1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "gc/parallel/adjoiningGenerations.hpp"
  28 #include "gc/parallel/adjoiningGenerationsForHeteroHeap.hpp"
  29 #include "gc/parallel/adjoiningVirtualSpaces.hpp"
  30 #include "gc/parallel/parallelArguments.hpp"
  31 #include "gc/parallel/objectStartArray.inline.hpp"
  32 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  33 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  34 #include "gc/parallel/psMemoryPool.hpp"
  35 #include "gc/parallel/psParallelCompact.inline.hpp"
  36 #include "gc/parallel/psPromotionManager.hpp"
  37 #include "gc/parallel/psScavenge.hpp"
  38 #include "gc/parallel/psVMOperations.hpp"
  39 #include "gc/shared/gcHeapSummary.hpp"
  40 #include "gc/shared/gcLocker.hpp"
  41 #include "gc/shared/gcWhen.hpp"
  42 #include "gc/shared/genArguments.hpp"
  43 #include "gc/shared/locationPrinter.inline.hpp"
  44 #include "gc/shared/scavengableNMethods.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/iterator.hpp"
  47 #include "memory/metaspaceCounters.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/handles.inline.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "services/memoryManager.hpp"
  54 #include "services/memTracker.hpp"
  55 #include "utilities/macros.hpp"
  56 #include "utilities/vmError.hpp"
  57 
  58 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
  59 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
  60 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
  61 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
  62 
  63 jint ParallelScavengeHeap::initialize() {
  64   const size_t reserved_heap_size = ParallelArguments::heap_reserved_size_bytes();
  65 
  66   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_heap_size, HeapAlignment);
  67 
  68   os::trace_page_sizes("Heap",
  69                        MinHeapSize,
  70                        reserved_heap_size,
  71                        GenAlignment,
  72                        heap_rs.base(),
  73                        heap_rs.size());
  74 
  75   initialize_reserved_region(heap_rs);
  76 
  77   PSCardTable* card_table = new PSCardTable(heap_rs.region());
  78   card_table->initialize();
  79   CardTableBarrierSet* const barrier_set = new CardTableBarrierSet(card_table);
  80   barrier_set->initialize();
  81   BarrierSet::set_barrier_set(barrier_set);
  82 
  83   // Make up the generations
  84   // Calculate the maximum size that a generation can grow.  This
  85   // includes growth into the other generation.  Note that the
  86   // parameter _max_gen_size is kept as the maximum
  87   // size of the generation as the boundaries currently stand.
  88   // _max_gen_size is still used as that value.
  89   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
  90   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
  91 
  92   _gens = AdjoiningGenerations::create_adjoining_generations(heap_rs);
  93 
  94   _old_gen = _gens->old_gen();
  95   _young_gen = _gens->young_gen();
  96 
  97   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
  98   const size_t old_capacity = _old_gen->capacity_in_bytes();
  99   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
 100   _size_policy =
 101     new PSAdaptiveSizePolicy(eden_capacity,
 102                              initial_promo_size,
 103                              young_gen()->to_space()->capacity_in_bytes(),
 104                              GenAlignment,
 105                              max_gc_pause_sec,
 106                              max_gc_minor_pause_sec,
 107                              GCTimeRatio
 108                              );
 109 
 110   assert(ParallelArguments::is_heterogeneous_heap() || !UseAdaptiveGCBoundary ||
 111     (old_gen()->virtual_space()->high_boundary() ==
 112      young_gen()->virtual_space()->low_boundary()),
 113     "Boundaries must meet");
 114   // initialize the policy counters - 2 collectors, 2 generations
 115   _gc_policy_counters =
 116     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 2, _size_policy);
 117 
 118   if (!PSParallelCompact::initialize()) {
 119     return JNI_ENOMEM;
 120   }
 121 
 122   // Set up WorkGang
 123   _workers.initialize_workers();
 124 
 125   return JNI_OK;
 126 }
 127 
 128 void ParallelScavengeHeap::initialize_serviceability() {
 129 
 130   _eden_pool = new EdenMutableSpacePool(_young_gen,
 131                                         _young_gen->eden_space(),
 132                                         "PS Eden Space",
 133                                         false /* support_usage_threshold */);
 134 
 135   _survivor_pool = new SurvivorMutableSpacePool(_young_gen,
 136                                                 "PS Survivor Space",
 137                                                 false /* support_usage_threshold */);
 138 
 139   _old_pool = new PSGenerationPool(_old_gen,
 140                                    "PS Old Gen",
 141                                    true /* support_usage_threshold */);
 142 
 143   _young_manager = new GCMemoryManager("PS Scavenge", "end of minor GC");
 144   _old_manager = new GCMemoryManager("PS MarkSweep", "end of major GC");
 145 
 146   _old_manager->add_pool(_eden_pool);
 147   _old_manager->add_pool(_survivor_pool);
 148   _old_manager->add_pool(_old_pool);
 149 
 150   _young_manager->add_pool(_eden_pool);
 151   _young_manager->add_pool(_survivor_pool);
 152 
 153 }
 154 
 155 class PSIsScavengable : public BoolObjectClosure {
 156   bool do_object_b(oop obj) {
 157     return ParallelScavengeHeap::heap()->is_in_young(obj);
 158   }
 159 };
 160 
 161 static PSIsScavengable _is_scavengable;
 162 
 163 void ParallelScavengeHeap::post_initialize() {
 164   CollectedHeap::post_initialize();
 165   // Need to init the tenuring threshold
 166   PSScavenge::initialize();
 167   PSParallelCompact::post_initialize();
 168   PSPromotionManager::initialize();
 169 
 170   ScavengableNMethods::initialize(&_is_scavengable);
 171 }
 172 
 173 void ParallelScavengeHeap::update_counters() {
 174   young_gen()->update_counters();
 175   old_gen()->update_counters();
 176   MetaspaceCounters::update_performance_counters();
 177   CompressedClassSpaceCounters::update_performance_counters();
 178 }
 179 
 180 size_t ParallelScavengeHeap::capacity() const {
 181   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
 182   return value;
 183 }
 184 
 185 size_t ParallelScavengeHeap::used() const {
 186   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
 187   return value;
 188 }
 189 
 190 bool ParallelScavengeHeap::is_maximal_no_gc() const {
 191   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
 192 }
 193 
 194 
 195 size_t ParallelScavengeHeap::max_capacity() const {
 196   size_t estimated = reserved_region().byte_size();
 197   if (UseAdaptiveSizePolicy) {
 198     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
 199   } else {
 200     estimated -= young_gen()->to_space()->capacity_in_bytes();
 201   }
 202   return MAX2(estimated, capacity());
 203 }
 204 
 205 bool ParallelScavengeHeap::is_in(const void* p) const {
 206   return young_gen()->is_in(p) || old_gen()->is_in(p);
 207 }
 208 
 209 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
 210   return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p);
 211 }
 212 
 213 // There are two levels of allocation policy here.
 214 //
 215 // When an allocation request fails, the requesting thread must invoke a VM
 216 // operation, transfer control to the VM thread, and await the results of a
 217 // garbage collection. That is quite expensive, and we should avoid doing it
 218 // multiple times if possible.
 219 //
 220 // To accomplish this, we have a basic allocation policy, and also a
 221 // failed allocation policy.
 222 //
 223 // The basic allocation policy controls how you allocate memory without
 224 // attempting garbage collection. It is okay to grab locks and
 225 // expand the heap, if that can be done without coming to a safepoint.
 226 // It is likely that the basic allocation policy will not be very
 227 // aggressive.
 228 //
 229 // The failed allocation policy is invoked from the VM thread after
 230 // the basic allocation policy is unable to satisfy a mem_allocate
 231 // request. This policy needs to cover the entire range of collection,
 232 // heap expansion, and out-of-memory conditions. It should make every
 233 // attempt to allocate the requested memory.
 234 
 235 // Basic allocation policy. Should never be called at a safepoint, or
 236 // from the VM thread.
 237 //
 238 // This method must handle cases where many mem_allocate requests fail
 239 // simultaneously. When that happens, only one VM operation will succeed,
 240 // and the rest will not be executed. For that reason, this method loops
 241 // during failed allocation attempts. If the java heap becomes exhausted,
 242 // we rely on the size_policy object to force a bail out.
 243 HeapWord* ParallelScavengeHeap::mem_allocate(
 244                                      size_t size,
 245                                      bool* gc_overhead_limit_was_exceeded) {
 246   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 247   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 248   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 249 
 250   // In general gc_overhead_limit_was_exceeded should be false so
 251   // set it so here and reset it to true only if the gc time
 252   // limit is being exceeded as checked below.
 253   *gc_overhead_limit_was_exceeded = false;
 254 
 255   HeapWord* result = young_gen()->allocate(size);
 256 
 257   uint loop_count = 0;
 258   uint gc_count = 0;
 259   uint gclocker_stalled_count = 0;
 260 
 261   while (result == NULL) {
 262     // We don't want to have multiple collections for a single filled generation.
 263     // To prevent this, each thread tracks the total_collections() value, and if
 264     // the count has changed, does not do a new collection.
 265     //
 266     // The collection count must be read only while holding the heap lock. VM
 267     // operations also hold the heap lock during collections. There is a lock
 268     // contention case where thread A blocks waiting on the Heap_lock, while
 269     // thread B is holding it doing a collection. When thread A gets the lock,
 270     // the collection count has already changed. To prevent duplicate collections,
 271     // The policy MUST attempt allocations during the same period it reads the
 272     // total_collections() value!
 273     {
 274       MutexLocker ml(Heap_lock);
 275       gc_count = total_collections();
 276 
 277       result = young_gen()->allocate(size);
 278       if (result != NULL) {
 279         return result;
 280       }
 281 
 282       // If certain conditions hold, try allocating from the old gen.
 283       result = mem_allocate_old_gen(size);
 284       if (result != NULL) {
 285         return result;
 286       }
 287 
 288       if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 289         return NULL;
 290       }
 291 
 292       // Failed to allocate without a gc.
 293       if (GCLocker::is_active_and_needs_gc()) {
 294         // If this thread is not in a jni critical section, we stall
 295         // the requestor until the critical section has cleared and
 296         // GC allowed. When the critical section clears, a GC is
 297         // initiated by the last thread exiting the critical section; so
 298         // we retry the allocation sequence from the beginning of the loop,
 299         // rather than causing more, now probably unnecessary, GC attempts.
 300         JavaThread* jthr = JavaThread::current();
 301         if (!jthr->in_critical()) {
 302           MutexUnlocker mul(Heap_lock);
 303           GCLocker::stall_until_clear();
 304           gclocker_stalled_count += 1;
 305           continue;
 306         } else {
 307           if (CheckJNICalls) {
 308             fatal("Possible deadlock due to allocating while"
 309                   " in jni critical section");
 310           }
 311           return NULL;
 312         }
 313       }
 314     }
 315 
 316     if (result == NULL) {
 317       // Generate a VM operation
 318       VM_ParallelGCFailedAllocation op(size, gc_count);
 319       VMThread::execute(&op);
 320 
 321       // Did the VM operation execute? If so, return the result directly.
 322       // This prevents us from looping until time out on requests that can
 323       // not be satisfied.
 324       if (op.prologue_succeeded()) {
 325         assert(is_in_or_null(op.result()), "result not in heap");
 326 
 327         // If GC was locked out during VM operation then retry allocation
 328         // and/or stall as necessary.
 329         if (op.gc_locked()) {
 330           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 331           continue;  // retry and/or stall as necessary
 332         }
 333 
 334         // Exit the loop if the gc time limit has been exceeded.
 335         // The allocation must have failed above ("result" guarding
 336         // this path is NULL) and the most recent collection has exceeded the
 337         // gc overhead limit (although enough may have been collected to
 338         // satisfy the allocation).  Exit the loop so that an out-of-memory
 339         // will be thrown (return a NULL ignoring the contents of
 340         // op.result()),
 341         // but clear gc_overhead_limit_exceeded so that the next collection
 342         // starts with a clean slate (i.e., forgets about previous overhead
 343         // excesses).  Fill op.result() with a filler object so that the
 344         // heap remains parsable.
 345         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 346         const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 347 
 348         if (limit_exceeded && softrefs_clear) {
 349           *gc_overhead_limit_was_exceeded = true;
 350           size_policy()->set_gc_overhead_limit_exceeded(false);
 351           log_trace(gc)("ParallelScavengeHeap::mem_allocate: return NULL because gc_overhead_limit_exceeded is set");
 352           if (op.result() != NULL) {
 353             CollectedHeap::fill_with_object(op.result(), size);
 354           }
 355           return NULL;
 356         }
 357 
 358         return op.result();
 359       }
 360     }
 361 
 362     // The policy object will prevent us from looping forever. If the
 363     // time spent in gc crosses a threshold, we will bail out.
 364     loop_count++;
 365     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
 366         (loop_count % QueuedAllocationWarningCount == 0)) {
 367       log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times", loop_count);
 368       log_warning(gc)("\tsize=" SIZE_FORMAT, size);
 369     }
 370   }
 371 
 372   return result;
 373 }
 374 
 375 // A "death march" is a series of ultra-slow allocations in which a full gc is
 376 // done before each allocation, and after the full gc the allocation still
 377 // cannot be satisfied from the young gen.  This routine detects that condition;
 378 // it should be called after a full gc has been done and the allocation
 379 // attempted from the young gen. The parameter 'addr' should be the result of
 380 // that young gen allocation attempt.
 381 void
 382 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
 383   if (addr != NULL) {
 384     _death_march_count = 0;  // death march has ended
 385   } else if (_death_march_count == 0) {
 386     if (should_alloc_in_eden(size)) {
 387       _death_march_count = 1;    // death march has started
 388     }
 389   }
 390 }
 391 
 392 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
 393   if (!should_alloc_in_eden(size) || GCLocker::is_active_and_needs_gc()) {
 394     // Size is too big for eden, or gc is locked out.
 395     return old_gen()->allocate(size);
 396   }
 397 
 398   // If a "death march" is in progress, allocate from the old gen a limited
 399   // number of times before doing a GC.
 400   if (_death_march_count > 0) {
 401     if (_death_march_count < 64) {
 402       ++_death_march_count;
 403       return old_gen()->allocate(size);
 404     } else {
 405       _death_march_count = 0;
 406     }
 407   }
 408   return NULL;
 409 }
 410 
 411 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
 412   // The do_full_collection() parameter clear_all_soft_refs
 413   // is interpreted here as maximum_compaction which will
 414   // cause SoftRefs to be cleared.
 415   bool maximum_compaction = clear_all_soft_refs;
 416   PSParallelCompact::invoke(maximum_compaction);
 417 }
 418 
 419 // Failed allocation policy. Must be called from the VM thread, and
 420 // only at a safepoint! Note that this method has policy for allocation
 421 // flow, and NOT collection policy. So we do not check for gc collection
 422 // time over limit here, that is the responsibility of the heap specific
 423 // collection methods. This method decides where to attempt allocations,
 424 // and when to attempt collections, but no collection specific policy.
 425 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
 426   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 427   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 428   assert(!is_gc_active(), "not reentrant");
 429   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 430 
 431   // We assume that allocation in eden will fail unless we collect.
 432 
 433   // First level allocation failure, scavenge and allocate in young gen.
 434   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 435   const bool invoked_full_gc = PSScavenge::invoke();
 436   HeapWord* result = young_gen()->allocate(size);
 437 
 438   // Second level allocation failure.
 439   //   Mark sweep and allocate in young generation.
 440   if (result == NULL && !invoked_full_gc) {
 441     do_full_collection(false);
 442     result = young_gen()->allocate(size);
 443   }
 444 
 445   death_march_check(result, size);
 446 
 447   // Third level allocation failure.
 448   //   After mark sweep and young generation allocation failure,
 449   //   allocate in old generation.
 450   if (result == NULL) {
 451     result = old_gen()->allocate(size);
 452   }
 453 
 454   // Fourth level allocation failure. We're running out of memory.
 455   //   More complete mark sweep and allocate in young generation.
 456   if (result == NULL) {
 457     do_full_collection(true);
 458     result = young_gen()->allocate(size);
 459   }
 460 
 461   // Fifth level allocation failure.
 462   //   After more complete mark sweep, allocate in old generation.
 463   if (result == NULL) {
 464     result = old_gen()->allocate(size);
 465   }
 466 
 467   return result;
 468 }
 469 
 470 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
 471   CollectedHeap::ensure_parsability(retire_tlabs);
 472   young_gen()->eden_space()->ensure_parsability();
 473 }
 474 
 475 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
 476   return young_gen()->eden_space()->tlab_capacity(thr);
 477 }
 478 
 479 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
 480   return young_gen()->eden_space()->tlab_used(thr);
 481 }
 482 
 483 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 484   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
 485 }
 486 
 487 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size) {
 488   HeapWord* result = young_gen()->allocate(requested_size);
 489   if (result != NULL) {
 490     *actual_size = requested_size;
 491   }
 492 
 493   return result;
 494 }
 495 
 496 void ParallelScavengeHeap::resize_all_tlabs() {
 497   CollectedHeap::resize_all_tlabs();
 498 }
 499 
 500 // This method is used by System.gc() and JVMTI.
 501 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
 502   assert(!Heap_lock->owned_by_self(),
 503     "this thread should not own the Heap_lock");
 504 
 505   uint gc_count      = 0;
 506   uint full_gc_count = 0;
 507   {
 508     MutexLocker ml(Heap_lock);
 509     // This value is guarded by the Heap_lock
 510     gc_count      = total_collections();
 511     full_gc_count = total_full_collections();
 512   }
 513 
 514   if (GCLocker::should_discard(cause, gc_count)) {
 515     return;
 516   }
 517 
 518   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
 519   VMThread::execute(&op);
 520 }
 521 
 522 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
 523   young_gen()->object_iterate(cl);
 524   old_gen()->object_iterate(cl);
 525 }
 526 
 527 
 528 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
 529   if (young_gen()->is_in_reserved(addr)) {
 530     assert(young_gen()->is_in(addr),
 531            "addr should be in allocated part of young gen");
 532     // called from os::print_location by find or VMError
 533     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
 534     Unimplemented();
 535   } else if (old_gen()->is_in_reserved(addr)) {
 536     assert(old_gen()->is_in(addr),
 537            "addr should be in allocated part of old gen");
 538     return old_gen()->start_array()->object_start((HeapWord*)addr);
 539   }
 540   return 0;
 541 }
 542 
 543 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
 544   return block_start(addr) == addr;
 545 }
 546 
 547 jlong ParallelScavengeHeap::millis_since_last_gc() {
 548   return PSParallelCompact::millis_since_last_gc();
 549 }
 550 
 551 void ParallelScavengeHeap::prepare_for_verify() {
 552   ensure_parsability(false);  // no need to retire TLABs for verification
 553 }
 554 
 555 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
 556   PSOldGen* old = old_gen();
 557   HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
 558   VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
 559   SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
 560 
 561   PSYoungGen* young = young_gen();
 562   VirtualSpaceSummary young_summary(young->reserved().start(),
 563     (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
 564 
 565   MutableSpace* eden = young_gen()->eden_space();
 566   SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
 567 
 568   MutableSpace* from = young_gen()->from_space();
 569   SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
 570 
 571   MutableSpace* to = young_gen()->to_space();
 572   SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
 573 
 574   VirtualSpaceSummary heap_summary = create_heap_space_summary();
 575   return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
 576 }
 577 
 578 bool ParallelScavengeHeap::print_location(outputStream* st, void* addr) const {
 579   return BlockLocationPrinter<ParallelScavengeHeap>::print_location(st, addr);
 580 }
 581 
 582 void ParallelScavengeHeap::print_on(outputStream* st) const {
 583   young_gen()->print_on(st);
 584   old_gen()->print_on(st);
 585   MetaspaceUtils::print_on(st);
 586 }
 587 
 588 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
 589   this->CollectedHeap::print_on_error(st);
 590 
 591   st->cr();
 592   PSParallelCompact::print_on_error(st);
 593 }
 594 
 595 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
 596   ParallelScavengeHeap::heap()->workers().threads_do(tc);
 597 }
 598 
 599 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
 600   ParallelScavengeHeap::heap()->workers().print_worker_threads_on(st);
 601 }
 602 
 603 void ParallelScavengeHeap::print_tracing_info() const {
 604   AdaptiveSizePolicyOutput::print();
 605   log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds());
 606   log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs", PSParallelCompact::accumulated_time()->seconds());
 607 }
 608 
 609 PreGenGCValues ParallelScavengeHeap::get_pre_gc_values() const {
 610   const PSYoungGen* const young = young_gen();
 611   const MutableSpace* const eden = young->eden_space();
 612   const MutableSpace* const from = young->from_space();
 613   const PSOldGen* const old = old_gen();
 614 
 615   return PreGenGCValues(young->used_in_bytes(),
 616                         young->capacity_in_bytes(),
 617                         eden->used_in_bytes(),
 618                         eden->capacity_in_bytes(),
 619                         from->used_in_bytes(),
 620                         from->capacity_in_bytes(),
 621                         old->used_in_bytes(),
 622                         old->capacity_in_bytes());
 623 }
 624 
 625 void ParallelScavengeHeap::print_heap_change(const PreGenGCValues& pre_gc_values) const {
 626   const PSYoungGen* const young = young_gen();
 627   const MutableSpace* const eden = young->eden_space();
 628   const MutableSpace* const from = young->from_space();
 629   const PSOldGen* const old = old_gen();
 630 
 631   log_info(gc, heap)(HEAP_CHANGE_FORMAT" "
 632                      HEAP_CHANGE_FORMAT" "
 633                      HEAP_CHANGE_FORMAT,
 634                      HEAP_CHANGE_FORMAT_ARGS(young->name(),
 635                                              pre_gc_values.young_gen_used(),
 636                                              pre_gc_values.young_gen_capacity(),
 637                                              young->used_in_bytes(),
 638                                              young->capacity_in_bytes()),
 639                      HEAP_CHANGE_FORMAT_ARGS("Eden",
 640                                              pre_gc_values.eden_used(),
 641                                              pre_gc_values.eden_capacity(),
 642                                              eden->used_in_bytes(),
 643                                              eden->capacity_in_bytes()),
 644                      HEAP_CHANGE_FORMAT_ARGS("From",
 645                                              pre_gc_values.from_used(),
 646                                              pre_gc_values.from_capacity(),
 647                                              from->used_in_bytes(),
 648                                              from->capacity_in_bytes()));
 649   log_info(gc, heap)(HEAP_CHANGE_FORMAT,
 650                      HEAP_CHANGE_FORMAT_ARGS(old->name(),
 651                                              pre_gc_values.old_gen_used(),
 652                                              pre_gc_values.old_gen_capacity(),
 653                                              old->used_in_bytes(),
 654                                              old->capacity_in_bytes()));
 655   MetaspaceUtils::print_metaspace_change(pre_gc_values.metaspace_sizes());
 656 }
 657 
 658 void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) {
 659   // Why do we need the total_collections()-filter below?
 660   if (total_collections() > 0) {
 661     log_debug(gc, verify)("Tenured");
 662     old_gen()->verify();
 663 
 664     log_debug(gc, verify)("Eden");
 665     young_gen()->verify();
 666   }
 667 }
 668 
 669 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
 670   const PSHeapSummary& heap_summary = create_ps_heap_summary();
 671   gc_tracer->report_gc_heap_summary(when, heap_summary);
 672 
 673   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 674   gc_tracer->report_metaspace_summary(when, metaspace_summary);
 675 }
 676 
 677 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
 678   CollectedHeap* heap = Universe::heap();
 679   assert(heap != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
 680   assert(heap->kind() == CollectedHeap::Parallel, "Invalid name");
 681   return (ParallelScavengeHeap*)heap;
 682 }
 683 
 684 CardTableBarrierSet* ParallelScavengeHeap::barrier_set() {
 685   return barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
 686 }
 687 
 688 PSCardTable* ParallelScavengeHeap::card_table() {
 689   return static_cast<PSCardTable*>(barrier_set()->card_table());
 690 }
 691 
 692 // Before delegating the resize to the young generation,
 693 // the reserved space for the young and old generations
 694 // may be changed to accommodate the desired resize.
 695 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
 696     size_t survivor_size) {
 697   if (UseAdaptiveGCBoundary) {
 698     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 699       size_policy()->reset_bytes_absorbed_from_eden();
 700       return;  // The generation changed size already.
 701     }
 702     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
 703   }
 704 
 705   // Delegate the resize to the generation.
 706   _young_gen->resize(eden_size, survivor_size);
 707 }
 708 
 709 // Before delegating the resize to the old generation,
 710 // the reserved space for the young and old generations
 711 // may be changed to accommodate the desired resize.
 712 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
 713   if (UseAdaptiveGCBoundary) {
 714     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 715       size_policy()->reset_bytes_absorbed_from_eden();
 716       return;  // The generation changed size already.
 717     }
 718     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
 719   }
 720 
 721   // Delegate the resize to the generation.
 722   _old_gen->resize(desired_free_space);
 723 }
 724 
 725 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
 726   // nothing particular
 727 }
 728 
 729 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
 730   // nothing particular
 731 }
 732 
 733 #ifndef PRODUCT
 734 void ParallelScavengeHeap::record_gen_tops_before_GC() {
 735   if (ZapUnusedHeapArea) {
 736     young_gen()->record_spaces_top();
 737     old_gen()->record_spaces_top();
 738   }
 739 }
 740 
 741 void ParallelScavengeHeap::gen_mangle_unused_area() {
 742   if (ZapUnusedHeapArea) {
 743     young_gen()->eden_space()->mangle_unused_area();
 744     young_gen()->to_space()->mangle_unused_area();
 745     young_gen()->from_space()->mangle_unused_area();
 746     old_gen()->object_space()->mangle_unused_area();
 747   }
 748 }
 749 #endif
 750 
 751 void ParallelScavengeHeap::register_nmethod(nmethod* nm) {
 752   ScavengableNMethods::register_nmethod(nm);
 753 }
 754 
 755 void ParallelScavengeHeap::unregister_nmethod(nmethod* nm) {
 756   ScavengableNMethods::unregister_nmethod(nm);
 757 }
 758 
 759 void ParallelScavengeHeap::verify_nmethod(nmethod* nm) {
 760   ScavengableNMethods::verify_nmethod(nm);
 761 }
 762 
 763 void ParallelScavengeHeap::flush_nmethod(nmethod* nm) {
 764   // nothing particular
 765 }
 766 
 767 void ParallelScavengeHeap::prune_scavengable_nmethods() {
 768   ScavengableNMethods::prune_nmethods();
 769 }
 770 
 771 GrowableArray<GCMemoryManager*> ParallelScavengeHeap::memory_managers() {
 772   GrowableArray<GCMemoryManager*> memory_managers(2);
 773   memory_managers.append(_young_manager);
 774   memory_managers.append(_old_manager);
 775   return memory_managers;
 776 }
 777 
 778 GrowableArray<MemoryPool*> ParallelScavengeHeap::memory_pools() {
 779   GrowableArray<MemoryPool*> memory_pools(3);
 780   memory_pools.append(_eden_pool);
 781   memory_pools.append(_survivor_pool);
 782   memory_pools.append(_old_pool);
 783   return memory_pools;
 784 }