_all_soft_refs) {
1133   assert_at_safepoint_on_vm_thread();
1134 
1135   if (GCLocker::check_active_before_gc()) {
1136     // Full GC was not completed.
1137     return false;
1138   }
1139 
1140   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1141       soft_ref_policy()->should_clear_all_soft_refs();
1142 
1143   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1144   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1145 
1146   collector.prepare_collection();
1147   collector.collect();
1148   collector.complete_collection();
1149 
1150   // Full collection was successfully completed.
1151   return true;
1152 }
1153 
1154 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1155   // Currently, there is no facility in the do_full_collection(bool) API to notify
1156   // the caller that the collection did not succeed (e.g., because it was locked
1157   // out by the GC locker). So, right now, we'll ignore the return value.
1158   bool dummy = do_full_collection(true,                /* explicit_gc */
1159                                   clear_all_soft_refs);
1160 }
1161 
1162 void G1CollectedHeap::resize_heap_if_necessary() {
1163   assert_at_safepoint_on_vm_thread();
1164 
1165   // Capacity, free and used after the GC counted as full regions to
1166   // include the waste in the following calculations.
1167   const size_t capacity_after_gc = capacity();
1168   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1169 
1170   // This is enforced in arguments.cpp.
1171   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1172          "otherwise the code below doesn't make sense");
1173 
1174   // We don't have floating point command-line arguments
1175   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1176   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1177   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1178   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1179 
1180   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1181   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1182 
1183   // We have to be careful here as these two calculations can overflow
1184   // 32-bit size_t's.
1185   double used_after_gc_d = (double) used_after_gc;
1186   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1187   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1188 
1189   // Let's make sure that they are both under the max heap size, which
1190   // by default will make them fit into a size_t.
1191   double desired_capacity_upper_bound = (double) max_heap_size;
1192   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1193                                     desired_capacity_upper_bound);
1194   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1195                                     desired_capacity_upper_bound);
1196 
1197   // We can now safely turn them into size_t's.
1198   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1199   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1200 
1201   // This assert only makes sense here, before we adjust them
1202   // with respect to the min and max heap size.
1203   assert(minimum_desired_capacity <= maximum_desired_capacity,
1204          "minimum_desired_capacity = " SIZE_FORMAT ", "
1205          "maximum_desired_capacity = " SIZE_FORMAT,
1206          minimum_desired_capacity, maximum_desired_capacity);
1207 
1208   // Should not be greater than the heap max size. No need to adjust
1209   // it with respect to the heap min size as it's a lower bound (i.e.,
1210   // we'll try to make the capacity larger than it, not smaller).
1211   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1212   // Should not be less than the heap min size. No need to adjust it
1213   // with respect to the heap max size as it's an upper bound (i.e.,
1214   // we'll try to make the capacity smaller than it, not greater).
1215   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1216 
1217   if (capacity_after_gc < minimum_desired_capacity) {
1218     // Don't expand unless it's significant
1219     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1220 
1221     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1222                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1223                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1224                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1225 
1226     expand(expand_bytes, _workers);
1227 
1228     // No expansion, now see if we want to shrink
1229   } else if (capacity_after_gc > maximum_desired_capacity) {
1230     // Capacity too large, compute shrinking size
1231     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1232 
1233     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1234                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1235                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1236                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1237 
1238     shrink(shrink_bytes);
1239   }
1240 }
1241 
1242 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1243                                                             bool do_gc,
1244                                                             bool clear_all_soft_refs,
1245                                                             bool expect_null_mutator_alloc_region,
1246                                                             bool* gc_succeeded) {
1247   *gc_succeeded = true;
1248   // Let's attempt the allocation first.
1249   HeapWord* result =
1250     attempt_allocation_at_safepoint(word_size,
1251                                     expect_null_mutator_alloc_region);
1252   if (result != NULL) {
1253     return result;
1254   }
1255 
1256   // In a G1 heap, we're supposed to keep allocation from failing by
1257   // incremental pauses.  Therefore, at least for now, we'll favor
1258   // expansion over collection.  (This might change in the future if we can
1259   // do something smarter than full collection to satisfy a failed alloc.)
1260   result = expand_and_allocate(word_size);
1261   if (result != NULL) {
1262     return result;
1263   }
1264 
1265   if (do_gc) {
1266     // Expansion didn't work, we'll try to do a Full GC.
1267     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1268                                        clear_all_soft_refs);
1269   }
1270 
1271   return NULL;
1272 }
1273 
1274 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1275                                                      bool* succeeded) {
1276   assert_at_safepoint_on_vm_thread();
1277 
1278   // Attempts to allocate followed by Full GC.
1279   HeapWord* result =
1280     satisfy_failed_allocation_helper(word_size,
1281                                      true,  /* do_gc */
1282                                      false, /* clear_all_soft_refs */
1283                                      false, /* expect_null_mutator_alloc_region */
1284                                      succeeded);
1285 
1286   if (result != NULL || !*succeeded) {
1287     return result;
1288   }
1289 
1290   // Attempts to allocate followed by Full GC that will collect all soft references.
1291   result = satisfy_failed_allocation_helper(word_size,
1292                                             true, /* do_gc */
1293                                             true, /* clear_all_soft_refs */
1294                                             true, /* expect_null_mutator_alloc_region */
1295                                             succeeded);
1296 
1297   if (result != NULL || !*succeeded) {
1298     return result;
1299   }
1300 
1301   // Attempts to allocate, no GC
1302   result = satisfy_failed_allocation_helper(word_size,
1303                                             false, /* do_gc */
1304                                             false, /* clear_all_soft_refs */
1305                                             true,  /* expect_null_mutator_alloc_region */
1306                                             succeeded);
1307 
1308   if (result != NULL) {
1309     return result;
1310   }
1311 
1312   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1313          "Flag should have been handled and cleared prior to this point");
1314 
1315   // What else?  We might try synchronous finalization later.  If the total
1316   // space available is large enough for the allocation, then a more
1317   // complete compaction phase than we've tried so far might be
1318   // appropriate.
1319   return NULL;
1320 }
1321 
1322 // Attempting to expand the heap sufficiently
1323 // to support an allocation of the given "word_size".  If
1324 // successful, perform the allocation and return the address of the
1325 // allocated block, or else "NULL".
1326 
1327 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1328   assert_at_safepoint_on_vm_thread();
1329 
1330   _verifier->verify_region_sets_optional();
1331 
1332   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1333   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1334                             word_size * HeapWordSize);
1335 
1336 
1337   if (expand(expand_bytes, _workers)) {
1338     _hrm->verify_optional();
1339     _verifier->verify_region_sets_optional();
1340     return attempt_allocation_at_safepoint(word_size,
1341                                            false /* expect_null_mutator_alloc_region */);
1342   }
1343   return NULL;
1344 }
1345 
1346 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1347   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1348   aligned_expand_bytes = align_up(aligned_expand_bytes,
1349                                        HeapRegion::GrainBytes);
1350 
1351   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1352                             expand_bytes, aligned_expand_bytes);
1353 
1354   if (is_maximal_no_gc()) {
1355     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1356     return false;
1357   }
1358 
1359   double expand_heap_start_time_sec = os::elapsedTime();
1360   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1361   assert(regions_to_expand > 0, "Must expand by at least one region");
1362 
1363   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1364   if (expand_time_ms != NULL) {
1365     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1366   }
1367 
1368   if (expanded_by > 0) {
1369     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1370     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1371     policy()->record_new_heap_size(num_regions());
1372   } else {
1373     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1374 
1375     // The expansion of the virtual storage space was unsuccessful.
1376     // Let's see if it was because we ran out of swap.
1377     if (G1ExitOnExpansionFailure &&
1378         _hrm->available() >= regions_to_expand) {
1379       // We had head room...
1380       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1381     }
1382   }
1383   return regions_to_expand > 0;
1384 }
1385 
1386 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1387   size_t aligned_shrink_bytes =
1388     ReservedSpace::page_align_size_down(shrink_bytes);
1389   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1390                                          HeapRegion::GrainBytes);
1391   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1392 
1393   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1394   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1395 
1396 
1397   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1398                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1399   if (num_regions_removed > 0) {
1400     policy()->record_new_heap_size(num_regions());
1401   } else {
1402     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1403   }
1404 }
1405 
1406 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1407   _verifier->verify_region_sets_optional();
1408 
1409   // We should only reach here at the end of a Full GC or during Remark which
1410   // means we should not not be holding to any GC alloc regions. The method
1411   // below will make sure of that and do any remaining clean up.
1412   _allocator->abandon_gc_alloc_regions();
1413 
1414   // Instead of tearing down / rebuilding the free lists here, we
1415   // could instead use the remove_all_pending() method on free_list to
1416   // remove only the ones that we need to remove.
1417   tear_down_region_sets(true /* free_list_only */);
1418   shrink_helper(shrink_bytes);
1419   rebuild_region_sets(true /* free_list_only */);
1420 
1421   _hrm->verify_optional();
1422   _verifier->verify_region_sets_optional();
1423 }
1424 
1425 class OldRegionSetChecker : public HeapRegionSetChecker {
1426 public:
1427   void check_mt_safety() {
1428     // Master Old Set MT safety protocol:
1429     // (a) If we're at a safepoint, operations on the master old set
1430     // should be invoked:
1431     // - by the VM thread (which will serialize them), or
1432     // - by the GC workers while holding the FreeList_lock, if we're
1433     //   at a safepoint for an evacuation pause (this lock is taken
1434     //   anyway when an GC alloc region is retired so that a new one
1435     //   is allocated from the free list), or
1436     // - by the GC workers while holding the OldSets_lock, if we're at a
1437     //   safepoint for a cleanup pause.
1438     // (b) If we're not at a safepoint, operations on the master old set
1439     // should be invoked while holding the Heap_lock.
1440 
1441     if (SafepointSynchronize::is_at_safepoint()) {
1442       guarantee(Thread::current()->is_VM_thread() ||
1443                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1444                 "master old set MT safety protocol at a safepoint");
1445     } else {
1446       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1447     }
1448   }
1449   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1450   const char* get_description() { return "Old Regions"; }
1451 };
1452 
1453 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1454 public:
1455   void check_mt_safety() {
1456     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1457               "May only change archive regions during initialization or safepoint.");
1458   }
1459   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1460   const char* get_description() { return "Archive Regions"; }
1461 };
1462 
1463 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1464 public:
1465   void check_mt_safety() {
1466     // Humongous Set MT safety protocol:
1467     // (a) If we're at a safepoint, operations on the master humongous
1468     // set should be invoked by either the VM thread (which will
1469     // serialize them) or by the GC workers while holding the
1470     // OldSets_lock.
1471     // (b) If we're not at a safepoint, operations on the master
1472     // humongous set should be invoked while holding the Heap_lock.
1473 
1474     if (SafepointSynchronize::is_at_safepoint()) {
1475       guarantee(Thread::current()->is_VM_thread() ||
1476                 OldSets_lock->owned_by_self(),
1477                 "master humongous set MT safety protocol at a safepoint");
1478     } else {
1479       guarantee(Heap_lock->owned_by_self(),
1480                 "master humongous set MT safety protocol outside a safepoint");
1481     }
1482   }
1483   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1484   const char* get_description() { return "Humongous Regions"; }
1485 };
1486 
1487 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1488   CollectedHeap(),
1489   _young_gen_sampling_thread(NULL),
1490   _workers(NULL),
1491   _collector_policy(collector_policy),
1492   _card_table(NULL),
1493   _soft_ref_policy(),
1494   _old_set("Old Region Set", new OldRegionSetChecker()),
1495   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1496   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1497   _bot(NULL),
1498   _listener(),
1499   _hrm(NULL),
1500   _allocator(NULL),
1501   _verifier(NULL),
1502   _summary_bytes_used(0),
1503   _archive_allocator(NULL),
1504   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1505   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1506   _expand_heap_after_alloc_failure(true),
1507   _g1mm(NULL),
1508   _humongous_reclaim_candidates(),
1509   _has_humongous_reclaim_candidates(false),
1510   _hr_printer(),
1511   _collector_state(),
1512   _old_marking_cycles_started(0),
1513   _old_marking_cycles_completed(0),
1514   _eden(),
1515   _survivor(),
1516   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1517   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1518   _policy(G1Policy::create_policy(collector_policy, _gc_timer_stw)),
1519   _heap_sizing_policy(NULL),
1520   _collection_set(this, _policy),
1521   _hot_card_cache(NULL),
1522   _rem_set(NULL),
1523   _dirty_card_queue_set(false),
1524   _cm(NULL),
1525   _cm_thread(NULL),
1526   _cr(NULL),
1527   _task_queues(NULL),
1528   _evacuation_failed(false),
1529   _evacuation_failed_info_array(NULL),
1530   _preserved_marks_set(true /* in_c_heap */),
1531 #ifndef PRODUCT
1532   _evacuation_failure_alot_for_current_gc(false),
1533   _evacuation_failure_alot_gc_number(0),
1534   _evacuation_failure_alot_count(0),
1535 #endif
1536   _ref_processor_stw(NULL),
1537   _is_alive_closure_stw(this),
1538   _is_subject_to_discovery_stw(this),
1539   _ref_processor_cm(NULL),
1540   _is_alive_closure_cm(this),
1541   _is_subject_to_discovery_cm(this),
1542   _in_cset_fast_test() {
1543 
1544   _verifier = new G1HeapVerifier(this);
1545 
1546   _allocator = new G1Allocator(this);
1547 
1548   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1549 
1550   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1551 
1552   // Override the default _filler_array_max_size so that no humongous filler
1553   // objects are created.
1554   _filler_array_max_size = _humongous_object_threshold_in_words;
1555 
1556   uint n_queues = ParallelGCThreads;
1557   _task_queues = new RefToScanQueueSet(n_queues);
1558 
1559   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1560 
1561   for (uint i = 0; i < n_queues; i++) {
1562     RefToScanQueue* q = new RefToScanQueue();
1563     q->initialize();
1564     _task_queues->register_queue(i, q);
1565     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1566   }
1567 
1568   // Initialize the G1EvacuationFailureALot counters and flags.
1569   NOT_PRODUCT(reset_evacuation_should_fail();)
1570 
1571   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1572 }
1573 
1574 static size_t actual_reserved_page_size(ReservedSpace rs) {
1575   size_t page_size = os::vm_page_size();
1576   if (UseLargePages) {
1577     // There are two ways to manage large page memory.
1578     // 1. OS supports committing large page memory.
1579     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1580     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1581     //    we reserved memory without large page.
1582     if (os::can_commit_large_page_memory() || rs.special()) {
1583       page_size = rs.alignment();
1584     }
1585   }
1586 
1587   return page_size;
1588 }
1589 
1590 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1591                                                                  size_t size,
1592                                                                  size_t translation_factor) {
1593   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1594   // Allocate a new reserved space, preferring to use large pages.
1595   ReservedSpace rs(size, preferred_page_size);
1596   size_t page_size = actual_reserved_page_size(rs);
1597   G1RegionToSpaceMapper* result  =
1598     G1RegionToSpaceMapper::create_mapper(rs,
1599                                          size,
1600                                          page_size,
1601                                          HeapRegion::GrainBytes,
1602                                          translation_factor,
1603                                          mtGC);
1604 
1605   os::trace_page_sizes_for_requested_size(description,
1606                                           size,
1607                                           preferred_page_size,
1608                                           page_size,
1609                                           rs.base(),
1610                                           rs.size());
1611 
1612   return result;
1613 }
1614 
1615 jint G1CollectedHeap::initialize_concurrent_refinement() {
1616   jint ecode = JNI_OK;
1617   _cr = G1ConcurrentRefine::create(&ecode);
1618   return ecode;
1619 }
1620 
1621 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1622   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1623   if (_young_gen_sampling_thread->osthread() == NULL) {
1624     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1625     return JNI_ENOMEM;
1626   }
1627   return JNI_OK;
1628 }
1629 
1630 jint G1CollectedHeap::initialize() {
1631   os::enable_vtime();
1632 
1633   // Necessary to satisfy locking discipline assertions.
1634 
1635   MutexLocker x(Heap_lock);
1636 
1637   // While there are no constraints in the GC code that HeapWordSize
1638   // be any particular value, there are multiple other areas in the
1639   // system which believe this to be true (e.g. oop->object_size in some
1640   // cases incorrectly returns the size in wordSize units rather than
1641   // HeapWordSize).
1642   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1643 
1644   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1645   size_t max_byte_size = _collector_policy->heap_reserved_size_bytes();
1646   size_t heap_alignment = collector_policy()->heap_alignment();
1647 
1648   // Ensure that the sizes are properly aligned.
1649   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1650   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1651   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1652 
1653   // Reserve the maximum.
1654 
1655   // When compressed oops are enabled, the preferred heap base
1656   // is calculated by subtracting the requested size from the
1657   // 32Gb boundary and using the result as the base address for
1658   // heap reservation. If the requested size is not aligned to
1659   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1660   // into the ReservedHeapSpace constructor) then the actual
1661   // base of the reserved heap may end up differing from the
1662   // address that was requested (i.e. the preferred heap base).
1663   // If this happens then we could end up using a non-optimal
1664   // compressed oops mode.
1665 
1666   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1667                                                  heap_alignment);
1668 
1669   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1670 
1671   // Create the barrier set for the entire reserved region.
1672   G1CardTable* ct = new G1CardTable(reserved_region());
1673   ct->initialize();
1674   G1BarrierSet* bs = new G1BarrierSet(ct);
1675   bs->initialize();
1676   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1677   BarrierSet::set_barrier_set(bs);
1678   _card_table = ct;
1679 
1680   G1BarrierSet::satb_mark_queue_set().initialize(this,
1681                                                  SATB_Q_CBL_mon,
1682                                                  &bs->satb_mark_queue_buffer_allocator(),
1683                                                  G1SATBProcessCompletedThreshold,
1684                                                  G1SATBBufferEnqueueingThresholdPercent);
1685 
1686   // process_completed_buffers_threshold and max_completed_buffers are updated
1687   // later, based on the concurrent refinement object.
1688   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1689                                                   &bs->dirty_card_queue_buffer_allocator(),
1690                                                   Shared_DirtyCardQ_lock,
1691                                                   true); // init_free_ids
1692 
1693   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1694                                     &bs->dirty_card_queue_buffer_allocator(),
1695                                     Shared_DirtyCardQ_lock);
1696 
1697   // Create the hot card cache.
1698   _hot_card_cache = new G1HotCardCache(this);
1699 
1700   // Carve out the G1 part of the heap.
1701   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1702   size_t page_size = actual_reserved_page_size(heap_rs);
1703   G1RegionToSpaceMapper* heap_storage =
1704     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1705                                               g1_rs.size(),
1706                                               page_size,
1707                                               HeapRegion::GrainBytes,
1708                                               1,
1709                                               mtJavaHeap);
1710   if(heap_storage == NULL) {
1711     vm_shutdown_during_initialization("Could not initialize G1 heap");
1712     return JNI_ERR;
1713   }
1714 
1715   os::trace_page_sizes("Heap",
1716                        collector_policy()->min_heap_byte_size(),
1717                        max_byte_size,
1718                        page_size,
1719                        heap_rs.base(),
1720                        heap_rs.size());
1721   heap_storage->set_mapping_changed_listener(&_listener);
1722 
1723   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1724   G1RegionToSpaceMapper* bot_storage =
1725     create_aux_memory_mapper("Block Offset Table",
1726                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1727                              G1BlockOffsetTable::heap_map_factor());
1728 
1729   G1RegionToSpaceMapper* cardtable_storage =
1730     create_aux_memory_mapper("Card Table",
1731                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1732                              G1CardTable::heap_map_factor());
1733 
1734   G1RegionToSpaceMapper* card_counts_storage =
1735     create_aux_memory_mapper("Card Counts Table",
1736                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1737                              G1CardCounts::heap_map_factor());
1738 
1739   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1740   G1RegionToSpaceMapper* prev_bitmap_storage =
1741     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1742   G1RegionToSpaceMapper* next_bitmap_storage =
1743     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1744 
1745   _hrm = HeapRegionManager::create_manager(this, _collector_policy);
1746 
1747   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1748   _card_table->initialize(cardtable_storage);
1749   // Do later initialization work for concurrent refinement.
1750   _hot_card_cache->initialize(card_counts_storage);
1751 
1752   // 6843694 - ensure that the maximum region index can fit
1753   // in the remembered set structures.
1754   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1755   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1756 
1757   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1758   // start within the first card.
1759   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1760   // Also create a G1 rem set.
1761   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1762   _rem_set->initialize(max_reserved_capacity(), max_regions());
1763 
1764   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1765   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1766   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1767             "too many cards per region");
1768 
1769   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1770 
1771   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1772 
1773   {
1774     HeapWord* start = _hrm->reserved().start();
1775     HeapWord* end = _hrm->reserved().end();
1776     size_t granularity = HeapRegion::GrainBytes;
1777 
1778     _in_cset_fast_test.initialize(start, end, granularity);
1779     _humongous_reclaim_candidates.initialize(start, end, granularity);
1780   }
1781 
1782   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1783                           true /* are_GC_task_threads */,
1784                           false /* are_ConcurrentGC_threads */);
1785   if (_workers == NULL) {
1786     return JNI_ENOMEM;
1787   }
1788   _workers->initialize_workers();
1789 
1790   // Create the G1ConcurrentMark data structure and thread.
1791   // (Must do this late, so that "max_regions" is defined.)
1792   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1793   if (_cm == NULL || !_cm->completed_initialization()) {
1794     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1795     return JNI_ENOMEM;
1796   }
1797   _cm_thread = _cm->cm_thread();
1798 
1799   // Now expand into the initial heap size.
1800   if (!expand(init_byte_size, _workers)) {
1801     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1802     return JNI_ENOMEM;
1803   }
1804 
1805   // Perform any initialization actions delegated to the policy.
1806   policy()->init(this, &_collection_set);
1807 
1808   jint ecode = initialize_concurrent_refinement();
1809   if (ecode != JNI_OK) {
1810     return ecode;
1811   }
1812 
1813   ecode = initialize_young_gen_sampling_thread();
1814   if (ecode != JNI_OK) {
1815     return ecode;
1816   }
1817 
1818   {
1819     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1820     dcqs.set_process_completed_buffers_threshold(concurrent_refine()->yellow_zone());
1821     dcqs.set_max_completed_buffers(concurrent_refine()->red_zone());
1822   }
1823 
1824   // Here we allocate the dummy HeapRegion that is required by the
1825   // G1AllocRegion class.
1826   HeapRegion* dummy_region = _hrm->get_dummy_region();
1827 
1828   // We'll re-use the same region whether the alloc region will
1829   // require BOT updates or not and, if it doesn't, then a non-young
1830   // region will complain that it cannot support allocations without
1831   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1832   dummy_region->set_eden();
1833   // Make sure it's full.
1834   dummy_region->set_top(dummy_region->end());
1835   G1AllocRegion::setup(this, dummy_region);
1836 
1837   _allocator->init_mutator_alloc_region();
1838 
1839   // Do create of the monitoring and management support so that
1840   // values in the heap have been properly initialized.
1841   _g1mm = new G1MonitoringSupport(this);
1842 
1843   G1StringDedup::initialize();
1844 
1845   _preserved_marks_set.init(ParallelGCThreads);
1846 
1847   _collection_set.initialize(max_regions());
1848 
1849   return JNI_OK;
1850 }
1851 
1852 void G1CollectedHeap::stop() {
1853   // Stop all concurrent threads. We do this to make sure these threads
1854   // do not continue to execute and access resources (e.g. logging)
1855   // that are destroyed during shutdown.
1856   _cr->stop();
1857   _young_gen_sampling_thread->stop();
1858   _cm_thread->stop();
1859   if (G1StringDedup::is_enabled()) {
1860     G1StringDedup::stop();
1861   }
1862 }
1863 
1864 void G1CollectedHeap::safepoint_synchronize_begin() {
1865   SuspendibleThreadSet::synchronize();
1866 }
1867 
1868 void G1CollectedHeap::safepoint_synchronize_end() {
1869   SuspendibleThreadSet::desynchronize();
1870 }
1871 
1872 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1873   return HeapRegion::max_region_size();
1874 }
1875 
1876 void G1CollectedHeap::post_initialize() {
1877   CollectedHeap::post_initialize();
1878   ref_processing_init();
1879 }
1880 
1881 void G1CollectedHeap::ref_processing_init() {
1882   // Reference processing in G1 currently works as follows:
1883   //
1884   // * There are two reference processor instances. One is
1885   //   used to record and process discovered references
1886   //   during concurrent marking; the other is used to
1887   //   record and process references during STW pauses
1888   //   (both full and incremental).
1889   // * Both ref processors need to 'span' the entire heap as
1890   //   the regions in the collection set may be dotted around.
1891   //
1892   // * For the concurrent marking ref processor:
1893   //   * Reference discovery is enabled at initial marking.
1894   //   * Reference discovery is disabled and the discovered
1895   //     references processed etc during remarking.
1896   //   * Reference discovery is MT (see below).
1897   //   * Reference discovery requires a barrier (see below).
1898   //   * Reference processing may or may not be MT
1899   //     (depending on the value of ParallelRefProcEnabled
1900   //     and ParallelGCThreads).
1901   //   * A full GC disables reference discovery by the CM
1902   //     ref processor and abandons any entries on it's
1903   //     discovered lists.
1904   //
1905   // * For the STW processor:
1906   //   * Non MT discovery is enabled at the start of a full GC.
1907   //   * Processing and enqueueing during a full GC is non-MT.
1908   //   * During a full GC, references are processed after marking.
1909   //
1910   //   * Discovery (may or may not be MT) is enabled at the start
1911   //     of an incremental evacuation pause.
1912   //   * References are processed near the end of a STW evacuation pause.
1913   //   * For both types of GC:
1914   //     * Discovery is atomic - i.e. not concurrent.
1915   //     * Reference discovery will not need a barrier.
1916 
1917   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1918 
1919   // Concurrent Mark ref processor
1920   _ref_processor_cm =
1921     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1922                            mt_processing,                                  // mt processing
1923                            ParallelGCThreads,                              // degree of mt processing
1924                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1925                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1926                            false,                                          // Reference discovery is not atomic
1927                            &_is_alive_closure_cm,                          // is alive closure
1928                            true);                                          // allow changes to number of processing threads
1929 
1930   // STW ref processor
1931   _ref_processor_stw =
1932     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1933                            mt_processing,                        // mt processing
1934                            ParallelGCThreads,                    // degree of mt processing
1935                            (ParallelGCThreads > 1),              // mt discovery
1936                            ParallelGCThreads,                    // degree of mt discovery
1937                            true,                                 // Reference discovery is atomic
1938                            &_is_alive_closure_stw,               // is alive closure
1939                            true);                                // allow changes to number of processing threads
1940 }
1941 
1942 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1943   return _collector_policy;
1944 }
1945 
1946 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1947   return &_soft_ref_policy;
1948 }
1949 
1950 size_t G1CollectedHeap::capacity() const {
1951   return _hrm->length() * HeapRegion::GrainBytes;
1952 }
1953 
1954 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1955   return _hrm->total_free_bytes();
1956 }
1957 
1958 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_i) {
1959   _hot_card_cache->drain(cl, worker_i);
1960 }
1961 
1962 void G1CollectedHeap::iterate_dirty_card_closure(G1CardTableEntryClosure* cl, uint worker_i) {
1963   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1964   size_t n_completed_buffers = 0;
1965   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1966     n_completed_buffers++;
1967   }
1968   assert(dcqs.completed_buffers_num() == 0, "Completed buffers exist!");
1969   phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1970 }
1971 
1972 // Computes the sum of the storage used by the various regions.
1973 size_t G1CollectedHeap::used() const {
1974   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1975   if (_archive_allocator != NULL) {
1976     result += _archive_allocator->used();
1977   }
1978   return result;
1979 }
1980 
1981 size_t G1CollectedHeap::used_unlocked() const {
1982   return _summary_bytes_used;
1983 }
1984 
1985 class SumUsedClosure: public HeapRegionClosure {
1986   size_t _used;
1987 public:
1988   SumUsedClosure() : _used(0) {}
1989   bool do_heap_region(HeapRegion* r) {
1990     _used += r->used();
1991     return false;
1992   }
1993   size_t result() { return _used; }
1994 };
1995 
1996 size_t G1CollectedHeap::recalculate_used() const {
1997   SumUsedClosure blk;
1998   heap_region_iterate(&blk);
1999   return blk.result();
2000 }
2001 
2002 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2003   switch (cause) {
2004     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2005     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2006     case GCCause::_wb_conc_mark:                        return true;
2007     default :                                           return false;
2008   }
2009 }
2010 
2011 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2012   switch (cause) {
2013     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2014     case GCCause::_g1_humongous_allocation: return true;
2015     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
2016     default:                                return is_user_requested_concurrent_full_gc(cause);
2017   }
2018 }
2019 
2020 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
2021   if(policy()->force_upgrade_to_full()) {
2022     return true;
2023   } else if (should_do_concurrent_full_gc(_gc_cause)) {
2024     return false;
2025   } else if (has_regions_left_for_allocation()) {
2026     return false;
2027   } else {
2028     return true;
2029   }
2030 }
2031 
2032 #ifndef PRODUCT
2033 void G1CollectedHeap::allocate_dummy_regions() {
2034   // Let's fill up most of the region
2035   size_t word_size = HeapRegion::GrainWords - 1024;
2036   // And as a result the region we'll allocate will be humongous.
2037   guarantee(is_humongous(word_size), "sanity");
2038 
2039   // _filler_array_max_size is set to humongous object threshold
2040   // but temporarily change it to use CollectedHeap::fill_with_object().
2041   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2042 
2043   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2044     // Let's use the existing mechanism for the allocation
2045     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2046     if (dummy_obj != NULL) {
2047       MemRegion mr(dummy_obj, word_size);
2048       CollectedHeap::fill_with_object(mr);
2049     } else {
2050       // If we can't allocate once, we probably cannot allocate
2051       // again. Let's get out of the loop.
2052       break;
2053     }
2054   }
2055 }
2056 #endif // !PRODUCT
2057 
2058 void G1CollectedHeap::increment_old_marking_cycles_started() {
2059   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2060          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2061          "Wrong marking cycle count (started: %d, completed: %d)",
2062          _old_marking_cycles_started, _old_marking_cycles_completed);
2063 
2064   _old_marking_cycles_started++;
2065 }
2066 
2067 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2068   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2069 
2070   // We assume that if concurrent == true, then the caller is a
2071   // concurrent thread that was joined the Suspendible Thread
2072   // Set. If there's ever a cheap way to check this, we should add an
2073   // assert here.
2074 
2075   // Given that this method is called at the end of a Full GC or of a
2076   // concurrent cycle, and those can be nested (i.e., a Full GC can
2077   // interrupt a concurrent cycle), the number of full collections
2078   // completed should be either one (in the case where there was no
2079   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2080   // behind the number of full collections started.
2081 
2082   // This is the case for the inner caller, i.e. a Full GC.
2083   assert(concurrent ||
2084          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2085          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2086          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2087          "is inconsistent with _old_marking_cycles_completed = %u",
2088          _old_marking_cycles_started, _old_marking_cycles_completed);
2089 
2090   // This is the case for the outer caller, i.e. the concurrent cycle.
2091   assert(!concurrent ||
2092          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2093          "for outer caller (concurrent cycle): "
2094          "_old_marking_cycles_started = %u "
2095          "is inconsistent with _old_marking_cycles_completed = %u",
2096          _old_marking_cycles_started, _old_marking_cycles_completed);
2097 
2098   _old_marking_cycles_completed += 1;
2099 
2100   // We need to clear the "in_progress" flag in the CM thread before
2101   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2102   // is set) so that if a waiter requests another System.gc() it doesn't
2103   // incorrectly see that a marking cycle is still in progress.
2104   if (concurrent) {
2105     _cm_thread->set_idle();
2106   }
2107 
2108   // This notify_all() will ensure that a thread that called
2109   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2110   // and it's waiting for a full GC to finish will be woken up. It is
2111   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2112   FullGCCount_lock->notify_all();
2113 }
2114 
2115 void G1CollectedHeap::collect(GCCause::Cause cause) {
2116   try_collect(cause, true);
2117 }
2118 
2119 bool G1CollectedHeap::try_collect(GCCause::Cause cause, bool retry_on_gc_failure) {
2120   assert_heap_not_locked();
2121 
2122   bool gc_succeeded;
2123   bool should_retry_gc;
2124 
2125   do {
2126     should_retry_gc = false;
2127 
2128     uint gc_count_before;
2129     uint old_marking_count_before;
2130     uint full_gc_count_before;
2131 
2132     {
2133       MutexLocker ml(Heap_lock);
2134 
2135       // Read the GC count while holding the Heap_lock
2136       gc_count_before = total_collections();
2137       full_gc_count_before = total_full_collections();
2138       old_marking_count_before = _old_marking_cycles_started;
2139     }
2140 
2141     if (should_do_concurrent_full_gc(cause)) {
2142       // Schedule an initial-mark evacuation pause that will start a
2143       // concurrent cycle. We're setting word_size to 0 which means that
2144       // we are not requesting a post-GC allocation.
2145       VM_G1CollectForAllocation op(0,     /* word_size */
2146                                    gc_count_before,
2147                                    cause,
2148                                    true,  /* should_initiate_conc_mark */
2149                                    policy()->max_pause_time_ms());
2150       VMThread::execute(&op);
2151       gc_succeeded = op.gc_succeeded();
2152       if (!gc_succeeded && retry_on_gc_failure) {
2153         if (old_marking_count_before == _old_marking_cycles_started) {
2154           should_retry_gc = op.should_retry_gc();
2155         } else {
2156           // A Full GC happened while we were trying to schedule the
2157           // concurrent cycle. No point in starting a new cycle given
2158           // that the whole heap was collected anyway.
2159         }
2160 
2161         if (should_retry_gc && GCLocker::is_active_and_needs_gc()) {
2162           GCLocker::stall_until_clear();
2163         }
2164       }
2165     } else {
2166       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2167           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2168 
2169         // Schedule a standard evacuation pause. We're setting word_size
2170         // to 0 which means that we are not requesting a post-GC allocation.
2171         VM_G1CollectForAllocation op(0,     /* word_size */
2172                                      gc_count_before,
2173                                      cause,
2174                                      false, /* should_initiate_conc_mark */
2175                                      policy()->max_pause_time_ms());
2176         VMThread::execute(&op);
2177         gc_succeeded = op.gc_succeeded();
2178       } else {
2179         // Schedule a Full GC.
2180         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2181         VMThread::execute(&op);
2182         gc_succeeded = op.gc_succeeded();
2183       }
2184     }
2185   } while (should_retry_gc);
2186   return gc_succeeded;
2187 }
2188 
2189 bool G1CollectedHeap::is_in(const void* p) const {
2190   if (_hrm->reserved().contains(p)) {
2191     // Given that we know that p is in the reserved space,
2192     // heap_region_containing() should successfully
2193     // return the containing region.
2194     HeapRegion* hr = heap_region_containing(p);
2195     return hr->is_in(p);
2196   } else {
2197     return false;
2198   }
2199 }
2200 
2201 #ifdef ASSERT
2202 bool G1CollectedHeap::is_in_exact(const void* p) const {
2203   bool contains = reserved_region().contains(p);
2204   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2205   if (contains && available) {
2206     return true;
2207   } else {
2208     return false;
2209   }
2210 }
2211 #endif
2212 
2213 // Iteration functions.
2214 
2215 // Iterates an ObjectClosure over all objects within a HeapRegion.
2216 
2217 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2218   ObjectClosure* _cl;
2219 public:
2220   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2221   bool do_heap_region(HeapRegion* r) {
2222     if (!r->is_continues_humongous()) {
2223       r->object_iterate(_cl);
2224     }
2225     return false;
2226   }
2227 };
2228 
2229 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2230   IterateObjectClosureRegionClosure blk(cl);
2231   heap_region_iterate(&blk);
2232 }
2233 
2234 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2235   _hrm->iterate(cl);
2236 }
2237 
2238 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2239                                                                  HeapRegionClaimer *hrclaimer,
2240                                                                  uint worker_id) const {
2241   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2242 }
2243 
2244 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2245                                                          HeapRegionClaimer *hrclaimer) const {
2246   _hrm->par_iterate(cl, hrclaimer, 0);
2247 }
2248 
2249 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2250   _collection_set.iterate(cl);
2251 }
2252 
2253 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2254   _collection_set.iterate_incremental_part_from(cl, worker_id, workers()->active_workers());
2255 }
2256 
2257 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2258   HeapRegion* hr = heap_region_containing(addr);
2259   return hr->block_start(addr);
2260 }
2261 
2262 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2263   HeapRegion* hr = heap_region_containing(addr);
2264   return hr->block_size(addr);
2265 }
2266 
2267 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2268   HeapRegion* hr = heap_region_containing(addr);
2269   return hr->block_is_obj(addr);
2270 }
2271 
2272 bool G1CollectedHeap::supports_tlab_allocation() const {
2273   return true;
2274 }
2275 
2276 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2277   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2278 }
2279 
2280 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2281   return _eden.length() * HeapRegion::GrainBytes;
2282 }
2283 
2284 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2285 // must be equal to the humongous object limit.
2286 size_t G1CollectedHeap::max_tlab_size() const {
2287   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2288 }
2289 
2290 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2291   return _allocator->unsafe_max_tlab_alloc();
2292 }
2293 
2294 size_t G1CollectedHeap::max_capacity() const {
2295   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2296 }
2297 
2298 size_t G1CollectedHeap::max_reserved_capacity() const {
2299   return _hrm->max_length() * HeapRegion::GrainBytes;
2300 }
2301 
2302 jlong G1CollectedHeap::millis_since_last_gc() {
2303   // See the notes in GenCollectedHeap::millis_since_last_gc()
2304   // for more information about the implementation.
2305   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2306                   _policy->collection_pause_end_millis();
2307   if (ret_val < 0) {
2308     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2309       ". returning zero instead.", ret_val);
2310     return 0;
2311   }
2312   return ret_val;
2313 }
2314 
2315 void G1CollectedHeap::deduplicate_string(oop str) {
2316   assert(java_lang_String::is_instance(str), "invariant");
2317 
2318   if (G1StringDedup::is_enabled()) {
2319     G1StringDedup::deduplicate(str);
2320   }
2321 }
2322 
2323 void G1CollectedHeap::prepare_for_verify() {
2324   _verifier->prepare_for_verify();
2325 }
2326 
2327 void G1CollectedHeap::verify(VerifyOption vo) {
2328   _verifier->verify(vo);
2329 }
2330 
2331 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2332   return true;
2333 }
2334 
2335 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2336   return _cm_thread->request_concurrent_phase(phase);
2337 }
2338 
2339 bool G1CollectedHeap::is_heterogeneous_heap() const {
2340   return _collector_policy->is_heterogeneous_heap();
2341 }
2342 
2343 class PrintRegionClosure: public HeapRegionClosure {
2344   outputStream* _st;
2345 public:
2346   PrintRegionClosure(outputStream* st) : _st(st) {}
2347   bool do_heap_region(HeapRegion* r) {
2348     r->print_on(_st);
2349     return false;
2350   }
2351 };
2352 
2353 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2354                                        const HeapRegion* hr,
2355                                        const VerifyOption vo) const {
2356   switch (vo) {
2357   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2358   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2359   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2360   default:                            ShouldNotReachHere();
2361   }
2362   return false; // keep some compilers happy
2363 }
2364 
2365 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2366                                        const VerifyOption vo) const {
2367   switch (vo) {
2368   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2369   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2370   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2371   default:                            ShouldNotReachHere();
2372   }
2373   return false; // keep some compilers happy
2374 }
2375 
2376 void G1CollectedHeap::print_heap_regions() const {
2377   LogTarget(Trace, gc, heap, region) lt;
2378   if (lt.is_enabled()) {
2379     LogStream ls(lt);
2380     print_regions_on(&ls);
2381   }
2382 }
2383 
2384 void G1CollectedHeap::print_on(outputStream* st) const {
2385   st->print(" %-20s", "garbage-first heap");
2386   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2387             capacity()/K, used_unlocked()/K);
2388   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2389             p2i(_hrm->reserved().start()),
2390             p2i(_hrm->reserved().end()));
2391   st->cr();
2392   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2393   uint young_regions = young_regions_count();
2394   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2395             (size_t) young_regions * HeapRegion::GrainBytes / K);
2396   uint survivor_regions = survivor_regions_count();
2397   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2398             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2399   st->cr();
2400   MetaspaceUtils::print_on(st);
2401 }
2402 
2403 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2404   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2405                "HS=humongous(starts), HC=humongous(continues), "
2406                "CS=collection set, F=free, A=archive, "
2407                "TAMS=top-at-mark-start (previous, next)");
2408   PrintRegionClosure blk(st);
2409   heap_region_iterate(&blk);
2410 }
2411 
2412 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2413   print_on(st);
2414 
2415   // Print the per-region information.
2416   print_regions_on(st);
2417 }
2418 
2419 void G1CollectedHeap::print_on_error(outputStream* st) const {
2420   this->CollectedHeap::print_on_error(st);
2421 
2422   if (_cm != NULL) {
2423     st->cr();
2424     _cm->print_on_error(st);
2425   }
2426 }
2427 
2428 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2429   workers()->print_worker_threads_on(st);
2430   _cm_thread->print_on(st);
2431   st->cr();
2432   _cm->print_worker_threads_on(st);
2433   _cr->print_threads_on(st);
2434   _young_gen_sampling_thread->print_on(st);
2435   if (G1StringDedup::is_enabled()) {
2436     G1StringDedup::print_worker_threads_on(st);
2437   }
2438 }
2439 
2440 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2441   workers()->threads_do(tc);
2442   tc->do_thread(_cm_thread);
2443   _cm->threads_do(tc);
2444   _cr->threads_do(tc);
2445   tc->do_thread(_young_gen_sampling_thread);
2446   if (G1StringDedup::is_enabled()) {
2447     G1StringDedup::threads_do(tc);
2448   }
2449 }
2450 
2451 void G1CollectedHeap::print_tracing_info() const {
2452   rem_set()->print_summary_info();
2453   concurrent_mark()->print_summary_info();
2454 }
2455 
2456 #ifndef PRODUCT
2457 // Helpful for debugging RSet issues.
2458 
2459 class PrintRSetsClosure : public HeapRegionClosure {
2460 private:
2461   const char* _msg;
2462   size_t _occupied_sum;
2463 
2464 public:
2465   bool do_heap_region(HeapRegion* r) {
2466     HeapRegionRemSet* hrrs = r->rem_set();
2467     size_t occupied = hrrs->occupied();
2468     _occupied_sum += occupied;
2469 
2470     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2471     if (occupied == 0) {
2472       tty->print_cr("  RSet is empty");
2473     } else {
2474       hrrs->print();
2475     }
2476     tty->print_cr("----------");
2477     return false;
2478   }
2479 
2480   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2481     tty->cr();
2482     tty->print_cr("========================================");
2483     tty->print_cr("%s", msg);
2484     tty->cr();
2485   }
2486 
2487   ~PrintRSetsClosure() {
2488     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2489     tty->print_cr("========================================");
2490     tty->cr();
2491   }
2492 };
2493 
2494 void G1CollectedHeap::print_cset_rsets() {
2495   PrintRSetsClosure cl("Printing CSet RSets");
2496   collection_set_iterate(&cl);
2497 }
2498 
2499 void G1CollectedHeap::print_all_rsets() {
2500   PrintRSetsClosure cl("Printing All RSets");;
2501   heap_region_iterate(&cl);
2502 }
2503 #endif // PRODUCT
2504 
2505 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2506 
2507   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2508   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2509   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2510 
2511   size_t eden_capacity_bytes =
2512     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2513 
2514   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2515   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2516                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2517 }
2518 
2519 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2520   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2521                        stats->unused(), stats->used(), stats->region_end_waste(),
2522                        stats->regions_filled(), stats->direct_allocated(),
2523                        stats->failure_used(), stats->failure_waste());
2524 }
2525 
2526 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2527   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2528   gc_tracer->report_gc_heap_summary(when, heap_summary);
2529 
2530   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2531   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2532 }
2533 
2534 G1CollectedHeap* G1CollectedHeap::heap() {
2535   CollectedHeap* heap = Universe::heap();
2536   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2537   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2538   return (G1CollectedHeap*)heap;
2539 }
2540 
2541 void G1CollectedHeap::gc_prologue(bool full) {
2542   // always_do_update_barrier = false;
2543   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2544 
2545   // This summary needs to be printed before incrementing total collections.
2546   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2547 
2548   // Update common counters.
2549   increment_total_collections(full /* full gc */);
2550   if (full || collector_state()->in_initial_mark_gc()) {
2551     increment_old_marking_cycles_started();
2552   }
2553 
2554   // Fill TLAB's and such
2555   double start = os::elapsedTime();
2556   ensure_parsability(true);
2557   phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2558 }
2559 
2560 void G1CollectedHeap::gc_epilogue(bool full) {
2561   // Update common counters.
2562   if (full) {
2563     // Update the number of full collections that have been completed.
2564     increment_old_marking_cycles_completed(false /* concurrent */);
2565   }
2566 
2567   // We are at the end of the GC. Total collections has already been increased.
2568   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2569 
2570   // FIXME: what is this about?
2571   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2572   // is set.
2573 #if COMPILER2_OR_JVMCI
2574   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2575 #endif
2576   // always_do_update_barrier = true;
2577 
2578   double start = os::elapsedTime();
2579   resize_all_tlabs();
2580   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2581 
2582   MemoryService::track_memory_usage();
2583   // We have just completed a GC. Update the soft reference
2584   // policy with the new heap occupancy
2585   Universe::update_heap_info_at_gc();
2586 }
2587 
2588 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2589                                                uint gc_count_before,
2590                                                bool* succeeded,
2591                                                GCCause::Cause gc_cause) {
2592   assert_heap_not_locked_and_not_at_safepoint();
2593   VM_G1CollectForAllocation op(word_size,
2594                                gc_count_before,
2595                                gc_cause,
2596                                false, /* should_initiate_conc_mark */
2597                                policy()->max_pause_time_ms());
2598   VMThread::execute(&op);
2599 
2600   HeapWord* result = op.result();
2601   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2602   assert(result == NULL || ret_succeeded,
2603          "the result should be NULL if the VM did not succeed");
2604   *succeeded = ret_succeeded;
2605 
2606   assert_heap_not_locked();
2607   return result;
2608 }
2609 
2610 void G1CollectedHeap::do_concurrent_mark() {
2611   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2612   if (!_cm_thread->in_progress()) {
2613     _cm_thread->set_started();
2614     CGC_lock->notify();
2615   }
2616 }
2617 
2618 size_t G1CollectedHeap::pending_card_num() {
2619   struct CountCardsClosure : public ThreadClosure {
2620     size_t _cards;
2621     CountCardsClosure() : _cards(0) {}
2622     virtual void do_thread(Thread* t) {
2623       _cards += G1ThreadLocalData::dirty_card_queue(t).size();
2624     }
2625   } count_from_threads;
2626   Threads::threads_do(&count_from_threads);
2627 
2628   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2629   size_t buffer_size = dcqs.buffer_size();
2630   size_t buffer_num = dcqs.completed_buffers_num();
2631 
2632   return buffer_size * buffer_num + count_from_threads._cards;
2633 }
2634 
2635 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2636   // We don't nominate objects with many remembered set entries, on
2637   // the assumption that such objects are likely still live.
2638   HeapRegionRemSet* rem_set = r->rem_set();
2639 
2640   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2641          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2642          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2643 }
2644 
2645 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2646  private:
2647   size_t _total_humongous;
2648   size_t _candidate_humongous;
2649 
2650   G1DirtyCardQueue _dcq;
2651 
2652   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2653     assert(region->is_starts_humongous(), "Must start a humongous object");
2654 
2655     oop obj = oop(region->bottom());
2656 
2657     // Dead objects cannot be eager reclaim candidates. Due to class
2658     // unloading it is unsafe to query their classes so we return early.
2659     if (g1h->is_obj_dead(obj, region)) {
2660       return false;
2661     }
2662 
2663     // If we do not have a complete remembered set for the region, then we can
2664     // not be sure that we have all references to it.
2665     if (!region->rem_set()->is_complete()) {
2666       return false;
2667     }
2668     // Candidate selection must satisfy the following constraints
2669     // while concurrent marking is in progress:
2670     //
2671     // * In order to maintain SATB invariants, an object must not be
2672     // reclaimed if it was allocated before the start of marking and
2673     // has not had its references scanned.  Such an object must have
2674     // its references (including type metadata) scanned to ensure no
2675     // live objects are missed by the marking process.  Objects
2676     // allocated after the start of concurrent marking don't need to
2677     // be scanned.
2678     //
2679     // * An object must not be reclaimed if it is on the concurrent
2680     // mark stack.  Objects allocated after the start of concurrent
2681     // marking are never pushed on the mark stack.
2682     //
2683     // Nominating only objects allocated after the start of concurrent
2684     // marking is sufficient to meet both constraints.  This may miss
2685     // some objects that satisfy the constraints, but the marking data
2686     // structures don't support efficiently performing the needed
2687     // additional tests or scrubbing of the mark stack.
2688     //
2689     // However, we presently only nominate is_typeArray() objects.
2690     // A humongous object containing references induces remembered
2691     // set entries on other regions.  In order to reclaim such an
2692     // object, those remembered sets would need to be cleaned up.
2693     //
2694     // We also treat is_typeArray() objects specially, allowing them
2695     // to be reclaimed even if allocated before the start of
2696     // concurrent mark.  For this we rely on mark stack insertion to
2697     // exclude is_typeArray() objects, preventing reclaiming an object
2698     // that is in the mark stack.  We also rely on the metadata for
2699     // such objects to be built-in and so ensured to be kept live.
2700     // Frequent allocation and drop of large binary blobs is an
2701     // important use case for eager reclaim, and this special handling
2702     // may reduce needed headroom.
2703 
2704     return obj->is_typeArray() &&
2705            g1h->is_potential_eager_reclaim_candidate(region);
2706   }
2707 
2708  public:
2709   RegisterHumongousWithInCSetFastTestClosure()
2710   : _total_humongous(0),
2711     _candidate_humongous(0),
2712     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2713   }
2714 
2715   virtual bool do_heap_region(HeapRegion* r) {
2716     if (!r->is_starts_humongous()) {
2717       return false;
2718     }
2719     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2720 
2721     bool is_candidate = humongous_region_is_candidate(g1h, r);
2722     uint rindex = r->hrm_index();
2723     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2724     if (is_candidate) {
2725       _candidate_humongous++;
2726       g1h->register_humongous_region_with_cset(rindex);
2727       // Is_candidate already filters out humongous object with large remembered sets.
2728       // If we have a humongous object with a few remembered sets, we simply flush these
2729       // remembered set entries into the DCQS. That will result in automatic
2730       // re-evaluation of their remembered set entries during the following evacuation
2731       // phase.
2732       if (!r->rem_set()->is_empty()) {
2733         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2734                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2735         G1CardTable* ct = g1h->card_table();
2736         HeapRegionRemSetIterator hrrs(r->rem_set());
2737         size_t card_index;
2738         while (hrrs.has_next(card_index)) {
2739           CardTable::CardValue* card_ptr = ct->byte_for_index(card_index);
2740           // The remembered set might contain references to already freed
2741           // regions. Filter out such entries to avoid failing card table
2742           // verification.
2743           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2744             if (*card_ptr != G1CardTable::dirty_card_val()) {
2745               *card_ptr = G1CardTable::dirty_card_val();
2746               _dcq.enqueue(card_ptr);
2747             }
2748           }
2749         }
2750         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2751                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2752                hrrs.n_yielded(), r->rem_set()->occupied());
2753         // We should only clear the card based remembered set here as we will not
2754         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2755         // (and probably never) we do not enter this path if there are other kind of
2756         // remembered sets for this region.
2757         r->rem_set()->clear_locked(true /* only_cardset */);
2758         // Clear_locked() above sets the state to Empty. However we want to continue
2759         // collecting remembered set entries for humongous regions that were not
2760         // reclaimed.
2761         r->rem_set()->set_state_complete();
2762       }
2763       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2764     }
2765     _total_humongous++;
2766 
2767     return false;
2768   }
2769 
2770   size_t total_humongous() const { return _total_humongous; }
2771   size_t candidate_humongous() const { return _candidate_humongous; }
2772 
2773   void flush_rem_set_entries() { _dcq.flush(); }
2774 };
2775 
2776 void G1CollectedHeap::register_humongous_regions_with_cset() {
2777   if (!G1EagerReclaimHumongousObjects) {
2778     phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2779     return;
2780   }
2781   double time = os::elapsed_counter();
2782 
2783   // Collect reclaim candidate information and register candidates with cset.
2784   RegisterHumongousWithInCSetFastTestClosure cl;
2785   heap_region_iterate(&cl);
2786 
2787   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2788   phase_times()->record_fast_reclaim_humongous_stats(time,
2789                                                      cl.total_humongous(),
2790                                                      cl.candidate_humongous());
2791   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2792 
2793   // Finally flush all remembered set entries to re-check into the global DCQS.
2794   cl.flush_rem_set_entries();
2795 }
2796 
2797 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2798   public:
2799     bool do_heap_region(HeapRegion* hr) {
2800       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2801         hr->verify_rem_set();
2802       }
2803       return false;
2804     }
2805 };
2806 
2807 uint G1CollectedHeap::num_task_queues() const {
2808   return _task_queues->size();
2809 }
2810 
2811 #if TASKQUEUE_STATS
2812 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2813   st->print_raw_cr("GC Task Stats");
2814   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2815   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2816 }
2817 
2818 void G1CollectedHeap::print_taskqueue_stats() const {
2819   if (!log_is_enabled(Trace, gc, task, stats)) {
2820     return;
2821   }
2822   Log(gc, task, stats) log;
2823   ResourceMark rm;
2824   LogStream ls(log.trace());
2825   outputStream* st = &ls;
2826 
2827   print_taskqueue_stats_hdr(st);
2828 
2829   TaskQueueStats totals;
2830   const uint n = num_task_queues();
2831   for (uint i = 0; i < n; ++i) {
2832     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2833     totals += task_queue(i)->stats;
2834   }
2835   st->print_raw("tot "); totals.print(st); st->cr();
2836 
2837   DEBUG_ONLY(totals.verify());
2838 }
2839 
2840 void G1CollectedHeap::reset_taskqueue_stats() {
2841   const uint n = num_task_queues();
2842   for (uint i = 0; i < n; ++i) {
2843     task_queue(i)->stats.reset();
2844   }
2845 }
2846 #endif // TASKQUEUE_STATS
2847 
2848 void G1CollectedHeap::wait_for_root_region_scanning() {
2849   double scan_wait_start = os::elapsedTime();
2850   // We have to wait until the CM threads finish scanning the
2851   // root regions as it's the only way to ensure that all the
2852   // objects on them have been correctly scanned before we start
2853   // moving them during the GC.
2854   bool waited = _cm->root_regions()->wait_until_scan_finished();
2855   double wait_time_ms = 0.0;
2856   if (waited) {
2857     double scan_wait_end = os::elapsedTime();
2858     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2859   }
2860   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2861 }
2862 
2863 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2864 private:
2865   G1HRPrinter* _hr_printer;
2866 public:
2867   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2868 
2869   virtual bool do_heap_region(HeapRegion* r) {
2870     _hr_printer->cset(r);
2871     return false;
2872   }
2873 };
2874 
2875 void G1CollectedHeap::start_new_collection_set() {
2876   double start = os::elapsedTime();
2877 
2878   collection_set()->start_incremental_building();
2879 
2880   clear_cset_fast_test();
2881 
2882   guarantee(_eden.length() == 0, "eden should have been cleared");
2883   policy()->transfer_survivors_to_cset(survivor());
2884 
2885   // We redo the verification but now wrt to the new CSet which
2886   // has just got initialized after the previous CSet was freed.
2887   _cm->verify_no_collection_set_oops_in_stacks();
2888 
2889   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2890 }
2891 
2892 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2893   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2894   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2895                                             collection_set()->optional_region_length());
2896 
2897   _cm->verify_no_collection_set_oops_in_stacks();
2898 
2899   if (_hr_printer.is_active()) {
2900     G1PrintCollectionSetClosure cl(&_hr_printer);
2901     _collection_set.iterate(&cl);
2902     _collection_set.iterate_optional(&cl);
2903   }
2904 }
2905 
2906 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2907   if (collector_state()->in_initial_mark_gc()) {
2908     return G1HeapVerifier::G1VerifyConcurrentStart;
2909   } else if (collector_state()->in_young_only_phase()) {
2910     return G1HeapVerifier::G1VerifyYoungNormal;
2911   } else {
2912     return G1HeapVerifier::G1VerifyMixed;
2913   }
2914 }
2915 
2916 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2917   if (VerifyRememberedSets) {
2918     log_info(gc, verify)("[Verifying RemSets before GC]");
2919     VerifyRegionRemSetClosure v_cl;
2920     heap_region_iterate(&v_cl);
2921   }
2922   _verifier->verify_before_gc(type);
2923   _verifier->check_bitmaps("GC Start");
2924 }
2925 
2926 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2927   if (VerifyRememberedSets) {
2928     log_info(gc, verify)("[Verifying RemSets after GC]");
2929     VerifyRegionRemSetClosure v_cl;
2930     heap_region_iterate(&v_cl);
2931   }
2932   _verifier->verify_after_gc(type);
2933   _verifier->check_bitmaps("GC End");
2934 }
2935 
2936 void G1CollectedHeap::expand_heap_after_young_collection(){
2937   size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2938   if (expand_bytes > 0) {
2939     // No need for an ergo logging here,
2940     // expansion_amount() does this when it returns a value > 0.
2941     double expand_ms;
2942     if (!expand(expand_bytes, _workers, &expand_ms)) {
2943       // We failed to expand the heap. Cannot do anything about it.
2944     }
2945     phase_times()->record_expand_heap_time(expand_ms);
2946   }
2947 }
2948 
2949 const char* G1CollectedHeap::young_gc_name() const {
2950   if (collector_state()->in_initial_mark_gc()) {
2951     return "Pause Young (Concurrent Start)";
2952   } else if (collector_state()->in_young_only_phase()) {
2953     if (collector_state()->in_young_gc_before_mixed()) {
2954       return "Pause Young (Prepare Mixed)";
2955     } else {
2956       return "Pause Young (Normal)";
2957     }
2958   } else {
2959     return "Pause Young (Mixed)";
2960   }
2961 }
2962 
2963 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2964   assert_at_safepoint_on_vm_thread();
2965   guarantee(!is_gc_active(), "collection is not reentrant");
2966 
2967   if (GCLocker::check_active_before_gc()) {
2968     return false;
2969   }
2970 
2971   GCIdMark gc_id_mark;
2972 
2973   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2974   ResourceMark rm;
2975 
2976   policy()->note_gc_start();
2977 
2978   _gc_timer_stw->register_gc_start();
2979   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2980 
2981   wait_for_root_region_scanning();
2982 
2983   print_heap_before_gc();
2984   print_heap_regions();
2985   trace_heap_before_gc(_gc_tracer_stw);
2986 
2987   _verifier->verify_region_sets_optional();
2988   _verifier->verify_dirty_young_regions();
2989 
2990   // We should not be doing initial mark unless the conc mark thread is running
2991   if (!_cm_thread->should_terminate()) {
2992     // This call will decide whether this pause is an initial-mark
2993     // pause. If it is, in_initial_mark_gc() will return true
2994     // for the duration of this pause.
2995     policy()->decide_on_conc_mark_initiation();
2996   }
2997 
2998   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2999   assert(!collector_state()->in_initial_mark_gc() ||
3000          collector_state()->in_young_only_phase(), "sanity");
3001   // We also do not allow mixed GCs during marking.
3002   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
3003 
3004   // Record whether this pause is an initial mark. When the current
3005   // thread has completed its logging output and it's safe to signal
3006   // the CM thread, the flag's value in the policy has been reset.
3007   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
3008   if (should_start_conc_mark) {
3009     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3010   }
3011 
3012   // Inner scope for scope based logging, timers, and stats collection
3013   {
3014     G1EvacuationInfo evacuation_info;
3015 
3016     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3017 
3018     GCTraceCPUTime tcpu;
3019 
3020     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
3021 
3022     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
3023                                                             workers()->active_workers(),
3024                                                             Threads::number_of_non_daemon_threads());
3025     active_workers = workers()->update_active_workers(active_workers);
3026     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3027 
3028     G1MonitoringScope ms(g1mm(),
3029                          false /* full_gc */,
3030                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
3031 
3032     G1HeapTransition heap_transition(this);
3033     size_t heap_used_bytes_before_gc = used();
3034 
3035     {
3036       IsGCActiveMark x;
3037 
3038       gc_prologue(false);
3039 
3040       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3041       verify_before_young_collection(verify_type);
3042 
3043       {
3044         // The elapsed time induced by the start time below deliberately elides
3045         // the possible verification above.
3046         double sample_start_time_sec = os::elapsedTime();
3047 
3048         // Please see comment in g1CollectedHeap.hpp and
3049         // G1CollectedHeap::ref_processing_init() to see how
3050         // reference processing currently works in G1.
3051         _ref_processor_stw->enable_discovery();
3052         
3053         // We want to temporarily turn off discovery by the
3054         // CM ref processor, if necessary, and turn it back on
3055         // on again later if we do. Using a scoped
3056         // NoRefDiscovery object will do this.
3057         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3058 
3059         policy()->record_collection_pause_start(sample_start_time_sec);
3060 
3061         // Forget the current allocation region (we might even choose it to be part
3062         // of the collection set!).
3063         _allocator->release_mutator_alloc_region();
3064 
3065         calculate_collection_set(evacuation_info, target_pause_time_ms);
3066 
3067         G1ParScanThreadStateSet per_thread_states(this,
3068                                                   workers()->active_workers(),
3069                                                   collection_set()->young_region_length(),
3070                                                   collection_set()->optional_region_length());
3071         pre_evacuate_collection_set(evacuation_info);
3072 
3073         // Actually do the work...
3074         evacuate_initial_collection_set(&per_thread_states);
3075         if (_collection_set.optional_region_length() != 0) {
3076           evacuate_optional_collection_set(&per_thread_states);
3077         }
3078         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3079 
3080         start_new_collection_set();
3081 
3082         _survivor_evac_stats.adjust_desired_plab_sz();
3083         _old_evac_stats.adjust_desired_plab_sz();
3084 
3085         if (should_start_conc_mark) {
3086           // We have to do this before we notify the CM threads that
3087           // they can start working to make sure that all the
3088           // appropriate initialization is done on the CM object.
3089           concurrent_mark()->post_initial_mark();
3090           // Note that we don't actually trigger the CM thread at
3091           // this point. We do that later when we're sure that
3092           // the current thread has completed its logging output.
3093         }
3094 
3095         allocate_dummy_regions();
3096 
3097         _allocator->init_mutator_alloc_region();
3098 
3099         expand_heap_after_young_collection();
3100 
3101         double sample_end_time_sec = os::elapsedTime();
3102         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3103         size_t total_cards_scanned = phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards) +
3104                                      phase_times()->sum_thread_work_items(G1GCPhaseTimes::OptScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3105         policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3106       }
3107 
3108       verify_after_young_collection(verify_type);
3109 
3110 #ifdef TRACESPINNING
3111       ParallelTaskTerminator::print_termination_counts();
3112 #endif
3113 
3114       gc_epilogue(false);
3115     }
3116 
3117     // Print the remainder of the GC log output.
3118     if (evacuation_failed()) {
3119       log_info(gc)("To-space exhausted");
3120     }
3121 
3122     policy()->print_phases();
3123     heap_transition.print();
3124 
3125     _hrm->verify_optional();
3126     _verifier->verify_region_sets_optional();
3127 
3128     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3129     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3130 
3131     print_heap_after_gc();
3132     print_heap_regions();
3133     trace_heap_after_gc(_gc_tracer_stw);
3134 
3135     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3136     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3137     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3138     // before any GC notifications are raised.
3139     g1mm()->update_sizes();
3140 
3141     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3142     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3143     _gc_timer_stw->register_gc_end();
3144     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3145   }
3146   // It should now be safe to tell the concurrent mark thread to start
3147   // without its logging output interfering with the logging output
3148   // that came from the pause.
3149 
3150   if (should_start_conc_mark) {
3151     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3152     // thread(s) could be running concurrently with us. Make sure that anything
3153     // after this point does not assume that we are the only GC thread running.
3154     // Note: of course, the actual marking work will not start until the safepoint
3155     // itself is released in SuspendibleThreadSet::desynchronize().
3156     do_concurrent_mark();
3157   }
3158 
3159   return true;
3160 }
3161 
3162 void G1CollectedHeap::remove_self_forwarding_pointers() {
3163   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3164   workers()->run_task(&rsfp_task);
3165 }
3166 
3167 void G1CollectedHeap::restore_after_evac_failure() {
3168   double remove_self_forwards_start = os::elapsedTime();
3169 
3170   remove_self_forwarding_pointers();
3171   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3172   _preserved_marks_set.restore(&task_executor);
3173 
3174   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3175 }
3176 
3177 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3178   if (!_evacuation_failed) {
3179     _evacuation_failed = true;
3180   }
3181 
3182   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3183   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3184 }
3185 
3186 bool G1ParEvacuateFollowersClosure::offer_termination() {
3187   EventGCPhaseParallel event;
3188   G1ParScanThreadState* const pss = par_scan_state();
3189   start_term_time();
3190   const bool res = terminator()->offer_termination();
3191   end_term_time();
3192   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3193   return res;
3194 }
3195 
3196 void G1ParEvacuateFollowersClosure::do_void() {
3197   EventGCPhaseParallel event;
3198   G1ParScanThreadState* const pss = par_scan_state();
3199   pss->trim_queue();
3200   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3201   do {
3202     EventGCPhaseParallel event;
3203     pss->steal_and_trim_queue(queues());
3204     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3205   } while (!offer_termination());
3206 }
3207 
3208 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3209                                         bool class_unloading_occurred) {
3210   uint num_workers = workers()->active_workers();
3211   ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3212   workers()->run_task(&unlink_task);
3213 }
3214 
3215 // Clean string dedup data structures.
3216 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3217 // record the durations of the phases. Hence the almost-copy.
3218 class G1StringDedupCleaningTask : public AbstractGangTask {
3219   BoolObjectClosure* _is_alive;
3220   OopClosure* _keep_alive;
3221   G1GCPhaseTimes* _phase_times;
3222 
3223 public:
3224   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3225                             OopClosure* keep_alive,
3226                             G1GCPhaseTimes* phase_times) :
3227     AbstractGangTask("Partial Cleaning Task"),
3228     _is_alive(is_alive),
3229     _keep_alive(keep_alive),
3230     _phase_times(phase_times)
3231   {
3232     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3233     StringDedup::gc_prologue(true);
3234   }
3235 
3236   ~G1StringDedupCleaningTask() {
3237     StringDedup::gc_epilogue();
3238   }
3239 
3240   void work(uint worker_id) {
3241     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3242     {
3243       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3244       StringDedupQueue::unlink_or_oops_do(&cl);
3245     }
3246     {
3247       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3248       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3249     }
3250   }
3251 };
3252 
3253 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3254                                             OopClosure* keep_alive,
3255                                             G1GCPhaseTimes* phase_times) {
3256   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3257   workers()->run_task(&cl);
3258 }
3259 
3260 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3261  private:
3262   G1DirtyCardQueueSet* _queue;
3263   G1CollectedHeap* _g1h;
3264  public:
3265   G1RedirtyLoggedCardsTask(G1DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3266     _queue(queue), _g1h(g1h) { }
3267 
3268   virtual void work(uint worker_id) {
3269     G1GCPhaseTimes* p = _g1h->phase_times();
3270     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3271 
3272     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3273     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3274 
3275     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3276   }
3277 };
3278 
3279 void G1CollectedHeap::redirty_logged_cards() {
3280   double redirty_logged_cards_start = os::elapsedTime();
3281 
3282   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3283   dirty_card_queue_set().reset_for_par_iteration();
3284   workers()->run_task(&redirty_task);
3285 
3286   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3287   dcq.merge_bufferlists(&dirty_card_queue_set());
3288   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3289 
3290   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3291 }
3292 
3293 // Weak Reference Processing support
3294 
3295 bool G1STWIsAliveClosure::do_object_b(oop p) {
3296   // An object is reachable if it is outside the collection set,
3297   // or is inside and copied.
3298   return !_g1h->is_in_cset(p) || p->is_forwarded();
3299 }
3300 
3301 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3302   assert(obj != NULL, "must not be NULL");
3303   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3304   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3305   // may falsely indicate that this is not the case here: however the collection set only
3306   // contains old regions when concurrent mark is not running.
3307   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3308 }
3309 
3310 // Non Copying Keep Alive closure
3311 class G1KeepAliveClosure: public OopClosure {
3312   G1CollectedHeap*_g1h;
3313 public:
3314   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3315   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3316   void do_oop(oop* p) {
3317     oop obj = *p;
3318     assert(obj != NULL, "the caller should have filtered out NULL values");
3319 
3320     const InCSetState cset_state =_g1h->in_cset_state(obj);
3321     if (!cset_state.is_in_cset_or_humongous()) {
3322       return;
3323     }
3324     if (cset_state.is_in_cset()) {
3325       assert( obj->is_forwarded(), "invariant" );
3326       *p = obj->forwardee();
3327     } else {
3328       assert(!obj->is_forwarded(), "invariant" );
3329       assert(cset_state.is_humongous(),
3330              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3331      _g1h->set_humongous_is_live(obj);
3332     }
3333   }
3334 };
3335 
3336 // Copying Keep Alive closure - can be called from both
3337 // serial and parallel code as long as different worker
3338 // threads utilize different G1ParScanThreadState instances
3339 // and different queues.
3340 
3341 class G1CopyingKeepAliveClosure: public OopClosure {
3342   G1CollectedHeap*         _g1h;
3343   G1ParScanThreadState*    _par_scan_state;
3344 
3345 public:
3346   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3347                             G1ParScanThreadState* pss):
3348     _g1h(g1h),
3349     _par_scan_state(pss)
3350   {}
3351 
3352   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3353   virtual void do_oop(      oop* p) { do_oop_work(p); }
3354 
3355   template <class T> void do_oop_work(T* p) {
3356     oop obj = RawAccess<>::oop_load(p);
3357 
3358     if (_g1h->is_in_cset_or_humongous(obj)) {
3359       // If the referent object has been forwarded (either copied
3360       // to a new location or to itself in the event of an
3361       // evacuation failure) then we need to update the reference
3362       // field and, if both reference and referent are in the G1
3363       // heap, update the RSet for the referent.
3364       //
3365       // If the referent has not been forwarded then we have to keep
3366       // it alive by policy. Therefore we have copy the referent.
3367       //
3368       // When the queue is drained (after each phase of reference processing)
3369       // the object and it's followers will be copied, the reference field set
3370       // to point to the new location, and the RSet updated.
3371       _par_scan_state->push_on_queue(p);
3372     }
3373   }
3374 };
3375 
3376 // Serial drain queue closure. Called as the 'complete_gc'
3377 // closure for each discovered list in some of the
3378 // reference processing phases.
3379 
3380 class G1STWDrainQueueClosure: public VoidClosure {
3381 protected:
3382   G1CollectedHeap* _g1h;
3383   G1ParScanThreadState* _par_scan_state;
3384 
3385   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3386 
3387 public:
3388   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3389     _g1h(g1h),
3390     _par_scan_state(pss)
3391   { }
3392 
3393   void do_void() {
3394     G1ParScanThreadState* const pss = par_scan_state();
3395     pss->trim_queue();
3396   }
3397 };
3398 
3399 // Parallel Reference Processing closures
3400 
3401 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3402 // processing during G1 evacuation pauses.
3403 
3404 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3405 private:
3406   G1CollectedHeap*          _g1h;
3407   G1ParScanThreadStateSet*  _pss;
3408   RefToScanQueueSet*        _queues;
3409   WorkGang*                 _workers;
3410 
3411 public:
3412   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3413                            G1ParScanThreadStateSet* per_thread_states,
3414                            WorkGang* workers,
3415                            RefToScanQueueSet *task_queues) :
3416     _g1h(g1h),
3417     _pss(per_thread_states),
3418     _queues(task_queues),
3419     _workers(workers)
3420   {
3421     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3422   }
3423 
3424   // Executes the given task using concurrent marking worker threads.
3425   virtual void execute(ProcessTask& task, uint ergo_workers);
3426 };
3427 
3428 // Gang task for possibly parallel reference processing
3429 
3430 class G1STWRefProcTaskProxy: public AbstractGangTask {
3431   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3432   ProcessTask&     _proc_task;
3433   G1CollectedHeap* _g1h;
3434   G1ParScanThreadStateSet* _pss;
3435   RefToScanQueueSet* _task_queues;
3436   ParallelTaskTerminator* _terminator;
3437 
3438 public:
3439   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3440                         G1CollectedHeap* g1h,
3441                         G1ParScanThreadStateSet* per_thread_states,
3442                         RefToScanQueueSet *task_queues,
3443                         ParallelTaskTerminator* terminator) :
3444     AbstractGangTask("Process reference objects in parallel"),
3445     _proc_task(proc_task),
3446     _g1h(g1h),
3447     _pss(per_thread_states),
3448     _task_queues(task_queues),
3449     _terminator(terminator)
3450   {}
3451 
3452   virtual void work(uint worker_id) {
3453     // The reference processing task executed by a single worker.
3454     ResourceMark rm;
3455     HandleMark   hm;
3456 
3457     G1STWIsAliveClosure is_alive(_g1h);
3458 
3459     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3460     pss->set_ref_discoverer(NULL);
3461 
3462     // Keep alive closure.
3463     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3464 
3465     // Complete GC closure
3466     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3467 
3468     // Call the reference processing task's work routine.
3469     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3470 
3471     // Note we cannot assert that the refs array is empty here as not all
3472     // of the processing tasks (specifically phase2 - pp2_work) execute
3473     // the complete_gc closure (which ordinarily would drain the queue) so
3474     // the queue may not be empty.
3475   }
3476 };
3477 
3478 // Driver routine for parallel reference processing.
3479 // Creates an instance of the ref processing gang
3480 // task and has the worker threads execute it.
3481 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3482   assert(_workers != NULL, "Need parallel worker threads.");
3483 
3484   assert(_workers->active_workers() >= ergo_workers,
3485          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3486          ergo_workers, _workers->active_workers());
3487   TaskTerminator terminator(ergo_workers, _queues);
3488   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, terminator.terminator());
3489 
3490   _workers->run_task(&proc_task_proxy, ergo_workers);
3491 }
3492 
3493 // End of weak reference support closures
3494 
3495 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3496   double ref_proc_start = os::elapsedTime();
3497 
3498   ReferenceProcessor* rp = _ref_processor_stw;
3499   assert(rp->discovery_enabled(), "should have been enabled");
3500 
3501   // Closure to test whether a referent is alive.
3502   G1STWIsAliveClosure is_alive(this);
3503 
3504   // Even when parallel reference processing is enabled, the processing
3505   // of JNI refs is serial and performed serially by the current thread
3506   // rather than by a worker. The following PSS will be used for processing
3507   // JNI refs.
3508 
3509   // Use only a single queue for this PSS.
3510   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3511   pss->set_ref_discoverer(NULL);
3512   assert(pss->queue_is_empty(), "pre-condition");
3513 
3514   // Keep alive closure.
3515   G1CopyingKeepAliveClosure keep_alive(this, pss);
3516 
3517   // Serial Complete GC closure
3518   G1STWDrainQueueClosure drain_queue(this, pss);
3519 
3520   // Setup the soft refs policy...
3521   rp->setup_policy(false);
3522 
3523   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3524 
3525   ReferenceProcessorStats stats;
3526   if (!rp->processing_is_mt()) {
3527     // Serial reference processing...
3528     stats = rp->process_discovered_references(&is_alive,
3529                                               &keep_alive,
3530                                               &drain_queue,
3531                                               NULL,
3532                                               pt);
3533   } else {
3534     uint no_of_gc_workers = workers()->active_workers();
3535 
3536     // Parallel reference processing
3537     assert(no_of_gc_workers <= rp->max_num_queues(),
3538            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3539            no_of_gc_workers,  rp->max_num_queues());
3540 
3541     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3542     stats = rp->process_discovered_references(&is_alive,
3543                                               &keep_alive,
3544                                               &drain_queue,
3545                                               &par_task_executor,
3546                                               pt);
3547   }
3548 
3549   _gc_tracer_stw->report_gc_reference_stats(stats);
3550 
3551   // We have completed copying any necessary live referent objects.
3552   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3553 
3554   make_pending_list_reachable();
3555 
3556   assert(!rp->discovery_enabled(), "Postcondition");
3557   rp->verify_no_references_recorded();
3558 
3559   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3560   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3561 }
3562 
3563 void G1CollectedHeap::make_pending_list_reachable() {
3564   if (collector_state()->in_initial_mark_gc()) {
3565     oop pll_head = Universe::reference_pending_list();
3566     if (pll_head != NULL) {
3567       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3568       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3569     }
3570   }
3571 }
3572 
3573 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3574   double merge_pss_time_start = os::elapsedTime();
3575   per_thread_states->flush();
3576   phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3577 }
3578 
3579 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info) {
3580   _expand_heap_after_alloc_failure = true;
3581   _evacuation_failed = false;
3582 
3583   // Disable the hot card cache.
3584   _hot_card_cache->reset_hot_cache_claimed_index();
3585   _hot_card_cache->set_use_cache(false);
3586 
3587   // Initialize the GC alloc regions.
3588   _allocator->init_gc_alloc_regions(evacuation_info);
3589 
3590   register_humongous_regions_with_cset();
3591   assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3592 
3593   rem_set()->prepare_for_oops_into_collection_set_do();
3594   _preserved_marks_set.assert_empty();
3595 
3596 #if COMPILER2_OR_JVMCI
3597   DerivedPointerTable::clear();
3598 #endif
3599 
3600   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3601   if (collector_state()->in_initial_mark_gc()) {
3602     concurrent_mark()->pre_initial_mark();
3603 
3604     double start_clear_claimed_marks = os::elapsedTime();
3605 
3606     ClassLoaderDataGraph::clear_claimed_marks();
3607 
3608     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3609     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3610   }
3611 
3612   // Should G1EvacuationFailureALot be in effect for this GC?
3613   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3614 
3615   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
3616 }
3617 
3618 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3619 protected:
3620   G1CollectedHeap* _g1h;
3621   G1ParScanThreadStateSet* _per_thread_states;
3622   RefToScanQueueSet* _task_queues;
3623   TaskTerminator _terminator;
3624   uint _num_workers;
3625 
3626   void evacuate_live_objects(G1ParScanThreadState* pss,
3627                              uint worker_id,
3628                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3629                              G1GCPhaseTimes::GCParPhases termination_phase) {
3630     G1GCPhaseTimes* p = _g1h->phase_times();
3631 
3632     Ticks start = Ticks::now();
3633     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, _terminator.terminator(), objcopy_phase);
3634     cl.do_void();
3635 
3636     assert(pss->queue_is_empty(), "should be empty");
3637 
3638     Tickspan evac_time = (Ticks::now() - start);
3639     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3640     
3641     p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABWaste);
3642     p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_undo_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABUndoWaste);
3643 
3644     if (termination_phase == G1GCPhaseTimes::Termination) {
3645       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3646       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3647     } else {
3648       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3649       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3650     }
3651     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3652   }
3653 
3654   virtual void start_work(uint worker_id) { }
3655 
3656   virtual void end_work(uint worker_id) { }
3657 
3658   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3659 
3660   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3661 
3662 public:
3663   G1EvacuateRegionsBaseTask(const char* name, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet* task_queues, uint num_workers) :
3664     AbstractGangTask(name),
3665     _g1h(G1CollectedHeap::heap()),
3666     _per_thread_states(per_thread_states),
3667     _task_queues(task_queues),
3668     _terminator(num_workers, _task_queues),
3669     _num_workers(num_workers)
3670   { }
3671 
3672   void work(uint worker_id) {
3673     start_work(worker_id);
3674 
3675     {
3676       ResourceMark rm;
3677       HandleMark   hm;
3678 
3679       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3680       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3681 
3682       scan_roots(pss, worker_id);
3683       evacuate_live_objects(pss, worker_id);
3684     }
3685 
3686     end_work(worker_id);
3687   }
3688 };
3689 
3690 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3691   G1RootProcessor* _root_processor;
3692 
3693   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3694     _root_processor->evacuate_roots(pss, worker_id);
3695     _g1h->rem_set()->update_rem_set(pss, worker_id);
3696     _g1h->rem_set()->scan_rem_set(pss, worker_id, G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::CodeRoots);
3697   }
3698 
3699   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3700     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3701   }
3702 
3703   void start_work(uint worker_id) {
3704     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3705   }
3706 
3707   void end_work(uint worker_id) {
3708     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3709   }
3710 
3711 public:
3712   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3713                         G1ParScanThreadStateSet* per_thread_states,
3714                         RefToScanQueueSet* task_queues,
3715                         G1RootProcessor* root_processor,
3716                         uint num_workers) :
3717     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3718     _root_processor(root_processor)
3719   { }
3720 };
3721 
3722 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3723   Tickspan task_time;
3724   const uint num_workers = workers()->active_workers();
3725 
3726   Ticks start_processing = Ticks::now();
3727   {
3728     G1RootProcessor root_processor(this, num_workers);
3729     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3730     task_time = run_task(&g1_par_task, num_workers);
3731     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3732     // To extract its code root fixup time we measure total time of this scope and
3733     // subtract from the time the WorkGang task took.
3734   }
3735   Tickspan total_processing = Ticks::now() - start_processing;
3736 
3737   G1GCPhaseTimes* p = phase_times();
3738   p->record_or_add_initial_evac_time(task_time.milliseconds());
3739   p->record_or_add_code_root_fixup_time((total_processing - task_time).milliseconds());
3740 }
3741 
3742 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3743 
3744   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3745     _g1h->rem_set()->scan_rem_set(pss, worker_id, G1GCPhaseTimes::OptScanRS, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptCodeRoots);
3746   }
3747 
3748   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3749     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3750   }
3751 
3752 public:
3753   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3754                                 RefToScanQueueSet* queues,
3755                                 uint num_workers) :
3756     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3757   }
3758 };
3759 
3760 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3761   class G1MarkScope : public MarkScope { };
3762 
3763   Tickspan task_time;
3764 
3765   Ticks start_processing = Ticks::now();
3766   {
3767     G1MarkScope code_mark_scope;
3768     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3769     task_time = run_task(&task);
3770     // See comment in evacuate_collection_set() for the reason of the scope.
3771   }
3772   Tickspan total_processing = Ticks::now() - start_processing;
3773 
3774   G1GCPhaseTimes* p = phase_times();
3775   p->record_or_add_initial_evac_time(task_time.milliseconds());
3776   p->record_or_add_code_root_fixup_time((total_processing - task_time).milliseconds());
3777 }
3778 
3779 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3780   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3781 
3782   Ticks start = Ticks::now();
3783 
3784   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3785 
3786     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3787     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3788 
3789     if (time_left_ms < 0 ||
3790         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3791       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3792                                 _collection_set.optional_region_length(), time_left_ms);
3793       break;
3794     }
3795 
3796     evacuate_next_optional_regions(per_thread_states);
3797   }
3798 
3799   _collection_set.abandon_optional_collection_set(per_thread_states);
3800 
3801   phase_times()->record_optional_evacuation((Ticks::now() - start).milliseconds());
3802 }
3803 
3804 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3805   // Also cleans the card table from temporary duplicate detection information used
3806   // during UpdateRS/ScanRS.
3807   rem_set()->cleanup_after_oops_into_collection_set_do();
3808 
3809   // Process any discovered reference objects - we have
3810   // to do this _before_ we retire the GC alloc regions
3811   // as we may have to copy some 'reachable' referent
3812   // objects (and their reachable sub-graphs) that were
3813   // not copied during the pause.
3814   process_discovered_references(per_thread_states);
3815 
3816   G1STWIsAliveClosure is_alive(this);
3817   G1KeepAliveClosure keep_alive(this);
3818 
3819   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive,
3820                               phase_times()->weak_phase_times());
3821 
3822   if (G1StringDedup::is_enabled()) {
3823     double string_dedup_time_ms = os::elapsedTime();
3824 
3825     string_dedup_cleaning(&is_alive, &keep_alive, phase_times());
3826 
3827     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
3828     phase_times()->record_string_deduplication_time(string_cleanup_time_ms);
3829   }
3830 
3831   _allocator->release_gc_alloc_regions(evacuation_info);
3832 
3833   if (evacuation_failed()) {
3834     restore_after_evac_failure();
3835 
3836     // Reset the G1EvacuationFailureALot counters and flags
3837     NOT_PRODUCT(reset_evacuation_should_fail();)
3838 
3839     double recalculate_used_start = os::elapsedTime();
3840     set_used(recalculate_used());
3841     phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
3842 
3843     if (_archive_allocator != NULL) {
3844       _archive_allocator->clear_used();
3845     }
3846     for (uint i = 0; i < ParallelGCThreads; i++) {
3847       if (_evacuation_failed_info_array[i].has_failed()) {
3848         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3849       }
3850     }
3851   } else {
3852     // The "used" of the the collection set have already been subtracted
3853     // when they were freed.  Add in the bytes evacuated.
3854     increase_used(policy()->bytes_copied_during_gc());
3855   }
3856 
3857   _preserved_marks_set.assert_empty();
3858 
3859   merge_per_thread_state_info(per_thread_states);
3860 
3861   // Reset and re-enable the hot card cache.
3862   // Note the counts for the cards in the regions in the
3863   // collection set are reset when the collection set is freed.
3864   _hot_card_cache->reset_hot_cache();
3865   _hot_card_cache->set_use_cache(true);
3866 
3867   purge_code_root_memory();
3868 
3869   redirty_logged_cards();
3870 
3871   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
3872 
3873   eagerly_reclaim_humongous_regions();
3874 
3875   record_obj_copy_mem_stats();
3876 
3877   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3878   evacuation_info.set_bytes_copied(policy()->bytes_copied_during_gc());
3879 
3880 #if COMPILER2_OR_JVMCI
3881   double start = os::elapsedTime();
3882   DerivedPointerTable::update_pointers();
3883   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
3884 #endif
3885   policy()->print_age_table();
3886 }
3887 
3888 void G1CollectedHeap::record_obj_copy_mem_stats() {
3889   policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
3890 
3891   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
3892                                                create_g1_evac_summary(&_old_evac_stats));
3893 }
3894 
3895 void G1CollectedHeap::free_region(HeapRegion* hr,
3896                                   FreeRegionList* free_list,
3897                                   bool skip_remset,
3898                                   bool skip_hot_card_cache,
3899                                   bool locked) {
3900   assert(!hr->is_free(), "the region should not be free");
3901   assert(!hr->is_empty(), "the region should not be empty");
3902   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
3903   assert(free_list != NULL, "pre-condition");
3904 
3905   if (G1VerifyBitmaps) {
3906     MemRegion mr(hr->bottom(), hr->end());
3907     concurrent_mark()->clear_range_in_prev_bitmap(mr);
3908   }
3909 
3910   // Clear the card counts for this region.
3911   // Note: we only need to do this if the region is not young
3912   // (since we don't refine cards in young regions).
3913   if (!skip_hot_card_cache && !hr->is_young()) {
3914     _hot_card_cache->reset_card_counts(hr);
3915   }
3916   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
3917   _policy->remset_tracker()->update_at_free(hr);
3918   free_list->add_ordered(hr);
3919 }
3920 
3921 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
3922                                             FreeRegionList* free_list) {
3923   assert(hr->is_humongous(), "this is only for humongous regions");
3924   assert(free_list != NULL, "pre-condition");
3925   hr->clear_humongous();
3926   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
3927 }
3928 
3929 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
3930                                            const uint humongous_regions_removed) {
3931   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
3932     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3933     _old_set.bulk_remove(old_regions_removed);
3934     _humongous_set.bulk_remove(humongous_regions_removed);
3935   }
3936 
3937 }
3938 
3939 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
3940   assert(list != NULL, "list can't be null");
3941   if (!list->is_empty()) {
3942     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
3943     _hrm->insert_list_into_free_list(list);
3944   }
3945 }
3946 
3947 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
3948   decrease_used(bytes);
3949 }
3950 
3951 class G1FreeCollectionSetTask : public AbstractGangTask {
3952 private:
3953 
3954   // Closure applied to all regions in the collection set to do work that needs to
3955   // be done serially in a single thread.
3956   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
3957   private:
3958     G1EvacuationInfo* _evacuation_info;
3959     const size_t* _surviving_young_words;
3960 
3961     // Bytes used in successfully evacuated regions before the evacuation.
3962     size_t _before_used_bytes;
3963     // Bytes used in unsucessfully evacuated regions before the evacuation
3964     size_t _after_used_bytes;
3965 
3966     size_t _bytes_allocated_in_old_since_last_gc;
3967 
3968     size_t _failure_used_words;
3969     size_t _failure_waste_words;
3970 
3971     FreeRegionList _local_free_list;
3972   public:
3973     G1SerialFreeCollectionSetClosure(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
3974       HeapRegionClosure(),
3975       _evacuation_info(evacuation_info),
3976       _surviving_young_words(surviving_young_words),
3977       _before_used_bytes(0),
3978       _after_used_bytes(0),
3979       _bytes_allocated_in_old_since_last_gc(0),
3980       _failure_used_words(0),
3981       _failure_waste_words(0),
3982       _local_free_list("Local Region List for CSet Freeing") {
3983     }
3984 
3985     virtual bool do_heap_region(HeapRegion* r) {
3986       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3987 
3988       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
3989       g1h->clear_in_cset(r);
3990 
3991       if (r->is_young()) {
3992         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
3993                "Young index %d is wrong for region %u of type %s with %u young regions",
3994                r->young_index_in_cset(),
3995                r->hrm_index(),
3996                r->get_type_str(),
3997                g1h->collection_set()->young_region_length());
3998         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
3999         r->record_surv_words_in_group(words_survived);
4000       }
4001 
4002       if (!r->evacuation_failed()) {
4003         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4004         _before_used_bytes += r->used();
4005         g1h->free_region(r,
4006                          &_local_free_list,
4007                          true, /* skip_remset */
4008                          true, /* skip_hot_card_cache */
4009                          true  /* locked */);
4010       } else {
4011         r->uninstall_surv_rate_group();
4012         r->set_young_index_in_cset(-1);
4013         r->set_evacuation_failed(false);
4014         // When moving a young gen region to old gen, we "allocate" that whole region
4015         // there. This is in addition to any already evacuated objects. Notify the
4016         // policy about that.
4017         // Old gen regions do not cause an additional allocation: both the objects
4018         // still in the region and the ones already moved are accounted for elsewhere.
4019         if (r->is_young()) {
4020           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4021         }
4022         // The region is now considered to be old.
4023         r->set_old();
4024         // Do some allocation statistics accounting. Regions that failed evacuation
4025         // are always made old, so there is no need to update anything in the young
4026         // gen statistics, but we need to update old gen statistics.
4027         size_t used_words = r->marked_bytes() / HeapWordSize;
4028 
4029         _failure_used_words += used_words;
4030         _failure_waste_words += HeapRegion::GrainWords - used_words;
4031 
4032         g1h->old_set_add(r);
4033         _after_used_bytes += r->used();
4034       }
4035       return false;
4036     }
4037 
4038     void complete_work() {
4039       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4040 
4041       _evacuation_info->set_regions_freed(_local_free_list.length());
4042       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4043 
4044       g1h->prepend_to_freelist(&_local_free_list);
4045       g1h->decrement_summary_bytes(_before_used_bytes);
4046 
4047       G1Policy* policy = g1h->policy();
4048       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4049 
4050       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4051     }
4052   };
4053 
4054   G1CollectionSet* _collection_set;
4055   G1SerialFreeCollectionSetClosure _cl;
4056   const size_t* _surviving_young_words;
4057 
4058   size_t _rs_lengths;
4059 
4060   volatile jint _serial_work_claim;
4061 
4062   struct WorkItem {
4063     uint region_idx;
4064     bool is_young;
4065     bool evacuation_failed;
4066 
4067     WorkItem(HeapRegion* r) {
4068       region_idx = r->hrm_index();
4069       is_young = r->is_young();
4070       evacuation_failed = r->evacuation_failed();
4071     }
4072   };
4073 
4074   volatile size_t _parallel_work_claim;
4075   size_t _num_work_items;
4076   WorkItem* _work_items;
4077 
4078   void do_serial_work() {
4079     // Need to grab the lock to be allowed to modify the old region list.
4080     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4081     _collection_set->iterate(&_cl);
4082   }
4083 
4084   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4085     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4086 
4087     HeapRegion* r = g1h->region_at(region_idx);
4088     assert(!g1h->is_on_master_free_list(r), "sanity");
4089 
4090     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4091 
4092     if (!is_young) {
4093       g1h->_hot_card_cache->reset_card_counts(r);
4094     }
4095 
4096     if (!evacuation_failed) {
4097       r->rem_set()->clear_locked();
4098     }
4099   }
4100 
4101   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4102   private:
4103     size_t _cur_idx;
4104     WorkItem* _work_items;
4105   public:
4106     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4107 
4108     virtual bool do_heap_region(HeapRegion* r) {
4109       _work_items[_cur_idx++] = WorkItem(r);
4110       return false;
4111     }
4112   };
4113 
4114   void prepare_work() {
4115     G1PrepareFreeCollectionSetClosure cl(_work_items);
4116     _collection_set->iterate(&cl);
4117   }
4118 
4119   void complete_work() {
4120     _cl.complete_work();
4121 
4122     G1Policy* policy = G1CollectedHeap::heap()->policy();
4123     policy->record_max_rs_lengths(_rs_lengths);
4124     policy->cset_regions_freed();
4125   }
4126 public:
4127   G1FreeCollectionSetTask(G1CollectionSet* collection_set, G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4128     AbstractGangTask("G1 Free Collection Set"),
4129     _collection_set(collection_set),
4130     _cl(evacuation_info, surviving_young_words),
4131     _surviving_young_words(surviving_young_words),
4132     _rs_lengths(0),
4133     _serial_work_claim(0),
4134     _parallel_work_claim(0),
4135     _num_work_items(collection_set->region_length()),
4136     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4137     prepare_work();
4138   }
4139 
4140   ~G1FreeCollectionSetTask() {
4141     complete_work();
4142     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4143   }
4144 
4145   // Chunk size for work distribution. The chosen value has been determined experimentally
4146   // to be a good tradeoff between overhead and achievable parallelism.
4147   static uint chunk_size() { return 32; }
4148 
4149   virtual void work(uint worker_id) {
4150     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->phase_times();
4151 
4152     // Claim serial work.
4153     if (_serial_work_claim == 0) {
4154       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4155       if (value == 0) {
4156         double serial_time = os::elapsedTime();
4157         do_serial_work();
4158         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4159       }
4160     }
4161 
4162     // Start parallel work.
4163     double young_time = 0.0;
4164     bool has_young_time = false;
4165     double non_young_time = 0.0;
4166     bool has_non_young_time = false;
4167 
4168     while (true) {
4169       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4170       size_t cur = end - chunk_size();
4171 
4172       if (cur >= _num_work_items) {
4173         break;
4174       }
4175 
4176       EventGCPhaseParallel event;
4177       double start_time = os::elapsedTime();
4178 
4179       end = MIN2(end, _num_work_items);
4180 
4181       for (; cur < end; cur++) {
4182         bool is_young = _work_items[cur].is_young;
4183 
4184         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4185 
4186         double end_time = os::elapsedTime();
4187         double time_taken = end_time - start_time;
4188         if (is_young) {
4189           young_time += time_taken;
4190           has_young_time = true;
4191           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4192         } else {
4193           non_young_time += time_taken;
4194           has_non_young_time = true;
4195           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4196         }
4197         start_time = end_time;
4198       }
4199     }
4200 
4201     if (has_young_time) {
4202       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4203     }
4204     if (has_non_young_time) {
4205       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4206     }
4207   }
4208 };
4209 
4210 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4211   _eden.clear();
4212 
4213   double free_cset_start_time = os::elapsedTime();
4214 
4215   {
4216     uint const num_regions = _collection_set.region_length();
4217     uint const num_chunks = MAX2(num_regions / G1FreeCollectionSetTask::chunk_size(), 1U);
4218     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4219 
4220     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4221 
4222     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4223                         cl.name(), num_workers, num_regions);
4224     workers()->run_task(&cl, num_workers);
4225   }
4226   phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4227 
4228   collection_set->clear();
4229 }
4230 
4231 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4232  private:
4233   FreeRegionList* _free_region_list;
4234   HeapRegionSet* _proxy_set;
4235   uint _humongous_objects_reclaimed;
4236   uint _humongous_regions_reclaimed;
4237   size_t _freed_bytes;
4238  public:
4239 
4240   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4241     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4242   }
4243 
4244   virtual bool do_heap_region(HeapRegion* r) {
4245     if (!r->is_starts_humongous()) {
4246       return false;
4247     }
4248 
4249     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4250 
4251     oop obj = (oop)r->bottom();
4252     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4253 
4254     // The following checks whether the humongous object is live are sufficient.
4255     // The main additional check (in addition to having a reference from the roots
4256     // or the young gen) is whether the humongous object has a remembered set entry.
4257     //
4258     // A humongous object cannot be live if there is no remembered set for it
4259     // because:
4260     // - there can be no references from within humongous starts regions referencing
4261     // the object because we never allocate other objects into them.
4262     // (I.e. there are no intra-region references that may be missed by the
4263     // remembered set)
4264     // - as soon there is a remembered set entry to the humongous starts region
4265     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4266     // until the end of a concurrent mark.
4267     //
4268     // It is not required to check whether the object has been found dead by marking
4269     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4270     // all objects allocated during that time are considered live.
4271     // SATB marking is even more conservative than the remembered set.
4272     // So if at this point in the collection there is no remembered set entry,
4273     // nobody has a reference to it.
4274     // At the start of collection we flush all refinement logs, and remembered sets
4275     // are completely up-to-date wrt to references to the humongous object.
4276     //
4277     // Other implementation considerations:
4278     // - never consider object arrays at this time because they would pose
4279     // considerable effort for cleaning up the the remembered sets. This is
4280     // required because stale remembered sets might reference locations that
4281     // are currently allocated into.
4282     uint region_idx = r->hrm_index();
4283     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4284         !r->rem_set()->is_empty()) {
4285       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4286                                region_idx,
4287                                (size_t)obj->size() * HeapWordSize,
4288                                p2i(r->bottom()),
4289                                r->rem_set()->occupied(),
4290                                r->rem_set()->strong_code_roots_list_length(),
4291                                next_bitmap->is_marked(r->bottom()),
4292                                g1h->is_humongous_reclaim_candidate(region_idx),
4293                                obj->is_typeArray()
4294                               );
4295       return false;
4296     }
4297 
4298     guarantee(obj->is_typeArray(),
4299               "Only eagerly reclaiming type arrays is supported, but the object "
4300               PTR_FORMAT " is not.", p2i(r->bottom()));
4301 
4302     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4303                              region_idx,
4304                              (size_t)obj->size() * HeapWordSize,
4305                              p2i(r->bottom()),
4306                              r->rem_set()->occupied(),
4307                              r->rem_set()->strong_code_roots_list_length(),
4308                              next_bitmap->is_marked(r->bottom()),
4309                              g1h->is_humongous_reclaim_candidate(region_idx),
4310                              obj->is_typeArray()
4311                             );
4312 
4313     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4314     cm->humongous_object_eagerly_reclaimed(r);
4315     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4316            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4317            region_idx,
4318            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4319            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4320     _humongous_objects_reclaimed++;
4321     do {
4322       HeapRegion* next = g1h->next_region_in_humongous(r);
4323       _freed_bytes += r->used();
4324       r->set_containing_set(NULL);
4325       _humongous_regions_reclaimed++;
4326       g1h->free_humongous_region(r, _free_region_list);
4327       r = next;
4328     } while (r != NULL);
4329 
4330     return false;
4331   }
4332 
4333   uint humongous_objects_reclaimed() {
4334     return _humongous_objects_reclaimed;
4335   }
4336 
4337   uint humongous_regions_reclaimed() {
4338     return _humongous_regions_reclaimed;
4339   }
4340 
4341   size_t bytes_freed() const {
4342     return _freed_bytes;
4343   }
4344 };
4345 
4346 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4347   assert_at_safepoint_on_vm_thread();
4348 
4349   if (!G1EagerReclaimHumongousObjects ||
4350       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4351     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4352     return;
4353   }
4354 
4355   double start_time = os::elapsedTime();
4356 
4357   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4358 
4359   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4360   heap_region_iterate(&cl);
4361 
4362   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4363 
4364   G1HRPrinter* hrp = hr_printer();
4365   if (hrp->is_active()) {
4366     FreeRegionListIterator iter(&local_cleanup_list);
4367     while (iter.more_available()) {
4368       HeapRegion* hr = iter.get_next();
4369       hrp->cleanup(hr);
4370     }
4371   }
4372 
4373   prepend_to_freelist(&local_cleanup_list);
4374   decrement_summary_bytes(cl.bytes_freed());
4375 
4376   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4377                                                        cl.humongous_objects_reclaimed());
4378 }
4379 
4380 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4381 public:
4382   virtual bool do_heap_region(HeapRegion* r) {
4383     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4384     G1CollectedHeap::heap()->clear_in_cset(r);
4385     r->set_young_index_in_cset(-1);
4386     return false;
4387   }
4388 };
4389 
4390 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4391   G1AbandonCollectionSetClosure cl;
4392   collection_set_iterate(&cl);
4393 
4394   collection_set->clear();
4395   collection_set->stop_incremental_building();
4396 }
4397 
4398 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4399   return _allocator->is_retained_old_region(hr);
4400 }
4401 
4402 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4403   _eden.add(hr);
4404   _policy->set_region_eden(hr);
4405 }
4406 
4407 #ifdef ASSERT
4408 
4409 class NoYoungRegionsClosure: public HeapRegionClosure {
4410 private:
4411   bool _success;
4412 public:
4413   NoYoungRegionsClosure() : _success(true) { }
4414   bool do_heap_region(HeapRegion* r) {
4415     if (r->is_young()) {
4416       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4417                             p2i(r->bottom()), p2i(r->end()));
4418       _success = false;
4419     }
4420     return false;
4421   }
4422   bool success() { return _success; }
4423 };
4424 
4425 bool G1CollectedHeap::check_young_list_empty() {
4426   bool ret = (young_regions_count() == 0);
4427 
4428   NoYoungRegionsClosure closure;
4429   heap_region_iterate(&closure);
4430   ret = ret && closure.success();
4431 
4432   return ret;
4433 }
4434 
4435 #endif // ASSERT
4436 
4437 class TearDownRegionSetsClosure : public HeapRegionClosure {
4438   HeapRegionSet *_old_set;
4439 
4440 public:
4441   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4442 
4443   bool do_heap_region(HeapRegion* r) {
4444     if (r->is_old()) {
4445       _old_set->remove(r);
4446     } else if(r->is_young()) {
4447       r->uninstall_surv_rate_group();
4448     } else {
4449       // We ignore free regions, we'll empty the free list afterwards.
4450       // We ignore humongous and archive regions, we're not tearing down these
4451       // sets.
4452       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4453              "it cannot be another type");
4454     }
4455     return false;
4456   }
4457 
4458   ~TearDownRegionSetsClosure() {
4459     assert(_old_set->is_empty(), "post-condition");
4460   }
4461 };
4462 
4463 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4464   assert_at_safepoint_on_vm_thread();
4465 
4466   if (!free_list_only) {
4467     TearDownRegionSetsClosure cl(&_old_set);
4468     heap_region_iterate(&cl);
4469 
4470     // Note that emptying the _young_list is postponed and instead done as
4471     // the first step when rebuilding the regions sets again. The reason for
4472     // this is that during a full GC string deduplication needs to know if
4473     // a collected region was young or old when the full GC was initiated.
4474   }
4475   _hrm->remove_all_free_regions();
4476 }
4477 
4478 void G1CollectedHeap::increase_used(size_t bytes) {
4479   _summary_bytes_used += bytes;
4480 }
4481 
4482 void G1CollectedHeap::decrease_used(size_t bytes) {
4483   assert(_summary_bytes_used >= bytes,
4484          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4485          _summary_bytes_used, bytes);
4486   _summary_bytes_used -= bytes;
4487 }
4488 
4489 void G1CollectedHeap::set_used(size_t bytes) {
4490   _summary_bytes_used = bytes;
4491 }
4492 
4493 class RebuildRegionSetsClosure : public HeapRegionClosure {
4494 private:
4495   bool _free_list_only;
4496 
4497   HeapRegionSet* _old_set;
4498   HeapRegionManager* _hrm;
4499 
4500   size_t _total_used;
4501 
4502 public:
4503   RebuildRegionSetsClosure(bool free_list_only,
4504                            HeapRegionSet* old_set,
4505                            HeapRegionManager* hrm) :
4506     _free_list_only(free_list_only),
4507     _old_set(old_set), _hrm(hrm), _total_used(0) {
4508     assert(_hrm->num_free_regions() == 0, "pre-condition");
4509     if (!free_list_only) {
4510       assert(_old_set->is_empty(), "pre-condition");
4511     }
4512   }
4513 
4514   bool do_heap_region(HeapRegion* r) {
4515     if (r->is_empty()) {
4516       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4517       // Add free regions to the free list
4518       r->set_free();
4519       _hrm->insert_into_free_list(r);
4520     } else if (!_free_list_only) {
4521       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4522 
4523       if (r->is_archive() || r->is_humongous()) {
4524         // We ignore archive and humongous regions. We left these sets unchanged.
4525       } else {
4526         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4527         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4528         r->move_to_old();
4529         _old_set->add(r);
4530       }
4531       _total_used += r->used();
4532     }
4533 
4534     return false;
4535   }
4536 
4537   size_t total_used() {
4538     return _total_used;
4539   }
4540 };
4541 
4542 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4543   assert_at_safepoint_on_vm_thread();
4544 
4545   if (!free_list_only) {
4546     _eden.clear();
4547     _survivor.clear();
4548   }
4549 
4550   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4551   heap_region_iterate(&cl);
4552 
4553   if (!free_list_only) {
4554     set_used(cl.total_used());
4555     if (_archive_allocator != NULL) {
4556       _archive_allocator->clear_used();
4557     }
4558   }
4559   assert(used() == recalculate_used(),
4560          "inconsistent used(), value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4561          used(), recalculate_used());
4562 }
4563 
4564 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4565   HeapRegion* hr = heap_region_containing(p);
4566   return hr->is_in(p);
4567 }
4568 
4569 // Methods for the mutator alloc region
4570 
4571 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4572                                                       bool force) {
4573   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4574   bool should_allocate = policy()->should_allocate_mutator_region();
4575   if (force || should_allocate) {
4576     HeapRegion* new_alloc_region = new_region(word_size,
4577                                               HeapRegionType::Eden,
4578                                               false /* do_expand */);
4579     if (new_alloc_region != NULL) {
4580       set_region_short_lived_locked(new_alloc_region);
4581       _hr_printer.alloc(new_alloc_region, !should_allocate);
4582       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4583       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4584       return new_alloc_region;
4585     }
4586   }
4587   return NULL;
4588 }
4589 
4590 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4591                                                   size_t allocated_bytes) {
4592   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4593   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4594 
4595   collection_set()->add_eden_region(alloc_region);
4596   increase_used(allocated_bytes);
4597   _hr_printer.retire(alloc_region);
4598   // We update the eden sizes here, when the region is retired,
4599   // instead of when it's allocated, since this is the point that its
4600   // used space has been recorded in _summary_bytes_used.
4601   g1mm()->update_eden_size();
4602 }
4603 
4604 // Methods for the GC alloc regions
4605 
4606 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4607   if (dest.is_old()) {
4608     return true;
4609   } else {
4610     return survivor_regions_count() < policy()->max_survivor_regions();
4611   }
4612 }
4613 
4614 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4615   assert(FreeList_lock->owned_by_self(), "pre-condition");
4616 
4617   if (!has_more_regions(dest)) {
4618     return NULL;
4619   }
4620 
4621   HeapRegionType type;
4622   if (dest.is_young()) {
4623     type = HeapRegionType::Survivor;
4624   } else {
4625     type = HeapRegionType::Old;
4626   }
4627 
4628   HeapRegion* new_alloc_region = new_region(word_size,
4629                                             type,
4630                                             true /* do_expand */);
4631 
4632   if (new_alloc_region != NULL) {
4633     if (type.is_survivor()) {
4634       new_alloc_region->set_survivor();
4635       _survivor.add(new_alloc_region);
4636       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4637     } else {
4638       new_alloc_region->set_old();
4639       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4640     }
4641     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4642     _hr_printer.alloc(new_alloc_region);
4643     return new_alloc_region;
4644   }
4645   return NULL;
4646 }
4647 
4648 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4649                                              size_t allocated_bytes,
4650                                              InCSetState dest) {
4651   policy()->record_bytes_copied_during_gc(allocated_bytes);
4652   if (dest.is_old()) {
4653     old_set_add(alloc_region);
4654   }
4655 
4656   bool const during_im = collector_state()->in_initial_mark_gc();
4657   if (during_im && allocated_bytes > 0) {
4658     _cm->root_regions()->add(alloc_region);
4659   }
4660   _hr_printer.retire(alloc_region);
4661 }
4662 
4663 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4664   bool expanded = false;
4665   uint index = _hrm->find_highest_free(&expanded);
4666 
4667   if (index != G1_NO_HRM_INDEX) {
4668     if (expanded) {
4669       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4670                                 HeapRegion::GrainWords * HeapWordSize);
4671     }
4672     _hrm->allocate_free_regions_starting_at(index, 1);
4673     return region_at(index);
4674   }
4675   return NULL;
4676 }
4677 
4678 // Optimized nmethod scanning
4679 
4680 class RegisterNMethodOopClosure: public OopClosure {
4681   G1CollectedHeap* _g1h;
4682   nmethod* _nm;
4683 
4684   template <class T> void do_oop_work(T* p) {
4685     T heap_oop = RawAccess<>::oop_load(p);
4686     if (!CompressedOops::is_null(heap_oop)) {
4687       oop obj = CompressedOops::decode_not_null(heap_oop);
4688       HeapRegion* hr = _g1h->heap_region_containing(obj);
4689       assert(!hr->is_continues_humongous(),
4690              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4691              " starting at " HR_FORMAT,
4692              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4693 
4694       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4695       hr->add_strong_code_root_locked(_nm);
4696     }
4697   }
4698 
4699 public:
4700   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4701     _g1h(g1h), _nm(nm) {}
4702 
4703   void do_oop(oop* p)       { do_oop_work(p); }
4704   void do_oop(narrowOop* p) { do_oop_work(p); }
4705 };
4706 
4707 class UnregisterNMethodOopClosure: public OopClosure {
4708   G1CollectedHeap* _g1h;
4709   nmethod* _nm;
4710 
4711   template <class T> void do_oop_work(T* p) {
4712     T heap_oop = RawAccess<>::oop_load(p);
4713     if (!CompressedOops::is_null(heap_oop)) {
4714       oop obj = CompressedOops::decode_not_null(heap_oop);
4715       HeapRegion* hr = _g1h->heap_region_containing(obj);
4716       assert(!hr->is_continues_humongous(),
4717              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4718              " starting at " HR_FORMAT,
4719              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4720 
4721       hr->remove_strong_code_root(_nm);
4722     }
4723   }
4724 
4725 public:
4726   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4727     _g1h(g1h), _nm(nm) {}
4728 
4729   void do_oop(oop* p)       { do_oop_work(p); }
4730   void do_oop(narrowOop* p) { do_oop_work(p); }
4731 };
4732 
4733 // Returns true if the reference points to an object that
4734 // can move in an incremental collection.
4735 bool G1CollectedHeap::is_scavengable(oop obj) {
4736   HeapRegion* hr = heap_region_containing(obj);
4737   return !hr->is_pinned();
4738 }
4739 
4740 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4741   guarantee(nm != NULL, "sanity");
4742   RegisterNMethodOopClosure reg_cl(this, nm);
4743   nm->oops_do(&reg_cl);
4744 }
4745 
4746 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4747   guarantee(nm != NULL, "sanity");
4748   UnregisterNMethodOopClosure reg_cl(this, nm);
4749   nm->oops_do(&reg_cl, true);
4750 }
4751 
4752 void G1CollectedHeap::purge_code_root_memory() {
4753   double purge_start = os::elapsedTime();
4754   G1CodeRootSet::purge();
4755   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4756   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4757 }
4758 
4759 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4760   G1CollectedHeap* _g1h;
4761 
4762 public:
4763   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4764     _g1h(g1h) {}
4765 
4766   void do_code_blob(CodeBlob* cb) {
4767     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4768     if (nm == NULL) {
4769       return;
4770     }
4771 
4772     if (ScavengeRootsInCode) {
4773       _g1h->register_nmethod(nm);
4774     }
4775   }
4776 };
4777 
4778 void G1CollectedHeap::rebuild_strong_code_roots() {
4779   RebuildStrongCodeRootClosure blob_cl(this);
4780   CodeCache::blobs_do(&blob_cl);
4781 }
4782 
4783 void G1CollectedHeap::initialize_serviceability() {
4784   _g1mm->initialize_serviceability();
4785 }
4786 
4787 MemoryUsage G1CollectedHeap::memory_usage() {
4788   return _g1mm->memory_usage();
4789 }
4790 
4791 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4792   return _g1mm->memory_managers();
4793 }
4794 
4795 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4796   return _g1mm->memory_pools();
4797 }