1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc/g1/g1CollectionSet.hpp"
  35 #include "gc/g1/g1CollectorPolicy.hpp"
  36 #include "gc/g1/g1CollectorState.hpp"
  37 #include "gc/g1/g1ConcurrentRefine.hpp"
  38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  40 #include "gc/g1/g1DirtyCardQueue.hpp"
  41 #include "gc/g1/g1EvacStats.inline.hpp"
  42 #include "gc/g1/g1FullCollector.hpp"
  43 #include "gc/g1/g1GCPhaseTimes.hpp"
  44 #include "gc/g1/g1HeapSizingPolicy.hpp"
  45 #include "gc/g1/g1HeapTransition.hpp"
  46 #include "gc/g1/g1HeapVerifier.hpp"
  47 #include "gc/g1/g1HotCardCache.hpp"
  48 #include "gc/g1/g1MemoryPool.hpp"
  49 #include "gc/g1/g1OopClosures.inline.hpp"
  50 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  51 #include "gc/g1/g1Policy.hpp"
  52 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  53 #include "gc/g1/g1RemSet.hpp"
  54 #include "gc/g1/g1RootClosures.hpp"
  55 #include "gc/g1/g1RootProcessor.hpp"
  56 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  57 #include "gc/g1/g1StringDedup.hpp"
  58 #include "gc/g1/g1ThreadLocalData.hpp"
  59 #include "gc/g1/g1YCTypes.hpp"
  60 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  61 #include "gc/g1/g1VMOperations.hpp"
  62 #include "gc/g1/heapRegion.inline.hpp"
  63 #include "gc/g1/heapRegionRemSet.hpp"
  64 #include "gc/g1/heapRegionSet.inline.hpp"
  65 #include "gc/shared/gcBehaviours.hpp"
  66 #include "gc/shared/gcHeapSummary.hpp"
  67 #include "gc/shared/gcId.hpp"
  68 #include "gc/shared/gcLocker.hpp"
  69 #include "gc/shared/gcTimer.hpp"
  70 #include "gc/shared/gcTrace.hpp"
  71 #include "gc/shared/gcTraceTime.inline.hpp"
  72 #include "gc/shared/generationSpec.hpp"
  73 #include "gc/shared/isGCActiveMark.hpp"
  74 #include "gc/shared/oopStorageParState.hpp"
  75 #include "gc/shared/parallelCleaning.hpp"
  76 #include "gc/shared/preservedMarks.inline.hpp"
  77 #include "gc/shared/suspendibleThreadSet.hpp"
  78 #include "gc/shared/referenceProcessor.inline.hpp"
  79 #include "gc/shared/taskqueue.inline.hpp"
  80 #include "gc/shared/weakProcessor.inline.hpp"
  81 #include "gc/shared/workerPolicy.hpp"
  82 #include "logging/log.hpp"
  83 #include "memory/allocation.hpp"
  84 #include "memory/iterator.hpp"
  85 #include "memory/resourceArea.hpp"
  86 #include "oops/access.inline.hpp"
  87 #include "oops/compressedOops.inline.hpp"
  88 #include "oops/oop.inline.hpp"
  89 #include "runtime/atomic.hpp"
  90 #include "runtime/flags/flagSetting.hpp"
  91 #include "runtime/handles.inline.hpp"
  92 #include "runtime/init.hpp"
  93 #include "runtime/orderAccess.hpp"
  94 #include "runtime/threadSMR.hpp"
  95 #include "runtime/vmThread.hpp"
  96 #include "utilities/align.hpp"
  97 #include "utilities/globalDefinitions.hpp"
  98 #include "utilities/stack.inline.hpp"
  99 
 100 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 101 
 102 // INVARIANTS/NOTES
 103 //
 104 // All allocation activity covered by the G1CollectedHeap interface is
 105 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 106 // and allocate_new_tlab, which are the "entry" points to the
 107 // allocation code from the rest of the JVM.  (Note that this does not
 108 // apply to TLAB allocation, which is not part of this interface: it
 109 // is done by clients of this interface.)
 110 
 111 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 112  private:
 113   size_t _num_dirtied;
 114   G1CollectedHeap* _g1h;
 115   G1CardTable* _g1_ct;
 116 
 117   HeapRegion* region_for_card(jbyte* card_ptr) const {
 118     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 119   }
 120 
 121   bool will_become_free(HeapRegion* hr) const {
 122     // A region will be freed by free_collection_set if the region is in the
 123     // collection set and has not had an evacuation failure.
 124     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 125   }
 126 
 127  public:
 128   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 129     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 130 
 131   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 132     HeapRegion* hr = region_for_card(card_ptr);
 133 
 134     // Should only dirty cards in regions that won't be freed.
 135     if (!will_become_free(hr)) {
 136       *card_ptr = G1CardTable::dirty_card_val();
 137       _num_dirtied++;
 138     }
 139 
 140     return true;
 141   }
 142 
 143   size_t num_dirtied()   const { return _num_dirtied; }
 144 };
 145 
 146 
 147 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 148   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 149 }
 150 
 151 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 152   // The from card cache is not the memory that is actually committed. So we cannot
 153   // take advantage of the zero_filled parameter.
 154   reset_from_card_cache(start_idx, num_regions);
 155 }
 156 
 157 
 158 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 159                                              MemRegion mr) {
 160   return new HeapRegion(hrs_index, bot(), mr);
 161 }
 162 
 163 // Private methods.
 164 
 165 HeapRegion* G1CollectedHeap::new_region(size_t word_size, HeapRegionType type, bool do_expand) {
 166   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 167          "the only time we use this to allocate a humongous region is "
 168          "when we are allocating a single humongous region");
 169 
 170   HeapRegion* res = _hrm->allocate_free_region(type);
 171 
 172   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 173     // Currently, only attempts to allocate GC alloc regions set
 174     // do_expand to true. So, we should only reach here during a
 175     // safepoint. If this assumption changes we might have to
 176     // reconsider the use of _expand_heap_after_alloc_failure.
 177     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 178 
 179     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 180                               word_size * HeapWordSize);
 181 
 182     if (expand(word_size * HeapWordSize)) {
 183       // Given that expand() succeeded in expanding the heap, and we
 184       // always expand the heap by an amount aligned to the heap
 185       // region size, the free list should in theory not be empty.
 186       // In either case allocate_free_region() will check for NULL.
 187       res = _hrm->allocate_free_region(type);
 188     } else {
 189       _expand_heap_after_alloc_failure = false;
 190     }
 191   }
 192   return res;
 193 }
 194 
 195 HeapWord*
 196 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 197                                                            uint num_regions,
 198                                                            size_t word_size) {
 199   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 200   assert(is_humongous(word_size), "word_size should be humongous");
 201   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 202 
 203   // Index of last region in the series.
 204   uint last = first + num_regions - 1;
 205 
 206   // We need to initialize the region(s) we just discovered. This is
 207   // a bit tricky given that it can happen concurrently with
 208   // refinement threads refining cards on these regions and
 209   // potentially wanting to refine the BOT as they are scanning
 210   // those cards (this can happen shortly after a cleanup; see CR
 211   // 6991377). So we have to set up the region(s) carefully and in
 212   // a specific order.
 213 
 214   // The word size sum of all the regions we will allocate.
 215   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 216   assert(word_size <= word_size_sum, "sanity");
 217 
 218   // This will be the "starts humongous" region.
 219   HeapRegion* first_hr = region_at(first);
 220   // The header of the new object will be placed at the bottom of
 221   // the first region.
 222   HeapWord* new_obj = first_hr->bottom();
 223   // This will be the new top of the new object.
 224   HeapWord* obj_top = new_obj + word_size;
 225 
 226   // First, we need to zero the header of the space that we will be
 227   // allocating. When we update top further down, some refinement
 228   // threads might try to scan the region. By zeroing the header we
 229   // ensure that any thread that will try to scan the region will
 230   // come across the zero klass word and bail out.
 231   //
 232   // NOTE: It would not have been correct to have used
 233   // CollectedHeap::fill_with_object() and make the space look like
 234   // an int array. The thread that is doing the allocation will
 235   // later update the object header to a potentially different array
 236   // type and, for a very short period of time, the klass and length
 237   // fields will be inconsistent. This could cause a refinement
 238   // thread to calculate the object size incorrectly.
 239   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 240 
 241   // Next, pad out the unused tail of the last region with filler
 242   // objects, for improved usage accounting.
 243   // How many words we use for filler objects.
 244   size_t word_fill_size = word_size_sum - word_size;
 245 
 246   // How many words memory we "waste" which cannot hold a filler object.
 247   size_t words_not_fillable = 0;
 248 
 249   if (word_fill_size >= min_fill_size()) {
 250     fill_with_objects(obj_top, word_fill_size);
 251   } else if (word_fill_size > 0) {
 252     // We have space to fill, but we cannot fit an object there.
 253     words_not_fillable = word_fill_size;
 254     word_fill_size = 0;
 255   }
 256 
 257   // We will set up the first region as "starts humongous". This
 258   // will also update the BOT covering all the regions to reflect
 259   // that there is a single object that starts at the bottom of the
 260   // first region.
 261   first_hr->set_starts_humongous(obj_top, word_fill_size);
 262   _policy->remset_tracker()->update_at_allocate(first_hr);
 263   // Then, if there are any, we will set up the "continues
 264   // humongous" regions.
 265   HeapRegion* hr = NULL;
 266   for (uint i = first + 1; i <= last; ++i) {
 267     hr = region_at(i);
 268     hr->set_continues_humongous(first_hr);
 269     _policy->remset_tracker()->update_at_allocate(hr);
 270   }
 271 
 272   // Up to this point no concurrent thread would have been able to
 273   // do any scanning on any region in this series. All the top
 274   // fields still point to bottom, so the intersection between
 275   // [bottom,top] and [card_start,card_end] will be empty. Before we
 276   // update the top fields, we'll do a storestore to make sure that
 277   // no thread sees the update to top before the zeroing of the
 278   // object header and the BOT initialization.
 279   OrderAccess::storestore();
 280 
 281   // Now, we will update the top fields of the "continues humongous"
 282   // regions except the last one.
 283   for (uint i = first; i < last; ++i) {
 284     hr = region_at(i);
 285     hr->set_top(hr->end());
 286   }
 287 
 288   hr = region_at(last);
 289   // If we cannot fit a filler object, we must set top to the end
 290   // of the humongous object, otherwise we cannot iterate the heap
 291   // and the BOT will not be complete.
 292   hr->set_top(hr->end() - words_not_fillable);
 293 
 294   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 295          "obj_top should be in last region");
 296 
 297   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 298 
 299   assert(words_not_fillable == 0 ||
 300          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 301          "Miscalculation in humongous allocation");
 302 
 303   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 304 
 305   for (uint i = first; i <= last; ++i) {
 306     hr = region_at(i);
 307     _humongous_set.add(hr);
 308     _hr_printer.alloc(hr);
 309   }
 310 
 311   return new_obj;
 312 }
 313 
 314 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 315   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 316   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 317 }
 318 
 319 // If could fit into free regions w/o expansion, try.
 320 // Otherwise, if can expand, do so.
 321 // Otherwise, if using ex regions might help, try with ex given back.
 322 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 323   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 324 
 325   _verifier->verify_region_sets_optional();
 326 
 327   uint first = G1_NO_HRM_INDEX;
 328   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 329 
 330   if (obj_regions == 1) {
 331     // Only one region to allocate, try to use a fast path by directly allocating
 332     // from the free lists. Do not try to expand here, we will potentially do that
 333     // later.
 334     HeapRegion* hr = new_region(word_size, HeapRegionType::Humongous, false /* do_expand */);
 335     if (hr != NULL) {
 336       first = hr->hrm_index();
 337     }
 338   } else {
 339     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 340     // are lucky enough to find some.
 341     first = _hrm->find_contiguous_only_empty(obj_regions);
 342     if (first != G1_NO_HRM_INDEX) {
 343       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 344     }
 345   }
 346 
 347   if (first == G1_NO_HRM_INDEX) {
 348     // Policy: We could not find enough regions for the humongous object in the
 349     // free list. Look through the heap to find a mix of free and uncommitted regions.
 350     // If so, try expansion.
 351     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
 352     if (first != G1_NO_HRM_INDEX) {
 353       // We found something. Make sure these regions are committed, i.e. expand
 354       // the heap. Alternatively we could do a defragmentation GC.
 355       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 356                                     word_size * HeapWordSize);
 357 
 358       _hrm->expand_at(first, obj_regions, workers());
 359       policy()->record_new_heap_size(num_regions());
 360 
 361 #ifdef ASSERT
 362       for (uint i = first; i < first + obj_regions; ++i) {
 363         HeapRegion* hr = region_at(i);
 364         assert(hr->is_free(), "sanity");
 365         assert(hr->is_empty(), "sanity");
 366         assert(is_on_master_free_list(hr), "sanity");
 367       }
 368 #endif
 369       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 370     } else {
 371       // Policy: Potentially trigger a defragmentation GC.
 372     }
 373   }
 374 
 375   HeapWord* result = NULL;
 376   if (first != G1_NO_HRM_INDEX) {
 377     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 378     assert(result != NULL, "it should always return a valid result");
 379 
 380     // A successful humongous object allocation changes the used space
 381     // information of the old generation so we need to recalculate the
 382     // sizes and update the jstat counters here.
 383     g1mm()->update_sizes();
 384   }
 385 
 386   _verifier->verify_region_sets_optional();
 387 
 388   return result;
 389 }
 390 
 391 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 392                                              size_t requested_size,
 393                                              size_t* actual_size) {
 394   assert_heap_not_locked_and_not_at_safepoint();
 395   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 396 
 397   return attempt_allocation(min_size, requested_size, actual_size);
 398 }
 399 
 400 HeapWord*
 401 G1CollectedHeap::mem_allocate(size_t word_size,
 402                               bool*  gc_overhead_limit_was_exceeded) {
 403   assert_heap_not_locked_and_not_at_safepoint();
 404 
 405   if (is_humongous(word_size)) {
 406     return attempt_allocation_humongous(word_size);
 407   }
 408   size_t dummy = 0;
 409   return attempt_allocation(word_size, word_size, &dummy);
 410 }
 411 
 412 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 413   ResourceMark rm; // For retrieving the thread names in log messages.
 414 
 415   // Make sure you read the note in attempt_allocation_humongous().
 416 
 417   assert_heap_not_locked_and_not_at_safepoint();
 418   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 419          "be called for humongous allocation requests");
 420 
 421   // We should only get here after the first-level allocation attempt
 422   // (attempt_allocation()) failed to allocate.
 423 
 424   // We will loop until a) we manage to successfully perform the
 425   // allocation or b) we successfully schedule a collection which
 426   // fails to perform the allocation. b) is the only case when we'll
 427   // return NULL.
 428   HeapWord* result = NULL;
 429   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 430     bool should_try_gc;
 431     uint gc_count_before;
 432 
 433     {
 434       MutexLockerEx x(Heap_lock);
 435       result = _allocator->attempt_allocation_locked(word_size);
 436       if (result != NULL) {
 437         return result;
 438       }
 439 
 440       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 441       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 442       // waiting because the GCLocker is active to not wait too long.
 443       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 444         // No need for an ergo message here, can_expand_young_list() does this when
 445         // it returns true.
 446         result = _allocator->attempt_allocation_force(word_size);
 447         if (result != NULL) {
 448           return result;
 449         }
 450       }
 451       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 452       // the GCLocker initiated GC has been performed and then retry. This includes
 453       // the case when the GC Locker is not active but has not been performed.
 454       should_try_gc = !GCLocker::needs_gc();
 455       // Read the GC count while still holding the Heap_lock.
 456       gc_count_before = total_collections();
 457     }
 458 
 459     if (should_try_gc) {
 460       bool succeeded;
 461       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 462                                    GCCause::_g1_inc_collection_pause);
 463       if (result != NULL) {
 464         assert(succeeded, "only way to get back a non-NULL result");
 465         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 466                              Thread::current()->name(), p2i(result));
 467         return result;
 468       }
 469 
 470       if (succeeded) {
 471         // We successfully scheduled a collection which failed to allocate. No
 472         // point in trying to allocate further. We'll just return NULL.
 473         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 474                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 475         return NULL;
 476       }
 477       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 478                            Thread::current()->name(), word_size);
 479     } else {
 480       // Failed to schedule a collection.
 481       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 482         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 483                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 484         return NULL;
 485       }
 486       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 487       // The GCLocker is either active or the GCLocker initiated
 488       // GC has not yet been performed. Stall until it is and
 489       // then retry the allocation.
 490       GCLocker::stall_until_clear();
 491       gclocker_retry_count += 1;
 492     }
 493 
 494     // We can reach here if we were unsuccessful in scheduling a
 495     // collection (because another thread beat us to it) or if we were
 496     // stalled due to the GC locker. In either can we should retry the
 497     // allocation attempt in case another thread successfully
 498     // performed a collection and reclaimed enough space. We do the
 499     // first attempt (without holding the Heap_lock) here and the
 500     // follow-on attempt will be at the start of the next loop
 501     // iteration (after taking the Heap_lock).
 502     size_t dummy = 0;
 503     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 504     if (result != NULL) {
 505       return result;
 506     }
 507 
 508     // Give a warning if we seem to be looping forever.
 509     if ((QueuedAllocationWarningCount > 0) &&
 510         (try_count % QueuedAllocationWarningCount == 0)) {
 511       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 512                              Thread::current()->name(), try_count, word_size);
 513     }
 514   }
 515 
 516   ShouldNotReachHere();
 517   return NULL;
 518 }
 519 
 520 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 521   assert_at_safepoint_on_vm_thread();
 522   if (_archive_allocator == NULL) {
 523     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 524   }
 525 }
 526 
 527 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 528   // Allocations in archive regions cannot be of a size that would be considered
 529   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 530   // may be different at archive-restore time.
 531   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 532 }
 533 
 534 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 535   assert_at_safepoint_on_vm_thread();
 536   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 537   if (is_archive_alloc_too_large(word_size)) {
 538     return NULL;
 539   }
 540   return _archive_allocator->archive_mem_allocate(word_size);
 541 }
 542 
 543 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 544                                               size_t end_alignment_in_bytes) {
 545   assert_at_safepoint_on_vm_thread();
 546   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 547 
 548   // Call complete_archive to do the real work, filling in the MemRegion
 549   // array with the archive regions.
 550   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 551   delete _archive_allocator;
 552   _archive_allocator = NULL;
 553 }
 554 
 555 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 556   assert(ranges != NULL, "MemRegion array NULL");
 557   assert(count != 0, "No MemRegions provided");
 558   MemRegion reserved = _hrm->reserved();
 559   for (size_t i = 0; i < count; i++) {
 560     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 561       return false;
 562     }
 563   }
 564   return true;
 565 }
 566 
 567 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 568                                             size_t count,
 569                                             bool open) {
 570   assert(!is_init_completed(), "Expect to be called at JVM init time");
 571   assert(ranges != NULL, "MemRegion array NULL");
 572   assert(count != 0, "No MemRegions provided");
 573   MutexLockerEx x(Heap_lock);
 574 
 575   MemRegion reserved = _hrm->reserved();
 576   HeapWord* prev_last_addr = NULL;
 577   HeapRegion* prev_last_region = NULL;
 578 
 579   // Temporarily disable pretouching of heap pages. This interface is used
 580   // when mmap'ing archived heap data in, so pre-touching is wasted.
 581   FlagSetting fs(AlwaysPreTouch, false);
 582 
 583   // Enable archive object checking used by G1MarkSweep. We have to let it know
 584   // about each archive range, so that objects in those ranges aren't marked.
 585   G1ArchiveAllocator::enable_archive_object_check();
 586 
 587   // For each specified MemRegion range, allocate the corresponding G1
 588   // regions and mark them as archive regions. We expect the ranges
 589   // in ascending starting address order, without overlap.
 590   for (size_t i = 0; i < count; i++) {
 591     MemRegion curr_range = ranges[i];
 592     HeapWord* start_address = curr_range.start();
 593     size_t word_size = curr_range.word_size();
 594     HeapWord* last_address = curr_range.last();
 595     size_t commits = 0;
 596 
 597     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 598               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 599               p2i(start_address), p2i(last_address));
 600     guarantee(start_address > prev_last_addr,
 601               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 602               p2i(start_address), p2i(prev_last_addr));
 603     prev_last_addr = last_address;
 604 
 605     // Check for ranges that start in the same G1 region in which the previous
 606     // range ended, and adjust the start address so we don't try to allocate
 607     // the same region again. If the current range is entirely within that
 608     // region, skip it, just adjusting the recorded top.
 609     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 610     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 611       start_address = start_region->end();
 612       if (start_address > last_address) {
 613         increase_used(word_size * HeapWordSize);
 614         start_region->set_top(last_address + 1);
 615         continue;
 616       }
 617       start_region->set_top(start_address);
 618       curr_range = MemRegion(start_address, last_address + 1);
 619       start_region = _hrm->addr_to_region(start_address);
 620     }
 621 
 622     // Perform the actual region allocation, exiting if it fails.
 623     // Then note how much new space we have allocated.
 624     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 625       return false;
 626     }
 627     increase_used(word_size * HeapWordSize);
 628     if (commits != 0) {
 629       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 630                                 HeapRegion::GrainWords * HeapWordSize * commits);
 631 
 632     }
 633 
 634     // Mark each G1 region touched by the range as archive, add it to
 635     // the old set, and set top.
 636     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 637     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 638     prev_last_region = last_region;
 639 
 640     while (curr_region != NULL) {
 641       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 642              "Region already in use (index %u)", curr_region->hrm_index());
 643       if (open) {
 644         curr_region->set_open_archive();
 645       } else {
 646         curr_region->set_closed_archive();
 647       }
 648       _hr_printer.alloc(curr_region);
 649       _archive_set.add(curr_region);
 650       HeapWord* top;
 651       HeapRegion* next_region;
 652       if (curr_region != last_region) {
 653         top = curr_region->end();
 654         next_region = _hrm->next_region_in_heap(curr_region);
 655       } else {
 656         top = last_address + 1;
 657         next_region = NULL;
 658       }
 659       curr_region->set_top(top);
 660       curr_region->set_first_dead(top);
 661       curr_region->set_end_of_live(top);
 662       curr_region = next_region;
 663     }
 664 
 665     // Notify mark-sweep of the archive
 666     G1ArchiveAllocator::set_range_archive(curr_range, open);
 667   }
 668   return true;
 669 }
 670 
 671 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 672   assert(!is_init_completed(), "Expect to be called at JVM init time");
 673   assert(ranges != NULL, "MemRegion array NULL");
 674   assert(count != 0, "No MemRegions provided");
 675   MemRegion reserved = _hrm->reserved();
 676   HeapWord *prev_last_addr = NULL;
 677   HeapRegion* prev_last_region = NULL;
 678 
 679   // For each MemRegion, create filler objects, if needed, in the G1 regions
 680   // that contain the address range. The address range actually within the
 681   // MemRegion will not be modified. That is assumed to have been initialized
 682   // elsewhere, probably via an mmap of archived heap data.
 683   MutexLockerEx x(Heap_lock);
 684   for (size_t i = 0; i < count; i++) {
 685     HeapWord* start_address = ranges[i].start();
 686     HeapWord* last_address = ranges[i].last();
 687 
 688     assert(reserved.contains(start_address) && reserved.contains(last_address),
 689            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 690            p2i(start_address), p2i(last_address));
 691     assert(start_address > prev_last_addr,
 692            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 693            p2i(start_address), p2i(prev_last_addr));
 694 
 695     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 696     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 697     HeapWord* bottom_address = start_region->bottom();
 698 
 699     // Check for a range beginning in the same region in which the
 700     // previous one ended.
 701     if (start_region == prev_last_region) {
 702       bottom_address = prev_last_addr + 1;
 703     }
 704 
 705     // Verify that the regions were all marked as archive regions by
 706     // alloc_archive_regions.
 707     HeapRegion* curr_region = start_region;
 708     while (curr_region != NULL) {
 709       guarantee(curr_region->is_archive(),
 710                 "Expected archive region at index %u", curr_region->hrm_index());
 711       if (curr_region != last_region) {
 712         curr_region = _hrm->next_region_in_heap(curr_region);
 713       } else {
 714         curr_region = NULL;
 715       }
 716     }
 717 
 718     prev_last_addr = last_address;
 719     prev_last_region = last_region;
 720 
 721     // Fill the memory below the allocated range with dummy object(s),
 722     // if the region bottom does not match the range start, or if the previous
 723     // range ended within the same G1 region, and there is a gap.
 724     if (start_address != bottom_address) {
 725       size_t fill_size = pointer_delta(start_address, bottom_address);
 726       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 727       increase_used(fill_size * HeapWordSize);
 728     }
 729   }
 730 }
 731 
 732 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 733                                                      size_t desired_word_size,
 734                                                      size_t* actual_word_size) {
 735   assert_heap_not_locked_and_not_at_safepoint();
 736   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 737          "be called for humongous allocation requests");
 738 
 739   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 740 
 741   if (result == NULL) {
 742     *actual_word_size = desired_word_size;
 743     result = attempt_allocation_slow(desired_word_size);
 744   }
 745 
 746   assert_heap_not_locked();
 747   if (result != NULL) {
 748     assert(*actual_word_size != 0, "Actual size must have been set here");
 749     dirty_young_block(result, *actual_word_size);
 750   } else {
 751     *actual_word_size = 0;
 752   }
 753 
 754   return result;
 755 }
 756 
 757 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count, bool is_open) {
 758   assert(!is_init_completed(), "Expect to be called at JVM init time");
 759   assert(ranges != NULL, "MemRegion array NULL");
 760   assert(count != 0, "No MemRegions provided");
 761   MemRegion reserved = _hrm->reserved();
 762   HeapWord* prev_last_addr = NULL;
 763   HeapRegion* prev_last_region = NULL;
 764   size_t size_used = 0;
 765   size_t uncommitted_regions = 0;
 766 
 767   // For each Memregion, free the G1 regions that constitute it, and
 768   // notify mark-sweep that the range is no longer to be considered 'archive.'
 769   MutexLockerEx x(Heap_lock);
 770   for (size_t i = 0; i < count; i++) {
 771     HeapWord* start_address = ranges[i].start();
 772     HeapWord* last_address = ranges[i].last();
 773 
 774     assert(reserved.contains(start_address) && reserved.contains(last_address),
 775            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 776            p2i(start_address), p2i(last_address));
 777     assert(start_address > prev_last_addr,
 778            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 779            p2i(start_address), p2i(prev_last_addr));
 780     size_used += ranges[i].byte_size();
 781     prev_last_addr = last_address;
 782 
 783     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 784     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 785 
 786     // Check for ranges that start in the same G1 region in which the previous
 787     // range ended, and adjust the start address so we don't try to free
 788     // the same region again. If the current range is entirely within that
 789     // region, skip it.
 790     if (start_region == prev_last_region) {
 791       start_address = start_region->end();
 792       if (start_address > last_address) {
 793         continue;
 794       }
 795       start_region = _hrm->addr_to_region(start_address);
 796     }
 797     prev_last_region = last_region;
 798 
 799     // After verifying that each region was marked as an archive region by
 800     // alloc_archive_regions, set it free and empty and uncommit it.
 801     HeapRegion* curr_region = start_region;
 802     while (curr_region != NULL) {
 803       guarantee(curr_region->is_archive(),
 804                 "Expected archive region at index %u", curr_region->hrm_index());
 805       uint curr_index = curr_region->hrm_index();
 806       _archive_set.remove(curr_region);
 807       curr_region->set_free();
 808       curr_region->set_top(curr_region->bottom());
 809       if (curr_region != last_region) {
 810         curr_region = _hrm->next_region_in_heap(curr_region);
 811       } else {
 812         curr_region = NULL;
 813       }
 814       _hrm->shrink_at(curr_index, 1);
 815       uncommitted_regions++;
 816     }
 817 
 818     // Notify mark-sweep that this is no longer an archive range.
 819     G1ArchiveAllocator::clear_range_archive(ranges[i], is_open);
 820   }
 821 
 822   if (uncommitted_regions != 0) {
 823     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 824                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 825   }
 826   decrease_used(size_used);
 827 }
 828 
 829 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 830   assert(obj != NULL, "archived obj is NULL");
 831   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 832 
 833   // Loading an archived object makes it strongly reachable. If it is
 834   // loaded during concurrent marking, it must be enqueued to the SATB
 835   // queue, shading the previously white object gray.
 836   G1BarrierSet::enqueue(obj);
 837 
 838   return obj;
 839 }
 840 
 841 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 842   ResourceMark rm; // For retrieving the thread names in log messages.
 843 
 844   // The structure of this method has a lot of similarities to
 845   // attempt_allocation_slow(). The reason these two were not merged
 846   // into a single one is that such a method would require several "if
 847   // allocation is not humongous do this, otherwise do that"
 848   // conditional paths which would obscure its flow. In fact, an early
 849   // version of this code did use a unified method which was harder to
 850   // follow and, as a result, it had subtle bugs that were hard to
 851   // track down. So keeping these two methods separate allows each to
 852   // be more readable. It will be good to keep these two in sync as
 853   // much as possible.
 854 
 855   assert_heap_not_locked_and_not_at_safepoint();
 856   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 857          "should only be called for humongous allocations");
 858 
 859   // Humongous objects can exhaust the heap quickly, so we should check if we
 860   // need to start a marking cycle at each humongous object allocation. We do
 861   // the check before we do the actual allocation. The reason for doing it
 862   // before the allocation is that we avoid having to keep track of the newly
 863   // allocated memory while we do a GC.
 864   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 865                                            word_size)) {
 866     collect(GCCause::_g1_humongous_allocation);
 867   }
 868 
 869   // We will loop until a) we manage to successfully perform the
 870   // allocation or b) we successfully schedule a collection which
 871   // fails to perform the allocation. b) is the only case when we'll
 872   // return NULL.
 873   HeapWord* result = NULL;
 874   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 875     bool should_try_gc;
 876     uint gc_count_before;
 877 
 878 
 879     {
 880       MutexLockerEx x(Heap_lock);
 881 
 882       // Given that humongous objects are not allocated in young
 883       // regions, we'll first try to do the allocation without doing a
 884       // collection hoping that there's enough space in the heap.
 885       result = humongous_obj_allocate(word_size);
 886       if (result != NULL) {
 887         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 888         policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 889         return result;
 890       }
 891 
 892       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 893       // the GCLocker initiated GC has been performed and then retry. This includes
 894       // the case when the GC Locker is not active but has not been performed.
 895       should_try_gc = !GCLocker::needs_gc();
 896       // Read the GC count while still holding the Heap_lock.
 897       gc_count_before = total_collections();
 898     }
 899 
 900     if (should_try_gc) {
 901       bool succeeded;
 902       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 903                                    GCCause::_g1_humongous_allocation);
 904       if (result != NULL) {
 905         assert(succeeded, "only way to get back a non-NULL result");
 906         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 907                              Thread::current()->name(), p2i(result));
 908         return result;
 909       }
 910 
 911       if (succeeded) {
 912         // We successfully scheduled a collection which failed to allocate. No
 913         // point in trying to allocate further. We'll just return NULL.
 914         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 915                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 916         return NULL;
 917       }
 918       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 919                            Thread::current()->name(), word_size);
 920     } else {
 921       // Failed to schedule a collection.
 922       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 923         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 924                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 925         return NULL;
 926       }
 927       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 928       // The GCLocker is either active or the GCLocker initiated
 929       // GC has not yet been performed. Stall until it is and
 930       // then retry the allocation.
 931       GCLocker::stall_until_clear();
 932       gclocker_retry_count += 1;
 933     }
 934 
 935 
 936     // We can reach here if we were unsuccessful in scheduling a
 937     // collection (because another thread beat us to it) or if we were
 938     // stalled due to the GC locker. In either can we should retry the
 939     // allocation attempt in case another thread successfully
 940     // performed a collection and reclaimed enough space.
 941     // Humongous object allocation always needs a lock, so we wait for the retry
 942     // in the next iteration of the loop, unlike for the regular iteration case.
 943     // Give a warning if we seem to be looping forever.
 944 
 945     if ((QueuedAllocationWarningCount > 0) &&
 946         (try_count % QueuedAllocationWarningCount == 0)) {
 947       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 948                              Thread::current()->name(), try_count, word_size);
 949     }
 950   }
 951 
 952   ShouldNotReachHere();
 953   return NULL;
 954 }
 955 
 956 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 957                                                            bool expect_null_mutator_alloc_region) {
 958   assert_at_safepoint_on_vm_thread();
 959   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 960          "the current alloc region was unexpectedly found to be non-NULL");
 961 
 962   if (!is_humongous(word_size)) {
 963     return _allocator->attempt_allocation_locked(word_size);
 964   } else {
 965     HeapWord* result = humongous_obj_allocate(word_size);
 966     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 967       collector_state()->set_initiate_conc_mark_if_possible(true);
 968     }
 969     return result;
 970   }
 971 
 972   ShouldNotReachHere();
 973 }
 974 
 975 class PostCompactionPrinterClosure: public HeapRegionClosure {
 976 private:
 977   G1HRPrinter* _hr_printer;
 978 public:
 979   bool do_heap_region(HeapRegion* hr) {
 980     assert(!hr->is_young(), "not expecting to find young regions");
 981     _hr_printer->post_compaction(hr);
 982     return false;
 983   }
 984 
 985   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 986     : _hr_printer(hr_printer) { }
 987 };
 988 
 989 void G1CollectedHeap::print_hrm_post_compaction() {
 990   if (_hr_printer.is_active()) {
 991     PostCompactionPrinterClosure cl(hr_printer());
 992     heap_region_iterate(&cl);
 993   }
 994 }
 995 
 996 void G1CollectedHeap::abort_concurrent_cycle() {
 997   // If we start the compaction before the CM threads finish
 998   // scanning the root regions we might trip them over as we'll
 999   // be moving objects / updating references. So let's wait until
1000   // they are done. By telling them to abort, they should complete
1001   // early.
1002   _cm->root_regions()->abort();
1003   _cm->root_regions()->wait_until_scan_finished();
1004 
1005   // Disable discovery and empty the discovered lists
1006   // for the CM ref processor.
1007   _ref_processor_cm->disable_discovery();
1008   _ref_processor_cm->abandon_partial_discovery();
1009   _ref_processor_cm->verify_no_references_recorded();
1010 
1011   // Abandon current iterations of concurrent marking and concurrent
1012   // refinement, if any are in progress.
1013   concurrent_mark()->concurrent_cycle_abort();
1014 }
1015 
1016 void G1CollectedHeap::prepare_heap_for_full_collection() {
1017   // Make sure we'll choose a new allocation region afterwards.
1018   _allocator->release_mutator_alloc_region();
1019   _allocator->abandon_gc_alloc_regions();
1020 
1021   // We may have added regions to the current incremental collection
1022   // set between the last GC or pause and now. We need to clear the
1023   // incremental collection set and then start rebuilding it afresh
1024   // after this full GC.
1025   abandon_collection_set(collection_set());
1026 
1027   tear_down_region_sets(false /* free_list_only */);
1028 
1029   hrm()->prepare_for_full_collection_start();
1030 }
1031 
1032 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1033   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1034   assert(used() == recalculate_used(), "Should be equal");
1035   _verifier->verify_region_sets_optional();
1036   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1037   _verifier->check_bitmaps("Full GC Start");
1038 }
1039 
1040 void G1CollectedHeap::prepare_heap_for_mutators() {
1041   hrm()->prepare_for_full_collection_end();
1042 
1043   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1044   ClassLoaderDataGraph::purge();
1045   MetaspaceUtils::verify_metrics();
1046 
1047   // Prepare heap for normal collections.
1048   assert(num_free_regions() == 0, "we should not have added any free regions");
1049   rebuild_region_sets(false /* free_list_only */);
1050   abort_refinement();
1051   resize_heap_if_necessary();
1052 
1053   // Rebuild the strong code root lists for each region
1054   rebuild_strong_code_roots();
1055 
1056   // Purge code root memory
1057   purge_code_root_memory();
1058 
1059   // Start a new incremental collection set for the next pause
1060   start_new_collection_set();
1061 
1062   _allocator->init_mutator_alloc_region();
1063 
1064   // Post collection state updates.
1065   MetaspaceGC::compute_new_size();
1066 }
1067 
1068 void G1CollectedHeap::abort_refinement() {
1069   if (_hot_card_cache->use_cache()) {
1070     _hot_card_cache->reset_hot_cache();
1071   }
1072 
1073   // Discard all remembered set updates.
1074   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1075   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1076 }
1077 
1078 void G1CollectedHeap::verify_after_full_collection() {
1079   _hrm->verify_optional();
1080   _verifier->verify_region_sets_optional();
1081   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1082   // Clear the previous marking bitmap, if needed for bitmap verification.
1083   // Note we cannot do this when we clear the next marking bitmap in
1084   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1085   // objects marked during a full GC against the previous bitmap.
1086   // But we need to clear it before calling check_bitmaps below since
1087   // the full GC has compacted objects and updated TAMS but not updated
1088   // the prev bitmap.
1089   if (G1VerifyBitmaps) {
1090     GCTraceTime(Debug, gc)("Clear Prev Bitmap for Verification");
1091     _cm->clear_prev_bitmap(workers());
1092   }
1093   // This call implicitly verifies that the next bitmap is clear after Full GC.
1094   _verifier->check_bitmaps("Full GC End");
1095 
1096   // At this point there should be no regions in the
1097   // entire heap tagged as young.
1098   assert(check_young_list_empty(), "young list should be empty at this point");
1099 
1100   // Note: since we've just done a full GC, concurrent
1101   // marking is no longer active. Therefore we need not
1102   // re-enable reference discovery for the CM ref processor.
1103   // That will be done at the start of the next marking cycle.
1104   // We also know that the STW processor should no longer
1105   // discover any new references.
1106   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1107   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1108   _ref_processor_stw->verify_no_references_recorded();
1109   _ref_processor_cm->verify_no_references_recorded();
1110 }
1111 
1112 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1113   // Post collection logging.
1114   // We should do this after we potentially resize the heap so
1115   // that all the COMMIT / UNCOMMIT events are generated before
1116   // the compaction events.
1117   print_hrm_post_compaction();
1118   heap_transition->print();
1119   print_heap_after_gc();
1120   print_heap_regions();
1121 #ifdef TRACESPINNING
1122   ParallelTaskTerminator::print_termination_counts();
1123 #endif
1124 }
1125 
1126 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1127                                          bool clear_all_soft_refs) {
1128   assert_at_safepoint_on_vm_thread();
1129 
1130   if (GCLocker::check_active_before_gc()) {
1131     // Full GC was not completed.
1132     return false;
1133   }
1134 
1135   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1136       soft_ref_policy()->should_clear_all_soft_refs();
1137 
1138   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1139   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1140 
1141   collector.prepare_collection();
1142   collector.collect();
1143   collector.complete_collection();
1144 
1145   // Full collection was successfully completed.
1146   return true;
1147 }
1148 
1149 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1150   // Currently, there is no facility in the do_full_collection(bool) API to notify
1151   // the caller that the collection did not succeed (e.g., because it was locked
1152   // out by the GC locker). So, right now, we'll ignore the return value.
1153   bool dummy = do_full_collection(true,                /* explicit_gc */
1154                                   clear_all_soft_refs);
1155 }
1156 
1157 void G1CollectedHeap::resize_heap_if_necessary() {
1158   assert_at_safepoint_on_vm_thread();
1159 
1160   // Capacity, free and used after the GC counted as full regions to
1161   // include the waste in the following calculations.
1162   const size_t capacity_after_gc = capacity();
1163   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1164 
1165   // This is enforced in arguments.cpp.
1166   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1167          "otherwise the code below doesn't make sense");
1168 
1169   // We don't have floating point command-line arguments
1170   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1171   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1172   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1173   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1174 
1175   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1176   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1177 
1178   // We have to be careful here as these two calculations can overflow
1179   // 32-bit size_t's.
1180   double used_after_gc_d = (double) used_after_gc;
1181   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1182   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1183 
1184   // Let's make sure that they are both under the max heap size, which
1185   // by default will make them fit into a size_t.
1186   double desired_capacity_upper_bound = (double) max_heap_size;
1187   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1188                                     desired_capacity_upper_bound);
1189   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1190                                     desired_capacity_upper_bound);
1191 
1192   // We can now safely turn them into size_t's.
1193   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1194   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1195 
1196   // This assert only makes sense here, before we adjust them
1197   // with respect to the min and max heap size.
1198   assert(minimum_desired_capacity <= maximum_desired_capacity,
1199          "minimum_desired_capacity = " SIZE_FORMAT ", "
1200          "maximum_desired_capacity = " SIZE_FORMAT,
1201          minimum_desired_capacity, maximum_desired_capacity);
1202 
1203   // Should not be greater than the heap max size. No need to adjust
1204   // it with respect to the heap min size as it's a lower bound (i.e.,
1205   // we'll try to make the capacity larger than it, not smaller).
1206   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1207   // Should not be less than the heap min size. No need to adjust it
1208   // with respect to the heap max size as it's an upper bound (i.e.,
1209   // we'll try to make the capacity smaller than it, not greater).
1210   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1211 
1212   if (capacity_after_gc < minimum_desired_capacity) {
1213     // Don't expand unless it's significant
1214     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1215 
1216     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1217                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1218                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1219                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1220 
1221     expand(expand_bytes, _workers);
1222 
1223     // No expansion, now see if we want to shrink
1224   } else if (capacity_after_gc > maximum_desired_capacity) {
1225     // Capacity too large, compute shrinking size
1226     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1227 
1228     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1229                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1230                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1231                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1232 
1233     shrink(shrink_bytes);
1234   }
1235 }
1236 
1237 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1238                                                             bool do_gc,
1239                                                             bool clear_all_soft_refs,
1240                                                             bool expect_null_mutator_alloc_region,
1241                                                             bool* gc_succeeded) {
1242   *gc_succeeded = true;
1243   // Let's attempt the allocation first.
1244   HeapWord* result =
1245     attempt_allocation_at_safepoint(word_size,
1246                                     expect_null_mutator_alloc_region);
1247   if (result != NULL) {
1248     return result;
1249   }
1250 
1251   // In a G1 heap, we're supposed to keep allocation from failing by
1252   // incremental pauses.  Therefore, at least for now, we'll favor
1253   // expansion over collection.  (This might change in the future if we can
1254   // do something smarter than full collection to satisfy a failed alloc.)
1255   result = expand_and_allocate(word_size);
1256   if (result != NULL) {
1257     return result;
1258   }
1259 
1260   if (do_gc) {
1261     // Expansion didn't work, we'll try to do a Full GC.
1262     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1263                                        clear_all_soft_refs);
1264   }
1265 
1266   return NULL;
1267 }
1268 
1269 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1270                                                      bool* succeeded) {
1271   assert_at_safepoint_on_vm_thread();
1272 
1273   // Attempts to allocate followed by Full GC.
1274   HeapWord* result =
1275     satisfy_failed_allocation_helper(word_size,
1276                                      true,  /* do_gc */
1277                                      false, /* clear_all_soft_refs */
1278                                      false, /* expect_null_mutator_alloc_region */
1279                                      succeeded);
1280 
1281   if (result != NULL || !*succeeded) {
1282     return result;
1283   }
1284 
1285   // Attempts to allocate followed by Full GC that will collect all soft references.
1286   result = satisfy_failed_allocation_helper(word_size,
1287                                             true, /* do_gc */
1288                                             true, /* clear_all_soft_refs */
1289                                             true, /* expect_null_mutator_alloc_region */
1290                                             succeeded);
1291 
1292   if (result != NULL || !*succeeded) {
1293     return result;
1294   }
1295 
1296   // Attempts to allocate, no GC
1297   result = satisfy_failed_allocation_helper(word_size,
1298                                             false, /* do_gc */
1299                                             false, /* clear_all_soft_refs */
1300                                             true,  /* expect_null_mutator_alloc_region */
1301                                             succeeded);
1302 
1303   if (result != NULL) {
1304     return result;
1305   }
1306 
1307   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1308          "Flag should have been handled and cleared prior to this point");
1309 
1310   // What else?  We might try synchronous finalization later.  If the total
1311   // space available is large enough for the allocation, then a more
1312   // complete compaction phase than we've tried so far might be
1313   // appropriate.
1314   return NULL;
1315 }
1316 
1317 // Attempting to expand the heap sufficiently
1318 // to support an allocation of the given "word_size".  If
1319 // successful, perform the allocation and return the address of the
1320 // allocated block, or else "NULL".
1321 
1322 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1323   assert_at_safepoint_on_vm_thread();
1324 
1325   _verifier->verify_region_sets_optional();
1326 
1327   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1328   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1329                             word_size * HeapWordSize);
1330 
1331 
1332   if (expand(expand_bytes, _workers)) {
1333     _hrm->verify_optional();
1334     _verifier->verify_region_sets_optional();
1335     return attempt_allocation_at_safepoint(word_size,
1336                                            false /* expect_null_mutator_alloc_region */);
1337   }
1338   return NULL;
1339 }
1340 
1341 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1342   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1343   aligned_expand_bytes = align_up(aligned_expand_bytes,
1344                                        HeapRegion::GrainBytes);
1345 
1346   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1347                             expand_bytes, aligned_expand_bytes);
1348 
1349   if (is_maximal_no_gc()) {
1350     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1351     return false;
1352   }
1353 
1354   double expand_heap_start_time_sec = os::elapsedTime();
1355   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1356   assert(regions_to_expand > 0, "Must expand by at least one region");
1357 
1358   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1359   if (expand_time_ms != NULL) {
1360     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1361   }
1362 
1363   if (expanded_by > 0) {
1364     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1365     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1366     policy()->record_new_heap_size(num_regions());
1367   } else {
1368     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1369 
1370     // The expansion of the virtual storage space was unsuccessful.
1371     // Let's see if it was because we ran out of swap.
1372     if (G1ExitOnExpansionFailure &&
1373         _hrm->available() >= regions_to_expand) {
1374       // We had head room...
1375       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1376     }
1377   }
1378   return regions_to_expand > 0;
1379 }
1380 
1381 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1382   size_t aligned_shrink_bytes =
1383     ReservedSpace::page_align_size_down(shrink_bytes);
1384   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1385                                          HeapRegion::GrainBytes);
1386   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1387 
1388   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1389   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1390 
1391 
1392   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1393                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1394   if (num_regions_removed > 0) {
1395     policy()->record_new_heap_size(num_regions());
1396   } else {
1397     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1398   }
1399 }
1400 
1401 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1402   _verifier->verify_region_sets_optional();
1403 
1404   // We should only reach here at the end of a Full GC or during Remark which
1405   // means we should not not be holding to any GC alloc regions. The method
1406   // below will make sure of that and do any remaining clean up.
1407   _allocator->abandon_gc_alloc_regions();
1408 
1409   // Instead of tearing down / rebuilding the free lists here, we
1410   // could instead use the remove_all_pending() method on free_list to
1411   // remove only the ones that we need to remove.
1412   tear_down_region_sets(true /* free_list_only */);
1413   shrink_helper(shrink_bytes);
1414   rebuild_region_sets(true /* free_list_only */);
1415 
1416   _hrm->verify_optional();
1417   _verifier->verify_region_sets_optional();
1418 }
1419 
1420 class OldRegionSetChecker : public HeapRegionSetChecker {
1421 public:
1422   void check_mt_safety() {
1423     // Master Old Set MT safety protocol:
1424     // (a) If we're at a safepoint, operations on the master old set
1425     // should be invoked:
1426     // - by the VM thread (which will serialize them), or
1427     // - by the GC workers while holding the FreeList_lock, if we're
1428     //   at a safepoint for an evacuation pause (this lock is taken
1429     //   anyway when an GC alloc region is retired so that a new one
1430     //   is allocated from the free list), or
1431     // - by the GC workers while holding the OldSets_lock, if we're at a
1432     //   safepoint for a cleanup pause.
1433     // (b) If we're not at a safepoint, operations on the master old set
1434     // should be invoked while holding the Heap_lock.
1435 
1436     if (SafepointSynchronize::is_at_safepoint()) {
1437       guarantee(Thread::current()->is_VM_thread() ||
1438                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1439                 "master old set MT safety protocol at a safepoint");
1440     } else {
1441       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1442     }
1443   }
1444   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1445   const char* get_description() { return "Old Regions"; }
1446 };
1447 
1448 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1449 public:
1450   void check_mt_safety() {
1451     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1452               "May only change archive regions during initialization or safepoint.");
1453   }
1454   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1455   const char* get_description() { return "Archive Regions"; }
1456 };
1457 
1458 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1459 public:
1460   void check_mt_safety() {
1461     // Humongous Set MT safety protocol:
1462     // (a) If we're at a safepoint, operations on the master humongous
1463     // set should be invoked by either the VM thread (which will
1464     // serialize them) or by the GC workers while holding the
1465     // OldSets_lock.
1466     // (b) If we're not at a safepoint, operations on the master
1467     // humongous set should be invoked while holding the Heap_lock.
1468 
1469     if (SafepointSynchronize::is_at_safepoint()) {
1470       guarantee(Thread::current()->is_VM_thread() ||
1471                 OldSets_lock->owned_by_self(),
1472                 "master humongous set MT safety protocol at a safepoint");
1473     } else {
1474       guarantee(Heap_lock->owned_by_self(),
1475                 "master humongous set MT safety protocol outside a safepoint");
1476     }
1477   }
1478   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1479   const char* get_description() { return "Humongous Regions"; }
1480 };
1481 
1482 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1483   CollectedHeap(),
1484   _young_gen_sampling_thread(NULL),
1485   _workers(NULL),
1486   _collector_policy(collector_policy),
1487   _card_table(NULL),
1488   _soft_ref_policy(),
1489   _old_set("Old Region Set", new OldRegionSetChecker()),
1490   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1491   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1492   _bot(NULL),
1493   _listener(),
1494   _hrm(NULL),
1495   _allocator(NULL),
1496   _verifier(NULL),
1497   _summary_bytes_used(0),
1498   _archive_allocator(NULL),
1499   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1500   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1501   _expand_heap_after_alloc_failure(true),
1502   _g1mm(NULL),
1503   _humongous_reclaim_candidates(),
1504   _has_humongous_reclaim_candidates(false),
1505   _hr_printer(),
1506   _collector_state(),
1507   _old_marking_cycles_started(0),
1508   _old_marking_cycles_completed(0),
1509   _eden(),
1510   _survivor(),
1511   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1512   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1513   _policy(G1Policy::create_policy(collector_policy, _gc_timer_stw)),
1514   _heap_sizing_policy(NULL),
1515   _collection_set(this, _policy),
1516   _hot_card_cache(NULL),
1517   _rem_set(NULL),
1518   _dirty_card_queue_set(false),
1519   _cm(NULL),
1520   _cm_thread(NULL),
1521   _cr(NULL),
1522   _task_queues(NULL),
1523   _evacuation_failed(false),
1524   _evacuation_failed_info_array(NULL),
1525   _preserved_marks_set(true /* in_c_heap */),
1526 #ifndef PRODUCT
1527   _evacuation_failure_alot_for_current_gc(false),
1528   _evacuation_failure_alot_gc_number(0),
1529   _evacuation_failure_alot_count(0),
1530 #endif
1531   _ref_processor_stw(NULL),
1532   _is_alive_closure_stw(this),
1533   _is_subject_to_discovery_stw(this),
1534   _ref_processor_cm(NULL),
1535   _is_alive_closure_cm(this),
1536   _is_subject_to_discovery_cm(this),
1537   _in_cset_fast_test() {
1538 
1539   _verifier = new G1HeapVerifier(this);
1540 
1541   _allocator = new G1Allocator(this);
1542 
1543   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1544 
1545   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1546 
1547   // Override the default _filler_array_max_size so that no humongous filler
1548   // objects are created.
1549   _filler_array_max_size = _humongous_object_threshold_in_words;
1550 
1551   uint n_queues = ParallelGCThreads;
1552   _task_queues = new RefToScanQueueSet(n_queues);
1553 
1554   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1555 
1556   for (uint i = 0; i < n_queues; i++) {
1557     RefToScanQueue* q = new RefToScanQueue();
1558     q->initialize();
1559     _task_queues->register_queue(i, q);
1560     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1561   }
1562 
1563   // Initialize the G1EvacuationFailureALot counters and flags.
1564   NOT_PRODUCT(reset_evacuation_should_fail();)
1565 
1566   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1567 }
1568 
1569 static size_t actual_reserved_page_size(ReservedSpace rs) {
1570   size_t page_size = os::vm_page_size();
1571   if (UseLargePages) {
1572     // There are two ways to manage large page memory.
1573     // 1. OS supports committing large page memory.
1574     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1575     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1576     //    we reserved memory without large page.
1577     if (os::can_commit_large_page_memory() || rs.special()) {
1578       page_size = rs.alignment();
1579     }
1580   }
1581 
1582   return page_size;
1583 }
1584 
1585 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1586                                                                  size_t size,
1587                                                                  size_t translation_factor) {
1588   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1589   // Allocate a new reserved space, preferring to use large pages.
1590   ReservedSpace rs(size, preferred_page_size);
1591   size_t page_size = actual_reserved_page_size(rs);
1592   G1RegionToSpaceMapper* result  =
1593     G1RegionToSpaceMapper::create_mapper(rs,
1594                                          size,
1595                                          page_size,
1596                                          HeapRegion::GrainBytes,
1597                                          translation_factor,
1598                                          mtGC);
1599 
1600   os::trace_page_sizes_for_requested_size(description,
1601                                           size,
1602                                           preferred_page_size,
1603                                           page_size,
1604                                           rs.base(),
1605                                           rs.size());
1606 
1607   return result;
1608 }
1609 
1610 jint G1CollectedHeap::initialize_concurrent_refinement() {
1611   jint ecode = JNI_OK;
1612   _cr = G1ConcurrentRefine::create(&ecode);
1613   return ecode;
1614 }
1615 
1616 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1617   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1618   if (_young_gen_sampling_thread->osthread() == NULL) {
1619     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1620     return JNI_ENOMEM;
1621   }
1622   return JNI_OK;
1623 }
1624 
1625 jint G1CollectedHeap::initialize() {
1626   os::enable_vtime();
1627 
1628   // Necessary to satisfy locking discipline assertions.
1629 
1630   MutexLocker x(Heap_lock);
1631 
1632   // While there are no constraints in the GC code that HeapWordSize
1633   // be any particular value, there are multiple other areas in the
1634   // system which believe this to be true (e.g. oop->object_size in some
1635   // cases incorrectly returns the size in wordSize units rather than
1636   // HeapWordSize).
1637   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1638 
1639   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1640   size_t max_byte_size = _collector_policy->heap_reserved_size_bytes();
1641   size_t heap_alignment = collector_policy()->heap_alignment();
1642 
1643   // Ensure that the sizes are properly aligned.
1644   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1645   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1646   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1647 
1648   // Reserve the maximum.
1649 
1650   // When compressed oops are enabled, the preferred heap base
1651   // is calculated by subtracting the requested size from the
1652   // 32Gb boundary and using the result as the base address for
1653   // heap reservation. If the requested size is not aligned to
1654   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1655   // into the ReservedHeapSpace constructor) then the actual
1656   // base of the reserved heap may end up differing from the
1657   // address that was requested (i.e. the preferred heap base).
1658   // If this happens then we could end up using a non-optimal
1659   // compressed oops mode.
1660 
1661   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1662                                                  heap_alignment);
1663 
1664   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1665 
1666   // Create the barrier set for the entire reserved region.
1667   G1CardTable* ct = new G1CardTable(reserved_region());
1668   ct->initialize();
1669   G1BarrierSet* bs = new G1BarrierSet(ct);
1670   bs->initialize();
1671   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1672   BarrierSet::set_barrier_set(bs);
1673   _card_table = ct;
1674 
1675   G1BarrierSet::satb_mark_queue_set().initialize(this,
1676                                                  SATB_Q_CBL_mon,
1677                                                  &bs->satb_mark_queue_buffer_allocator(),
1678                                                  G1SATBProcessCompletedThreshold,
1679                                                  G1SATBBufferEnqueueingThresholdPercent,
1680                                                  Shared_SATB_Q_lock);
1681 
1682   // process_completed_buffers_threshold and max_completed_buffers are updated
1683   // later, based on the concurrent refinement object.
1684   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1685                                                   &bs->dirty_card_queue_buffer_allocator(),
1686                                                   Shared_DirtyCardQ_lock,
1687                                                   true); // init_free_ids
1688 
1689   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1690                                     &bs->dirty_card_queue_buffer_allocator(),
1691                                     Shared_DirtyCardQ_lock);
1692 
1693   // Create the hot card cache.
1694   _hot_card_cache = new G1HotCardCache(this);
1695 
1696   // Carve out the G1 part of the heap.
1697   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1698   size_t page_size = actual_reserved_page_size(heap_rs);
1699   G1RegionToSpaceMapper* heap_storage =
1700     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1701                                               g1_rs.size(),
1702                                               page_size,
1703                                               HeapRegion::GrainBytes,
1704                                               1,
1705                                               mtJavaHeap);
1706   if(heap_storage == NULL) {
1707     vm_shutdown_during_initialization("Could not initialize G1 heap");
1708     return JNI_ERR;
1709   }
1710 
1711   os::trace_page_sizes("Heap",
1712                        collector_policy()->min_heap_byte_size(),
1713                        max_byte_size,
1714                        page_size,
1715                        heap_rs.base(),
1716                        heap_rs.size());
1717   heap_storage->set_mapping_changed_listener(&_listener);
1718 
1719   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1720   G1RegionToSpaceMapper* bot_storage =
1721     create_aux_memory_mapper("Block Offset Table",
1722                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1723                              G1BlockOffsetTable::heap_map_factor());
1724 
1725   G1RegionToSpaceMapper* cardtable_storage =
1726     create_aux_memory_mapper("Card Table",
1727                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1728                              G1CardTable::heap_map_factor());
1729 
1730   G1RegionToSpaceMapper* card_counts_storage =
1731     create_aux_memory_mapper("Card Counts Table",
1732                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1733                              G1CardCounts::heap_map_factor());
1734 
1735   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1736   G1RegionToSpaceMapper* prev_bitmap_storage =
1737     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1738   G1RegionToSpaceMapper* next_bitmap_storage =
1739     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1740 
1741   _hrm = HeapRegionManager::create_manager(this, _collector_policy);
1742 
1743   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1744   _card_table->initialize(cardtable_storage);
1745   // Do later initialization work for concurrent refinement.
1746   _hot_card_cache->initialize(card_counts_storage);
1747 
1748   // 6843694 - ensure that the maximum region index can fit
1749   // in the remembered set structures.
1750   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1751   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1752 
1753   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1754   // start within the first card.
1755   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1756   // Also create a G1 rem set.
1757   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1758   _rem_set->initialize(max_reserved_capacity(), max_regions());
1759 
1760   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1761   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1762   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1763             "too many cards per region");
1764 
1765   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1766 
1767   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1768 
1769   {
1770     HeapWord* start = _hrm->reserved().start();
1771     HeapWord* end = _hrm->reserved().end();
1772     size_t granularity = HeapRegion::GrainBytes;
1773 
1774     _in_cset_fast_test.initialize(start, end, granularity);
1775     _humongous_reclaim_candidates.initialize(start, end, granularity);
1776   }
1777 
1778   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1779                           true /* are_GC_task_threads */,
1780                           false /* are_ConcurrentGC_threads */);
1781   if (_workers == NULL) {
1782     return JNI_ENOMEM;
1783   }
1784   _workers->initialize_workers();
1785 
1786   // Create the G1ConcurrentMark data structure and thread.
1787   // (Must do this late, so that "max_regions" is defined.)
1788   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1789   if (_cm == NULL || !_cm->completed_initialization()) {
1790     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1791     return JNI_ENOMEM;
1792   }
1793   _cm_thread = _cm->cm_thread();
1794 
1795   // Now expand into the initial heap size.
1796   if (!expand(init_byte_size, _workers)) {
1797     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1798     return JNI_ENOMEM;
1799   }
1800 
1801   // Perform any initialization actions delegated to the policy.
1802   policy()->init(this, &_collection_set);
1803 
1804   jint ecode = initialize_concurrent_refinement();
1805   if (ecode != JNI_OK) {
1806     return ecode;
1807   }
1808 
1809   ecode = initialize_young_gen_sampling_thread();
1810   if (ecode != JNI_OK) {
1811     return ecode;
1812   }
1813 
1814   {
1815     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1816     dcqs.set_process_completed_buffers_threshold(concurrent_refine()->yellow_zone());
1817     dcqs.set_max_completed_buffers(concurrent_refine()->red_zone());
1818   }
1819 
1820   // Here we allocate the dummy HeapRegion that is required by the
1821   // G1AllocRegion class.
1822   HeapRegion* dummy_region = _hrm->get_dummy_region();
1823 
1824   // We'll re-use the same region whether the alloc region will
1825   // require BOT updates or not and, if it doesn't, then a non-young
1826   // region will complain that it cannot support allocations without
1827   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1828   dummy_region->set_eden();
1829   // Make sure it's full.
1830   dummy_region->set_top(dummy_region->end());
1831   G1AllocRegion::setup(this, dummy_region);
1832 
1833   _allocator->init_mutator_alloc_region();
1834 
1835   // Do create of the monitoring and management support so that
1836   // values in the heap have been properly initialized.
1837   _g1mm = new G1MonitoringSupport(this);
1838 
1839   G1StringDedup::initialize();
1840 
1841   _preserved_marks_set.init(ParallelGCThreads);
1842 
1843   _collection_set.initialize(max_regions());
1844 
1845   return JNI_OK;
1846 }
1847 
1848 void G1CollectedHeap::stop() {
1849   // Stop all concurrent threads. We do this to make sure these threads
1850   // do not continue to execute and access resources (e.g. logging)
1851   // that are destroyed during shutdown.
1852   _cr->stop();
1853   _young_gen_sampling_thread->stop();
1854   _cm_thread->stop();
1855   if (G1StringDedup::is_enabled()) {
1856     G1StringDedup::stop();
1857   }
1858 }
1859 
1860 void G1CollectedHeap::safepoint_synchronize_begin() {
1861   SuspendibleThreadSet::synchronize();
1862 }
1863 
1864 void G1CollectedHeap::safepoint_synchronize_end() {
1865   SuspendibleThreadSet::desynchronize();
1866 }
1867 
1868 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1869   return HeapRegion::max_region_size();
1870 }
1871 
1872 void G1CollectedHeap::post_initialize() {
1873   CollectedHeap::post_initialize();
1874   ref_processing_init();
1875 }
1876 
1877 void G1CollectedHeap::ref_processing_init() {
1878   // Reference processing in G1 currently works as follows:
1879   //
1880   // * There are two reference processor instances. One is
1881   //   used to record and process discovered references
1882   //   during concurrent marking; the other is used to
1883   //   record and process references during STW pauses
1884   //   (both full and incremental).
1885   // * Both ref processors need to 'span' the entire heap as
1886   //   the regions in the collection set may be dotted around.
1887   //
1888   // * For the concurrent marking ref processor:
1889   //   * Reference discovery is enabled at initial marking.
1890   //   * Reference discovery is disabled and the discovered
1891   //     references processed etc during remarking.
1892   //   * Reference discovery is MT (see below).
1893   //   * Reference discovery requires a barrier (see below).
1894   //   * Reference processing may or may not be MT
1895   //     (depending on the value of ParallelRefProcEnabled
1896   //     and ParallelGCThreads).
1897   //   * A full GC disables reference discovery by the CM
1898   //     ref processor and abandons any entries on it's
1899   //     discovered lists.
1900   //
1901   // * For the STW processor:
1902   //   * Non MT discovery is enabled at the start of a full GC.
1903   //   * Processing and enqueueing during a full GC is non-MT.
1904   //   * During a full GC, references are processed after marking.
1905   //
1906   //   * Discovery (may or may not be MT) is enabled at the start
1907   //     of an incremental evacuation pause.
1908   //   * References are processed near the end of a STW evacuation pause.
1909   //   * For both types of GC:
1910   //     * Discovery is atomic - i.e. not concurrent.
1911   //     * Reference discovery will not need a barrier.
1912 
1913   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1914 
1915   // Concurrent Mark ref processor
1916   _ref_processor_cm =
1917     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1918                            mt_processing,                                  // mt processing
1919                            ParallelGCThreads,                              // degree of mt processing
1920                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1921                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1922                            false,                                          // Reference discovery is not atomic
1923                            &_is_alive_closure_cm,                          // is alive closure
1924                            true);                                          // allow changes to number of processing threads
1925 
1926   // STW ref processor
1927   _ref_processor_stw =
1928     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1929                            mt_processing,                        // mt processing
1930                            ParallelGCThreads,                    // degree of mt processing
1931                            (ParallelGCThreads > 1),              // mt discovery
1932                            ParallelGCThreads,                    // degree of mt discovery
1933                            true,                                 // Reference discovery is atomic
1934                            &_is_alive_closure_stw,               // is alive closure
1935                            true);                                // allow changes to number of processing threads
1936 }
1937 
1938 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1939   return _collector_policy;
1940 }
1941 
1942 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1943   return &_soft_ref_policy;
1944 }
1945 
1946 size_t G1CollectedHeap::capacity() const {
1947   return _hrm->length() * HeapRegion::GrainBytes;
1948 }
1949 
1950 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1951   return _hrm->total_free_bytes();
1952 }
1953 
1954 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_i) {
1955   _hot_card_cache->drain(cl, worker_i);
1956 }
1957 
1958 void G1CollectedHeap::iterate_dirty_card_closure(G1CardTableEntryClosure* cl, uint worker_i) {
1959   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1960   size_t n_completed_buffers = 0;
1961   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1962     n_completed_buffers++;
1963   }
1964   assert(dcqs.completed_buffers_num() == 0, "Completed buffers exist!");
1965   phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1966 }
1967 
1968 // Computes the sum of the storage used by the various regions.
1969 size_t G1CollectedHeap::used() const {
1970   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1971   if (_archive_allocator != NULL) {
1972     result += _archive_allocator->used();
1973   }
1974   return result;
1975 }
1976 
1977 size_t G1CollectedHeap::used_unlocked() const {
1978   return _summary_bytes_used;
1979 }
1980 
1981 class SumUsedClosure: public HeapRegionClosure {
1982   size_t _used;
1983 public:
1984   SumUsedClosure() : _used(0) {}
1985   bool do_heap_region(HeapRegion* r) {
1986     _used += r->used();
1987     return false;
1988   }
1989   size_t result() { return _used; }
1990 };
1991 
1992 size_t G1CollectedHeap::recalculate_used() const {
1993   SumUsedClosure blk;
1994   heap_region_iterate(&blk);
1995   return blk.result();
1996 }
1997 
1998 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1999   switch (cause) {
2000     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2001     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2002     case GCCause::_wb_conc_mark:                        return true;
2003     default :                                           return false;
2004   }
2005 }
2006 
2007 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2008   switch (cause) {
2009     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2010     case GCCause::_g1_humongous_allocation: return true;
2011     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
2012     default:                                return is_user_requested_concurrent_full_gc(cause);
2013   }
2014 }
2015 
2016 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
2017   if(policy()->force_upgrade_to_full()) {
2018     return true;
2019   } else if (should_do_concurrent_full_gc(_gc_cause)) {
2020     return false;
2021   } else if (has_regions_left_for_allocation()) {
2022     return false;
2023   } else {
2024     return true;
2025   }
2026 }
2027 
2028 #ifndef PRODUCT
2029 void G1CollectedHeap::allocate_dummy_regions() {
2030   // Let's fill up most of the region
2031   size_t word_size = HeapRegion::GrainWords - 1024;
2032   // And as a result the region we'll allocate will be humongous.
2033   guarantee(is_humongous(word_size), "sanity");
2034 
2035   // _filler_array_max_size is set to humongous object threshold
2036   // but temporarily change it to use CollectedHeap::fill_with_object().
2037   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2038 
2039   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2040     // Let's use the existing mechanism for the allocation
2041     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2042     if (dummy_obj != NULL) {
2043       MemRegion mr(dummy_obj, word_size);
2044       CollectedHeap::fill_with_object(mr);
2045     } else {
2046       // If we can't allocate once, we probably cannot allocate
2047       // again. Let's get out of the loop.
2048       break;
2049     }
2050   }
2051 }
2052 #endif // !PRODUCT
2053 
2054 void G1CollectedHeap::increment_old_marking_cycles_started() {
2055   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2056          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2057          "Wrong marking cycle count (started: %d, completed: %d)",
2058          _old_marking_cycles_started, _old_marking_cycles_completed);
2059 
2060   _old_marking_cycles_started++;
2061 }
2062 
2063 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2064   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2065 
2066   // We assume that if concurrent == true, then the caller is a
2067   // concurrent thread that was joined the Suspendible Thread
2068   // Set. If there's ever a cheap way to check this, we should add an
2069   // assert here.
2070 
2071   // Given that this method is called at the end of a Full GC or of a
2072   // concurrent cycle, and those can be nested (i.e., a Full GC can
2073   // interrupt a concurrent cycle), the number of full collections
2074   // completed should be either one (in the case where there was no
2075   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2076   // behind the number of full collections started.
2077 
2078   // This is the case for the inner caller, i.e. a Full GC.
2079   assert(concurrent ||
2080          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2081          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2082          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2083          "is inconsistent with _old_marking_cycles_completed = %u",
2084          _old_marking_cycles_started, _old_marking_cycles_completed);
2085 
2086   // This is the case for the outer caller, i.e. the concurrent cycle.
2087   assert(!concurrent ||
2088          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2089          "for outer caller (concurrent cycle): "
2090          "_old_marking_cycles_started = %u "
2091          "is inconsistent with _old_marking_cycles_completed = %u",
2092          _old_marking_cycles_started, _old_marking_cycles_completed);
2093 
2094   _old_marking_cycles_completed += 1;
2095 
2096   // We need to clear the "in_progress" flag in the CM thread before
2097   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2098   // is set) so that if a waiter requests another System.gc() it doesn't
2099   // incorrectly see that a marking cycle is still in progress.
2100   if (concurrent) {
2101     _cm_thread->set_idle();
2102   }
2103 
2104   // This notify_all() will ensure that a thread that called
2105   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2106   // and it's waiting for a full GC to finish will be woken up. It is
2107   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2108   FullGCCount_lock->notify_all();
2109 }
2110 
2111 void G1CollectedHeap::collect(GCCause::Cause cause) {
2112   try_collect(cause, true);
2113 }
2114 
2115 bool G1CollectedHeap::try_collect(GCCause::Cause cause, bool retry_on_gc_failure) {
2116   assert_heap_not_locked();
2117 
2118   bool gc_succeeded;
2119   bool should_retry_gc;
2120 
2121   do {
2122     should_retry_gc = false;
2123 
2124     uint gc_count_before;
2125     uint old_marking_count_before;
2126     uint full_gc_count_before;
2127 
2128     {
2129       MutexLocker ml(Heap_lock);
2130 
2131       // Read the GC count while holding the Heap_lock
2132       gc_count_before = total_collections();
2133       full_gc_count_before = total_full_collections();
2134       old_marking_count_before = _old_marking_cycles_started;
2135     }
2136 
2137     if (should_do_concurrent_full_gc(cause)) {
2138       // Schedule an initial-mark evacuation pause that will start a
2139       // concurrent cycle. We're setting word_size to 0 which means that
2140       // we are not requesting a post-GC allocation.
2141       VM_G1CollectForAllocation op(0,     /* word_size */
2142                                    gc_count_before,
2143                                    cause,
2144                                    true,  /* should_initiate_conc_mark */
2145                                    policy()->max_pause_time_ms());
2146       VMThread::execute(&op);
2147       gc_succeeded = op.gc_succeeded();
2148       if (!gc_succeeded && retry_on_gc_failure) {
2149         if (old_marking_count_before == _old_marking_cycles_started) {
2150           should_retry_gc = op.should_retry_gc();
2151         } else {
2152           // A Full GC happened while we were trying to schedule the
2153           // concurrent cycle. No point in starting a new cycle given
2154           // that the whole heap was collected anyway.
2155         }
2156 
2157         if (should_retry_gc && GCLocker::is_active_and_needs_gc()) {
2158           GCLocker::stall_until_clear();
2159         }
2160       }
2161     } else {
2162       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2163           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2164 
2165         // Schedule a standard evacuation pause. We're setting word_size
2166         // to 0 which means that we are not requesting a post-GC allocation.
2167         VM_G1CollectForAllocation op(0,     /* word_size */
2168                                      gc_count_before,
2169                                      cause,
2170                                      false, /* should_initiate_conc_mark */
2171                                      policy()->max_pause_time_ms());
2172         VMThread::execute(&op);
2173         gc_succeeded = op.gc_succeeded();
2174       } else {
2175         // Schedule a Full GC.
2176         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2177         VMThread::execute(&op);
2178         gc_succeeded = op.gc_succeeded();
2179       }
2180     }
2181   } while (should_retry_gc);
2182   return gc_succeeded;
2183 }
2184 
2185 bool G1CollectedHeap::is_in(const void* p) const {
2186   if (_hrm->reserved().contains(p)) {
2187     // Given that we know that p is in the reserved space,
2188     // heap_region_containing() should successfully
2189     // return the containing region.
2190     HeapRegion* hr = heap_region_containing(p);
2191     return hr->is_in(p);
2192   } else {
2193     return false;
2194   }
2195 }
2196 
2197 #ifdef ASSERT
2198 bool G1CollectedHeap::is_in_exact(const void* p) const {
2199   bool contains = reserved_region().contains(p);
2200   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2201   if (contains && available) {
2202     return true;
2203   } else {
2204     return false;
2205   }
2206 }
2207 #endif
2208 
2209 // Iteration functions.
2210 
2211 // Iterates an ObjectClosure over all objects within a HeapRegion.
2212 
2213 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2214   ObjectClosure* _cl;
2215 public:
2216   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2217   bool do_heap_region(HeapRegion* r) {
2218     if (!r->is_continues_humongous()) {
2219       r->object_iterate(_cl);
2220     }
2221     return false;
2222   }
2223 };
2224 
2225 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2226   IterateObjectClosureRegionClosure blk(cl);
2227   heap_region_iterate(&blk);
2228 }
2229 
2230 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2231   _hrm->iterate(cl);
2232 }
2233 
2234 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2235                                                                  HeapRegionClaimer *hrclaimer,
2236                                                                  uint worker_id) const {
2237   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2238 }
2239 
2240 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2241                                                          HeapRegionClaimer *hrclaimer) const {
2242   _hrm->par_iterate(cl, hrclaimer, 0);
2243 }
2244 
2245 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2246   _collection_set.iterate(cl);
2247 }
2248 
2249 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2250   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2251 }
2252 
2253 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2254   HeapRegion* hr = heap_region_containing(addr);
2255   return hr->block_start(addr);
2256 }
2257 
2258 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2259   HeapRegion* hr = heap_region_containing(addr);
2260   return hr->block_size(addr);
2261 }
2262 
2263 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2264   HeapRegion* hr = heap_region_containing(addr);
2265   return hr->block_is_obj(addr);
2266 }
2267 
2268 bool G1CollectedHeap::supports_tlab_allocation() const {
2269   return true;
2270 }
2271 
2272 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2273   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2274 }
2275 
2276 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2277   return _eden.length() * HeapRegion::GrainBytes;
2278 }
2279 
2280 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2281 // must be equal to the humongous object limit.
2282 size_t G1CollectedHeap::max_tlab_size() const {
2283   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2284 }
2285 
2286 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2287   return _allocator->unsafe_max_tlab_alloc();
2288 }
2289 
2290 size_t G1CollectedHeap::max_capacity() const {
2291   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2292 }
2293 
2294 size_t G1CollectedHeap::max_reserved_capacity() const {
2295   return _hrm->max_length() * HeapRegion::GrainBytes;
2296 }
2297 
2298 jlong G1CollectedHeap::millis_since_last_gc() {
2299   // See the notes in GenCollectedHeap::millis_since_last_gc()
2300   // for more information about the implementation.
2301   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2302                   _policy->collection_pause_end_millis();
2303   if (ret_val < 0) {
2304     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2305       ". returning zero instead.", ret_val);
2306     return 0;
2307   }
2308   return ret_val;
2309 }
2310 
2311 void G1CollectedHeap::deduplicate_string(oop str) {
2312   assert(java_lang_String::is_instance(str), "invariant");
2313 
2314   if (G1StringDedup::is_enabled()) {
2315     G1StringDedup::deduplicate(str);
2316   }
2317 }
2318 
2319 void G1CollectedHeap::prepare_for_verify() {
2320   _verifier->prepare_for_verify();
2321 }
2322 
2323 void G1CollectedHeap::verify(VerifyOption vo) {
2324   _verifier->verify(vo);
2325 }
2326 
2327 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2328   return true;
2329 }
2330 
2331 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2332   return _cm_thread->request_concurrent_phase(phase);
2333 }
2334 
2335 bool G1CollectedHeap::is_heterogeneous_heap() const {
2336   return _collector_policy->is_heterogeneous_heap();
2337 }
2338 
2339 class PrintRegionClosure: public HeapRegionClosure {
2340   outputStream* _st;
2341 public:
2342   PrintRegionClosure(outputStream* st) : _st(st) {}
2343   bool do_heap_region(HeapRegion* r) {
2344     r->print_on(_st);
2345     return false;
2346   }
2347 };
2348 
2349 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2350                                        const HeapRegion* hr,
2351                                        const VerifyOption vo) const {
2352   switch (vo) {
2353   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2354   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2355   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2356   default:                            ShouldNotReachHere();
2357   }
2358   return false; // keep some compilers happy
2359 }
2360 
2361 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2362                                        const VerifyOption vo) const {
2363   switch (vo) {
2364   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2365   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2366   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2367   default:                            ShouldNotReachHere();
2368   }
2369   return false; // keep some compilers happy
2370 }
2371 
2372 void G1CollectedHeap::print_heap_regions() const {
2373   LogTarget(Trace, gc, heap, region) lt;
2374   if (lt.is_enabled()) {
2375     LogStream ls(lt);
2376     print_regions_on(&ls);
2377   }
2378 }
2379 
2380 void G1CollectedHeap::print_on(outputStream* st) const {
2381   st->print(" %-20s", "garbage-first heap");
2382   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2383             capacity()/K, used_unlocked()/K);
2384   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2385             p2i(_hrm->reserved().start()),
2386             p2i(_hrm->reserved().end()));
2387   st->cr();
2388   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2389   uint young_regions = young_regions_count();
2390   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2391             (size_t) young_regions * HeapRegion::GrainBytes / K);
2392   uint survivor_regions = survivor_regions_count();
2393   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2394             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2395   st->cr();
2396   MetaspaceUtils::print_on(st);
2397 }
2398 
2399 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2400   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2401                "HS=humongous(starts), HC=humongous(continues), "
2402                "CS=collection set, F=free, A=archive, "
2403                "TAMS=top-at-mark-start (previous, next)");
2404   PrintRegionClosure blk(st);
2405   heap_region_iterate(&blk);
2406 }
2407 
2408 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2409   print_on(st);
2410 
2411   // Print the per-region information.
2412   print_regions_on(st);
2413 }
2414 
2415 void G1CollectedHeap::print_on_error(outputStream* st) const {
2416   this->CollectedHeap::print_on_error(st);
2417 
2418   if (_cm != NULL) {
2419     st->cr();
2420     _cm->print_on_error(st);
2421   }
2422 }
2423 
2424 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2425   workers()->print_worker_threads_on(st);
2426   _cm_thread->print_on(st);
2427   st->cr();
2428   _cm->print_worker_threads_on(st);
2429   _cr->print_threads_on(st);
2430   _young_gen_sampling_thread->print_on(st);
2431   if (G1StringDedup::is_enabled()) {
2432     G1StringDedup::print_worker_threads_on(st);
2433   }
2434 }
2435 
2436 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2437   workers()->threads_do(tc);
2438   tc->do_thread(_cm_thread);
2439   _cm->threads_do(tc);
2440   _cr->threads_do(tc);
2441   tc->do_thread(_young_gen_sampling_thread);
2442   if (G1StringDedup::is_enabled()) {
2443     G1StringDedup::threads_do(tc);
2444   }
2445 }
2446 
2447 void G1CollectedHeap::print_tracing_info() const {
2448   rem_set()->print_summary_info();
2449   concurrent_mark()->print_summary_info();
2450 }
2451 
2452 #ifndef PRODUCT
2453 // Helpful for debugging RSet issues.
2454 
2455 class PrintRSetsClosure : public HeapRegionClosure {
2456 private:
2457   const char* _msg;
2458   size_t _occupied_sum;
2459 
2460 public:
2461   bool do_heap_region(HeapRegion* r) {
2462     HeapRegionRemSet* hrrs = r->rem_set();
2463     size_t occupied = hrrs->occupied();
2464     _occupied_sum += occupied;
2465 
2466     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2467     if (occupied == 0) {
2468       tty->print_cr("  RSet is empty");
2469     } else {
2470       hrrs->print();
2471     }
2472     tty->print_cr("----------");
2473     return false;
2474   }
2475 
2476   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2477     tty->cr();
2478     tty->print_cr("========================================");
2479     tty->print_cr("%s", msg);
2480     tty->cr();
2481   }
2482 
2483   ~PrintRSetsClosure() {
2484     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2485     tty->print_cr("========================================");
2486     tty->cr();
2487   }
2488 };
2489 
2490 void G1CollectedHeap::print_cset_rsets() {
2491   PrintRSetsClosure cl("Printing CSet RSets");
2492   collection_set_iterate(&cl);
2493 }
2494 
2495 void G1CollectedHeap::print_all_rsets() {
2496   PrintRSetsClosure cl("Printing All RSets");;
2497   heap_region_iterate(&cl);
2498 }
2499 #endif // PRODUCT
2500 
2501 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2502 
2503   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2504   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2505   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2506 
2507   size_t eden_capacity_bytes =
2508     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2509 
2510   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2511   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2512                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2513 }
2514 
2515 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2516   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2517                        stats->unused(), stats->used(), stats->region_end_waste(),
2518                        stats->regions_filled(), stats->direct_allocated(),
2519                        stats->failure_used(), stats->failure_waste());
2520 }
2521 
2522 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2523   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2524   gc_tracer->report_gc_heap_summary(when, heap_summary);
2525 
2526   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2527   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2528 }
2529 
2530 G1CollectedHeap* G1CollectedHeap::heap() {
2531   CollectedHeap* heap = Universe::heap();
2532   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2533   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2534   return (G1CollectedHeap*)heap;
2535 }
2536 
2537 void G1CollectedHeap::gc_prologue(bool full) {
2538   // always_do_update_barrier = false;
2539   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2540 
2541   // This summary needs to be printed before incrementing total collections.
2542   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2543 
2544   // Update common counters.
2545   increment_total_collections(full /* full gc */);
2546   if (full || collector_state()->in_initial_mark_gc()) {
2547     increment_old_marking_cycles_started();
2548   }
2549 
2550   // Fill TLAB's and such
2551   double start = os::elapsedTime();
2552   ensure_parsability(true);
2553   phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2554 }
2555 
2556 void G1CollectedHeap::gc_epilogue(bool full) {
2557   // Update common counters.
2558   if (full) {
2559     // Update the number of full collections that have been completed.
2560     increment_old_marking_cycles_completed(false /* concurrent */);
2561   }
2562 
2563   // We are at the end of the GC. Total collections has already been increased.
2564   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2565 
2566   // FIXME: what is this about?
2567   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2568   // is set.
2569 #if COMPILER2_OR_JVMCI
2570   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2571 #endif
2572   // always_do_update_barrier = true;
2573 
2574   double start = os::elapsedTime();
2575   resize_all_tlabs();
2576   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2577 
2578   MemoryService::track_memory_usage();
2579   // We have just completed a GC. Update the soft reference
2580   // policy with the new heap occupancy
2581   Universe::update_heap_info_at_gc();
2582 }
2583 
2584 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2585                                                uint gc_count_before,
2586                                                bool* succeeded,
2587                                                GCCause::Cause gc_cause) {
2588   assert_heap_not_locked_and_not_at_safepoint();
2589   VM_G1CollectForAllocation op(word_size,
2590                                gc_count_before,
2591                                gc_cause,
2592                                false, /* should_initiate_conc_mark */
2593                                policy()->max_pause_time_ms());
2594   VMThread::execute(&op);
2595 
2596   HeapWord* result = op.result();
2597   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2598   assert(result == NULL || ret_succeeded,
2599          "the result should be NULL if the VM did not succeed");
2600   *succeeded = ret_succeeded;
2601 
2602   assert_heap_not_locked();
2603   return result;
2604 }
2605 
2606 void G1CollectedHeap::do_concurrent_mark() {
2607   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2608   if (!_cm_thread->in_progress()) {
2609     _cm_thread->set_started();
2610     CGC_lock->notify();
2611   }
2612 }
2613 
2614 size_t G1CollectedHeap::pending_card_num() {
2615   size_t extra_cards = 0;
2616   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2617     G1DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2618     extra_cards += dcq.size();
2619   }
2620   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2621   size_t buffer_size = dcqs.buffer_size();
2622   size_t buffer_num = dcqs.completed_buffers_num();
2623 
2624   return buffer_size * buffer_num + extra_cards;
2625 }
2626 
2627 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2628   // We don't nominate objects with many remembered set entries, on
2629   // the assumption that such objects are likely still live.
2630   HeapRegionRemSet* rem_set = r->rem_set();
2631 
2632   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2633          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2634          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2635 }
2636 
2637 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2638  private:
2639   size_t _total_humongous;
2640   size_t _candidate_humongous;
2641 
2642   G1DirtyCardQueue _dcq;
2643 
2644   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2645     assert(region->is_starts_humongous(), "Must start a humongous object");
2646 
2647     oop obj = oop(region->bottom());
2648 
2649     // Dead objects cannot be eager reclaim candidates. Due to class
2650     // unloading it is unsafe to query their classes so we return early.
2651     if (g1h->is_obj_dead(obj, region)) {
2652       return false;
2653     }
2654 
2655     // If we do not have a complete remembered set for the region, then we can
2656     // not be sure that we have all references to it.
2657     if (!region->rem_set()->is_complete()) {
2658       return false;
2659     }
2660     // Candidate selection must satisfy the following constraints
2661     // while concurrent marking is in progress:
2662     //
2663     // * In order to maintain SATB invariants, an object must not be
2664     // reclaimed if it was allocated before the start of marking and
2665     // has not had its references scanned.  Such an object must have
2666     // its references (including type metadata) scanned to ensure no
2667     // live objects are missed by the marking process.  Objects
2668     // allocated after the start of concurrent marking don't need to
2669     // be scanned.
2670     //
2671     // * An object must not be reclaimed if it is on the concurrent
2672     // mark stack.  Objects allocated after the start of concurrent
2673     // marking are never pushed on the mark stack.
2674     //
2675     // Nominating only objects allocated after the start of concurrent
2676     // marking is sufficient to meet both constraints.  This may miss
2677     // some objects that satisfy the constraints, but the marking data
2678     // structures don't support efficiently performing the needed
2679     // additional tests or scrubbing of the mark stack.
2680     //
2681     // However, we presently only nominate is_typeArray() objects.
2682     // A humongous object containing references induces remembered
2683     // set entries on other regions.  In order to reclaim such an
2684     // object, those remembered sets would need to be cleaned up.
2685     //
2686     // We also treat is_typeArray() objects specially, allowing them
2687     // to be reclaimed even if allocated before the start of
2688     // concurrent mark.  For this we rely on mark stack insertion to
2689     // exclude is_typeArray() objects, preventing reclaiming an object
2690     // that is in the mark stack.  We also rely on the metadata for
2691     // such objects to be built-in and so ensured to be kept live.
2692     // Frequent allocation and drop of large binary blobs is an
2693     // important use case for eager reclaim, and this special handling
2694     // may reduce needed headroom.
2695 
2696     return obj->is_typeArray() &&
2697            g1h->is_potential_eager_reclaim_candidate(region);
2698   }
2699 
2700  public:
2701   RegisterHumongousWithInCSetFastTestClosure()
2702   : _total_humongous(0),
2703     _candidate_humongous(0),
2704     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2705   }
2706 
2707   virtual bool do_heap_region(HeapRegion* r) {
2708     if (!r->is_starts_humongous()) {
2709       return false;
2710     }
2711     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2712 
2713     bool is_candidate = humongous_region_is_candidate(g1h, r);
2714     uint rindex = r->hrm_index();
2715     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2716     if (is_candidate) {
2717       _candidate_humongous++;
2718       g1h->register_humongous_region_with_cset(rindex);
2719       // Is_candidate already filters out humongous object with large remembered sets.
2720       // If we have a humongous object with a few remembered sets, we simply flush these
2721       // remembered set entries into the DCQS. That will result in automatic
2722       // re-evaluation of their remembered set entries during the following evacuation
2723       // phase.
2724       if (!r->rem_set()->is_empty()) {
2725         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2726                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2727         G1CardTable* ct = g1h->card_table();
2728         HeapRegionRemSetIterator hrrs(r->rem_set());
2729         size_t card_index;
2730         while (hrrs.has_next(card_index)) {
2731           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2732           // The remembered set might contain references to already freed
2733           // regions. Filter out such entries to avoid failing card table
2734           // verification.
2735           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2736             if (*card_ptr != G1CardTable::dirty_card_val()) {
2737               *card_ptr = G1CardTable::dirty_card_val();
2738               _dcq.enqueue(card_ptr);
2739             }
2740           }
2741         }
2742         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2743                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2744                hrrs.n_yielded(), r->rem_set()->occupied());
2745         // We should only clear the card based remembered set here as we will not
2746         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2747         // (and probably never) we do not enter this path if there are other kind of
2748         // remembered sets for this region.
2749         r->rem_set()->clear_locked(true /* only_cardset */);
2750         // Clear_locked() above sets the state to Empty. However we want to continue
2751         // collecting remembered set entries for humongous regions that were not
2752         // reclaimed.
2753         r->rem_set()->set_state_complete();
2754       }
2755       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2756     }
2757     _total_humongous++;
2758 
2759     return false;
2760   }
2761 
2762   size_t total_humongous() const { return _total_humongous; }
2763   size_t candidate_humongous() const { return _candidate_humongous; }
2764 
2765   void flush_rem_set_entries() { _dcq.flush(); }
2766 };
2767 
2768 void G1CollectedHeap::register_humongous_regions_with_cset() {
2769   if (!G1EagerReclaimHumongousObjects) {
2770     phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2771     return;
2772   }
2773   double time = os::elapsed_counter();
2774 
2775   // Collect reclaim candidate information and register candidates with cset.
2776   RegisterHumongousWithInCSetFastTestClosure cl;
2777   heap_region_iterate(&cl);
2778 
2779   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2780   phase_times()->record_fast_reclaim_humongous_stats(time,
2781                                                      cl.total_humongous(),
2782                                                      cl.candidate_humongous());
2783   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2784 
2785   // Finally flush all remembered set entries to re-check into the global DCQS.
2786   cl.flush_rem_set_entries();
2787 }
2788 
2789 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2790   public:
2791     bool do_heap_region(HeapRegion* hr) {
2792       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2793         hr->verify_rem_set();
2794       }
2795       return false;
2796     }
2797 };
2798 
2799 uint G1CollectedHeap::num_task_queues() const {
2800   return _task_queues->size();
2801 }
2802 
2803 #if TASKQUEUE_STATS
2804 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2805   st->print_raw_cr("GC Task Stats");
2806   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2807   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2808 }
2809 
2810 void G1CollectedHeap::print_taskqueue_stats() const {
2811   if (!log_is_enabled(Trace, gc, task, stats)) {
2812     return;
2813   }
2814   Log(gc, task, stats) log;
2815   ResourceMark rm;
2816   LogStream ls(log.trace());
2817   outputStream* st = &ls;
2818 
2819   print_taskqueue_stats_hdr(st);
2820 
2821   TaskQueueStats totals;
2822   const uint n = num_task_queues();
2823   for (uint i = 0; i < n; ++i) {
2824     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2825     totals += task_queue(i)->stats;
2826   }
2827   st->print_raw("tot "); totals.print(st); st->cr();
2828 
2829   DEBUG_ONLY(totals.verify());
2830 }
2831 
2832 void G1CollectedHeap::reset_taskqueue_stats() {
2833   const uint n = num_task_queues();
2834   for (uint i = 0; i < n; ++i) {
2835     task_queue(i)->stats.reset();
2836   }
2837 }
2838 #endif // TASKQUEUE_STATS
2839 
2840 void G1CollectedHeap::wait_for_root_region_scanning() {
2841   double scan_wait_start = os::elapsedTime();
2842   // We have to wait until the CM threads finish scanning the
2843   // root regions as it's the only way to ensure that all the
2844   // objects on them have been correctly scanned before we start
2845   // moving them during the GC.
2846   bool waited = _cm->root_regions()->wait_until_scan_finished();
2847   double wait_time_ms = 0.0;
2848   if (waited) {
2849     double scan_wait_end = os::elapsedTime();
2850     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2851   }
2852   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2853 }
2854 
2855 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2856 private:
2857   G1HRPrinter* _hr_printer;
2858 public:
2859   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2860 
2861   virtual bool do_heap_region(HeapRegion* r) {
2862     _hr_printer->cset(r);
2863     return false;
2864   }
2865 };
2866 
2867 void G1CollectedHeap::start_new_collection_set() {
2868   double start = os::elapsedTime();
2869 
2870   collection_set()->start_incremental_building();
2871 
2872   clear_cset_fast_test();
2873 
2874   guarantee(_eden.length() == 0, "eden should have been cleared");
2875   policy()->transfer_survivors_to_cset(survivor());
2876 
2877   // We redo the verification but now wrt to the new CSet which
2878   // has just got initialized after the previous CSet was freed.
2879   _cm->verify_no_collection_set_oops_in_stacks();
2880 
2881   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2882 }
2883 
2884 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms){
2885   policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2886   evacuation_info.set_collectionset_regions(collection_set()->region_length());
2887 
2888   _cm->verify_no_collection_set_oops_in_stacks();
2889 
2890   if (_hr_printer.is_active()) {
2891     G1PrintCollectionSetClosure cl(&_hr_printer);
2892     _collection_set.iterate(&cl);
2893   }
2894 }
2895 
2896 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2897   if (collector_state()->in_initial_mark_gc()) {
2898     return G1HeapVerifier::G1VerifyConcurrentStart;
2899   } else if (collector_state()->in_young_only_phase()) {
2900     return G1HeapVerifier::G1VerifyYoungNormal;
2901   } else {
2902     return G1HeapVerifier::G1VerifyMixed;
2903   }
2904 }
2905 
2906 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2907   if (VerifyRememberedSets) {
2908     log_info(gc, verify)("[Verifying RemSets before GC]");
2909     VerifyRegionRemSetClosure v_cl;
2910     heap_region_iterate(&v_cl);
2911   }
2912   _verifier->verify_before_gc(type);
2913   _verifier->check_bitmaps("GC Start");
2914 }
2915 
2916 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2917   if (VerifyRememberedSets) {
2918     log_info(gc, verify)("[Verifying RemSets after GC]");
2919     VerifyRegionRemSetClosure v_cl;
2920     heap_region_iterate(&v_cl);
2921   }
2922   _verifier->verify_after_gc(type);
2923   _verifier->check_bitmaps("GC End");
2924 }
2925 
2926 void G1CollectedHeap::expand_heap_after_young_collection(){
2927   size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2928   if (expand_bytes > 0) {
2929     // No need for an ergo logging here,
2930     // expansion_amount() does this when it returns a value > 0.
2931     double expand_ms;
2932     if (!expand(expand_bytes, _workers, &expand_ms)) {
2933       // We failed to expand the heap. Cannot do anything about it.
2934     }
2935     phase_times()->record_expand_heap_time(expand_ms);
2936   }
2937 }
2938 
2939 const char* G1CollectedHeap::young_gc_name() const {
2940   if (collector_state()->in_initial_mark_gc()) {
2941     return "Pause Young (Concurrent Start)";
2942   } else if (collector_state()->in_young_only_phase()) {
2943     if (collector_state()->in_young_gc_before_mixed()) {
2944       return "Pause Young (Prepare Mixed)";
2945     } else {
2946       return "Pause Young (Normal)";
2947     }
2948   } else {
2949     return "Pause Young (Mixed)";
2950   }
2951 }
2952 
2953 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2954   assert_at_safepoint_on_vm_thread();
2955   guarantee(!is_gc_active(), "collection is not reentrant");
2956 
2957   if (GCLocker::check_active_before_gc()) {
2958     return false;
2959   }
2960 
2961   GCIdMark gc_id_mark;
2962 
2963   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2964   ResourceMark rm;
2965 
2966   policy()->note_gc_start();
2967 
2968   _gc_timer_stw->register_gc_start();
2969   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2970 
2971   wait_for_root_region_scanning();
2972 
2973   print_heap_before_gc();
2974   print_heap_regions();
2975   trace_heap_before_gc(_gc_tracer_stw);
2976 
2977   _verifier->verify_region_sets_optional();
2978   _verifier->verify_dirty_young_regions();
2979 
2980   // We should not be doing initial mark unless the conc mark thread is running
2981   if (!_cm_thread->should_terminate()) {
2982     // This call will decide whether this pause is an initial-mark
2983     // pause. If it is, in_initial_mark_gc() will return true
2984     // for the duration of this pause.
2985     policy()->decide_on_conc_mark_initiation();
2986   }
2987 
2988   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2989   assert(!collector_state()->in_initial_mark_gc() ||
2990          collector_state()->in_young_only_phase(), "sanity");
2991   // We also do not allow mixed GCs during marking.
2992   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2993 
2994   // Record whether this pause is an initial mark. When the current
2995   // thread has completed its logging output and it's safe to signal
2996   // the CM thread, the flag's value in the policy has been reset.
2997   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2998   if (should_start_conc_mark) {
2999     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3000   }
3001 
3002   // Inner scope for scope based logging, timers, and stats collection
3003   {
3004     G1EvacuationInfo evacuation_info;
3005 
3006     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3007 
3008     GCTraceCPUTime tcpu;
3009 
3010     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
3011 
3012     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
3013                                                             workers()->active_workers(),
3014                                                             Threads::number_of_non_daemon_threads());
3015     active_workers = workers()->update_active_workers(active_workers);
3016     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3017 
3018     G1MonitoringScope ms(g1mm(),
3019                          false /* full_gc */,
3020                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
3021 
3022     G1HeapTransition heap_transition(this);
3023     size_t heap_used_bytes_before_gc = used();
3024 
3025     {
3026       IsGCActiveMark x;
3027 
3028       gc_prologue(false);
3029 
3030       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3031       verify_before_young_collection(verify_type);
3032 
3033       {
3034         // The elapsed time induced by the start time below deliberately elides
3035         // the possible verification above.
3036         double sample_start_time_sec = os::elapsedTime();
3037 
3038         // Please see comment in g1CollectedHeap.hpp and
3039         // G1CollectedHeap::ref_processing_init() to see how
3040         // reference processing currently works in G1.
3041         _ref_processor_stw->enable_discovery();
3042         
3043         // We want to temporarily turn off discovery by the
3044         // CM ref processor, if necessary, and turn it back on
3045         // on again later if we do. Using a scoped
3046         // NoRefDiscovery object will do this.
3047         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3048 
3049         policy()->record_collection_pause_start(sample_start_time_sec);
3050 
3051         // Forget the current allocation region (we might even choose it to be part
3052         // of the collection set!).
3053         _allocator->release_mutator_alloc_region();
3054 
3055         calculate_collection_set(evacuation_info, target_pause_time_ms);
3056 
3057         G1ParScanThreadStateSet per_thread_states(this,
3058                                                   workers()->active_workers(),
3059                                                   collection_set()->young_region_length(),
3060                                                   collection_set()->optional_region_length());
3061         pre_evacuate_collection_set(evacuation_info);
3062 
3063         // Actually do the work...
3064         evacuate_collection_set(&per_thread_states);
3065         evacuate_optional_collection_set(&per_thread_states);
3066 
3067         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3068 
3069         start_new_collection_set();
3070 
3071         _survivor_evac_stats.adjust_desired_plab_sz();
3072         _old_evac_stats.adjust_desired_plab_sz();
3073 
3074         if (should_start_conc_mark) {
3075           // We have to do this before we notify the CM threads that
3076           // they can start working to make sure that all the
3077           // appropriate initialization is done on the CM object.
3078           concurrent_mark()->post_initial_mark();
3079           // Note that we don't actually trigger the CM thread at
3080           // this point. We do that later when we're sure that
3081           // the current thread has completed its logging output.
3082         }
3083 
3084         allocate_dummy_regions();
3085 
3086         _allocator->init_mutator_alloc_region();
3087 
3088         expand_heap_after_young_collection();
3089 
3090         double sample_end_time_sec = os::elapsedTime();
3091         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3092         size_t total_cards_scanned = phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3093         policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3094       }
3095 
3096       verify_after_young_collection(verify_type);
3097 
3098 #ifdef TRACESPINNING
3099       ParallelTaskTerminator::print_termination_counts();
3100 #endif
3101 
3102       gc_epilogue(false);
3103     }
3104 
3105     // Print the remainder of the GC log output.
3106     if (evacuation_failed()) {
3107       log_info(gc)("To-space exhausted");
3108     }
3109 
3110     policy()->print_phases();
3111     heap_transition.print();
3112 
3113     _hrm->verify_optional();
3114     _verifier->verify_region_sets_optional();
3115 
3116     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3117     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3118 
3119     print_heap_after_gc();
3120     print_heap_regions();
3121     trace_heap_after_gc(_gc_tracer_stw);
3122 
3123     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3124     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3125     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3126     // before any GC notifications are raised.
3127     g1mm()->update_sizes();
3128 
3129     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3130     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3131     _gc_timer_stw->register_gc_end();
3132     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3133   }
3134   // It should now be safe to tell the concurrent mark thread to start
3135   // without its logging output interfering with the logging output
3136   // that came from the pause.
3137 
3138   if (should_start_conc_mark) {
3139     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3140     // thread(s) could be running concurrently with us. Make sure that anything
3141     // after this point does not assume that we are the only GC thread running.
3142     // Note: of course, the actual marking work will not start until the safepoint
3143     // itself is released in SuspendibleThreadSet::desynchronize().
3144     do_concurrent_mark();
3145   }
3146 
3147   return true;
3148 }
3149 
3150 void G1CollectedHeap::remove_self_forwarding_pointers() {
3151   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3152   workers()->run_task(&rsfp_task);
3153 }
3154 
3155 void G1CollectedHeap::restore_after_evac_failure() {
3156   double remove_self_forwards_start = os::elapsedTime();
3157 
3158   remove_self_forwarding_pointers();
3159   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3160   _preserved_marks_set.restore(&task_executor);
3161 
3162   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3163 }
3164 
3165 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3166   if (!_evacuation_failed) {
3167     _evacuation_failed = true;
3168   }
3169 
3170   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3171   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3172 }
3173 
3174 bool G1ParEvacuateFollowersClosure::offer_termination() {
3175   EventGCPhaseParallel event;
3176   G1ParScanThreadState* const pss = par_scan_state();
3177   start_term_time();
3178   const bool res = terminator()->offer_termination();
3179   end_term_time();
3180   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3181   return res;
3182 }
3183 
3184 void G1ParEvacuateFollowersClosure::do_void() {
3185   EventGCPhaseParallel event;
3186   G1ParScanThreadState* const pss = par_scan_state();
3187   pss->trim_queue();
3188   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3189   do {
3190     EventGCPhaseParallel event;
3191     pss->steal_and_trim_queue(queues());
3192     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3193   } while (!offer_termination());
3194 }
3195 
3196 class G1ParTask : public AbstractGangTask {
3197 protected:
3198   G1CollectedHeap*         _g1h;
3199   G1ParScanThreadStateSet* _pss;
3200   RefToScanQueueSet*       _queues;
3201   G1RootProcessor*         _root_processor;
3202   TaskTerminator           _terminator;
3203   uint                     _n_workers;
3204 
3205 public:
3206   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3207     : AbstractGangTask("G1 collection"),
3208       _g1h(g1h),
3209       _pss(per_thread_states),
3210       _queues(task_queues),
3211       _root_processor(root_processor),
3212       _terminator(n_workers, _queues),
3213       _n_workers(n_workers)
3214   {}
3215 
3216   void work(uint worker_id) {
3217     if (worker_id >= _n_workers) return;  // no work needed this round
3218 
3219     double start_sec = os::elapsedTime();
3220     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3221 
3222     {
3223       ResourceMark rm;
3224       HandleMark   hm;
3225 
3226       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3227 
3228       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3229       pss->set_ref_discoverer(rp);
3230 
3231       double start_strong_roots_sec = os::elapsedTime();
3232 
3233       _root_processor->evacuate_roots(pss, worker_id);
3234 
3235       _g1h->rem_set()->oops_into_collection_set_do(pss, worker_id);
3236 
3237       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3238 
3239       double term_sec = 0.0;
3240       size_t evac_term_attempts = 0;
3241       {
3242         double start = os::elapsedTime();
3243         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, _terminator.terminator(), G1GCPhaseTimes::ObjCopy);
3244         evac.do_void();
3245 
3246         evac_term_attempts = evac.term_attempts();
3247         term_sec = evac.term_time();
3248         double elapsed_sec = os::elapsedTime() - start;
3249 
3250         G1GCPhaseTimes* p = _g1h->phase_times();
3251         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3252 
3253         p->record_or_add_thread_work_item(G1GCPhaseTimes::ObjCopy,
3254                                           worker_id,
3255                                           pss->lab_waste_words() * HeapWordSize,
3256                                           G1GCPhaseTimes::ObjCopyLABWaste);
3257         p->record_or_add_thread_work_item(G1GCPhaseTimes::ObjCopy,
3258                                           worker_id,
3259                                           pss->lab_undo_waste_words() * HeapWordSize,
3260                                           G1GCPhaseTimes::ObjCopyLABUndoWaste);
3261 
3262         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3263         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3264       }
3265 
3266       assert(pss->queue_is_empty(), "should be empty");
3267 
3268       // Close the inner scope so that the ResourceMark and HandleMark
3269       // destructors are executed here and are included as part of the
3270       // "GC Worker Time".
3271     }
3272     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3273   }
3274 };
3275 
3276 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3277                                         bool class_unloading_occurred) {
3278   uint num_workers = workers()->active_workers();
3279   ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3280   workers()->run_task(&unlink_task);
3281 }
3282 
3283 // Clean string dedup data structures.
3284 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3285 // record the durations of the phases. Hence the almost-copy.
3286 class G1StringDedupCleaningTask : public AbstractGangTask {
3287   BoolObjectClosure* _is_alive;
3288   OopClosure* _keep_alive;
3289   G1GCPhaseTimes* _phase_times;
3290 
3291 public:
3292   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3293                             OopClosure* keep_alive,
3294                             G1GCPhaseTimes* phase_times) :
3295     AbstractGangTask("Partial Cleaning Task"),
3296     _is_alive(is_alive),
3297     _keep_alive(keep_alive),
3298     _phase_times(phase_times)
3299   {
3300     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3301     StringDedup::gc_prologue(true);
3302   }
3303 
3304   ~G1StringDedupCleaningTask() {
3305     StringDedup::gc_epilogue();
3306   }
3307 
3308   void work(uint worker_id) {
3309     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3310     {
3311       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3312       StringDedupQueue::unlink_or_oops_do(&cl);
3313     }
3314     {
3315       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3316       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3317     }
3318   }
3319 };
3320 
3321 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3322                                             OopClosure* keep_alive,
3323                                             G1GCPhaseTimes* phase_times) {
3324   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3325   workers()->run_task(&cl);
3326 }
3327 
3328 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3329  private:
3330   G1DirtyCardQueueSet* _queue;
3331   G1CollectedHeap* _g1h;
3332  public:
3333   G1RedirtyLoggedCardsTask(G1DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3334     _queue(queue), _g1h(g1h) { }
3335 
3336   virtual void work(uint worker_id) {
3337     G1GCPhaseTimes* p = _g1h->phase_times();
3338     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3339 
3340     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3341     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3342 
3343     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3344   }
3345 };
3346 
3347 void G1CollectedHeap::redirty_logged_cards() {
3348   double redirty_logged_cards_start = os::elapsedTime();
3349 
3350   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3351   dirty_card_queue_set().reset_for_par_iteration();
3352   workers()->run_task(&redirty_task);
3353 
3354   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3355   dcq.merge_bufferlists(&dirty_card_queue_set());
3356   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3357 
3358   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3359 }
3360 
3361 // Weak Reference Processing support
3362 
3363 bool G1STWIsAliveClosure::do_object_b(oop p) {
3364   // An object is reachable if it is outside the collection set,
3365   // or is inside and copied.
3366   return !_g1h->is_in_cset(p) || p->is_forwarded();
3367 }
3368 
3369 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3370   assert(obj != NULL, "must not be NULL");
3371   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3372   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3373   // may falsely indicate that this is not the case here: however the collection set only
3374   // contains old regions when concurrent mark is not running.
3375   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3376 }
3377 
3378 // Non Copying Keep Alive closure
3379 class G1KeepAliveClosure: public OopClosure {
3380   G1CollectedHeap*_g1h;
3381 public:
3382   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3383   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3384   void do_oop(oop* p) {
3385     oop obj = *p;
3386     assert(obj != NULL, "the caller should have filtered out NULL values");
3387 
3388     const InCSetState cset_state =_g1h->in_cset_state(obj);
3389     if (!cset_state.is_in_cset_or_humongous()) {
3390       return;
3391     }
3392     if (cset_state.is_in_cset()) {
3393       assert( obj->is_forwarded(), "invariant" );
3394       *p = obj->forwardee();
3395     } else {
3396       assert(!obj->is_forwarded(), "invariant" );
3397       assert(cset_state.is_humongous(),
3398              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3399      _g1h->set_humongous_is_live(obj);
3400     }
3401   }
3402 };
3403 
3404 // Copying Keep Alive closure - can be called from both
3405 // serial and parallel code as long as different worker
3406 // threads utilize different G1ParScanThreadState instances
3407 // and different queues.
3408 
3409 class G1CopyingKeepAliveClosure: public OopClosure {
3410   G1CollectedHeap*         _g1h;
3411   G1ParScanThreadState*    _par_scan_state;
3412 
3413 public:
3414   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3415                             G1ParScanThreadState* pss):
3416     _g1h(g1h),
3417     _par_scan_state(pss)
3418   {}
3419 
3420   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3421   virtual void do_oop(      oop* p) { do_oop_work(p); }
3422 
3423   template <class T> void do_oop_work(T* p) {
3424     oop obj = RawAccess<>::oop_load(p);
3425 
3426     if (_g1h->is_in_cset_or_humongous(obj)) {
3427       // If the referent object has been forwarded (either copied
3428       // to a new location or to itself in the event of an
3429       // evacuation failure) then we need to update the reference
3430       // field and, if both reference and referent are in the G1
3431       // heap, update the RSet for the referent.
3432       //
3433       // If the referent has not been forwarded then we have to keep
3434       // it alive by policy. Therefore we have copy the referent.
3435       //
3436       // When the queue is drained (after each phase of reference processing)
3437       // the object and it's followers will be copied, the reference field set
3438       // to point to the new location, and the RSet updated.
3439       _par_scan_state->push_on_queue(p);
3440     }
3441   }
3442 };
3443 
3444 // Serial drain queue closure. Called as the 'complete_gc'
3445 // closure for each discovered list in some of the
3446 // reference processing phases.
3447 
3448 class G1STWDrainQueueClosure: public VoidClosure {
3449 protected:
3450   G1CollectedHeap* _g1h;
3451   G1ParScanThreadState* _par_scan_state;
3452 
3453   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3454 
3455 public:
3456   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3457     _g1h(g1h),
3458     _par_scan_state(pss)
3459   { }
3460 
3461   void do_void() {
3462     G1ParScanThreadState* const pss = par_scan_state();
3463     pss->trim_queue();
3464   }
3465 };
3466 
3467 // Parallel Reference Processing closures
3468 
3469 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3470 // processing during G1 evacuation pauses.
3471 
3472 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3473 private:
3474   G1CollectedHeap*          _g1h;
3475   G1ParScanThreadStateSet*  _pss;
3476   RefToScanQueueSet*        _queues;
3477   WorkGang*                 _workers;
3478 
3479 public:
3480   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3481                            G1ParScanThreadStateSet* per_thread_states,
3482                            WorkGang* workers,
3483                            RefToScanQueueSet *task_queues) :
3484     _g1h(g1h),
3485     _pss(per_thread_states),
3486     _queues(task_queues),
3487     _workers(workers)
3488   {
3489     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3490   }
3491 
3492   // Executes the given task using concurrent marking worker threads.
3493   virtual void execute(ProcessTask& task, uint ergo_workers);
3494 };
3495 
3496 // Gang task for possibly parallel reference processing
3497 
3498 class G1STWRefProcTaskProxy: public AbstractGangTask {
3499   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3500   ProcessTask&     _proc_task;
3501   G1CollectedHeap* _g1h;
3502   G1ParScanThreadStateSet* _pss;
3503   RefToScanQueueSet* _task_queues;
3504   ParallelTaskTerminator* _terminator;
3505 
3506 public:
3507   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3508                         G1CollectedHeap* g1h,
3509                         G1ParScanThreadStateSet* per_thread_states,
3510                         RefToScanQueueSet *task_queues,
3511                         ParallelTaskTerminator* terminator) :
3512     AbstractGangTask("Process reference objects in parallel"),
3513     _proc_task(proc_task),
3514     _g1h(g1h),
3515     _pss(per_thread_states),
3516     _task_queues(task_queues),
3517     _terminator(terminator)
3518   {}
3519 
3520   virtual void work(uint worker_id) {
3521     // The reference processing task executed by a single worker.
3522     ResourceMark rm;
3523     HandleMark   hm;
3524 
3525     G1STWIsAliveClosure is_alive(_g1h);
3526 
3527     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3528     pss->set_ref_discoverer(NULL);
3529 
3530     // Keep alive closure.
3531     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3532 
3533     // Complete GC closure
3534     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3535 
3536     // Call the reference processing task's work routine.
3537     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3538 
3539     // Note we cannot assert that the refs array is empty here as not all
3540     // of the processing tasks (specifically phase2 - pp2_work) execute
3541     // the complete_gc closure (which ordinarily would drain the queue) so
3542     // the queue may not be empty.
3543   }
3544 };
3545 
3546 // Driver routine for parallel reference processing.
3547 // Creates an instance of the ref processing gang
3548 // task and has the worker threads execute it.
3549 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3550   assert(_workers != NULL, "Need parallel worker threads.");
3551 
3552   assert(_workers->active_workers() >= ergo_workers,
3553          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3554          ergo_workers, _workers->active_workers());
3555   TaskTerminator terminator(ergo_workers, _queues);
3556   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, terminator.terminator());
3557 
3558   _workers->run_task(&proc_task_proxy, ergo_workers);
3559 }
3560 
3561 // End of weak reference support closures
3562 
3563 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3564   double ref_proc_start = os::elapsedTime();
3565 
3566   ReferenceProcessor* rp = _ref_processor_stw;
3567   assert(rp->discovery_enabled(), "should have been enabled");
3568 
3569   // Closure to test whether a referent is alive.
3570   G1STWIsAliveClosure is_alive(this);
3571 
3572   // Even when parallel reference processing is enabled, the processing
3573   // of JNI refs is serial and performed serially by the current thread
3574   // rather than by a worker. The following PSS will be used for processing
3575   // JNI refs.
3576 
3577   // Use only a single queue for this PSS.
3578   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3579   pss->set_ref_discoverer(NULL);
3580   assert(pss->queue_is_empty(), "pre-condition");
3581 
3582   // Keep alive closure.
3583   G1CopyingKeepAliveClosure keep_alive(this, pss);
3584 
3585   // Serial Complete GC closure
3586   G1STWDrainQueueClosure drain_queue(this, pss);
3587 
3588   // Setup the soft refs policy...
3589   rp->setup_policy(false);
3590 
3591   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3592 
3593   ReferenceProcessorStats stats;
3594   if (!rp->processing_is_mt()) {
3595     // Serial reference processing...
3596     stats = rp->process_discovered_references(&is_alive,
3597                                               &keep_alive,
3598                                               &drain_queue,
3599                                               NULL,
3600                                               pt);
3601   } else {
3602     uint no_of_gc_workers = workers()->active_workers();
3603 
3604     // Parallel reference processing
3605     assert(no_of_gc_workers <= rp->max_num_queues(),
3606            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3607            no_of_gc_workers,  rp->max_num_queues());
3608 
3609     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3610     stats = rp->process_discovered_references(&is_alive,
3611                                               &keep_alive,
3612                                               &drain_queue,
3613                                               &par_task_executor,
3614                                               pt);
3615   }
3616 
3617   _gc_tracer_stw->report_gc_reference_stats(stats);
3618 
3619   // We have completed copying any necessary live referent objects.
3620   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3621 
3622   make_pending_list_reachable();
3623 
3624   assert(!rp->discovery_enabled(), "Postcondition");
3625   rp->verify_no_references_recorded();
3626 
3627   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3628   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3629 }
3630 
3631 void G1CollectedHeap::make_pending_list_reachable() {
3632   if (collector_state()->in_initial_mark_gc()) {
3633     oop pll_head = Universe::reference_pending_list();
3634     if (pll_head != NULL) {
3635       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3636       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3637     }
3638   }
3639 }
3640 
3641 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3642   double merge_pss_time_start = os::elapsedTime();
3643   per_thread_states->flush();
3644   phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3645 }
3646 
3647 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info) {
3648   _expand_heap_after_alloc_failure = true;
3649   _evacuation_failed = false;
3650 
3651   // Disable the hot card cache.
3652   _hot_card_cache->reset_hot_cache_claimed_index();
3653   _hot_card_cache->set_use_cache(false);
3654 
3655   // Initialize the GC alloc regions.
3656   _allocator->init_gc_alloc_regions(evacuation_info);
3657 
3658   register_humongous_regions_with_cset();
3659   assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3660 
3661   rem_set()->prepare_for_oops_into_collection_set_do();
3662   _preserved_marks_set.assert_empty();
3663 
3664 #if COMPILER2_OR_JVMCI
3665   DerivedPointerTable::clear();
3666 #endif
3667 
3668   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3669   if (collector_state()->in_initial_mark_gc()) {
3670     concurrent_mark()->pre_initial_mark();
3671 
3672     double start_clear_claimed_marks = os::elapsedTime();
3673 
3674     ClassLoaderDataGraph::clear_claimed_marks();
3675 
3676     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3677     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3678   }
3679 }
3680 
3681 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3682   // Should G1EvacuationFailureALot be in effect for this GC?
3683   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3684 
3685   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
3686 
3687   double start_par_time_sec = os::elapsedTime();
3688   double end_par_time_sec;
3689 
3690   {
3691     const uint n_workers = workers()->active_workers();
3692     G1RootProcessor root_processor(this, n_workers);
3693     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
3694 
3695     workers()->run_task(&g1_par_task);
3696     end_par_time_sec = os::elapsedTime();
3697 
3698     // Closing the inner scope will execute the destructor
3699     // for the G1RootProcessor object. We record the current
3700     // elapsed time before closing the scope so that time
3701     // taken for the destructor is NOT included in the
3702     // reported parallel time.
3703   }
3704 
3705   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
3706   phase_times()->record_par_time(par_time_ms);
3707 
3708   double code_root_fixup_time_ms =
3709         (os::elapsedTime() - end_par_time_sec) * 1000.0;
3710   phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
3711 }
3712 
3713 class G1EvacuateOptionalRegionTask : public AbstractGangTask {
3714   G1CollectedHeap* _g1h;
3715   G1ParScanThreadStateSet* _per_thread_states;
3716   G1OptionalCSet* _optional;
3717   RefToScanQueueSet* _queues;
3718   ParallelTaskTerminator _terminator;
3719 
3720   Tickspan trim_ticks(G1ParScanThreadState* pss) {
3721     Tickspan copy_time = pss->trim_ticks();
3722     pss->reset_trim_ticks();
3723     return copy_time;
3724   }
3725 
3726   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3727     G1EvacuationRootClosures* root_cls = pss->closures();
3728     G1ScanObjsDuringScanRSClosure obj_cl(_g1h, pss);
3729 
3730     size_t scanned = 0;
3731     size_t claimed = 0;
3732     size_t skipped = 0;
3733     size_t used_memory = 0;
3734 
3735     Ticks    start = Ticks::now();
3736     Tickspan copy_time;
3737 
3738     for (uint i = _optional->current_index(); i < _optional->current_limit(); i++) {
3739       HeapRegion* hr = _optional->region_at(i);
3740       G1ScanRSForOptionalClosure scan_opt_cl(&obj_cl);
3741       pss->oops_into_optional_region(hr)->oops_do(&scan_opt_cl, root_cls->raw_strong_oops());
3742       copy_time += trim_ticks(pss);
3743 
3744       G1ScanRSForRegionClosure scan_rs_cl(_g1h->rem_set()->scan_state(), &obj_cl, pss, G1GCPhaseTimes::OptScanRS, worker_id);
3745       scan_rs_cl.do_heap_region(hr);
3746       copy_time += trim_ticks(pss);
3747       scanned += scan_rs_cl.cards_scanned();
3748       claimed += scan_rs_cl.cards_claimed();
3749       skipped += scan_rs_cl.cards_skipped();
3750 
3751       // Chunk lists for this region is no longer needed.
3752       used_memory += pss->oops_into_optional_region(hr)->used_memory();
3753     }
3754 
3755     Tickspan scan_time = (Ticks::now() - start) - copy_time;
3756     G1GCPhaseTimes* p = _g1h->phase_times();
3757     p->record_or_add_time_secs(G1GCPhaseTimes::OptScanRS, worker_id, scan_time.seconds());
3758     p->record_or_add_time_secs(G1GCPhaseTimes::OptObjCopy, worker_id, copy_time.seconds());
3759 
3760     p->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanRS, worker_id, scanned, G1GCPhaseTimes::OptCSetScannedCards);
3761     p->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanRS, worker_id, claimed, G1GCPhaseTimes::OptCSetClaimedCards);
3762     p->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanRS, worker_id, skipped, G1GCPhaseTimes::OptCSetSkippedCards);
3763     p->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanRS, worker_id, used_memory, G1GCPhaseTimes::OptCSetUsedMemory);
3764   }
3765 
3766   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3767     Ticks start = Ticks::now();
3768     G1ParEvacuateFollowersClosure cl(_g1h, pss, _queues, &_terminator, G1GCPhaseTimes::OptObjCopy);
3769     cl.do_void();
3770 
3771     Tickspan evac_time = (Ticks::now() - start);
3772     G1GCPhaseTimes* p = _g1h->phase_times();
3773     p->record_or_add_time_secs(G1GCPhaseTimes::OptObjCopy, worker_id, evac_time.seconds());
3774     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming done during optional evacuation");
3775   }
3776 
3777  public:
3778   G1EvacuateOptionalRegionTask(G1CollectedHeap* g1h,
3779                                G1ParScanThreadStateSet* per_thread_states,
3780                                G1OptionalCSet* cset,
3781                                RefToScanQueueSet* queues,
3782                                uint n_workers) :
3783     AbstractGangTask("G1 Evacuation Optional Region Task"),
3784     _g1h(g1h),
3785     _per_thread_states(per_thread_states),
3786     _optional(cset),
3787     _queues(queues),
3788     _terminator(n_workers, _queues) {
3789   }
3790 
3791   void work(uint worker_id) {
3792     ResourceMark rm;
3793     HandleMark  hm;
3794 
3795     G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3796     pss->set_ref_discoverer(_g1h->ref_processor_stw());
3797 
3798     scan_roots(pss, worker_id);
3799     evacuate_live_objects(pss, worker_id);
3800   }
3801 };
3802 
3803 void G1CollectedHeap::evacuate_optional_regions(G1ParScanThreadStateSet* per_thread_states, G1OptionalCSet* ocset) {
3804   class G1MarkScope : public MarkScope {};
3805   G1MarkScope code_mark_scope;
3806 
3807   G1EvacuateOptionalRegionTask task(this, per_thread_states, ocset, _task_queues, workers()->active_workers());
3808   workers()->run_task(&task);
3809 }
3810 
3811 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3812   G1OptionalCSet optional_cset(&_collection_set, per_thread_states);
3813   if (optional_cset.is_empty()) {
3814     return;
3815   }
3816 
3817   if (evacuation_failed()) {
3818     return;
3819   }
3820 
3821   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3822 
3823   double start_time_sec = os::elapsedTime();
3824 
3825   do {
3826     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3827     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3828 
3829     if (time_left_ms < 0) {
3830       log_trace(gc, ergo, cset)("Skipping %u optional regions, pause time exceeded %.3fms", optional_cset.size(), time_used_ms);
3831       break;
3832     }
3833 
3834     optional_cset.prepare_evacuation(time_left_ms * _policy->optional_evacuation_fraction());
3835     if (optional_cset.prepare_failed()) {
3836       log_trace(gc, ergo, cset)("Skipping %u optional regions, no regions can be evacuated in %.3fms", optional_cset.size(), time_left_ms);
3837       break;
3838     }
3839 
3840     evacuate_optional_regions(per_thread_states, &optional_cset);
3841 
3842     optional_cset.complete_evacuation();
3843     if (optional_cset.evacuation_failed()) {
3844       break;
3845     }
3846   } while (!optional_cset.is_empty());
3847 
3848   phase_times()->record_optional_evacuation((os::elapsedTime() - start_time_sec) * 1000.0);
3849 }
3850 
3851 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3852   // Also cleans the card table from temporary duplicate detection information used
3853   // during UpdateRS/ScanRS.
3854   rem_set()->cleanup_after_oops_into_collection_set_do();
3855 
3856   // Process any discovered reference objects - we have
3857   // to do this _before_ we retire the GC alloc regions
3858   // as we may have to copy some 'reachable' referent
3859   // objects (and their reachable sub-graphs) that were
3860   // not copied during the pause.
3861   process_discovered_references(per_thread_states);
3862 
3863   G1STWIsAliveClosure is_alive(this);
3864   G1KeepAliveClosure keep_alive(this);
3865 
3866   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive,
3867                               phase_times()->weak_phase_times());
3868 
3869   if (G1StringDedup::is_enabled()) {
3870     double string_dedup_time_ms = os::elapsedTime();
3871 
3872     string_dedup_cleaning(&is_alive, &keep_alive, phase_times());
3873 
3874     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
3875     phase_times()->record_string_deduplication_time(string_cleanup_time_ms);
3876   }
3877 
3878   _allocator->release_gc_alloc_regions(evacuation_info);
3879 
3880   if (evacuation_failed()) {
3881     restore_after_evac_failure();
3882 
3883     // Reset the G1EvacuationFailureALot counters and flags
3884     NOT_PRODUCT(reset_evacuation_should_fail();)
3885 
3886     double recalculate_used_start = os::elapsedTime();
3887     set_used(recalculate_used());
3888     phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
3889 
3890     if (_archive_allocator != NULL) {
3891       _archive_allocator->clear_used();
3892     }
3893     for (uint i = 0; i < ParallelGCThreads; i++) {
3894       if (_evacuation_failed_info_array[i].has_failed()) {
3895         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3896       }
3897     }
3898   } else {
3899     // The "used" of the the collection set have already been subtracted
3900     // when they were freed.  Add in the bytes evacuated.
3901     increase_used(policy()->bytes_copied_during_gc());
3902   }
3903 
3904   _preserved_marks_set.assert_empty();
3905 
3906   merge_per_thread_state_info(per_thread_states);
3907 
3908   // Reset and re-enable the hot card cache.
3909   // Note the counts for the cards in the regions in the
3910   // collection set are reset when the collection set is freed.
3911   _hot_card_cache->reset_hot_cache();
3912   _hot_card_cache->set_use_cache(true);
3913 
3914   purge_code_root_memory();
3915 
3916   redirty_logged_cards();
3917 
3918   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
3919 
3920   eagerly_reclaim_humongous_regions();
3921 
3922   record_obj_copy_mem_stats();
3923 
3924   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3925   evacuation_info.set_bytes_copied(policy()->bytes_copied_during_gc());
3926 
3927 #if COMPILER2_OR_JVMCI
3928   double start = os::elapsedTime();
3929   DerivedPointerTable::update_pointers();
3930   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
3931 #endif
3932   policy()->print_age_table();
3933 }
3934 
3935 void G1CollectedHeap::record_obj_copy_mem_stats() {
3936   policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
3937 
3938   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
3939                                                create_g1_evac_summary(&_old_evac_stats));
3940 }
3941 
3942 void G1CollectedHeap::free_region(HeapRegion* hr,
3943                                   FreeRegionList* free_list,
3944                                   bool skip_remset,
3945                                   bool skip_hot_card_cache,
3946                                   bool locked) {
3947   assert(!hr->is_free(), "the region should not be free");
3948   assert(!hr->is_empty(), "the region should not be empty");
3949   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
3950   assert(free_list != NULL, "pre-condition");
3951 
3952   if (G1VerifyBitmaps) {
3953     MemRegion mr(hr->bottom(), hr->end());
3954     concurrent_mark()->clear_range_in_prev_bitmap(mr);
3955   }
3956 
3957   // Clear the card counts for this region.
3958   // Note: we only need to do this if the region is not young
3959   // (since we don't refine cards in young regions).
3960   if (!skip_hot_card_cache && !hr->is_young()) {
3961     _hot_card_cache->reset_card_counts(hr);
3962   }
3963   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
3964   _policy->remset_tracker()->update_at_free(hr);
3965   free_list->add_ordered(hr);
3966 }
3967 
3968 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
3969                                             FreeRegionList* free_list) {
3970   assert(hr->is_humongous(), "this is only for humongous regions");
3971   assert(free_list != NULL, "pre-condition");
3972   hr->clear_humongous();
3973   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
3974 }
3975 
3976 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
3977                                            const uint humongous_regions_removed) {
3978   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
3979     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3980     _old_set.bulk_remove(old_regions_removed);
3981     _humongous_set.bulk_remove(humongous_regions_removed);
3982   }
3983 
3984 }
3985 
3986 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
3987   assert(list != NULL, "list can't be null");
3988   if (!list->is_empty()) {
3989     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
3990     _hrm->insert_list_into_free_list(list);
3991   }
3992 }
3993 
3994 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
3995   decrease_used(bytes);
3996 }
3997 
3998 class G1FreeCollectionSetTask : public AbstractGangTask {
3999 private:
4000 
4001   // Closure applied to all regions in the collection set to do work that needs to
4002   // be done serially in a single thread.
4003   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4004   private:
4005     G1EvacuationInfo* _evacuation_info;
4006     const size_t* _surviving_young_words;
4007 
4008     // Bytes used in successfully evacuated regions before the evacuation.
4009     size_t _before_used_bytes;
4010     // Bytes used in unsucessfully evacuated regions before the evacuation
4011     size_t _after_used_bytes;
4012 
4013     size_t _bytes_allocated_in_old_since_last_gc;
4014 
4015     size_t _failure_used_words;
4016     size_t _failure_waste_words;
4017 
4018     FreeRegionList _local_free_list;
4019   public:
4020     G1SerialFreeCollectionSetClosure(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4021       HeapRegionClosure(),
4022       _evacuation_info(evacuation_info),
4023       _surviving_young_words(surviving_young_words),
4024       _before_used_bytes(0),
4025       _after_used_bytes(0),
4026       _bytes_allocated_in_old_since_last_gc(0),
4027       _failure_used_words(0),
4028       _failure_waste_words(0),
4029       _local_free_list("Local Region List for CSet Freeing") {
4030     }
4031 
4032     virtual bool do_heap_region(HeapRegion* r) {
4033       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4034 
4035       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4036       g1h->clear_in_cset(r);
4037 
4038       if (r->is_young()) {
4039         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4040                "Young index %d is wrong for region %u of type %s with %u young regions",
4041                r->young_index_in_cset(),
4042                r->hrm_index(),
4043                r->get_type_str(),
4044                g1h->collection_set()->young_region_length());
4045         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4046         r->record_surv_words_in_group(words_survived);
4047       }
4048 
4049       if (!r->evacuation_failed()) {
4050         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4051         _before_used_bytes += r->used();
4052         g1h->free_region(r,
4053                          &_local_free_list,
4054                          true, /* skip_remset */
4055                          true, /* skip_hot_card_cache */
4056                          true  /* locked */);
4057       } else {
4058         r->uninstall_surv_rate_group();
4059         r->set_young_index_in_cset(-1);
4060         r->set_evacuation_failed(false);
4061         // When moving a young gen region to old gen, we "allocate" that whole region
4062         // there. This is in addition to any already evacuated objects. Notify the
4063         // policy about that.
4064         // Old gen regions do not cause an additional allocation: both the objects
4065         // still in the region and the ones already moved are accounted for elsewhere.
4066         if (r->is_young()) {
4067           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4068         }
4069         // The region is now considered to be old.
4070         r->set_old();
4071         // Do some allocation statistics accounting. Regions that failed evacuation
4072         // are always made old, so there is no need to update anything in the young
4073         // gen statistics, but we need to update old gen statistics.
4074         size_t used_words = r->marked_bytes() / HeapWordSize;
4075 
4076         _failure_used_words += used_words;
4077         _failure_waste_words += HeapRegion::GrainWords - used_words;
4078 
4079         g1h->old_set_add(r);
4080         _after_used_bytes += r->used();
4081       }
4082       return false;
4083     }
4084 
4085     void complete_work() {
4086       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4087 
4088       _evacuation_info->set_regions_freed(_local_free_list.length());
4089       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4090 
4091       g1h->prepend_to_freelist(&_local_free_list);
4092       g1h->decrement_summary_bytes(_before_used_bytes);
4093 
4094       G1Policy* policy = g1h->policy();
4095       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4096 
4097       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4098     }
4099   };
4100 
4101   G1CollectionSet* _collection_set;
4102   G1SerialFreeCollectionSetClosure _cl;
4103   const size_t* _surviving_young_words;
4104 
4105   size_t _rs_lengths;
4106 
4107   volatile jint _serial_work_claim;
4108 
4109   struct WorkItem {
4110     uint region_idx;
4111     bool is_young;
4112     bool evacuation_failed;
4113 
4114     WorkItem(HeapRegion* r) {
4115       region_idx = r->hrm_index();
4116       is_young = r->is_young();
4117       evacuation_failed = r->evacuation_failed();
4118     }
4119   };
4120 
4121   volatile size_t _parallel_work_claim;
4122   size_t _num_work_items;
4123   WorkItem* _work_items;
4124 
4125   void do_serial_work() {
4126     // Need to grab the lock to be allowed to modify the old region list.
4127     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4128     _collection_set->iterate(&_cl);
4129   }
4130 
4131   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4132     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4133 
4134     HeapRegion* r = g1h->region_at(region_idx);
4135     assert(!g1h->is_on_master_free_list(r), "sanity");
4136 
4137     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4138 
4139     if (!is_young) {
4140       g1h->_hot_card_cache->reset_card_counts(r);
4141     }
4142 
4143     if (!evacuation_failed) {
4144       r->rem_set()->clear_locked();
4145     }
4146   }
4147 
4148   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4149   private:
4150     size_t _cur_idx;
4151     WorkItem* _work_items;
4152   public:
4153     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4154 
4155     virtual bool do_heap_region(HeapRegion* r) {
4156       _work_items[_cur_idx++] = WorkItem(r);
4157       return false;
4158     }
4159   };
4160 
4161   void prepare_work() {
4162     G1PrepareFreeCollectionSetClosure cl(_work_items);
4163     _collection_set->iterate(&cl);
4164   }
4165 
4166   void complete_work() {
4167     _cl.complete_work();
4168 
4169     G1Policy* policy = G1CollectedHeap::heap()->policy();
4170     policy->record_max_rs_lengths(_rs_lengths);
4171     policy->cset_regions_freed();
4172   }
4173 public:
4174   G1FreeCollectionSetTask(G1CollectionSet* collection_set, G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4175     AbstractGangTask("G1 Free Collection Set"),
4176     _collection_set(collection_set),
4177     _cl(evacuation_info, surviving_young_words),
4178     _surviving_young_words(surviving_young_words),
4179     _rs_lengths(0),
4180     _serial_work_claim(0),
4181     _parallel_work_claim(0),
4182     _num_work_items(collection_set->region_length()),
4183     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4184     prepare_work();
4185   }
4186 
4187   ~G1FreeCollectionSetTask() {
4188     complete_work();
4189     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4190   }
4191 
4192   // Chunk size for work distribution. The chosen value has been determined experimentally
4193   // to be a good tradeoff between overhead and achievable parallelism.
4194   static uint chunk_size() { return 32; }
4195 
4196   virtual void work(uint worker_id) {
4197     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->phase_times();
4198 
4199     // Claim serial work.
4200     if (_serial_work_claim == 0) {
4201       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4202       if (value == 0) {
4203         double serial_time = os::elapsedTime();
4204         do_serial_work();
4205         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4206       }
4207     }
4208 
4209     // Start parallel work.
4210     double young_time = 0.0;
4211     bool has_young_time = false;
4212     double non_young_time = 0.0;
4213     bool has_non_young_time = false;
4214 
4215     while (true) {
4216       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4217       size_t cur = end - chunk_size();
4218 
4219       if (cur >= _num_work_items) {
4220         break;
4221       }
4222 
4223       EventGCPhaseParallel event;
4224       double start_time = os::elapsedTime();
4225 
4226       end = MIN2(end, _num_work_items);
4227 
4228       for (; cur < end; cur++) {
4229         bool is_young = _work_items[cur].is_young;
4230 
4231         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4232 
4233         double end_time = os::elapsedTime();
4234         double time_taken = end_time - start_time;
4235         if (is_young) {
4236           young_time += time_taken;
4237           has_young_time = true;
4238           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4239         } else {
4240           non_young_time += time_taken;
4241           has_non_young_time = true;
4242           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4243         }
4244         start_time = end_time;
4245       }
4246     }
4247 
4248     if (has_young_time) {
4249       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4250     }
4251     if (has_non_young_time) {
4252       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4253     }
4254   }
4255 };
4256 
4257 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4258   _eden.clear();
4259 
4260   double free_cset_start_time = os::elapsedTime();
4261 
4262   {
4263     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4264     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4265 
4266     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4267 
4268     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4269                         cl.name(),
4270                         num_workers,
4271                         _collection_set.region_length());
4272     workers()->run_task(&cl, num_workers);
4273   }
4274   phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4275 
4276   collection_set->clear();
4277 }
4278 
4279 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4280  private:
4281   FreeRegionList* _free_region_list;
4282   HeapRegionSet* _proxy_set;
4283   uint _humongous_objects_reclaimed;
4284   uint _humongous_regions_reclaimed;
4285   size_t _freed_bytes;
4286  public:
4287 
4288   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4289     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4290   }
4291 
4292   virtual bool do_heap_region(HeapRegion* r) {
4293     if (!r->is_starts_humongous()) {
4294       return false;
4295     }
4296 
4297     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4298 
4299     oop obj = (oop)r->bottom();
4300     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4301 
4302     // The following checks whether the humongous object is live are sufficient.
4303     // The main additional check (in addition to having a reference from the roots
4304     // or the young gen) is whether the humongous object has a remembered set entry.
4305     //
4306     // A humongous object cannot be live if there is no remembered set for it
4307     // because:
4308     // - there can be no references from within humongous starts regions referencing
4309     // the object because we never allocate other objects into them.
4310     // (I.e. there are no intra-region references that may be missed by the
4311     // remembered set)
4312     // - as soon there is a remembered set entry to the humongous starts region
4313     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4314     // until the end of a concurrent mark.
4315     //
4316     // It is not required to check whether the object has been found dead by marking
4317     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4318     // all objects allocated during that time are considered live.
4319     // SATB marking is even more conservative than the remembered set.
4320     // So if at this point in the collection there is no remembered set entry,
4321     // nobody has a reference to it.
4322     // At the start of collection we flush all refinement logs, and remembered sets
4323     // are completely up-to-date wrt to references to the humongous object.
4324     //
4325     // Other implementation considerations:
4326     // - never consider object arrays at this time because they would pose
4327     // considerable effort for cleaning up the the remembered sets. This is
4328     // required because stale remembered sets might reference locations that
4329     // are currently allocated into.
4330     uint region_idx = r->hrm_index();
4331     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4332         !r->rem_set()->is_empty()) {
4333       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4334                                region_idx,
4335                                (size_t)obj->size() * HeapWordSize,
4336                                p2i(r->bottom()),
4337                                r->rem_set()->occupied(),
4338                                r->rem_set()->strong_code_roots_list_length(),
4339                                next_bitmap->is_marked(r->bottom()),
4340                                g1h->is_humongous_reclaim_candidate(region_idx),
4341                                obj->is_typeArray()
4342                               );
4343       return false;
4344     }
4345 
4346     guarantee(obj->is_typeArray(),
4347               "Only eagerly reclaiming type arrays is supported, but the object "
4348               PTR_FORMAT " is not.", p2i(r->bottom()));
4349 
4350     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4351                              region_idx,
4352                              (size_t)obj->size() * HeapWordSize,
4353                              p2i(r->bottom()),
4354                              r->rem_set()->occupied(),
4355                              r->rem_set()->strong_code_roots_list_length(),
4356                              next_bitmap->is_marked(r->bottom()),
4357                              g1h->is_humongous_reclaim_candidate(region_idx),
4358                              obj->is_typeArray()
4359                             );
4360 
4361     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4362     cm->humongous_object_eagerly_reclaimed(r);
4363     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4364            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4365            region_idx,
4366            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4367            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4368     _humongous_objects_reclaimed++;
4369     do {
4370       HeapRegion* next = g1h->next_region_in_humongous(r);
4371       _freed_bytes += r->used();
4372       r->set_containing_set(NULL);
4373       _humongous_regions_reclaimed++;
4374       g1h->free_humongous_region(r, _free_region_list);
4375       r = next;
4376     } while (r != NULL);
4377 
4378     return false;
4379   }
4380 
4381   uint humongous_objects_reclaimed() {
4382     return _humongous_objects_reclaimed;
4383   }
4384 
4385   uint humongous_regions_reclaimed() {
4386     return _humongous_regions_reclaimed;
4387   }
4388 
4389   size_t bytes_freed() const {
4390     return _freed_bytes;
4391   }
4392 };
4393 
4394 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4395   assert_at_safepoint_on_vm_thread();
4396 
4397   if (!G1EagerReclaimHumongousObjects ||
4398       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4399     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4400     return;
4401   }
4402 
4403   double start_time = os::elapsedTime();
4404 
4405   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4406 
4407   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4408   heap_region_iterate(&cl);
4409 
4410   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4411 
4412   G1HRPrinter* hrp = hr_printer();
4413   if (hrp->is_active()) {
4414     FreeRegionListIterator iter(&local_cleanup_list);
4415     while (iter.more_available()) {
4416       HeapRegion* hr = iter.get_next();
4417       hrp->cleanup(hr);
4418     }
4419   }
4420 
4421   prepend_to_freelist(&local_cleanup_list);
4422   decrement_summary_bytes(cl.bytes_freed());
4423 
4424   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4425                                                        cl.humongous_objects_reclaimed());
4426 }
4427 
4428 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4429 public:
4430   virtual bool do_heap_region(HeapRegion* r) {
4431     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4432     G1CollectedHeap::heap()->clear_in_cset(r);
4433     r->set_young_index_in_cset(-1);
4434     return false;
4435   }
4436 };
4437 
4438 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4439   G1AbandonCollectionSetClosure cl;
4440   collection_set->iterate(&cl);
4441 
4442   collection_set->clear();
4443   collection_set->stop_incremental_building();
4444 }
4445 
4446 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4447   return _allocator->is_retained_old_region(hr);
4448 }
4449 
4450 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4451   _eden.add(hr);
4452   _policy->set_region_eden(hr);
4453 }
4454 
4455 #ifdef ASSERT
4456 
4457 class NoYoungRegionsClosure: public HeapRegionClosure {
4458 private:
4459   bool _success;
4460 public:
4461   NoYoungRegionsClosure() : _success(true) { }
4462   bool do_heap_region(HeapRegion* r) {
4463     if (r->is_young()) {
4464       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4465                             p2i(r->bottom()), p2i(r->end()));
4466       _success = false;
4467     }
4468     return false;
4469   }
4470   bool success() { return _success; }
4471 };
4472 
4473 bool G1CollectedHeap::check_young_list_empty() {
4474   bool ret = (young_regions_count() == 0);
4475 
4476   NoYoungRegionsClosure closure;
4477   heap_region_iterate(&closure);
4478   ret = ret && closure.success();
4479 
4480   return ret;
4481 }
4482 
4483 #endif // ASSERT
4484 
4485 class TearDownRegionSetsClosure : public HeapRegionClosure {
4486   HeapRegionSet *_old_set;
4487 
4488 public:
4489   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4490 
4491   bool do_heap_region(HeapRegion* r) {
4492     if (r->is_old()) {
4493       _old_set->remove(r);
4494     } else if(r->is_young()) {
4495       r->uninstall_surv_rate_group();
4496     } else {
4497       // We ignore free regions, we'll empty the free list afterwards.
4498       // We ignore humongous and archive regions, we're not tearing down these
4499       // sets.
4500       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4501              "it cannot be another type");
4502     }
4503     return false;
4504   }
4505 
4506   ~TearDownRegionSetsClosure() {
4507     assert(_old_set->is_empty(), "post-condition");
4508   }
4509 };
4510 
4511 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4512   assert_at_safepoint_on_vm_thread();
4513 
4514   if (!free_list_only) {
4515     TearDownRegionSetsClosure cl(&_old_set);
4516     heap_region_iterate(&cl);
4517 
4518     // Note that emptying the _young_list is postponed and instead done as
4519     // the first step when rebuilding the regions sets again. The reason for
4520     // this is that during a full GC string deduplication needs to know if
4521     // a collected region was young or old when the full GC was initiated.
4522   }
4523   _hrm->remove_all_free_regions();
4524 }
4525 
4526 void G1CollectedHeap::increase_used(size_t bytes) {
4527   _summary_bytes_used += bytes;
4528 }
4529 
4530 void G1CollectedHeap::decrease_used(size_t bytes) {
4531   assert(_summary_bytes_used >= bytes,
4532          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4533          _summary_bytes_used, bytes);
4534   _summary_bytes_used -= bytes;
4535 }
4536 
4537 void G1CollectedHeap::set_used(size_t bytes) {
4538   _summary_bytes_used = bytes;
4539 }
4540 
4541 class RebuildRegionSetsClosure : public HeapRegionClosure {
4542 private:
4543   bool _free_list_only;
4544 
4545   HeapRegionSet* _old_set;
4546   HeapRegionManager* _hrm;
4547 
4548   size_t _total_used;
4549 
4550 public:
4551   RebuildRegionSetsClosure(bool free_list_only,
4552                            HeapRegionSet* old_set,
4553                            HeapRegionManager* hrm) :
4554     _free_list_only(free_list_only),
4555     _old_set(old_set), _hrm(hrm), _total_used(0) {
4556     assert(_hrm->num_free_regions() == 0, "pre-condition");
4557     if (!free_list_only) {
4558       assert(_old_set->is_empty(), "pre-condition");
4559     }
4560   }
4561 
4562   bool do_heap_region(HeapRegion* r) {
4563     if (r->is_empty()) {
4564       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4565       // Add free regions to the free list
4566       r->set_free();
4567       _hrm->insert_into_free_list(r);
4568     } else if (!_free_list_only) {
4569       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4570 
4571       if (r->is_archive() || r->is_humongous()) {
4572         // We ignore archive and humongous regions. We left these sets unchanged.
4573       } else {
4574         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4575         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4576         r->move_to_old();
4577         _old_set->add(r);
4578       }
4579       _total_used += r->used();
4580     }
4581 
4582     return false;
4583   }
4584 
4585   size_t total_used() {
4586     return _total_used;
4587   }
4588 };
4589 
4590 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4591   assert_at_safepoint_on_vm_thread();
4592 
4593   if (!free_list_only) {
4594     _eden.clear();
4595     _survivor.clear();
4596   }
4597 
4598   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4599   heap_region_iterate(&cl);
4600 
4601   if (!free_list_only) {
4602     set_used(cl.total_used());
4603     if (_archive_allocator != NULL) {
4604       _archive_allocator->clear_used();
4605     }
4606   }
4607   assert(used() == recalculate_used(),
4608          "inconsistent used(), value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4609          used(), recalculate_used());
4610 }
4611 
4612 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4613   HeapRegion* hr = heap_region_containing(p);
4614   return hr->is_in(p);
4615 }
4616 
4617 // Methods for the mutator alloc region
4618 
4619 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4620                                                       bool force) {
4621   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4622   bool should_allocate = policy()->should_allocate_mutator_region();
4623   if (force || should_allocate) {
4624     HeapRegion* new_alloc_region = new_region(word_size,
4625                                               HeapRegionType::Eden,
4626                                               false /* do_expand */);
4627     if (new_alloc_region != NULL) {
4628       set_region_short_lived_locked(new_alloc_region);
4629       _hr_printer.alloc(new_alloc_region, !should_allocate);
4630       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4631       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4632       return new_alloc_region;
4633     }
4634   }
4635   return NULL;
4636 }
4637 
4638 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4639                                                   size_t allocated_bytes) {
4640   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4641   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4642 
4643   collection_set()->add_eden_region(alloc_region);
4644   increase_used(allocated_bytes);
4645   _hr_printer.retire(alloc_region);
4646   // We update the eden sizes here, when the region is retired,
4647   // instead of when it's allocated, since this is the point that its
4648   // used space has been recorded in _summary_bytes_used.
4649   g1mm()->update_eden_size();
4650 }
4651 
4652 // Methods for the GC alloc regions
4653 
4654 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4655   if (dest.is_old()) {
4656     return true;
4657   } else {
4658     return survivor_regions_count() < policy()->max_survivor_regions();
4659   }
4660 }
4661 
4662 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4663   assert(FreeList_lock->owned_by_self(), "pre-condition");
4664 
4665   if (!has_more_regions(dest)) {
4666     return NULL;
4667   }
4668 
4669   HeapRegionType type;
4670   if (dest.is_young()) {
4671     type = HeapRegionType::Survivor;
4672   } else {
4673     type = HeapRegionType::Old;
4674   }
4675 
4676   HeapRegion* new_alloc_region = new_region(word_size,
4677                                             type,
4678                                             true /* do_expand */);
4679 
4680   if (new_alloc_region != NULL) {
4681     if (type.is_survivor()) {
4682       new_alloc_region->set_survivor();
4683       _survivor.add(new_alloc_region);
4684       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4685     } else {
4686       new_alloc_region->set_old();
4687       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4688     }
4689     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4690     _hr_printer.alloc(new_alloc_region);
4691     return new_alloc_region;
4692   }
4693   return NULL;
4694 }
4695 
4696 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4697                                              size_t allocated_bytes,
4698                                              InCSetState dest) {
4699   policy()->record_bytes_copied_during_gc(allocated_bytes);
4700   if (dest.is_old()) {
4701     old_set_add(alloc_region);
4702   }
4703 
4704   bool const during_im = collector_state()->in_initial_mark_gc();
4705   if (during_im && allocated_bytes > 0) {
4706     _cm->root_regions()->add(alloc_region);
4707   }
4708   _hr_printer.retire(alloc_region);
4709 }
4710 
4711 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4712   bool expanded = false;
4713   uint index = _hrm->find_highest_free(&expanded);
4714 
4715   if (index != G1_NO_HRM_INDEX) {
4716     if (expanded) {
4717       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4718                                 HeapRegion::GrainWords * HeapWordSize);
4719     }
4720     _hrm->allocate_free_regions_starting_at(index, 1);
4721     return region_at(index);
4722   }
4723   return NULL;
4724 }
4725 
4726 // Optimized nmethod scanning
4727 
4728 class RegisterNMethodOopClosure: public OopClosure {
4729   G1CollectedHeap* _g1h;
4730   nmethod* _nm;
4731 
4732   template <class T> void do_oop_work(T* p) {
4733     T heap_oop = RawAccess<>::oop_load(p);
4734     if (!CompressedOops::is_null(heap_oop)) {
4735       oop obj = CompressedOops::decode_not_null(heap_oop);
4736       HeapRegion* hr = _g1h->heap_region_containing(obj);
4737       assert(!hr->is_continues_humongous(),
4738              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4739              " starting at " HR_FORMAT,
4740              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4741 
4742       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4743       hr->add_strong_code_root_locked(_nm);
4744     }
4745   }
4746 
4747 public:
4748   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4749     _g1h(g1h), _nm(nm) {}
4750 
4751   void do_oop(oop* p)       { do_oop_work(p); }
4752   void do_oop(narrowOop* p) { do_oop_work(p); }
4753 };
4754 
4755 class UnregisterNMethodOopClosure: public OopClosure {
4756   G1CollectedHeap* _g1h;
4757   nmethod* _nm;
4758 
4759   template <class T> void do_oop_work(T* p) {
4760     T heap_oop = RawAccess<>::oop_load(p);
4761     if (!CompressedOops::is_null(heap_oop)) {
4762       oop obj = CompressedOops::decode_not_null(heap_oop);
4763       HeapRegion* hr = _g1h->heap_region_containing(obj);
4764       assert(!hr->is_continues_humongous(),
4765              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4766              " starting at " HR_FORMAT,
4767              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4768 
4769       hr->remove_strong_code_root(_nm);
4770     }
4771   }
4772 
4773 public:
4774   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4775     _g1h(g1h), _nm(nm) {}
4776 
4777   void do_oop(oop* p)       { do_oop_work(p); }
4778   void do_oop(narrowOop* p) { do_oop_work(p); }
4779 };
4780 
4781 // Returns true if the reference points to an object that
4782 // can move in an incremental collection.
4783 bool G1CollectedHeap::is_scavengable(oop obj) {
4784   HeapRegion* hr = heap_region_containing(obj);
4785   return !hr->is_pinned();
4786 }
4787 
4788 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4789   guarantee(nm != NULL, "sanity");
4790   RegisterNMethodOopClosure reg_cl(this, nm);
4791   nm->oops_do(&reg_cl);
4792 }
4793 
4794 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4795   guarantee(nm != NULL, "sanity");
4796   UnregisterNMethodOopClosure reg_cl(this, nm);
4797   nm->oops_do(&reg_cl, true);
4798 }
4799 
4800 void G1CollectedHeap::purge_code_root_memory() {
4801   double purge_start = os::elapsedTime();
4802   G1CodeRootSet::purge();
4803   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4804   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4805 }
4806 
4807 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4808   G1CollectedHeap* _g1h;
4809 
4810 public:
4811   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4812     _g1h(g1h) {}
4813 
4814   void do_code_blob(CodeBlob* cb) {
4815     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4816     if (nm == NULL) {
4817       return;
4818     }
4819 
4820     if (ScavengeRootsInCode) {
4821       _g1h->register_nmethod(nm);
4822     }
4823   }
4824 };
4825 
4826 void G1CollectedHeap::rebuild_strong_code_roots() {
4827   RebuildStrongCodeRootClosure blob_cl(this);
4828   CodeCache::blobs_do(&blob_cl);
4829 }
4830 
4831 void G1CollectedHeap::initialize_serviceability() {
4832   _g1mm->initialize_serviceability();
4833 }
4834 
4835 MemoryUsage G1CollectedHeap::memory_usage() {
4836   return _g1mm->memory_usage();
4837 }
4838 
4839 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4840   return _g1mm->memory_managers();
4841 }
4842 
4843 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4844   return _g1mm->memory_pools();
4845 }