1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CardTableEntryClosure.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCParPhaseTimesTracker.hpp"
  45 #include "gc/g1/g1GCPhaseTimes.hpp"
  46 #include "gc/g1/g1HeapSizingPolicy.hpp"
  47 #include "gc/g1/g1HeapTransition.hpp"
  48 #include "gc/g1/g1HeapVerifier.hpp"
  49 #include "gc/g1/g1HotCardCache.hpp"
  50 #include "gc/g1/g1InitLogger.hpp"
  51 #include "gc/g1/g1MemoryPool.hpp"
  52 #include "gc/g1/g1OopClosures.inline.hpp"
  53 #include "gc/g1/g1ParallelCleaning.hpp"
  54 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  55 #include "gc/g1/g1Policy.hpp"
  56 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  57 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  58 #include "gc/g1/g1RemSet.hpp"
  59 #include "gc/g1/g1RootClosures.hpp"
  60 #include "gc/g1/g1RootProcessor.hpp"
  61 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  62 #include "gc/g1/g1StringDedup.hpp"
  63 #include "gc/g1/g1ThreadLocalData.hpp"
  64 #include "gc/g1/g1Trace.hpp"
  65 #include "gc/g1/g1YCTypes.hpp"
  66 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  67 #include "gc/g1/g1VMOperations.hpp"
  68 #include "gc/g1/heapRegion.inline.hpp"
  69 #include "gc/g1/heapRegionRemSet.hpp"
  70 #include "gc/g1/heapRegionSet.inline.hpp"
  71 #include "gc/shared/concurrentGCBreakpoints.hpp"
  72 #include "gc/shared/gcBehaviours.hpp"
  73 #include "gc/shared/gcHeapSummary.hpp"
  74 #include "gc/shared/gcId.hpp"
  75 #include "gc/shared/gcLocker.hpp"
  76 #include "gc/shared/gcTimer.hpp"
  77 #include "gc/shared/gcTraceTime.inline.hpp"
  78 #include "gc/shared/generationSpec.hpp"
  79 #include "gc/shared/isGCActiveMark.hpp"
  80 #include "gc/shared/locationPrinter.inline.hpp"
  81 #include "gc/shared/oopStorageParState.hpp"
  82 #include "gc/shared/preservedMarks.inline.hpp"
  83 #include "gc/shared/suspendibleThreadSet.hpp"
  84 #include "gc/shared/referenceProcessor.inline.hpp"
  85 #include "gc/shared/taskTerminator.hpp"
  86 #include "gc/shared/taskqueue.inline.hpp"
  87 #include "gc/shared/weakProcessor.inline.hpp"
  88 #include "gc/shared/workerPolicy.hpp"
  89 #include "logging/log.hpp"
  90 #include "memory/allocation.hpp"
  91 #include "memory/iterator.hpp"
  92 #include "memory/resourceArea.hpp"
  93 #include "memory/universe.hpp"
  94 #include "oops/access.inline.hpp"
  95 #include "oops/compressedOops.inline.hpp"
  96 #include "oops/oop.inline.hpp"
  97 #include "runtime/atomic.hpp"
  98 #include "runtime/flags/flagSetting.hpp"
  99 #include "runtime/handles.inline.hpp"
 100 #include "runtime/init.hpp"
 101 #include "runtime/orderAccess.hpp"
 102 #include "runtime/threadSMR.hpp"
 103 #include "runtime/vmThread.hpp"
 104 #include "utilities/align.hpp"
 105 #include "utilities/bitMap.inline.hpp"
 106 #include "utilities/globalDefinitions.hpp"
 107 #include "utilities/stack.inline.hpp"
 108 
 109 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 110 
 111 // INVARIANTS/NOTES
 112 //
 113 // All allocation activity covered by the G1CollectedHeap interface is
 114 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 115 // and allocate_new_tlab, which are the "entry" points to the
 116 // allocation code from the rest of the JVM.  (Note that this does not
 117 // apply to TLAB allocation, which is not part of this interface: it
 118 // is done by clients of this interface.)
 119 
 120 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 121  private:
 122   size_t _num_dirtied;
 123   G1CollectedHeap* _g1h;
 124   G1CardTable* _g1_ct;
 125 
 126   HeapRegion* region_for_card(CardValue* card_ptr) const {
 127     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 128   }
 129 
 130   bool will_become_free(HeapRegion* hr) const {
 131     // A region will be freed by free_collection_set if the region is in the
 132     // collection set and has not had an evacuation failure.
 133     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 134   }
 135 
 136  public:
 137   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 138     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 139 
 140   void do_card_ptr(CardValue* card_ptr, uint worker_id) {
 141     HeapRegion* hr = region_for_card(card_ptr);
 142 
 143     // Should only dirty cards in regions that won't be freed.
 144     if (!will_become_free(hr)) {
 145       *card_ptr = G1CardTable::dirty_card_val();
 146       _num_dirtied++;
 147     }
 148   }
 149 
 150   size_t num_dirtied()   const { return _num_dirtied; }
 151 };
 152 
 153 
 154 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 155   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 156 }
 157 
 158 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 159   // The from card cache is not the memory that is actually committed. So we cannot
 160   // take advantage of the zero_filled parameter.
 161   reset_from_card_cache(start_idx, num_regions);
 162 }
 163 
 164 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
 165   Ticks start = Ticks::now();
 166   workers()->run_task(task, workers()->active_workers());
 167   return Ticks::now() - start;
 168 }
 169 
 170 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 171                                              MemRegion mr) {
 172   return new HeapRegion(hrs_index, bot(), mr);
 173 }
 174 
 175 // Private methods.
 176 
 177 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 178                                         HeapRegionType type,
 179                                         bool do_expand,
 180                                         uint node_index) {
 181   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 182          "the only time we use this to allocate a humongous region is "
 183          "when we are allocating a single humongous region");
 184 
 185   HeapRegion* res = _hrm->allocate_free_region(type, node_index);
 186 
 187   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 188     // Currently, only attempts to allocate GC alloc regions set
 189     // do_expand to true. So, we should only reach here during a
 190     // safepoint. If this assumption changes we might have to
 191     // reconsider the use of _expand_heap_after_alloc_failure.
 192     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 193 
 194     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 195                               word_size * HeapWordSize);
 196 
 197     assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
 198            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
 199            word_size * HeapWordSize);
 200     if (expand_single_region(node_index)) {
 201       // Given that expand_single_region() succeeded in expanding the heap, and we
 202       // always expand the heap by an amount aligned to the heap
 203       // region size, the free list should in theory not be empty.
 204       // In either case allocate_free_region() will check for NULL.
 205       res = _hrm->allocate_free_region(type, node_index);
 206     } else {
 207       _expand_heap_after_alloc_failure = false;
 208     }
 209   }
 210   return res;
 211 }
 212 
 213 HeapWord*
 214 G1CollectedHeap::humongous_obj_allocate_initialize_regions(HeapRegion* first_hr,
 215                                                            uint num_regions,
 216                                                            size_t word_size) {
 217   assert(first_hr != NULL, "pre-condition");
 218   assert(is_humongous(word_size), "word_size should be humongous");
 219   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 220 
 221   // Index of last region in the series.
 222   uint first = first_hr->hrm_index();
 223   uint last = first + num_regions - 1;
 224 
 225   // We need to initialize the region(s) we just discovered. This is
 226   // a bit tricky given that it can happen concurrently with
 227   // refinement threads refining cards on these regions and
 228   // potentially wanting to refine the BOT as they are scanning
 229   // those cards (this can happen shortly after a cleanup; see CR
 230   // 6991377). So we have to set up the region(s) carefully and in
 231   // a specific order.
 232 
 233   // The word size sum of all the regions we will allocate.
 234   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 235   assert(word_size <= word_size_sum, "sanity");
 236 
 237   // The passed in hr will be the "starts humongous" region. The header
 238   // of the new object will be placed at the bottom of this region.
 239   HeapWord* new_obj = first_hr->bottom();
 240   // This will be the new top of the new object.
 241   HeapWord* obj_top = new_obj + word_size;
 242 
 243   // First, we need to zero the header of the space that we will be
 244   // allocating. When we update top further down, some refinement
 245   // threads might try to scan the region. By zeroing the header we
 246   // ensure that any thread that will try to scan the region will
 247   // come across the zero klass word and bail out.
 248   //
 249   // NOTE: It would not have been correct to have used
 250   // CollectedHeap::fill_with_object() and make the space look like
 251   // an int array. The thread that is doing the allocation will
 252   // later update the object header to a potentially different array
 253   // type and, for a very short period of time, the klass and length
 254   // fields will be inconsistent. This could cause a refinement
 255   // thread to calculate the object size incorrectly.
 256   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 257 
 258   // Next, pad out the unused tail of the last region with filler
 259   // objects, for improved usage accounting.
 260   // How many words we use for filler objects.
 261   size_t word_fill_size = word_size_sum - word_size;
 262 
 263   // How many words memory we "waste" which cannot hold a filler object.
 264   size_t words_not_fillable = 0;
 265 
 266   if (word_fill_size >= min_fill_size()) {
 267     fill_with_objects(obj_top, word_fill_size);
 268   } else if (word_fill_size > 0) {
 269     // We have space to fill, but we cannot fit an object there.
 270     words_not_fillable = word_fill_size;
 271     word_fill_size = 0;
 272   }
 273 
 274   // We will set up the first region as "starts humongous". This
 275   // will also update the BOT covering all the regions to reflect
 276   // that there is a single object that starts at the bottom of the
 277   // first region.
 278   first_hr->set_starts_humongous(obj_top, word_fill_size);
 279   _policy->remset_tracker()->update_at_allocate(first_hr);
 280   // Then, if there are any, we will set up the "continues
 281   // humongous" regions.
 282   HeapRegion* hr = NULL;
 283   for (uint i = first + 1; i <= last; ++i) {
 284     hr = region_at(i);
 285     hr->set_continues_humongous(first_hr);
 286     _policy->remset_tracker()->update_at_allocate(hr);
 287   }
 288 
 289   // Up to this point no concurrent thread would have been able to
 290   // do any scanning on any region in this series. All the top
 291   // fields still point to bottom, so the intersection between
 292   // [bottom,top] and [card_start,card_end] will be empty. Before we
 293   // update the top fields, we'll do a storestore to make sure that
 294   // no thread sees the update to top before the zeroing of the
 295   // object header and the BOT initialization.
 296   OrderAccess::storestore();
 297 
 298   // Now, we will update the top fields of the "continues humongous"
 299   // regions except the last one.
 300   for (uint i = first; i < last; ++i) {
 301     hr = region_at(i);
 302     hr->set_top(hr->end());
 303   }
 304 
 305   hr = region_at(last);
 306   // If we cannot fit a filler object, we must set top to the end
 307   // of the humongous object, otherwise we cannot iterate the heap
 308   // and the BOT will not be complete.
 309   hr->set_top(hr->end() - words_not_fillable);
 310 
 311   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 312          "obj_top should be in last region");
 313 
 314   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 315 
 316   assert(words_not_fillable == 0 ||
 317          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 318          "Miscalculation in humongous allocation");
 319 
 320   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 321 
 322   for (uint i = first; i <= last; ++i) {
 323     hr = region_at(i);
 324     _humongous_set.add(hr);
 325     _hr_printer.alloc(hr);
 326   }
 327 
 328   return new_obj;
 329 }
 330 
 331 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 332   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 333   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 334 }
 335 
 336 // If could fit into free regions w/o expansion, try.
 337 // Otherwise, if can expand, do so.
 338 // Otherwise, if using ex regions might help, try with ex given back.
 339 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 340   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 341 
 342   _verifier->verify_region_sets_optional();
 343 
 344   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 345 
 346   // Policy: First try to allocate a humongous object in the free list.
 347   HeapRegion* humongous_start = _hrm->allocate_humongous(obj_regions);
 348   if (humongous_start == NULL) {
 349     // Policy: We could not find enough regions for the humongous object in the
 350     // free list. Look through the heap to find a mix of free and uncommitted regions.
 351     // If so, expand the heap and allocate the humongous object.
 352     humongous_start = _hrm->expand_and_allocate_humongous(obj_regions);
 353     if (humongous_start != NULL) {
 354       // We managed to find a region by expanding the heap.
 355       log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B",
 356                                 word_size * HeapWordSize);
 357       policy()->record_new_heap_size(num_regions());
 358     } else {
 359       // Policy: Potentially trigger a defragmentation GC.
 360     }
 361   }
 362 
 363   HeapWord* result = NULL;
 364   if (humongous_start != NULL) {
 365     result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size);
 366     assert(result != NULL, "it should always return a valid result");
 367 
 368     // A successful humongous object allocation changes the used space
 369     // information of the old generation so we need to recalculate the
 370     // sizes and update the jstat counters here.
 371     g1mm()->update_sizes();
 372   }
 373 
 374   _verifier->verify_region_sets_optional();
 375 
 376   return result;
 377 }
 378 
 379 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 380                                              size_t requested_size,
 381                                              size_t* actual_size) {
 382   assert_heap_not_locked_and_not_at_safepoint();
 383   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 384 
 385   return attempt_allocation(min_size, requested_size, actual_size);
 386 }
 387 
 388 HeapWord*
 389 G1CollectedHeap::mem_allocate(size_t word_size,
 390                               bool*  gc_overhead_limit_was_exceeded) {
 391   assert_heap_not_locked_and_not_at_safepoint();
 392 
 393   if (is_humongous(word_size)) {
 394     return attempt_allocation_humongous(word_size);
 395   }
 396   size_t dummy = 0;
 397   return attempt_allocation(word_size, word_size, &dummy);
 398 }
 399 
 400 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 401   ResourceMark rm; // For retrieving the thread names in log messages.
 402 
 403   // Make sure you read the note in attempt_allocation_humongous().
 404 
 405   assert_heap_not_locked_and_not_at_safepoint();
 406   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 407          "be called for humongous allocation requests");
 408 
 409   // We should only get here after the first-level allocation attempt
 410   // (attempt_allocation()) failed to allocate.
 411 
 412   // We will loop until a) we manage to successfully perform the
 413   // allocation or b) we successfully schedule a collection which
 414   // fails to perform the allocation. b) is the only case when we'll
 415   // return NULL.
 416   HeapWord* result = NULL;
 417   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 418     bool should_try_gc;
 419     uint gc_count_before;
 420 
 421     {
 422       MutexLocker x(Heap_lock);
 423       result = _allocator->attempt_allocation_locked(word_size);
 424       if (result != NULL) {
 425         return result;
 426       }
 427 
 428       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 429       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 430       // waiting because the GCLocker is active to not wait too long.
 431       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 432         // No need for an ergo message here, can_expand_young_list() does this when
 433         // it returns true.
 434         result = _allocator->attempt_allocation_force(word_size);
 435         if (result != NULL) {
 436           return result;
 437         }
 438       }
 439       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 440       // the GCLocker initiated GC has been performed and then retry. This includes
 441       // the case when the GC Locker is not active but has not been performed.
 442       should_try_gc = !GCLocker::needs_gc();
 443       // Read the GC count while still holding the Heap_lock.
 444       gc_count_before = total_collections();
 445     }
 446 
 447     if (should_try_gc) {
 448       bool succeeded;
 449       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 450                                    GCCause::_g1_inc_collection_pause);
 451       if (result != NULL) {
 452         assert(succeeded, "only way to get back a non-NULL result");
 453         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 454                              Thread::current()->name(), p2i(result));
 455         return result;
 456       }
 457 
 458       if (succeeded) {
 459         // We successfully scheduled a collection which failed to allocate. No
 460         // point in trying to allocate further. We'll just return NULL.
 461         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 462                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 463         return NULL;
 464       }
 465       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 466                            Thread::current()->name(), word_size);
 467     } else {
 468       // Failed to schedule a collection.
 469       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 470         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 471                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 472         return NULL;
 473       }
 474       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 475       // The GCLocker is either active or the GCLocker initiated
 476       // GC has not yet been performed. Stall until it is and
 477       // then retry the allocation.
 478       GCLocker::stall_until_clear();
 479       gclocker_retry_count += 1;
 480     }
 481 
 482     // We can reach here if we were unsuccessful in scheduling a
 483     // collection (because another thread beat us to it) or if we were
 484     // stalled due to the GC locker. In either can we should retry the
 485     // allocation attempt in case another thread successfully
 486     // performed a collection and reclaimed enough space. We do the
 487     // first attempt (without holding the Heap_lock) here and the
 488     // follow-on attempt will be at the start of the next loop
 489     // iteration (after taking the Heap_lock).
 490     size_t dummy = 0;
 491     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 492     if (result != NULL) {
 493       return result;
 494     }
 495 
 496     // Give a warning if we seem to be looping forever.
 497     if ((QueuedAllocationWarningCount > 0) &&
 498         (try_count % QueuedAllocationWarningCount == 0)) {
 499       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 500                              Thread::current()->name(), try_count, word_size);
 501     }
 502   }
 503 
 504   ShouldNotReachHere();
 505   return NULL;
 506 }
 507 
 508 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 509   assert_at_safepoint_on_vm_thread();
 510   if (_archive_allocator == NULL) {
 511     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 512   }
 513 }
 514 
 515 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 516   // Allocations in archive regions cannot be of a size that would be considered
 517   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 518   // may be different at archive-restore time.
 519   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 520 }
 521 
 522 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 523   assert_at_safepoint_on_vm_thread();
 524   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 525   if (is_archive_alloc_too_large(word_size)) {
 526     return NULL;
 527   }
 528   return _archive_allocator->archive_mem_allocate(word_size);
 529 }
 530 
 531 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 532                                               size_t end_alignment_in_bytes) {
 533   assert_at_safepoint_on_vm_thread();
 534   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 535 
 536   // Call complete_archive to do the real work, filling in the MemRegion
 537   // array with the archive regions.
 538   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 539   delete _archive_allocator;
 540   _archive_allocator = NULL;
 541 }
 542 
 543 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 544   assert(ranges != NULL, "MemRegion array NULL");
 545   assert(count != 0, "No MemRegions provided");
 546   MemRegion reserved = _hrm->reserved();
 547   for (size_t i = 0; i < count; i++) {
 548     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 549       return false;
 550     }
 551   }
 552   return true;
 553 }
 554 
 555 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 556                                             size_t count,
 557                                             bool open) {
 558   assert(!is_init_completed(), "Expect to be called at JVM init time");
 559   assert(ranges != NULL, "MemRegion array NULL");
 560   assert(count != 0, "No MemRegions provided");
 561   MutexLocker x(Heap_lock);
 562 
 563   MemRegion reserved = _hrm->reserved();
 564   HeapWord* prev_last_addr = NULL;
 565   HeapRegion* prev_last_region = NULL;
 566 
 567   // Temporarily disable pretouching of heap pages. This interface is used
 568   // when mmap'ing archived heap data in, so pre-touching is wasted.
 569   FlagSetting fs(AlwaysPreTouch, false);
 570 
 571   // Enable archive object checking used by G1MarkSweep. We have to let it know
 572   // about each archive range, so that objects in those ranges aren't marked.
 573   G1ArchiveAllocator::enable_archive_object_check();
 574 
 575   // For each specified MemRegion range, allocate the corresponding G1
 576   // regions and mark them as archive regions. We expect the ranges
 577   // in ascending starting address order, without overlap.
 578   for (size_t i = 0; i < count; i++) {
 579     MemRegion curr_range = ranges[i];
 580     HeapWord* start_address = curr_range.start();
 581     size_t word_size = curr_range.word_size();
 582     HeapWord* last_address = curr_range.last();
 583     size_t commits = 0;
 584 
 585     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 586               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 587               p2i(start_address), p2i(last_address));
 588     guarantee(start_address > prev_last_addr,
 589               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 590               p2i(start_address), p2i(prev_last_addr));
 591     prev_last_addr = last_address;
 592 
 593     // Check for ranges that start in the same G1 region in which the previous
 594     // range ended, and adjust the start address so we don't try to allocate
 595     // the same region again. If the current range is entirely within that
 596     // region, skip it, just adjusting the recorded top.
 597     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 598     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 599       start_address = start_region->end();
 600       if (start_address > last_address) {
 601         increase_used(word_size * HeapWordSize);
 602         start_region->set_top(last_address + 1);
 603         continue;
 604       }
 605       start_region->set_top(start_address);
 606       curr_range = MemRegion(start_address, last_address + 1);
 607       start_region = _hrm->addr_to_region(start_address);
 608     }
 609 
 610     // Perform the actual region allocation, exiting if it fails.
 611     // Then note how much new space we have allocated.
 612     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 613       return false;
 614     }
 615     increase_used(word_size * HeapWordSize);
 616     if (commits != 0) {
 617       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 618                                 HeapRegion::GrainWords * HeapWordSize * commits);
 619 
 620     }
 621 
 622     // Mark each G1 region touched by the range as archive, add it to
 623     // the old set, and set top.
 624     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 625     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 626     prev_last_region = last_region;
 627 
 628     while (curr_region != NULL) {
 629       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 630              "Region already in use (index %u)", curr_region->hrm_index());
 631       if (open) {
 632         curr_region->set_open_archive();
 633       } else {
 634         curr_region->set_closed_archive();
 635       }
 636       _hr_printer.alloc(curr_region);
 637       _archive_set.add(curr_region);
 638       HeapWord* top;
 639       HeapRegion* next_region;
 640       if (curr_region != last_region) {
 641         top = curr_region->end();
 642         next_region = _hrm->next_region_in_heap(curr_region);
 643       } else {
 644         top = last_address + 1;
 645         next_region = NULL;
 646       }
 647       curr_region->set_top(top);
 648       curr_region = next_region;
 649     }
 650 
 651     // Notify mark-sweep of the archive
 652     G1ArchiveAllocator::set_range_archive(curr_range, open);
 653   }
 654   return true;
 655 }
 656 
 657 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 658   assert(!is_init_completed(), "Expect to be called at JVM init time");
 659   assert(ranges != NULL, "MemRegion array NULL");
 660   assert(count != 0, "No MemRegions provided");
 661   MemRegion reserved = _hrm->reserved();
 662   HeapWord *prev_last_addr = NULL;
 663   HeapRegion* prev_last_region = NULL;
 664 
 665   // For each MemRegion, create filler objects, if needed, in the G1 regions
 666   // that contain the address range. The address range actually within the
 667   // MemRegion will not be modified. That is assumed to have been initialized
 668   // elsewhere, probably via an mmap of archived heap data.
 669   MutexLocker x(Heap_lock);
 670   for (size_t i = 0; i < count; i++) {
 671     HeapWord* start_address = ranges[i].start();
 672     HeapWord* last_address = ranges[i].last();
 673 
 674     assert(reserved.contains(start_address) && reserved.contains(last_address),
 675            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 676            p2i(start_address), p2i(last_address));
 677     assert(start_address > prev_last_addr,
 678            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 679            p2i(start_address), p2i(prev_last_addr));
 680 
 681     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 682     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 683     HeapWord* bottom_address = start_region->bottom();
 684 
 685     // Check for a range beginning in the same region in which the
 686     // previous one ended.
 687     if (start_region == prev_last_region) {
 688       bottom_address = prev_last_addr + 1;
 689     }
 690 
 691     // Verify that the regions were all marked as archive regions by
 692     // alloc_archive_regions.
 693     HeapRegion* curr_region = start_region;
 694     while (curr_region != NULL) {
 695       guarantee(curr_region->is_archive(),
 696                 "Expected archive region at index %u", curr_region->hrm_index());
 697       if (curr_region != last_region) {
 698         curr_region = _hrm->next_region_in_heap(curr_region);
 699       } else {
 700         curr_region = NULL;
 701       }
 702     }
 703 
 704     prev_last_addr = last_address;
 705     prev_last_region = last_region;
 706 
 707     // Fill the memory below the allocated range with dummy object(s),
 708     // if the region bottom does not match the range start, or if the previous
 709     // range ended within the same G1 region, and there is a gap.
 710     if (start_address != bottom_address) {
 711       size_t fill_size = pointer_delta(start_address, bottom_address);
 712       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 713       increase_used(fill_size * HeapWordSize);
 714     }
 715   }
 716 }
 717 
 718 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 719                                                      size_t desired_word_size,
 720                                                      size_t* actual_word_size) {
 721   assert_heap_not_locked_and_not_at_safepoint();
 722   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 723          "be called for humongous allocation requests");
 724 
 725   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 726 
 727   if (result == NULL) {
 728     *actual_word_size = desired_word_size;
 729     result = attempt_allocation_slow(desired_word_size);
 730   }
 731 
 732   assert_heap_not_locked();
 733   if (result != NULL) {
 734     assert(*actual_word_size != 0, "Actual size must have been set here");
 735     dirty_young_block(result, *actual_word_size);
 736   } else {
 737     *actual_word_size = 0;
 738   }
 739 
 740   return result;
 741 }
 742 
 743 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 744   assert(!is_init_completed(), "Expect to be called at JVM init time");
 745   assert(ranges != NULL, "MemRegion array NULL");
 746   assert(count != 0, "No MemRegions provided");
 747   MemRegion reserved = _hrm->reserved();
 748   HeapWord* prev_last_addr = NULL;
 749   HeapRegion* prev_last_region = NULL;
 750   size_t size_used = 0;
 751   size_t uncommitted_regions = 0;
 752 
 753   // For each Memregion, free the G1 regions that constitute it, and
 754   // notify mark-sweep that the range is no longer to be considered 'archive.'
 755   MutexLocker x(Heap_lock);
 756   for (size_t i = 0; i < count; i++) {
 757     HeapWord* start_address = ranges[i].start();
 758     HeapWord* last_address = ranges[i].last();
 759 
 760     assert(reserved.contains(start_address) && reserved.contains(last_address),
 761            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 762            p2i(start_address), p2i(last_address));
 763     assert(start_address > prev_last_addr,
 764            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 765            p2i(start_address), p2i(prev_last_addr));
 766     size_used += ranges[i].byte_size();
 767     prev_last_addr = last_address;
 768 
 769     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 770     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 771 
 772     // Check for ranges that start in the same G1 region in which the previous
 773     // range ended, and adjust the start address so we don't try to free
 774     // the same region again. If the current range is entirely within that
 775     // region, skip it.
 776     if (start_region == prev_last_region) {
 777       start_address = start_region->end();
 778       if (start_address > last_address) {
 779         continue;
 780       }
 781       start_region = _hrm->addr_to_region(start_address);
 782     }
 783     prev_last_region = last_region;
 784 
 785     // After verifying that each region was marked as an archive region by
 786     // alloc_archive_regions, set it free and empty and uncommit it.
 787     HeapRegion* curr_region = start_region;
 788     while (curr_region != NULL) {
 789       guarantee(curr_region->is_archive(),
 790                 "Expected archive region at index %u", curr_region->hrm_index());
 791       uint curr_index = curr_region->hrm_index();
 792       _archive_set.remove(curr_region);
 793       curr_region->set_free();
 794       curr_region->set_top(curr_region->bottom());
 795       if (curr_region != last_region) {
 796         curr_region = _hrm->next_region_in_heap(curr_region);
 797       } else {
 798         curr_region = NULL;
 799       }
 800       _hrm->shrink_at(curr_index, 1);
 801       uncommitted_regions++;
 802     }
 803 
 804     // Notify mark-sweep that this is no longer an archive range.
 805     G1ArchiveAllocator::clear_range_archive(ranges[i]);
 806   }
 807 
 808   if (uncommitted_regions != 0) {
 809     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 810                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 811   }
 812   decrease_used(size_used);
 813 }
 814 
 815 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 816   assert(obj != NULL, "archived obj is NULL");
 817   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 818 
 819   // Loading an archived object makes it strongly reachable. If it is
 820   // loaded during concurrent marking, it must be enqueued to the SATB
 821   // queue, shading the previously white object gray.
 822   G1BarrierSet::enqueue(obj);
 823 
 824   return obj;
 825 }
 826 
 827 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 828   ResourceMark rm; // For retrieving the thread names in log messages.
 829 
 830   // The structure of this method has a lot of similarities to
 831   // attempt_allocation_slow(). The reason these two were not merged
 832   // into a single one is that such a method would require several "if
 833   // allocation is not humongous do this, otherwise do that"
 834   // conditional paths which would obscure its flow. In fact, an early
 835   // version of this code did use a unified method which was harder to
 836   // follow and, as a result, it had subtle bugs that were hard to
 837   // track down. So keeping these two methods separate allows each to
 838   // be more readable. It will be good to keep these two in sync as
 839   // much as possible.
 840 
 841   assert_heap_not_locked_and_not_at_safepoint();
 842   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 843          "should only be called for humongous allocations");
 844 
 845   // Humongous objects can exhaust the heap quickly, so we should check if we
 846   // need to start a marking cycle at each humongous object allocation. We do
 847   // the check before we do the actual allocation. The reason for doing it
 848   // before the allocation is that we avoid having to keep track of the newly
 849   // allocated memory while we do a GC.
 850   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 851                                            word_size)) {
 852     collect(GCCause::_g1_humongous_allocation);
 853   }
 854 
 855   // We will loop until a) we manage to successfully perform the
 856   // allocation or b) we successfully schedule a collection which
 857   // fails to perform the allocation. b) is the only case when we'll
 858   // return NULL.
 859   HeapWord* result = NULL;
 860   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 861     bool should_try_gc;
 862     uint gc_count_before;
 863 
 864 
 865     {
 866       MutexLocker x(Heap_lock);
 867 
 868       // Given that humongous objects are not allocated in young
 869       // regions, we'll first try to do the allocation without doing a
 870       // collection hoping that there's enough space in the heap.
 871       result = humongous_obj_allocate(word_size);
 872       if (result != NULL) {
 873         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 874         policy()->old_gen_alloc_tracker()->
 875           add_allocated_bytes_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 876         return result;
 877       }
 878 
 879       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 880       // the GCLocker initiated GC has been performed and then retry. This includes
 881       // the case when the GC Locker is not active but has not been performed.
 882       should_try_gc = !GCLocker::needs_gc();
 883       // Read the GC count while still holding the Heap_lock.
 884       gc_count_before = total_collections();
 885     }
 886 
 887     if (should_try_gc) {
 888       bool succeeded;
 889       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 890                                    GCCause::_g1_humongous_allocation);
 891       if (result != NULL) {
 892         assert(succeeded, "only way to get back a non-NULL result");
 893         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 894                              Thread::current()->name(), p2i(result));
 895         return result;
 896       }
 897 
 898       if (succeeded) {
 899         // We successfully scheduled a collection which failed to allocate. No
 900         // point in trying to allocate further. We'll just return NULL.
 901         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 902                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 903         return NULL;
 904       }
 905       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 906                            Thread::current()->name(), word_size);
 907     } else {
 908       // Failed to schedule a collection.
 909       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 910         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 911                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 912         return NULL;
 913       }
 914       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 915       // The GCLocker is either active or the GCLocker initiated
 916       // GC has not yet been performed. Stall until it is and
 917       // then retry the allocation.
 918       GCLocker::stall_until_clear();
 919       gclocker_retry_count += 1;
 920     }
 921 
 922 
 923     // We can reach here if we were unsuccessful in scheduling a
 924     // collection (because another thread beat us to it) or if we were
 925     // stalled due to the GC locker. In either can we should retry the
 926     // allocation attempt in case another thread successfully
 927     // performed a collection and reclaimed enough space.
 928     // Humongous object allocation always needs a lock, so we wait for the retry
 929     // in the next iteration of the loop, unlike for the regular iteration case.
 930     // Give a warning if we seem to be looping forever.
 931 
 932     if ((QueuedAllocationWarningCount > 0) &&
 933         (try_count % QueuedAllocationWarningCount == 0)) {
 934       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 935                              Thread::current()->name(), try_count, word_size);
 936     }
 937   }
 938 
 939   ShouldNotReachHere();
 940   return NULL;
 941 }
 942 
 943 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 944                                                            bool expect_null_mutator_alloc_region) {
 945   assert_at_safepoint_on_vm_thread();
 946   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 947          "the current alloc region was unexpectedly found to be non-NULL");
 948 
 949   if (!is_humongous(word_size)) {
 950     return _allocator->attempt_allocation_locked(word_size);
 951   } else {
 952     HeapWord* result = humongous_obj_allocate(word_size);
 953     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 954       collector_state()->set_initiate_conc_mark_if_possible(true);
 955     }
 956     return result;
 957   }
 958 
 959   ShouldNotReachHere();
 960 }
 961 
 962 class PostCompactionPrinterClosure: public HeapRegionClosure {
 963 private:
 964   G1HRPrinter* _hr_printer;
 965 public:
 966   bool do_heap_region(HeapRegion* hr) {
 967     assert(!hr->is_young(), "not expecting to find young regions");
 968     _hr_printer->post_compaction(hr);
 969     return false;
 970   }
 971 
 972   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 973     : _hr_printer(hr_printer) { }
 974 };
 975 
 976 void G1CollectedHeap::print_hrm_post_compaction() {
 977   if (_hr_printer.is_active()) {
 978     PostCompactionPrinterClosure cl(hr_printer());
 979     heap_region_iterate(&cl);
 980   }
 981 }
 982 
 983 void G1CollectedHeap::abort_concurrent_cycle() {
 984   // If we start the compaction before the CM threads finish
 985   // scanning the root regions we might trip them over as we'll
 986   // be moving objects / updating references. So let's wait until
 987   // they are done. By telling them to abort, they should complete
 988   // early.
 989   _cm->root_regions()->abort();
 990   _cm->root_regions()->wait_until_scan_finished();
 991 
 992   // Disable discovery and empty the discovered lists
 993   // for the CM ref processor.
 994   _ref_processor_cm->disable_discovery();
 995   _ref_processor_cm->abandon_partial_discovery();
 996   _ref_processor_cm->verify_no_references_recorded();
 997 
 998   // Abandon current iterations of concurrent marking and concurrent
 999   // refinement, if any are in progress.
1000   concurrent_mark()->concurrent_cycle_abort();
1001 }
1002 
1003 void G1CollectedHeap::prepare_heap_for_full_collection() {
1004   // Make sure we'll choose a new allocation region afterwards.
1005   _allocator->release_mutator_alloc_regions();
1006   _allocator->abandon_gc_alloc_regions();
1007 
1008   // We may have added regions to the current incremental collection
1009   // set between the last GC or pause and now. We need to clear the
1010   // incremental collection set and then start rebuilding it afresh
1011   // after this full GC.
1012   abandon_collection_set(collection_set());
1013 
1014   tear_down_region_sets(false /* free_list_only */);
1015 
1016   hrm()->prepare_for_full_collection_start();
1017 }
1018 
1019 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1020   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1021   assert_used_and_recalculate_used_equal(this);
1022   _verifier->verify_region_sets_optional();
1023   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1024   _verifier->check_bitmaps("Full GC Start");
1025 }
1026 
1027 void G1CollectedHeap::prepare_heap_for_mutators() {
1028   hrm()->prepare_for_full_collection_end();
1029 
1030   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1031   ClassLoaderDataGraph::purge();
1032   MetaspaceUtils::verify_metrics();
1033 
1034   // Prepare heap for normal collections.
1035   assert(num_free_regions() == 0, "we should not have added any free regions");
1036   rebuild_region_sets(false /* free_list_only */);
1037   abort_refinement();
1038 
1039   resize_heap_after_full_collection();
1040 
1041   // Rebuild the strong code root lists for each region
1042   rebuild_strong_code_roots();
1043 
1044   // Purge code root memory
1045   purge_code_root_memory();
1046 
1047   // Start a new incremental collection set for the next pause
1048   start_new_collection_set();
1049 
1050   _allocator->init_mutator_alloc_regions();
1051 
1052   // Post collection state updates.
1053   MetaspaceGC::compute_new_size();
1054 }
1055 
1056 void G1CollectedHeap::abort_refinement() {
1057   if (_hot_card_cache->use_cache()) {
1058     _hot_card_cache->reset_hot_cache();
1059   }
1060 
1061   // Discard all remembered set updates and reset refinement statistics.
1062   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1063   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1064          "DCQS should be empty");
1065   concurrent_refine()->get_and_reset_refinement_stats();
1066 }
1067 
1068 void G1CollectedHeap::verify_after_full_collection() {
1069   _hrm->verify_optional();
1070   _verifier->verify_region_sets_optional();
1071   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1072   // Clear the previous marking bitmap, if needed for bitmap verification.
1073   // Note we cannot do this when we clear the next marking bitmap in
1074   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1075   // objects marked during a full GC against the previous bitmap.
1076   // But we need to clear it before calling check_bitmaps below since
1077   // the full GC has compacted objects and updated TAMS but not updated
1078   // the prev bitmap.
1079   if (G1VerifyBitmaps) {
1080     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1081     _cm->clear_prev_bitmap(workers());
1082   }
1083   // This call implicitly verifies that the next bitmap is clear after Full GC.
1084   _verifier->check_bitmaps("Full GC End");
1085 
1086   // At this point there should be no regions in the
1087   // entire heap tagged as young.
1088   assert(check_young_list_empty(), "young list should be empty at this point");
1089 
1090   // Note: since we've just done a full GC, concurrent
1091   // marking is no longer active. Therefore we need not
1092   // re-enable reference discovery for the CM ref processor.
1093   // That will be done at the start of the next marking cycle.
1094   // We also know that the STW processor should no longer
1095   // discover any new references.
1096   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1097   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1098   _ref_processor_stw->verify_no_references_recorded();
1099   _ref_processor_cm->verify_no_references_recorded();
1100 }
1101 
1102 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1103   // Post collection logging.
1104   // We should do this after we potentially resize the heap so
1105   // that all the COMMIT / UNCOMMIT events are generated before
1106   // the compaction events.
1107   print_hrm_post_compaction();
1108   heap_transition->print();
1109   print_heap_after_gc();
1110   print_heap_regions();
1111 }
1112 
1113 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1114                                          bool clear_all_soft_refs) {
1115   assert_at_safepoint_on_vm_thread();
1116 
1117   if (GCLocker::check_active_before_gc()) {
1118     // Full GC was not completed.
1119     return false;
1120   }
1121 
1122   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1123       soft_ref_policy()->should_clear_all_soft_refs();
1124 
1125   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1126   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1127 
1128   collector.prepare_collection();
1129   collector.collect();
1130   collector.complete_collection();
1131 
1132   // Full collection was successfully completed.
1133   return true;
1134 }
1135 
1136 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1137   // Currently, there is no facility in the do_full_collection(bool) API to notify
1138   // the caller that the collection did not succeed (e.g., because it was locked
1139   // out by the GC locker). So, right now, we'll ignore the return value.
1140   bool dummy = do_full_collection(true,                /* explicit_gc */
1141                                   clear_all_soft_refs);
1142 }
1143 
1144 void G1CollectedHeap::resize_heap_after_full_collection() {
1145   assert_at_safepoint_on_vm_thread();
1146 
1147   // Capacity, free and used after the GC counted as full regions to
1148   // include the waste in the following calculations.
1149   const size_t capacity_after_gc = capacity();
1150   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1151 
1152   size_t minimum_desired_capacity = _heap_sizing_policy->target_heap_capacity(used_after_gc, MinHeapFreeRatio);
1153   size_t maximum_desired_capacity = _heap_sizing_policy->target_heap_capacity(used_after_gc, MaxHeapFreeRatio);
1154 
1155   // This assert only makes sense here, before we adjust them
1156   // with respect to the min and max heap size.
1157   assert(minimum_desired_capacity <= maximum_desired_capacity,
1158          "minimum_desired_capacity = " SIZE_FORMAT ", "
1159          "maximum_desired_capacity = " SIZE_FORMAT,
1160          minimum_desired_capacity, maximum_desired_capacity);
1161 
1162   // Should not be greater than the heap max size. No need to adjust
1163   // it with respect to the heap min size as it's a lower bound (i.e.,
1164   // we'll try to make the capacity larger than it, not smaller).
1165   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1166   // Should not be less than the heap min size. No need to adjust it
1167   // with respect to the heap max size as it's an upper bound (i.e.,
1168   // we'll try to make the capacity smaller than it, not greater).
1169   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1170 
1171   if (capacity_after_gc < minimum_desired_capacity) {
1172     // Don't expand unless it's significant
1173     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1174 
1175     log_debug(gc, ergo, heap)("Heap resize. Attempt heap expansion (capacity lower than min desired capacity). "
1176                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1177                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1178                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1179 
1180     expand(expand_bytes, _workers);
1181 
1182     // No expansion, now see if we want to shrink
1183   } else if (capacity_after_gc > maximum_desired_capacity) {
1184     // Capacity too large, compute shrinking size
1185     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1186 
1187     log_debug(gc, ergo, heap)("Heap resize. Attempt heap shrinking (capacity higher than max desired capacity). "
1188                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1189                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1190                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1191 
1192     shrink(shrink_bytes);
1193   }
1194 }
1195 
1196 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1197                                                             bool do_gc,
1198                                                             bool clear_all_soft_refs,
1199                                                             bool expect_null_mutator_alloc_region,
1200                                                             bool* gc_succeeded) {
1201   *gc_succeeded = true;
1202   // Let's attempt the allocation first.
1203   HeapWord* result =
1204     attempt_allocation_at_safepoint(word_size,
1205                                     expect_null_mutator_alloc_region);
1206   if (result != NULL) {
1207     return result;
1208   }
1209 
1210   // In a G1 heap, we're supposed to keep allocation from failing by
1211   // incremental pauses.  Therefore, at least for now, we'll favor
1212   // expansion over collection.  (This might change in the future if we can
1213   // do something smarter than full collection to satisfy a failed alloc.)
1214   result = expand_and_allocate(word_size);
1215   if (result != NULL) {
1216     return result;
1217   }
1218 
1219   if (do_gc) {
1220     // Expansion didn't work, we'll try to do a Full GC.
1221     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1222                                        clear_all_soft_refs);
1223   }
1224 
1225   return NULL;
1226 }
1227 
1228 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1229                                                      bool* succeeded) {
1230   assert_at_safepoint_on_vm_thread();
1231 
1232   // Attempts to allocate followed by Full GC.
1233   HeapWord* result =
1234     satisfy_failed_allocation_helper(word_size,
1235                                      true,  /* do_gc */
1236                                      false, /* clear_all_soft_refs */
1237                                      false, /* expect_null_mutator_alloc_region */
1238                                      succeeded);
1239 
1240   if (result != NULL || !*succeeded) {
1241     return result;
1242   }
1243 
1244   // Attempts to allocate followed by Full GC that will collect all soft references.
1245   result = satisfy_failed_allocation_helper(word_size,
1246                                             true, /* do_gc */
1247                                             true, /* clear_all_soft_refs */
1248                                             true, /* expect_null_mutator_alloc_region */
1249                                             succeeded);
1250 
1251   if (result != NULL || !*succeeded) {
1252     return result;
1253   }
1254 
1255   // Attempts to allocate, no GC
1256   result = satisfy_failed_allocation_helper(word_size,
1257                                             false, /* do_gc */
1258                                             false, /* clear_all_soft_refs */
1259                                             true,  /* expect_null_mutator_alloc_region */
1260                                             succeeded);
1261 
1262   if (result != NULL) {
1263     return result;
1264   }
1265 
1266   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1267          "Flag should have been handled and cleared prior to this point");
1268 
1269   // What else?  We might try synchronous finalization later.  If the total
1270   // space available is large enough for the allocation, then a more
1271   // complete compaction phase than we've tried so far might be
1272   // appropriate.
1273   return NULL;
1274 }
1275 
1276 // Attempting to expand the heap sufficiently
1277 // to support an allocation of the given "word_size".  If
1278 // successful, perform the allocation and return the address of the
1279 // allocated block, or else "NULL".
1280 
1281 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1282   assert_at_safepoint_on_vm_thread();
1283 
1284   _verifier->verify_region_sets_optional();
1285 
1286   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1287   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1288                             word_size * HeapWordSize);
1289 
1290 
1291   if (expand(expand_bytes, _workers)) {
1292     _hrm->verify_optional();
1293     _verifier->verify_region_sets_optional();
1294     return attempt_allocation_at_safepoint(word_size,
1295                                            false /* expect_null_mutator_alloc_region */);
1296   }
1297   return NULL;
1298 }
1299 
1300 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1301   assert(expand_bytes > 0, "must be");
1302 
1303   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1304   aligned_expand_bytes = align_up(aligned_expand_bytes,
1305                                   HeapRegion::GrainBytes);
1306 
1307   log_debug(gc, ergo, heap)("Heap resize. requested expansion amount: " SIZE_FORMAT "B aligned expansion amount: " SIZE_FORMAT "B",
1308                             expand_bytes, aligned_expand_bytes);
1309 
1310   if (capacity() == max_capacity()) {
1311     log_debug(gc, ergo, heap)("Heap resize. Did not expand the heap (heap already fully expanded)");
1312     return false;
1313   }
1314 
1315   double expand_heap_start_time_sec = os::elapsedTime();
1316   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1317   assert(regions_to_expand > 0, "Must expand by at least one region");
1318 
1319   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1320   if (expand_time_ms != NULL) {
1321     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1322   }
1323 
1324   if (expanded_by > 0) {
1325     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1326     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1327     policy()->record_new_heap_size(num_regions());
1328 
1329     log_debug(gc, ergo, heap)("Heap resize. Requested expansion amount: " SIZE_FORMAT "B actual expansion amount: " SIZE_FORMAT "B",
1330                               aligned_expand_bytes, actual_expand_bytes);
1331   } else {
1332     log_debug(gc, ergo, heap)("Heap resize. Did not expand the heap (heap expansion operation failed)");
1333 
1334     // The expansion of the virtual storage space was unsuccessful.
1335     // Let's see if it was because we ran out of swap.
1336     if (G1ExitOnExpansionFailure &&
1337         _hrm->available() >= regions_to_expand) {
1338       // We had head room...
1339       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1340     }
1341   }
1342   return regions_to_expand > 0;
1343 }
1344 
1345 bool G1CollectedHeap::expand_single_region(uint node_index) {
1346   uint expanded_by = _hrm->expand_on_preferred_node(node_index);
1347 
1348   if (expanded_by == 0) {
1349     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available());
1350     log_debug(gc, ergo, heap)("Heap resize. Did not expand the heap (heap already fully expanded)");
1351     return false;
1352   }
1353 
1354   policy()->record_new_heap_size(num_regions());
1355   return true;
1356 }
1357 
1358 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1359   assert(shrink_bytes > 0, "must be");
1360   assert(is_aligned(shrink_bytes, HeapRegion::GrainBytes),
1361          "Shrink request for " SIZE_FORMAT "B not aligned to heap region size " SIZE_FORMAT "B",
1362          shrink_bytes, HeapRegion::GrainBytes);
1363 
1364   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1365 
1366   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1367   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1368 
1369   log_debug(gc, ergo, heap)("Heap resize. Requested shrinking amount: " SIZE_FORMAT "B actual shrinking amount: " SIZE_FORMAT "B",
1370                             shrink_bytes, shrunk_bytes);
1371   if (num_regions_removed > 0) {
1372     policy()->record_new_heap_size(num_regions());
1373   } else {
1374     log_debug(gc, ergo, heap)("Heap resize. Did not shrink the heap (heap shrinking operation failed)");
1375   }
1376 }
1377 
1378 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1379   size_t aligned_shrink_bytes = ReservedSpace::page_align_size_down(shrink_bytes);
1380   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1381                                     HeapRegion::GrainBytes);
1382 
1383   aligned_shrink_bytes = capacity() - MAX2(capacity() - aligned_shrink_bytes, min_capacity());
1384   assert(is_aligned(aligned_shrink_bytes, HeapRegion::GrainBytes), "Bytes to shrink " SIZE_FORMAT "B not aligned", aligned_shrink_bytes);
1385 
1386   log_debug(gc, ergo, heap)("Heap resize. Requested shrink amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1387                             shrink_bytes, aligned_shrink_bytes);
1388 
1389   if (aligned_shrink_bytes == 0) {
1390     log_debug(gc, ergo, heap)("Heap resize. Did not shrink the heap (shrink request too small)");
1391     return;
1392   }
1393   if (capacity() == min_capacity()) {
1394     log_debug(gc, ergo, heap)("Heap resize. Did not shrink the heap (heap already at minimum)");
1395     return;
1396   }
1397   assert(aligned_shrink_bytes > 0, "capacity " SIZE_FORMAT " min_capacity " SIZE_FORMAT, capacity(), min_capacity());
1398 
1399   _verifier->verify_region_sets_optional();
1400   // We should only reach here at the end of a Full GC or during Remark which
1401   // means we should not not be holding to any GC alloc regions. The method
1402   // below will make sure of that and do any remaining clean up.
1403   _allocator->abandon_gc_alloc_regions();
1404 
1405   // Instead of tearing down / rebuilding the free lists here, we
1406   // could instead use the remove_all_pending() method on free_list to
1407   // remove only the ones that we need to remove.
1408   tear_down_region_sets(true /* free_list_only */);
1409   shrink_helper(aligned_shrink_bytes);
1410   rebuild_region_sets(true /* free_list_only */);
1411 
1412   _hrm->verify_optional();
1413   _verifier->verify_region_sets_optional();
1414 }
1415 
1416 class OldRegionSetChecker : public HeapRegionSetChecker {
1417 public:
1418   void check_mt_safety() {
1419     // Master Old Set MT safety protocol:
1420     // (a) If we're at a safepoint, operations on the master old set
1421     // should be invoked:
1422     // - by the VM thread (which will serialize them), or
1423     // - by the GC workers while holding the FreeList_lock, if we're
1424     //   at a safepoint for an evacuation pause (this lock is taken
1425     //   anyway when an GC alloc region is retired so that a new one
1426     //   is allocated from the free list), or
1427     // - by the GC workers while holding the OldSets_lock, if we're at a
1428     //   safepoint for a cleanup pause.
1429     // (b) If we're not at a safepoint, operations on the master old set
1430     // should be invoked while holding the Heap_lock.
1431 
1432     if (SafepointSynchronize::is_at_safepoint()) {
1433       guarantee(Thread::current()->is_VM_thread() ||
1434                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1435                 "master old set MT safety protocol at a safepoint");
1436     } else {
1437       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1438     }
1439   }
1440   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1441   const char* get_description() { return "Old Regions"; }
1442 };
1443 
1444 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1445 public:
1446   void check_mt_safety() {
1447     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1448               "May only change archive regions during initialization or safepoint.");
1449   }
1450   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1451   const char* get_description() { return "Archive Regions"; }
1452 };
1453 
1454 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1455 public:
1456   void check_mt_safety() {
1457     // Humongous Set MT safety protocol:
1458     // (a) If we're at a safepoint, operations on the master humongous
1459     // set should be invoked by either the VM thread (which will
1460     // serialize them) or by the GC workers while holding the
1461     // OldSets_lock.
1462     // (b) If we're not at a safepoint, operations on the master
1463     // humongous set should be invoked while holding the Heap_lock.
1464 
1465     if (SafepointSynchronize::is_at_safepoint()) {
1466       guarantee(Thread::current()->is_VM_thread() ||
1467                 OldSets_lock->owned_by_self(),
1468                 "master humongous set MT safety protocol at a safepoint");
1469     } else {
1470       guarantee(Heap_lock->owned_by_self(),
1471                 "master humongous set MT safety protocol outside a safepoint");
1472     }
1473   }
1474   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1475   const char* get_description() { return "Humongous Regions"; }
1476 };
1477 
1478 G1CollectedHeap::G1CollectedHeap() :
1479   CollectedHeap(),
1480   _young_gen_sampling_thread(NULL),
1481   _workers(NULL),
1482   _card_table(NULL),
1483   _soft_ref_policy(),
1484   _old_set("Old Region Set", new OldRegionSetChecker()),
1485   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1486   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1487   _bot(NULL),
1488   _listener(),
1489   _numa(G1NUMA::create()),
1490   _hrm(NULL),
1491   _allocator(NULL),
1492   _verifier(NULL),
1493   _summary_bytes_used(0),
1494   _bytes_used_during_gc(0),
1495   _archive_allocator(NULL),
1496   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1497   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1498   _expand_heap_after_alloc_failure(true),
1499   _g1mm(NULL),
1500   _humongous_reclaim_candidates(),
1501   _has_humongous_reclaim_candidates(false),
1502   _hr_printer(),
1503   _collector_state(),
1504   _old_marking_cycles_started(0),
1505   _old_marking_cycles_completed(0),
1506   _eden(),
1507   _survivor(),
1508   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1509   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1510   _policy(G1Policy::create_policy(_gc_timer_stw)),
1511   _heap_sizing_policy(NULL),
1512   _collection_set(this, _policy),
1513   _hot_card_cache(NULL),
1514   _rem_set(NULL),
1515   _cm(NULL),
1516   _cm_thread(NULL),
1517   _cr(NULL),
1518   _task_queues(NULL),
1519   _evacuation_failed(false),
1520   _evacuation_failed_info_array(NULL),
1521   _preserved_marks_set(true /* in_c_heap */),
1522 #ifndef PRODUCT
1523   _evacuation_failure_alot_for_current_gc(false),
1524   _evacuation_failure_alot_gc_number(0),
1525   _evacuation_failure_alot_count(0),
1526 #endif
1527   _ref_processor_stw(NULL),
1528   _is_alive_closure_stw(this),
1529   _is_subject_to_discovery_stw(this),
1530   _ref_processor_cm(NULL),
1531   _is_alive_closure_cm(this),
1532   _is_subject_to_discovery_cm(this),
1533   _region_attr() {
1534 
1535   _verifier = new G1HeapVerifier(this);
1536 
1537   _allocator = new G1Allocator(this);
1538 
1539   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1540 
1541   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1542 
1543   // Override the default _filler_array_max_size so that no humongous filler
1544   // objects are created.
1545   _filler_array_max_size = _humongous_object_threshold_in_words;
1546 
1547   uint n_queues = ParallelGCThreads;
1548   _task_queues = new G1ScannerTasksQueueSet(n_queues);
1549 
1550   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1551 
1552   for (uint i = 0; i < n_queues; i++) {
1553     G1ScannerTasksQueue* q = new G1ScannerTasksQueue();
1554     q->initialize();
1555     _task_queues->register_queue(i, q);
1556     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1557   }
1558 
1559   // Initialize the G1EvacuationFailureALot counters and flags.
1560   NOT_PRODUCT(reset_evacuation_should_fail();)
1561   _gc_tracer_stw->initialize();
1562 
1563   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1564 }
1565 
1566 static size_t actual_reserved_page_size(ReservedSpace rs) {
1567   size_t page_size = os::vm_page_size();
1568   if (UseLargePages) {
1569     // There are two ways to manage large page memory.
1570     // 1. OS supports committing large page memory.
1571     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1572     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1573     //    we reserved memory without large page.
1574     if (os::can_commit_large_page_memory() || rs.special()) {
1575       // An alignment at ReservedSpace comes from preferred page size or
1576       // heap alignment, and if the alignment came from heap alignment, it could be
1577       // larger than large pages size. So need to cap with the large page size.
1578       page_size = MIN2(rs.alignment(), os::large_page_size());
1579     }
1580   }
1581 
1582   return page_size;
1583 }
1584 
1585 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1586                                                                  size_t size,
1587                                                                  size_t translation_factor) {
1588   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1589   // Allocate a new reserved space, preferring to use large pages.
1590   ReservedSpace rs(size, preferred_page_size);
1591   size_t page_size = actual_reserved_page_size(rs);
1592   G1RegionToSpaceMapper* result  =
1593     G1RegionToSpaceMapper::create_mapper(rs,
1594                                          size,
1595                                          page_size,
1596                                          HeapRegion::GrainBytes,
1597                                          translation_factor,
1598                                          mtGC);
1599 
1600   os::trace_page_sizes_for_requested_size(description,
1601                                           size,
1602                                           preferred_page_size,
1603                                           page_size,
1604                                           rs.base(),
1605                                           rs.size());
1606 
1607   return result;
1608 }
1609 
1610 jint G1CollectedHeap::initialize_concurrent_refinement() {
1611   jint ecode = JNI_OK;
1612   _cr = G1ConcurrentRefine::create(&ecode);
1613   return ecode;
1614 }
1615 
1616 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1617   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1618   if (_young_gen_sampling_thread->osthread() == NULL) {
1619     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1620     return JNI_ENOMEM;
1621   }
1622   return JNI_OK;
1623 }
1624 
1625 jint G1CollectedHeap::initialize() {
1626 
1627   // Necessary to satisfy locking discipline assertions.
1628 
1629   MutexLocker x(Heap_lock);
1630 
1631   // While there are no constraints in the GC code that HeapWordSize
1632   // be any particular value, there are multiple other areas in the
1633   // system which believe this to be true (e.g. oop->object_size in some
1634   // cases incorrectly returns the size in wordSize units rather than
1635   // HeapWordSize).
1636   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1637 
1638   size_t init_byte_size = InitialHeapSize;
1639   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1640 
1641   // Ensure that the sizes are properly aligned.
1642   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1643   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1644   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1645 
1646   // Reserve the maximum.
1647 
1648   // When compressed oops are enabled, the preferred heap base
1649   // is calculated by subtracting the requested size from the
1650   // 32Gb boundary and using the result as the base address for
1651   // heap reservation. If the requested size is not aligned to
1652   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1653   // into the ReservedHeapSpace constructor) then the actual
1654   // base of the reserved heap may end up differing from the
1655   // address that was requested (i.e. the preferred heap base).
1656   // If this happens then we could end up using a non-optimal
1657   // compressed oops mode.
1658 
1659   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1660                                                      HeapAlignment);
1661 
1662   initialize_reserved_region(heap_rs);
1663 
1664   // Create the barrier set for the entire reserved region.
1665   G1CardTable* ct = new G1CardTable(heap_rs.region());
1666   ct->initialize();
1667   G1BarrierSet* bs = new G1BarrierSet(ct);
1668   bs->initialize();
1669   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1670   BarrierSet::set_barrier_set(bs);
1671   _card_table = ct;
1672 
1673   {
1674     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1675     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1676     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1677   }
1678 
1679   // Create the hot card cache.
1680   _hot_card_cache = new G1HotCardCache(this);
1681 
1682   // Carve out the G1 part of the heap.
1683   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1684   size_t page_size = actual_reserved_page_size(heap_rs);
1685   G1RegionToSpaceMapper* heap_storage =
1686     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1687                                               g1_rs.size(),
1688                                               page_size,
1689                                               HeapRegion::GrainBytes,
1690                                               1,
1691                                               mtJavaHeap);
1692   if(heap_storage == NULL) {
1693     vm_shutdown_during_initialization("Could not initialize G1 heap");
1694     return JNI_ERR;
1695   }
1696 
1697   os::trace_page_sizes("Heap",
1698                        MinHeapSize,
1699                        reserved_byte_size,
1700                        page_size,
1701                        heap_rs.base(),
1702                        heap_rs.size());
1703   heap_storage->set_mapping_changed_listener(&_listener);
1704 
1705   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1706   G1RegionToSpaceMapper* bot_storage =
1707     create_aux_memory_mapper("Block Offset Table",
1708                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1709                              G1BlockOffsetTable::heap_map_factor());
1710 
1711   G1RegionToSpaceMapper* cardtable_storage =
1712     create_aux_memory_mapper("Card Table",
1713                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1714                              G1CardTable::heap_map_factor());
1715 
1716   G1RegionToSpaceMapper* card_counts_storage =
1717     create_aux_memory_mapper("Card Counts Table",
1718                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1719                              G1CardCounts::heap_map_factor());
1720 
1721   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1722   G1RegionToSpaceMapper* prev_bitmap_storage =
1723     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1724   G1RegionToSpaceMapper* next_bitmap_storage =
1725     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1726 
1727   _hrm = HeapRegionManager::create_manager(this);
1728 
1729   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1730   _card_table->initialize(cardtable_storage);
1731 
1732   // Do later initialization work for concurrent refinement.
1733   _hot_card_cache->initialize(card_counts_storage);
1734 
1735   // 6843694 - ensure that the maximum region index can fit
1736   // in the remembered set structures.
1737   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1738   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1739 
1740   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1741   // start within the first card.
1742   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1743   // Also create a G1 rem set.
1744   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1745   _rem_set->initialize(max_reserved_capacity(), max_regions());
1746 
1747   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1748   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1749   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1750             "too many cards per region");
1751 
1752   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1753 
1754   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1755 
1756   {
1757     HeapWord* start = _hrm->reserved().start();
1758     HeapWord* end = _hrm->reserved().end();
1759     size_t granularity = HeapRegion::GrainBytes;
1760 
1761     _region_attr.initialize(start, end, granularity);
1762     _humongous_reclaim_candidates.initialize(start, end, granularity);
1763   }
1764 
1765   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1766                           true /* are_GC_task_threads */,
1767                           false /* are_ConcurrentGC_threads */);
1768   if (_workers == NULL) {
1769     return JNI_ENOMEM;
1770   }
1771   _workers->initialize_workers();
1772 
1773   _numa->set_region_info(HeapRegion::GrainBytes, page_size);
1774 
1775   // Create the G1ConcurrentMark data structure and thread.
1776   // (Must do this late, so that "max_regions" is defined.)
1777   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1778   _cm_thread = _cm->cm_thread();
1779 
1780   // Now expand into the initial heap size.
1781   if (!expand(init_byte_size, _workers)) {
1782     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1783     return JNI_ENOMEM;
1784   }
1785 
1786   // Perform any initialization actions delegated to the policy.
1787   policy()->init(this, &_collection_set);
1788 
1789   jint ecode = initialize_concurrent_refinement();
1790   if (ecode != JNI_OK) {
1791     return ecode;
1792   }
1793 
1794   ecode = initialize_young_gen_sampling_thread();
1795   if (ecode != JNI_OK) {
1796     return ecode;
1797   }
1798 
1799   {
1800     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1801     dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1802     dcqs.set_max_cards(concurrent_refine()->red_zone());
1803   }
1804 
1805   // Here we allocate the dummy HeapRegion that is required by the
1806   // G1AllocRegion class.
1807   HeapRegion* dummy_region = _hrm->get_dummy_region();
1808 
1809   // We'll re-use the same region whether the alloc region will
1810   // require BOT updates or not and, if it doesn't, then a non-young
1811   // region will complain that it cannot support allocations without
1812   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1813   dummy_region->set_eden();
1814   // Make sure it's full.
1815   dummy_region->set_top(dummy_region->end());
1816   G1AllocRegion::setup(this, dummy_region);
1817 
1818   _allocator->init_mutator_alloc_regions();
1819 
1820   // Do create of the monitoring and management support so that
1821   // values in the heap have been properly initialized.
1822   _g1mm = new G1MonitoringSupport(this);
1823 
1824   G1StringDedup::initialize();
1825 
1826   _preserved_marks_set.init(ParallelGCThreads);
1827 
1828   _collection_set.initialize(max_regions());
1829 
1830   G1InitLogger::print();
1831 
1832   return JNI_OK;
1833 }
1834 
1835 void G1CollectedHeap::stop() {
1836   // Stop all concurrent threads. We do this to make sure these threads
1837   // do not continue to execute and access resources (e.g. logging)
1838   // that are destroyed during shutdown.
1839   _cr->stop();
1840   _young_gen_sampling_thread->stop();
1841   _cm_thread->stop();
1842   if (G1StringDedup::is_enabled()) {
1843     G1StringDedup::stop();
1844   }
1845 }
1846 
1847 void G1CollectedHeap::safepoint_synchronize_begin() {
1848   SuspendibleThreadSet::synchronize();
1849 }
1850 
1851 void G1CollectedHeap::safepoint_synchronize_end() {
1852   SuspendibleThreadSet::desynchronize();
1853 }
1854 
1855 void G1CollectedHeap::post_initialize() {
1856   CollectedHeap::post_initialize();
1857   ref_processing_init();
1858 }
1859 
1860 void G1CollectedHeap::ref_processing_init() {
1861   // Reference processing in G1 currently works as follows:
1862   //
1863   // * There are two reference processor instances. One is
1864   //   used to record and process discovered references
1865   //   during concurrent marking; the other is used to
1866   //   record and process references during STW pauses
1867   //   (both full and incremental).
1868   // * Both ref processors need to 'span' the entire heap as
1869   //   the regions in the collection set may be dotted around.
1870   //
1871   // * For the concurrent marking ref processor:
1872   //   * Reference discovery is enabled at initial marking.
1873   //   * Reference discovery is disabled and the discovered
1874   //     references processed etc during remarking.
1875   //   * Reference discovery is MT (see below).
1876   //   * Reference discovery requires a barrier (see below).
1877   //   * Reference processing may or may not be MT
1878   //     (depending on the value of ParallelRefProcEnabled
1879   //     and ParallelGCThreads).
1880   //   * A full GC disables reference discovery by the CM
1881   //     ref processor and abandons any entries on it's
1882   //     discovered lists.
1883   //
1884   // * For the STW processor:
1885   //   * Non MT discovery is enabled at the start of a full GC.
1886   //   * Processing and enqueueing during a full GC is non-MT.
1887   //   * During a full GC, references are processed after marking.
1888   //
1889   //   * Discovery (may or may not be MT) is enabled at the start
1890   //     of an incremental evacuation pause.
1891   //   * References are processed near the end of a STW evacuation pause.
1892   //   * For both types of GC:
1893   //     * Discovery is atomic - i.e. not concurrent.
1894   //     * Reference discovery will not need a barrier.
1895 
1896   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1897 
1898   // Concurrent Mark ref processor
1899   _ref_processor_cm =
1900     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1901                            mt_processing,                                  // mt processing
1902                            ParallelGCThreads,                              // degree of mt processing
1903                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1904                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1905                            false,                                          // Reference discovery is not atomic
1906                            &_is_alive_closure_cm,                          // is alive closure
1907                            true);                                          // allow changes to number of processing threads
1908 
1909   // STW ref processor
1910   _ref_processor_stw =
1911     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1912                            mt_processing,                        // mt processing
1913                            ParallelGCThreads,                    // degree of mt processing
1914                            (ParallelGCThreads > 1),              // mt discovery
1915                            ParallelGCThreads,                    // degree of mt discovery
1916                            true,                                 // Reference discovery is atomic
1917                            &_is_alive_closure_stw,               // is alive closure
1918                            true);                                // allow changes to number of processing threads
1919 }
1920 
1921 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1922   return &_soft_ref_policy;
1923 }
1924 
1925 size_t G1CollectedHeap::capacity() const {
1926   return _hrm->length() * HeapRegion::GrainBytes;
1927 }
1928 
1929 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1930   return _hrm->total_free_bytes();
1931 }
1932 
1933 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
1934   _hot_card_cache->drain(cl, worker_id);
1935 }
1936 
1937 // Computes the sum of the storage used by the various regions.
1938 size_t G1CollectedHeap::used() const {
1939   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1940   if (_archive_allocator != NULL) {
1941     result += _archive_allocator->used();
1942   }
1943   return result;
1944 }
1945 
1946 size_t G1CollectedHeap::used_unlocked() const {
1947   return _summary_bytes_used;
1948 }
1949 
1950 class SumUsedClosure: public HeapRegionClosure {
1951   size_t _used;
1952 public:
1953   SumUsedClosure() : _used(0) {}
1954   bool do_heap_region(HeapRegion* r) {
1955     _used += r->used();
1956     return false;
1957   }
1958   size_t result() { return _used; }
1959 };
1960 
1961 size_t G1CollectedHeap::recalculate_used() const {
1962   SumUsedClosure blk;
1963   heap_region_iterate(&blk);
1964   return blk.result();
1965 }
1966 
1967 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1968   switch (cause) {
1969     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1970     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1971     case GCCause::_wb_conc_mark:                        return true;
1972     default :                                           return false;
1973   }
1974 }
1975 
1976 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1977   switch (cause) {
1978     case GCCause::_g1_humongous_allocation: return true;
1979     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1980     case GCCause::_wb_breakpoint:           return true;
1981     default:                                return is_user_requested_concurrent_full_gc(cause);
1982   }
1983 }
1984 
1985 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
1986   if (policy()->force_upgrade_to_full()) {
1987     return true;
1988   } else if (should_do_concurrent_full_gc(_gc_cause)) {
1989     return false;
1990   } else if (has_regions_left_for_allocation()) {
1991     return false;
1992   } else {
1993     return true;
1994   }
1995 }
1996 
1997 #ifndef PRODUCT
1998 void G1CollectedHeap::allocate_dummy_regions() {
1999   // Let's fill up most of the region
2000   size_t word_size = HeapRegion::GrainWords - 1024;
2001   // And as a result the region we'll allocate will be humongous.
2002   guarantee(is_humongous(word_size), "sanity");
2003 
2004   // _filler_array_max_size is set to humongous object threshold
2005   // but temporarily change it to use CollectedHeap::fill_with_object().
2006   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2007 
2008   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2009     // Let's use the existing mechanism for the allocation
2010     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2011     if (dummy_obj != NULL) {
2012       MemRegion mr(dummy_obj, word_size);
2013       CollectedHeap::fill_with_object(mr);
2014     } else {
2015       // If we can't allocate once, we probably cannot allocate
2016       // again. Let's get out of the loop.
2017       break;
2018     }
2019   }
2020 }
2021 #endif // !PRODUCT
2022 
2023 void G1CollectedHeap::increment_old_marking_cycles_started() {
2024   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2025          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2026          "Wrong marking cycle count (started: %d, completed: %d)",
2027          _old_marking_cycles_started, _old_marking_cycles_completed);
2028 
2029   _old_marking_cycles_started++;
2030 }
2031 
2032 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2033   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
2034 
2035   // We assume that if concurrent == true, then the caller is a
2036   // concurrent thread that was joined the Suspendible Thread
2037   // Set. If there's ever a cheap way to check this, we should add an
2038   // assert here.
2039 
2040   // Given that this method is called at the end of a Full GC or of a
2041   // concurrent cycle, and those can be nested (i.e., a Full GC can
2042   // interrupt a concurrent cycle), the number of full collections
2043   // completed should be either one (in the case where there was no
2044   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2045   // behind the number of full collections started.
2046 
2047   // This is the case for the inner caller, i.e. a Full GC.
2048   assert(concurrent ||
2049          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2050          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2051          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2052          "is inconsistent with _old_marking_cycles_completed = %u",
2053          _old_marking_cycles_started, _old_marking_cycles_completed);
2054 
2055   // This is the case for the outer caller, i.e. the concurrent cycle.
2056   assert(!concurrent ||
2057          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2058          "for outer caller (concurrent cycle): "
2059          "_old_marking_cycles_started = %u "
2060          "is inconsistent with _old_marking_cycles_completed = %u",
2061          _old_marking_cycles_started, _old_marking_cycles_completed);
2062 
2063   _old_marking_cycles_completed += 1;
2064 
2065   // We need to clear the "in_progress" flag in the CM thread before
2066   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2067   // is set) so that if a waiter requests another System.gc() it doesn't
2068   // incorrectly see that a marking cycle is still in progress.
2069   if (concurrent) {
2070     _cm_thread->set_idle();
2071   }
2072 
2073   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
2074   // for a full GC to finish that their wait is over.
2075   ml.notify_all();
2076 }
2077 
2078 void G1CollectedHeap::collect(GCCause::Cause cause) {
2079   try_collect(cause);
2080 }
2081 
2082 // Return true if (x < y) with allowance for wraparound.
2083 static bool gc_counter_less_than(uint x, uint y) {
2084   return (x - y) > (UINT_MAX/2);
2085 }
2086 
2087 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
2088 // Macro so msg printing is format-checked.
2089 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
2090   do {                                                                  \
2091     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
2092     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
2093       ResourceMark rm; /* For thread name. */                           \
2094       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
2095       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
2096                                        Thread::current()->name(),       \
2097                                        GCCause::to_string(cause));      \
2098       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
2099     }                                                                   \
2100   } while (0)
2101 
2102 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
2103   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
2104 
2105 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
2106                                                uint gc_counter,
2107                                                uint old_marking_started_before) {
2108   assert_heap_not_locked();
2109   assert(should_do_concurrent_full_gc(cause),
2110          "Non-concurrent cause %s", GCCause::to_string(cause));
2111 
2112   for (uint i = 1; true; ++i) {
2113     // Try to schedule an initial-mark evacuation pause that will
2114     // start a concurrent cycle.
2115     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
2116     VM_G1TryInitiateConcMark op(gc_counter,
2117                                 cause,
2118                                 policy()->max_pause_time_ms());
2119     VMThread::execute(&op);
2120 
2121     // Request is trivially finished.
2122     if (cause == GCCause::_g1_periodic_collection) {
2123       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
2124       return op.gc_succeeded();
2125     }
2126 
2127     // If VMOp skipped initiating concurrent marking cycle because
2128     // we're terminating, then we're done.
2129     if (op.terminating()) {
2130       LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
2131       return false;
2132     }
2133 
2134     // Lock to get consistent set of values.
2135     uint old_marking_started_after;
2136     uint old_marking_completed_after;
2137     {
2138       MutexLocker ml(Heap_lock);
2139       // Update gc_counter for retrying VMOp if needed. Captured here to be
2140       // consistent with the values we use below for termination tests.  If
2141       // a retry is needed after a possible wait, and another collection
2142       // occurs in the meantime, it will cause our retry to be skipped and
2143       // we'll recheck for termination with updated conditions from that
2144       // more recent collection.  That's what we want, rather than having
2145       // our retry possibly perform an unnecessary collection.
2146       gc_counter = total_collections();
2147       old_marking_started_after = _old_marking_cycles_started;
2148       old_marking_completed_after = _old_marking_cycles_completed;
2149     }
2150 
2151     if (cause == GCCause::_wb_breakpoint) {
2152       if (op.gc_succeeded()) {
2153         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2154         return true;
2155       }
2156       // When _wb_breakpoint there can't be another cycle or deferred.
2157       assert(!op.cycle_already_in_progress(), "invariant");
2158       assert(!op.whitebox_attached(), "invariant");
2159       // Concurrent cycle attempt might have been cancelled by some other
2160       // collection, so retry.  Unlike other cases below, we want to retry
2161       // even if cancelled by a STW full collection, because we really want
2162       // to start a concurrent cycle.
2163       if (old_marking_started_before != old_marking_started_after) {
2164         LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC");
2165         old_marking_started_before = old_marking_started_after;
2166       }
2167     } else if (!GCCause::is_user_requested_gc(cause)) {
2168       // For an "automatic" (not user-requested) collection, we just need to
2169       // ensure that progress is made.
2170       //
2171       // Request is finished if any of
2172       // (1) the VMOp successfully performed a GC,
2173       // (2) a concurrent cycle was already in progress,
2174       // (3) whitebox is controlling concurrent cycles,
2175       // (4) a new cycle was started (by this thread or some other), or
2176       // (5) a Full GC was performed.
2177       // Cases (4) and (5) are detected together by a change to
2178       // _old_marking_cycles_started.
2179       //
2180       // Note that (1) does not imply (4).  If we're still in the mixed
2181       // phase of an earlier concurrent collection, the request to make the
2182       // collection an initial-mark won't be honored.  If we don't check for
2183       // both conditions we'll spin doing back-to-back collections.
2184       if (op.gc_succeeded() ||
2185           op.cycle_already_in_progress() ||
2186           op.whitebox_attached() ||
2187           (old_marking_started_before != old_marking_started_after)) {
2188         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2189         return true;
2190       }
2191     } else {                    // User-requested GC.
2192       // For a user-requested collection, we want to ensure that a complete
2193       // full collection has been performed before returning, but without
2194       // waiting for more than needed.
2195 
2196       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
2197       // new cycle was started.  That's good, because it's not clear what we
2198       // should do otherwise.  Trying again just does back to back GCs.
2199       // Can't wait for someone else to start a cycle.  And returning fails
2200       // to meet the goal of ensuring a full collection was performed.
2201       assert(!op.gc_succeeded() ||
2202              (old_marking_started_before != old_marking_started_after),
2203              "invariant: succeeded %s, started before %u, started after %u",
2204              BOOL_TO_STR(op.gc_succeeded()),
2205              old_marking_started_before, old_marking_started_after);
2206 
2207       // Request is finished if a full collection (concurrent or stw)
2208       // was started after this request and has completed, e.g.
2209       // started_before < completed_after.
2210       if (gc_counter_less_than(old_marking_started_before,
2211                                old_marking_completed_after)) {
2212         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2213         return true;
2214       }
2215 
2216       if (old_marking_started_after != old_marking_completed_after) {
2217         // If there is an in-progress cycle (possibly started by us), then
2218         // wait for that cycle to complete, e.g.
2219         // while completed_now < started_after.
2220         LOG_COLLECT_CONCURRENTLY(cause, "wait");
2221         MonitorLocker ml(G1OldGCCount_lock);
2222         while (gc_counter_less_than(_old_marking_cycles_completed,
2223                                     old_marking_started_after)) {
2224           ml.wait();
2225         }
2226         // Request is finished if the collection we just waited for was
2227         // started after this request.
2228         if (old_marking_started_before != old_marking_started_after) {
2229           LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
2230           return true;
2231         }
2232       }
2233 
2234       // If VMOp was successful then it started a new cycle that the above
2235       // wait &etc should have recognized as finishing this request.  This
2236       // differs from a non-user-request, where gc_succeeded does not imply
2237       // a new cycle was started.
2238       assert(!op.gc_succeeded(), "invariant");
2239 
2240       if (op.cycle_already_in_progress()) {
2241         // If VMOp failed because a cycle was already in progress, it
2242         // is now complete.  But it didn't finish this user-requested
2243         // GC, so try again.
2244         LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
2245         continue;
2246       } else if (op.whitebox_attached()) {
2247         // If WhiteBox wants control, wait for notification of a state
2248         // change in the controller, then try again.  Don't wait for
2249         // release of control, since collections may complete while in
2250         // control.  Note: This won't recognize a STW full collection
2251         // while waiting; we can't wait on multiple monitors.
2252         LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall");
2253         MonitorLocker ml(ConcurrentGCBreakpoints::monitor());
2254         if (ConcurrentGCBreakpoints::is_controlled()) {
2255           ml.wait();
2256         }
2257         continue;
2258       }
2259     }
2260 
2261     // Collection failed and should be retried.
2262     assert(op.transient_failure(), "invariant");
2263 
2264     if (GCLocker::is_active_and_needs_gc()) {
2265       // If GCLocker is active, wait until clear before retrying.
2266       LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall");
2267       GCLocker::stall_until_clear();
2268     }
2269 
2270     LOG_COLLECT_CONCURRENTLY(cause, "retry");
2271   }
2272 }
2273 
2274 bool G1CollectedHeap::try_collect(GCCause::Cause cause) {
2275   assert_heap_not_locked();
2276 
2277   // Lock to get consistent set of values.
2278   uint gc_count_before;
2279   uint full_gc_count_before;
2280   uint old_marking_started_before;
2281   {
2282     MutexLocker ml(Heap_lock);
2283     gc_count_before = total_collections();
2284     full_gc_count_before = total_full_collections();
2285     old_marking_started_before = _old_marking_cycles_started;
2286   }
2287 
2288   if (should_do_concurrent_full_gc(cause)) {
2289     return try_collect_concurrently(cause,
2290                                     gc_count_before,
2291                                     old_marking_started_before);
2292   } else if (GCLocker::should_discard(cause, gc_count_before)) {
2293     // Indicate failure to be consistent with VMOp failure due to
2294     // another collection slipping in after our gc_count but before
2295     // our request is processed.
2296     return false;
2297   } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2298              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2299 
2300     // Schedule a standard evacuation pause. We're setting word_size
2301     // to 0 which means that we are not requesting a post-GC allocation.
2302     VM_G1CollectForAllocation op(0,     /* word_size */
2303                                  gc_count_before,
2304                                  cause,
2305                                  policy()->max_pause_time_ms());
2306     VMThread::execute(&op);
2307     return op.gc_succeeded();
2308   } else {
2309     // Schedule a Full GC.
2310     VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2311     VMThread::execute(&op);
2312     return op.gc_succeeded();
2313   }
2314 }
2315 
2316 bool G1CollectedHeap::is_in(const void* p) const {
2317   if (_hrm->reserved().contains(p)) {
2318     // Given that we know that p is in the reserved space,
2319     // heap_region_containing() should successfully
2320     // return the containing region.
2321     HeapRegion* hr = heap_region_containing(p);
2322     return hr->is_in(p);
2323   } else {
2324     return false;
2325   }
2326 }
2327 
2328 #ifdef ASSERT
2329 bool G1CollectedHeap::is_in_exact(const void* p) const {
2330   bool contains = reserved_region().contains(p);
2331   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2332   if (contains && available) {
2333     return true;
2334   } else {
2335     return false;
2336   }
2337 }
2338 #endif
2339 
2340 // Iteration functions.
2341 
2342 // Iterates an ObjectClosure over all objects within a HeapRegion.
2343 
2344 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2345   ObjectClosure* _cl;
2346 public:
2347   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2348   bool do_heap_region(HeapRegion* r) {
2349     if (!r->is_continues_humongous()) {
2350       r->object_iterate(_cl);
2351     }
2352     return false;
2353   }
2354 };
2355 
2356 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2357   IterateObjectClosureRegionClosure blk(cl);
2358   heap_region_iterate(&blk);
2359 }
2360 
2361 void G1CollectedHeap::keep_alive(oop obj) {
2362   G1BarrierSet::enqueue(obj);
2363 }
2364 
2365 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2366   _hrm->iterate(cl);
2367 }
2368 
2369 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2370                                                                  HeapRegionClaimer *hrclaimer,
2371                                                                  uint worker_id) const {
2372   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2373 }
2374 
2375 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2376                                                          HeapRegionClaimer *hrclaimer) const {
2377   _hrm->par_iterate(cl, hrclaimer, 0);
2378 }
2379 
2380 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2381   _collection_set.iterate(cl);
2382 }
2383 
2384 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2385   _collection_set.par_iterate(cl, hr_claimer, worker_id, workers()->active_workers());
2386 }
2387 
2388 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2389   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2390 }
2391 
2392 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2393   HeapRegion* hr = heap_region_containing(addr);
2394   return hr->block_start(addr);
2395 }
2396 
2397 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2398   HeapRegion* hr = heap_region_containing(addr);
2399   return hr->block_is_obj(addr);
2400 }
2401 
2402 bool G1CollectedHeap::supports_tlab_allocation() const {
2403   return true;
2404 }
2405 
2406 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2407   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2408 }
2409 
2410 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2411   return _eden.length() * HeapRegion::GrainBytes;
2412 }
2413 
2414 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2415 // must be equal to the humongous object limit.
2416 size_t G1CollectedHeap::max_tlab_size() const {
2417   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2418 }
2419 
2420 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2421   return _allocator->unsafe_max_tlab_alloc();
2422 }
2423 
2424 size_t G1CollectedHeap::max_capacity() const {
2425   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2426 }
2427 
2428 size_t G1CollectedHeap::min_capacity() const {
2429   return MinHeapSize;
2430 }
2431 
2432 size_t G1CollectedHeap::max_reserved_capacity() const {
2433   return _hrm->max_length() * HeapRegion::GrainBytes;
2434 }
2435 
2436 size_t G1CollectedHeap::soft_max_capacity() const {
2437   return clamp(align_up(SoftMaxHeapSize, HeapAlignment), MinHeapSize, max_capacity());
2438 }
2439 
2440 jlong G1CollectedHeap::millis_since_last_gc() {
2441   // See the notes in GenCollectedHeap::millis_since_last_gc()
2442   // for more information about the implementation.
2443   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2444                   _policy->collection_pause_end_millis();
2445   if (ret_val < 0) {
2446     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2447       ". returning zero instead.", ret_val);
2448     return 0;
2449   }
2450   return ret_val;
2451 }
2452 
2453 void G1CollectedHeap::deduplicate_string(oop str) {
2454   assert(java_lang_String::is_instance(str), "invariant");
2455 
2456   if (G1StringDedup::is_enabled()) {
2457     G1StringDedup::deduplicate(str);
2458   }
2459 }
2460 
2461 void G1CollectedHeap::prepare_for_verify() {
2462   _verifier->prepare_for_verify();
2463 }
2464 
2465 void G1CollectedHeap::verify(VerifyOption vo) {
2466   _verifier->verify(vo);
2467 }
2468 
2469 bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const {
2470   return true;
2471 }
2472 
2473 bool G1CollectedHeap::is_heterogeneous_heap() const {
2474   return G1Arguments::is_heterogeneous_heap();
2475 }
2476 
2477 class PrintRegionClosure: public HeapRegionClosure {
2478   outputStream* _st;
2479 public:
2480   PrintRegionClosure(outputStream* st) : _st(st) {}
2481   bool do_heap_region(HeapRegion* r) {
2482     r->print_on(_st);
2483     return false;
2484   }
2485 };
2486 
2487 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2488                                        const HeapRegion* hr,
2489                                        const VerifyOption vo) const {
2490   switch (vo) {
2491   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2492   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2493   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2494   default:                            ShouldNotReachHere();
2495   }
2496   return false; // keep some compilers happy
2497 }
2498 
2499 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2500                                        const VerifyOption vo) const {
2501   switch (vo) {
2502   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2503   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2504   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2505   default:                            ShouldNotReachHere();
2506   }
2507   return false; // keep some compilers happy
2508 }
2509 
2510 void G1CollectedHeap::print_heap_regions() const {
2511   LogTarget(Trace, gc, heap, region) lt;
2512   if (lt.is_enabled()) {
2513     LogStream ls(lt);
2514     print_regions_on(&ls);
2515   }
2516 }
2517 
2518 void G1CollectedHeap::print_on(outputStream* st) const {
2519   st->print(" %-20s", "garbage-first heap");
2520   if (_hrm != NULL) {
2521     st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2522               capacity()/K, used_unlocked()/K);
2523     st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2524               p2i(_hrm->reserved().start()),
2525               p2i(_hrm->reserved().end()));
2526   }
2527   st->cr();
2528   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2529   uint young_regions = young_regions_count();
2530   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2531             (size_t) young_regions * HeapRegion::GrainBytes / K);
2532   uint survivor_regions = survivor_regions_count();
2533   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2534             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2535   st->cr();
2536   if (_numa->is_enabled()) {
2537     uint num_nodes = _numa->num_active_nodes();
2538     st->print("  remaining free region(s) on each NUMA node: ");
2539     const int* node_ids = _numa->node_ids();
2540     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2541       uint num_free_regions = (_hrm != NULL ? _hrm->num_free_regions(node_index) : 0);
2542       st->print("%d=%u ", node_ids[node_index], num_free_regions);
2543     }
2544     st->cr();
2545   }
2546   MetaspaceUtils::print_on(st);
2547 }
2548 
2549 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2550   if (_hrm == NULL) {
2551     return;
2552   }
2553 
2554   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2555                "HS=humongous(starts), HC=humongous(continues), "
2556                "CS=collection set, F=free, "
2557                "OA=open archive, CA=closed archive, "
2558                "TAMS=top-at-mark-start (previous, next)");
2559   PrintRegionClosure blk(st);
2560   heap_region_iterate(&blk);
2561 }
2562 
2563 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2564   print_on(st);
2565 
2566   // Print the per-region information.
2567   print_regions_on(st);
2568 }
2569 
2570 void G1CollectedHeap::print_on_error(outputStream* st) const {
2571   this->CollectedHeap::print_on_error(st);
2572 
2573   if (_cm != NULL) {
2574     st->cr();
2575     _cm->print_on_error(st);
2576   }
2577 }
2578 
2579 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2580   workers()->threads_do(tc);
2581   tc->do_thread(_cm_thread);
2582   _cm->threads_do(tc);
2583   _cr->threads_do(tc);
2584   tc->do_thread(_young_gen_sampling_thread);
2585   if (G1StringDedup::is_enabled()) {
2586     G1StringDedup::threads_do(tc);
2587   }
2588 }
2589 
2590 void G1CollectedHeap::print_tracing_info() const {
2591   rem_set()->print_summary_info();
2592   concurrent_mark()->print_summary_info();
2593 }
2594 
2595 #ifndef PRODUCT
2596 // Helpful for debugging RSet issues.
2597 
2598 class PrintRSetsClosure : public HeapRegionClosure {
2599 private:
2600   const char* _msg;
2601   size_t _occupied_sum;
2602 
2603 public:
2604   bool do_heap_region(HeapRegion* r) {
2605     HeapRegionRemSet* hrrs = r->rem_set();
2606     size_t occupied = hrrs->occupied();
2607     _occupied_sum += occupied;
2608 
2609     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2610     if (occupied == 0) {
2611       tty->print_cr("  RSet is empty");
2612     } else {
2613       hrrs->print();
2614     }
2615     tty->print_cr("----------");
2616     return false;
2617   }
2618 
2619   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2620     tty->cr();
2621     tty->print_cr("========================================");
2622     tty->print_cr("%s", msg);
2623     tty->cr();
2624   }
2625 
2626   ~PrintRSetsClosure() {
2627     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2628     tty->print_cr("========================================");
2629     tty->cr();
2630   }
2631 };
2632 
2633 void G1CollectedHeap::print_cset_rsets() {
2634   PrintRSetsClosure cl("Printing CSet RSets");
2635   collection_set_iterate_all(&cl);
2636 }
2637 
2638 void G1CollectedHeap::print_all_rsets() {
2639   PrintRSetsClosure cl("Printing All RSets");;
2640   heap_region_iterate(&cl);
2641 }
2642 #endif // PRODUCT
2643 
2644 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2645   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2646 }
2647 
2648 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2649 
2650   size_t eden_used_bytes = _eden.used_bytes();
2651   size_t survivor_used_bytes = _survivor.used_bytes();
2652   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2653 
2654   size_t eden_capacity_bytes =
2655     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2656 
2657   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2658   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2659                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2660 }
2661 
2662 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2663   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2664                        stats->unused(), stats->used(), stats->region_end_waste(),
2665                        stats->regions_filled(), stats->direct_allocated(),
2666                        stats->failure_used(), stats->failure_waste());
2667 }
2668 
2669 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2670   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2671   gc_tracer->report_gc_heap_summary(when, heap_summary);
2672 
2673   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2674   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2675 }
2676 
2677 G1CollectedHeap* G1CollectedHeap::heap() {
2678   CollectedHeap* heap = Universe::heap();
2679   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2680   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2681   return (G1CollectedHeap*)heap;
2682 }
2683 
2684 void G1CollectedHeap::gc_prologue(bool full) {
2685   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2686 
2687   // This summary needs to be printed before incrementing total collections.
2688   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2689 
2690   // Update common counters.
2691   increment_total_collections(full /* full gc */);
2692   if (full || collector_state()->in_initial_mark_gc()) {
2693     increment_old_marking_cycles_started();
2694   }
2695 
2696   // Fill TLAB's and such
2697   {
2698     Ticks start = Ticks::now();
2699     ensure_parsability(true);
2700     Tickspan dt = Ticks::now() - start;
2701     phase_times()->record_prepare_tlab_time_ms(dt.seconds() * MILLIUNITS);
2702   }
2703 
2704   if (!full) {
2705     // Flush dirty card queues to qset, so later phases don't need to account
2706     // for partially filled per-thread queues and such.  Not needed for full
2707     // collections, which ignore those logs.
2708     Ticks start = Ticks::now();
2709     G1BarrierSet::dirty_card_queue_set().concatenate_logs();
2710     Tickspan dt = Ticks::now() - start;
2711     phase_times()->record_concatenate_dirty_card_logs_time_ms(dt.seconds() * MILLIUNITS);
2712   }
2713 }
2714 
2715 void G1CollectedHeap::gc_epilogue(bool full) {
2716   // Update common counters.
2717   if (full) {
2718     // Update the number of full collections that have been completed.
2719     increment_old_marking_cycles_completed(false /* concurrent */);
2720   }
2721 
2722   // We are at the end of the GC. Total collections has already been increased.
2723   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2724 
2725   // FIXME: what is this about?
2726   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2727   // is set.
2728 #if COMPILER2_OR_JVMCI
2729   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2730 #endif
2731 
2732   double start = os::elapsedTime();
2733   resize_all_tlabs();
2734   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2735 
2736   MemoryService::track_memory_usage();
2737   // We have just completed a GC. Update the soft reference
2738   // policy with the new heap occupancy
2739   Universe::update_heap_info_at_gc();
2740 
2741   // Print NUMA statistics.
2742   _numa->print_statistics();
2743 }
2744 
2745 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2746   LogTarget(Trace, gc, heap, verify) lt;
2747 
2748   if (lt.is_enabled()) {
2749     LogStream ls(lt);
2750     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2751     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2752     heap_region_iterate(&cl);
2753   }
2754 }
2755 
2756 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2757                                                uint gc_count_before,
2758                                                bool* succeeded,
2759                                                GCCause::Cause gc_cause) {
2760   assert_heap_not_locked_and_not_at_safepoint();
2761   VM_G1CollectForAllocation op(word_size,
2762                                gc_count_before,
2763                                gc_cause,
2764                                policy()->max_pause_time_ms());
2765   VMThread::execute(&op);
2766 
2767   HeapWord* result = op.result();
2768   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2769   assert(result == NULL || ret_succeeded,
2770          "the result should be NULL if the VM did not succeed");
2771   *succeeded = ret_succeeded;
2772 
2773   assert_heap_not_locked();
2774   return result;
2775 }
2776 
2777 void G1CollectedHeap::do_concurrent_mark() {
2778   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2779   if (!_cm_thread->in_progress()) {
2780     _cm_thread->set_started();
2781     CGC_lock->notify();
2782   }
2783 }
2784 
2785 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2786   // We don't nominate objects with many remembered set entries, on
2787   // the assumption that such objects are likely still live.
2788   HeapRegionRemSet* rem_set = r->rem_set();
2789 
2790   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2791          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2792          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2793 }
2794 
2795 #ifndef PRODUCT
2796 void G1CollectedHeap::verify_region_attr_remset_update() {
2797   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2798   public:
2799     virtual bool do_heap_region(HeapRegion* r) {
2800       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2801       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2802       assert(r->rem_set()->is_tracked() == needs_remset_update,
2803              "Region %u remset tracking status (%s) different to region attribute (%s)",
2804              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2805       return false;
2806     }
2807   } cl;
2808   heap_region_iterate(&cl);
2809 }
2810 #endif
2811 
2812 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2813   public:
2814     bool do_heap_region(HeapRegion* hr) {
2815       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2816         hr->verify_rem_set();
2817       }
2818       return false;
2819     }
2820 };
2821 
2822 uint G1CollectedHeap::num_task_queues() const {
2823   return _task_queues->size();
2824 }
2825 
2826 #if TASKQUEUE_STATS
2827 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2828   st->print_raw_cr("GC Task Stats");
2829   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2830   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2831 }
2832 
2833 void G1CollectedHeap::print_taskqueue_stats() const {
2834   if (!log_is_enabled(Trace, gc, task, stats)) {
2835     return;
2836   }
2837   Log(gc, task, stats) log;
2838   ResourceMark rm;
2839   LogStream ls(log.trace());
2840   outputStream* st = &ls;
2841 
2842   print_taskqueue_stats_hdr(st);
2843 
2844   TaskQueueStats totals;
2845   const uint n = num_task_queues();
2846   for (uint i = 0; i < n; ++i) {
2847     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2848     totals += task_queue(i)->stats;
2849   }
2850   st->print_raw("tot "); totals.print(st); st->cr();
2851 
2852   DEBUG_ONLY(totals.verify());
2853 }
2854 
2855 void G1CollectedHeap::reset_taskqueue_stats() {
2856   const uint n = num_task_queues();
2857   for (uint i = 0; i < n; ++i) {
2858     task_queue(i)->stats.reset();
2859   }
2860 }
2861 #endif // TASKQUEUE_STATS
2862 
2863 void G1CollectedHeap::wait_for_root_region_scanning() {
2864   double scan_wait_start = os::elapsedTime();
2865   // We have to wait until the CM threads finish scanning the
2866   // root regions as it's the only way to ensure that all the
2867   // objects on them have been correctly scanned before we start
2868   // moving them during the GC.
2869   bool waited = _cm->root_regions()->wait_until_scan_finished();
2870   double wait_time_ms = 0.0;
2871   if (waited) {
2872     double scan_wait_end = os::elapsedTime();
2873     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2874   }
2875   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2876 }
2877 
2878 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2879 private:
2880   G1HRPrinter* _hr_printer;
2881 public:
2882   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2883 
2884   virtual bool do_heap_region(HeapRegion* r) {
2885     _hr_printer->cset(r);
2886     return false;
2887   }
2888 };
2889 
2890 void G1CollectedHeap::start_new_collection_set() {
2891   double start = os::elapsedTime();
2892 
2893   collection_set()->start_incremental_building();
2894 
2895   clear_region_attr();
2896 
2897   guarantee(_eden.length() == 0, "eden should have been cleared");
2898   policy()->transfer_survivors_to_cset(survivor());
2899 
2900   // We redo the verification but now wrt to the new CSet which
2901   // has just got initialized after the previous CSet was freed.
2902   _cm->verify_no_collection_set_oops();
2903 
2904   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2905 }
2906 
2907 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2908 
2909   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2910   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2911                                             collection_set()->optional_region_length());
2912 
2913   _cm->verify_no_collection_set_oops();
2914 
2915   if (_hr_printer.is_active()) {
2916     G1PrintCollectionSetClosure cl(&_hr_printer);
2917     _collection_set.iterate(&cl);
2918     _collection_set.iterate_optional(&cl);
2919   }
2920 }
2921 
2922 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2923   if (collector_state()->in_initial_mark_gc()) {
2924     return G1HeapVerifier::G1VerifyConcurrentStart;
2925   } else if (collector_state()->in_young_only_phase()) {
2926     return G1HeapVerifier::G1VerifyYoungNormal;
2927   } else {
2928     return G1HeapVerifier::G1VerifyMixed;
2929   }
2930 }
2931 
2932 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2933   if (VerifyRememberedSets) {
2934     log_info(gc, verify)("[Verifying RemSets before GC]");
2935     VerifyRegionRemSetClosure v_cl;
2936     heap_region_iterate(&v_cl);
2937   }
2938   _verifier->verify_before_gc(type);
2939   _verifier->check_bitmaps("GC Start");
2940   verify_numa_regions("GC Start");
2941 }
2942 
2943 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2944   if (VerifyRememberedSets) {
2945     log_info(gc, verify)("[Verifying RemSets after GC]");
2946     VerifyRegionRemSetClosure v_cl;
2947     heap_region_iterate(&v_cl);
2948   }
2949   _verifier->verify_after_gc(type);
2950   _verifier->check_bitmaps("GC End");
2951   verify_numa_regions("GC End");
2952 }
2953 
2954 void G1CollectedHeap::resize_heap_after_young_gc() {
2955   Ticks start = Ticks::now();
2956 
2957   ssize_t resize_bytes = _heap_sizing_policy->resize_amount_after_young_gc();
2958   if (resize_bytes > 0) {
2959     expand(resize_bytes, _workers, NULL);
2960   } else if (resize_bytes < 0) {
2961     shrink(-resize_bytes);
2962   }
2963 
2964   phase_times()->record_resize_heap_time((Ticks::now() - start).seconds() * 1000.0);
2965 }
2966 
2967 const char* G1CollectedHeap::young_gc_name() const {
2968   if (collector_state()->in_initial_mark_gc()) {
2969     return "Pause Young (Concurrent Start)";
2970   } else if (collector_state()->in_young_only_phase()) {
2971     if (collector_state()->in_young_gc_before_mixed()) {
2972       return "Pause Young (Prepare Mixed)";
2973     } else {
2974       return "Pause Young (Normal)";
2975     }
2976   } else {
2977     return "Pause Young (Mixed)";
2978   }
2979 }
2980 
2981 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2982   assert_at_safepoint_on_vm_thread();
2983   guarantee(!is_gc_active(), "collection is not reentrant");
2984 
2985   if (GCLocker::check_active_before_gc()) {
2986     return false;
2987   }
2988 
2989   do_collection_pause_at_safepoint_helper(target_pause_time_ms);
2990   if (should_upgrade_to_full_gc(gc_cause())) {
2991     log_info(gc, ergo)("Attempting maximally compacting collection");
2992     bool result = do_full_collection(false /* explicit gc */,
2993                                      true /* clear_all_soft_refs */);
2994     // do_full_collection only fails if blocked by GC locker, but
2995     // we've already checked for that above.
2996     assert(result, "invariant");
2997   }
2998   return true;
2999 }
3000 
3001 void G1CollectedHeap::do_collection_pause_at_safepoint_helper(double target_pause_time_ms) {
3002   GCIdMark gc_id_mark;
3003 
3004   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3005   ResourceMark rm;
3006 
3007   policy()->note_gc_start();
3008 
3009   _gc_timer_stw->register_gc_start();
3010   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3011 
3012   wait_for_root_region_scanning();
3013 
3014   print_heap_before_gc();
3015   print_heap_regions();
3016   trace_heap_before_gc(_gc_tracer_stw);
3017 
3018   _verifier->verify_region_sets_optional();
3019   _verifier->verify_dirty_young_regions();
3020 
3021   // We should not be doing initial mark unless the conc mark thread is running
3022   if (!_cm_thread->should_terminate()) {
3023     // This call will decide whether this pause is an initial-mark
3024     // pause. If it is, in_initial_mark_gc() will return true
3025     // for the duration of this pause.
3026     policy()->decide_on_conc_mark_initiation();
3027   }
3028 
3029   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3030   assert(!collector_state()->in_initial_mark_gc() ||
3031          collector_state()->in_young_only_phase(), "sanity");
3032   // We also do not allow mixed GCs during marking.
3033   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
3034 
3035   // Record whether this pause is an initial mark. When the current
3036   // thread has completed its logging output and it's safe to signal
3037   // the CM thread, the flag's value in the policy has been reset.
3038   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
3039   if (should_start_conc_mark) {
3040     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3041   }
3042 
3043   // Inner scope for scope based logging, timers, and stats collection
3044   {
3045     G1EvacuationInfo evacuation_info;
3046 
3047     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3048 
3049     GCTraceCPUTime tcpu;
3050 
3051     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
3052 
3053     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
3054                                                             workers()->active_workers(),
3055                                                             Threads::number_of_non_daemon_threads());
3056     active_workers = workers()->update_active_workers(active_workers);
3057     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3058 
3059     G1MonitoringScope ms(g1mm(),
3060                          false /* full_gc */,
3061                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
3062 
3063     G1HeapTransition heap_transition(this);
3064 
3065     {
3066       IsGCActiveMark x;
3067 
3068       gc_prologue(false);
3069 
3070       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3071       verify_before_young_collection(verify_type);
3072 
3073       {
3074         // The elapsed time induced by the start time below deliberately elides
3075         // the possible verification above.
3076         double sample_start_time_sec = os::elapsedTime();
3077 
3078         // Please see comment in g1CollectedHeap.hpp and
3079         // G1CollectedHeap::ref_processing_init() to see how
3080         // reference processing currently works in G1.
3081         _ref_processor_stw->enable_discovery();
3082 
3083         // We want to temporarily turn off discovery by the
3084         // CM ref processor, if necessary, and turn it back on
3085         // on again later if we do. Using a scoped
3086         // NoRefDiscovery object will do this.
3087         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3088 
3089         policy()->record_collection_pause_start(sample_start_time_sec);
3090 
3091         // Forget the current allocation region (we might even choose it to be part
3092         // of the collection set!).
3093         _allocator->release_mutator_alloc_regions();
3094 
3095         calculate_collection_set(evacuation_info, target_pause_time_ms);
3096 
3097         G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3098         G1ParScanThreadStateSet per_thread_states(this,
3099                                                   &rdcqs,
3100                                                   workers()->active_workers(),
3101                                                   collection_set()->young_region_length(),
3102                                                   collection_set()->optional_region_length());
3103         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3104 
3105         // Actually do the work...
3106         evacuate_initial_collection_set(&per_thread_states);
3107 
3108         if (_collection_set.optional_region_length() != 0) {
3109           evacuate_optional_collection_set(&per_thread_states);
3110         }
3111         post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3112 
3113         start_new_collection_set();
3114 
3115         _survivor_evac_stats.adjust_desired_plab_sz();
3116         _old_evac_stats.adjust_desired_plab_sz();
3117 
3118         if (should_start_conc_mark) {
3119           // We have to do this before we notify the CM threads that
3120           // they can start working to make sure that all the
3121           // appropriate initialization is done on the CM object.
3122           concurrent_mark()->post_initial_mark();
3123           // Note that we don't actually trigger the CM thread at
3124           // this point. We do that later when we're sure that
3125           // the current thread has completed its logging output.
3126         }
3127 
3128         allocate_dummy_regions();
3129 
3130         _allocator->init_mutator_alloc_regions();
3131 
3132         resize_heap_after_young_gc();
3133 
3134         double sample_end_time_sec = os::elapsedTime();
3135         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3136         policy()->record_collection_pause_end(pause_time_ms);
3137       }
3138 
3139       verify_after_young_collection(verify_type);
3140 
3141       gc_epilogue(false);
3142     }
3143 
3144     // Print the remainder of the GC log output.
3145     if (evacuation_failed()) {
3146       log_info(gc)("To-space exhausted");
3147     }
3148 
3149     policy()->print_phases();
3150     heap_transition.print();
3151 
3152     _hrm->verify_optional();
3153     _verifier->verify_region_sets_optional();
3154 
3155     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3156     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3157 
3158     print_heap_after_gc();
3159     print_heap_regions();
3160     trace_heap_after_gc(_gc_tracer_stw);
3161 
3162     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3163     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3164     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3165     // before any GC notifications are raised.
3166     g1mm()->update_sizes();
3167 
3168     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3169     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3170     _gc_timer_stw->register_gc_end();
3171     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3172   }
3173   // It should now be safe to tell the concurrent mark thread to start
3174   // without its logging output interfering with the logging output
3175   // that came from the pause.
3176 
3177   if (should_start_conc_mark) {
3178     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3179     // thread(s) could be running concurrently with us. Make sure that anything
3180     // after this point does not assume that we are the only GC thread running.
3181     // Note: of course, the actual marking work will not start until the safepoint
3182     // itself is released in SuspendibleThreadSet::desynchronize().
3183     do_concurrent_mark();
3184     ConcurrentGCBreakpoints::notify_idle_to_active();
3185   }
3186 }
3187 
3188 void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
3189   G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
3190   workers()->run_task(&rsfp_task);
3191 }
3192 
3193 void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
3194   double remove_self_forwards_start = os::elapsedTime();
3195 
3196   remove_self_forwarding_pointers(rdcqs);
3197   _preserved_marks_set.restore(workers());
3198 
3199   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3200 }
3201 
3202 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3203   if (!_evacuation_failed) {
3204     _evacuation_failed = true;
3205   }
3206 
3207   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3208   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3209 }
3210 
3211 bool G1ParEvacuateFollowersClosure::offer_termination() {
3212   EventGCPhaseParallel event;
3213   G1ParScanThreadState* const pss = par_scan_state();
3214   start_term_time();
3215   const bool res = terminator()->offer_termination();
3216   end_term_time();
3217   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3218   return res;
3219 }
3220 
3221 void G1ParEvacuateFollowersClosure::do_void() {
3222   EventGCPhaseParallel event;
3223   G1ParScanThreadState* const pss = par_scan_state();
3224   pss->trim_queue();
3225   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3226   do {
3227     EventGCPhaseParallel event;
3228     pss->steal_and_trim_queue(queues());
3229     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3230   } while (!offer_termination());
3231 }
3232 
3233 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3234                                         bool class_unloading_occurred) {
3235   uint num_workers = workers()->active_workers();
3236   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3237   workers()->run_task(&unlink_task);
3238 }
3239 
3240 // Clean string dedup data structures.
3241 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3242 // record the durations of the phases. Hence the almost-copy.
3243 class G1StringDedupCleaningTask : public AbstractGangTask {
3244   BoolObjectClosure* _is_alive;
3245   OopClosure* _keep_alive;
3246   G1GCPhaseTimes* _phase_times;
3247 
3248 public:
3249   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3250                             OopClosure* keep_alive,
3251                             G1GCPhaseTimes* phase_times) :
3252     AbstractGangTask("Partial Cleaning Task"),
3253     _is_alive(is_alive),
3254     _keep_alive(keep_alive),
3255     _phase_times(phase_times)
3256   {
3257     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3258     StringDedup::gc_prologue(true);
3259   }
3260 
3261   ~G1StringDedupCleaningTask() {
3262     StringDedup::gc_epilogue();
3263   }
3264 
3265   void work(uint worker_id) {
3266     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3267     {
3268       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3269       StringDedupQueue::unlink_or_oops_do(&cl);
3270     }
3271     {
3272       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3273       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3274     }
3275   }
3276 };
3277 
3278 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3279                                             OopClosure* keep_alive,
3280                                             G1GCPhaseTimes* phase_times) {
3281   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3282   workers()->run_task(&cl);
3283 }
3284 
3285 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3286  private:
3287   G1RedirtyCardsQueueSet* _qset;
3288   G1CollectedHeap* _g1h;
3289   BufferNode* volatile _nodes;
3290 
3291   void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) {
3292     size_t buffer_size = _qset->buffer_size();
3293     BufferNode* next = Atomic::load(&_nodes);
3294     while (next != NULL) {
3295       BufferNode* node = next;
3296       next = Atomic::cmpxchg(&_nodes, node, node->next());
3297       if (next == node) {
3298         cl->apply_to_buffer(node, buffer_size, worker_id);
3299         next = node->next();
3300       }
3301     }
3302   }
3303 
3304  public:
3305   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3306     AbstractGangTask("Redirty Cards"),
3307     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3308 
3309   virtual void work(uint worker_id) {
3310     G1GCPhaseTimes* p = _g1h->phase_times();
3311     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3312 
3313     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3314     par_apply(&cl, worker_id);
3315 
3316     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3317   }
3318 };
3319 
3320 void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
3321   double redirty_logged_cards_start = os::elapsedTime();
3322 
3323   G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
3324   workers()->run_task(&redirty_task);
3325 
3326   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3327   dcq.merge_bufferlists(rdcqs);
3328 
3329   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3330 }
3331 
3332 // Weak Reference Processing support
3333 
3334 bool G1STWIsAliveClosure::do_object_b(oop p) {
3335   // An object is reachable if it is outside the collection set,
3336   // or is inside and copied.
3337   return !_g1h->is_in_cset(p) || p->is_forwarded();
3338 }
3339 
3340 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3341   assert(obj != NULL, "must not be NULL");
3342   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3343   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3344   // may falsely indicate that this is not the case here: however the collection set only
3345   // contains old regions when concurrent mark is not running.
3346   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3347 }
3348 
3349 // Non Copying Keep Alive closure
3350 class G1KeepAliveClosure: public OopClosure {
3351   G1CollectedHeap*_g1h;
3352 public:
3353   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3354   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3355   void do_oop(oop* p) {
3356     oop obj = *p;
3357     assert(obj != NULL, "the caller should have filtered out NULL values");
3358 
3359     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3360     if (!region_attr.is_in_cset_or_humongous()) {
3361       return;
3362     }
3363     if (region_attr.is_in_cset()) {
3364       assert( obj->is_forwarded(), "invariant" );
3365       *p = obj->forwardee();
3366     } else {
3367       assert(!obj->is_forwarded(), "invariant" );
3368       assert(region_attr.is_humongous(),
3369              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3370      _g1h->set_humongous_is_live(obj);
3371     }
3372   }
3373 };
3374 
3375 // Copying Keep Alive closure - can be called from both
3376 // serial and parallel code as long as different worker
3377 // threads utilize different G1ParScanThreadState instances
3378 // and different queues.
3379 
3380 class G1CopyingKeepAliveClosure: public OopClosure {
3381   G1CollectedHeap*         _g1h;
3382   G1ParScanThreadState*    _par_scan_state;
3383 
3384 public:
3385   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3386                             G1ParScanThreadState* pss):
3387     _g1h(g1h),
3388     _par_scan_state(pss)
3389   {}
3390 
3391   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3392   virtual void do_oop(      oop* p) { do_oop_work(p); }
3393 
3394   template <class T> void do_oop_work(T* p) {
3395     oop obj = RawAccess<>::oop_load(p);
3396 
3397     if (_g1h->is_in_cset_or_humongous(obj)) {
3398       // If the referent object has been forwarded (either copied
3399       // to a new location or to itself in the event of an
3400       // evacuation failure) then we need to update the reference
3401       // field and, if both reference and referent are in the G1
3402       // heap, update the RSet for the referent.
3403       //
3404       // If the referent has not been forwarded then we have to keep
3405       // it alive by policy. Therefore we have copy the referent.
3406       //
3407       // When the queue is drained (after each phase of reference processing)
3408       // the object and it's followers will be copied, the reference field set
3409       // to point to the new location, and the RSet updated.
3410       _par_scan_state->push_on_queue(ScannerTask(p));
3411     }
3412   }
3413 };
3414 
3415 // Serial drain queue closure. Called as the 'complete_gc'
3416 // closure for each discovered list in some of the
3417 // reference processing phases.
3418 
3419 class G1STWDrainQueueClosure: public VoidClosure {
3420 protected:
3421   G1CollectedHeap* _g1h;
3422   G1ParScanThreadState* _par_scan_state;
3423 
3424   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3425 
3426 public:
3427   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3428     _g1h(g1h),
3429     _par_scan_state(pss)
3430   { }
3431 
3432   void do_void() {
3433     G1ParScanThreadState* const pss = par_scan_state();
3434     pss->trim_queue();
3435   }
3436 };
3437 
3438 // Parallel Reference Processing closures
3439 
3440 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3441 // processing during G1 evacuation pauses.
3442 
3443 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3444 private:
3445   G1CollectedHeap*          _g1h;
3446   G1ParScanThreadStateSet*  _pss;
3447   G1ScannerTasksQueueSet*   _queues;
3448   WorkGang*                 _workers;
3449 
3450 public:
3451   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3452                            G1ParScanThreadStateSet* per_thread_states,
3453                            WorkGang* workers,
3454                            G1ScannerTasksQueueSet *task_queues) :
3455     _g1h(g1h),
3456     _pss(per_thread_states),
3457     _queues(task_queues),
3458     _workers(workers)
3459   {
3460     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3461   }
3462 
3463   // Executes the given task using concurrent marking worker threads.
3464   virtual void execute(ProcessTask& task, uint ergo_workers);
3465 };
3466 
3467 // Gang task for possibly parallel reference processing
3468 
3469 class G1STWRefProcTaskProxy: public AbstractGangTask {
3470   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3471   ProcessTask&     _proc_task;
3472   G1CollectedHeap* _g1h;
3473   G1ParScanThreadStateSet* _pss;
3474   G1ScannerTasksQueueSet* _task_queues;
3475   TaskTerminator* _terminator;
3476 
3477 public:
3478   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3479                         G1CollectedHeap* g1h,
3480                         G1ParScanThreadStateSet* per_thread_states,
3481                         G1ScannerTasksQueueSet *task_queues,
3482                         TaskTerminator* terminator) :
3483     AbstractGangTask("Process reference objects in parallel"),
3484     _proc_task(proc_task),
3485     _g1h(g1h),
3486     _pss(per_thread_states),
3487     _task_queues(task_queues),
3488     _terminator(terminator)
3489   {}
3490 
3491   virtual void work(uint worker_id) {
3492     // The reference processing task executed by a single worker.
3493     ResourceMark rm;
3494     HandleMark   hm;
3495 
3496     G1STWIsAliveClosure is_alive(_g1h);
3497 
3498     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3499     pss->set_ref_discoverer(NULL);
3500 
3501     // Keep alive closure.
3502     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3503 
3504     // Complete GC closure
3505     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3506 
3507     // Call the reference processing task's work routine.
3508     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3509 
3510     // Note we cannot assert that the refs array is empty here as not all
3511     // of the processing tasks (specifically phase2 - pp2_work) execute
3512     // the complete_gc closure (which ordinarily would drain the queue) so
3513     // the queue may not be empty.
3514   }
3515 };
3516 
3517 // Driver routine for parallel reference processing.
3518 // Creates an instance of the ref processing gang
3519 // task and has the worker threads execute it.
3520 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3521   assert(_workers != NULL, "Need parallel worker threads.");
3522 
3523   assert(_workers->active_workers() >= ergo_workers,
3524          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3525          ergo_workers, _workers->active_workers());
3526   TaskTerminator terminator(ergo_workers, _queues);
3527   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3528 
3529   _workers->run_task(&proc_task_proxy, ergo_workers);
3530 }
3531 
3532 // End of weak reference support closures
3533 
3534 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3535   double ref_proc_start = os::elapsedTime();
3536 
3537   ReferenceProcessor* rp = _ref_processor_stw;
3538   assert(rp->discovery_enabled(), "should have been enabled");
3539 
3540   // Closure to test whether a referent is alive.
3541   G1STWIsAliveClosure is_alive(this);
3542 
3543   // Even when parallel reference processing is enabled, the processing
3544   // of JNI refs is serial and performed serially by the current thread
3545   // rather than by a worker. The following PSS will be used for processing
3546   // JNI refs.
3547 
3548   // Use only a single queue for this PSS.
3549   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3550   pss->set_ref_discoverer(NULL);
3551   assert(pss->queue_is_empty(), "pre-condition");
3552 
3553   // Keep alive closure.
3554   G1CopyingKeepAliveClosure keep_alive(this, pss);
3555 
3556   // Serial Complete GC closure
3557   G1STWDrainQueueClosure drain_queue(this, pss);
3558 
3559   // Setup the soft refs policy...
3560   rp->setup_policy(false);
3561 
3562   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3563 
3564   ReferenceProcessorStats stats;
3565   if (!rp->processing_is_mt()) {
3566     // Serial reference processing...
3567     stats = rp->process_discovered_references(&is_alive,
3568                                               &keep_alive,
3569                                               &drain_queue,
3570                                               NULL,
3571                                               pt);
3572   } else {
3573     uint no_of_gc_workers = workers()->active_workers();
3574 
3575     // Parallel reference processing
3576     assert(no_of_gc_workers <= rp->max_num_queues(),
3577            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3578            no_of_gc_workers,  rp->max_num_queues());
3579 
3580     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3581     stats = rp->process_discovered_references(&is_alive,
3582                                               &keep_alive,
3583                                               &drain_queue,
3584                                               &par_task_executor,
3585                                               pt);
3586   }
3587 
3588   _gc_tracer_stw->report_gc_reference_stats(stats);
3589 
3590   // We have completed copying any necessary live referent objects.
3591   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3592 
3593   make_pending_list_reachable();
3594 
3595   assert(!rp->discovery_enabled(), "Postcondition");
3596   rp->verify_no_references_recorded();
3597 
3598   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3599   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3600 }
3601 
3602 void G1CollectedHeap::make_pending_list_reachable() {
3603   if (collector_state()->in_initial_mark_gc()) {
3604     oop pll_head = Universe::reference_pending_list();
3605     if (pll_head != NULL) {
3606       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3607       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3608     }
3609   }
3610 }
3611 
3612 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3613   Ticks start = Ticks::now();
3614   per_thread_states->flush();
3615   phase_times()->record_or_add_time_secs(G1GCPhaseTimes::MergePSS, 0 /* worker_id */, (Ticks::now() - start).seconds());
3616 }
3617 
3618 class G1PrepareEvacuationTask : public AbstractGangTask {
3619   class G1PrepareRegionsClosure : public HeapRegionClosure {
3620     G1CollectedHeap* _g1h;
3621     G1PrepareEvacuationTask* _parent_task;
3622     size_t _worker_humongous_total;
3623     size_t _worker_humongous_candidates;
3624 
3625     bool humongous_region_is_candidate(HeapRegion* region) const {
3626       assert(region->is_starts_humongous(), "Must start a humongous object");
3627 
3628       oop obj = oop(region->bottom());
3629 
3630       // Dead objects cannot be eager reclaim candidates. Due to class
3631       // unloading it is unsafe to query their classes so we return early.
3632       if (_g1h->is_obj_dead(obj, region)) {
3633         return false;
3634       }
3635 
3636       // If we do not have a complete remembered set for the region, then we can
3637       // not be sure that we have all references to it.
3638       if (!region->rem_set()->is_complete()) {
3639         return false;
3640       }
3641       // Candidate selection must satisfy the following constraints
3642       // while concurrent marking is in progress:
3643       //
3644       // * In order to maintain SATB invariants, an object must not be
3645       // reclaimed if it was allocated before the start of marking and
3646       // has not had its references scanned.  Such an object must have
3647       // its references (including type metadata) scanned to ensure no
3648       // live objects are missed by the marking process.  Objects
3649       // allocated after the start of concurrent marking don't need to
3650       // be scanned.
3651       //
3652       // * An object must not be reclaimed if it is on the concurrent
3653       // mark stack.  Objects allocated after the start of concurrent
3654       // marking are never pushed on the mark stack.
3655       //
3656       // Nominating only objects allocated after the start of concurrent
3657       // marking is sufficient to meet both constraints.  This may miss
3658       // some objects that satisfy the constraints, but the marking data
3659       // structures don't support efficiently performing the needed
3660       // additional tests or scrubbing of the mark stack.
3661       //
3662       // However, we presently only nominate is_typeArray() objects.
3663       // A humongous object containing references induces remembered
3664       // set entries on other regions.  In order to reclaim such an
3665       // object, those remembered sets would need to be cleaned up.
3666       //
3667       // We also treat is_typeArray() objects specially, allowing them
3668       // to be reclaimed even if allocated before the start of
3669       // concurrent mark.  For this we rely on mark stack insertion to
3670       // exclude is_typeArray() objects, preventing reclaiming an object
3671       // that is in the mark stack.  We also rely on the metadata for
3672       // such objects to be built-in and so ensured to be kept live.
3673       // Frequent allocation and drop of large binary blobs is an
3674       // important use case for eager reclaim, and this special handling
3675       // may reduce needed headroom.
3676 
3677       return obj->is_typeArray() &&
3678              _g1h->is_potential_eager_reclaim_candidate(region);
3679     }
3680 
3681   public:
3682     G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) :
3683       _g1h(g1h),
3684       _parent_task(parent_task),
3685       _worker_humongous_total(0),
3686       _worker_humongous_candidates(0) { }
3687 
3688     ~G1PrepareRegionsClosure() {
3689       _parent_task->add_humongous_candidates(_worker_humongous_candidates);
3690       _parent_task->add_humongous_total(_worker_humongous_total);
3691     }
3692 
3693     virtual bool do_heap_region(HeapRegion* hr) {
3694       // First prepare the region for scanning
3695       _g1h->rem_set()->prepare_region_for_scan(hr);
3696 
3697       // Now check if region is a humongous candidate
3698       if (!hr->is_starts_humongous()) {
3699         _g1h->register_region_with_region_attr(hr);
3700         return false;
3701       }
3702 
3703       uint index = hr->hrm_index();
3704       if (humongous_region_is_candidate(hr)) {
3705         _g1h->set_humongous_reclaim_candidate(index, true);
3706         _g1h->register_humongous_region_with_region_attr(index);
3707         _worker_humongous_candidates++;
3708         // We will later handle the remembered sets of these regions.
3709       } else {
3710         _g1h->set_humongous_reclaim_candidate(index, false);
3711         _g1h->register_region_with_region_attr(hr);
3712       }
3713       _worker_humongous_total++;
3714 
3715       return false;
3716     }
3717   };
3718 
3719   G1CollectedHeap* _g1h;
3720   HeapRegionClaimer _claimer;
3721   volatile size_t _humongous_total;
3722   volatile size_t _humongous_candidates;
3723 public:
3724   G1PrepareEvacuationTask(G1CollectedHeap* g1h) :
3725     AbstractGangTask("Prepare Evacuation"),
3726     _g1h(g1h),
3727     _claimer(_g1h->workers()->active_workers()),
3728     _humongous_total(0),
3729     _humongous_candidates(0) { }
3730 
3731   ~G1PrepareEvacuationTask() {
3732     _g1h->set_has_humongous_reclaim_candidate(_humongous_candidates > 0);
3733   }
3734 
3735   void work(uint worker_id) {
3736     G1PrepareRegionsClosure cl(_g1h, this);
3737     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id);
3738   }
3739 
3740   void add_humongous_candidates(size_t candidates) {
3741     Atomic::add(&_humongous_candidates, candidates);
3742   }
3743 
3744   void add_humongous_total(size_t total) {
3745     Atomic::add(&_humongous_total, total);
3746   }
3747 
3748   size_t humongous_candidates() {
3749     return _humongous_candidates;
3750   }
3751 
3752   size_t humongous_total() {
3753     return _humongous_total;
3754   }
3755 };
3756 
3757 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3758   _bytes_used_during_gc = 0;
3759 
3760   _expand_heap_after_alloc_failure = true;
3761   _evacuation_failed = false;
3762 
3763   // Disable the hot card cache.
3764   _hot_card_cache->reset_hot_cache_claimed_index();
3765   _hot_card_cache->set_use_cache(false);
3766 
3767   // Initialize the GC alloc regions.
3768   _allocator->init_gc_alloc_regions(evacuation_info);
3769 
3770   {
3771     Ticks start = Ticks::now();
3772     rem_set()->prepare_for_scan_heap_roots();
3773     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3774   }
3775 
3776   {
3777     G1PrepareEvacuationTask g1_prep_task(this);
3778     Tickspan task_time = run_task(&g1_prep_task);
3779 
3780     phase_times()->record_register_regions(task_time.seconds() * 1000.0,
3781                                            g1_prep_task.humongous_total(),
3782                                            g1_prep_task.humongous_candidates());
3783   }
3784 
3785   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3786   _preserved_marks_set.assert_empty();
3787 
3788 #if COMPILER2_OR_JVMCI
3789   DerivedPointerTable::clear();
3790 #endif
3791 
3792   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3793   if (collector_state()->in_initial_mark_gc()) {
3794     concurrent_mark()->pre_initial_mark();
3795 
3796     double start_clear_claimed_marks = os::elapsedTime();
3797 
3798     ClassLoaderDataGraph::clear_claimed_marks();
3799 
3800     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3801     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3802   }
3803 
3804   // Should G1EvacuationFailureALot be in effect for this GC?
3805   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3806 }
3807 
3808 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3809 protected:
3810   G1CollectedHeap* _g1h;
3811   G1ParScanThreadStateSet* _per_thread_states;
3812   G1ScannerTasksQueueSet* _task_queues;
3813   TaskTerminator _terminator;
3814   uint _num_workers;
3815 
3816   void evacuate_live_objects(G1ParScanThreadState* pss,
3817                              uint worker_id,
3818                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3819                              G1GCPhaseTimes::GCParPhases termination_phase) {
3820     G1GCPhaseTimes* p = _g1h->phase_times();
3821 
3822     Ticks start = Ticks::now();
3823     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, &_terminator, objcopy_phase);
3824     cl.do_void();
3825 
3826     assert(pss->queue_is_empty(), "should be empty");
3827 
3828     Tickspan evac_time = (Ticks::now() - start);
3829     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3830 
3831     if (termination_phase == G1GCPhaseTimes::Termination) {
3832       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3833       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3834     } else {
3835       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3836       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3837     }
3838     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3839   }
3840 
3841   virtual void start_work(uint worker_id) { }
3842 
3843   virtual void end_work(uint worker_id) { }
3844 
3845   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3846 
3847   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3848 
3849 public:
3850   G1EvacuateRegionsBaseTask(const char* name,
3851                             G1ParScanThreadStateSet* per_thread_states,
3852                             G1ScannerTasksQueueSet* task_queues,
3853                             uint num_workers) :
3854     AbstractGangTask(name),
3855     _g1h(G1CollectedHeap::heap()),
3856     _per_thread_states(per_thread_states),
3857     _task_queues(task_queues),
3858     _terminator(num_workers, _task_queues),
3859     _num_workers(num_workers)
3860   { }
3861 
3862   void work(uint worker_id) {
3863     start_work(worker_id);
3864 
3865     {
3866       ResourceMark rm;
3867       HandleMark   hm;
3868 
3869       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3870       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3871 
3872       scan_roots(pss, worker_id);
3873       evacuate_live_objects(pss, worker_id);
3874     }
3875 
3876     end_work(worker_id);
3877   }
3878 };
3879 
3880 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3881   G1RootProcessor* _root_processor;
3882 
3883   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3884     _root_processor->evacuate_roots(pss, worker_id);
3885     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3886     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3887   }
3888 
3889   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3890     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3891   }
3892 
3893   void start_work(uint worker_id) {
3894     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3895   }
3896 
3897   void end_work(uint worker_id) {
3898     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3899   }
3900 
3901 public:
3902   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3903                         G1ParScanThreadStateSet* per_thread_states,
3904                         G1ScannerTasksQueueSet* task_queues,
3905                         G1RootProcessor* root_processor,
3906                         uint num_workers) :
3907     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3908     _root_processor(root_processor)
3909   { }
3910 };
3911 
3912 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3913   G1GCPhaseTimes* p = phase_times();
3914 
3915   {
3916     Ticks start = Ticks::now();
3917     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3918     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3919   }
3920 
3921   Tickspan task_time;
3922   const uint num_workers = workers()->active_workers();
3923 
3924   Ticks start_processing = Ticks::now();
3925   {
3926     G1RootProcessor root_processor(this, num_workers);
3927     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3928     task_time = run_task(&g1_par_task);
3929     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3930     // To extract its code root fixup time we measure total time of this scope and
3931     // subtract from the time the WorkGang task took.
3932   }
3933   Tickspan total_processing = Ticks::now() - start_processing;
3934 
3935   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3936   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3937 }
3938 
3939 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3940 
3941   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3942     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3943     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3944   }
3945 
3946   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3947     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3948   }
3949 
3950 public:
3951   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3952                                 G1ScannerTasksQueueSet* queues,
3953                                 uint num_workers) :
3954     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3955   }
3956 };
3957 
3958 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3959   class G1MarkScope : public MarkScope { };
3960 
3961   Tickspan task_time;
3962 
3963   Ticks start_processing = Ticks::now();
3964   {
3965     G1MarkScope code_mark_scope;
3966     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3967     task_time = run_task(&task);
3968     // See comment in evacuate_collection_set() for the reason of the scope.
3969   }
3970   Tickspan total_processing = Ticks::now() - start_processing;
3971 
3972   G1GCPhaseTimes* p = phase_times();
3973   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3974 }
3975 
3976 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3977   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3978 
3979   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3980 
3981     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3982     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3983 
3984     if (time_left_ms < 0 ||
3985         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3986       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3987                                 _collection_set.optional_region_length(), time_left_ms);
3988       break;
3989     }
3990 
3991     {
3992       Ticks start = Ticks::now();
3993       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3994       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3995     }
3996 
3997     {
3998       Ticks start = Ticks::now();
3999       evacuate_next_optional_regions(per_thread_states);
4000       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
4001     }
4002   }
4003 
4004   _collection_set.abandon_optional_collection_set(per_thread_states);
4005 }
4006 
4007 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
4008                                                    G1RedirtyCardsQueueSet* rdcqs,
4009                                                    G1ParScanThreadStateSet* per_thread_states) {
4010   G1GCPhaseTimes* p = phase_times();
4011 
4012   rem_set()->cleanup_after_scan_heap_roots();
4013 
4014   // Process any discovered reference objects - we have
4015   // to do this _before_ we retire the GC alloc regions
4016   // as we may have to copy some 'reachable' referent
4017   // objects (and their reachable sub-graphs) that were
4018   // not copied during the pause.
4019   process_discovered_references(per_thread_states);
4020 
4021   G1STWIsAliveClosure is_alive(this);
4022   G1KeepAliveClosure keep_alive(this);
4023 
4024   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, p->weak_phase_times());
4025 
4026   if (G1StringDedup::is_enabled()) {
4027     double string_dedup_time_ms = os::elapsedTime();
4028 
4029     string_dedup_cleaning(&is_alive, &keep_alive, p);
4030 
4031     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
4032     p->record_string_deduplication_time(string_cleanup_time_ms);
4033   }
4034 
4035   _allocator->release_gc_alloc_regions(evacuation_info);
4036 
4037   if (evacuation_failed()) {
4038     restore_after_evac_failure(rdcqs);
4039 
4040     // Reset the G1EvacuationFailureALot counters and flags
4041     NOT_PRODUCT(reset_evacuation_should_fail();)
4042 
4043     double recalculate_used_start = os::elapsedTime();
4044     set_used(recalculate_used());
4045     p->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
4046 
4047     if (_archive_allocator != NULL) {
4048       _archive_allocator->clear_used();
4049     }
4050     for (uint i = 0; i < ParallelGCThreads; i++) {
4051       if (_evacuation_failed_info_array[i].has_failed()) {
4052         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4053       }
4054     }
4055   } else {
4056     // The "used" of the the collection set have already been subtracted
4057     // when they were freed.  Add in the bytes used.
4058     increase_used(_bytes_used_during_gc);
4059   }
4060 
4061   _preserved_marks_set.assert_empty();
4062 
4063   merge_per_thread_state_info(per_thread_states);
4064 
4065   // Reset and re-enable the hot card cache.
4066   // Note the counts for the cards in the regions in the
4067   // collection set are reset when the collection set is freed.
4068   _hot_card_cache->reset_hot_cache();
4069   _hot_card_cache->set_use_cache(true);
4070 
4071   purge_code_root_memory();
4072 
4073   redirty_logged_cards(rdcqs);
4074 
4075   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
4076 
4077   eagerly_reclaim_humongous_regions();
4078 
4079   record_obj_copy_mem_stats();
4080 
4081   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
4082   evacuation_info.set_bytes_used(_bytes_used_during_gc);
4083 
4084 #if COMPILER2_OR_JVMCI
4085   double start = os::elapsedTime();
4086   DerivedPointerTable::update_pointers();
4087   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4088 #endif
4089   policy()->print_age_table();
4090 }
4091 
4092 void G1CollectedHeap::record_obj_copy_mem_stats() {
4093   policy()->old_gen_alloc_tracker()->
4094     add_allocated_bytes_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4095 
4096   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4097                                                create_g1_evac_summary(&_old_evac_stats));
4098 }
4099 
4100 void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
4101   assert(!hr->is_free(), "the region should not be free");
4102   assert(!hr->is_empty(), "the region should not be empty");
4103   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
4104 
4105   if (G1VerifyBitmaps) {
4106     MemRegion mr(hr->bottom(), hr->end());
4107     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4108   }
4109 
4110   // Clear the card counts for this region.
4111   // Note: we only need to do this if the region is not young
4112   // (since we don't refine cards in young regions).
4113   if (!hr->is_young()) {
4114     _hot_card_cache->reset_card_counts(hr);
4115   }
4116 
4117   // Reset region metadata to allow reuse.
4118   hr->hr_clear(true /* clear_space */);
4119   _policy->remset_tracker()->update_at_free(hr);
4120 
4121   if (free_list != NULL) {
4122     free_list->add_ordered(hr);
4123   }
4124 }
4125 
4126 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4127                                             FreeRegionList* free_list) {
4128   assert(hr->is_humongous(), "this is only for humongous regions");
4129   assert(free_list != NULL, "pre-condition");
4130   hr->clear_humongous();
4131   free_region(hr, free_list);
4132 }
4133 
4134 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4135                                            const uint humongous_regions_removed) {
4136   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4137     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4138     _old_set.bulk_remove(old_regions_removed);
4139     _humongous_set.bulk_remove(humongous_regions_removed);
4140   }
4141 
4142 }
4143 
4144 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4145   assert(list != NULL, "list can't be null");
4146   if (!list->is_empty()) {
4147     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4148     _hrm->insert_list_into_free_list(list);
4149   }
4150 }
4151 
4152 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4153   decrease_used(bytes);
4154 }
4155 
4156 class G1FreeCollectionSetTask : public AbstractGangTask {
4157   // Helper class to keep statistics for the collection set freeing
4158   class FreeCSetStats {
4159     size_t _before_used_bytes;   // Usage in regions successfully evacutate
4160     size_t _after_used_bytes;    // Usage in regions failing evacuation
4161     size_t _bytes_allocated_in_old_since_last_gc; // Size of young regions turned into old
4162     size_t _failure_used_words;  // Live size in failed regions
4163     size_t _failure_waste_words; // Wasted size in failed regions
4164     size_t _rs_length;           // Remembered set size
4165     uint _regions_freed;         // Number of regions freed
4166   public:
4167     FreeCSetStats() :
4168         _before_used_bytes(0),
4169         _after_used_bytes(0),
4170         _bytes_allocated_in_old_since_last_gc(0),
4171         _failure_used_words(0),
4172         _failure_waste_words(0),
4173         _rs_length(0),
4174         _regions_freed(0) { }
4175 
4176     void merge_stats(FreeCSetStats* other) {
4177       assert(other != NULL, "invariant");
4178       _before_used_bytes += other->_before_used_bytes;
4179       _after_used_bytes += other->_after_used_bytes;
4180       _bytes_allocated_in_old_since_last_gc += other->_bytes_allocated_in_old_since_last_gc;
4181       _failure_used_words += other->_failure_used_words;
4182       _failure_waste_words += other->_failure_waste_words;
4183       _rs_length += other->_rs_length;
4184       _regions_freed += other->_regions_freed;
4185     }
4186 
4187     void report(G1CollectedHeap* g1h, G1EvacuationInfo* evacuation_info) {
4188       evacuation_info->set_regions_freed(_regions_freed);
4189       evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4190 
4191       g1h->decrement_summary_bytes(_before_used_bytes);
4192       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4193 
4194       G1Policy *policy = g1h->policy();
4195       policy->old_gen_alloc_tracker()->add_allocated_bytes_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4196       policy->record_rs_length(_rs_length);
4197       policy->cset_regions_freed();
4198     }
4199 
4200     void account_failed_region(HeapRegion* r) {
4201       size_t used_words = r->marked_bytes() / HeapWordSize;
4202       _failure_used_words += used_words;
4203       _failure_waste_words += HeapRegion::GrainWords - used_words;
4204       _after_used_bytes += r->used();
4205 
4206       // When moving a young gen region to old gen, we "allocate" that whole
4207       // region there. This is in addition to any already evacuated objects.
4208       // Notify the policy about that. Old gen regions do not cause an
4209       // additional allocation: both the objects still in the region and the
4210       // ones already moved are accounted for elsewhere.
4211       if (r->is_young()) {
4212         _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4213       }
4214     }
4215 
4216     void account_evacuated_region(HeapRegion* r) {
4217       _before_used_bytes += r->used();
4218       _regions_freed += 1;
4219     }
4220 
4221     void account_rs_length(HeapRegion* r) {
4222       _rs_length += r->rem_set()->occupied();
4223     }
4224   };
4225 
4226   // Closure applied to all regions in the collection set.
4227   class FreeCSetClosure : public HeapRegionClosure {
4228     // Helper to send JFR events for regions.
4229     class JFREventForRegion {
4230       EventGCPhaseParallel _event;
4231     public:
4232       JFREventForRegion(HeapRegion* region, uint worker_id) : _event() {
4233         _event.set_gcId(GCId::current());
4234         _event.set_gcWorkerId(worker_id);
4235         if (region->is_young()) {
4236           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4237         } else {
4238           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4239         }
4240       }
4241 
4242       ~JFREventForRegion() {
4243         _event.commit();
4244       }
4245     };
4246 
4247     // Helper to do timing for region work.
4248     class TimerForRegion {
4249       Tickspan& _time;
4250       Ticks     _start_time;
4251     public:
4252       TimerForRegion(Tickspan& time) : _time(time), _start_time(Ticks::now()) { }
4253       ~TimerForRegion() {
4254         _time += Ticks::now() - _start_time;
4255       }
4256     };
4257 
4258     // FreeCSetClosure members
4259     G1CollectedHeap* _g1h;
4260     const size_t*    _surviving_young_words;
4261     uint             _worker_id;
4262     Tickspan         _young_time;
4263     Tickspan         _non_young_time;
4264     FreeCSetStats*   _stats;
4265 
4266     void assert_in_cset(HeapRegion* r) {
4267       assert(r->young_index_in_cset() != 0 &&
4268              (uint)r->young_index_in_cset() <= _g1h->collection_set()->young_region_length(),
4269              "Young index %u is wrong for region %u of type %s with %u young regions",
4270              r->young_index_in_cset(), r->hrm_index(), r->get_type_str(), _g1h->collection_set()->young_region_length());
4271     }
4272 
4273     void handle_evacuated_region(HeapRegion* r) {
4274       assert(!r->is_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4275       stats()->account_evacuated_region(r);
4276 
4277       // Free the region and and its remembered set.
4278       _g1h->free_region(r, NULL);
4279     }
4280 
4281     void handle_failed_region(HeapRegion* r) {
4282       // Do some allocation statistics accounting. Regions that failed evacuation
4283       // are always made old, so there is no need to update anything in the young
4284       // gen statistics, but we need to update old gen statistics.
4285       stats()->account_failed_region(r);
4286 
4287       // Update the region state due to the failed evacuation.
4288       r->handle_evacuation_failure();
4289 
4290       // Add region to old set, need to hold lock.
4291       MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4292       _g1h->old_set_add(r);
4293     }
4294 
4295     Tickspan& timer_for_region(HeapRegion* r) {
4296       return r->is_young() ? _young_time : _non_young_time;
4297     }
4298 
4299     FreeCSetStats* stats() {
4300       return _stats;
4301     }
4302   public:
4303     FreeCSetClosure(const size_t* surviving_young_words,
4304                     uint worker_id,
4305                     FreeCSetStats* stats) :
4306         HeapRegionClosure(),
4307         _g1h(G1CollectedHeap::heap()),
4308         _surviving_young_words(surviving_young_words),
4309         _worker_id(worker_id),
4310         _young_time(),
4311         _non_young_time(),
4312         _stats(stats) { }
4313 
4314     virtual bool do_heap_region(HeapRegion* r) {
4315       assert(r->in_collection_set(), "Invariant: %u missing from CSet", r->hrm_index());
4316       JFREventForRegion event(r, _worker_id);
4317       TimerForRegion timer(timer_for_region(r));
4318 
4319       _g1h->clear_region_attr(r);
4320       stats()->account_rs_length(r);
4321 
4322       if (r->is_young()) {
4323         assert_in_cset(r);
4324         r->record_surv_words_in_group(_surviving_young_words[r->young_index_in_cset()]);
4325       }
4326 
4327       if (r->evacuation_failed()) {
4328         handle_failed_region(r);
4329       } else {
4330         handle_evacuated_region(r);
4331       }
4332       assert(!_g1h->is_on_master_free_list(r), "sanity");
4333 
4334       return false;
4335     }
4336 
4337     void report_timing(Tickspan parallel_time) {
4338       G1GCPhaseTimes* pt = _g1h->phase_times();
4339       pt->record_time_secs(G1GCPhaseTimes::ParFreeCSet, _worker_id, parallel_time.seconds());
4340       if (_young_time.value() > 0) {
4341         pt->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, _worker_id, _young_time.seconds());
4342       }
4343       if (_non_young_time.value() > 0) {
4344         pt->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, _worker_id, _non_young_time.seconds());
4345       }
4346     }
4347   };
4348 
4349   // G1FreeCollectionSetTask members
4350   G1CollectedHeap*  _g1h;
4351   G1EvacuationInfo* _evacuation_info;
4352   FreeCSetStats*    _worker_stats;
4353   HeapRegionClaimer _claimer;
4354   const size_t*     _surviving_young_words;
4355   uint              _active_workers;
4356 
4357   FreeCSetStats* worker_stats(uint worker) {
4358     return &_worker_stats[worker];
4359   }
4360 
4361   void report_statistics() {
4362     // Merge the accounting
4363     FreeCSetStats total_stats;
4364     for (uint worker = 0; worker < _active_workers; worker++) {
4365       total_stats.merge_stats(worker_stats(worker));
4366     }
4367     total_stats.report(_g1h, _evacuation_info);
4368   }
4369 
4370 public:
4371   G1FreeCollectionSetTask(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words, uint active_workers) :
4372       AbstractGangTask("G1 Free Collection Set"),
4373       _g1h(G1CollectedHeap::heap()),
4374       _evacuation_info(evacuation_info),
4375       _worker_stats(NEW_C_HEAP_ARRAY(FreeCSetStats, active_workers, mtGC)),
4376       _claimer(active_workers),
4377       _surviving_young_words(surviving_young_words),
4378       _active_workers(active_workers) {
4379     for (uint worker = 0; worker < active_workers; worker++) {
4380       ::new (&_worker_stats[worker]) FreeCSetStats();
4381     }
4382   }
4383 
4384   ~G1FreeCollectionSetTask() {
4385     Ticks serial_time = Ticks::now();
4386     report_statistics();
4387     for (uint worker = 0; worker < _active_workers; worker++) {
4388       _worker_stats[worker].~FreeCSetStats();
4389     }
4390     FREE_C_HEAP_ARRAY(FreeCSetStats, _worker_stats);
4391     _g1h->phase_times()->record_serial_free_cset_time_ms((Ticks::now() - serial_time).seconds() * 1000.0);
4392   }
4393 
4394   virtual void work(uint worker_id) {
4395     EventGCPhaseParallel event;
4396     Ticks start = Ticks::now();
4397     FreeCSetClosure cl(_surviving_young_words, worker_id, worker_stats(worker_id));
4398     _g1h->collection_set_par_iterate_all(&cl, &_claimer, worker_id);
4399 
4400     // Report the total parallel time along with some more detailed metrics.
4401     cl.report_timing(Ticks::now() - start);
4402     event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ParFreeCSet));
4403   }
4404 };
4405 
4406 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4407   _eden.clear();
4408 
4409   // The free collections set is split up in two tasks, the first
4410   // frees the collection set and records what regions are free,
4411   // and the second one rebuilds the free list. This proved to be
4412   // more efficient than adding a sorted list to another.
4413 
4414   Ticks free_cset_start_time = Ticks::now();
4415   {
4416     uint const num_cs_regions = _collection_set.region_length();
4417     uint const num_workers = clamp(num_cs_regions, 1u, workers()->active_workers());
4418     G1FreeCollectionSetTask cl(&evacuation_info, surviving_young_words, num_workers);
4419 
4420     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u (%u)",
4421                         cl.name(), num_workers, num_cs_regions, num_regions());
4422     workers()->run_task(&cl, num_workers);
4423   }
4424 
4425   Ticks free_cset_end_time = Ticks::now();
4426   phase_times()->record_total_free_cset_time_ms((free_cset_end_time - free_cset_start_time).seconds() * 1000.0);
4427 
4428   // Now rebuild the free region list.
4429   hrm()->rebuild_free_list(workers());
4430   phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - free_cset_end_time).seconds() * 1000.0);
4431 
4432   collection_set->clear();
4433 }
4434 
4435 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4436  private:
4437   FreeRegionList* _free_region_list;
4438   HeapRegionSet* _proxy_set;
4439   uint _humongous_objects_reclaimed;
4440   uint _humongous_regions_reclaimed;
4441   size_t _freed_bytes;
4442  public:
4443 
4444   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4445     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4446   }
4447 
4448   virtual bool do_heap_region(HeapRegion* r) {
4449     if (!r->is_starts_humongous()) {
4450       return false;
4451     }
4452 
4453     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4454 
4455     oop obj = (oop)r->bottom();
4456     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4457 
4458     // The following checks whether the humongous object is live are sufficient.
4459     // The main additional check (in addition to having a reference from the roots
4460     // or the young gen) is whether the humongous object has a remembered set entry.
4461     //
4462     // A humongous object cannot be live if there is no remembered set for it
4463     // because:
4464     // - there can be no references from within humongous starts regions referencing
4465     // the object because we never allocate other objects into them.
4466     // (I.e. there are no intra-region references that may be missed by the
4467     // remembered set)
4468     // - as soon there is a remembered set entry to the humongous starts region
4469     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4470     // until the end of a concurrent mark.
4471     //
4472     // It is not required to check whether the object has been found dead by marking
4473     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4474     // all objects allocated during that time are considered live.
4475     // SATB marking is even more conservative than the remembered set.
4476     // So if at this point in the collection there is no remembered set entry,
4477     // nobody has a reference to it.
4478     // At the start of collection we flush all refinement logs, and remembered sets
4479     // are completely up-to-date wrt to references to the humongous object.
4480     //
4481     // Other implementation considerations:
4482     // - never consider object arrays at this time because they would pose
4483     // considerable effort for cleaning up the the remembered sets. This is
4484     // required because stale remembered sets might reference locations that
4485     // are currently allocated into.
4486     uint region_idx = r->hrm_index();
4487     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4488         !r->rem_set()->is_empty()) {
4489       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4490                                region_idx,
4491                                (size_t)obj->size() * HeapWordSize,
4492                                p2i(r->bottom()),
4493                                r->rem_set()->occupied(),
4494                                r->rem_set()->strong_code_roots_list_length(),
4495                                next_bitmap->is_marked(r->bottom()),
4496                                g1h->is_humongous_reclaim_candidate(region_idx),
4497                                obj->is_typeArray()
4498                               );
4499       return false;
4500     }
4501 
4502     guarantee(obj->is_typeArray(),
4503               "Only eagerly reclaiming type arrays is supported, but the object "
4504               PTR_FORMAT " is not.", p2i(r->bottom()));
4505 
4506     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4507                              region_idx,
4508                              (size_t)obj->size() * HeapWordSize,
4509                              p2i(r->bottom()),
4510                              r->rem_set()->occupied(),
4511                              r->rem_set()->strong_code_roots_list_length(),
4512                              next_bitmap->is_marked(r->bottom()),
4513                              g1h->is_humongous_reclaim_candidate(region_idx),
4514                              obj->is_typeArray()
4515                             );
4516 
4517     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4518     cm->humongous_object_eagerly_reclaimed(r);
4519     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4520            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4521            region_idx,
4522            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4523            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4524     _humongous_objects_reclaimed++;
4525     do {
4526       HeapRegion* next = g1h->next_region_in_humongous(r);
4527       _freed_bytes += r->used();
4528       r->set_containing_set(NULL);
4529       _humongous_regions_reclaimed++;
4530       g1h->free_humongous_region(r, _free_region_list);
4531       r = next;
4532     } while (r != NULL);
4533 
4534     return false;
4535   }
4536 
4537   uint humongous_objects_reclaimed() {
4538     return _humongous_objects_reclaimed;
4539   }
4540 
4541   uint humongous_regions_reclaimed() {
4542     return _humongous_regions_reclaimed;
4543   }
4544 
4545   size_t bytes_freed() const {
4546     return _freed_bytes;
4547   }
4548 };
4549 
4550 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4551   assert_at_safepoint_on_vm_thread();
4552 
4553   if (!G1EagerReclaimHumongousObjects ||
4554       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4555     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4556     return;
4557   }
4558 
4559   double start_time = os::elapsedTime();
4560 
4561   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4562 
4563   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4564   heap_region_iterate(&cl);
4565 
4566   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4567 
4568   G1HRPrinter* hrp = hr_printer();
4569   if (hrp->is_active()) {
4570     FreeRegionListIterator iter(&local_cleanup_list);
4571     while (iter.more_available()) {
4572       HeapRegion* hr = iter.get_next();
4573       hrp->cleanup(hr);
4574     }
4575   }
4576 
4577   prepend_to_freelist(&local_cleanup_list);
4578   decrement_summary_bytes(cl.bytes_freed());
4579 
4580   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4581                                                        cl.humongous_objects_reclaimed());
4582 }
4583 
4584 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4585 public:
4586   virtual bool do_heap_region(HeapRegion* r) {
4587     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4588     G1CollectedHeap::heap()->clear_region_attr(r);
4589     r->clear_young_index_in_cset();
4590     return false;
4591   }
4592 };
4593 
4594 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4595   G1AbandonCollectionSetClosure cl;
4596   collection_set_iterate_all(&cl);
4597 
4598   collection_set->clear();
4599   collection_set->stop_incremental_building();
4600 }
4601 
4602 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4603   return _allocator->is_retained_old_region(hr);
4604 }
4605 
4606 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4607   _eden.add(hr);
4608   _policy->set_region_eden(hr);
4609 }
4610 
4611 #ifdef ASSERT
4612 
4613 class NoYoungRegionsClosure: public HeapRegionClosure {
4614 private:
4615   bool _success;
4616 public:
4617   NoYoungRegionsClosure() : _success(true) { }
4618   bool do_heap_region(HeapRegion* r) {
4619     if (r->is_young()) {
4620       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4621                             p2i(r->bottom()), p2i(r->end()));
4622       _success = false;
4623     }
4624     return false;
4625   }
4626   bool success() { return _success; }
4627 };
4628 
4629 bool G1CollectedHeap::check_young_list_empty() {
4630   bool ret = (young_regions_count() == 0);
4631 
4632   NoYoungRegionsClosure closure;
4633   heap_region_iterate(&closure);
4634   ret = ret && closure.success();
4635 
4636   return ret;
4637 }
4638 
4639 #endif // ASSERT
4640 
4641 class TearDownRegionSetsClosure : public HeapRegionClosure {
4642   HeapRegionSet *_old_set;
4643 
4644 public:
4645   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4646 
4647   bool do_heap_region(HeapRegion* r) {
4648     if (r->is_old()) {
4649       _old_set->remove(r);
4650     } else if(r->is_young()) {
4651       r->uninstall_surv_rate_group();
4652     } else {
4653       // We ignore free regions, we'll empty the free list afterwards.
4654       // We ignore humongous and archive regions, we're not tearing down these
4655       // sets.
4656       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4657              "it cannot be another type");
4658     }
4659     return false;
4660   }
4661 
4662   ~TearDownRegionSetsClosure() {
4663     assert(_old_set->is_empty(), "post-condition");
4664   }
4665 };
4666 
4667 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4668   assert_at_safepoint_on_vm_thread();
4669 
4670   if (!free_list_only) {
4671     TearDownRegionSetsClosure cl(&_old_set);
4672     heap_region_iterate(&cl);
4673 
4674     // Note that emptying the _young_list is postponed and instead done as
4675     // the first step when rebuilding the regions sets again. The reason for
4676     // this is that during a full GC string deduplication needs to know if
4677     // a collected region was young or old when the full GC was initiated.
4678   }
4679   _hrm->remove_all_free_regions();
4680 }
4681 
4682 void G1CollectedHeap::increase_used(size_t bytes) {
4683   _summary_bytes_used += bytes;
4684 }
4685 
4686 void G1CollectedHeap::decrease_used(size_t bytes) {
4687   assert(_summary_bytes_used >= bytes,
4688          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4689          _summary_bytes_used, bytes);
4690   _summary_bytes_used -= bytes;
4691 }
4692 
4693 void G1CollectedHeap::set_used(size_t bytes) {
4694   _summary_bytes_used = bytes;
4695 }
4696 
4697 class RebuildRegionSetsClosure : public HeapRegionClosure {
4698 private:
4699   bool _free_list_only;
4700 
4701   HeapRegionSet* _old_set;
4702   HeapRegionManager* _hrm;
4703 
4704   size_t _total_used;
4705 
4706 public:
4707   RebuildRegionSetsClosure(bool free_list_only,
4708                            HeapRegionSet* old_set,
4709                            HeapRegionManager* hrm) :
4710     _free_list_only(free_list_only),
4711     _old_set(old_set), _hrm(hrm), _total_used(0) {
4712     assert(_hrm->num_free_regions() == 0, "pre-condition");
4713     if (!free_list_only) {
4714       assert(_old_set->is_empty(), "pre-condition");
4715     }
4716   }
4717 
4718   bool do_heap_region(HeapRegion* r) {
4719     if (r->is_empty()) {
4720       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4721       // Add free regions to the free list
4722       r->set_free();
4723       _hrm->insert_into_free_list(r);
4724     } else if (!_free_list_only) {
4725       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4726 
4727       if (r->is_archive() || r->is_humongous()) {
4728         // We ignore archive and humongous regions. We left these sets unchanged.
4729       } else {
4730         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4731         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4732         r->move_to_old();
4733         _old_set->add(r);
4734       }
4735       _total_used += r->used();
4736     }
4737 
4738     return false;
4739   }
4740 
4741   size_t total_used() {
4742     return _total_used;
4743   }
4744 };
4745 
4746 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4747   assert_at_safepoint_on_vm_thread();
4748 
4749   if (!free_list_only) {
4750     _eden.clear();
4751     _survivor.clear();
4752   }
4753 
4754   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4755   heap_region_iterate(&cl);
4756 
4757   if (!free_list_only) {
4758     set_used(cl.total_used());
4759     if (_archive_allocator != NULL) {
4760       _archive_allocator->clear_used();
4761     }
4762   }
4763   assert_used_and_recalculate_used_equal(this);
4764 }
4765 
4766 // Methods for the mutator alloc region
4767 
4768 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4769                                                       bool force,
4770                                                       uint node_index) {
4771   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4772   bool should_allocate = policy()->should_allocate_mutator_region();
4773   if (force || should_allocate) {
4774     HeapRegion* new_alloc_region = new_region(word_size,
4775                                               HeapRegionType::Eden,
4776                                               false /* do_expand */,
4777                                               node_index);
4778     if (new_alloc_region != NULL) {
4779       set_region_short_lived_locked(new_alloc_region);
4780       _hr_printer.alloc(new_alloc_region, !should_allocate);
4781       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4782       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4783       return new_alloc_region;
4784     }
4785   }
4786   return NULL;
4787 }
4788 
4789 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4790                                                   size_t allocated_bytes) {
4791   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4792   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4793 
4794   collection_set()->add_eden_region(alloc_region);
4795   increase_used(allocated_bytes);
4796   _eden.add_used_bytes(allocated_bytes);
4797   _hr_printer.retire(alloc_region);
4798 
4799   // We update the eden sizes here, when the region is retired,
4800   // instead of when it's allocated, since this is the point that its
4801   // used space has been recorded in _summary_bytes_used.
4802   g1mm()->update_eden_size();
4803 }
4804 
4805 // Methods for the GC alloc regions
4806 
4807 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4808   if (dest.is_old()) {
4809     return true;
4810   } else {
4811     return survivor_regions_count() < policy()->max_survivor_regions();
4812   }
4813 }
4814 
4815 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
4816   assert(FreeList_lock->owned_by_self(), "pre-condition");
4817 
4818   if (!has_more_regions(dest)) {
4819     return NULL;
4820   }
4821 
4822   HeapRegionType type;
4823   if (dest.is_young()) {
4824     type = HeapRegionType::Survivor;
4825   } else {
4826     type = HeapRegionType::Old;
4827   }
4828 
4829   HeapRegion* new_alloc_region = new_region(word_size,
4830                                             type,
4831                                             true /* do_expand */,
4832                                             node_index);
4833 
4834   if (new_alloc_region != NULL) {
4835     if (type.is_survivor()) {
4836       new_alloc_region->set_survivor();
4837       _survivor.add(new_alloc_region);
4838       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4839     } else {
4840       new_alloc_region->set_old();
4841       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4842     }
4843     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4844     register_region_with_region_attr(new_alloc_region);
4845     _hr_printer.alloc(new_alloc_region);
4846     return new_alloc_region;
4847   }
4848   return NULL;
4849 }
4850 
4851 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4852                                              size_t allocated_bytes,
4853                                              G1HeapRegionAttr dest) {
4854   _bytes_used_during_gc += allocated_bytes;
4855   if (dest.is_old()) {
4856     old_set_add(alloc_region);
4857   } else {
4858     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4859     _survivor.add_used_bytes(allocated_bytes);
4860   }
4861 
4862   bool const during_im = collector_state()->in_initial_mark_gc();
4863   if (during_im && allocated_bytes > 0) {
4864     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4865   }
4866   _hr_printer.retire(alloc_region);
4867 }
4868 
4869 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4870   bool expanded = false;
4871   uint index = _hrm->find_highest_free(&expanded);
4872 
4873   if (index != G1_NO_HRM_INDEX) {
4874     if (expanded) {
4875       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4876                                 HeapRegion::GrainWords * HeapWordSize);
4877     }
4878     return _hrm->allocate_free_regions_starting_at(index, 1);
4879   }
4880   return NULL;
4881 }
4882 
4883 // Optimized nmethod scanning
4884 
4885 class RegisterNMethodOopClosure: public OopClosure {
4886   G1CollectedHeap* _g1h;
4887   nmethod* _nm;
4888 
4889   template <class T> void do_oop_work(T* p) {
4890     T heap_oop = RawAccess<>::oop_load(p);
4891     if (!CompressedOops::is_null(heap_oop)) {
4892       oop obj = CompressedOops::decode_not_null(heap_oop);
4893       HeapRegion* hr = _g1h->heap_region_containing(obj);
4894       assert(!hr->is_continues_humongous(),
4895              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4896              " starting at " HR_FORMAT,
4897              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4898 
4899       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4900       hr->add_strong_code_root_locked(_nm);
4901     }
4902   }
4903 
4904 public:
4905   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4906     _g1h(g1h), _nm(nm) {}
4907 
4908   void do_oop(oop* p)       { do_oop_work(p); }
4909   void do_oop(narrowOop* p) { do_oop_work(p); }
4910 };
4911 
4912 class UnregisterNMethodOopClosure: public OopClosure {
4913   G1CollectedHeap* _g1h;
4914   nmethod* _nm;
4915 
4916   template <class T> void do_oop_work(T* p) {
4917     T heap_oop = RawAccess<>::oop_load(p);
4918     if (!CompressedOops::is_null(heap_oop)) {
4919       oop obj = CompressedOops::decode_not_null(heap_oop);
4920       HeapRegion* hr = _g1h->heap_region_containing(obj);
4921       assert(!hr->is_continues_humongous(),
4922              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4923              " starting at " HR_FORMAT,
4924              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4925 
4926       hr->remove_strong_code_root(_nm);
4927     }
4928   }
4929 
4930 public:
4931   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4932     _g1h(g1h), _nm(nm) {}
4933 
4934   void do_oop(oop* p)       { do_oop_work(p); }
4935   void do_oop(narrowOop* p) { do_oop_work(p); }
4936 };
4937 
4938 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4939   guarantee(nm != NULL, "sanity");
4940   RegisterNMethodOopClosure reg_cl(this, nm);
4941   nm->oops_do(&reg_cl);
4942 }
4943 
4944 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4945   guarantee(nm != NULL, "sanity");
4946   UnregisterNMethodOopClosure reg_cl(this, nm);
4947   nm->oops_do(&reg_cl, true);
4948 }
4949 
4950 void G1CollectedHeap::purge_code_root_memory() {
4951   double purge_start = os::elapsedTime();
4952   G1CodeRootSet::purge();
4953   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4954   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4955 }
4956 
4957 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4958   G1CollectedHeap* _g1h;
4959 
4960 public:
4961   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4962     _g1h(g1h) {}
4963 
4964   void do_code_blob(CodeBlob* cb) {
4965     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4966     if (nm == NULL) {
4967       return;
4968     }
4969 
4970     _g1h->register_nmethod(nm);
4971   }
4972 };
4973 
4974 void G1CollectedHeap::rebuild_strong_code_roots() {
4975   RebuildStrongCodeRootClosure blob_cl(this);
4976   CodeCache::blobs_do(&blob_cl);
4977 }
4978 
4979 void G1CollectedHeap::initialize_serviceability() {
4980   _g1mm->initialize_serviceability();
4981 }
4982 
4983 MemoryUsage G1CollectedHeap::memory_usage() {
4984   return _g1mm->memory_usage();
4985 }
4986 
4987 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4988   return _g1mm->memory_managers();
4989 }
4990 
4991 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4992   return _g1mm->memory_pools();
4993 }