1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Analytics.hpp"
  27 #include "gc/g1/g1Arguments.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1CollectionSetCandidates.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1ConcurrentRefine.hpp"
  34 #include "gc/g1/g1ConcurrentRefineStats.hpp"
  35 #include "gc/g1/g1CollectionSetChooser.hpp"
  36 #include "gc/g1/g1HeterogeneousHeapPolicy.hpp"
  37 #include "gc/g1/g1HotCardCache.hpp"
  38 #include "gc/g1/g1IHOPControl.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1Policy.hpp"
  41 #include "gc/g1/g1SurvivorRegions.hpp"
  42 #include "gc/g1/g1YoungGenSizer.hpp"
  43 #include "gc/g1/heapRegion.inline.hpp"
  44 #include "gc/g1/heapRegionRemSet.hpp"
  45 #include "gc/shared/concurrentGCBreakpoints.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "logging/log.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "utilities/debug.hpp"
  53 #include "utilities/growableArray.hpp"
  54 #include "utilities/pair.hpp"
  55 
  56 G1Policy::G1Policy(STWGCTimer* gc_timer) :
  57   _predictor(G1ConfidencePercent / 100.0),
  58   _analytics(new G1Analytics(&_predictor)),
  59   _remset_tracker(),
  60   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  61   _ihop_control(create_ihop_control(&_predictor)),
  62   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
  63   _full_collection_start_sec(0.0),
  64   _collection_pause_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC),
  65   _young_list_target_length(0),
  66   _young_list_max_length(0),
  67   _eden_surv_rate_group(new G1SurvRateGroup()),
  68   _survivor_surv_rate_group(new G1SurvRateGroup()),
  69   _reserve_factor((double) G1ReservePercent / 100.0),
  70   _reserve_regions(0),
  71   _young_gen_sizer(G1YoungGenSizer::create_gen_sizer()),
  72   _free_regions_at_end_of_collection(0),
  73   _rs_length(0),
  74   _rs_length_prediction(0),
  75   _pending_cards_at_gc_start(0),
  76   _old_gen_alloc_tracker(),
  77   _initial_mark_to_mixed(),
  78   _collection_set(NULL),
  79   _g1h(NULL),
  80   _phase_times(new G1GCPhaseTimes(gc_timer, ParallelGCThreads)),
  81   _mark_remark_start_sec(0),
  82   _mark_cleanup_start_sec(0),
  83   _tenuring_threshold(MaxTenuringThreshold),
  84   _max_survivor_regions(0),
  85   _survivors_age_table(true)
  86 {
  87 }
  88 
  89 G1Policy::~G1Policy() {
  90   delete _ihop_control;
  91   delete _young_gen_sizer;
  92 }
  93 
  94 G1Policy* G1Policy::create_policy(STWGCTimer* gc_timer_stw) {
  95   if (G1Arguments::is_heterogeneous_heap()) {
  96     return new G1HeterogeneousHeapPolicy(gc_timer_stw);
  97   } else {
  98     return new G1Policy(gc_timer_stw);
  99   }
 100 }
 101 
 102 G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
 103 
 104 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
 105   _g1h = g1h;
 106   _collection_set = collection_set;
 107 
 108   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 109 
 110   _young_gen_sizer->adjust_max_new_size(_g1h->max_expandable_regions());
 111 
 112   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 113 
 114   update_young_max_and_target_length();
 115   // We may immediately start allocating regions and placing them on the
 116   // collection set list. Initialize the per-collection set info
 117   _collection_set->start_incremental_building();
 118 }
 119 
 120 void G1Policy::note_gc_start() {
 121   phase_times()->note_gc_start();
 122 }
 123 
 124 class G1YoungLengthPredictor {
 125   const double _base_time_ms;
 126   const double _base_free_regions;
 127   const double _target_pause_time_ms;
 128   const G1Policy* const _policy;
 129 
 130  public:
 131   G1YoungLengthPredictor(double base_time_ms,
 132                          double base_free_regions,
 133                          double target_pause_time_ms,
 134                          const G1Policy* policy) :
 135     _base_time_ms(base_time_ms),
 136     _base_free_regions(base_free_regions),
 137     _target_pause_time_ms(target_pause_time_ms),
 138     _policy(policy) {}
 139 
 140   bool will_fit(uint young_length) const {
 141     if (young_length >= _base_free_regions) {
 142       // end condition 1: not enough space for the young regions
 143       return false;
 144     }
 145 
 146     size_t bytes_to_copy = 0;
 147     const double copy_time_ms = _policy->predict_eden_copy_time_ms(young_length, &bytes_to_copy);
 148     const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
 149     const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
 150     if (pause_time_ms > _target_pause_time_ms) {
 151       // end condition 2: prediction is over the target pause time
 152       return false;
 153     }
 154 
 155     const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
 156 
 157     // When copying, we will likely need more bytes free than is live in the region.
 158     // Add some safety margin to factor in the confidence of our guess, and the
 159     // natural expected waste.
 160     // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 161     // of the calculation: the lower the confidence, the more headroom.
 162     // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 163     // copying due to anticipated waste in the PLABs.
 164     const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 165     const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 166 
 167     if (expected_bytes_to_copy > free_bytes) {
 168       // end condition 3: out-of-space
 169       return false;
 170     }
 171 
 172     // success!
 173     return true;
 174   }
 175 };
 176 
 177 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
 178   // re-calculate the necessary reserve
 179   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 180   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 181   // smaller than 1.0) we'll get 1.
 182   _reserve_regions = (uint) ceil(reserve_regions_d);
 183 
 184   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 185 
 186   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 187 }
 188 
 189 uint G1Policy::calculate_desired_eden_length_by_mmu() const {
 190   // One could argue that any useful eden length to keep any MMU would be 1, but
 191   // in theory this is possible. Other constraints enforce a minimum eden of 1
 192   // anyway.
 193   uint desired_min_length = 0;
 194   if (use_adaptive_young_list_length()) {
 195     double now_sec = os::elapsedTime();
 196     double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 197     double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 198     desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 199   }
 200   return desired_min_length;
 201 }
 202 
 203 uint G1Policy::update_young_max_and_target_length() {
 204   return update_young_max_and_target_length(_analytics->predict_rs_length());
 205 }
 206 
 207 uint G1Policy::update_young_max_and_target_length(size_t rs_length) {
 208   uint unbounded_target_length = update_young_target_length(rs_length);
 209   update_max_gc_locker_expansion();
 210   return unbounded_target_length;
 211 }
 212 
 213 uint G1Policy::update_young_target_length(size_t rs_length) {
 214   uint desired_length = calculate_young_desired_length(rs_length);
 215   _young_list_target_length = calculate_young_target_length(desired_length);
 216 
 217   log_debug(gc,ergo,heap)("Young target lengths: desired: %u target: %u",
 218                           desired_length, _young_list_target_length);
 219   return desired_length;
 220 }
 221 
 222 // Calculates desired young gen length. It is calculated from:
 223 //
 224 // - sizer min/max bounds on young gen
 225 // - pause time goal for whole young gen evacuation
 226 // - MMU goal influencing eden to make GCs spaced apart.
 227 // - a minimum one eden region length.
 228 //
 229 uint G1Policy::calculate_young_desired_length(size_t rs_length) const {
 230   uint min_young_length_by_sizer = _young_gen_sizer->min_desired_young_length();
 231   uint max_young_length_by_sizer = _young_gen_sizer->max_desired_young_length();
 232 
 233   assert(min_young_length_by_sizer >= 1, "invariant");
 234   assert(max_young_length_by_sizer >= min_young_length_by_sizer, "invariant");
 235 
 236   // Absolute minimum eden length. See above why.
 237   // Enforcing a minimum eden length helps at startup when the predictors are not
 238   // yet trained on the application to avoid unnecessary (but very short) full gcs
 239   // on very small (initial) heaps.
 240   uint const MinDesiredEdenLength = 1;
 241 
 242   // Calculate the absolute and desired min bounds first.
 243 
 244   // This is how many survivor regions we already have.
 245   const uint survivor_length = _g1h->survivor_regions_count();
 246   // Size of the already allocated young gen.
 247   const uint allocated_young_length = _g1h->young_regions_count();
 248   // This is the absolute minimum young length that we can return. Ensure that we
 249   // don't go below any user-defined minimum bound; but we might have already
 250   // allocated more than that for reasons. In this case, use that.
 251   uint absolute_min_young_length = MAX2(allocated_young_length, min_young_length_by_sizer);
 252   // Calculate the absolute max bounds. After evac failure or when revising the
 253   // young length we might have exceeded absolute min length or absolute_max_length,
 254   // so adjust the result accordingly.
 255   uint absolute_max_young_length = MAX2(max_young_length_by_sizer, absolute_min_young_length);
 256 
 257   uint desired_eden_length_by_mmu = 0;
 258   uint desired_eden_length_by_pause = 0;
 259   uint desired_eden_length_before_mixed = 0;
 260 
 261   uint desired_young_length = 0;
 262   if (use_adaptive_young_list_length()) {
 263     desired_eden_length_by_mmu = calculate_desired_eden_length_by_mmu();
 264 
 265     const size_t pending_cards = _analytics->predict_pending_cards();
 266     double survivor_base_time_ms = predict_base_elapsed_time_ms(pending_cards, rs_length);
 267 
 268     if (!next_gc_should_be_mixed(NULL, NULL)) {
 269       desired_eden_length_by_pause =
 270         calculate_desired_eden_length_by_pause(survivor_base_time_ms,
 271                                                absolute_min_young_length - survivor_length,
 272                                                absolute_max_young_length - survivor_length);
 273     } else {
 274       desired_eden_length_before_mixed = 
 275         calculate_desired_eden_length_before_mixed(survivor_base_time_ms,
 276                                                    absolute_min_young_length - survivor_length,
 277                                                    absolute_max_young_length - survivor_length);
 278     }
 279     // Above either sets desired_eden_length_by_pause or desired_eden_length_before_mixed,
 280     // the other is zero. Use the one that has been set below.
 281     uint desired_eden_length = MAX2(desired_eden_length_by_pause,
 282                                     desired_eden_length_before_mixed);
 283 
 284     // Finally incorporate MMU concerns; assume that it overrides the pause time
 285     // goal, as the default value has been chosen to effectively disable it.
 286     // Also request at least one eden region, see above for reasons.
 287     desired_eden_length = MAX3(desired_eden_length,
 288                                desired_eden_length_by_mmu,
 289                                MinDesiredEdenLength);
 290 
 291     desired_young_length = desired_eden_length + survivor_length;
 292   } else {
 293     // The user asked for a fixed young gen so we'll fix the young gen
 294     // whether the next GC is young or mixed.
 295     desired_young_length = min_young_length_by_sizer;
 296   }
 297   // Clamp to absolute min/max after we determined desired lengths.
 298   desired_young_length = clamp(desired_young_length, absolute_min_young_length, absolute_max_young_length);
 299 
 300   log_trace(gc, ergo, heap)("Young desired length %u "
 301                             "survivor length %u "
 302                             "allocated young length %u "
 303                             "absolute min young length %u "
 304                             "absolute max young length %u "
 305                             "desired eden length by mmu %u "
 306                             "desired eden length by pause %u "
 307                             "desired eden length before mixed %u"
 308                             "desired eden length by default %u",
 309                             desired_young_length, survivor_length,
 310                             allocated_young_length, absolute_min_young_length,
 311                             absolute_max_young_length, desired_eden_length_by_mmu,
 312                             desired_eden_length_by_pause,
 313                             desired_eden_length_before_mixed,
 314                             MinDesiredEdenLength);
 315 
 316   assert(desired_young_length >= allocated_young_length, "must be");
 317   return desired_young_length;
 318 }
 319 
 320 // Limit the desired (wished) young length by current free regions. If the request
 321 // can be satisfied without using up reserve regions, do so, otherwise eat into
 322 // the reserve, giving away at most what the heap sizer allows.
 323 uint G1Policy::calculate_young_target_length(uint desired_young_length) const {
 324   uint allocated_young_length = _g1h->young_regions_count();
 325 
 326   uint receiving_additional_eden;
 327   if (allocated_young_length >= desired_young_length) {
 328     // Already used up all we actually want (may happen as G1 revises the
 329     // young list length concurrently, or caused by gclocker). Do not allow more,
 330     // potentially resulting in GC.
 331     receiving_additional_eden = 0;
 332     log_trace(gc, ergo, heap)("Young target length: Already used up desired young %u allocated %u",
 333                               desired_young_length,
 334                               allocated_young_length);
 335   } else {
 336     // Now look at how many free regions are there currently, and the heap reserve.
 337     // We will try our best not to "eat" into the reserve as long as we can. If we
 338     // do, we at most eat the sizer's minimum regions into the reserve or half the
 339     // reserve rounded up (if possible; this is an arbitrary value).
 340 
 341     uint max_to_eat_into_reserve = MIN2(_young_gen_sizer->min_desired_young_length(),
 342                                         (_reserve_regions + 1) / 2);
 343 
 344     log_trace(gc, ergo, heap)("Young target length: Common "
 345                               "free regions at end of collection %u "
 346                               "desired young length %u "
 347                               "reserve region %u "
 348                               "max to eat into reserve %u",
 349                               _free_regions_at_end_of_collection,
 350                               desired_young_length,
 351                               _reserve_regions,
 352                               max_to_eat_into_reserve);
 353 
 354     if (_free_regions_at_end_of_collection <= _reserve_regions) {
 355       // Fully eat (or already eating) into the reserve, hand back at most absolute_min_length regions.
 356       uint receiving_young = MIN3(_free_regions_at_end_of_collection,
 357                                   desired_young_length,
 358                                   max_to_eat_into_reserve);
 359       // We could already have allocated more regions than what we could get
 360       // above.
 361       receiving_additional_eden = allocated_young_length < receiving_young ?
 362                                   receiving_young - allocated_young_length : 0;
 363 
 364       log_trace(gc, ergo, heap)("Young target length: Fully eat into reserve "
 365                                 "receiving young %u receiving additional eden %u",
 366                                 receiving_young,
 367                                 receiving_additional_eden);
 368     } else if (_free_regions_at_end_of_collection < (desired_young_length + _reserve_regions)) {
 369       // Partially eat into the reserve, at most max_to_eat_into_reserve regions.
 370       uint free_outside_reserve = _free_regions_at_end_of_collection - _reserve_regions;
 371       assert(free_outside_reserve < desired_young_length,
 372              "must be %u %u",
 373              free_outside_reserve, desired_young_length);
 374 
 375       uint receiving_within_reserve = MIN2(desired_young_length - free_outside_reserve,
 376                                            max_to_eat_into_reserve);
 377       uint receiving_young = free_outside_reserve + receiving_within_reserve;
 378       // Again, we could have already allocated more than we could get.
 379       receiving_additional_eden = allocated_young_length < receiving_young ?
 380                                   receiving_young - allocated_young_length : 0;
 381 
 382       log_trace(gc, ergo, heap)("Young target length: Partially eat into reserve "
 383                                 "free outside reserve %u "
 384                                 "receiving within reserve %u "
 385                                 "receiving young %u "
 386                                 "receiving additional eden %u",
 387                                 free_outside_reserve, receiving_within_reserve,
 388                                 receiving_young, receiving_additional_eden);
 389     } else {
 390       // No need to use the reserve.
 391       receiving_additional_eden = desired_young_length - allocated_young_length;
 392       log_trace(gc, ergo, heap)("Young target length: No need to use reserve "
 393                                 "receiving additional eden %u",
 394                                 receiving_additional_eden);
 395     }
 396   }
 397 
 398   uint target_young_length = allocated_young_length + receiving_additional_eden;
 399 
 400   assert(target_young_length >= allocated_young_length, "must be");
 401 
 402   log_trace(gc, ergo, heap)("Young target length: "
 403                             "young target length %u "
 404                             "allocated young length %u "
 405                             "received additional eden %u",
 406                             target_young_length, allocated_young_length,
 407                             receiving_additional_eden);
 408   return target_young_length;
 409 }
 410 
 411 uint G1Policy::calculate_desired_eden_length_by_pause(double base_time_ms,
 412                                                       uint min_eden_length,
 413                                                       uint max_eden_length) const {
 414   assert(use_adaptive_young_list_length(), "pre-condition");
 415 
 416   assert(min_eden_length <= max_eden_length, "must be %u %u", min_eden_length, max_eden_length);
 417 
 418   // Here, we will make sure that the shortest young length that
 419   // makes sense fits within the target pause time.
 420 
 421   G1YoungLengthPredictor p(base_time_ms,
 422                            _free_regions_at_end_of_collection,
 423                            _mmu_tracker->max_gc_time() * 1000.0,
 424                            this);
 425   if (p.will_fit(min_eden_length)) {
 426     // The shortest young length will fit into the target pause time;
 427     // we'll now check whether the absolute maximum number of young
 428     // regions will fit in the target pause time. If not, we'll do
 429     // a binary search between min_young_length and max_young_length.
 430     if (p.will_fit(max_eden_length)) {
 431       // The maximum young length will fit into the target pause time.
 432       // We are done so set min young length to the maximum length (as
 433       // the result is assumed to be returned in min_young_length).
 434       min_eden_length = max_eden_length;
 435     } else {
 436       // The maximum possible number of young regions will not fit within
 437       // the target pause time so we'll search for the optimal
 438       // length. The loop invariants are:
 439       //
 440       // min_young_length < max_young_length
 441       // min_young_length is known to fit into the target pause time
 442       // max_young_length is known not to fit into the target pause time
 443       //
 444       // Going into the loop we know the above hold as we've just
 445       // checked them. Every time around the loop we check whether
 446       // the middle value between min_young_length and
 447       // max_young_length fits into the target pause time. If it
 448       // does, it becomes the new min. If it doesn't, it becomes
 449       // the new max. This way we maintain the loop invariants.
 450 
 451       assert(min_eden_length < max_eden_length, "invariant");
 452       uint diff = (max_eden_length - min_eden_length) / 2;
 453       while (diff > 0) {
 454         uint eden_length = min_eden_length + diff;
 455         if (p.will_fit(eden_length)) {
 456           min_eden_length = eden_length;
 457         } else {
 458           max_eden_length = eden_length;
 459         }
 460         assert(min_eden_length <  max_eden_length, "invariant");
 461         diff = (max_eden_length - min_eden_length) / 2;
 462       }
 463       // The results is min_young_length which, according to the
 464       // loop invariants, should fit within the target pause time.
 465 
 466       // These are the post-conditions of the binary search above:
 467       assert(min_eden_length < max_eden_length,
 468              "otherwise we should have discovered that max_eden_length "
 469              "fits into the pause target and not done the binary search");
 470       assert(p.will_fit(min_eden_length),
 471              "min_eden_length, the result of the binary search, should "
 472              "fit into the pause target");
 473       assert(!p.will_fit(min_eden_length + 1),
 474              "min_eden_length, the result of the binary search, should be "
 475              "optimal, so no larger length should fit into the pause target");
 476     }
 477   } else {
 478     // Even the minimum length doesn't fit into the pause time
 479     // target, return it as the result nevertheless.
 480   }
 481   return min_eden_length;
 482 }
 483 
 484 uint G1Policy::calculate_desired_eden_length_before_mixed(double survivor_base_time_ms,
 485                                                           uint min_eden_length,
 486                                                           uint max_eden_length) const {
 487   G1CollectionSetCandidates* candidates = _collection_set->candidates();
 488 
 489   uint min_old_regions_end = MIN2(candidates->cur_idx() + calc_min_old_cset_length(), candidates->num_regions());
 490   double predicted_region_evac_time_ms = survivor_base_time_ms;
 491   for (uint i = candidates->cur_idx(); i < min_old_regions_end; i++) {
 492     HeapRegion* r = candidates->at(i);
 493     predicted_region_evac_time_ms += predict_region_total_time_ms(r, false);
 494   }
 495   uint desired_eden_length_by_min_cset_length =
 496      calculate_desired_eden_length_by_pause(predicted_region_evac_time_ms,
 497                                             min_eden_length,
 498                                             max_eden_length);
 499 
 500   return desired_eden_length_by_min_cset_length;
 501 }
 502 
 503 double G1Policy::predict_survivor_regions_evac_time() const {
 504   double survivor_regions_evac_time = 0.0;
 505   const GrowableArray<HeapRegion*>* survivor_regions = _g1h->survivor()->regions();
 506   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 507        it != survivor_regions->end();
 508        ++it) {
 509     survivor_regions_evac_time += predict_region_total_time_ms(*it, collector_state()->in_young_only_phase());
 510   }
 511   return survivor_regions_evac_time;
 512 }
 513 
 514 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_length) {
 515   guarantee(use_adaptive_young_list_length(), "should not call this otherwise" );
 516 
 517   if (rs_length > _rs_length_prediction) {
 518     // add 10% to avoid having to recalculate often
 519     size_t rs_length_prediction = rs_length * 1100 / 1000;
 520     update_rs_length_prediction(rs_length_prediction);
 521 
 522     update_young_max_and_target_length(rs_length_prediction);
 523   }
 524 }
 525 
 526 void G1Policy::update_rs_length_prediction() {
 527   update_rs_length_prediction(_analytics->predict_rs_length());
 528 }
 529 
 530 void G1Policy::update_rs_length_prediction(size_t prediction) {
 531   if (collector_state()->in_young_only_phase() && use_adaptive_young_list_length()) {
 532     _rs_length_prediction = prediction;
 533   }
 534 }
 535 
 536 void G1Policy::record_full_collection_start() {
 537   _full_collection_start_sec = os::elapsedTime();
 538   // Release the future to-space so that it is available for compaction into.
 539   collector_state()->set_in_young_only_phase(false);
 540   collector_state()->set_in_full_gc(true);
 541   _collection_set->clear_candidates();
 542   _pending_cards_at_gc_start = 0;
 543 }
 544 
 545 void G1Policy::record_full_collection_end() {
 546   // Consider this like a collection pause for the purposes of allocation
 547   // since last pause.
 548   double end_sec = os::elapsedTime();
 549   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 550   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 551 
 552   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 553 
 554   collector_state()->set_in_full_gc(false);
 555 
 556   // "Nuke" the heuristics that control the young/mixed GC
 557   // transitions and make sure we start with young GCs after the Full GC.
 558   collector_state()->set_in_young_only_phase(true);
 559   collector_state()->set_in_young_gc_before_mixed(false);
 560   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 561   collector_state()->set_in_initial_mark_gc(false);
 562   collector_state()->set_mark_or_rebuild_in_progress(false);
 563   collector_state()->set_clearing_next_bitmap(false);
 564 
 565   _eden_surv_rate_group->start_adding_regions();
 566   // also call this on any additional surv rate groups
 567 
 568   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 569   _survivor_surv_rate_group->reset();
 570   update_young_max_and_target_length();
 571   update_rs_length_prediction();
 572 
 573   _old_gen_alloc_tracker.reset_after_full_gc();
 574 
 575   record_pause(FullGC, _full_collection_start_sec, end_sec);
 576 }
 577 
 578 static void log_refinement_stats(const char* kind, const G1ConcurrentRefineStats& stats) {
 579   log_debug(gc, refine, stats)
 580            ("%s refinement: %.2fms, refined: " SIZE_FORMAT
 581             ", precleaned: " SIZE_FORMAT ", dirtied: " SIZE_FORMAT,
 582             kind,
 583             stats.refinement_time().seconds() * MILLIUNITS,
 584             stats.refined_cards(),
 585             stats.precleaned_cards(),
 586             stats.dirtied_cards());
 587 }
 588 
 589 void G1Policy::record_concurrent_refinement_stats() {
 590   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
 591   _pending_cards_at_gc_start = dcqs.num_cards();
 592 
 593   // Collect per-thread stats, mostly from mutator activity.
 594   G1ConcurrentRefineStats mut_stats = dcqs.get_and_reset_refinement_stats();
 595 
 596   // Collect specialized concurrent refinement thread stats.
 597   G1ConcurrentRefine* cr = _g1h->concurrent_refine();
 598   G1ConcurrentRefineStats cr_stats = cr->get_and_reset_refinement_stats();
 599 
 600   G1ConcurrentRefineStats total_stats = mut_stats + cr_stats;
 601 
 602   log_refinement_stats("Mutator", mut_stats);
 603   log_refinement_stats("Concurrent", cr_stats);
 604   log_refinement_stats("Total", total_stats);
 605 
 606   // Record the rate at which cards were refined.
 607   // Don't update the rate if the current sample is empty or time is zero.
 608   Tickspan refinement_time = total_stats.refinement_time();
 609   size_t refined_cards = total_stats.refined_cards();
 610   if ((refined_cards > 0) && (refinement_time > Tickspan())) {
 611     double rate = refined_cards / (refinement_time.seconds() * MILLIUNITS);
 612     _analytics->report_concurrent_refine_rate_ms(rate);
 613     log_debug(gc, refine, stats)("Concurrent refinement rate: %.2f cards/ms", rate);
 614   }
 615 
 616   // Record mutator's card logging rate.
 617   double mut_start_time = _analytics->prev_collection_pause_end_ms();
 618   double mut_end_time = phase_times()->cur_collection_start_sec() * MILLIUNITS;
 619   double mut_time = mut_end_time - mut_start_time;
 620   // Unlike above for conc-refine rate, here we should not require a
 621   // non-empty sample, since an application could go some time with only
 622   // young-gen or filtered out writes.  But we'll ignore unusually short
 623   // sample periods, as they may just pollute the predictions.
 624   if (mut_time > 1.0) {   // Require > 1ms sample time.
 625     double dirtied_rate = total_stats.dirtied_cards() / mut_time;
 626     _analytics->report_dirtied_cards_rate_ms(dirtied_rate);
 627     log_debug(gc, refine, stats)("Generate dirty cards rate: %.2f cards/ms", dirtied_rate);
 628   }
 629 }
 630 
 631 void G1Policy::record_collection_pause_start(double start_time_sec) {
 632   // We only need to do this here as the policy will only be applied
 633   // to the GC we're about to start. so, no point is calculating this
 634   // every time we calculate / recalculate the target young length.
 635   update_survivors_policy();
 636 
 637   assert(max_survivor_regions() + _g1h->num_used_regions() <= _g1h->max_regions(),
 638          "Maximum survivor regions %u plus used regions %u exceeds max regions %u",
 639          max_survivor_regions(), _g1h->num_used_regions(), _g1h->max_regions());
 640   assert_used_and_recalculate_used_equal(_g1h);
 641 
 642   phase_times()->record_cur_collection_start_sec(start_time_sec);
 643 
 644   record_concurrent_refinement_stats();
 645 
 646   _collection_set->reset_bytes_used_before();
 647 
 648   // do that for any other surv rate groups
 649   _eden_surv_rate_group->stop_adding_regions();
 650   _survivors_age_table.clear();
 651 
 652   assert(_g1h->collection_set()->verify_young_ages(), "region age verification failed");
 653 }
 654 
 655 void G1Policy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
 656   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 657   collector_state()->set_in_initial_mark_gc(false);
 658 }
 659 
 660 void G1Policy::record_concurrent_mark_remark_start() {
 661   _mark_remark_start_sec = os::elapsedTime();
 662 }
 663 
 664 void G1Policy::record_concurrent_mark_remark_end() {
 665   double end_time_sec = os::elapsedTime();
 666   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 667   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 668   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 669 
 670   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 671 }
 672 
 673 void G1Policy::record_concurrent_mark_cleanup_start() {
 674   _mark_cleanup_start_sec = os::elapsedTime();
 675 }
 676 
 677 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 678   return phase_times()->average_time_ms(phase);
 679 }
 680 
 681 double G1Policy::young_other_time_ms() const {
 682   return phase_times()->young_cset_choice_time_ms() +
 683          phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
 684 }
 685 
 686 double G1Policy::non_young_other_time_ms() const {
 687   return phase_times()->non_young_cset_choice_time_ms() +
 688          phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
 689 }
 690 
 691 double G1Policy::other_time_ms(double pause_time_ms) const {
 692   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
 693 }
 694 
 695 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
 696   return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms() - phase_times()->total_rebuild_freelist_time_ms();
 697 }
 698 
 699 bool G1Policy::about_to_start_mixed_phase() const {
 700   return _g1h->concurrent_mark()->cm_thread()->during_cycle() || collector_state()->in_young_gc_before_mixed();
 701 }
 702 
 703 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 704   if (about_to_start_mixed_phase()) {
 705     return false;
 706   }
 707 
 708   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 709 
 710   size_t cur_used_bytes = _g1h->non_young_capacity_bytes();
 711   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 712   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 713 
 714   bool result = false;
 715   if (marking_request_bytes > marking_initiating_used_threshold) {
 716     result = collector_state()->in_young_only_phase() && !collector_state()->in_young_gc_before_mixed();
 717     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 718                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 719                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1h->capacity() * 100, source);
 720   }
 721 
 722   return result;
 723 }
 724 
 725 double G1Policy::logged_cards_processing_time() const {
 726   double all_cards_processing_time = average_time_ms(G1GCPhaseTimes::ScanHR) + average_time_ms(G1GCPhaseTimes::OptScanHR);
 727   size_t logged_dirty_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
 728   size_t scan_heap_roots_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
 729                                  phase_times()->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
 730   // This may happen if there are duplicate cards in different log buffers.
 731   if (logged_dirty_cards > scan_heap_roots_cards) {
 732     return all_cards_processing_time + average_time_ms(G1GCPhaseTimes::MergeLB);
 733   }
 734   return (all_cards_processing_time * logged_dirty_cards / scan_heap_roots_cards) + average_time_ms(G1GCPhaseTimes::MergeLB);
 735 }
 736 
 737 // Anything below that is considered to be zero
 738 #define MIN_TIMER_GRANULARITY 0.0000001
 739 
 740 void G1Policy::record_collection_pause_end(double pause_time_ms) {
 741   G1GCPhaseTimes* p = phase_times();
 742 
 743   double end_time_sec = os::elapsedTime();
 744 
 745   bool this_pause_included_initial_mark = false;
 746   bool this_pause_was_young_only = collector_state()->in_young_only_phase();
 747 
 748   bool update_stats = !_g1h->evacuation_failed();
 749 
 750   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 751 
 752   _collection_pause_end_millis = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 753 
 754   this_pause_included_initial_mark = collector_state()->in_initial_mark_gc();
 755   if (this_pause_included_initial_mark) {
 756     record_concurrent_mark_init_end(0.0);
 757   } else {
 758     maybe_start_marking();
 759   }
 760 
 761   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
 762   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 763     // This usually happens due to the timer not having the required
 764     // granularity. Some Linuxes are the usual culprits.
 765     // We'll just set it to something (arbitrarily) small.
 766     app_time_ms = 1.0;
 767   }
 768 
 769   if (update_stats) {
 770     // We maintain the invariant that all objects allocated by mutator
 771     // threads will be allocated out of eden regions. So, we can use
 772     // the eden region number allocated since the previous GC to
 773     // calculate the application's allocate rate. The only exception
 774     // to that is humongous objects that are allocated separately. But
 775     // given that humongous object allocations do not really affect
 776     // either the pause's duration nor when the next pause will take
 777     // place we can safely ignore them here.
 778     uint regions_allocated = _collection_set->eden_region_length();
 779     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 780     _analytics->report_alloc_rate_ms(alloc_rate_ms);
 781 
 782     _analytics->compute_pause_time_ratios(end_time_sec, pause_time_ms);
 783     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
 784   }
 785 
 786   if (collector_state()->in_young_gc_before_mixed()) {
 787     assert(!this_pause_included_initial_mark, "The young GC before mixed is not allowed to be an initial mark GC");
 788     // This has been the young GC before we start doing mixed GCs. We already
 789     // decided to start mixed GCs much earlier, so there is nothing to do except
 790     // advancing the state.
 791     collector_state()->set_in_young_only_phase(false);
 792     collector_state()->set_in_young_gc_before_mixed(false);
 793   } else if (!this_pause_was_young_only) {
 794     // This is a mixed GC. Here we decide whether to continue doing more
 795     // mixed GCs or not.
 796     if (!next_gc_should_be_mixed("continue mixed GCs",
 797                                  "do not continue mixed GCs")) {
 798       collector_state()->set_in_young_only_phase(true);
 799 
 800       clear_collection_set_candidates();
 801       maybe_start_marking();
 802     }
 803   }
 804 
 805   _eden_surv_rate_group->start_adding_regions();
 806 
 807   double merge_hcc_time_ms = average_time_ms(G1GCPhaseTimes::MergeHCC);
 808   if (update_stats) {
 809     size_t const total_log_buffer_cards = p->sum_thread_work_items(G1GCPhaseTimes::MergeHCC, G1GCPhaseTimes::MergeHCCDirtyCards) +
 810                                           p->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
 811     // Update prediction for card merge; MergeRSDirtyCards includes the cards from the Eager Reclaim phase.
 812     size_t const total_cards_merged = p->sum_thread_work_items(G1GCPhaseTimes::MergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
 813                                       p->sum_thread_work_items(G1GCPhaseTimes::OptMergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
 814                                       total_log_buffer_cards;
 815 
 816     // The threshold for the number of cards in a given sampling which we consider
 817     // large enough so that the impact from setup and other costs is negligible.
 818     size_t const CardsNumSamplingThreshold = 10;
 819 
 820     if (total_cards_merged > CardsNumSamplingThreshold) {
 821       double avg_time_merge_cards = average_time_ms(G1GCPhaseTimes::MergeER) +
 822                                     average_time_ms(G1GCPhaseTimes::MergeRS) +
 823                                     average_time_ms(G1GCPhaseTimes::MergeHCC) +
 824                                     average_time_ms(G1GCPhaseTimes::MergeLB) +
 825                                     average_time_ms(G1GCPhaseTimes::OptMergeRS);
 826       _analytics->report_cost_per_card_merge_ms(avg_time_merge_cards / total_cards_merged, this_pause_was_young_only);
 827     }
 828 
 829     // Update prediction for card scan
 830     size_t const total_cards_scanned = p->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
 831                                        p->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
 832 
 833     if (total_cards_scanned > CardsNumSamplingThreshold) {
 834       double avg_time_dirty_card_scan = average_time_ms(G1GCPhaseTimes::ScanHR) +
 835                                         average_time_ms(G1GCPhaseTimes::OptScanHR);
 836 
 837       _analytics->report_cost_per_card_scan_ms(avg_time_dirty_card_scan / total_cards_scanned, this_pause_was_young_only);
 838     }
 839 
 840     // Update prediction for the ratio between cards from the remembered
 841     // sets and actually scanned cards from the remembered sets.
 842     // Cards from the remembered sets are all cards not duplicated by cards from
 843     // the logs.
 844     // Due to duplicates in the log buffers, the number of actually scanned cards
 845     // can be smaller than the cards in the log buffers.
 846     const size_t from_rs_length_cards = (total_cards_scanned > total_log_buffer_cards) ? total_cards_scanned - total_log_buffer_cards : 0;
 847     double merge_to_scan_ratio = 0.0;
 848     if (total_cards_scanned > 0) {
 849       merge_to_scan_ratio = (double) from_rs_length_cards / total_cards_scanned;
 850     }
 851     _analytics->report_card_merge_to_scan_ratio(merge_to_scan_ratio, this_pause_was_young_only);
 852 
 853     const size_t recorded_rs_length = _collection_set->recorded_rs_length();
 854     const size_t rs_length_diff = _rs_length > recorded_rs_length ? _rs_length - recorded_rs_length : 0;
 855     _analytics->report_rs_length_diff(rs_length_diff);
 856 
 857     // Update prediction for copy cost per byte
 858     size_t copied_bytes = p->sum_thread_work_items(G1GCPhaseTimes::MergePSS, G1GCPhaseTimes::MergePSSCopiedBytes);
 859 
 860     if (copied_bytes > 0) {
 861       double cost_per_byte_ms = (average_time_ms(G1GCPhaseTimes::ObjCopy) + average_time_ms(G1GCPhaseTimes::OptObjCopy)) / copied_bytes;
 862       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->mark_or_rebuild_in_progress());
 863     }
 864 
 865     if (_collection_set->young_region_length() > 0) {
 866       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
 867                                                         _collection_set->young_region_length());
 868     }
 869 
 870     if (_collection_set->old_region_length() > 0) {
 871       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 872                                                             _collection_set->old_region_length());
 873     }
 874 
 875     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 876 
 877     // Do not update RS lengths and the number of pending cards with information from mixed gc:
 878     // these are is wildly different to during young only gc and mess up young gen sizing right
 879     // after the mixed gc phase.
 880     // During mixed gc we do not use them for young gen sizing.
 881     if (this_pause_was_young_only) {
 882       _analytics->report_pending_cards((double) _pending_cards_at_gc_start);
 883       _analytics->report_rs_length((double) _rs_length);
 884     }
 885   }
 886 
 887   assert(!(this_pause_included_initial_mark && collector_state()->mark_or_rebuild_in_progress()),
 888          "If the last pause has been an initial mark, we should not have been in the marking window");
 889   if (this_pause_included_initial_mark) {
 890     collector_state()->set_mark_or_rebuild_in_progress(true);
 891   }
 892 
 893   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 894 
 895   update_rs_length_prediction();
 896 
 897   // Do not update dynamic IHOP due to G1 periodic collection as it is highly likely
 898   // that in this case we are not running in a "normal" operating mode.
 899   if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
 900     // IHOP control wants to know the expected young gen length if it were not
 901     // restrained by the heap reserve. Using the actual length would make the
 902     // prediction too small and the limit the young gen every time we get to the
 903     // predicted target occupancy.
 904     size_t last_unrestrained_young_length = update_young_max_and_target_length();
 905 
 906     _old_gen_alloc_tracker.reset_after_young_gc(app_time_ms / 1000.0);
 907     update_ihop_prediction(_old_gen_alloc_tracker.last_cycle_duration(),
 908                            _old_gen_alloc_tracker.last_cycle_old_bytes(),
 909                            last_unrestrained_young_length * HeapRegion::GrainBytes,
 910                            this_pause_was_young_only);
 911 
 912     _ihop_control->send_trace_event(_g1h->gc_tracer_stw());
 913   } else {
 914     // Any garbage collection triggered as periodic collection resets the time-to-mixed
 915     // measurement. Periodic collection typically means that the application is "inactive", i.e.
 916     // the marking threads may have received an uncharacterisic amount of cpu time
 917     // for completing the marking, i.e. are faster than expected.
 918     // This skews the predicted marking length towards smaller values which might cause
 919     // the mark start being too late.
 920     _initial_mark_to_mixed.reset();
 921   }
 922 
 923   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 924   double scan_logged_cards_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 925 
 926   if (scan_logged_cards_time_goal_ms < merge_hcc_time_ms) {
 927     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 928                                 "Logged Cards Scan time goal: %1.2fms Scan HCC time: %1.2fms",
 929                                 scan_logged_cards_time_goal_ms, merge_hcc_time_ms);
 930 
 931     scan_logged_cards_time_goal_ms = 0;
 932   } else {
 933     scan_logged_cards_time_goal_ms -= merge_hcc_time_ms;
 934   }
 935 
 936   double const logged_cards_time = logged_cards_processing_time();
 937 
 938   log_debug(gc, ergo, refine)("Concurrent refinement times: Logged Cards Scan time goal: %1.2fms Logged Cards Scan time: %1.2fms HCC time: %1.2fms",
 939                               scan_logged_cards_time_goal_ms, logged_cards_time, merge_hcc_time_ms);
 940 
 941   _g1h->concurrent_refine()->adjust(logged_cards_time,
 942                                     phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards),
 943                                     scan_logged_cards_time_goal_ms);
 944 }
 945 
 946 G1IHOPControl* G1Policy::create_ihop_control(const G1Predictions* predictor){
 947   if (G1UseAdaptiveIHOP) {
 948     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 949                                      predictor,
 950                                      G1ReservePercent,
 951                                      G1HeapWastePercent);
 952   } else {
 953     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 954   }
 955 }
 956 
 957 void G1Policy::update_ihop_prediction(double mutator_time_s,
 958                                       size_t mutator_alloc_bytes,
 959                                       size_t young_gen_size,
 960                                       bool this_gc_was_young_only) {
 961   // Always try to update IHOP prediction. Even evacuation failures give information
 962   // about e.g. whether to start IHOP earlier next time.
 963 
 964   // Avoid using really small application times that might create samples with
 965   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 966   double const min_valid_time = 1e-6;
 967 
 968   bool report = false;
 969 
 970   double marking_to_mixed_time = -1.0;
 971   if (!this_gc_was_young_only && _initial_mark_to_mixed.has_result()) {
 972     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
 973     assert(marking_to_mixed_time > 0.0,
 974            "Initial mark to mixed time must be larger than zero but is %.3f",
 975            marking_to_mixed_time);
 976     if (marking_to_mixed_time > min_valid_time) {
 977       _ihop_control->update_marking_length(marking_to_mixed_time);
 978       report = true;
 979     }
 980   }
 981 
 982   // As an approximation for the young gc promotion rates during marking we use
 983   // all of them. In many applications there are only a few if any young gcs during
 984   // marking, which makes any prediction useless. This increases the accuracy of the
 985   // prediction.
 986   if (this_gc_was_young_only && mutator_time_s > min_valid_time) {
 987     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 988     report = true;
 989   }
 990 
 991   if (report) {
 992     report_ihop_statistics();
 993   }
 994 }
 995 
 996 void G1Policy::report_ihop_statistics() {
 997   _ihop_control->print();
 998 }
 999 
1000 void G1Policy::print_phases() {
1001   phase_times()->print();
1002 }
1003 
1004 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
1005                                               size_t rs_length) const {
1006   size_t effective_scanned_cards = _analytics->predict_scan_card_num(rs_length, collector_state()->in_young_only_phase());
1007   return
1008     _analytics->predict_card_merge_time_ms(pending_cards + rs_length, collector_state()->in_young_only_phase()) +
1009     _analytics->predict_card_scan_time_ms(effective_scanned_cards, collector_state()->in_young_only_phase()) +
1010     _analytics->predict_constant_other_time_ms() +
1011     predict_survivor_regions_evac_time();
1012 }
1013 
1014 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
1015   size_t rs_length = _analytics->predict_rs_length();
1016   return predict_base_elapsed_time_ms(pending_cards, rs_length);
1017 }
1018 
1019 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
1020   size_t bytes_to_copy;
1021   if (!hr->is_young()) {
1022     bytes_to_copy = hr->max_live_bytes();
1023   } else {
1024     bytes_to_copy = (size_t) (hr->used() * hr->surv_rate_prediction(_predictor));
1025   }
1026   return bytes_to_copy;
1027 }
1028 
1029 double G1Policy::predict_eden_copy_time_ms(uint count, size_t* bytes_to_copy) const {
1030   if (count == 0) {
1031     return 0.0;
1032   }
1033   size_t const expected_bytes = _eden_surv_rate_group->accum_surv_rate_pred(count) * HeapRegion::GrainBytes;
1034   if (bytes_to_copy != NULL) {
1035     *bytes_to_copy = expected_bytes;
1036   }
1037   return _analytics->predict_object_copy_time_ms(expected_bytes, collector_state()->mark_or_rebuild_in_progress());
1038 }
1039 
1040 double G1Policy::predict_region_copy_time_ms(HeapRegion* hr) const {
1041   size_t const bytes_to_copy = predict_bytes_to_copy(hr);
1042   return _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->mark_or_rebuild_in_progress());
1043 }
1044 
1045 double G1Policy::predict_region_non_copy_time_ms(HeapRegion* hr,
1046                                                  bool for_young_gc) const {
1047   size_t rs_length = hr->rem_set()->occupied();
1048   size_t scan_card_num = _analytics->predict_scan_card_num(rs_length, for_young_gc);
1049 
1050   double region_elapsed_time_ms =
1051     _analytics->predict_card_merge_time_ms(rs_length, collector_state()->in_young_only_phase()) +
1052     _analytics->predict_card_scan_time_ms(scan_card_num, collector_state()->in_young_only_phase());
1053 
1054   // The prediction of the "other" time for this region is based
1055   // upon the region type and NOT the GC type.
1056   if (hr->is_young()) {
1057     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
1058   } else {
1059     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
1060   }
1061   return region_elapsed_time_ms;
1062 }
1063 
1064 double G1Policy::predict_region_total_time_ms(HeapRegion* hr, bool for_young_gc) const {
1065   return predict_region_non_copy_time_ms(hr, for_young_gc) + predict_region_copy_time_ms(hr);
1066 }
1067 
1068 bool G1Policy::should_allocate_mutator_region() const {
1069   uint young_list_length = _g1h->young_regions_count();
1070   uint young_list_target_length = _young_list_target_length;
1071   return young_list_length < young_list_target_length;
1072 }
1073 
1074 bool G1Policy::can_expand_young_list() const {
1075   uint young_list_length = _g1h->young_regions_count();
1076   uint young_list_max_length = _young_list_max_length;
1077   return young_list_length < young_list_max_length;
1078 }
1079 
1080 bool G1Policy::use_adaptive_young_list_length() const {
1081   return _young_gen_sizer->use_adaptive_young_list_length();
1082 }
1083 
1084 size_t G1Policy::desired_survivor_size(uint max_regions) const {
1085   size_t const survivor_capacity = HeapRegion::GrainWords * max_regions;
1086   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
1087 }
1088 
1089 void G1Policy::print_age_table() {
1090   _survivors_age_table.print_age_table(_tenuring_threshold);
1091 }
1092 
1093 void G1Policy::update_max_gc_locker_expansion() {
1094   uint expansion_region_num = 0;
1095   if (GCLockerEdenExpansionPercent > 0) {
1096     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1097     double expansion_region_num_d = perc * (double) _young_list_target_length;
1098     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1099     // less than 1.0) we'll get 1.
1100     expansion_region_num = (uint) ceil(expansion_region_num_d);
1101   } else {
1102     assert(expansion_region_num == 0, "sanity");
1103   }
1104   _young_list_max_length = _young_list_target_length + expansion_region_num;
1105   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1106 }
1107 
1108 // Calculates survivor space parameters.
1109 void G1Policy::update_survivors_policy() {
1110   double max_survivor_regions_d =
1111                  (double) _young_list_target_length / (double) SurvivorRatio;
1112 
1113   // Calculate desired survivor size based on desired max survivor regions (unconstrained
1114   // by remaining heap). Otherwise we may cause undesired promotions as we are
1115   // already getting close to end of the heap, impacting performance even more.
1116   uint const desired_max_survivor_regions = ceil(max_survivor_regions_d);
1117   size_t const survivor_size = desired_survivor_size(desired_max_survivor_regions);
1118 
1119   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(survivor_size);
1120   if (UsePerfData) {
1121     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
1122     _policy_counters->desired_survivor_size()->set_value(survivor_size * oopSize);
1123   }
1124   // The real maximum survivor size is bounded by the number of regions that can
1125   // be allocated into.
1126   _max_survivor_regions = MIN2(desired_max_survivor_regions,
1127                                _g1h->num_free_or_available_regions());
1128 }
1129 
1130 bool G1Policy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1131   // We actually check whether we are marking here and not if we are in a
1132   // reclamation phase. This means that we will schedule a concurrent mark
1133   // even while we are still in the process of reclaiming memory.
1134   bool during_cycle = _g1h->concurrent_mark()->cm_thread()->during_cycle();
1135   if (!during_cycle) {
1136     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1137     collector_state()->set_initiate_conc_mark_if_possible(true);
1138     return true;
1139   } else {
1140     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1141     return false;
1142   }
1143 }
1144 
1145 void G1Policy::initiate_conc_mark() {
1146   collector_state()->set_in_initial_mark_gc(true);
1147   collector_state()->set_initiate_conc_mark_if_possible(false);
1148 }
1149 
1150 void G1Policy::decide_on_conc_mark_initiation() {
1151   // We are about to decide on whether this pause will be an
1152   // initial-mark pause.
1153 
1154   // First, collector_state()->in_initial_mark_gc() should not be already set. We
1155   // will set it here if we have to. However, it should be cleared by
1156   // the end of the pause (it's only set for the duration of an
1157   // initial-mark pause).
1158   assert(!collector_state()->in_initial_mark_gc(), "pre-condition");
1159 
1160   if (collector_state()->initiate_conc_mark_if_possible()) {
1161     // We had noticed on a previous pause that the heap occupancy has
1162     // gone over the initiating threshold and we should start a
1163     // concurrent marking cycle.  Or we've been explicitly requested
1164     // to start a concurrent marking cycle.  Either way, we initiate
1165     // one if not inhibited for some reason.
1166 
1167     GCCause::Cause cause = _g1h->gc_cause();
1168     if ((cause != GCCause::_wb_breakpoint) &&
1169         ConcurrentGCBreakpoints::is_controlled()) {
1170       log_debug(gc, ergo)("Do not initiate concurrent cycle (whitebox controlled)");
1171     } else if (!about_to_start_mixed_phase() && collector_state()->in_young_only_phase()) {
1172       // Initiate a new initial mark if there is no marking or reclamation going on.
1173       initiate_conc_mark();
1174       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1175     } else if (_g1h->is_user_requested_concurrent_full_gc(cause) ||
1176                (cause == GCCause::_wb_breakpoint)) {
1177       // Initiate a user requested initial mark or run_to a breakpoint.
1178       // An initial mark must be young only GC, so the collector state
1179       // must be updated to reflect this.
1180       collector_state()->set_in_young_only_phase(true);
1181       collector_state()->set_in_young_gc_before_mixed(false);
1182 
1183       // We might have ended up coming here about to start a mixed phase with a collection set
1184       // active. The following remark might change the change the "evacuation efficiency" of
1185       // the regions in this set, leading to failing asserts later.
1186       // Since the concurrent cycle will recreate the collection set anyway, simply drop it here.
1187       clear_collection_set_candidates();
1188       abort_time_to_mixed_tracking();
1189       initiate_conc_mark();
1190       log_debug(gc, ergo)("Initiate concurrent cycle (%s requested concurrent cycle)",
1191                           (cause == GCCause::_wb_breakpoint) ? "run_to breakpoint" : "user");
1192     } else {
1193       // The concurrent marking thread is still finishing up the
1194       // previous cycle. If we start one right now the two cycles
1195       // overlap. In particular, the concurrent marking thread might
1196       // be in the process of clearing the next marking bitmap (which
1197       // we will use for the next cycle if we start one). Starting a
1198       // cycle now will be bad given that parts of the marking
1199       // information might get cleared by the marking thread. And we
1200       // cannot wait for the marking thread to finish the cycle as it
1201       // periodically yields while clearing the next marking bitmap
1202       // and, if it's in a yield point, it's waiting for us to
1203       // finish. So, at this point we will not start a cycle and we'll
1204       // let the concurrent marking thread complete the last one.
1205       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1206     }
1207   }
1208 }
1209 
1210 void G1Policy::record_concurrent_mark_cleanup_end() {
1211   G1CollectionSetCandidates* candidates = G1CollectionSetChooser::build(_g1h->workers(), _g1h->num_regions());
1212   _collection_set->set_candidates(candidates);
1213 
1214   bool mixed_gc_pending = next_gc_should_be_mixed("request mixed gcs", "request young-only gcs");
1215   if (!mixed_gc_pending) {
1216     clear_collection_set_candidates();
1217     abort_time_to_mixed_tracking();
1218   }
1219   collector_state()->set_in_young_gc_before_mixed(mixed_gc_pending);
1220   collector_state()->set_mark_or_rebuild_in_progress(false);
1221 
1222   double end_sec = os::elapsedTime();
1223   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1224   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1225   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1226 
1227   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1228 }
1229 
1230 double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const {
1231   return percent_of(reclaimable_bytes, _g1h->capacity());
1232 }
1233 
1234 class G1ClearCollectionSetCandidateRemSets : public HeapRegionClosure {
1235   virtual bool do_heap_region(HeapRegion* r) {
1236     r->rem_set()->clear_locked(true /* only_cardset */);
1237     return false;
1238   }
1239 };
1240 
1241 void G1Policy::clear_collection_set_candidates() {
1242   // Clear remembered sets of remaining candidate regions and the actual candidate
1243   // set.
1244   G1ClearCollectionSetCandidateRemSets cl;
1245   _collection_set->candidates()->iterate(&cl);
1246   _collection_set->clear_candidates();
1247 }
1248 
1249 void G1Policy::maybe_start_marking() {
1250   if (need_to_start_conc_mark("end of GC")) {
1251     // Note: this might have already been set, if during the last
1252     // pause we decided to start a cycle but at the beginning of
1253     // this pause we decided to postpone it. That's OK.
1254     collector_state()->set_initiate_conc_mark_if_possible(true);
1255   }
1256 }
1257 
1258 G1Policy::PauseKind G1Policy::young_gc_pause_kind() const {
1259   assert(!collector_state()->in_full_gc(), "must be");
1260   if (collector_state()->in_initial_mark_gc()) {
1261     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1262     return InitialMarkGC;
1263   } else if (collector_state()->in_young_gc_before_mixed()) {
1264     assert(!collector_state()->in_initial_mark_gc(), "must be");
1265     return LastYoungGC;
1266   } else if (collector_state()->in_mixed_phase()) {
1267     assert(!collector_state()->in_initial_mark_gc(), "must be");
1268     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1269     return MixedGC;
1270   } else {
1271     assert(!collector_state()->in_initial_mark_gc(), "must be");
1272     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1273     return YoungOnlyGC;
1274   }
1275 }
1276 
1277 void G1Policy::record_pause(PauseKind kind, double start, double end) {
1278   // Manage the MMU tracker. For some reason it ignores Full GCs.
1279   if (kind != FullGC) {
1280     _mmu_tracker->add_pause(start, end);
1281   }
1282   // Manage the mutator time tracking from initial mark to first mixed gc.
1283   switch (kind) {
1284     case FullGC:
1285       abort_time_to_mixed_tracking();
1286       break;
1287     case Cleanup:
1288     case Remark:
1289     case YoungOnlyGC:
1290     case LastYoungGC:
1291       _initial_mark_to_mixed.add_pause(end - start);
1292       break;
1293     case InitialMarkGC:
1294       if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
1295         _initial_mark_to_mixed.record_initial_mark_end(end);
1296       }
1297       break;
1298     case MixedGC:
1299       _initial_mark_to_mixed.record_mixed_gc_start(start);
1300       break;
1301     default:
1302       ShouldNotReachHere();
1303   }
1304 }
1305 
1306 void G1Policy::abort_time_to_mixed_tracking() {
1307   _initial_mark_to_mixed.reset();
1308 }
1309 
1310 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1311                                        const char* false_action_str) const {
1312   G1CollectionSetCandidates* candidates = _collection_set->candidates();
1313 
1314   if (candidates == NULL || candidates->is_empty()) {
1315     if (false_action_str != NULL) {
1316       log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1317     }
1318     return false;
1319   }
1320 
1321   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1322   size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1323   double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1324   double threshold = (double) G1HeapWastePercent;
1325   if (reclaimable_percent <= threshold) {
1326     if (false_action_str != NULL) {
1327       log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1328                           false_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1329     }
1330     return false;
1331   }
1332   if (true_action_str != NULL) {
1333     log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1334                         true_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1335   }
1336   return true;
1337 }
1338 
1339 uint G1Policy::calc_min_old_cset_length() const {
1340   // The min old CSet region bound is based on the maximum desired
1341   // number of mixed GCs after a cycle. I.e., even if some old regions
1342   // look expensive, we should add them to the CSet anyway to make
1343   // sure we go through the available old regions in no more than the
1344   // maximum desired number of mixed GCs.
1345   //
1346   // The calculation is based on the number of marked regions we added
1347   // to the CSet candidates in the first place, not how many remain, so
1348   // that the result is the same during all mixed GCs that follow a cycle.
1349 
1350   const size_t region_num = _collection_set->candidates()->num_regions();
1351   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1352   size_t result = region_num / gc_num;
1353   // emulate ceiling
1354   if (result * gc_num < region_num) {
1355     result += 1;
1356   }
1357   return (uint) result;
1358 }
1359 
1360 uint G1Policy::calc_max_old_cset_length() const {
1361   // The max old CSet region bound is based on the threshold expressed
1362   // as a percentage of the heap size. I.e., it should bound the
1363   // number of old regions added to the CSet irrespective of how many
1364   // of them are available.
1365 
1366   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1367   const size_t region_num = g1h->num_regions();
1368   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1369   size_t result = region_num * perc / 100;
1370   // emulate ceiling
1371   if (100 * result < region_num * perc) {
1372     result += 1;
1373   }
1374   return (uint) result;
1375 }
1376 
1377 void G1Policy::calculate_old_collection_set_regions(G1CollectionSetCandidates* candidates,
1378                                                     double time_remaining_ms,
1379                                                     uint& num_initial_regions,
1380                                                     uint& num_optional_regions) {
1381   assert(candidates != NULL, "Must be");
1382 
1383   num_initial_regions = 0;
1384   num_optional_regions = 0;
1385   uint num_expensive_regions = 0;
1386 
1387   double predicted_old_time_ms = 0.0;
1388   double predicted_initial_time_ms = 0.0;
1389   double predicted_optional_time_ms = 0.0;
1390 
1391   double optional_threshold_ms = time_remaining_ms * optional_prediction_fraction();
1392 
1393   const uint min_old_cset_length = calc_min_old_cset_length();
1394   const uint max_old_cset_length = MAX2(min_old_cset_length, calc_max_old_cset_length());
1395   const uint max_optional_regions = max_old_cset_length - min_old_cset_length;
1396   bool check_time_remaining = use_adaptive_young_list_length();
1397 
1398   uint candidate_idx = candidates->cur_idx();
1399 
1400   log_debug(gc, ergo, cset)("Start adding old regions to collection set. Min %u regions, max %u regions, "
1401                             "time remaining %1.2fms, optional threshold %1.2fms",
1402                             min_old_cset_length, max_old_cset_length, time_remaining_ms, optional_threshold_ms);
1403 
1404   HeapRegion* hr = candidates->at(candidate_idx);
1405   while (hr != NULL) {
1406     if (num_initial_regions + num_optional_regions >= max_old_cset_length) {
1407       // Added maximum number of old regions to the CSet.
1408       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Maximum number of regions). "
1409                                 "Initial %u regions, optional %u regions",
1410                                 num_initial_regions, num_optional_regions);
1411       break;
1412     }
1413 
1414     // Stop adding regions if the remaining reclaimable space is
1415     // not above G1HeapWastePercent.
1416     size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1417     double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1418     double threshold = (double) G1HeapWastePercent;
1419     if (reclaimable_percent <= threshold) {
1420       // We've added enough old regions that the amount of uncollected
1421       // reclaimable space is at or below the waste threshold. Stop
1422       // adding old regions to the CSet.
1423       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Reclaimable percentage below threshold). "
1424                                 "Reclaimable: " SIZE_FORMAT "%s (%1.2f%%) threshold: " UINTX_FORMAT "%%",
1425                                 byte_size_in_proper_unit(reclaimable_bytes), proper_unit_for_byte_size(reclaimable_bytes),
1426                                 reclaimable_percent, G1HeapWastePercent);
1427       break;
1428     }
1429 
1430     double predicted_time_ms = predict_region_total_time_ms(hr, false);
1431     time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
1432     // Add regions to old set until we reach the minimum amount
1433     if (num_initial_regions < min_old_cset_length) {
1434       predicted_old_time_ms += predicted_time_ms;
1435       num_initial_regions++;
1436       // Record the number of regions added with no time remaining
1437       if (time_remaining_ms == 0.0) {
1438         num_expensive_regions++;
1439       }
1440     } else if (!check_time_remaining) {
1441       // In the non-auto-tuning case, we'll finish adding regions
1442       // to the CSet if we reach the minimum.
1443       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Region amount reached min).");
1444       break;
1445     } else {
1446       // Keep adding regions to old set until we reach the optional threshold
1447       if (time_remaining_ms > optional_threshold_ms) {
1448         predicted_old_time_ms += predicted_time_ms;
1449         num_initial_regions++;
1450       } else if (time_remaining_ms > 0) {
1451         // Keep adding optional regions until time is up.
1452         assert(num_optional_regions < max_optional_regions, "Should not be possible.");
1453         predicted_optional_time_ms += predicted_time_ms;
1454         num_optional_regions++;
1455       } else {
1456         log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Predicted time too high).");
1457         break;
1458       }
1459     }
1460     hr = candidates->at(++candidate_idx);
1461   }
1462   if (hr == NULL) {
1463     log_debug(gc, ergo, cset)("Old candidate collection set empty.");
1464   }
1465 
1466   if (num_expensive_regions > 0) {
1467     log_debug(gc, ergo, cset)("Added %u initial old regions to collection set although the predicted time was too high.",
1468                               num_expensive_regions);
1469   }
1470 
1471   log_debug(gc, ergo, cset)("Finish choosing collection set old regions. Initial: %u, optional: %u, "
1472                             "predicted old time: %1.2fms, predicted optional time: %1.2fms, time remaining: %1.2f",
1473                             num_initial_regions, num_optional_regions,
1474                             predicted_initial_time_ms, predicted_optional_time_ms, time_remaining_ms);
1475 }
1476 
1477 void G1Policy::calculate_optional_collection_set_regions(G1CollectionSetCandidates* candidates,
1478                                                          uint const max_optional_regions,
1479                                                          double time_remaining_ms,
1480                                                          uint& num_optional_regions) {
1481   assert(_g1h->collector_state()->in_mixed_phase(), "Should only be called in mixed phase");
1482 
1483   num_optional_regions = 0;
1484   double prediction_ms = 0;
1485   uint candidate_idx = candidates->cur_idx();
1486 
1487   HeapRegion* r = candidates->at(candidate_idx);
1488   while (num_optional_regions < max_optional_regions) {
1489     assert(r != NULL, "Region must exist");
1490     prediction_ms += predict_region_total_time_ms(r, false);
1491 
1492     if (prediction_ms > time_remaining_ms) {
1493       log_debug(gc, ergo, cset)("Prediction %.3fms for region %u does not fit remaining time: %.3fms.",
1494                                 prediction_ms, r->hrm_index(), time_remaining_ms);
1495       break;
1496     }
1497     // This region will be included in the next optional evacuation.
1498 
1499     time_remaining_ms -= prediction_ms;
1500     num_optional_regions++;
1501     r = candidates->at(++candidate_idx);
1502   }
1503 
1504   log_debug(gc, ergo, cset)("Prepared %u regions out of %u for optional evacuation. Predicted time: %.3fms",
1505                             num_optional_regions, max_optional_regions, prediction_ms);
1506 }
1507 
1508 void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1509   note_start_adding_survivor_regions();
1510 
1511   HeapRegion* last = NULL;
1512   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1513        it != survivors->regions()->end();
1514        ++it) {
1515     HeapRegion* curr = *it;
1516     set_region_survivor(curr);
1517 
1518     // The region is a non-empty survivor so let's add it to
1519     // the incremental collection set for the next evacuation
1520     // pause.
1521     _collection_set->add_survivor_regions(curr);
1522 
1523     last = curr;
1524   }
1525   note_stop_adding_survivor_regions();
1526 
1527   // Don't clear the survivor list handles until the start of
1528   // the next evacuation pause - we need it in order to re-tag
1529   // the survivor regions from this evacuation pause as 'young'
1530   // at the start of the next.
1531 }