1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CardTableEntryClosure.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCParPhaseTimesTracker.hpp"
  45 #include "gc/g1/g1GCPhaseTimes.hpp"
  46 #include "gc/g1/g1HeapSizingPolicy.hpp"
  47 #include "gc/g1/g1HeapTransition.hpp"
  48 #include "gc/g1/g1HeapVerifier.hpp"
  49 #include "gc/g1/g1HotCardCache.hpp"
  50 #include "gc/g1/g1InitLogger.hpp"
  51 #include "gc/g1/g1MemoryPool.hpp"
  52 #include "gc/g1/g1OopClosures.inline.hpp"
  53 #include "gc/g1/g1ParallelCleaning.hpp"
  54 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  55 #include "gc/g1/g1Policy.hpp"
  56 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  57 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  58 #include "gc/g1/g1RemSet.hpp"
  59 #include "gc/g1/g1RootClosures.hpp"
  60 #include "gc/g1/g1RootProcessor.hpp"
  61 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  62 #include "gc/g1/g1StringDedup.hpp"
  63 #include "gc/g1/g1ThreadLocalData.hpp"
  64 #include "gc/g1/g1Trace.hpp"
  65 #include "gc/g1/g1YCTypes.hpp"
  66 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  67 #include "gc/g1/g1VMOperations.hpp"
  68 #include "gc/g1/heapRegion.inline.hpp"
  69 #include "gc/g1/heapRegionRemSet.hpp"
  70 #include "gc/g1/heapRegionSet.inline.hpp"
  71 #include "gc/shared/concurrentGCBreakpoints.hpp"
  72 #include "gc/shared/gcBehaviours.hpp"
  73 #include "gc/shared/gcHeapSummary.hpp"
  74 #include "gc/shared/gcId.hpp"
  75 #include "gc/shared/gcLocker.hpp"
  76 #include "gc/shared/gcTimer.hpp"
  77 #include "gc/shared/gcTraceTime.inline.hpp"
  78 #include "gc/shared/generationSpec.hpp"
  79 #include "gc/shared/isGCActiveMark.hpp"
  80 #include "gc/shared/locationPrinter.inline.hpp"
  81 #include "gc/shared/oopStorageParState.hpp"
  82 #include "gc/shared/preservedMarks.inline.hpp"
  83 #include "gc/shared/suspendibleThreadSet.hpp"
  84 #include "gc/shared/referenceProcessor.inline.hpp"
  85 #include "gc/shared/taskTerminator.hpp"
  86 #include "gc/shared/taskqueue.inline.hpp"
  87 #include "gc/shared/weakProcessor.inline.hpp"
  88 #include "gc/shared/workerPolicy.hpp"
  89 #include "logging/log.hpp"
  90 #include "memory/allocation.hpp"
  91 #include "memory/iterator.hpp"
  92 #include "memory/resourceArea.hpp"
  93 #include "memory/universe.hpp"
  94 #include "oops/access.inline.hpp"
  95 #include "oops/compressedOops.inline.hpp"
  96 #include "oops/oop.inline.hpp"
  97 #include "runtime/atomic.hpp"
  98 #include "runtime/flags/flagSetting.hpp"
  99 #include "runtime/handles.inline.hpp"
 100 #include "runtime/init.hpp"
 101 #include "runtime/orderAccess.hpp"
 102 #include "runtime/threadSMR.hpp"
 103 #include "runtime/vmThread.hpp"
 104 #include "utilities/align.hpp"
 105 #include "utilities/bitMap.inline.hpp"
 106 #include "utilities/globalDefinitions.hpp"
 107 #include "utilities/stack.inline.hpp"
 108 
 109 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 110 
 111 // INVARIANTS/NOTES
 112 //
 113 // All allocation activity covered by the G1CollectedHeap interface is
 114 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 115 // and allocate_new_tlab, which are the "entry" points to the
 116 // allocation code from the rest of the JVM.  (Note that this does not
 117 // apply to TLAB allocation, which is not part of this interface: it
 118 // is done by clients of this interface.)
 119 
 120 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 121  private:
 122   size_t _num_dirtied;
 123   G1CollectedHeap* _g1h;
 124   G1CardTable* _g1_ct;
 125 
 126   HeapRegion* region_for_card(CardValue* card_ptr) const {
 127     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 128   }
 129 
 130   bool will_become_free(HeapRegion* hr) const {
 131     // A region will be freed by free_collection_set if the region is in the
 132     // collection set and has not had an evacuation failure.
 133     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 134   }
 135 
 136  public:
 137   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 138     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 139 
 140   void do_card_ptr(CardValue* card_ptr, uint worker_id) {
 141     HeapRegion* hr = region_for_card(card_ptr);
 142 
 143     // Should only dirty cards in regions that won't be freed.
 144     if (!will_become_free(hr)) {
 145       *card_ptr = G1CardTable::dirty_card_val();
 146       _num_dirtied++;
 147     }
 148   }
 149 
 150   size_t num_dirtied()   const { return _num_dirtied; }
 151 };
 152 
 153 
 154 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 155   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 156 }
 157 
 158 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 159   // The from card cache is not the memory that is actually committed. So we cannot
 160   // take advantage of the zero_filled parameter.
 161   reset_from_card_cache(start_idx, num_regions);
 162 }
 163 
 164 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
 165   Ticks start = Ticks::now();
 166   workers()->run_task(task, workers()->active_workers());
 167   return Ticks::now() - start;
 168 }
 169 
 170 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 171                                              MemRegion mr) {
 172   return new HeapRegion(hrs_index, bot(), mr);
 173 }
 174 
 175 // Private methods.
 176 
 177 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 178                                         HeapRegionType type,
 179                                         bool do_expand,
 180                                         uint node_index) {
 181   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 182          "the only time we use this to allocate a humongous region is "
 183          "when we are allocating a single humongous region");
 184 
 185   HeapRegion* res = _hrm->allocate_free_region(type, node_index);
 186 
 187   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 188     // Currently, only attempts to allocate GC alloc regions set
 189     // do_expand to true. So, we should only reach here during a
 190     // safepoint. If this assumption changes we might have to
 191     // reconsider the use of _expand_heap_after_alloc_failure.
 192     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 193 
 194     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 195                               word_size * HeapWordSize);
 196 
 197     assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
 198            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
 199            word_size * HeapWordSize);
 200     if (expand_single_region(node_index)) {
 201       // Given that expand_single_region() succeeded in expanding the heap, and we
 202       // always expand the heap by an amount aligned to the heap
 203       // region size, the free list should in theory not be empty.
 204       // In either case allocate_free_region() will check for NULL.
 205       res = _hrm->allocate_free_region(type, node_index);
 206     } else {
 207       _expand_heap_after_alloc_failure = false;
 208     }
 209   }
 210   return res;
 211 }
 212 
 213 HeapWord*
 214 G1CollectedHeap::humongous_obj_allocate_initialize_regions(HeapRegion* first_hr,
 215                                                            uint num_regions,
 216                                                            size_t word_size) {
 217   assert(first_hr != NULL, "pre-condition");
 218   assert(is_humongous(word_size), "word_size should be humongous");
 219   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 220 
 221   // Index of last region in the series.
 222   uint first = first_hr->hrm_index();
 223   uint last = first + num_regions - 1;
 224 
 225   // We need to initialize the region(s) we just discovered. This is
 226   // a bit tricky given that it can happen concurrently with
 227   // refinement threads refining cards on these regions and
 228   // potentially wanting to refine the BOT as they are scanning
 229   // those cards (this can happen shortly after a cleanup; see CR
 230   // 6991377). So we have to set up the region(s) carefully and in
 231   // a specific order.
 232 
 233   // The word size sum of all the regions we will allocate.
 234   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 235   assert(word_size <= word_size_sum, "sanity");
 236 
 237   // The passed in hr will be the "starts humongous" region. The header
 238   // of the new object will be placed at the bottom of this region.
 239   HeapWord* new_obj = first_hr->bottom();
 240   // This will be the new top of the new object.
 241   HeapWord* obj_top = new_obj + word_size;
 242 
 243   // First, we need to zero the header of the space that we will be
 244   // allocating. When we update top further down, some refinement
 245   // threads might try to scan the region. By zeroing the header we
 246   // ensure that any thread that will try to scan the region will
 247   // come across the zero klass word and bail out.
 248   //
 249   // NOTE: It would not have been correct to have used
 250   // CollectedHeap::fill_with_object() and make the space look like
 251   // an int array. The thread that is doing the allocation will
 252   // later update the object header to a potentially different array
 253   // type and, for a very short period of time, the klass and length
 254   // fields will be inconsistent. This could cause a refinement
 255   // thread to calculate the object size incorrectly.
 256   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 257 
 258   // Next, pad out the unused tail of the last region with filler
 259   // objects, for improved usage accounting.
 260   // How many words we use for filler objects.
 261   size_t word_fill_size = word_size_sum - word_size;
 262 
 263   // How many words memory we "waste" which cannot hold a filler object.
 264   size_t words_not_fillable = 0;
 265 
 266   if (word_fill_size >= min_fill_size()) {
 267     fill_with_objects(obj_top, word_fill_size);
 268   } else if (word_fill_size > 0) {
 269     // We have space to fill, but we cannot fit an object there.
 270     words_not_fillable = word_fill_size;
 271     word_fill_size = 0;
 272   }
 273 
 274   // We will set up the first region as "starts humongous". This
 275   // will also update the BOT covering all the regions to reflect
 276   // that there is a single object that starts at the bottom of the
 277   // first region.
 278   first_hr->set_starts_humongous(obj_top, word_fill_size);
 279   _policy->remset_tracker()->update_at_allocate(first_hr);
 280   // Then, if there are any, we will set up the "continues
 281   // humongous" regions.
 282   HeapRegion* hr = NULL;
 283   for (uint i = first + 1; i <= last; ++i) {
 284     hr = region_at(i);
 285     hr->set_continues_humongous(first_hr);
 286     _policy->remset_tracker()->update_at_allocate(hr);
 287   }
 288 
 289   // Up to this point no concurrent thread would have been able to
 290   // do any scanning on any region in this series. All the top
 291   // fields still point to bottom, so the intersection between
 292   // [bottom,top] and [card_start,card_end] will be empty. Before we
 293   // update the top fields, we'll do a storestore to make sure that
 294   // no thread sees the update to top before the zeroing of the
 295   // object header and the BOT initialization.
 296   OrderAccess::storestore();
 297 
 298   // Now, we will update the top fields of the "continues humongous"
 299   // regions except the last one.
 300   for (uint i = first; i < last; ++i) {
 301     hr = region_at(i);
 302     hr->set_top(hr->end());
 303   }
 304 
 305   hr = region_at(last);
 306   // If we cannot fit a filler object, we must set top to the end
 307   // of the humongous object, otherwise we cannot iterate the heap
 308   // and the BOT will not be complete.
 309   hr->set_top(hr->end() - words_not_fillable);
 310 
 311   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 312          "obj_top should be in last region");
 313 
 314   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 315 
 316   assert(words_not_fillable == 0 ||
 317          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 318          "Miscalculation in humongous allocation");
 319 
 320   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 321 
 322   for (uint i = first; i <= last; ++i) {
 323     hr = region_at(i);
 324     _humongous_set.add(hr);
 325     _hr_printer.alloc(hr);
 326   }
 327 
 328   return new_obj;
 329 }
 330 
 331 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 332   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 333   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 334 }
 335 
 336 // If could fit into free regions w/o expansion, try.
 337 // Otherwise, if can expand, do so.
 338 // Otherwise, if using ex regions might help, try with ex given back.
 339 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 340   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 341 
 342   _verifier->verify_region_sets_optional();
 343 
 344   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 345 
 346   // Policy: First try to allocate a humongous object in the free list.
 347   HeapRegion* humongous_start = _hrm->allocate_humongous(obj_regions);
 348   if (humongous_start == NULL) {
 349     // Policy: We could not find enough regions for the humongous object in the
 350     // free list. Look through the heap to find a mix of free and uncommitted regions.
 351     // If so, expand the heap and allocate the humongous object.
 352     humongous_start = _hrm->expand_and_allocate_humongous(obj_regions);
 353     if (humongous_start != NULL) {
 354       // We managed to find a region by expanding the heap.
 355       log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B",
 356                                 word_size * HeapWordSize);
 357       policy()->record_new_heap_size(num_regions());
 358     } else {
 359       // Policy: Potentially trigger a defragmentation GC.
 360     }
 361   }
 362 
 363   HeapWord* result = NULL;
 364   if (humongous_start != NULL) {
 365     result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size);
 366     assert(result != NULL, "it should always return a valid result");
 367 
 368     // A successful humongous object allocation changes the used space
 369     // information of the old generation so we need to recalculate the
 370     // sizes and update the jstat counters here.
 371     g1mm()->update_sizes();
 372   }
 373 
 374   _verifier->verify_region_sets_optional();
 375 
 376   return result;
 377 }
 378 
 379 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 380                                              size_t requested_size,
 381                                              size_t* actual_size) {
 382   assert_heap_not_locked_and_not_at_safepoint();
 383   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 384 
 385   return attempt_allocation(min_size, requested_size, actual_size);
 386 }
 387 
 388 HeapWord*
 389 G1CollectedHeap::mem_allocate(size_t word_size,
 390                               bool*  gc_overhead_limit_was_exceeded) {
 391   assert_heap_not_locked_and_not_at_safepoint();
 392 
 393   if (is_humongous(word_size)) {
 394     return attempt_allocation_humongous(word_size);
 395   }
 396   size_t dummy = 0;
 397   return attempt_allocation(word_size, word_size, &dummy);
 398 }
 399 
 400 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 401   ResourceMark rm; // For retrieving the thread names in log messages.
 402 
 403   // Make sure you read the note in attempt_allocation_humongous().
 404 
 405   assert_heap_not_locked_and_not_at_safepoint();
 406   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 407          "be called for humongous allocation requests");
 408 
 409   // We should only get here after the first-level allocation attempt
 410   // (attempt_allocation()) failed to allocate.
 411 
 412   // We will loop until a) we manage to successfully perform the
 413   // allocation or b) we successfully schedule a collection which
 414   // fails to perform the allocation. b) is the only case when we'll
 415   // return NULL.
 416   HeapWord* result = NULL;
 417   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 418     bool should_try_gc;
 419     uint gc_count_before;
 420 
 421     {
 422       MutexLocker x(Heap_lock);
 423       result = _allocator->attempt_allocation_locked(word_size);
 424       if (result != NULL) {
 425         return result;
 426       }
 427 
 428       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 429       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 430       // waiting because the GCLocker is active to not wait too long.
 431       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 432         // No need for an ergo message here, can_expand_young_list() does this when
 433         // it returns true.
 434         result = _allocator->attempt_allocation_force(word_size);
 435         if (result != NULL) {
 436           return result;
 437         }
 438       }
 439       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 440       // the GCLocker initiated GC has been performed and then retry. This includes
 441       // the case when the GC Locker is not active but has not been performed.
 442       should_try_gc = !GCLocker::needs_gc();
 443       // Read the GC count while still holding the Heap_lock.
 444       gc_count_before = total_collections();
 445     }
 446 
 447     if (should_try_gc) {
 448       bool succeeded;
 449       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 450                                    GCCause::_g1_inc_collection_pause);
 451       if (result != NULL) {
 452         assert(succeeded, "only way to get back a non-NULL result");
 453         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 454                              Thread::current()->name(), p2i(result));
 455         return result;
 456       }
 457 
 458       if (succeeded) {
 459         // We successfully scheduled a collection which failed to allocate. No
 460         // point in trying to allocate further. We'll just return NULL.
 461         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 462                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 463         return NULL;
 464       }
 465       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 466                            Thread::current()->name(), word_size);
 467     } else {
 468       // Failed to schedule a collection.
 469       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 470         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 471                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 472         return NULL;
 473       }
 474       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 475       // The GCLocker is either active or the GCLocker initiated
 476       // GC has not yet been performed. Stall until it is and
 477       // then retry the allocation.
 478       GCLocker::stall_until_clear();
 479       gclocker_retry_count += 1;
 480     }
 481 
 482     // We can reach here if we were unsuccessful in scheduling a
 483     // collection (because another thread beat us to it) or if we were
 484     // stalled due to the GC locker. In either can we should retry the
 485     // allocation attempt in case another thread successfully
 486     // performed a collection and reclaimed enough space. We do the
 487     // first attempt (without holding the Heap_lock) here and the
 488     // follow-on attempt will be at the start of the next loop
 489     // iteration (after taking the Heap_lock).
 490     size_t dummy = 0;
 491     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 492     if (result != NULL) {
 493       return result;
 494     }
 495 
 496     // Give a warning if we seem to be looping forever.
 497     if ((QueuedAllocationWarningCount > 0) &&
 498         (try_count % QueuedAllocationWarningCount == 0)) {
 499       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 500                              Thread::current()->name(), try_count, word_size);
 501     }
 502   }
 503 
 504   ShouldNotReachHere();
 505   return NULL;
 506 }
 507 
 508 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 509   assert_at_safepoint_on_vm_thread();
 510   if (_archive_allocator == NULL) {
 511     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 512   }
 513 }
 514 
 515 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 516   // Allocations in archive regions cannot be of a size that would be considered
 517   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 518   // may be different at archive-restore time.
 519   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 520 }
 521 
 522 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 523   assert_at_safepoint_on_vm_thread();
 524   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 525   if (is_archive_alloc_too_large(word_size)) {
 526     return NULL;
 527   }
 528   return _archive_allocator->archive_mem_allocate(word_size);
 529 }
 530 
 531 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 532                                               size_t end_alignment_in_bytes) {
 533   assert_at_safepoint_on_vm_thread();
 534   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 535 
 536   // Call complete_archive to do the real work, filling in the MemRegion
 537   // array with the archive regions.
 538   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 539   delete _archive_allocator;
 540   _archive_allocator = NULL;
 541 }
 542 
 543 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 544   assert(ranges != NULL, "MemRegion array NULL");
 545   assert(count != 0, "No MemRegions provided");
 546   MemRegion reserved = _hrm->reserved();
 547   for (size_t i = 0; i < count; i++) {
 548     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 549       return false;
 550     }
 551   }
 552   return true;
 553 }
 554 
 555 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 556                                             size_t count,
 557                                             bool open) {
 558   assert(!is_init_completed(), "Expect to be called at JVM init time");
 559   assert(ranges != NULL, "MemRegion array NULL");
 560   assert(count != 0, "No MemRegions provided");
 561   MutexLocker x(Heap_lock);
 562 
 563   MemRegion reserved = _hrm->reserved();
 564   HeapWord* prev_last_addr = NULL;
 565   HeapRegion* prev_last_region = NULL;
 566 
 567   // Temporarily disable pretouching of heap pages. This interface is used
 568   // when mmap'ing archived heap data in, so pre-touching is wasted.
 569   FlagSetting fs(AlwaysPreTouch, false);
 570 
 571   // Enable archive object checking used by G1MarkSweep. We have to let it know
 572   // about each archive range, so that objects in those ranges aren't marked.
 573   G1ArchiveAllocator::enable_archive_object_check();
 574 
 575   // For each specified MemRegion range, allocate the corresponding G1
 576   // regions and mark them as archive regions. We expect the ranges
 577   // in ascending starting address order, without overlap.
 578   for (size_t i = 0; i < count; i++) {
 579     MemRegion curr_range = ranges[i];
 580     HeapWord* start_address = curr_range.start();
 581     size_t word_size = curr_range.word_size();
 582     HeapWord* last_address = curr_range.last();
 583     size_t commits = 0;
 584 
 585     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 586               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 587               p2i(start_address), p2i(last_address));
 588     guarantee(start_address > prev_last_addr,
 589               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 590               p2i(start_address), p2i(prev_last_addr));
 591     prev_last_addr = last_address;
 592 
 593     // Check for ranges that start in the same G1 region in which the previous
 594     // range ended, and adjust the start address so we don't try to allocate
 595     // the same region again. If the current range is entirely within that
 596     // region, skip it, just adjusting the recorded top.
 597     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 598     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 599       start_address = start_region->end();
 600       if (start_address > last_address) {
 601         increase_used(word_size * HeapWordSize);
 602         start_region->set_top(last_address + 1);
 603         continue;
 604       }
 605       start_region->set_top(start_address);
 606       curr_range = MemRegion(start_address, last_address + 1);
 607       start_region = _hrm->addr_to_region(start_address);
 608     }
 609 
 610     // Perform the actual region allocation, exiting if it fails.
 611     // Then note how much new space we have allocated.
 612     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 613       return false;
 614     }
 615     increase_used(word_size * HeapWordSize);
 616     if (commits != 0) {
 617       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 618                                 HeapRegion::GrainWords * HeapWordSize * commits);
 619 
 620     }
 621 
 622     // Mark each G1 region touched by the range as archive, add it to
 623     // the old set, and set top.
 624     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 625     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 626     prev_last_region = last_region;
 627 
 628     while (curr_region != NULL) {
 629       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 630              "Region already in use (index %u)", curr_region->hrm_index());
 631       if (open) {
 632         curr_region->set_open_archive();
 633       } else {
 634         curr_region->set_closed_archive();
 635       }
 636       _hr_printer.alloc(curr_region);
 637       _archive_set.add(curr_region);
 638       HeapWord* top;
 639       HeapRegion* next_region;
 640       if (curr_region != last_region) {
 641         top = curr_region->end();
 642         next_region = _hrm->next_region_in_heap(curr_region);
 643       } else {
 644         top = last_address + 1;
 645         next_region = NULL;
 646       }
 647       curr_region->set_top(top);
 648       curr_region = next_region;
 649     }
 650 
 651     // Notify mark-sweep of the archive
 652     G1ArchiveAllocator::set_range_archive(curr_range, open);
 653   }
 654   return true;
 655 }
 656 
 657 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 658   assert(!is_init_completed(), "Expect to be called at JVM init time");
 659   assert(ranges != NULL, "MemRegion array NULL");
 660   assert(count != 0, "No MemRegions provided");
 661   MemRegion reserved = _hrm->reserved();
 662   HeapWord *prev_last_addr = NULL;
 663   HeapRegion* prev_last_region = NULL;
 664 
 665   // For each MemRegion, create filler objects, if needed, in the G1 regions
 666   // that contain the address range. The address range actually within the
 667   // MemRegion will not be modified. That is assumed to have been initialized
 668   // elsewhere, probably via an mmap of archived heap data.
 669   MutexLocker x(Heap_lock);
 670   for (size_t i = 0; i < count; i++) {
 671     HeapWord* start_address = ranges[i].start();
 672     HeapWord* last_address = ranges[i].last();
 673 
 674     assert(reserved.contains(start_address) && reserved.contains(last_address),
 675            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 676            p2i(start_address), p2i(last_address));
 677     assert(start_address > prev_last_addr,
 678            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 679            p2i(start_address), p2i(prev_last_addr));
 680 
 681     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 682     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 683     HeapWord* bottom_address = start_region->bottom();
 684 
 685     // Check for a range beginning in the same region in which the
 686     // previous one ended.
 687     if (start_region == prev_last_region) {
 688       bottom_address = prev_last_addr + 1;
 689     }
 690 
 691     // Verify that the regions were all marked as archive regions by
 692     // alloc_archive_regions.
 693     HeapRegion* curr_region = start_region;
 694     while (curr_region != NULL) {
 695       guarantee(curr_region->is_archive(),
 696                 "Expected archive region at index %u", curr_region->hrm_index());
 697       if (curr_region != last_region) {
 698         curr_region = _hrm->next_region_in_heap(curr_region);
 699       } else {
 700         curr_region = NULL;
 701       }
 702     }
 703 
 704     prev_last_addr = last_address;
 705     prev_last_region = last_region;
 706 
 707     // Fill the memory below the allocated range with dummy object(s),
 708     // if the region bottom does not match the range start, or if the previous
 709     // range ended within the same G1 region, and there is a gap.
 710     if (start_address != bottom_address) {
 711       size_t fill_size = pointer_delta(start_address, bottom_address);
 712       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 713       increase_used(fill_size * HeapWordSize);
 714     }
 715   }
 716 }
 717 
 718 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 719                                                      size_t desired_word_size,
 720                                                      size_t* actual_word_size) {
 721   assert_heap_not_locked_and_not_at_safepoint();
 722   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 723          "be called for humongous allocation requests");
 724 
 725   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 726 
 727   if (result == NULL) {
 728     *actual_word_size = desired_word_size;
 729     result = attempt_allocation_slow(desired_word_size);
 730   }
 731 
 732   assert_heap_not_locked();
 733   if (result != NULL) {
 734     assert(*actual_word_size != 0, "Actual size must have been set here");
 735     dirty_young_block(result, *actual_word_size);
 736   } else {
 737     *actual_word_size = 0;
 738   }
 739 
 740   return result;
 741 }
 742 
 743 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 744   assert(!is_init_completed(), "Expect to be called at JVM init time");
 745   assert(ranges != NULL, "MemRegion array NULL");
 746   assert(count != 0, "No MemRegions provided");
 747   MemRegion reserved = _hrm->reserved();
 748   HeapWord* prev_last_addr = NULL;
 749   HeapRegion* prev_last_region = NULL;
 750   size_t size_used = 0;
 751   size_t uncommitted_regions = 0;
 752 
 753   // For each Memregion, free the G1 regions that constitute it, and
 754   // notify mark-sweep that the range is no longer to be considered 'archive.'
 755   MutexLocker x(Heap_lock);
 756   for (size_t i = 0; i < count; i++) {
 757     HeapWord* start_address = ranges[i].start();
 758     HeapWord* last_address = ranges[i].last();
 759 
 760     assert(reserved.contains(start_address) && reserved.contains(last_address),
 761            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 762            p2i(start_address), p2i(last_address));
 763     assert(start_address > prev_last_addr,
 764            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 765            p2i(start_address), p2i(prev_last_addr));
 766     size_used += ranges[i].byte_size();
 767     prev_last_addr = last_address;
 768 
 769     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 770     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 771 
 772     // Check for ranges that start in the same G1 region in which the previous
 773     // range ended, and adjust the start address so we don't try to free
 774     // the same region again. If the current range is entirely within that
 775     // region, skip it.
 776     if (start_region == prev_last_region) {
 777       start_address = start_region->end();
 778       if (start_address > last_address) {
 779         continue;
 780       }
 781       start_region = _hrm->addr_to_region(start_address);
 782     }
 783     prev_last_region = last_region;
 784 
 785     // After verifying that each region was marked as an archive region by
 786     // alloc_archive_regions, set it free and empty and uncommit it.
 787     HeapRegion* curr_region = start_region;
 788     while (curr_region != NULL) {
 789       guarantee(curr_region->is_archive(),
 790                 "Expected archive region at index %u", curr_region->hrm_index());
 791       uint curr_index = curr_region->hrm_index();
 792       _archive_set.remove(curr_region);
 793       curr_region->set_free();
 794       curr_region->set_top(curr_region->bottom());
 795       if (curr_region != last_region) {
 796         curr_region = _hrm->next_region_in_heap(curr_region);
 797       } else {
 798         curr_region = NULL;
 799       }
 800       _hrm->shrink_at(curr_index, 1);
 801       uncommitted_regions++;
 802     }
 803 
 804     // Notify mark-sweep that this is no longer an archive range.
 805     G1ArchiveAllocator::clear_range_archive(ranges[i]);
 806   }
 807 
 808   if (uncommitted_regions != 0) {
 809     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 810                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 811   }
 812   decrease_used(size_used);
 813 }
 814 
 815 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 816   assert(obj != NULL, "archived obj is NULL");
 817   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 818 
 819   // Loading an archived object makes it strongly reachable. If it is
 820   // loaded during concurrent marking, it must be enqueued to the SATB
 821   // queue, shading the previously white object gray.
 822   G1BarrierSet::enqueue(obj);
 823 
 824   return obj;
 825 }
 826 
 827 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 828   ResourceMark rm; // For retrieving the thread names in log messages.
 829 
 830   // The structure of this method has a lot of similarities to
 831   // attempt_allocation_slow(). The reason these two were not merged
 832   // into a single one is that such a method would require several "if
 833   // allocation is not humongous do this, otherwise do that"
 834   // conditional paths which would obscure its flow. In fact, an early
 835   // version of this code did use a unified method which was harder to
 836   // follow and, as a result, it had subtle bugs that were hard to
 837   // track down. So keeping these two methods separate allows each to
 838   // be more readable. It will be good to keep these two in sync as
 839   // much as possible.
 840 
 841   assert_heap_not_locked_and_not_at_safepoint();
 842   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 843          "should only be called for humongous allocations");
 844 
 845   // Humongous objects can exhaust the heap quickly, so we should check if we
 846   // need to start a marking cycle at each humongous object allocation. We do
 847   // the check before we do the actual allocation. The reason for doing it
 848   // before the allocation is that we avoid having to keep track of the newly
 849   // allocated memory while we do a GC.
 850   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 851                                            word_size)) {
 852     collect(GCCause::_g1_humongous_allocation);
 853   }
 854 
 855   // We will loop until a) we manage to successfully perform the
 856   // allocation or b) we successfully schedule a collection which
 857   // fails to perform the allocation. b) is the only case when we'll
 858   // return NULL.
 859   HeapWord* result = NULL;
 860   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 861     bool should_try_gc;
 862     uint gc_count_before;
 863 
 864 
 865     {
 866       MutexLocker x(Heap_lock);
 867 
 868       // Given that humongous objects are not allocated in young
 869       // regions, we'll first try to do the allocation without doing a
 870       // collection hoping that there's enough space in the heap.
 871       result = humongous_obj_allocate(word_size);
 872       if (result != NULL) {
 873         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 874         policy()->old_gen_alloc_tracker()->
 875           add_allocated_bytes_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 876         return result;
 877       }
 878 
 879       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 880       // the GCLocker initiated GC has been performed and then retry. This includes
 881       // the case when the GC Locker is not active but has not been performed.
 882       should_try_gc = !GCLocker::needs_gc();
 883       // Read the GC count while still holding the Heap_lock.
 884       gc_count_before = total_collections();
 885     }
 886 
 887     if (should_try_gc) {
 888       bool succeeded;
 889       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 890                                    GCCause::_g1_humongous_allocation);
 891       if (result != NULL) {
 892         assert(succeeded, "only way to get back a non-NULL result");
 893         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 894                              Thread::current()->name(), p2i(result));
 895         return result;
 896       }
 897 
 898       if (succeeded) {
 899         // We successfully scheduled a collection which failed to allocate. No
 900         // point in trying to allocate further. We'll just return NULL.
 901         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 902                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 903         return NULL;
 904       }
 905       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 906                            Thread::current()->name(), word_size);
 907     } else {
 908       // Failed to schedule a collection.
 909       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 910         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 911                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 912         return NULL;
 913       }
 914       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 915       // The GCLocker is either active or the GCLocker initiated
 916       // GC has not yet been performed. Stall until it is and
 917       // then retry the allocation.
 918       GCLocker::stall_until_clear();
 919       gclocker_retry_count += 1;
 920     }
 921 
 922 
 923     // We can reach here if we were unsuccessful in scheduling a
 924     // collection (because another thread beat us to it) or if we were
 925     // stalled due to the GC locker. In either can we should retry the
 926     // allocation attempt in case another thread successfully
 927     // performed a collection and reclaimed enough space.
 928     // Humongous object allocation always needs a lock, so we wait for the retry
 929     // in the next iteration of the loop, unlike for the regular iteration case.
 930     // Give a warning if we seem to be looping forever.
 931 
 932     if ((QueuedAllocationWarningCount > 0) &&
 933         (try_count % QueuedAllocationWarningCount == 0)) {
 934       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 935                              Thread::current()->name(), try_count, word_size);
 936     }
 937   }
 938 
 939   ShouldNotReachHere();
 940   return NULL;
 941 }
 942 
 943 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 944                                                            bool expect_null_mutator_alloc_region) {
 945   assert_at_safepoint_on_vm_thread();
 946   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 947          "the current alloc region was unexpectedly found to be non-NULL");
 948 
 949   if (!is_humongous(word_size)) {
 950     return _allocator->attempt_allocation_locked(word_size);
 951   } else {
 952     HeapWord* result = humongous_obj_allocate(word_size);
 953     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 954       collector_state()->set_initiate_conc_mark_if_possible(true);
 955     }
 956     return result;
 957   }
 958 
 959   ShouldNotReachHere();
 960 }
 961 
 962 class PostCompactionPrinterClosure: public HeapRegionClosure {
 963 private:
 964   G1HRPrinter* _hr_printer;
 965 public:
 966   bool do_heap_region(HeapRegion* hr) {
 967     assert(!hr->is_young(), "not expecting to find young regions");
 968     _hr_printer->post_compaction(hr);
 969     return false;
 970   }
 971 
 972   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 973     : _hr_printer(hr_printer) { }
 974 };
 975 
 976 void G1CollectedHeap::print_hrm_post_compaction() {
 977   if (_hr_printer.is_active()) {
 978     PostCompactionPrinterClosure cl(hr_printer());
 979     heap_region_iterate(&cl);
 980   }
 981 }
 982 
 983 void G1CollectedHeap::abort_concurrent_cycle() {
 984   // If we start the compaction before the CM threads finish
 985   // scanning the root regions we might trip them over as we'll
 986   // be moving objects / updating references. So let's wait until
 987   // they are done. By telling them to abort, they should complete
 988   // early.
 989   _cm->root_regions()->abort();
 990   _cm->root_regions()->wait_until_scan_finished();
 991 
 992   // Disable discovery and empty the discovered lists
 993   // for the CM ref processor.
 994   _ref_processor_cm->disable_discovery();
 995   _ref_processor_cm->abandon_partial_discovery();
 996   _ref_processor_cm->verify_no_references_recorded();
 997 
 998   // Abandon current iterations of concurrent marking and concurrent
 999   // refinement, if any are in progress.
1000   concurrent_mark()->concurrent_cycle_abort();
1001 }
1002 
1003 void G1CollectedHeap::prepare_heap_for_full_collection() {
1004   // Make sure we'll choose a new allocation region afterwards.
1005   _allocator->release_mutator_alloc_regions();
1006   _allocator->abandon_gc_alloc_regions();
1007 
1008   // We may have added regions to the current incremental collection
1009   // set between the last GC or pause and now. We need to clear the
1010   // incremental collection set and then start rebuilding it afresh
1011   // after this full GC.
1012   abandon_collection_set(collection_set());
1013 
1014   tear_down_region_sets(false /* free_list_only */);
1015 
1016   hrm()->prepare_for_full_collection_start();
1017 }
1018 
1019 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1020   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1021   assert_used_and_recalculate_used_equal(this);
1022   _verifier->verify_region_sets_optional();
1023   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1024   _verifier->check_bitmaps("Full GC Start");
1025 }
1026 
1027 void G1CollectedHeap::prepare_heap_for_mutators() {
1028   hrm()->prepare_for_full_collection_end();
1029 
1030   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1031   ClassLoaderDataGraph::purge();
1032   MetaspaceUtils::verify_metrics();
1033 
1034   // Prepare heap for normal collections.
1035   assert(num_free_regions() == 0, "we should not have added any free regions");
1036   rebuild_region_sets(false /* free_list_only */);
1037   abort_refinement();
1038 
1039   resize_heap_after_full_collection();
1040 
1041   // Rebuild the strong code root lists for each region
1042   rebuild_strong_code_roots();
1043 
1044   // Purge code root memory
1045   purge_code_root_memory();
1046 
1047   // Start a new incremental collection set for the next pause
1048   start_new_collection_set();
1049 
1050   _allocator->init_mutator_alloc_regions();
1051 
1052   // Post collection state updates.
1053   MetaspaceGC::compute_new_size();
1054 }
1055 
1056 void G1CollectedHeap::abort_refinement() {
1057   if (_hot_card_cache->use_cache()) {
1058     _hot_card_cache->reset_hot_cache();
1059   }
1060 
1061   // Discard all remembered set updates and reset refinement statistics.
1062   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1063   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1064          "DCQS should be empty");
1065   concurrent_refine()->get_and_reset_refinement_stats();
1066 }
1067 
1068 void G1CollectedHeap::verify_after_full_collection() {
1069   _hrm->verify_optional();
1070   _verifier->verify_region_sets_optional();
1071   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1072   // Clear the previous marking bitmap, if needed for bitmap verification.
1073   // Note we cannot do this when we clear the next marking bitmap in
1074   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1075   // objects marked during a full GC against the previous bitmap.
1076   // But we need to clear it before calling check_bitmaps below since
1077   // the full GC has compacted objects and updated TAMS but not updated
1078   // the prev bitmap.
1079   if (G1VerifyBitmaps) {
1080     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1081     _cm->clear_prev_bitmap(workers());
1082   }
1083   // This call implicitly verifies that the next bitmap is clear after Full GC.
1084   _verifier->check_bitmaps("Full GC End");
1085 
1086   // At this point there should be no regions in the
1087   // entire heap tagged as young.
1088   assert(check_young_list_empty(), "young list should be empty at this point");
1089 
1090   // Note: since we've just done a full GC, concurrent
1091   // marking is no longer active. Therefore we need not
1092   // re-enable reference discovery for the CM ref processor.
1093   // That will be done at the start of the next marking cycle.
1094   // We also know that the STW processor should no longer
1095   // discover any new references.
1096   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1097   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1098   _ref_processor_stw->verify_no_references_recorded();
1099   _ref_processor_cm->verify_no_references_recorded();
1100 }
1101 
1102 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1103   // Post collection logging.
1104   // We should do this after we potentially resize the heap so
1105   // that all the COMMIT / UNCOMMIT events are generated before
1106   // the compaction events.
1107   print_hrm_post_compaction();
1108   heap_transition->print();
1109   print_heap_after_gc();
1110   print_heap_regions();
1111 }
1112 
1113 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1114                                          bool clear_all_soft_refs) {
1115   assert_at_safepoint_on_vm_thread();
1116 
1117   if (GCLocker::check_active_before_gc()) {
1118     // Full GC was not completed.
1119     return false;
1120   }
1121 
1122   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1123       soft_ref_policy()->should_clear_all_soft_refs();
1124 
1125   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1126   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1127 
1128   collector.prepare_collection();
1129   collector.collect();
1130   collector.complete_collection();
1131 
1132   // Full collection was successfully completed.
1133   return true;
1134 }
1135 
1136 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1137   // Currently, there is no facility in the do_full_collection(bool) API to notify
1138   // the caller that the collection did not succeed (e.g., because it was locked
1139   // out by the GC locker). So, right now, we'll ignore the return value.
1140   bool dummy = do_full_collection(true,                /* explicit_gc */
1141                                   clear_all_soft_refs);
1142 }
1143 
1144 void G1CollectedHeap::resize_heap_after_full_collection() {
1145   assert_at_safepoint_on_vm_thread();
1146 
1147   // Capacity, free and used after the GC counted as full regions to
1148   // include the waste in the following calculations.
1149   const size_t capacity_after_gc = capacity();
1150   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1151 
1152   size_t minimum_desired_capacity = _heap_sizing_policy->target_heap_capacity(used_after_gc, MinHeapFreeRatio);
1153   size_t maximum_desired_capacity = _heap_sizing_policy->target_heap_capacity(used_after_gc, MaxHeapFreeRatio);
1154 
1155   // This assert only makes sense here, before we adjust them
1156   // with respect to the min and max heap size.
1157   assert(minimum_desired_capacity <= maximum_desired_capacity,
1158          "minimum_desired_capacity = " SIZE_FORMAT ", "
1159          "maximum_desired_capacity = " SIZE_FORMAT,
1160          minimum_desired_capacity, maximum_desired_capacity);
1161 
1162   // Should not be greater than the heap max size. No need to adjust
1163   // it with respect to the heap min size as it's a lower bound (i.e.,
1164   // we'll try to make the capacity larger than it, not smaller).
1165   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1166   // Should not be less than the heap min size. No need to adjust it
1167   // with respect to the heap max size as it's an upper bound (i.e.,
1168   // we'll try to make the capacity smaller than it, not greater).
1169   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1170 
1171   if (capacity_after_gc < minimum_desired_capacity) {
1172     // Don't expand unless it's significant
1173     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1174 
1175     log_debug(gc, ergo, heap)("Heap resize. Attempt heap expansion (capacity lower than min desired capacity). "
1176                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1177                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1178                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1179 
1180     expand(expand_bytes, _workers);
1181 
1182     // No expansion, now see if we want to shrink
1183   } else if (capacity_after_gc > maximum_desired_capacity) {
1184     // Capacity too large, compute shrinking size
1185     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1186 
1187     log_debug(gc, ergo, heap)("Heap resize. Attempt heap shrinking (capacity higher than max desired capacity). "
1188                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1189                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1190                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1191 
1192     shrink(shrink_bytes);
1193   }
1194 }
1195 
1196 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1197                                                             bool do_gc,
1198                                                             bool clear_all_soft_refs,
1199                                                             bool expect_null_mutator_alloc_region,
1200                                                             bool* gc_succeeded) {
1201   *gc_succeeded = true;
1202   // Let's attempt the allocation first.
1203   HeapWord* result =
1204     attempt_allocation_at_safepoint(word_size,
1205                                     expect_null_mutator_alloc_region);
1206   if (result != NULL) {
1207     return result;
1208   }
1209 
1210   // In a G1 heap, we're supposed to keep allocation from failing by
1211   // incremental pauses.  Therefore, at least for now, we'll favor
1212   // expansion over collection.  (This might change in the future if we can
1213   // do something smarter than full collection to satisfy a failed alloc.)
1214   result = expand_and_allocate(word_size);
1215   if (result != NULL) {
1216     return result;
1217   }
1218 
1219   if (do_gc) {
1220     // Expansion didn't work, we'll try to do a Full GC.
1221     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1222                                        clear_all_soft_refs);
1223   }
1224 
1225   return NULL;
1226 }
1227 
1228 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1229                                                      bool* succeeded) {
1230   assert_at_safepoint_on_vm_thread();
1231 
1232   // Attempts to allocate followed by Full GC.
1233   HeapWord* result =
1234     satisfy_failed_allocation_helper(word_size,
1235                                      true,  /* do_gc */
1236                                      false, /* clear_all_soft_refs */
1237                                      false, /* expect_null_mutator_alloc_region */
1238                                      succeeded);
1239 
1240   if (result != NULL || !*succeeded) {
1241     return result;
1242   }
1243 
1244   // Attempts to allocate followed by Full GC that will collect all soft references.
1245   result = satisfy_failed_allocation_helper(word_size,
1246                                             true, /* do_gc */
1247                                             true, /* clear_all_soft_refs */
1248                                             true, /* expect_null_mutator_alloc_region */
1249                                             succeeded);
1250 
1251   if (result != NULL || !*succeeded) {
1252     return result;
1253   }
1254 
1255   // Attempts to allocate, no GC
1256   result = satisfy_failed_allocation_helper(word_size,
1257                                             false, /* do_gc */
1258                                             false, /* clear_all_soft_refs */
1259                                             true,  /* expect_null_mutator_alloc_region */
1260                                             succeeded);
1261 
1262   if (result != NULL) {
1263     return result;
1264   }
1265 
1266   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1267          "Flag should have been handled and cleared prior to this point");
1268 
1269   // What else?  We might try synchronous finalization later.  If the total
1270   // space available is large enough for the allocation, then a more
1271   // complete compaction phase than we've tried so far might be
1272   // appropriate.
1273   return NULL;
1274 }
1275 
1276 // Attempting to expand the heap sufficiently
1277 // to support an allocation of the given "word_size".  If
1278 // successful, perform the allocation and return the address of the
1279 // allocated block, or else "NULL".
1280 
1281 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1282   assert_at_safepoint_on_vm_thread();
1283 
1284   _verifier->verify_region_sets_optional();
1285 
1286   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1287   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1288                             word_size * HeapWordSize);
1289 
1290 
1291   if (expand(expand_bytes, _workers)) {
1292     _hrm->verify_optional();
1293     _verifier->verify_region_sets_optional();
1294     return attempt_allocation_at_safepoint(word_size,
1295                                            false /* expect_null_mutator_alloc_region */);
1296   }
1297   return NULL;
1298 }
1299 
1300 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1301   assert(expand_bytes > 0, "must be");
1302 
1303   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1304   aligned_expand_bytes = align_up(aligned_expand_bytes,
1305                                   HeapRegion::GrainBytes);
1306 
1307   log_debug(gc, ergo, heap)("Heap resize. requested expansion amount: " SIZE_FORMAT "B aligned expansion amount: " SIZE_FORMAT "B",
1308                             expand_bytes, aligned_expand_bytes);
1309 
1310   if (capacity() == max_capacity()) {
1311     log_debug(gc, ergo, heap)("Heap resize. Did not expand the heap (heap already fully expanded)");
1312     return false;
1313   }
1314 
1315   double expand_heap_start_time_sec = os::elapsedTime();
1316   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1317   assert(regions_to_expand > 0, "Must expand by at least one region");
1318 
1319   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1320   if (expand_time_ms != NULL) {
1321     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1322   }
1323 
1324   if (expanded_by > 0) {
1325     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1326     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1327     policy()->record_new_heap_size(num_regions());
1328 
1329     log_debug(gc, ergo, heap)("Heap resize. Requested expansion amount: " SIZE_FORMAT "B actual expansion amount: " SIZE_FORMAT "B",
1330                               aligned_expand_bytes, actual_expand_bytes);
1331   } else {
1332     log_debug(gc, ergo, heap)("Heap resize. Did not expand the heap (heap expansion operation failed)");
1333 
1334     // The expansion of the virtual storage space was unsuccessful.
1335     // Let's see if it was because we ran out of swap.
1336     if (G1ExitOnExpansionFailure &&
1337         _hrm->available() >= regions_to_expand) {
1338       // We had head room...
1339       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1340     }
1341   }
1342   return regions_to_expand > 0;
1343 }
1344 
1345 bool G1CollectedHeap::expand_single_region(uint node_index) {
1346   uint expanded_by = _hrm->expand_on_preferred_node(node_index);
1347 
1348   if (expanded_by == 0) {
1349     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available());
1350     log_debug(gc, ergo, heap)("Heap resize. Did not expand the heap (heap already fully expanded)");
1351     return false;
1352   }
1353 
1354   policy()->record_new_heap_size(num_regions());
1355   return true;
1356 }
1357 
1358 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1359   assert(shrink_bytes > 0, "must be");
1360   assert(is_aligned(shrink_bytes, HeapRegion::GrainBytes),
1361          "Shrink request for " SIZE_FORMAT "B not aligned to heap region size " SIZE_FORMAT "B",
1362          shrink_bytes, HeapRegion::GrainBytes);
1363 
1364   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1365 
1366   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1367   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1368 
1369   log_debug(gc, ergo, heap)("Heap resize. Requested shrinking amount: " SIZE_FORMAT "B actual shrinking amount: " SIZE_FORMAT "B",
1370                             shrink_bytes, shrunk_bytes);
1371   if (num_regions_removed > 0) {
1372     policy()->record_new_heap_size(num_regions());
1373   } else {
1374     log_debug(gc, ergo, heap)("Heap resize. Did not shrink the heap (heap shrinking operation failed)");
1375   }
1376 }
1377 
1378 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1379   size_t aligned_shrink_bytes = ReservedSpace::page_align_size_down(shrink_bytes);
1380   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1381                                     HeapRegion::GrainBytes);
1382 
1383   aligned_shrink_bytes = capacity() - MAX2(capacity() - aligned_shrink_bytes, min_capacity());
1384   assert(is_aligned(aligned_shrink_bytes, HeapRegion::GrainBytes), "Bytes to shrink " SIZE_FORMAT "B not aligned", aligned_shrink_bytes);
1385 
1386   log_debug(gc, ergo, heap)("Heap resize. Requested shrink amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1387                             shrink_bytes, aligned_shrink_bytes);
1388 
1389   if (aligned_shrink_bytes == 0) {
1390     log_debug(gc, ergo, heap)("Heap resize. Did not shrink the heap (shrink request too small)");
1391     return;
1392   }
1393   if (capacity() == min_capacity()) {
1394     log_debug(gc, ergo, heap)("Heap resize. Did not shrink the heap (heap already at minimum)");
1395     return;
1396   }
1397   assert(aligned_shrink_bytes > 0, "capacity " SIZE_FORMAT " min_capacity " SIZE_FORMAT, capacity(), min_capacity());
1398 
1399   _verifier->verify_region_sets_optional();
1400   // We should only reach here at the end of a Full GC or during Remark which
1401   // means we should not not be holding to any GC alloc regions. The method
1402   // below will make sure of that and do any remaining clean up.
1403   _allocator->abandon_gc_alloc_regions();
1404 
1405   // Instead of tearing down / rebuilding the free lists here, we
1406   // could instead use the remove_all_pending() method on free_list to
1407   // remove only the ones that we need to remove.
1408   tear_down_region_sets(true /* free_list_only */);
1409   shrink_helper(aligned_shrink_bytes);
1410   rebuild_region_sets(true /* free_list_only */);
1411 
1412   _hrm->verify_optional();
1413   _verifier->verify_region_sets_optional();
1414 }
1415 
1416 class OldRegionSetChecker : public HeapRegionSetChecker {
1417 public:
1418   void check_mt_safety() {
1419     // Master Old Set MT safety protocol:
1420     // (a) If we're at a safepoint, operations on the master old set
1421     // should be invoked:
1422     // - by the VM thread (which will serialize them), or
1423     // - by the GC workers while holding the FreeList_lock, if we're
1424     //   at a safepoint for an evacuation pause (this lock is taken
1425     //   anyway when an GC alloc region is retired so that a new one
1426     //   is allocated from the free list), or
1427     // - by the GC workers while holding the OldSets_lock, if we're at a
1428     //   safepoint for a cleanup pause.
1429     // (b) If we're not at a safepoint, operations on the master old set
1430     // should be invoked while holding the Heap_lock.
1431 
1432     if (SafepointSynchronize::is_at_safepoint()) {
1433       guarantee(Thread::current()->is_VM_thread() ||
1434                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1435                 "master old set MT safety protocol at a safepoint");
1436     } else {
1437       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1438     }
1439   }
1440   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1441   const char* get_description() { return "Old Regions"; }
1442 };
1443 
1444 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1445 public:
1446   void check_mt_safety() {
1447     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1448               "May only change archive regions during initialization or safepoint.");
1449   }
1450   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1451   const char* get_description() { return "Archive Regions"; }
1452 };
1453 
1454 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1455 public:
1456   void check_mt_safety() {
1457     // Humongous Set MT safety protocol:
1458     // (a) If we're at a safepoint, operations on the master humongous
1459     // set should be invoked by either the VM thread (which will
1460     // serialize them) or by the GC workers while holding the
1461     // OldSets_lock.
1462     // (b) If we're not at a safepoint, operations on the master
1463     // humongous set should be invoked while holding the Heap_lock.
1464 
1465     if (SafepointSynchronize::is_at_safepoint()) {
1466       guarantee(Thread::current()->is_VM_thread() ||
1467                 OldSets_lock->owned_by_self(),
1468                 "master humongous set MT safety protocol at a safepoint");
1469     } else {
1470       guarantee(Heap_lock->owned_by_self(),
1471                 "master humongous set MT safety protocol outside a safepoint");
1472     }
1473   }
1474   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1475   const char* get_description() { return "Humongous Regions"; }
1476 };
1477 
1478 G1CollectedHeap::G1CollectedHeap() :
1479   CollectedHeap(),
1480   _young_gen_sampling_thread(NULL),
1481   _workers(NULL),
1482   _card_table(NULL),
1483   _soft_ref_policy(),
1484   _old_set("Old Region Set", new OldRegionSetChecker()),
1485   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1486   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1487   _bot(NULL),
1488   _listener(),
1489   _numa(G1NUMA::create()),
1490   _hrm(NULL),
1491   _allocator(NULL),
1492   _verifier(NULL),
1493   _summary_bytes_used(0),
1494   _bytes_used_during_gc(0),
1495   _archive_allocator(NULL),
1496   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1497   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1498   _expand_heap_after_alloc_failure(true),
1499   _g1mm(NULL),
1500   _humongous_reclaim_candidates(),
1501   _has_humongous_reclaim_candidates(false),
1502   _hr_printer(),
1503   _collector_state(),
1504   _old_marking_cycles_started(0),
1505   _old_marking_cycles_completed(0),
1506   _eden(),
1507   _survivor(),
1508   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1509   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1510   _policy(G1Policy::create_policy(_gc_timer_stw)),
1511   _heap_sizing_policy(NULL),
1512   _collection_set(this, _policy),
1513   _hot_card_cache(NULL),
1514   _rem_set(NULL),
1515   _cm(NULL),
1516   _cm_thread(NULL),
1517   _cr(NULL),
1518   _task_queues(NULL),
1519   _evacuation_failed(false),
1520   _evacuation_failed_info_array(NULL),
1521   _preserved_marks_set(true /* in_c_heap */),
1522 #ifndef PRODUCT
1523   _evacuation_failure_alot_for_current_gc(false),
1524   _evacuation_failure_alot_gc_number(0),
1525   _evacuation_failure_alot_count(0),
1526 #endif
1527   _ref_processor_stw(NULL),
1528   _is_alive_closure_stw(this),
1529   _is_subject_to_discovery_stw(this),
1530   _ref_processor_cm(NULL),
1531   _is_alive_closure_cm(this),
1532   _is_subject_to_discovery_cm(this),
1533   _region_attr() {
1534 
1535   _verifier = new G1HeapVerifier(this);
1536 
1537   _allocator = new G1Allocator(this);
1538 
1539   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1540 
1541   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1542 
1543   // Override the default _filler_array_max_size so that no humongous filler
1544   // objects are created.
1545   _filler_array_max_size = _humongous_object_threshold_in_words;
1546 
1547   uint n_queues = ParallelGCThreads;
1548   _task_queues = new G1ScannerTasksQueueSet(n_queues);
1549 
1550   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1551 
1552   for (uint i = 0; i < n_queues; i++) {
1553     G1ScannerTasksQueue* q = new G1ScannerTasksQueue();
1554     q->initialize();
1555     _task_queues->register_queue(i, q);
1556     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1557   }
1558 
1559   // Initialize the G1EvacuationFailureALot counters and flags.
1560   NOT_PRODUCT(reset_evacuation_should_fail();)
1561   _gc_tracer_stw->initialize();
1562 
1563   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1564 }
1565 
1566 static size_t actual_reserved_page_size(ReservedSpace rs) {
1567   size_t page_size = os::vm_page_size();
1568   if (UseLargePages) {
1569     // There are two ways to manage large page memory.
1570     // 1. OS supports committing large page memory.
1571     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1572     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1573     //    we reserved memory without large page.
1574     if (os::can_commit_large_page_memory() || rs.special()) {
1575       // An alignment at ReservedSpace comes from preferred page size or
1576       // heap alignment, and if the alignment came from heap alignment, it could be
1577       // larger than large pages size. So need to cap with the large page size.
1578       page_size = MIN2(rs.alignment(), os::large_page_size());
1579     }
1580   }
1581 
1582   return page_size;
1583 }
1584 
1585 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1586                                                                  size_t size,
1587                                                                  size_t translation_factor) {
1588   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1589   // Allocate a new reserved space, preferring to use large pages.
1590   ReservedSpace rs(size, preferred_page_size);
1591   size_t page_size = actual_reserved_page_size(rs);
1592   G1RegionToSpaceMapper* result  =
1593     G1RegionToSpaceMapper::create_mapper(rs,
1594                                          size,
1595                                          page_size,
1596                                          HeapRegion::GrainBytes,
1597                                          translation_factor,
1598                                          mtGC);
1599 
1600   os::trace_page_sizes_for_requested_size(description,
1601                                           size,
1602                                           preferred_page_size,
1603                                           page_size,
1604                                           rs.base(),
1605                                           rs.size());
1606 
1607   return result;
1608 }
1609 
1610 jint G1CollectedHeap::initialize_concurrent_refinement() {
1611   jint ecode = JNI_OK;
1612   _cr = G1ConcurrentRefine::create(&ecode);
1613   return ecode;
1614 }
1615 
1616 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1617   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1618   if (_young_gen_sampling_thread->osthread() == NULL) {
1619     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1620     return JNI_ENOMEM;
1621   }
1622   return JNI_OK;
1623 }
1624 
1625 jint G1CollectedHeap::initialize() {
1626 
1627   // Necessary to satisfy locking discipline assertions.
1628 
1629   MutexLocker x(Heap_lock);
1630 
1631   // While there are no constraints in the GC code that HeapWordSize
1632   // be any particular value, there are multiple other areas in the
1633   // system which believe this to be true (e.g. oop->object_size in some
1634   // cases incorrectly returns the size in wordSize units rather than
1635   // HeapWordSize).
1636   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1637 
1638   size_t init_byte_size = InitialHeapSize;
1639   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1640 
1641   // Ensure that the sizes are properly aligned.
1642   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1643   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1644   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1645 
1646   // Reserve the maximum.
1647 
1648   // When compressed oops are enabled, the preferred heap base
1649   // is calculated by subtracting the requested size from the
1650   // 32Gb boundary and using the result as the base address for
1651   // heap reservation. If the requested size is not aligned to
1652   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1653   // into the ReservedHeapSpace constructor) then the actual
1654   // base of the reserved heap may end up differing from the
1655   // address that was requested (i.e. the preferred heap base).
1656   // If this happens then we could end up using a non-optimal
1657   // compressed oops mode.
1658 
1659   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1660                                                      HeapAlignment);
1661 
1662   initialize_reserved_region(heap_rs);
1663 
1664   // Create the barrier set for the entire reserved region.
1665   G1CardTable* ct = new G1CardTable(heap_rs.region());
1666   ct->initialize();
1667   G1BarrierSet* bs = new G1BarrierSet(ct);
1668   bs->initialize();
1669   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1670   BarrierSet::set_barrier_set(bs);
1671   _card_table = ct;
1672 
1673   {
1674     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1675     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1676     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1677   }
1678 
1679   // Create the hot card cache.
1680   _hot_card_cache = new G1HotCardCache(this);
1681 
1682   // Carve out the G1 part of the heap.
1683   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1684   size_t page_size = actual_reserved_page_size(heap_rs);
1685   G1RegionToSpaceMapper* heap_storage =
1686     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1687                                               g1_rs.size(),
1688                                               page_size,
1689                                               HeapRegion::GrainBytes,
1690                                               1,
1691                                               mtJavaHeap);
1692   if(heap_storage == NULL) {
1693     vm_shutdown_during_initialization("Could not initialize G1 heap");
1694     return JNI_ERR;
1695   }
1696 
1697   os::trace_page_sizes("Heap",
1698                        MinHeapSize,
1699                        reserved_byte_size,
1700                        page_size,
1701                        heap_rs.base(),
1702                        heap_rs.size());
1703   heap_storage->set_mapping_changed_listener(&_listener);
1704 
1705   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1706   G1RegionToSpaceMapper* bot_storage =
1707     create_aux_memory_mapper("Block Offset Table",
1708                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1709                              G1BlockOffsetTable::heap_map_factor());
1710 
1711   G1RegionToSpaceMapper* cardtable_storage =
1712     create_aux_memory_mapper("Card Table",
1713                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1714                              G1CardTable::heap_map_factor());
1715 
1716   G1RegionToSpaceMapper* card_counts_storage =
1717     create_aux_memory_mapper("Card Counts Table",
1718                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1719                              G1CardCounts::heap_map_factor());
1720 
1721   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1722   G1RegionToSpaceMapper* prev_bitmap_storage =
1723     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1724   G1RegionToSpaceMapper* next_bitmap_storage =
1725     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1726 
1727   _hrm = HeapRegionManager::create_manager(this);
1728 
1729   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1730   _card_table->initialize(cardtable_storage);
1731 
1732   // Do later initialization work for concurrent refinement.
1733   _hot_card_cache->initialize(card_counts_storage);
1734 
1735   // 6843694 - ensure that the maximum region index can fit
1736   // in the remembered set structures.
1737   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1738   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1739 
1740   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1741   // start within the first card.
1742   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1743   // Also create a G1 rem set.
1744   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1745   _rem_set->initialize(max_reserved_capacity(), max_regions());
1746 
1747   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1748   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1749   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1750             "too many cards per region");
1751 
1752   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1753 
1754   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1755 
1756   {
1757     HeapWord* start = _hrm->reserved().start();
1758     HeapWord* end = _hrm->reserved().end();
1759     size_t granularity = HeapRegion::GrainBytes;
1760 
1761     _region_attr.initialize(start, end, granularity);
1762     _humongous_reclaim_candidates.initialize(start, end, granularity);
1763   }
1764 
1765   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1766                           true /* are_GC_task_threads */,
1767                           false /* are_ConcurrentGC_threads */);
1768   if (_workers == NULL) {
1769     return JNI_ENOMEM;
1770   }
1771   _workers->initialize_workers();
1772 
1773   _numa->set_region_info(HeapRegion::GrainBytes, page_size);
1774 
1775   // Create the G1ConcurrentMark data structure and thread.
1776   // (Must do this late, so that "max_regions" is defined.)
1777   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1778   _cm_thread = _cm->cm_thread();
1779 
1780   // Now expand into the initial heap size.
1781   if (!expand(init_byte_size, _workers)) {
1782     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1783     return JNI_ENOMEM;
1784   }
1785 
1786   // Perform any initialization actions delegated to the policy.
1787   policy()->init(this, &_collection_set);
1788 
1789   jint ecode = initialize_concurrent_refinement();
1790   if (ecode != JNI_OK) {
1791     return ecode;
1792   }
1793 
1794   ecode = initialize_young_gen_sampling_thread();
1795   if (ecode != JNI_OK) {
1796     return ecode;
1797   }
1798 
1799   {
1800     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1801     dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1802     dcqs.set_max_cards(concurrent_refine()->red_zone());
1803   }
1804 
1805   // Here we allocate the dummy HeapRegion that is required by the
1806   // G1AllocRegion class.
1807   HeapRegion* dummy_region = _hrm->get_dummy_region();
1808 
1809   // We'll re-use the same region whether the alloc region will
1810   // require BOT updates or not and, if it doesn't, then a non-young
1811   // region will complain that it cannot support allocations without
1812   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1813   dummy_region->set_eden();
1814   // Make sure it's full.
1815   dummy_region->set_top(dummy_region->end());
1816   G1AllocRegion::setup(this, dummy_region);
1817 
1818   _allocator->init_mutator_alloc_regions();
1819 
1820   // Do create of the monitoring and management support so that
1821   // values in the heap have been properly initialized.
1822   _g1mm = new G1MonitoringSupport(this);
1823 
1824   G1StringDedup::initialize();
1825 
1826   _preserved_marks_set.init(ParallelGCThreads);
1827 
1828   _collection_set.initialize(max_regions());
1829 
1830   G1InitLogger::print();
1831 
1832   return JNI_OK;
1833 }
1834 
1835 void G1CollectedHeap::stop() {
1836   // Stop all concurrent threads. We do this to make sure these threads
1837   // do not continue to execute and access resources (e.g. logging)
1838   // that are destroyed during shutdown.
1839   _cr->stop();
1840   _young_gen_sampling_thread->stop();
1841   _cm_thread->stop();
1842   if (G1StringDedup::is_enabled()) {
1843     G1StringDedup::stop();
1844   }
1845 }
1846 
1847 void G1CollectedHeap::safepoint_synchronize_begin() {
1848   SuspendibleThreadSet::synchronize();
1849 }
1850 
1851 void G1CollectedHeap::safepoint_synchronize_end() {
1852   SuspendibleThreadSet::desynchronize();
1853 }
1854 
1855 void G1CollectedHeap::post_initialize() {
1856   CollectedHeap::post_initialize();
1857   ref_processing_init();
1858 }
1859 
1860 void G1CollectedHeap::ref_processing_init() {
1861   // Reference processing in G1 currently works as follows:
1862   //
1863   // * There are two reference processor instances. One is
1864   //   used to record and process discovered references
1865   //   during concurrent marking; the other is used to
1866   //   record and process references during STW pauses
1867   //   (both full and incremental).
1868   // * Both ref processors need to 'span' the entire heap as
1869   //   the regions in the collection set may be dotted around.
1870   //
1871   // * For the concurrent marking ref processor:
1872   //   * Reference discovery is enabled at initial marking.
1873   //   * Reference discovery is disabled and the discovered
1874   //     references processed etc during remarking.
1875   //   * Reference discovery is MT (see below).
1876   //   * Reference discovery requires a barrier (see below).
1877   //   * Reference processing may or may not be MT
1878   //     (depending on the value of ParallelRefProcEnabled
1879   //     and ParallelGCThreads).
1880   //   * A full GC disables reference discovery by the CM
1881   //     ref processor and abandons any entries on it's
1882   //     discovered lists.
1883   //
1884   // * For the STW processor:
1885   //   * Non MT discovery is enabled at the start of a full GC.
1886   //   * Processing and enqueueing during a full GC is non-MT.
1887   //   * During a full GC, references are processed after marking.
1888   //
1889   //   * Discovery (may or may not be MT) is enabled at the start
1890   //     of an incremental evacuation pause.
1891   //   * References are processed near the end of a STW evacuation pause.
1892   //   * For both types of GC:
1893   //     * Discovery is atomic - i.e. not concurrent.
1894   //     * Reference discovery will not need a barrier.
1895 
1896   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1897 
1898   // Concurrent Mark ref processor
1899   _ref_processor_cm =
1900     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1901                            mt_processing,                                  // mt processing
1902                            ParallelGCThreads,                              // degree of mt processing
1903                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1904                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1905                            false,                                          // Reference discovery is not atomic
1906                            &_is_alive_closure_cm,                          // is alive closure
1907                            true);                                          // allow changes to number of processing threads
1908 
1909   // STW ref processor
1910   _ref_processor_stw =
1911     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1912                            mt_processing,                        // mt processing
1913                            ParallelGCThreads,                    // degree of mt processing
1914                            (ParallelGCThreads > 1),              // mt discovery
1915                            ParallelGCThreads,                    // degree of mt discovery
1916                            true,                                 // Reference discovery is atomic
1917                            &_is_alive_closure_stw,               // is alive closure
1918                            true);                                // allow changes to number of processing threads
1919 }
1920 
1921 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1922   return &_soft_ref_policy;
1923 }
1924 
1925 size_t G1CollectedHeap::capacity() const {
1926   return _hrm->length() * HeapRegion::GrainBytes;
1927 }
1928 
1929 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1930   return _hrm->total_free_bytes();
1931 }
1932 
1933 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
1934   _hot_card_cache->drain(cl, worker_id);
1935 }
1936 
1937 // Computes the sum of the storage used by the various regions.
1938 size_t G1CollectedHeap::used() const {
1939   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1940   if (_archive_allocator != NULL) {
1941     result += _archive_allocator->used();
1942   }
1943   return result;
1944 }
1945 
1946 size_t G1CollectedHeap::used_unlocked() const {
1947   return _summary_bytes_used;
1948 }
1949 
1950 class SumUsedClosure: public HeapRegionClosure {
1951   size_t _used;
1952 public:
1953   SumUsedClosure() : _used(0) {}
1954   bool do_heap_region(HeapRegion* r) {
1955     _used += r->used();
1956     return false;
1957   }
1958   size_t result() { return _used; }
1959 };
1960 
1961 size_t G1CollectedHeap::recalculate_used() const {
1962   SumUsedClosure blk;
1963   heap_region_iterate(&blk);
1964   return blk.result();
1965 }
1966 
1967 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1968   switch (cause) {
1969     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1970     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1971     case GCCause::_wb_conc_mark:                        return true;
1972     default :                                           return false;
1973   }
1974 }
1975 
1976 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1977   switch (cause) {
1978     case GCCause::_g1_humongous_allocation: return true;
1979     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1980     case GCCause::_wb_breakpoint:           return true;
1981     default:                                return is_user_requested_concurrent_full_gc(cause);
1982   }
1983 }
1984 
1985 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
1986   if (policy()->force_upgrade_to_full()) {
1987     return true;
1988   } else if (should_do_concurrent_full_gc(_gc_cause)) {
1989     return false;
1990   } else if (has_regions_left_for_allocation()) {
1991     return false;
1992   } else {
1993     return true;
1994   }
1995 }
1996 
1997 #ifndef PRODUCT
1998 void G1CollectedHeap::allocate_dummy_regions() {
1999   // Let's fill up most of the region
2000   size_t word_size = HeapRegion::GrainWords - 1024;
2001   // And as a result the region we'll allocate will be humongous.
2002   guarantee(is_humongous(word_size), "sanity");
2003 
2004   // _filler_array_max_size is set to humongous object threshold
2005   // but temporarily change it to use CollectedHeap::fill_with_object().
2006   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2007 
2008   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2009     // Let's use the existing mechanism for the allocation
2010     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2011     if (dummy_obj != NULL) {
2012       MemRegion mr(dummy_obj, word_size);
2013       CollectedHeap::fill_with_object(mr);
2014     } else {
2015       // If we can't allocate once, we probably cannot allocate
2016       // again. Let's get out of the loop.
2017       break;
2018     }
2019   }
2020 }
2021 #endif // !PRODUCT
2022 
2023 void G1CollectedHeap::increment_old_marking_cycles_started() {
2024   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2025          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2026          "Wrong marking cycle count (started: %d, completed: %d)",
2027          _old_marking_cycles_started, _old_marking_cycles_completed);
2028 
2029   _old_marking_cycles_started++;
2030 }
2031 
2032 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2033   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
2034 
2035   // We assume that if concurrent == true, then the caller is a
2036   // concurrent thread that was joined the Suspendible Thread
2037   // Set. If there's ever a cheap way to check this, we should add an
2038   // assert here.
2039 
2040   // Given that this method is called at the end of a Full GC or of a
2041   // concurrent cycle, and those can be nested (i.e., a Full GC can
2042   // interrupt a concurrent cycle), the number of full collections
2043   // completed should be either one (in the case where there was no
2044   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2045   // behind the number of full collections started.
2046 
2047   // This is the case for the inner caller, i.e. a Full GC.
2048   assert(concurrent ||
2049          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2050          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2051          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2052          "is inconsistent with _old_marking_cycles_completed = %u",
2053          _old_marking_cycles_started, _old_marking_cycles_completed);
2054 
2055   // This is the case for the outer caller, i.e. the concurrent cycle.
2056   assert(!concurrent ||
2057          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2058          "for outer caller (concurrent cycle): "
2059          "_old_marking_cycles_started = %u "
2060          "is inconsistent with _old_marking_cycles_completed = %u",
2061          _old_marking_cycles_started, _old_marking_cycles_completed);
2062 
2063   _old_marking_cycles_completed += 1;
2064 
2065   // We need to clear the "in_progress" flag in the CM thread before
2066   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2067   // is set) so that if a waiter requests another System.gc() it doesn't
2068   // incorrectly see that a marking cycle is still in progress.
2069   if (concurrent) {
2070     _cm_thread->set_idle();
2071   }
2072 
2073   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
2074   // for a full GC to finish that their wait is over.
2075   ml.notify_all();
2076 }
2077 
2078 void G1CollectedHeap::collect(GCCause::Cause cause) {
2079   try_collect(cause);
2080 }
2081 
2082 // Return true if (x < y) with allowance for wraparound.
2083 static bool gc_counter_less_than(uint x, uint y) {
2084   return (x - y) > (UINT_MAX/2);
2085 }
2086 
2087 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
2088 // Macro so msg printing is format-checked.
2089 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
2090   do {                                                                  \
2091     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
2092     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
2093       ResourceMark rm; /* For thread name. */                           \
2094       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
2095       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
2096                                        Thread::current()->name(),       \
2097                                        GCCause::to_string(cause));      \
2098       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
2099     }                                                                   \
2100   } while (0)
2101 
2102 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
2103   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
2104 
2105 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
2106                                                uint gc_counter,
2107                                                uint old_marking_started_before) {
2108   assert_heap_not_locked();
2109   assert(should_do_concurrent_full_gc(cause),
2110          "Non-concurrent cause %s", GCCause::to_string(cause));
2111 
2112   for (uint i = 1; true; ++i) {
2113     // Try to schedule an initial-mark evacuation pause that will
2114     // start a concurrent cycle.
2115     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
2116     VM_G1TryInitiateConcMark op(gc_counter,
2117                                 cause,
2118                                 policy()->max_pause_time_ms());
2119     VMThread::execute(&op);
2120 
2121     // Request is trivially finished.
2122     if (cause == GCCause::_g1_periodic_collection) {
2123       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
2124       return op.gc_succeeded();
2125     }
2126 
2127     // If VMOp skipped initiating concurrent marking cycle because
2128     // we're terminating, then we're done.
2129     if (op.terminating()) {
2130       LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
2131       return false;
2132     }
2133 
2134     // Lock to get consistent set of values.
2135     uint old_marking_started_after;
2136     uint old_marking_completed_after;
2137     {
2138       MutexLocker ml(Heap_lock);
2139       // Update gc_counter for retrying VMOp if needed. Captured here to be
2140       // consistent with the values we use below for termination tests.  If
2141       // a retry is needed after a possible wait, and another collection
2142       // occurs in the meantime, it will cause our retry to be skipped and
2143       // we'll recheck for termination with updated conditions from that
2144       // more recent collection.  That's what we want, rather than having
2145       // our retry possibly perform an unnecessary collection.
2146       gc_counter = total_collections();
2147       old_marking_started_after = _old_marking_cycles_started;
2148       old_marking_completed_after = _old_marking_cycles_completed;
2149     }
2150 
2151     if (cause == GCCause::_wb_breakpoint) {
2152       if (op.gc_succeeded()) {
2153         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2154         return true;
2155       }
2156       // When _wb_breakpoint there can't be another cycle or deferred.
2157       assert(!op.cycle_already_in_progress(), "invariant");
2158       assert(!op.whitebox_attached(), "invariant");
2159       // Concurrent cycle attempt might have been cancelled by some other
2160       // collection, so retry.  Unlike other cases below, we want to retry
2161       // even if cancelled by a STW full collection, because we really want
2162       // to start a concurrent cycle.
2163       if (old_marking_started_before != old_marking_started_after) {
2164         LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC");
2165         old_marking_started_before = old_marking_started_after;
2166       }
2167     } else if (!GCCause::is_user_requested_gc(cause)) {
2168       // For an "automatic" (not user-requested) collection, we just need to
2169       // ensure that progress is made.
2170       //
2171       // Request is finished if any of
2172       // (1) the VMOp successfully performed a GC,
2173       // (2) a concurrent cycle was already in progress,
2174       // (3) whitebox is controlling concurrent cycles,
2175       // (4) a new cycle was started (by this thread or some other), or
2176       // (5) a Full GC was performed.
2177       // Cases (4) and (5) are detected together by a change to
2178       // _old_marking_cycles_started.
2179       //
2180       // Note that (1) does not imply (4).  If we're still in the mixed
2181       // phase of an earlier concurrent collection, the request to make the
2182       // collection an initial-mark won't be honored.  If we don't check for
2183       // both conditions we'll spin doing back-to-back collections.
2184       if (op.gc_succeeded() ||
2185           op.cycle_already_in_progress() ||
2186           op.whitebox_attached() ||
2187           (old_marking_started_before != old_marking_started_after)) {
2188         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2189         return true;
2190       }
2191     } else {                    // User-requested GC.
2192       // For a user-requested collection, we want to ensure that a complete
2193       // full collection has been performed before returning, but without
2194       // waiting for more than needed.
2195 
2196       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
2197       // new cycle was started.  That's good, because it's not clear what we
2198       // should do otherwise.  Trying again just does back to back GCs.
2199       // Can't wait for someone else to start a cycle.  And returning fails
2200       // to meet the goal of ensuring a full collection was performed.
2201       assert(!op.gc_succeeded() ||
2202              (old_marking_started_before != old_marking_started_after),
2203              "invariant: succeeded %s, started before %u, started after %u",
2204              BOOL_TO_STR(op.gc_succeeded()),
2205              old_marking_started_before, old_marking_started_after);
2206 
2207       // Request is finished if a full collection (concurrent or stw)
2208       // was started after this request and has completed, e.g.
2209       // started_before < completed_after.
2210       if (gc_counter_less_than(old_marking_started_before,
2211                                old_marking_completed_after)) {
2212         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2213         return true;
2214       }
2215 
2216       if (old_marking_started_after != old_marking_completed_after) {
2217         // If there is an in-progress cycle (possibly started by us), then
2218         // wait for that cycle to complete, e.g.
2219         // while completed_now < started_after.
2220         LOG_COLLECT_CONCURRENTLY(cause, "wait");
2221         MonitorLocker ml(G1OldGCCount_lock);
2222         while (gc_counter_less_than(_old_marking_cycles_completed,
2223                                     old_marking_started_after)) {
2224           ml.wait();
2225         }
2226         // Request is finished if the collection we just waited for was
2227         // started after this request.
2228         if (old_marking_started_before != old_marking_started_after) {
2229           LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
2230           return true;
2231         }
2232       }
2233 
2234       // If VMOp was successful then it started a new cycle that the above
2235       // wait &etc should have recognized as finishing this request.  This
2236       // differs from a non-user-request, where gc_succeeded does not imply
2237       // a new cycle was started.
2238       assert(!op.gc_succeeded(), "invariant");
2239 
2240       if (op.cycle_already_in_progress()) {
2241         // If VMOp failed because a cycle was already in progress, it
2242         // is now complete.  But it didn't finish this user-requested
2243         // GC, so try again.
2244         LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
2245         continue;
2246       } else if (op.whitebox_attached()) {
2247         // If WhiteBox wants control, wait for notification of a state
2248         // change in the controller, then try again.  Don't wait for
2249         // release of control, since collections may complete while in
2250         // control.  Note: This won't recognize a STW full collection
2251         // while waiting; we can't wait on multiple monitors.
2252         LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall");
2253         MonitorLocker ml(ConcurrentGCBreakpoints::monitor());
2254         if (ConcurrentGCBreakpoints::is_controlled()) {
2255           ml.wait();
2256         }
2257         continue;
2258       }
2259     }
2260 
2261     // Collection failed and should be retried.
2262     assert(op.transient_failure(), "invariant");
2263 
2264     if (GCLocker::is_active_and_needs_gc()) {
2265       // If GCLocker is active, wait until clear before retrying.
2266       LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall");
2267       GCLocker::stall_until_clear();
2268     }
2269 
2270     LOG_COLLECT_CONCURRENTLY(cause, "retry");
2271   }
2272 }
2273 
2274 bool G1CollectedHeap::try_collect(GCCause::Cause cause) {
2275   assert_heap_not_locked();
2276 
2277   // Lock to get consistent set of values.
2278   uint gc_count_before;
2279   uint full_gc_count_before;
2280   uint old_marking_started_before;
2281   {
2282     MutexLocker ml(Heap_lock);
2283     gc_count_before = total_collections();
2284     full_gc_count_before = total_full_collections();
2285     old_marking_started_before = _old_marking_cycles_started;
2286   }
2287 
2288   if (should_do_concurrent_full_gc(cause)) {
2289     return try_collect_concurrently(cause,
2290                                     gc_count_before,
2291                                     old_marking_started_before);
2292   } else if (GCLocker::should_discard(cause, gc_count_before)) {
2293     // Indicate failure to be consistent with VMOp failure due to
2294     // another collection slipping in after our gc_count but before
2295     // our request is processed.
2296     return false;
2297   } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2298              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2299 
2300     // Schedule a standard evacuation pause. We're setting word_size
2301     // to 0 which means that we are not requesting a post-GC allocation.
2302     VM_G1CollectForAllocation op(0,     /* word_size */
2303                                  gc_count_before,
2304                                  cause,
2305                                  policy()->max_pause_time_ms());
2306     VMThread::execute(&op);
2307     return op.gc_succeeded();
2308   } else {
2309     // Schedule a Full GC.
2310     VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2311     VMThread::execute(&op);
2312     return op.gc_succeeded();
2313   }
2314 }
2315 
2316 bool G1CollectedHeap::is_in(const void* p) const {
2317   if (_hrm->reserved().contains(p)) {
2318     // Given that we know that p is in the reserved space,
2319     // heap_region_containing() should successfully
2320     // return the containing region.
2321     HeapRegion* hr = heap_region_containing(p);
2322     return hr->is_in(p);
2323   } else {
2324     return false;
2325   }
2326 }
2327 
2328 #ifdef ASSERT
2329 bool G1CollectedHeap::is_in_exact(const void* p) const {
2330   bool contains = reserved_region().contains(p);
2331   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2332   if (contains && available) {
2333     return true;
2334   } else {
2335     return false;
2336   }
2337 }
2338 #endif
2339 
2340 // Iteration functions.
2341 
2342 // Iterates an ObjectClosure over all objects within a HeapRegion.
2343 
2344 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2345   ObjectClosure* _cl;
2346 public:
2347   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2348   bool do_heap_region(HeapRegion* r) {
2349     if (!r->is_continues_humongous()) {
2350       r->object_iterate(_cl);
2351     }
2352     return false;
2353   }
2354 };
2355 
2356 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2357   IterateObjectClosureRegionClosure blk(cl);
2358   heap_region_iterate(&blk);
2359 }
2360 
2361 void G1CollectedHeap::keep_alive(oop obj) {
2362   G1BarrierSet::enqueue(obj);
2363 }
2364 
2365 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2366   _hrm->iterate(cl);
2367 }
2368 
2369 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2370                                                                  HeapRegionClaimer *hrclaimer,
2371                                                                  uint worker_id) const {
2372   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2373 }
2374 
2375 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2376                                                          HeapRegionClaimer *hrclaimer) const {
2377   _hrm->par_iterate(cl, hrclaimer, 0);
2378 }
2379 
2380 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2381   _collection_set.iterate(cl);
2382 }
2383 
2384 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2385   _collection_set.par_iterate(cl, hr_claimer, worker_id, workers()->active_workers());
2386 }
2387 
2388 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2389   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2390 }
2391 
2392 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2393   HeapRegion* hr = heap_region_containing(addr);
2394   return hr->block_start(addr);
2395 }
2396 
2397 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2398   HeapRegion* hr = heap_region_containing(addr);
2399   return hr->block_is_obj(addr);
2400 }
2401 
2402 bool G1CollectedHeap::supports_tlab_allocation() const {
2403   return true;
2404 }
2405 
2406 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2407   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2408 }
2409 
2410 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2411   return _eden.length() * HeapRegion::GrainBytes;
2412 }
2413 
2414 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2415 // must be equal to the humongous object limit.
2416 size_t G1CollectedHeap::max_tlab_size() const {
2417   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2418 }
2419 
2420 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2421   return _allocator->unsafe_max_tlab_alloc();
2422 }
2423 
2424 size_t G1CollectedHeap::max_capacity() const {
2425   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2426 }
2427 
2428 size_t G1CollectedHeap::min_capacity() const {
2429   return MinHeapSize;
2430 }
2431 
2432 size_t G1CollectedHeap::max_reserved_capacity() const {
2433   return _hrm->max_length() * HeapRegion::GrainBytes;
2434 }
2435 
2436 jlong G1CollectedHeap::millis_since_last_gc() {
2437   // See the notes in GenCollectedHeap::millis_since_last_gc()
2438   // for more information about the implementation.
2439   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2440                   _policy->collection_pause_end_millis();
2441   if (ret_val < 0) {
2442     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2443       ". returning zero instead.", ret_val);
2444     return 0;
2445   }
2446   return ret_val;
2447 }
2448 
2449 void G1CollectedHeap::deduplicate_string(oop str) {
2450   assert(java_lang_String::is_instance(str), "invariant");
2451 
2452   if (G1StringDedup::is_enabled()) {
2453     G1StringDedup::deduplicate(str);
2454   }
2455 }
2456 
2457 void G1CollectedHeap::prepare_for_verify() {
2458   _verifier->prepare_for_verify();
2459 }
2460 
2461 void G1CollectedHeap::verify(VerifyOption vo) {
2462   _verifier->verify(vo);
2463 }
2464 
2465 bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const {
2466   return true;
2467 }
2468 
2469 bool G1CollectedHeap::is_heterogeneous_heap() const {
2470   return G1Arguments::is_heterogeneous_heap();
2471 }
2472 
2473 class PrintRegionClosure: public HeapRegionClosure {
2474   outputStream* _st;
2475 public:
2476   PrintRegionClosure(outputStream* st) : _st(st) {}
2477   bool do_heap_region(HeapRegion* r) {
2478     r->print_on(_st);
2479     return false;
2480   }
2481 };
2482 
2483 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2484                                        const HeapRegion* hr,
2485                                        const VerifyOption vo) const {
2486   switch (vo) {
2487   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2488   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2489   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2490   default:                            ShouldNotReachHere();
2491   }
2492   return false; // keep some compilers happy
2493 }
2494 
2495 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2496                                        const VerifyOption vo) const {
2497   switch (vo) {
2498   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2499   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2500   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2501   default:                            ShouldNotReachHere();
2502   }
2503   return false; // keep some compilers happy
2504 }
2505 
2506 void G1CollectedHeap::print_heap_regions() const {
2507   LogTarget(Trace, gc, heap, region) lt;
2508   if (lt.is_enabled()) {
2509     LogStream ls(lt);
2510     print_regions_on(&ls);
2511   }
2512 }
2513 
2514 void G1CollectedHeap::print_on(outputStream* st) const {
2515   st->print(" %-20s", "garbage-first heap");
2516   if (_hrm != NULL) {
2517     st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2518               capacity()/K, used_unlocked()/K);
2519     st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2520               p2i(_hrm->reserved().start()),
2521               p2i(_hrm->reserved().end()));
2522   }
2523   st->cr();
2524   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2525   uint young_regions = young_regions_count();
2526   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2527             (size_t) young_regions * HeapRegion::GrainBytes / K);
2528   uint survivor_regions = survivor_regions_count();
2529   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2530             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2531   st->cr();
2532   if (_numa->is_enabled()) {
2533     uint num_nodes = _numa->num_active_nodes();
2534     st->print("  remaining free region(s) on each NUMA node: ");
2535     const int* node_ids = _numa->node_ids();
2536     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2537       uint num_free_regions = (_hrm != NULL ? _hrm->num_free_regions(node_index) : 0);
2538       st->print("%d=%u ", node_ids[node_index], num_free_regions);
2539     }
2540     st->cr();
2541   }
2542   MetaspaceUtils::print_on(st);
2543 }
2544 
2545 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2546   if (_hrm == NULL) {
2547     return;
2548   }
2549 
2550   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2551                "HS=humongous(starts), HC=humongous(continues), "
2552                "CS=collection set, F=free, "
2553                "OA=open archive, CA=closed archive, "
2554                "TAMS=top-at-mark-start (previous, next)");
2555   PrintRegionClosure blk(st);
2556   heap_region_iterate(&blk);
2557 }
2558 
2559 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2560   print_on(st);
2561 
2562   // Print the per-region information.
2563   print_regions_on(st);
2564 }
2565 
2566 void G1CollectedHeap::print_on_error(outputStream* st) const {
2567   this->CollectedHeap::print_on_error(st);
2568 
2569   if (_cm != NULL) {
2570     st->cr();
2571     _cm->print_on_error(st);
2572   }
2573 }
2574 
2575 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2576   workers()->threads_do(tc);
2577   tc->do_thread(_cm_thread);
2578   _cm->threads_do(tc);
2579   _cr->threads_do(tc);
2580   tc->do_thread(_young_gen_sampling_thread);
2581   if (G1StringDedup::is_enabled()) {
2582     G1StringDedup::threads_do(tc);
2583   }
2584 }
2585 
2586 void G1CollectedHeap::print_tracing_info() const {
2587   rem_set()->print_summary_info();
2588   concurrent_mark()->print_summary_info();
2589 }
2590 
2591 #ifndef PRODUCT
2592 // Helpful for debugging RSet issues.
2593 
2594 class PrintRSetsClosure : public HeapRegionClosure {
2595 private:
2596   const char* _msg;
2597   size_t _occupied_sum;
2598 
2599 public:
2600   bool do_heap_region(HeapRegion* r) {
2601     HeapRegionRemSet* hrrs = r->rem_set();
2602     size_t occupied = hrrs->occupied();
2603     _occupied_sum += occupied;
2604 
2605     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2606     if (occupied == 0) {
2607       tty->print_cr("  RSet is empty");
2608     } else {
2609       hrrs->print();
2610     }
2611     tty->print_cr("----------");
2612     return false;
2613   }
2614 
2615   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2616     tty->cr();
2617     tty->print_cr("========================================");
2618     tty->print_cr("%s", msg);
2619     tty->cr();
2620   }
2621 
2622   ~PrintRSetsClosure() {
2623     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2624     tty->print_cr("========================================");
2625     tty->cr();
2626   }
2627 };
2628 
2629 void G1CollectedHeap::print_cset_rsets() {
2630   PrintRSetsClosure cl("Printing CSet RSets");
2631   collection_set_iterate_all(&cl);
2632 }
2633 
2634 void G1CollectedHeap::print_all_rsets() {
2635   PrintRSetsClosure cl("Printing All RSets");;
2636   heap_region_iterate(&cl);
2637 }
2638 #endif // PRODUCT
2639 
2640 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2641   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2642 }
2643 
2644 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2645 
2646   size_t eden_used_bytes = _eden.used_bytes();
2647   size_t survivor_used_bytes = _survivor.used_bytes();
2648   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2649 
2650   size_t eden_capacity_bytes =
2651     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2652 
2653   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2654   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2655                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2656 }
2657 
2658 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2659   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2660                        stats->unused(), stats->used(), stats->region_end_waste(),
2661                        stats->regions_filled(), stats->direct_allocated(),
2662                        stats->failure_used(), stats->failure_waste());
2663 }
2664 
2665 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2666   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2667   gc_tracer->report_gc_heap_summary(when, heap_summary);
2668 
2669   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2670   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2671 }
2672 
2673 G1CollectedHeap* G1CollectedHeap::heap() {
2674   CollectedHeap* heap = Universe::heap();
2675   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2676   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2677   return (G1CollectedHeap*)heap;
2678 }
2679 
2680 void G1CollectedHeap::gc_prologue(bool full) {
2681   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2682 
2683   // This summary needs to be printed before incrementing total collections.
2684   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2685 
2686   // Update common counters.
2687   increment_total_collections(full /* full gc */);
2688   if (full || collector_state()->in_initial_mark_gc()) {
2689     increment_old_marking_cycles_started();
2690   }
2691 
2692   // Fill TLAB's and such
2693   {
2694     Ticks start = Ticks::now();
2695     ensure_parsability(true);
2696     Tickspan dt = Ticks::now() - start;
2697     phase_times()->record_prepare_tlab_time_ms(dt.seconds() * MILLIUNITS);
2698   }
2699 
2700   if (!full) {
2701     // Flush dirty card queues to qset, so later phases don't need to account
2702     // for partially filled per-thread queues and such.  Not needed for full
2703     // collections, which ignore those logs.
2704     Ticks start = Ticks::now();
2705     G1BarrierSet::dirty_card_queue_set().concatenate_logs();
2706     Tickspan dt = Ticks::now() - start;
2707     phase_times()->record_concatenate_dirty_card_logs_time_ms(dt.seconds() * MILLIUNITS);
2708   }
2709 }
2710 
2711 void G1CollectedHeap::gc_epilogue(bool full) {
2712   // Update common counters.
2713   if (full) {
2714     // Update the number of full collections that have been completed.
2715     increment_old_marking_cycles_completed(false /* concurrent */);
2716   }
2717 
2718   // We are at the end of the GC. Total collections has already been increased.
2719   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2720 
2721   // FIXME: what is this about?
2722   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2723   // is set.
2724 #if COMPILER2_OR_JVMCI
2725   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2726 #endif
2727 
2728   double start = os::elapsedTime();
2729   resize_all_tlabs();
2730   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2731 
2732   MemoryService::track_memory_usage();
2733   // We have just completed a GC. Update the soft reference
2734   // policy with the new heap occupancy
2735   Universe::update_heap_info_at_gc();
2736 
2737   // Print NUMA statistics.
2738   _numa->print_statistics();
2739 }
2740 
2741 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2742   LogTarget(Trace, gc, heap, verify) lt;
2743 
2744   if (lt.is_enabled()) {
2745     LogStream ls(lt);
2746     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2747     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2748     heap_region_iterate(&cl);
2749   }
2750 }
2751 
2752 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2753                                                uint gc_count_before,
2754                                                bool* succeeded,
2755                                                GCCause::Cause gc_cause) {
2756   assert_heap_not_locked_and_not_at_safepoint();
2757   VM_G1CollectForAllocation op(word_size,
2758                                gc_count_before,
2759                                gc_cause,
2760                                policy()->max_pause_time_ms());
2761   VMThread::execute(&op);
2762 
2763   HeapWord* result = op.result();
2764   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2765   assert(result == NULL || ret_succeeded,
2766          "the result should be NULL if the VM did not succeed");
2767   *succeeded = ret_succeeded;
2768 
2769   assert_heap_not_locked();
2770   return result;
2771 }
2772 
2773 void G1CollectedHeap::do_concurrent_mark() {
2774   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2775   if (!_cm_thread->in_progress()) {
2776     _cm_thread->set_started();
2777     CGC_lock->notify();
2778   }
2779 }
2780 
2781 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2782   // We don't nominate objects with many remembered set entries, on
2783   // the assumption that such objects are likely still live.
2784   HeapRegionRemSet* rem_set = r->rem_set();
2785 
2786   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2787          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2788          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2789 }
2790 
2791 #ifndef PRODUCT
2792 void G1CollectedHeap::verify_region_attr_remset_update() {
2793   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2794   public:
2795     virtual bool do_heap_region(HeapRegion* r) {
2796       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2797       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2798       assert(r->rem_set()->is_tracked() == needs_remset_update,
2799              "Region %u remset tracking status (%s) different to region attribute (%s)",
2800              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2801       return false;
2802     }
2803   } cl;
2804   heap_region_iterate(&cl);
2805 }
2806 #endif
2807 
2808 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2809   public:
2810     bool do_heap_region(HeapRegion* hr) {
2811       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2812         hr->verify_rem_set();
2813       }
2814       return false;
2815     }
2816 };
2817 
2818 uint G1CollectedHeap::num_task_queues() const {
2819   return _task_queues->size();
2820 }
2821 
2822 #if TASKQUEUE_STATS
2823 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2824   st->print_raw_cr("GC Task Stats");
2825   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2826   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2827 }
2828 
2829 void G1CollectedHeap::print_taskqueue_stats() const {
2830   if (!log_is_enabled(Trace, gc, task, stats)) {
2831     return;
2832   }
2833   Log(gc, task, stats) log;
2834   ResourceMark rm;
2835   LogStream ls(log.trace());
2836   outputStream* st = &ls;
2837 
2838   print_taskqueue_stats_hdr(st);
2839 
2840   TaskQueueStats totals;
2841   const uint n = num_task_queues();
2842   for (uint i = 0; i < n; ++i) {
2843     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2844     totals += task_queue(i)->stats;
2845   }
2846   st->print_raw("tot "); totals.print(st); st->cr();
2847 
2848   DEBUG_ONLY(totals.verify());
2849 }
2850 
2851 void G1CollectedHeap::reset_taskqueue_stats() {
2852   const uint n = num_task_queues();
2853   for (uint i = 0; i < n; ++i) {
2854     task_queue(i)->stats.reset();
2855   }
2856 }
2857 #endif // TASKQUEUE_STATS
2858 
2859 void G1CollectedHeap::wait_for_root_region_scanning() {
2860   double scan_wait_start = os::elapsedTime();
2861   // We have to wait until the CM threads finish scanning the
2862   // root regions as it's the only way to ensure that all the
2863   // objects on them have been correctly scanned before we start
2864   // moving them during the GC.
2865   bool waited = _cm->root_regions()->wait_until_scan_finished();
2866   double wait_time_ms = 0.0;
2867   if (waited) {
2868     double scan_wait_end = os::elapsedTime();
2869     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2870   }
2871   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2872 }
2873 
2874 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2875 private:
2876   G1HRPrinter* _hr_printer;
2877 public:
2878   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2879 
2880   virtual bool do_heap_region(HeapRegion* r) {
2881     _hr_printer->cset(r);
2882     return false;
2883   }
2884 };
2885 
2886 void G1CollectedHeap::start_new_collection_set() {
2887   double start = os::elapsedTime();
2888 
2889   collection_set()->start_incremental_building();
2890 
2891   clear_region_attr();
2892 
2893   guarantee(_eden.length() == 0, "eden should have been cleared");
2894   policy()->transfer_survivors_to_cset(survivor());
2895 
2896   // We redo the verification but now wrt to the new CSet which
2897   // has just got initialized after the previous CSet was freed.
2898   _cm->verify_no_collection_set_oops();
2899 
2900   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2901 }
2902 
2903 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2904 
2905   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2906   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2907                                             collection_set()->optional_region_length());
2908 
2909   _cm->verify_no_collection_set_oops();
2910 
2911   if (_hr_printer.is_active()) {
2912     G1PrintCollectionSetClosure cl(&_hr_printer);
2913     _collection_set.iterate(&cl);
2914     _collection_set.iterate_optional(&cl);
2915   }
2916 }
2917 
2918 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2919   if (collector_state()->in_initial_mark_gc()) {
2920     return G1HeapVerifier::G1VerifyConcurrentStart;
2921   } else if (collector_state()->in_young_only_phase()) {
2922     return G1HeapVerifier::G1VerifyYoungNormal;
2923   } else {
2924     return G1HeapVerifier::G1VerifyMixed;
2925   }
2926 }
2927 
2928 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2929   if (VerifyRememberedSets) {
2930     log_info(gc, verify)("[Verifying RemSets before GC]");
2931     VerifyRegionRemSetClosure v_cl;
2932     heap_region_iterate(&v_cl);
2933   }
2934   _verifier->verify_before_gc(type);
2935   _verifier->check_bitmaps("GC Start");
2936   verify_numa_regions("GC Start");
2937 }
2938 
2939 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2940   if (VerifyRememberedSets) {
2941     log_info(gc, verify)("[Verifying RemSets after GC]");
2942     VerifyRegionRemSetClosure v_cl;
2943     heap_region_iterate(&v_cl);
2944   }
2945   _verifier->verify_after_gc(type);
2946   _verifier->check_bitmaps("GC End");
2947   verify_numa_regions("GC End");
2948 }
2949 
2950 void G1CollectedHeap::resize_heap_after_young_gc() {
2951   Ticks start = Ticks::now();
2952 
2953   ssize_t resize_bytes = _heap_sizing_policy->resize_amount_after_young_gc();
2954   if (resize_bytes > 0) {
2955     expand(resize_bytes, _workers, NULL);
2956   } else if (resize_bytes < 0) {
2957     shrink(-resize_bytes);
2958   }
2959 
2960   phase_times()->record_resize_heap_time((Ticks::now() - start).seconds() * 1000.0);
2961 }
2962 
2963 const char* G1CollectedHeap::young_gc_name() const {
2964   if (collector_state()->in_initial_mark_gc()) {
2965     return "Pause Young (Concurrent Start)";
2966   } else if (collector_state()->in_young_only_phase()) {
2967     if (collector_state()->in_young_gc_before_mixed()) {
2968       return "Pause Young (Prepare Mixed)";
2969     } else {
2970       return "Pause Young (Normal)";
2971     }
2972   } else {
2973     return "Pause Young (Mixed)";
2974   }
2975 }
2976 
2977 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2978   assert_at_safepoint_on_vm_thread();
2979   guarantee(!is_gc_active(), "collection is not reentrant");
2980 
2981   if (GCLocker::check_active_before_gc()) {
2982     return false;
2983   }
2984 
2985   do_collection_pause_at_safepoint_helper(target_pause_time_ms);
2986   if (should_upgrade_to_full_gc(gc_cause())) {
2987     log_info(gc, ergo)("Attempting maximally compacting collection");
2988     bool result = do_full_collection(false /* explicit gc */,
2989                                      true /* clear_all_soft_refs */);
2990     // do_full_collection only fails if blocked by GC locker, but
2991     // we've already checked for that above.
2992     assert(result, "invariant");
2993   }
2994   return true;
2995 }
2996 
2997 void G1CollectedHeap::do_collection_pause_at_safepoint_helper(double target_pause_time_ms) {
2998   GCIdMark gc_id_mark;
2999 
3000   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3001   ResourceMark rm;
3002 
3003   policy()->note_gc_start();
3004 
3005   _gc_timer_stw->register_gc_start();
3006   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3007 
3008   wait_for_root_region_scanning();
3009 
3010   print_heap_before_gc();
3011   print_heap_regions();
3012   trace_heap_before_gc(_gc_tracer_stw);
3013 
3014   _verifier->verify_region_sets_optional();
3015   _verifier->verify_dirty_young_regions();
3016 
3017   // We should not be doing initial mark unless the conc mark thread is running
3018   if (!_cm_thread->should_terminate()) {
3019     // This call will decide whether this pause is an initial-mark
3020     // pause. If it is, in_initial_mark_gc() will return true
3021     // for the duration of this pause.
3022     policy()->decide_on_conc_mark_initiation();
3023   }
3024 
3025   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3026   assert(!collector_state()->in_initial_mark_gc() ||
3027          collector_state()->in_young_only_phase(), "sanity");
3028   // We also do not allow mixed GCs during marking.
3029   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
3030 
3031   // Record whether this pause is an initial mark. When the current
3032   // thread has completed its logging output and it's safe to signal
3033   // the CM thread, the flag's value in the policy has been reset.
3034   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
3035   if (should_start_conc_mark) {
3036     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3037   }
3038 
3039   // Inner scope for scope based logging, timers, and stats collection
3040   {
3041     G1EvacuationInfo evacuation_info;
3042 
3043     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3044 
3045     GCTraceCPUTime tcpu;
3046 
3047     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
3048 
3049     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
3050                                                             workers()->active_workers(),
3051                                                             Threads::number_of_non_daemon_threads());
3052     active_workers = workers()->update_active_workers(active_workers);
3053     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3054 
3055     G1MonitoringScope ms(g1mm(),
3056                          false /* full_gc */,
3057                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
3058 
3059     G1HeapTransition heap_transition(this);
3060 
3061     {
3062       IsGCActiveMark x;
3063 
3064       gc_prologue(false);
3065 
3066       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3067       verify_before_young_collection(verify_type);
3068 
3069       {
3070         // The elapsed time induced by the start time below deliberately elides
3071         // the possible verification above.
3072         double sample_start_time_sec = os::elapsedTime();
3073 
3074         // Please see comment in g1CollectedHeap.hpp and
3075         // G1CollectedHeap::ref_processing_init() to see how
3076         // reference processing currently works in G1.
3077         _ref_processor_stw->enable_discovery();
3078 
3079         // We want to temporarily turn off discovery by the
3080         // CM ref processor, if necessary, and turn it back on
3081         // on again later if we do. Using a scoped
3082         // NoRefDiscovery object will do this.
3083         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3084 
3085         policy()->record_collection_pause_start(sample_start_time_sec);
3086 
3087         // Forget the current allocation region (we might even choose it to be part
3088         // of the collection set!).
3089         _allocator->release_mutator_alloc_regions();
3090 
3091         calculate_collection_set(evacuation_info, target_pause_time_ms);
3092 
3093         G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3094         G1ParScanThreadStateSet per_thread_states(this,
3095                                                   &rdcqs,
3096                                                   workers()->active_workers(),
3097                                                   collection_set()->young_region_length(),
3098                                                   collection_set()->optional_region_length());
3099         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3100 
3101         // Actually do the work...
3102         evacuate_initial_collection_set(&per_thread_states);
3103 
3104         if (_collection_set.optional_region_length() != 0) {
3105           evacuate_optional_collection_set(&per_thread_states);
3106         }
3107         post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3108 
3109         start_new_collection_set();
3110 
3111         _survivor_evac_stats.adjust_desired_plab_sz();
3112         _old_evac_stats.adjust_desired_plab_sz();
3113 
3114         if (should_start_conc_mark) {
3115           // We have to do this before we notify the CM threads that
3116           // they can start working to make sure that all the
3117           // appropriate initialization is done on the CM object.
3118           concurrent_mark()->post_initial_mark();
3119           // Note that we don't actually trigger the CM thread at
3120           // this point. We do that later when we're sure that
3121           // the current thread has completed its logging output.
3122         }
3123 
3124         allocate_dummy_regions();
3125 
3126         _allocator->init_mutator_alloc_regions();
3127 
3128         resize_heap_after_young_gc();
3129 
3130         double sample_end_time_sec = os::elapsedTime();
3131         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3132         policy()->record_collection_pause_end(pause_time_ms);
3133       }
3134 
3135       verify_after_young_collection(verify_type);
3136 
3137       gc_epilogue(false);
3138     }
3139 
3140     // Print the remainder of the GC log output.
3141     if (evacuation_failed()) {
3142       log_info(gc)("To-space exhausted");
3143     }
3144 
3145     policy()->print_phases();
3146     heap_transition.print();
3147 
3148     _hrm->verify_optional();
3149     _verifier->verify_region_sets_optional();
3150 
3151     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3152     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3153 
3154     print_heap_after_gc();
3155     print_heap_regions();
3156     trace_heap_after_gc(_gc_tracer_stw);
3157 
3158     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3159     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3160     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3161     // before any GC notifications are raised.
3162     g1mm()->update_sizes();
3163 
3164     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3165     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3166     _gc_timer_stw->register_gc_end();
3167     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3168   }
3169   // It should now be safe to tell the concurrent mark thread to start
3170   // without its logging output interfering with the logging output
3171   // that came from the pause.
3172 
3173   if (should_start_conc_mark) {
3174     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3175     // thread(s) could be running concurrently with us. Make sure that anything
3176     // after this point does not assume that we are the only GC thread running.
3177     // Note: of course, the actual marking work will not start until the safepoint
3178     // itself is released in SuspendibleThreadSet::desynchronize().
3179     do_concurrent_mark();
3180     ConcurrentGCBreakpoints::notify_idle_to_active();
3181   }
3182 }
3183 
3184 void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
3185   G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
3186   workers()->run_task(&rsfp_task);
3187 }
3188 
3189 void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
3190   double remove_self_forwards_start = os::elapsedTime();
3191 
3192   remove_self_forwarding_pointers(rdcqs);
3193   _preserved_marks_set.restore(workers());
3194 
3195   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3196 }
3197 
3198 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3199   if (!_evacuation_failed) {
3200     _evacuation_failed = true;
3201   }
3202 
3203   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3204   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3205 }
3206 
3207 bool G1ParEvacuateFollowersClosure::offer_termination() {
3208   EventGCPhaseParallel event;
3209   G1ParScanThreadState* const pss = par_scan_state();
3210   start_term_time();
3211   const bool res = terminator()->offer_termination();
3212   end_term_time();
3213   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3214   return res;
3215 }
3216 
3217 void G1ParEvacuateFollowersClosure::do_void() {
3218   EventGCPhaseParallel event;
3219   G1ParScanThreadState* const pss = par_scan_state();
3220   pss->trim_queue();
3221   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3222   do {
3223     EventGCPhaseParallel event;
3224     pss->steal_and_trim_queue(queues());
3225     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3226   } while (!offer_termination());
3227 }
3228 
3229 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3230                                         bool class_unloading_occurred) {
3231   uint num_workers = workers()->active_workers();
3232   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3233   workers()->run_task(&unlink_task);
3234 }
3235 
3236 // Clean string dedup data structures.
3237 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3238 // record the durations of the phases. Hence the almost-copy.
3239 class G1StringDedupCleaningTask : public AbstractGangTask {
3240   BoolObjectClosure* _is_alive;
3241   OopClosure* _keep_alive;
3242   G1GCPhaseTimes* _phase_times;
3243 
3244 public:
3245   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3246                             OopClosure* keep_alive,
3247                             G1GCPhaseTimes* phase_times) :
3248     AbstractGangTask("Partial Cleaning Task"),
3249     _is_alive(is_alive),
3250     _keep_alive(keep_alive),
3251     _phase_times(phase_times)
3252   {
3253     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3254     StringDedup::gc_prologue(true);
3255   }
3256 
3257   ~G1StringDedupCleaningTask() {
3258     StringDedup::gc_epilogue();
3259   }
3260 
3261   void work(uint worker_id) {
3262     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3263     {
3264       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3265       StringDedupQueue::unlink_or_oops_do(&cl);
3266     }
3267     {
3268       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3269       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3270     }
3271   }
3272 };
3273 
3274 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3275                                             OopClosure* keep_alive,
3276                                             G1GCPhaseTimes* phase_times) {
3277   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3278   workers()->run_task(&cl);
3279 }
3280 
3281 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3282  private:
3283   G1RedirtyCardsQueueSet* _qset;
3284   G1CollectedHeap* _g1h;
3285   BufferNode* volatile _nodes;
3286 
3287   void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) {
3288     size_t buffer_size = _qset->buffer_size();
3289     BufferNode* next = Atomic::load(&_nodes);
3290     while (next != NULL) {
3291       BufferNode* node = next;
3292       next = Atomic::cmpxchg(&_nodes, node, node->next());
3293       if (next == node) {
3294         cl->apply_to_buffer(node, buffer_size, worker_id);
3295         next = node->next();
3296       }
3297     }
3298   }
3299 
3300  public:
3301   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3302     AbstractGangTask("Redirty Cards"),
3303     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3304 
3305   virtual void work(uint worker_id) {
3306     G1GCPhaseTimes* p = _g1h->phase_times();
3307     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3308 
3309     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3310     par_apply(&cl, worker_id);
3311 
3312     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3313   }
3314 };
3315 
3316 void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
3317   double redirty_logged_cards_start = os::elapsedTime();
3318 
3319   G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
3320   workers()->run_task(&redirty_task);
3321 
3322   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3323   dcq.merge_bufferlists(rdcqs);
3324 
3325   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3326 }
3327 
3328 // Weak Reference Processing support
3329 
3330 bool G1STWIsAliveClosure::do_object_b(oop p) {
3331   // An object is reachable if it is outside the collection set,
3332   // or is inside and copied.
3333   return !_g1h->is_in_cset(p) || p->is_forwarded();
3334 }
3335 
3336 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3337   assert(obj != NULL, "must not be NULL");
3338   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3339   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3340   // may falsely indicate that this is not the case here: however the collection set only
3341   // contains old regions when concurrent mark is not running.
3342   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3343 }
3344 
3345 // Non Copying Keep Alive closure
3346 class G1KeepAliveClosure: public OopClosure {
3347   G1CollectedHeap*_g1h;
3348 public:
3349   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3350   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3351   void do_oop(oop* p) {
3352     oop obj = *p;
3353     assert(obj != NULL, "the caller should have filtered out NULL values");
3354 
3355     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3356     if (!region_attr.is_in_cset_or_humongous()) {
3357       return;
3358     }
3359     if (region_attr.is_in_cset()) {
3360       assert( obj->is_forwarded(), "invariant" );
3361       *p = obj->forwardee();
3362     } else {
3363       assert(!obj->is_forwarded(), "invariant" );
3364       assert(region_attr.is_humongous(),
3365              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3366      _g1h->set_humongous_is_live(obj);
3367     }
3368   }
3369 };
3370 
3371 // Copying Keep Alive closure - can be called from both
3372 // serial and parallel code as long as different worker
3373 // threads utilize different G1ParScanThreadState instances
3374 // and different queues.
3375 
3376 class G1CopyingKeepAliveClosure: public OopClosure {
3377   G1CollectedHeap*         _g1h;
3378   G1ParScanThreadState*    _par_scan_state;
3379 
3380 public:
3381   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3382                             G1ParScanThreadState* pss):
3383     _g1h(g1h),
3384     _par_scan_state(pss)
3385   {}
3386 
3387   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3388   virtual void do_oop(      oop* p) { do_oop_work(p); }
3389 
3390   template <class T> void do_oop_work(T* p) {
3391     oop obj = RawAccess<>::oop_load(p);
3392 
3393     if (_g1h->is_in_cset_or_humongous(obj)) {
3394       // If the referent object has been forwarded (either copied
3395       // to a new location or to itself in the event of an
3396       // evacuation failure) then we need to update the reference
3397       // field and, if both reference and referent are in the G1
3398       // heap, update the RSet for the referent.
3399       //
3400       // If the referent has not been forwarded then we have to keep
3401       // it alive by policy. Therefore we have copy the referent.
3402       //
3403       // When the queue is drained (after each phase of reference processing)
3404       // the object and it's followers will be copied, the reference field set
3405       // to point to the new location, and the RSet updated.
3406       _par_scan_state->push_on_queue(ScannerTask(p));
3407     }
3408   }
3409 };
3410 
3411 // Serial drain queue closure. Called as the 'complete_gc'
3412 // closure for each discovered list in some of the
3413 // reference processing phases.
3414 
3415 class G1STWDrainQueueClosure: public VoidClosure {
3416 protected:
3417   G1CollectedHeap* _g1h;
3418   G1ParScanThreadState* _par_scan_state;
3419 
3420   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3421 
3422 public:
3423   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3424     _g1h(g1h),
3425     _par_scan_state(pss)
3426   { }
3427 
3428   void do_void() {
3429     G1ParScanThreadState* const pss = par_scan_state();
3430     pss->trim_queue();
3431   }
3432 };
3433 
3434 // Parallel Reference Processing closures
3435 
3436 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3437 // processing during G1 evacuation pauses.
3438 
3439 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3440 private:
3441   G1CollectedHeap*          _g1h;
3442   G1ParScanThreadStateSet*  _pss;
3443   G1ScannerTasksQueueSet*   _queues;
3444   WorkGang*                 _workers;
3445 
3446 public:
3447   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3448                            G1ParScanThreadStateSet* per_thread_states,
3449                            WorkGang* workers,
3450                            G1ScannerTasksQueueSet *task_queues) :
3451     _g1h(g1h),
3452     _pss(per_thread_states),
3453     _queues(task_queues),
3454     _workers(workers)
3455   {
3456     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3457   }
3458 
3459   // Executes the given task using concurrent marking worker threads.
3460   virtual void execute(ProcessTask& task, uint ergo_workers);
3461 };
3462 
3463 // Gang task for possibly parallel reference processing
3464 
3465 class G1STWRefProcTaskProxy: public AbstractGangTask {
3466   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3467   ProcessTask&     _proc_task;
3468   G1CollectedHeap* _g1h;
3469   G1ParScanThreadStateSet* _pss;
3470   G1ScannerTasksQueueSet* _task_queues;
3471   TaskTerminator* _terminator;
3472 
3473 public:
3474   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3475                         G1CollectedHeap* g1h,
3476                         G1ParScanThreadStateSet* per_thread_states,
3477                         G1ScannerTasksQueueSet *task_queues,
3478                         TaskTerminator* terminator) :
3479     AbstractGangTask("Process reference objects in parallel"),
3480     _proc_task(proc_task),
3481     _g1h(g1h),
3482     _pss(per_thread_states),
3483     _task_queues(task_queues),
3484     _terminator(terminator)
3485   {}
3486 
3487   virtual void work(uint worker_id) {
3488     // The reference processing task executed by a single worker.
3489     ResourceMark rm;
3490     HandleMark   hm;
3491 
3492     G1STWIsAliveClosure is_alive(_g1h);
3493 
3494     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3495     pss->set_ref_discoverer(NULL);
3496 
3497     // Keep alive closure.
3498     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3499 
3500     // Complete GC closure
3501     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3502 
3503     // Call the reference processing task's work routine.
3504     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3505 
3506     // Note we cannot assert that the refs array is empty here as not all
3507     // of the processing tasks (specifically phase2 - pp2_work) execute
3508     // the complete_gc closure (which ordinarily would drain the queue) so
3509     // the queue may not be empty.
3510   }
3511 };
3512 
3513 // Driver routine for parallel reference processing.
3514 // Creates an instance of the ref processing gang
3515 // task and has the worker threads execute it.
3516 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3517   assert(_workers != NULL, "Need parallel worker threads.");
3518 
3519   assert(_workers->active_workers() >= ergo_workers,
3520          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3521          ergo_workers, _workers->active_workers());
3522   TaskTerminator terminator(ergo_workers, _queues);
3523   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3524 
3525   _workers->run_task(&proc_task_proxy, ergo_workers);
3526 }
3527 
3528 // End of weak reference support closures
3529 
3530 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3531   double ref_proc_start = os::elapsedTime();
3532 
3533   ReferenceProcessor* rp = _ref_processor_stw;
3534   assert(rp->discovery_enabled(), "should have been enabled");
3535 
3536   // Closure to test whether a referent is alive.
3537   G1STWIsAliveClosure is_alive(this);
3538 
3539   // Even when parallel reference processing is enabled, the processing
3540   // of JNI refs is serial and performed serially by the current thread
3541   // rather than by a worker. The following PSS will be used for processing
3542   // JNI refs.
3543 
3544   // Use only a single queue for this PSS.
3545   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3546   pss->set_ref_discoverer(NULL);
3547   assert(pss->queue_is_empty(), "pre-condition");
3548 
3549   // Keep alive closure.
3550   G1CopyingKeepAliveClosure keep_alive(this, pss);
3551 
3552   // Serial Complete GC closure
3553   G1STWDrainQueueClosure drain_queue(this, pss);
3554 
3555   // Setup the soft refs policy...
3556   rp->setup_policy(false);
3557 
3558   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3559 
3560   ReferenceProcessorStats stats;
3561   if (!rp->processing_is_mt()) {
3562     // Serial reference processing...
3563     stats = rp->process_discovered_references(&is_alive,
3564                                               &keep_alive,
3565                                               &drain_queue,
3566                                               NULL,
3567                                               pt);
3568   } else {
3569     uint no_of_gc_workers = workers()->active_workers();
3570 
3571     // Parallel reference processing
3572     assert(no_of_gc_workers <= rp->max_num_queues(),
3573            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3574            no_of_gc_workers,  rp->max_num_queues());
3575 
3576     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3577     stats = rp->process_discovered_references(&is_alive,
3578                                               &keep_alive,
3579                                               &drain_queue,
3580                                               &par_task_executor,
3581                                               pt);
3582   }
3583 
3584   _gc_tracer_stw->report_gc_reference_stats(stats);
3585 
3586   // We have completed copying any necessary live referent objects.
3587   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3588 
3589   make_pending_list_reachable();
3590 
3591   assert(!rp->discovery_enabled(), "Postcondition");
3592   rp->verify_no_references_recorded();
3593 
3594   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3595   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3596 }
3597 
3598 void G1CollectedHeap::make_pending_list_reachable() {
3599   if (collector_state()->in_initial_mark_gc()) {
3600     oop pll_head = Universe::reference_pending_list();
3601     if (pll_head != NULL) {
3602       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3603       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3604     }
3605   }
3606 }
3607 
3608 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3609   Ticks start = Ticks::now();
3610   per_thread_states->flush();
3611   phase_times()->record_or_add_time_secs(G1GCPhaseTimes::MergePSS, 0 /* worker_id */, (Ticks::now() - start).seconds());
3612 }
3613 
3614 class G1PrepareEvacuationTask : public AbstractGangTask {
3615   class G1PrepareRegionsClosure : public HeapRegionClosure {
3616     G1CollectedHeap* _g1h;
3617     G1PrepareEvacuationTask* _parent_task;
3618     size_t _worker_humongous_total;
3619     size_t _worker_humongous_candidates;
3620 
3621     bool humongous_region_is_candidate(HeapRegion* region) const {
3622       assert(region->is_starts_humongous(), "Must start a humongous object");
3623 
3624       oop obj = oop(region->bottom());
3625 
3626       // Dead objects cannot be eager reclaim candidates. Due to class
3627       // unloading it is unsafe to query their classes so we return early.
3628       if (_g1h->is_obj_dead(obj, region)) {
3629         return false;
3630       }
3631 
3632       // If we do not have a complete remembered set for the region, then we can
3633       // not be sure that we have all references to it.
3634       if (!region->rem_set()->is_complete()) {
3635         return false;
3636       }
3637       // Candidate selection must satisfy the following constraints
3638       // while concurrent marking is in progress:
3639       //
3640       // * In order to maintain SATB invariants, an object must not be
3641       // reclaimed if it was allocated before the start of marking and
3642       // has not had its references scanned.  Such an object must have
3643       // its references (including type metadata) scanned to ensure no
3644       // live objects are missed by the marking process.  Objects
3645       // allocated after the start of concurrent marking don't need to
3646       // be scanned.
3647       //
3648       // * An object must not be reclaimed if it is on the concurrent
3649       // mark stack.  Objects allocated after the start of concurrent
3650       // marking are never pushed on the mark stack.
3651       //
3652       // Nominating only objects allocated after the start of concurrent
3653       // marking is sufficient to meet both constraints.  This may miss
3654       // some objects that satisfy the constraints, but the marking data
3655       // structures don't support efficiently performing the needed
3656       // additional tests or scrubbing of the mark stack.
3657       //
3658       // However, we presently only nominate is_typeArray() objects.
3659       // A humongous object containing references induces remembered
3660       // set entries on other regions.  In order to reclaim such an
3661       // object, those remembered sets would need to be cleaned up.
3662       //
3663       // We also treat is_typeArray() objects specially, allowing them
3664       // to be reclaimed even if allocated before the start of
3665       // concurrent mark.  For this we rely on mark stack insertion to
3666       // exclude is_typeArray() objects, preventing reclaiming an object
3667       // that is in the mark stack.  We also rely on the metadata for
3668       // such objects to be built-in and so ensured to be kept live.
3669       // Frequent allocation and drop of large binary blobs is an
3670       // important use case for eager reclaim, and this special handling
3671       // may reduce needed headroom.
3672 
3673       return obj->is_typeArray() &&
3674              _g1h->is_potential_eager_reclaim_candidate(region);
3675     }
3676 
3677   public:
3678     G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) :
3679       _g1h(g1h),
3680       _parent_task(parent_task),
3681       _worker_humongous_total(0),
3682       _worker_humongous_candidates(0) { }
3683 
3684     ~G1PrepareRegionsClosure() {
3685       _parent_task->add_humongous_candidates(_worker_humongous_candidates);
3686       _parent_task->add_humongous_total(_worker_humongous_total);
3687     }
3688 
3689     virtual bool do_heap_region(HeapRegion* hr) {
3690       // First prepare the region for scanning
3691       _g1h->rem_set()->prepare_region_for_scan(hr);
3692 
3693       // Now check if region is a humongous candidate
3694       if (!hr->is_starts_humongous()) {
3695         _g1h->register_region_with_region_attr(hr);
3696         return false;
3697       }
3698 
3699       uint index = hr->hrm_index();
3700       if (humongous_region_is_candidate(hr)) {
3701         _g1h->set_humongous_reclaim_candidate(index, true);
3702         _g1h->register_humongous_region_with_region_attr(index);
3703         _worker_humongous_candidates++;
3704         // We will later handle the remembered sets of these regions.
3705       } else {
3706         _g1h->set_humongous_reclaim_candidate(index, false);
3707         _g1h->register_region_with_region_attr(hr);
3708       }
3709       _worker_humongous_total++;
3710 
3711       return false;
3712     }
3713   };
3714 
3715   G1CollectedHeap* _g1h;
3716   HeapRegionClaimer _claimer;
3717   volatile size_t _humongous_total;
3718   volatile size_t _humongous_candidates;
3719 public:
3720   G1PrepareEvacuationTask(G1CollectedHeap* g1h) :
3721     AbstractGangTask("Prepare Evacuation"),
3722     _g1h(g1h),
3723     _claimer(_g1h->workers()->active_workers()),
3724     _humongous_total(0),
3725     _humongous_candidates(0) { }
3726 
3727   ~G1PrepareEvacuationTask() {
3728     _g1h->set_has_humongous_reclaim_candidate(_humongous_candidates > 0);
3729   }
3730 
3731   void work(uint worker_id) {
3732     G1PrepareRegionsClosure cl(_g1h, this);
3733     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id);
3734   }
3735 
3736   void add_humongous_candidates(size_t candidates) {
3737     Atomic::add(&_humongous_candidates, candidates);
3738   }
3739 
3740   void add_humongous_total(size_t total) {
3741     Atomic::add(&_humongous_total, total);
3742   }
3743 
3744   size_t humongous_candidates() {
3745     return _humongous_candidates;
3746   }
3747 
3748   size_t humongous_total() {
3749     return _humongous_total;
3750   }
3751 };
3752 
3753 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3754   _bytes_used_during_gc = 0;
3755 
3756   _expand_heap_after_alloc_failure = true;
3757   _evacuation_failed = false;
3758 
3759   // Disable the hot card cache.
3760   _hot_card_cache->reset_hot_cache_claimed_index();
3761   _hot_card_cache->set_use_cache(false);
3762 
3763   // Initialize the GC alloc regions.
3764   _allocator->init_gc_alloc_regions(evacuation_info);
3765 
3766   {
3767     Ticks start = Ticks::now();
3768     rem_set()->prepare_for_scan_heap_roots();
3769     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3770   }
3771 
3772   {
3773     G1PrepareEvacuationTask g1_prep_task(this);
3774     Tickspan task_time = run_task(&g1_prep_task);
3775 
3776     phase_times()->record_register_regions(task_time.seconds() * 1000.0,
3777                                            g1_prep_task.humongous_total(),
3778                                            g1_prep_task.humongous_candidates());
3779   }
3780 
3781   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3782   _preserved_marks_set.assert_empty();
3783 
3784 #if COMPILER2_OR_JVMCI
3785   DerivedPointerTable::clear();
3786 #endif
3787 
3788   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3789   if (collector_state()->in_initial_mark_gc()) {
3790     concurrent_mark()->pre_initial_mark();
3791 
3792     double start_clear_claimed_marks = os::elapsedTime();
3793 
3794     ClassLoaderDataGraph::clear_claimed_marks();
3795 
3796     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3797     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3798   }
3799 
3800   // Should G1EvacuationFailureALot be in effect for this GC?
3801   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3802 }
3803 
3804 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3805 protected:
3806   G1CollectedHeap* _g1h;
3807   G1ParScanThreadStateSet* _per_thread_states;
3808   G1ScannerTasksQueueSet* _task_queues;
3809   TaskTerminator _terminator;
3810   uint _num_workers;
3811 
3812   void evacuate_live_objects(G1ParScanThreadState* pss,
3813                              uint worker_id,
3814                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3815                              G1GCPhaseTimes::GCParPhases termination_phase) {
3816     G1GCPhaseTimes* p = _g1h->phase_times();
3817 
3818     Ticks start = Ticks::now();
3819     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, &_terminator, objcopy_phase);
3820     cl.do_void();
3821 
3822     assert(pss->queue_is_empty(), "should be empty");
3823 
3824     Tickspan evac_time = (Ticks::now() - start);
3825     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3826 
3827     if (termination_phase == G1GCPhaseTimes::Termination) {
3828       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3829       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3830     } else {
3831       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3832       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3833     }
3834     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3835   }
3836 
3837   virtual void start_work(uint worker_id) { }
3838 
3839   virtual void end_work(uint worker_id) { }
3840 
3841   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3842 
3843   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3844 
3845 public:
3846   G1EvacuateRegionsBaseTask(const char* name,
3847                             G1ParScanThreadStateSet* per_thread_states,
3848                             G1ScannerTasksQueueSet* task_queues,
3849                             uint num_workers) :
3850     AbstractGangTask(name),
3851     _g1h(G1CollectedHeap::heap()),
3852     _per_thread_states(per_thread_states),
3853     _task_queues(task_queues),
3854     _terminator(num_workers, _task_queues),
3855     _num_workers(num_workers)
3856   { }
3857 
3858   void work(uint worker_id) {
3859     start_work(worker_id);
3860 
3861     {
3862       ResourceMark rm;
3863       HandleMark   hm;
3864 
3865       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3866       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3867 
3868       scan_roots(pss, worker_id);
3869       evacuate_live_objects(pss, worker_id);
3870     }
3871 
3872     end_work(worker_id);
3873   }
3874 };
3875 
3876 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3877   G1RootProcessor* _root_processor;
3878 
3879   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3880     _root_processor->evacuate_roots(pss, worker_id);
3881     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3882     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3883   }
3884 
3885   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3886     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3887   }
3888 
3889   void start_work(uint worker_id) {
3890     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3891   }
3892 
3893   void end_work(uint worker_id) {
3894     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3895   }
3896 
3897 public:
3898   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3899                         G1ParScanThreadStateSet* per_thread_states,
3900                         G1ScannerTasksQueueSet* task_queues,
3901                         G1RootProcessor* root_processor,
3902                         uint num_workers) :
3903     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3904     _root_processor(root_processor)
3905   { }
3906 };
3907 
3908 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3909   G1GCPhaseTimes* p = phase_times();
3910 
3911   {
3912     Ticks start = Ticks::now();
3913     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3914     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3915   }
3916 
3917   Tickspan task_time;
3918   const uint num_workers = workers()->active_workers();
3919 
3920   Ticks start_processing = Ticks::now();
3921   {
3922     G1RootProcessor root_processor(this, num_workers);
3923     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3924     task_time = run_task(&g1_par_task);
3925     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3926     // To extract its code root fixup time we measure total time of this scope and
3927     // subtract from the time the WorkGang task took.
3928   }
3929   Tickspan total_processing = Ticks::now() - start_processing;
3930 
3931   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3932   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3933 }
3934 
3935 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3936 
3937   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3938     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3939     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3940   }
3941 
3942   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3943     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3944   }
3945 
3946 public:
3947   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3948                                 G1ScannerTasksQueueSet* queues,
3949                                 uint num_workers) :
3950     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3951   }
3952 };
3953 
3954 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3955   class G1MarkScope : public MarkScope { };
3956 
3957   Tickspan task_time;
3958 
3959   Ticks start_processing = Ticks::now();
3960   {
3961     G1MarkScope code_mark_scope;
3962     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3963     task_time = run_task(&task);
3964     // See comment in evacuate_collection_set() for the reason of the scope.
3965   }
3966   Tickspan total_processing = Ticks::now() - start_processing;
3967 
3968   G1GCPhaseTimes* p = phase_times();
3969   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3970 }
3971 
3972 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3973   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3974 
3975   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3976 
3977     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3978     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3979 
3980     if (time_left_ms < 0 ||
3981         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3982       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3983                                 _collection_set.optional_region_length(), time_left_ms);
3984       break;
3985     }
3986 
3987     {
3988       Ticks start = Ticks::now();
3989       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3990       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3991     }
3992 
3993     {
3994       Ticks start = Ticks::now();
3995       evacuate_next_optional_regions(per_thread_states);
3996       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3997     }
3998   }
3999 
4000   _collection_set.abandon_optional_collection_set(per_thread_states);
4001 }
4002 
4003 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
4004                                                    G1RedirtyCardsQueueSet* rdcqs,
4005                                                    G1ParScanThreadStateSet* per_thread_states) {
4006   G1GCPhaseTimes* p = phase_times();
4007 
4008   rem_set()->cleanup_after_scan_heap_roots();
4009 
4010   // Process any discovered reference objects - we have
4011   // to do this _before_ we retire the GC alloc regions
4012   // as we may have to copy some 'reachable' referent
4013   // objects (and their reachable sub-graphs) that were
4014   // not copied during the pause.
4015   process_discovered_references(per_thread_states);
4016 
4017   G1STWIsAliveClosure is_alive(this);
4018   G1KeepAliveClosure keep_alive(this);
4019 
4020   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, p->weak_phase_times());
4021 
4022   if (G1StringDedup::is_enabled()) {
4023     double string_dedup_time_ms = os::elapsedTime();
4024 
4025     string_dedup_cleaning(&is_alive, &keep_alive, p);
4026 
4027     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
4028     p->record_string_deduplication_time(string_cleanup_time_ms);
4029   }
4030 
4031   _allocator->release_gc_alloc_regions(evacuation_info);
4032 
4033   if (evacuation_failed()) {
4034     restore_after_evac_failure(rdcqs);
4035 
4036     // Reset the G1EvacuationFailureALot counters and flags
4037     NOT_PRODUCT(reset_evacuation_should_fail();)
4038 
4039     double recalculate_used_start = os::elapsedTime();
4040     set_used(recalculate_used());
4041     p->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
4042 
4043     if (_archive_allocator != NULL) {
4044       _archive_allocator->clear_used();
4045     }
4046     for (uint i = 0; i < ParallelGCThreads; i++) {
4047       if (_evacuation_failed_info_array[i].has_failed()) {
4048         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4049       }
4050     }
4051   } else {
4052     // The "used" of the the collection set have already been subtracted
4053     // when they were freed.  Add in the bytes used.
4054     increase_used(_bytes_used_during_gc);
4055   }
4056 
4057   _preserved_marks_set.assert_empty();
4058 
4059   merge_per_thread_state_info(per_thread_states);
4060 
4061   // Reset and re-enable the hot card cache.
4062   // Note the counts for the cards in the regions in the
4063   // collection set are reset when the collection set is freed.
4064   _hot_card_cache->reset_hot_cache();
4065   _hot_card_cache->set_use_cache(true);
4066 
4067   purge_code_root_memory();
4068 
4069   redirty_logged_cards(rdcqs);
4070 
4071   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
4072 
4073   eagerly_reclaim_humongous_regions();
4074 
4075   record_obj_copy_mem_stats();
4076 
4077   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
4078   evacuation_info.set_bytes_used(_bytes_used_during_gc);
4079 
4080 #if COMPILER2_OR_JVMCI
4081   double start = os::elapsedTime();
4082   DerivedPointerTable::update_pointers();
4083   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4084 #endif
4085   policy()->print_age_table();
4086 }
4087 
4088 void G1CollectedHeap::record_obj_copy_mem_stats() {
4089   policy()->old_gen_alloc_tracker()->
4090     add_allocated_bytes_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4091 
4092   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4093                                                create_g1_evac_summary(&_old_evac_stats));
4094 }
4095 
4096 void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
4097   assert(!hr->is_free(), "the region should not be free");
4098   assert(!hr->is_empty(), "the region should not be empty");
4099   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
4100 
4101   if (G1VerifyBitmaps) {
4102     MemRegion mr(hr->bottom(), hr->end());
4103     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4104   }
4105 
4106   // Clear the card counts for this region.
4107   // Note: we only need to do this if the region is not young
4108   // (since we don't refine cards in young regions).
4109   if (!hr->is_young()) {
4110     _hot_card_cache->reset_card_counts(hr);
4111   }
4112 
4113   // Reset region metadata to allow reuse.
4114   hr->hr_clear(true /* clear_space */);
4115   _policy->remset_tracker()->update_at_free(hr);
4116 
4117   if (free_list != NULL) {
4118     free_list->add_ordered(hr);
4119   }
4120 }
4121 
4122 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4123                                             FreeRegionList* free_list) {
4124   assert(hr->is_humongous(), "this is only for humongous regions");
4125   assert(free_list != NULL, "pre-condition");
4126   hr->clear_humongous();
4127   free_region(hr, free_list);
4128 }
4129 
4130 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4131                                            const uint humongous_regions_removed) {
4132   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4133     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4134     _old_set.bulk_remove(old_regions_removed);
4135     _humongous_set.bulk_remove(humongous_regions_removed);
4136   }
4137 
4138 }
4139 
4140 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4141   assert(list != NULL, "list can't be null");
4142   if (!list->is_empty()) {
4143     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4144     _hrm->insert_list_into_free_list(list);
4145   }
4146 }
4147 
4148 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4149   decrease_used(bytes);
4150 }
4151 
4152 class G1FreeCollectionSetTask : public AbstractGangTask {
4153   // Helper class to keep statistics for the collection set freeing
4154   class FreeCSetStats {
4155     size_t _before_used_bytes;   // Usage in regions successfully evacutate
4156     size_t _after_used_bytes;    // Usage in regions failing evacuation
4157     size_t _bytes_allocated_in_old_since_last_gc; // Size of young regions turned into old
4158     size_t _failure_used_words;  // Live size in failed regions
4159     size_t _failure_waste_words; // Wasted size in failed regions
4160     size_t _rs_length;           // Remembered set size
4161     uint _regions_freed;         // Number of regions freed
4162   public:
4163     FreeCSetStats() :
4164         _before_used_bytes(0),
4165         _after_used_bytes(0),
4166         _bytes_allocated_in_old_since_last_gc(0),
4167         _failure_used_words(0),
4168         _failure_waste_words(0),
4169         _rs_length(0),
4170         _regions_freed(0) { }
4171 
4172     void merge_stats(FreeCSetStats* other) {
4173       assert(other != NULL, "invariant");
4174       _before_used_bytes += other->_before_used_bytes;
4175       _after_used_bytes += other->_after_used_bytes;
4176       _bytes_allocated_in_old_since_last_gc += other->_bytes_allocated_in_old_since_last_gc;
4177       _failure_used_words += other->_failure_used_words;
4178       _failure_waste_words += other->_failure_waste_words;
4179       _rs_length += other->_rs_length;
4180       _regions_freed += other->_regions_freed;
4181     }
4182 
4183     void report(G1CollectedHeap* g1h, G1EvacuationInfo* evacuation_info) {
4184       evacuation_info->set_regions_freed(_regions_freed);
4185       evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4186 
4187       g1h->decrement_summary_bytes(_before_used_bytes);
4188       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4189 
4190       G1Policy *policy = g1h->policy();
4191       policy->old_gen_alloc_tracker()->add_allocated_bytes_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4192       policy->record_rs_length(_rs_length);
4193       policy->cset_regions_freed();
4194     }
4195 
4196     void account_failed_region(HeapRegion* r) {
4197       size_t used_words = r->marked_bytes() / HeapWordSize;
4198       _failure_used_words += used_words;
4199       _failure_waste_words += HeapRegion::GrainWords - used_words;
4200       _after_used_bytes += r->used();
4201 
4202       // When moving a young gen region to old gen, we "allocate" that whole
4203       // region there. This is in addition to any already evacuated objects.
4204       // Notify the policy about that. Old gen regions do not cause an
4205       // additional allocation: both the objects still in the region and the
4206       // ones already moved are accounted for elsewhere.
4207       if (r->is_young()) {
4208         _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4209       }
4210     }
4211 
4212     void account_evacuated_region(HeapRegion* r) {
4213       _before_used_bytes += r->used();
4214       _regions_freed += 1;
4215     }
4216 
4217     void account_rs_length(HeapRegion* r) {
4218       _rs_length += r->rem_set()->occupied();
4219     }
4220   };
4221 
4222   // Closure applied to all regions in the collection set.
4223   class FreeCSetClosure : public HeapRegionClosure {
4224     // Helper to send JFR events for regions.
4225     class JFREventForRegion {
4226       EventGCPhaseParallel _event;
4227     public:
4228       JFREventForRegion(HeapRegion* region, uint worker_id) : _event() {
4229         _event.set_gcId(GCId::current());
4230         _event.set_gcWorkerId(worker_id);
4231         if (region->is_young()) {
4232           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4233         } else {
4234           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4235         }
4236       }
4237 
4238       ~JFREventForRegion() {
4239         _event.commit();
4240       }
4241     };
4242 
4243     // Helper to do timing for region work.
4244     class TimerForRegion {
4245       Tickspan& _time;
4246       Ticks     _start_time;
4247     public:
4248       TimerForRegion(Tickspan& time) : _time(time), _start_time(Ticks::now()) { }
4249       ~TimerForRegion() {
4250         _time += Ticks::now() - _start_time;
4251       }
4252     };
4253 
4254     // FreeCSetClosure members
4255     G1CollectedHeap* _g1h;
4256     const size_t*    _surviving_young_words;
4257     uint             _worker_id;
4258     Tickspan         _young_time;
4259     Tickspan         _non_young_time;
4260     FreeCSetStats*   _stats;
4261 
4262     void assert_in_cset(HeapRegion* r) {
4263       assert(r->young_index_in_cset() != 0 &&
4264              (uint)r->young_index_in_cset() <= _g1h->collection_set()->young_region_length(),
4265              "Young index %u is wrong for region %u of type %s with %u young regions",
4266              r->young_index_in_cset(), r->hrm_index(), r->get_type_str(), _g1h->collection_set()->young_region_length());
4267     }
4268 
4269     void handle_evacuated_region(HeapRegion* r) {
4270       assert(!r->is_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4271       stats()->account_evacuated_region(r);
4272 
4273       // Free the region and and its remembered set.
4274       _g1h->free_region(r, NULL);
4275     }
4276 
4277     void handle_failed_region(HeapRegion* r) {
4278       // Do some allocation statistics accounting. Regions that failed evacuation
4279       // are always made old, so there is no need to update anything in the young
4280       // gen statistics, but we need to update old gen statistics.
4281       stats()->account_failed_region(r);
4282 
4283       // Update the region state due to the failed evacuation.
4284       r->handle_evacuation_failure();
4285 
4286       // Add region to old set, need to hold lock.
4287       MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4288       _g1h->old_set_add(r);
4289     }
4290 
4291     Tickspan& timer_for_region(HeapRegion* r) {
4292       return r->is_young() ? _young_time : _non_young_time;
4293     }
4294 
4295     FreeCSetStats* stats() {
4296       return _stats;
4297     }
4298   public:
4299     FreeCSetClosure(const size_t* surviving_young_words,
4300                     uint worker_id,
4301                     FreeCSetStats* stats) :
4302         HeapRegionClosure(),
4303         _g1h(G1CollectedHeap::heap()),
4304         _surviving_young_words(surviving_young_words),
4305         _worker_id(worker_id),
4306         _young_time(),
4307         _non_young_time(),
4308         _stats(stats) { }
4309 
4310     virtual bool do_heap_region(HeapRegion* r) {
4311       assert(r->in_collection_set(), "Invariant: %u missing from CSet", r->hrm_index());
4312       JFREventForRegion event(r, _worker_id);
4313       TimerForRegion timer(timer_for_region(r));
4314 
4315       _g1h->clear_region_attr(r);
4316       stats()->account_rs_length(r);
4317 
4318       if (r->is_young()) {
4319         assert_in_cset(r);
4320         r->record_surv_words_in_group(_surviving_young_words[r->young_index_in_cset()]);
4321       }
4322 
4323       if (r->evacuation_failed()) {
4324         handle_failed_region(r);
4325       } else {
4326         handle_evacuated_region(r);
4327       }
4328       assert(!_g1h->is_on_master_free_list(r), "sanity");
4329 
4330       return false;
4331     }
4332 
4333     void report_timing(Tickspan parallel_time) {
4334       G1GCPhaseTimes* pt = _g1h->phase_times();
4335       pt->record_time_secs(G1GCPhaseTimes::ParFreeCSet, _worker_id, parallel_time.seconds());
4336       if (_young_time.value() > 0) {
4337         pt->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, _worker_id, _young_time.seconds());
4338       }
4339       if (_non_young_time.value() > 0) {
4340         pt->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, _worker_id, _non_young_time.seconds());
4341       }
4342     }
4343   };
4344 
4345   // G1FreeCollectionSetTask members
4346   G1CollectedHeap*  _g1h;
4347   G1EvacuationInfo* _evacuation_info;
4348   FreeCSetStats*    _worker_stats;
4349   HeapRegionClaimer _claimer;
4350   const size_t*     _surviving_young_words;
4351   uint              _active_workers;
4352 
4353   FreeCSetStats* worker_stats(uint worker) {
4354     return &_worker_stats[worker];
4355   }
4356 
4357   void report_statistics() {
4358     // Merge the accounting
4359     FreeCSetStats total_stats;
4360     for (uint worker = 0; worker < _active_workers; worker++) {
4361       total_stats.merge_stats(worker_stats(worker));
4362     }
4363     total_stats.report(_g1h, _evacuation_info);
4364   }
4365 
4366 public:
4367   G1FreeCollectionSetTask(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words, uint active_workers) :
4368       AbstractGangTask("G1 Free Collection Set"),
4369       _g1h(G1CollectedHeap::heap()),
4370       _evacuation_info(evacuation_info),
4371       _worker_stats(NEW_C_HEAP_ARRAY(FreeCSetStats, active_workers, mtGC)),
4372       _claimer(active_workers),
4373       _surviving_young_words(surviving_young_words),
4374       _active_workers(active_workers) {
4375     for (uint worker = 0; worker < active_workers; worker++) {
4376       ::new (&_worker_stats[worker]) FreeCSetStats();
4377     }
4378   }
4379 
4380   ~G1FreeCollectionSetTask() {
4381     Ticks serial_time = Ticks::now();
4382     report_statistics();
4383     for (uint worker = 0; worker < _active_workers; worker++) {
4384       _worker_stats[worker].~FreeCSetStats();
4385     }
4386     FREE_C_HEAP_ARRAY(FreeCSetStats, _worker_stats);
4387     _g1h->phase_times()->record_serial_free_cset_time_ms((Ticks::now() - serial_time).seconds() * 1000.0);
4388   }
4389 
4390   virtual void work(uint worker_id) {
4391     EventGCPhaseParallel event;
4392     Ticks start = Ticks::now();
4393     FreeCSetClosure cl(_surviving_young_words, worker_id, worker_stats(worker_id));
4394     _g1h->collection_set_par_iterate_all(&cl, &_claimer, worker_id);
4395 
4396     // Report the total parallel time along with some more detailed metrics.
4397     cl.report_timing(Ticks::now() - start);
4398     event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ParFreeCSet));
4399   }
4400 };
4401 
4402 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4403   _eden.clear();
4404 
4405   // The free collections set is split up in two tasks, the first
4406   // frees the collection set and records what regions are free,
4407   // and the second one rebuilds the free list. This proved to be
4408   // more efficient than adding a sorted list to another.
4409 
4410   Ticks free_cset_start_time = Ticks::now();
4411   {
4412     uint const num_cs_regions = _collection_set.region_length();
4413     uint const num_workers = clamp(num_cs_regions, 1u, workers()->active_workers());
4414     G1FreeCollectionSetTask cl(&evacuation_info, surviving_young_words, num_workers);
4415 
4416     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u (%u)",
4417                         cl.name(), num_workers, num_cs_regions, num_regions());
4418     workers()->run_task(&cl, num_workers);
4419   }
4420 
4421   Ticks free_cset_end_time = Ticks::now();
4422   phase_times()->record_total_free_cset_time_ms((free_cset_end_time - free_cset_start_time).seconds() * 1000.0);
4423 
4424   // Now rebuild the free region list.
4425   hrm()->rebuild_free_list(workers());
4426   phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - free_cset_end_time).seconds() * 1000.0);
4427 
4428   collection_set->clear();
4429 }
4430 
4431 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4432  private:
4433   FreeRegionList* _free_region_list;
4434   HeapRegionSet* _proxy_set;
4435   uint _humongous_objects_reclaimed;
4436   uint _humongous_regions_reclaimed;
4437   size_t _freed_bytes;
4438  public:
4439 
4440   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4441     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4442   }
4443 
4444   virtual bool do_heap_region(HeapRegion* r) {
4445     if (!r->is_starts_humongous()) {
4446       return false;
4447     }
4448 
4449     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4450 
4451     oop obj = (oop)r->bottom();
4452     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4453 
4454     // The following checks whether the humongous object is live are sufficient.
4455     // The main additional check (in addition to having a reference from the roots
4456     // or the young gen) is whether the humongous object has a remembered set entry.
4457     //
4458     // A humongous object cannot be live if there is no remembered set for it
4459     // because:
4460     // - there can be no references from within humongous starts regions referencing
4461     // the object because we never allocate other objects into them.
4462     // (I.e. there are no intra-region references that may be missed by the
4463     // remembered set)
4464     // - as soon there is a remembered set entry to the humongous starts region
4465     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4466     // until the end of a concurrent mark.
4467     //
4468     // It is not required to check whether the object has been found dead by marking
4469     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4470     // all objects allocated during that time are considered live.
4471     // SATB marking is even more conservative than the remembered set.
4472     // So if at this point in the collection there is no remembered set entry,
4473     // nobody has a reference to it.
4474     // At the start of collection we flush all refinement logs, and remembered sets
4475     // are completely up-to-date wrt to references to the humongous object.
4476     //
4477     // Other implementation considerations:
4478     // - never consider object arrays at this time because they would pose
4479     // considerable effort for cleaning up the the remembered sets. This is
4480     // required because stale remembered sets might reference locations that
4481     // are currently allocated into.
4482     uint region_idx = r->hrm_index();
4483     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4484         !r->rem_set()->is_empty()) {
4485       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4486                                region_idx,
4487                                (size_t)obj->size() * HeapWordSize,
4488                                p2i(r->bottom()),
4489                                r->rem_set()->occupied(),
4490                                r->rem_set()->strong_code_roots_list_length(),
4491                                next_bitmap->is_marked(r->bottom()),
4492                                g1h->is_humongous_reclaim_candidate(region_idx),
4493                                obj->is_typeArray()
4494                               );
4495       return false;
4496     }
4497 
4498     guarantee(obj->is_typeArray(),
4499               "Only eagerly reclaiming type arrays is supported, but the object "
4500               PTR_FORMAT " is not.", p2i(r->bottom()));
4501 
4502     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4503                              region_idx,
4504                              (size_t)obj->size() * HeapWordSize,
4505                              p2i(r->bottom()),
4506                              r->rem_set()->occupied(),
4507                              r->rem_set()->strong_code_roots_list_length(),
4508                              next_bitmap->is_marked(r->bottom()),
4509                              g1h->is_humongous_reclaim_candidate(region_idx),
4510                              obj->is_typeArray()
4511                             );
4512 
4513     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4514     cm->humongous_object_eagerly_reclaimed(r);
4515     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4516            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4517            region_idx,
4518            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4519            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4520     _humongous_objects_reclaimed++;
4521     do {
4522       HeapRegion* next = g1h->next_region_in_humongous(r);
4523       _freed_bytes += r->used();
4524       r->set_containing_set(NULL);
4525       _humongous_regions_reclaimed++;
4526       g1h->free_humongous_region(r, _free_region_list);
4527       r = next;
4528     } while (r != NULL);
4529 
4530     return false;
4531   }
4532 
4533   uint humongous_objects_reclaimed() {
4534     return _humongous_objects_reclaimed;
4535   }
4536 
4537   uint humongous_regions_reclaimed() {
4538     return _humongous_regions_reclaimed;
4539   }
4540 
4541   size_t bytes_freed() const {
4542     return _freed_bytes;
4543   }
4544 };
4545 
4546 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4547   assert_at_safepoint_on_vm_thread();
4548 
4549   if (!G1EagerReclaimHumongousObjects ||
4550       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4551     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4552     return;
4553   }
4554 
4555   double start_time = os::elapsedTime();
4556 
4557   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4558 
4559   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4560   heap_region_iterate(&cl);
4561 
4562   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4563 
4564   G1HRPrinter* hrp = hr_printer();
4565   if (hrp->is_active()) {
4566     FreeRegionListIterator iter(&local_cleanup_list);
4567     while (iter.more_available()) {
4568       HeapRegion* hr = iter.get_next();
4569       hrp->cleanup(hr);
4570     }
4571   }
4572 
4573   prepend_to_freelist(&local_cleanup_list);
4574   decrement_summary_bytes(cl.bytes_freed());
4575 
4576   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4577                                                        cl.humongous_objects_reclaimed());
4578 }
4579 
4580 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4581 public:
4582   virtual bool do_heap_region(HeapRegion* r) {
4583     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4584     G1CollectedHeap::heap()->clear_region_attr(r);
4585     r->clear_young_index_in_cset();
4586     return false;
4587   }
4588 };
4589 
4590 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4591   G1AbandonCollectionSetClosure cl;
4592   collection_set_iterate_all(&cl);
4593 
4594   collection_set->clear();
4595   collection_set->stop_incremental_building();
4596 }
4597 
4598 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4599   return _allocator->is_retained_old_region(hr);
4600 }
4601 
4602 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4603   _eden.add(hr);
4604   _policy->set_region_eden(hr);
4605 }
4606 
4607 #ifdef ASSERT
4608 
4609 class NoYoungRegionsClosure: public HeapRegionClosure {
4610 private:
4611   bool _success;
4612 public:
4613   NoYoungRegionsClosure() : _success(true) { }
4614   bool do_heap_region(HeapRegion* r) {
4615     if (r->is_young()) {
4616       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4617                             p2i(r->bottom()), p2i(r->end()));
4618       _success = false;
4619     }
4620     return false;
4621   }
4622   bool success() { return _success; }
4623 };
4624 
4625 bool G1CollectedHeap::check_young_list_empty() {
4626   bool ret = (young_regions_count() == 0);
4627 
4628   NoYoungRegionsClosure closure;
4629   heap_region_iterate(&closure);
4630   ret = ret && closure.success();
4631 
4632   return ret;
4633 }
4634 
4635 #endif // ASSERT
4636 
4637 class TearDownRegionSetsClosure : public HeapRegionClosure {
4638   HeapRegionSet *_old_set;
4639 
4640 public:
4641   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4642 
4643   bool do_heap_region(HeapRegion* r) {
4644     if (r->is_old()) {
4645       _old_set->remove(r);
4646     } else if(r->is_young()) {
4647       r->uninstall_surv_rate_group();
4648     } else {
4649       // We ignore free regions, we'll empty the free list afterwards.
4650       // We ignore humongous and archive regions, we're not tearing down these
4651       // sets.
4652       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4653              "it cannot be another type");
4654     }
4655     return false;
4656   }
4657 
4658   ~TearDownRegionSetsClosure() {
4659     assert(_old_set->is_empty(), "post-condition");
4660   }
4661 };
4662 
4663 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4664   assert_at_safepoint_on_vm_thread();
4665 
4666   if (!free_list_only) {
4667     TearDownRegionSetsClosure cl(&_old_set);
4668     heap_region_iterate(&cl);
4669 
4670     // Note that emptying the _young_list is postponed and instead done as
4671     // the first step when rebuilding the regions sets again. The reason for
4672     // this is that during a full GC string deduplication needs to know if
4673     // a collected region was young or old when the full GC was initiated.
4674   }
4675   _hrm->remove_all_free_regions();
4676 }
4677 
4678 void G1CollectedHeap::increase_used(size_t bytes) {
4679   _summary_bytes_used += bytes;
4680 }
4681 
4682 void G1CollectedHeap::decrease_used(size_t bytes) {
4683   assert(_summary_bytes_used >= bytes,
4684          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4685          _summary_bytes_used, bytes);
4686   _summary_bytes_used -= bytes;
4687 }
4688 
4689 void G1CollectedHeap::set_used(size_t bytes) {
4690   _summary_bytes_used = bytes;
4691 }
4692 
4693 class RebuildRegionSetsClosure : public HeapRegionClosure {
4694 private:
4695   bool _free_list_only;
4696 
4697   HeapRegionSet* _old_set;
4698   HeapRegionManager* _hrm;
4699 
4700   size_t _total_used;
4701 
4702 public:
4703   RebuildRegionSetsClosure(bool free_list_only,
4704                            HeapRegionSet* old_set,
4705                            HeapRegionManager* hrm) :
4706     _free_list_only(free_list_only),
4707     _old_set(old_set), _hrm(hrm), _total_used(0) {
4708     assert(_hrm->num_free_regions() == 0, "pre-condition");
4709     if (!free_list_only) {
4710       assert(_old_set->is_empty(), "pre-condition");
4711     }
4712   }
4713 
4714   bool do_heap_region(HeapRegion* r) {
4715     if (r->is_empty()) {
4716       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4717       // Add free regions to the free list
4718       r->set_free();
4719       _hrm->insert_into_free_list(r);
4720     } else if (!_free_list_only) {
4721       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4722 
4723       if (r->is_archive() || r->is_humongous()) {
4724         // We ignore archive and humongous regions. We left these sets unchanged.
4725       } else {
4726         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4727         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4728         r->move_to_old();
4729         _old_set->add(r);
4730       }
4731       _total_used += r->used();
4732     }
4733 
4734     return false;
4735   }
4736 
4737   size_t total_used() {
4738     return _total_used;
4739   }
4740 };
4741 
4742 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4743   assert_at_safepoint_on_vm_thread();
4744 
4745   if (!free_list_only) {
4746     _eden.clear();
4747     _survivor.clear();
4748   }
4749 
4750   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4751   heap_region_iterate(&cl);
4752 
4753   if (!free_list_only) {
4754     set_used(cl.total_used());
4755     if (_archive_allocator != NULL) {
4756       _archive_allocator->clear_used();
4757     }
4758   }
4759   assert_used_and_recalculate_used_equal(this);
4760 }
4761 
4762 // Methods for the mutator alloc region
4763 
4764 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4765                                                       bool force,
4766                                                       uint node_index) {
4767   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4768   bool should_allocate = policy()->should_allocate_mutator_region();
4769   if (force || should_allocate) {
4770     HeapRegion* new_alloc_region = new_region(word_size,
4771                                               HeapRegionType::Eden,
4772                                               false /* do_expand */,
4773                                               node_index);
4774     if (new_alloc_region != NULL) {
4775       set_region_short_lived_locked(new_alloc_region);
4776       _hr_printer.alloc(new_alloc_region, !should_allocate);
4777       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4778       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4779       return new_alloc_region;
4780     }
4781   }
4782   return NULL;
4783 }
4784 
4785 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4786                                                   size_t allocated_bytes) {
4787   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4788   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4789 
4790   collection_set()->add_eden_region(alloc_region);
4791   increase_used(allocated_bytes);
4792   _eden.add_used_bytes(allocated_bytes);
4793   _hr_printer.retire(alloc_region);
4794 
4795   // We update the eden sizes here, when the region is retired,
4796   // instead of when it's allocated, since this is the point that its
4797   // used space has been recorded in _summary_bytes_used.
4798   g1mm()->update_eden_size();
4799 }
4800 
4801 // Methods for the GC alloc regions
4802 
4803 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4804   if (dest.is_old()) {
4805     return true;
4806   } else {
4807     return survivor_regions_count() < policy()->max_survivor_regions();
4808   }
4809 }
4810 
4811 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
4812   assert(FreeList_lock->owned_by_self(), "pre-condition");
4813 
4814   if (!has_more_regions(dest)) {
4815     return NULL;
4816   }
4817 
4818   HeapRegionType type;
4819   if (dest.is_young()) {
4820     type = HeapRegionType::Survivor;
4821   } else {
4822     type = HeapRegionType::Old;
4823   }
4824 
4825   HeapRegion* new_alloc_region = new_region(word_size,
4826                                             type,
4827                                             true /* do_expand */,
4828                                             node_index);
4829 
4830   if (new_alloc_region != NULL) {
4831     if (type.is_survivor()) {
4832       new_alloc_region->set_survivor();
4833       _survivor.add(new_alloc_region);
4834       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4835     } else {
4836       new_alloc_region->set_old();
4837       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4838     }
4839     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4840     register_region_with_region_attr(new_alloc_region);
4841     _hr_printer.alloc(new_alloc_region);
4842     return new_alloc_region;
4843   }
4844   return NULL;
4845 }
4846 
4847 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4848                                              size_t allocated_bytes,
4849                                              G1HeapRegionAttr dest) {
4850   _bytes_used_during_gc += allocated_bytes;
4851   if (dest.is_old()) {
4852     old_set_add(alloc_region);
4853   } else {
4854     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4855     _survivor.add_used_bytes(allocated_bytes);
4856   }
4857 
4858   bool const during_im = collector_state()->in_initial_mark_gc();
4859   if (during_im && allocated_bytes > 0) {
4860     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4861   }
4862   _hr_printer.retire(alloc_region);
4863 }
4864 
4865 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4866   bool expanded = false;
4867   uint index = _hrm->find_highest_free(&expanded);
4868 
4869   if (index != G1_NO_HRM_INDEX) {
4870     if (expanded) {
4871       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4872                                 HeapRegion::GrainWords * HeapWordSize);
4873     }
4874     return _hrm->allocate_free_regions_starting_at(index, 1);
4875   }
4876   return NULL;
4877 }
4878 
4879 // Optimized nmethod scanning
4880 
4881 class RegisterNMethodOopClosure: public OopClosure {
4882   G1CollectedHeap* _g1h;
4883   nmethod* _nm;
4884 
4885   template <class T> void do_oop_work(T* p) {
4886     T heap_oop = RawAccess<>::oop_load(p);
4887     if (!CompressedOops::is_null(heap_oop)) {
4888       oop obj = CompressedOops::decode_not_null(heap_oop);
4889       HeapRegion* hr = _g1h->heap_region_containing(obj);
4890       assert(!hr->is_continues_humongous(),
4891              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4892              " starting at " HR_FORMAT,
4893              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4894 
4895       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4896       hr->add_strong_code_root_locked(_nm);
4897     }
4898   }
4899 
4900 public:
4901   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4902     _g1h(g1h), _nm(nm) {}
4903 
4904   void do_oop(oop* p)       { do_oop_work(p); }
4905   void do_oop(narrowOop* p) { do_oop_work(p); }
4906 };
4907 
4908 class UnregisterNMethodOopClosure: public OopClosure {
4909   G1CollectedHeap* _g1h;
4910   nmethod* _nm;
4911 
4912   template <class T> void do_oop_work(T* p) {
4913     T heap_oop = RawAccess<>::oop_load(p);
4914     if (!CompressedOops::is_null(heap_oop)) {
4915       oop obj = CompressedOops::decode_not_null(heap_oop);
4916       HeapRegion* hr = _g1h->heap_region_containing(obj);
4917       assert(!hr->is_continues_humongous(),
4918              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4919              " starting at " HR_FORMAT,
4920              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4921 
4922       hr->remove_strong_code_root(_nm);
4923     }
4924   }
4925 
4926 public:
4927   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4928     _g1h(g1h), _nm(nm) {}
4929 
4930   void do_oop(oop* p)       { do_oop_work(p); }
4931   void do_oop(narrowOop* p) { do_oop_work(p); }
4932 };
4933 
4934 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4935   guarantee(nm != NULL, "sanity");
4936   RegisterNMethodOopClosure reg_cl(this, nm);
4937   nm->oops_do(&reg_cl);
4938 }
4939 
4940 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4941   guarantee(nm != NULL, "sanity");
4942   UnregisterNMethodOopClosure reg_cl(this, nm);
4943   nm->oops_do(&reg_cl, true);
4944 }
4945 
4946 void G1CollectedHeap::purge_code_root_memory() {
4947   double purge_start = os::elapsedTime();
4948   G1CodeRootSet::purge();
4949   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4950   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4951 }
4952 
4953 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4954   G1CollectedHeap* _g1h;
4955 
4956 public:
4957   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4958     _g1h(g1h) {}
4959 
4960   void do_code_blob(CodeBlob* cb) {
4961     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4962     if (nm == NULL) {
4963       return;
4964     }
4965 
4966     _g1h->register_nmethod(nm);
4967   }
4968 };
4969 
4970 void G1CollectedHeap::rebuild_strong_code_roots() {
4971   RebuildStrongCodeRootClosure blob_cl(this);
4972   CodeCache::blobs_do(&blob_cl);
4973 }
4974 
4975 void G1CollectedHeap::initialize_serviceability() {
4976   _g1mm->initialize_serviceability();
4977 }
4978 
4979 MemoryUsage G1CollectedHeap::memory_usage() {
4980   return _g1mm->memory_usage();
4981 }
4982 
4983 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4984   return _g1mm->memory_managers();
4985 }
4986 
4987 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4988   return _g1mm->memory_pools();
4989 }