1 /*
   2  * Copyright (c) 2017, 2018, Red Hat, Inc. All rights reserved.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.
   7  *
   8  * This code is distributed in the hope that it will be useful, but WITHOUT
   9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11  * version 2 for more details (a copy is included in the LICENSE file that
  12  * accompanied this code).
  13  *
  14  * You should have received a copy of the GNU General Public License version
  15  * 2 along with this work; if not, write to the Free Software Foundation,
  16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  17  *
  18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  19  * or visit www.oracle.com if you need additional information or have any
  20  * questions.
  21  *
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "gc/epsilon/epsilonHeap.hpp"
  26 #include "gc/epsilon/epsilonMemoryPool.hpp"
  27 #include "gc/epsilon/epsilonThreadLocalData.hpp"
  28 #include "gc/shared/gcArguments.hpp"
  29 #include "gc/shared/locationPrinter.inline.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "runtime/globals.hpp"
  35 
  36 jint EpsilonHeap::initialize() {
  37   size_t align = HeapAlignment;
  38   size_t init_byte_size = align_up(InitialHeapSize, align);
  39   size_t max_byte_size  = align_up(MaxHeapSize, align);
  40 
  41   // Initialize backing storage
  42   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, align);
  43   _virtual_space.initialize(heap_rs, init_byte_size);
  44 
  45   MemRegion committed_region((HeapWord*)_virtual_space.low(),          (HeapWord*)_virtual_space.high());
  46   MemRegion  reserved_region((HeapWord*)_virtual_space.low_boundary(), (HeapWord*)_virtual_space.high_boundary());
  47 
  48   initialize_reserved_region(heap_rs);
  49 
  50   _space = new ContiguousSpace();
  51   _space->initialize(committed_region, /* clear_space = */ true, /* mangle_space = */ true);
  52 
  53   // Precompute hot fields
  54   _max_tlab_size = MIN2(CollectedHeap::max_tlab_size(), align_object_size(EpsilonMaxTLABSize / HeapWordSize));
  55   _step_counter_update = MIN2<size_t>(max_byte_size / 16, EpsilonUpdateCountersStep);
  56   _step_heap_print = (EpsilonPrintHeapSteps == 0) ? SIZE_MAX : (max_byte_size / EpsilonPrintHeapSteps);
  57   _decay_time_ns = (int64_t) EpsilonTLABDecayTime * NANOSECS_PER_MILLISEC;
  58 
  59   // Enable monitoring
  60   _monitoring_support = new EpsilonMonitoringSupport(this);
  61   _last_counter_update = 0;
  62   _last_heap_print = 0;
  63 
  64   // Install barrier set
  65   BarrierSet::set_barrier_set(new EpsilonBarrierSet());
  66 
  67   // All done, print out the configuration
  68   if (init_byte_size != max_byte_size) {
  69     log_info(gc)("Resizeable heap; starting at " SIZE_FORMAT "M, max: " SIZE_FORMAT "M, step: " SIZE_FORMAT "M",
  70                  init_byte_size / M, max_byte_size / M, EpsilonMinHeapExpand / M);
  71   } else {
  72     log_info(gc)("Non-resizeable heap; start/max: " SIZE_FORMAT "M", init_byte_size / M);
  73   }
  74 
  75   if (UseTLAB) {
  76     log_info(gc)("Using TLAB allocation; max: " SIZE_FORMAT "K", _max_tlab_size * HeapWordSize / K);
  77     if (EpsilonElasticTLAB) {
  78       log_info(gc)("Elastic TLABs enabled; elasticity: %.2fx", EpsilonTLABElasticity);
  79     }
  80     if (EpsilonElasticTLABDecay) {
  81       log_info(gc)("Elastic TLABs decay enabled; decay time: " SIZE_FORMAT "ms", EpsilonTLABDecayTime);
  82     }
  83   } else {
  84     log_info(gc)("Not using TLAB allocation");
  85   }
  86 
  87   return JNI_OK;
  88 }
  89 
  90 void EpsilonHeap::post_initialize() {
  91   CollectedHeap::post_initialize();
  92 }
  93 
  94 void EpsilonHeap::initialize_serviceability() {
  95   _pool = new EpsilonMemoryPool(this);
  96   _memory_manager.add_pool(_pool);
  97 }
  98 
  99 GrowableArray<GCMemoryManager*> EpsilonHeap::memory_managers() {
 100   GrowableArray<GCMemoryManager*> memory_managers(1);
 101   memory_managers.append(&_memory_manager);
 102   return memory_managers;
 103 }
 104 
 105 GrowableArray<MemoryPool*> EpsilonHeap::memory_pools() {
 106   GrowableArray<MemoryPool*> memory_pools(1);
 107   memory_pools.append(_pool);
 108   return memory_pools;
 109 }
 110 
 111 size_t EpsilonHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 112   // Return max allocatable TLAB size, and let allocation path figure out
 113   // the actual allocation size. Note: result should be in bytes.
 114   return _max_tlab_size * HeapWordSize;
 115 }
 116 
 117 EpsilonHeap* EpsilonHeap::heap() {
 118   CollectedHeap* heap = Universe::heap();
 119   assert(heap != NULL, "Uninitialized access to EpsilonHeap::heap()");
 120   assert(heap->kind() == CollectedHeap::Epsilon, "Not an Epsilon heap");
 121   return (EpsilonHeap*)heap;
 122 }
 123 
 124 HeapWord* EpsilonHeap::allocate_work(size_t size) {
 125   assert(is_object_aligned(size), "Allocation size should be aligned: " SIZE_FORMAT, size);
 126 
 127   HeapWord* res = _space->par_allocate(size);
 128 
 129   while (res == NULL) {
 130     // Allocation failed, attempt expansion, and retry:
 131     MutexLocker ml(Heap_lock);
 132 
 133     size_t space_left = max_capacity() - capacity();
 134     size_t want_space = MAX2(size, EpsilonMinHeapExpand);
 135 
 136     if (want_space < space_left) {
 137       // Enough space to expand in bulk:
 138       bool expand = _virtual_space.expand_by(want_space);
 139       assert(expand, "Should be able to expand");
 140     } else if (size < space_left) {
 141       // No space to expand in bulk, and this allocation is still possible,
 142       // take all the remaining space:
 143       bool expand = _virtual_space.expand_by(space_left);
 144       assert(expand, "Should be able to expand");
 145     } else {
 146       // No space left:
 147       return NULL;
 148     }
 149 
 150     _space->set_end((HeapWord *) _virtual_space.high());
 151     res = _space->par_allocate(size);
 152   }
 153 
 154   size_t used = _space->used();
 155 
 156   // Allocation successful, update counters
 157   {
 158     size_t last = _last_counter_update;
 159     if ((used - last >= _step_counter_update) && Atomic::cmpxchg(used, &_last_counter_update, last) == last) {
 160       _monitoring_support->update_counters();
 161     }
 162   }
 163 
 164   // ...and print the occupancy line, if needed
 165   {
 166     size_t last = _last_heap_print;
 167     if ((used - last >= _step_heap_print) && Atomic::cmpxchg(used, &_last_heap_print, last) == last) {
 168       print_heap_info(used);
 169       print_metaspace_info();
 170     }
 171   }
 172 
 173   assert(is_object_aligned(res), "Object should be aligned: " PTR_FORMAT, p2i(res));
 174   return res;
 175 }
 176 
 177 HeapWord* EpsilonHeap::allocate_new_tlab(size_t min_size,
 178                                          size_t requested_size,
 179                                          size_t* actual_size) {
 180   Thread* thread = Thread::current();
 181 
 182   // Defaults in case elastic paths are not taken
 183   bool fits = true;
 184   size_t size = requested_size;
 185   size_t ergo_tlab = requested_size;
 186   int64_t time = 0;
 187 
 188   if (EpsilonElasticTLAB) {
 189     ergo_tlab = EpsilonThreadLocalData::ergo_tlab_size(thread);
 190 
 191     if (EpsilonElasticTLABDecay) {
 192       int64_t last_time = EpsilonThreadLocalData::last_tlab_time(thread);
 193       time = (int64_t) os::javaTimeNanos();
 194 
 195       assert(last_time <= time, "time should be monotonic");
 196 
 197       // If the thread had not allocated recently, retract the ergonomic size.
 198       // This conserves memory when the thread had initial burst of allocations,
 199       // and then started allocating only sporadically.
 200       if (last_time != 0 && (time - last_time > _decay_time_ns)) {
 201         ergo_tlab = 0;
 202         EpsilonThreadLocalData::set_ergo_tlab_size(thread, 0);
 203       }
 204     }
 205 
 206     // If we can fit the allocation under current TLAB size, do so.
 207     // Otherwise, we want to elastically increase the TLAB size.
 208     fits = (requested_size <= ergo_tlab);
 209     if (!fits) {
 210       size = (size_t) (ergo_tlab * EpsilonTLABElasticity);
 211     }
 212   }
 213 
 214   // Always honor boundaries
 215   size = MAX2(min_size, MIN2(_max_tlab_size, size));
 216 
 217   // Always honor alignment
 218   size = align_up(size, MinObjAlignment);
 219 
 220   // Check that adjustments did not break local and global invariants
 221   assert(is_object_aligned(size),
 222          "Size honors object alignment: " SIZE_FORMAT, size);
 223   assert(min_size <= size,
 224          "Size honors min size: "  SIZE_FORMAT " <= " SIZE_FORMAT, min_size, size);
 225   assert(size <= _max_tlab_size,
 226          "Size honors max size: "  SIZE_FORMAT " <= " SIZE_FORMAT, size, _max_tlab_size);
 227   assert(size <= CollectedHeap::max_tlab_size(),
 228          "Size honors global max size: "  SIZE_FORMAT " <= " SIZE_FORMAT, size, CollectedHeap::max_tlab_size());
 229 
 230   if (log_is_enabled(Trace, gc)) {
 231     ResourceMark rm;
 232     log_trace(gc)("TLAB size for \"%s\" (Requested: " SIZE_FORMAT "K, Min: " SIZE_FORMAT
 233                           "K, Max: " SIZE_FORMAT "K, Ergo: " SIZE_FORMAT "K) -> " SIZE_FORMAT "K",
 234                   thread->name(),
 235                   requested_size * HeapWordSize / K,
 236                   min_size * HeapWordSize / K,
 237                   _max_tlab_size * HeapWordSize / K,
 238                   ergo_tlab * HeapWordSize / K,
 239                   size * HeapWordSize / K);
 240   }
 241 
 242   // All prepared, let's do it!
 243   HeapWord* res = allocate_work(size);
 244 
 245   if (res != NULL) {
 246     // Allocation successful
 247     *actual_size = size;
 248     if (EpsilonElasticTLABDecay) {
 249       EpsilonThreadLocalData::set_last_tlab_time(thread, time);
 250     }
 251     if (EpsilonElasticTLAB && !fits) {
 252       // If we requested expansion, this is our new ergonomic TLAB size
 253       EpsilonThreadLocalData::set_ergo_tlab_size(thread, size);
 254     }
 255   } else {
 256     // Allocation failed, reset ergonomics to try and fit smaller TLABs
 257     if (EpsilonElasticTLAB) {
 258       EpsilonThreadLocalData::set_ergo_tlab_size(thread, 0);
 259     }
 260   }
 261 
 262   return res;
 263 }
 264 
 265 HeapWord* EpsilonHeap::mem_allocate(size_t size, bool *gc_overhead_limit_was_exceeded) {
 266   *gc_overhead_limit_was_exceeded = false;
 267   return allocate_work(size);
 268 }
 269 
 270 void EpsilonHeap::collect(GCCause::Cause cause) {
 271   switch (cause) {
 272     case GCCause::_metadata_GC_threshold:
 273     case GCCause::_metadata_GC_clear_soft_refs:
 274       // Receiving these causes means the VM itself entered the safepoint for metadata collection.
 275       // While Epsilon does not do GC, it has to perform sizing adjustments, otherwise we would
 276       // re-enter the safepoint again very soon.
 277 
 278       assert(SafepointSynchronize::is_at_safepoint(), "Expected at safepoint");
 279       log_info(gc)("GC request for \"%s\" is handled", GCCause::to_string(cause));
 280       MetaspaceGC::compute_new_size();
 281       print_metaspace_info();
 282       break;
 283     default:
 284       log_info(gc)("GC request for \"%s\" is ignored", GCCause::to_string(cause));
 285   }
 286   _monitoring_support->update_counters();
 287 }
 288 
 289 void EpsilonHeap::do_full_collection(bool clear_all_soft_refs) {
 290   collect(gc_cause());
 291 }
 292 
 293 void EpsilonHeap::safe_object_iterate(ObjectClosure *cl) {
 294   _space->safe_object_iterate(cl);
 295 }
 296 
 297 void EpsilonHeap::print_on(outputStream *st) const {
 298   st->print_cr("Epsilon Heap");
 299 
 300   // Cast away constness:
 301   ((VirtualSpace)_virtual_space).print_on(st);
 302 
 303   st->print_cr("Allocation space:");
 304   _space->print_on(st);
 305 
 306   MetaspaceUtils::print_on(st);
 307 }
 308 
 309 bool EpsilonHeap::print_location(outputStream* st, void* addr) const {
 310   return BlockLocationPrinter<EpsilonHeap>::print_location(st, addr);
 311 }
 312 
 313 void EpsilonHeap::print_tracing_info() const {
 314   print_heap_info(used());
 315   print_metaspace_info();
 316 }
 317 
 318 void EpsilonHeap::print_heap_info(size_t used) const {
 319   size_t reserved  = max_capacity();
 320   size_t committed = capacity();
 321 
 322   if (reserved != 0) {
 323     log_info(gc)("Heap: " SIZE_FORMAT "%s reserved, " SIZE_FORMAT "%s (%.2f%%) committed, "
 324                  SIZE_FORMAT "%s (%.2f%%) used",
 325             byte_size_in_proper_unit(reserved),  proper_unit_for_byte_size(reserved),
 326             byte_size_in_proper_unit(committed), proper_unit_for_byte_size(committed),
 327             committed * 100.0 / reserved,
 328             byte_size_in_proper_unit(used),      proper_unit_for_byte_size(used),
 329             used * 100.0 / reserved);
 330   } else {
 331     log_info(gc)("Heap: no reliable data");
 332   }
 333 }
 334 
 335 void EpsilonHeap::print_metaspace_info() const {
 336   size_t reserved  = MetaspaceUtils::reserved_bytes();
 337   size_t committed = MetaspaceUtils::committed_bytes();
 338   size_t used      = MetaspaceUtils::used_bytes();
 339 
 340   if (reserved != 0) {
 341     log_info(gc, metaspace)("Metaspace: " SIZE_FORMAT "%s reserved, " SIZE_FORMAT "%s (%.2f%%) committed, "
 342                             SIZE_FORMAT "%s (%.2f%%) used",
 343             byte_size_in_proper_unit(reserved),  proper_unit_for_byte_size(reserved),
 344             byte_size_in_proper_unit(committed), proper_unit_for_byte_size(committed),
 345             committed * 100.0 / reserved,
 346             byte_size_in_proper_unit(used),      proper_unit_for_byte_size(used),
 347             used * 100.0 / reserved);
 348   } else {
 349     log_info(gc, metaspace)("Metaspace: no reliable data");
 350   }
 351 }