/* * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/classLoaderDataGraph.hpp" #include "classfile/metadataOnStackMark.hpp" #include "classfile/stringTable.hpp" #include "code/codeCache.hpp" #include "code/icBuffer.hpp" #include "gc/g1/g1Allocator.inline.hpp" #include "gc/g1/g1Arguments.hpp" #include "gc/g1/g1BarrierSet.hpp" #include "gc/g1/g1CardTableEntryClosure.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1CollectionSet.hpp" #include "gc/g1/g1CollectorState.hpp" #include "gc/g1/g1ConcurrentRefine.hpp" #include "gc/g1/g1ConcurrentRefineThread.hpp" #include "gc/g1/g1ConcurrentMarkThread.inline.hpp" #include "gc/g1/g1DirtyCardQueue.hpp" #include "gc/g1/g1EvacStats.inline.hpp" #include "gc/g1/g1FullCollector.hpp" #include "gc/g1/g1GCParPhaseTimesTracker.hpp" #include "gc/g1/g1GCPhaseTimes.hpp" #include "gc/g1/g1HeapSizingPolicy.hpp" #include "gc/g1/g1HeapTransition.hpp" #include "gc/g1/g1HeapVerifier.hpp" #include "gc/g1/g1HotCardCache.hpp" #include "gc/g1/g1InitLogger.hpp" #include "gc/g1/g1MemoryPool.hpp" #include "gc/g1/g1OopClosures.inline.hpp" #include "gc/g1/g1ParallelCleaning.hpp" #include "gc/g1/g1ParScanThreadState.inline.hpp" #include "gc/g1/g1Policy.hpp" #include "gc/g1/g1RedirtyCardsQueue.hpp" #include "gc/g1/g1RegionToSpaceMapper.hpp" #include "gc/g1/g1RemSet.hpp" #include "gc/g1/g1RootClosures.hpp" #include "gc/g1/g1RootProcessor.hpp" #include "gc/g1/g1SATBMarkQueueSet.hpp" #include "gc/g1/g1StringDedup.hpp" #include "gc/g1/g1ThreadLocalData.hpp" #include "gc/g1/g1Trace.hpp" #include "gc/g1/g1YCTypes.hpp" #include "gc/g1/g1YoungRemSetSamplingThread.hpp" #include "gc/g1/g1VMOperations.hpp" #include "gc/g1/heapRegion.inline.hpp" #include "gc/g1/heapRegionRemSet.hpp" #include "gc/g1/heapRegionSet.inline.hpp" #include "gc/shared/concurrentGCBreakpoints.hpp" #include "gc/shared/gcBehaviours.hpp" #include "gc/shared/gcHeapSummary.hpp" #include "gc/shared/gcId.hpp" #include "gc/shared/gcLocker.hpp" #include "gc/shared/gcTimer.hpp" #include "gc/shared/gcTraceTime.inline.hpp" #include "gc/shared/generationSpec.hpp" #include "gc/shared/isGCActiveMark.hpp" #include "gc/shared/locationPrinter.inline.hpp" #include "gc/shared/oopStorageParState.hpp" #include "gc/shared/preservedMarks.inline.hpp" #include "gc/shared/suspendibleThreadSet.hpp" #include "gc/shared/referenceProcessor.inline.hpp" #include "gc/shared/taskTerminator.hpp" #include "gc/shared/taskqueue.inline.hpp" #include "gc/shared/weakProcessor.inline.hpp" #include "gc/shared/workerPolicy.hpp" #include "logging/log.hpp" #include "memory/allocation.hpp" #include "memory/iterator.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "oops/access.inline.hpp" #include "oops/compressedOops.inline.hpp" #include "oops/oop.inline.hpp" #include "runtime/atomic.hpp" #include "runtime/handles.inline.hpp" #include "runtime/init.hpp" #include "runtime/orderAccess.hpp" #include "runtime/threadSMR.hpp" #include "runtime/vmThread.hpp" #include "utilities/align.hpp" #include "utilities/autoRestore.hpp" #include "utilities/bitMap.inline.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/stack.inline.hpp" size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; // INVARIANTS/NOTES // // All allocation activity covered by the G1CollectedHeap interface is // serialized by acquiring the HeapLock. This happens in mem_allocate // and allocate_new_tlab, which are the "entry" points to the // allocation code from the rest of the JVM. (Note that this does not // apply to TLAB allocation, which is not part of this interface: it // is done by clients of this interface.) class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure { private: size_t _num_dirtied; G1CollectedHeap* _g1h; G1CardTable* _g1_ct; HeapRegion* region_for_card(CardValue* card_ptr) const { return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr)); } bool will_become_free(HeapRegion* hr) const { // A region will be freed by free_collection_set if the region is in the // collection set and has not had an evacuation failure. return _g1h->is_in_cset(hr) && !hr->evacuation_failed(); } public: RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(), _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { } void do_card_ptr(CardValue* card_ptr, uint worker_id) { HeapRegion* hr = region_for_card(card_ptr); // Should only dirty cards in regions that won't be freed. if (!will_become_free(hr)) { *card_ptr = G1CardTable::dirty_card_val(); _num_dirtied++; } } size_t num_dirtied() const { return _num_dirtied; } }; void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) { HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions); } void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) { // The from card cache is not the memory that is actually committed. So we cannot // take advantage of the zero_filled parameter. reset_from_card_cache(start_idx, num_regions); } Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) { Ticks start = Ticks::now(); workers()->run_task(task, workers()->active_workers()); return Ticks::now() - start; } HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index, MemRegion mr) { return new HeapRegion(hrs_index, bot(), mr); } // Private methods. HeapRegion* G1CollectedHeap::new_region(size_t word_size, HeapRegionType type, bool do_expand, uint node_index) { assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords, "the only time we use this to allocate a humongous region is " "when we are allocating a single humongous region"); HeapRegion* res = _hrm->allocate_free_region(type, node_index); if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { // Currently, only attempts to allocate GC alloc regions set // do_expand to true. So, we should only reach here during a // safepoint. If this assumption changes we might have to // reconsider the use of _expand_heap_after_alloc_failure. assert(SafepointSynchronize::is_at_safepoint(), "invariant"); log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B", word_size * HeapWordSize); assert(word_size * HeapWordSize < HeapRegion::GrainBytes, "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT, word_size * HeapWordSize); if (expand_single_region(node_index)) { // Given that expand_single_region() succeeded in expanding the heap, and we // always expand the heap by an amount aligned to the heap // region size, the free list should in theory not be empty. // In either case allocate_free_region() will check for NULL. res = _hrm->allocate_free_region(type, node_index); } else { _expand_heap_after_alloc_failure = false; } } return res; } HeapWord* G1CollectedHeap::humongous_obj_allocate_initialize_regions(HeapRegion* first_hr, uint num_regions, size_t word_size) { assert(first_hr != NULL, "pre-condition"); assert(is_humongous(word_size), "word_size should be humongous"); assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); // Index of last region in the series. uint first = first_hr->hrm_index(); uint last = first + num_regions - 1; // We need to initialize the region(s) we just discovered. This is // a bit tricky given that it can happen concurrently with // refinement threads refining cards on these regions and // potentially wanting to refine the BOT as they are scanning // those cards (this can happen shortly after a cleanup; see CR // 6991377). So we have to set up the region(s) carefully and in // a specific order. // The word size sum of all the regions we will allocate. size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords; assert(word_size <= word_size_sum, "sanity"); // The passed in hr will be the "starts humongous" region. The header // of the new object will be placed at the bottom of this region. HeapWord* new_obj = first_hr->bottom(); // This will be the new top of the new object. HeapWord* obj_top = new_obj + word_size; // First, we need to zero the header of the space that we will be // allocating. When we update top further down, some refinement // threads might try to scan the region. By zeroing the header we // ensure that any thread that will try to scan the region will // come across the zero klass word and bail out. // // NOTE: It would not have been correct to have used // CollectedHeap::fill_with_object() and make the space look like // an int array. The thread that is doing the allocation will // later update the object header to a potentially different array // type and, for a very short period of time, the klass and length // fields will be inconsistent. This could cause a refinement // thread to calculate the object size incorrectly. Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); // Next, pad out the unused tail of the last region with filler // objects, for improved usage accounting. // How many words we use for filler objects. size_t word_fill_size = word_size_sum - word_size; // How many words memory we "waste" which cannot hold a filler object. size_t words_not_fillable = 0; if (word_fill_size >= min_fill_size()) { fill_with_objects(obj_top, word_fill_size); } else if (word_fill_size > 0) { // We have space to fill, but we cannot fit an object there. words_not_fillable = word_fill_size; word_fill_size = 0; } // We will set up the first region as "starts humongous". This // will also update the BOT covering all the regions to reflect // that there is a single object that starts at the bottom of the // first region. first_hr->set_starts_humongous(obj_top, word_fill_size); _policy->remset_tracker()->update_at_allocate(first_hr); // Then, if there are any, we will set up the "continues // humongous" regions. HeapRegion* hr = NULL; for (uint i = first + 1; i <= last; ++i) { hr = region_at(i); hr->set_continues_humongous(first_hr); _policy->remset_tracker()->update_at_allocate(hr); } // Up to this point no concurrent thread would have been able to // do any scanning on any region in this series. All the top // fields still point to bottom, so the intersection between // [bottom,top] and [card_start,card_end] will be empty. Before we // update the top fields, we'll do a storestore to make sure that // no thread sees the update to top before the zeroing of the // object header and the BOT initialization. OrderAccess::storestore(); // Now, we will update the top fields of the "continues humongous" // regions except the last one. for (uint i = first; i < last; ++i) { hr = region_at(i); hr->set_top(hr->end()); } hr = region_at(last); // If we cannot fit a filler object, we must set top to the end // of the humongous object, otherwise we cannot iterate the heap // and the BOT will not be complete. hr->set_top(hr->end() - words_not_fillable); assert(hr->bottom() < obj_top && obj_top <= hr->end(), "obj_top should be in last region"); _verifier->check_bitmaps("Humongous Region Allocation", first_hr); assert(words_not_fillable == 0 || first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(), "Miscalculation in humongous allocation"); increase_used((word_size_sum - words_not_fillable) * HeapWordSize); for (uint i = first; i <= last; ++i) { hr = region_at(i); _humongous_set.add(hr); _hr_printer.alloc(hr); } return new_obj; } size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) { assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size); return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords; } // If could fit into free regions w/o expansion, try. // Otherwise, if can expand, do so. // Otherwise, if using ex regions might help, try with ex given back. HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) { assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); _verifier->verify_region_sets_optional(); uint obj_regions = (uint) humongous_obj_size_in_regions(word_size); // Policy: First try to allocate a humongous object in the free list. HeapRegion* humongous_start = _hrm->allocate_humongous(obj_regions); if (humongous_start == NULL) { // Policy: We could not find enough regions for the humongous object in the // free list. Look through the heap to find a mix of free and uncommitted regions. // If so, expand the heap and allocate the humongous object. humongous_start = _hrm->expand_and_allocate_humongous(obj_regions); if (humongous_start != NULL) { // We managed to find a region by expanding the heap. log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B", word_size * HeapWordSize); policy()->record_new_heap_size(num_regions()); } else { // Policy: Potentially trigger a defragmentation GC. } } HeapWord* result = NULL; if (humongous_start != NULL) { result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size); assert(result != NULL, "it should always return a valid result"); // A successful humongous object allocation changes the used space // information of the old generation so we need to recalculate the // sizes and update the jstat counters here. g1mm()->update_sizes(); } _verifier->verify_region_sets_optional(); return result; } HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size) { assert_heap_not_locked_and_not_at_safepoint(); assert(!is_humongous(requested_size), "we do not allow humongous TLABs"); return attempt_allocation(min_size, requested_size, actual_size); } HeapWord* G1CollectedHeap::mem_allocate(size_t word_size, bool* gc_overhead_limit_was_exceeded) { assert_heap_not_locked_and_not_at_safepoint(); if (is_humongous(word_size)) { return attempt_allocation_humongous(word_size); } size_t dummy = 0; return attempt_allocation(word_size, word_size, &dummy); } HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) { ResourceMark rm; // For retrieving the thread names in log messages. // Make sure you read the note in attempt_allocation_humongous(). assert_heap_not_locked_and_not_at_safepoint(); assert(!is_humongous(word_size), "attempt_allocation_slow() should not " "be called for humongous allocation requests"); // We should only get here after the first-level allocation attempt // (attempt_allocation()) failed to allocate. // We will loop until a) we manage to successfully perform the // allocation or b) we successfully schedule a collection which // fails to perform the allocation. b) is the only case when we'll // return NULL. HeapWord* result = NULL; for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { bool should_try_gc; uint gc_count_before; { MutexLocker x(Heap_lock); result = _allocator->attempt_allocation_locked(word_size); if (result != NULL) { return result; } // If the GCLocker is active and we are bound for a GC, try expanding young gen. // This is different to when only GCLocker::needs_gc() is set: try to avoid // waiting because the GCLocker is active to not wait too long. if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) { // No need for an ergo message here, can_expand_young_list() does this when // it returns true. result = _allocator->attempt_allocation_force(word_size); if (result != NULL) { return result; } } // Only try a GC if the GCLocker does not signal the need for a GC. Wait until // the GCLocker initiated GC has been performed and then retry. This includes // the case when the GC Locker is not active but has not been performed. should_try_gc = !GCLocker::needs_gc(); // Read the GC count while still holding the Heap_lock. gc_count_before = total_collections(); } if (should_try_gc) { bool succeeded; result = do_collection_pause(word_size, gc_count_before, &succeeded, GCCause::_g1_inc_collection_pause); if (result != NULL) { assert(succeeded, "only way to get back a non-NULL result"); log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT, Thread::current()->name(), p2i(result)); return result; } if (succeeded) { // We successfully scheduled a collection which failed to allocate. No // point in trying to allocate further. We'll just return NULL. log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate " SIZE_FORMAT " words", Thread::current()->name(), word_size); return NULL; } log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words", Thread::current()->name(), word_size); } else { // Failed to schedule a collection. if (gclocker_retry_count > GCLockerRetryAllocationCount) { log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating " SIZE_FORMAT " words", Thread::current()->name(), word_size); return NULL; } log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name()); // The GCLocker is either active or the GCLocker initiated // GC has not yet been performed. Stall until it is and // then retry the allocation. GCLocker::stall_until_clear(); gclocker_retry_count += 1; } // We can reach here if we were unsuccessful in scheduling a // collection (because another thread beat us to it) or if we were // stalled due to the GC locker. In either can we should retry the // allocation attempt in case another thread successfully // performed a collection and reclaimed enough space. We do the // first attempt (without holding the Heap_lock) here and the // follow-on attempt will be at the start of the next loop // iteration (after taking the Heap_lock). size_t dummy = 0; result = _allocator->attempt_allocation(word_size, word_size, &dummy); if (result != NULL) { return result; } // Give a warning if we seem to be looping forever. if ((QueuedAllocationWarningCount > 0) && (try_count % QueuedAllocationWarningCount == 0)) { log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words", Thread::current()->name(), try_count, word_size); } } ShouldNotReachHere(); return NULL; } void G1CollectedHeap::begin_archive_alloc_range(bool open) { assert_at_safepoint_on_vm_thread(); if (_archive_allocator == NULL) { _archive_allocator = G1ArchiveAllocator::create_allocator(this, open); } } bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) { // Allocations in archive regions cannot be of a size that would be considered // humongous even for a minimum-sized region, because G1 region sizes/boundaries // may be different at archive-restore time. return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words()); } HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) { assert_at_safepoint_on_vm_thread(); assert(_archive_allocator != NULL, "_archive_allocator not initialized"); if (is_archive_alloc_too_large(word_size)) { return NULL; } return _archive_allocator->archive_mem_allocate(word_size); } void G1CollectedHeap::end_archive_alloc_range(GrowableArray* ranges, size_t end_alignment_in_bytes) { assert_at_safepoint_on_vm_thread(); assert(_archive_allocator != NULL, "_archive_allocator not initialized"); // Call complete_archive to do the real work, filling in the MemRegion // array with the archive regions. _archive_allocator->complete_archive(ranges, end_alignment_in_bytes); delete _archive_allocator; _archive_allocator = NULL; } bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) { assert(ranges != NULL, "MemRegion array NULL"); assert(count != 0, "No MemRegions provided"); MemRegion reserved = _hrm->reserved(); for (size_t i = 0; i < count; i++) { if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) { return false; } } return true; } bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count, bool open) { assert(!is_init_completed(), "Expect to be called at JVM init time"); assert(ranges != NULL, "MemRegion array NULL"); assert(count != 0, "No MemRegions provided"); MutexLocker x(Heap_lock); MemRegion reserved = _hrm->reserved(); HeapWord* prev_last_addr = NULL; HeapRegion* prev_last_region = NULL; // Temporarily disable pretouching of heap pages. This interface is used // when mmap'ing archived heap data in, so pre-touching is wasted. FlagSetting fs(AlwaysPreTouch, false); // Enable archive object checking used by G1MarkSweep. We have to let it know // about each archive range, so that objects in those ranges aren't marked. G1ArchiveAllocator::enable_archive_object_check(); // For each specified MemRegion range, allocate the corresponding G1 // regions and mark them as archive regions. We expect the ranges // in ascending starting address order, without overlap. for (size_t i = 0; i < count; i++) { MemRegion curr_range = ranges[i]; HeapWord* start_address = curr_range.start(); size_t word_size = curr_range.word_size(); HeapWord* last_address = curr_range.last(); size_t commits = 0; guarantee(reserved.contains(start_address) && reserved.contains(last_address), "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(start_address), p2i(last_address)); guarantee(start_address > prev_last_addr, "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , p2i(start_address), p2i(prev_last_addr)); prev_last_addr = last_address; // Check for ranges that start in the same G1 region in which the previous // range ended, and adjust the start address so we don't try to allocate // the same region again. If the current range is entirely within that // region, skip it, just adjusting the recorded top. HeapRegion* start_region = _hrm->addr_to_region(start_address); if ((prev_last_region != NULL) && (start_region == prev_last_region)) { start_address = start_region->end(); if (start_address > last_address) { increase_used(word_size * HeapWordSize); start_region->set_top(last_address + 1); continue; } start_region->set_top(start_address); curr_range = MemRegion(start_address, last_address + 1); start_region = _hrm->addr_to_region(start_address); } // Perform the actual region allocation, exiting if it fails. // Then note how much new space we have allocated. if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) { return false; } increase_used(word_size * HeapWordSize); if (commits != 0) { log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B", HeapRegion::GrainWords * HeapWordSize * commits); } // Mark each G1 region touched by the range as archive, add it to // the old set, and set top. HeapRegion* curr_region = _hrm->addr_to_region(start_address); HeapRegion* last_region = _hrm->addr_to_region(last_address); prev_last_region = last_region; while (curr_region != NULL) { assert(curr_region->is_empty() && !curr_region->is_pinned(), "Region already in use (index %u)", curr_region->hrm_index()); if (open) { curr_region->set_open_archive(); } else { curr_region->set_closed_archive(); } _hr_printer.alloc(curr_region); _archive_set.add(curr_region); HeapWord* top; HeapRegion* next_region; if (curr_region != last_region) { top = curr_region->end(); next_region = _hrm->next_region_in_heap(curr_region); } else { top = last_address + 1; next_region = NULL; } curr_region->set_top(top); curr_region = next_region; } // Notify mark-sweep of the archive G1ArchiveAllocator::set_range_archive(curr_range, open); } return true; } void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) { assert(!is_init_completed(), "Expect to be called at JVM init time"); assert(ranges != NULL, "MemRegion array NULL"); assert(count != 0, "No MemRegions provided"); MemRegion reserved = _hrm->reserved(); HeapWord *prev_last_addr = NULL; HeapRegion* prev_last_region = NULL; // For each MemRegion, create filler objects, if needed, in the G1 regions // that contain the address range. The address range actually within the // MemRegion will not be modified. That is assumed to have been initialized // elsewhere, probably via an mmap of archived heap data. MutexLocker x(Heap_lock); for (size_t i = 0; i < count; i++) { HeapWord* start_address = ranges[i].start(); HeapWord* last_address = ranges[i].last(); assert(reserved.contains(start_address) && reserved.contains(last_address), "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(start_address), p2i(last_address)); assert(start_address > prev_last_addr, "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , p2i(start_address), p2i(prev_last_addr)); HeapRegion* start_region = _hrm->addr_to_region(start_address); HeapRegion* last_region = _hrm->addr_to_region(last_address); HeapWord* bottom_address = start_region->bottom(); // Check for a range beginning in the same region in which the // previous one ended. if (start_region == prev_last_region) { bottom_address = prev_last_addr + 1; } // Verify that the regions were all marked as archive regions by // alloc_archive_regions. HeapRegion* curr_region = start_region; while (curr_region != NULL) { guarantee(curr_region->is_archive(), "Expected archive region at index %u", curr_region->hrm_index()); if (curr_region != last_region) { curr_region = _hrm->next_region_in_heap(curr_region); } else { curr_region = NULL; } } prev_last_addr = last_address; prev_last_region = last_region; // Fill the memory below the allocated range with dummy object(s), // if the region bottom does not match the range start, or if the previous // range ended within the same G1 region, and there is a gap. if (start_address != bottom_address) { size_t fill_size = pointer_delta(start_address, bottom_address); G1CollectedHeap::fill_with_objects(bottom_address, fill_size); increase_used(fill_size * HeapWordSize); } } } inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size) { assert_heap_not_locked_and_not_at_safepoint(); assert(!is_humongous(desired_word_size), "attempt_allocation() should not " "be called for humongous allocation requests"); HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size); if (result == NULL) { *actual_word_size = desired_word_size; result = attempt_allocation_slow(desired_word_size); } assert_heap_not_locked(); if (result != NULL) { assert(*actual_word_size != 0, "Actual size must have been set here"); dirty_young_block(result, *actual_word_size); } else { *actual_word_size = 0; } return result; } void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) { assert(!is_init_completed(), "Expect to be called at JVM init time"); assert(ranges != NULL, "MemRegion array NULL"); assert(count != 0, "No MemRegions provided"); MemRegion reserved = _hrm->reserved(); HeapWord* prev_last_addr = NULL; HeapRegion* prev_last_region = NULL; size_t size_used = 0; size_t uncommitted_regions = 0; // For each Memregion, free the G1 regions that constitute it, and // notify mark-sweep that the range is no longer to be considered 'archive.' MutexLocker x(Heap_lock); for (size_t i = 0; i < count; i++) { HeapWord* start_address = ranges[i].start(); HeapWord* last_address = ranges[i].last(); assert(reserved.contains(start_address) && reserved.contains(last_address), "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(start_address), p2i(last_address)); assert(start_address > prev_last_addr, "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , p2i(start_address), p2i(prev_last_addr)); size_used += ranges[i].byte_size(); prev_last_addr = last_address; HeapRegion* start_region = _hrm->addr_to_region(start_address); HeapRegion* last_region = _hrm->addr_to_region(last_address); // Check for ranges that start in the same G1 region in which the previous // range ended, and adjust the start address so we don't try to free // the same region again. If the current range is entirely within that // region, skip it. if (start_region == prev_last_region) { start_address = start_region->end(); if (start_address > last_address) { continue; } start_region = _hrm->addr_to_region(start_address); } prev_last_region = last_region; // After verifying that each region was marked as an archive region by // alloc_archive_regions, set it free and empty and uncommit it. HeapRegion* curr_region = start_region; while (curr_region != NULL) { guarantee(curr_region->is_archive(), "Expected archive region at index %u", curr_region->hrm_index()); uint curr_index = curr_region->hrm_index(); _archive_set.remove(curr_region); curr_region->set_free(); curr_region->set_top(curr_region->bottom()); if (curr_region != last_region) { curr_region = _hrm->next_region_in_heap(curr_region); } else { curr_region = NULL; } _hrm->shrink_at(curr_index, 1); uncommitted_regions++; } // Notify mark-sweep that this is no longer an archive range. G1ArchiveAllocator::clear_range_archive(ranges[i]); } if (uncommitted_regions != 0) { log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B", HeapRegion::GrainWords * HeapWordSize * uncommitted_regions); } decrease_used(size_used); } oop G1CollectedHeap::materialize_archived_object(oop obj) { assert(obj != NULL, "archived obj is NULL"); assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object"); // Loading an archived object makes it strongly reachable. If it is // loaded during concurrent marking, it must be enqueued to the SATB // queue, shading the previously white object gray. G1BarrierSet::enqueue(obj); return obj; } HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) { ResourceMark rm; // For retrieving the thread names in log messages. // The structure of this method has a lot of similarities to // attempt_allocation_slow(). The reason these two were not merged // into a single one is that such a method would require several "if // allocation is not humongous do this, otherwise do that" // conditional paths which would obscure its flow. In fact, an early // version of this code did use a unified method which was harder to // follow and, as a result, it had subtle bugs that were hard to // track down. So keeping these two methods separate allows each to // be more readable. It will be good to keep these two in sync as // much as possible. assert_heap_not_locked_and_not_at_safepoint(); assert(is_humongous(word_size), "attempt_allocation_humongous() " "should only be called for humongous allocations"); // Humongous objects can exhaust the heap quickly, so we should check if we // need to start a marking cycle at each humongous object allocation. We do // the check before we do the actual allocation. The reason for doing it // before the allocation is that we avoid having to keep track of the newly // allocated memory while we do a GC. if (policy()->need_to_start_conc_mark("concurrent humongous allocation", word_size)) { collect(GCCause::_g1_humongous_allocation); } // We will loop until a) we manage to successfully perform the // allocation or b) we successfully schedule a collection which // fails to perform the allocation. b) is the only case when we'll // return NULL. HeapWord* result = NULL; for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { bool should_try_gc; uint gc_count_before; { MutexLocker x(Heap_lock); // Given that humongous objects are not allocated in young // regions, we'll first try to do the allocation without doing a // collection hoping that there's enough space in the heap. result = humongous_obj_allocate(word_size); if (result != NULL) { size_t size_in_regions = humongous_obj_size_in_regions(word_size); policy()->old_gen_alloc_tracker()-> add_allocated_bytes_since_last_gc(size_in_regions * HeapRegion::GrainBytes); return result; } // Only try a GC if the GCLocker does not signal the need for a GC. Wait until // the GCLocker initiated GC has been performed and then retry. This includes // the case when the GC Locker is not active but has not been performed. should_try_gc = !GCLocker::needs_gc(); // Read the GC count while still holding the Heap_lock. gc_count_before = total_collections(); } if (should_try_gc) { bool succeeded; result = do_collection_pause(word_size, gc_count_before, &succeeded, GCCause::_g1_humongous_allocation); if (result != NULL) { assert(succeeded, "only way to get back a non-NULL result"); log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT, Thread::current()->name(), p2i(result)); return result; } if (succeeded) { // We successfully scheduled a collection which failed to allocate. No // point in trying to allocate further. We'll just return NULL. log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate " SIZE_FORMAT " words", Thread::current()->name(), word_size); return NULL; } log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "", Thread::current()->name(), word_size); } else { // Failed to schedule a collection. if (gclocker_retry_count > GCLockerRetryAllocationCount) { log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating " SIZE_FORMAT " words", Thread::current()->name(), word_size); return NULL; } log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name()); // The GCLocker is either active or the GCLocker initiated // GC has not yet been performed. Stall until it is and // then retry the allocation. GCLocker::stall_until_clear(); gclocker_retry_count += 1; } // We can reach here if we were unsuccessful in scheduling a // collection (because another thread beat us to it) or if we were // stalled due to the GC locker. In either can we should retry the // allocation attempt in case another thread successfully // performed a collection and reclaimed enough space. // Humongous object allocation always needs a lock, so we wait for the retry // in the next iteration of the loop, unlike for the regular iteration case. // Give a warning if we seem to be looping forever. if ((QueuedAllocationWarningCount > 0) && (try_count % QueuedAllocationWarningCount == 0)) { log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words", Thread::current()->name(), try_count, word_size); } } ShouldNotReachHere(); return NULL; } HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, bool expect_null_mutator_alloc_region) { assert_at_safepoint_on_vm_thread(); assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region, "the current alloc region was unexpectedly found to be non-NULL"); if (!is_humongous(word_size)) { return _allocator->attempt_allocation_locked(word_size); } else { HeapWord* result = humongous_obj_allocate(word_size); if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) { collector_state()->set_initiate_conc_mark_if_possible(true); } return result; } ShouldNotReachHere(); } class PostCompactionPrinterClosure: public HeapRegionClosure { private: G1HRPrinter* _hr_printer; public: bool do_heap_region(HeapRegion* hr) { assert(!hr->is_young(), "not expecting to find young regions"); _hr_printer->post_compaction(hr); return false; } PostCompactionPrinterClosure(G1HRPrinter* hr_printer) : _hr_printer(hr_printer) { } }; void G1CollectedHeap::print_hrm_post_compaction() { if (_hr_printer.is_active()) { PostCompactionPrinterClosure cl(hr_printer()); heap_region_iterate(&cl); } } void G1CollectedHeap::abort_concurrent_cycle() { // If we start the compaction before the CM threads finish // scanning the root regions we might trip them over as we'll // be moving objects / updating references. So let's wait until // they are done. By telling them to abort, they should complete // early. _cm->root_regions()->abort(); _cm->root_regions()->wait_until_scan_finished(); // Disable discovery and empty the discovered lists // for the CM ref processor. _ref_processor_cm->disable_discovery(); _ref_processor_cm->abandon_partial_discovery(); _ref_processor_cm->verify_no_references_recorded(); // Abandon current iterations of concurrent marking and concurrent // refinement, if any are in progress. concurrent_mark()->concurrent_cycle_abort(); } void G1CollectedHeap::prepare_heap_for_full_collection() { // Make sure we'll choose a new allocation region afterwards. _allocator->release_mutator_alloc_regions(); _allocator->abandon_gc_alloc_regions(); // We may have added regions to the current incremental collection // set between the last GC or pause and now. We need to clear the // incremental collection set and then start rebuilding it afresh // after this full GC. abandon_collection_set(collection_set()); tear_down_region_sets(false /* free_list_only */); hrm()->prepare_for_full_collection_start(); } void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) { assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant"); assert_used_and_recalculate_used_equal(this); _verifier->verify_region_sets_optional(); _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull); _verifier->check_bitmaps("Full GC Start"); } void G1CollectedHeap::prepare_heap_for_mutators() { hrm()->prepare_for_full_collection_end(); // Delete metaspaces for unloaded class loaders and clean up loader_data graph ClassLoaderDataGraph::purge(); MetaspaceUtils::verify_metrics(); // Prepare heap for normal collections. assert(num_free_regions() == 0, "we should not have added any free regions"); rebuild_region_sets(false /* free_list_only */); abort_refinement(); resize_heap_if_necessary(); // Rebuild the strong code root lists for each region rebuild_strong_code_roots(); // Purge code root memory purge_code_root_memory(); // Start a new incremental collection set for the next pause start_new_collection_set(); _allocator->init_mutator_alloc_regions(); // Post collection state updates. MetaspaceGC::compute_new_size(); } void G1CollectedHeap::abort_refinement() { if (_hot_card_cache->use_cache()) { _hot_card_cache->reset_hot_cache(); } // Discard all remembered set updates and reset refinement statistics. G1BarrierSet::dirty_card_queue_set().abandon_logs(); assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0, "DCQS should be empty"); concurrent_refine()->get_and_reset_refinement_stats(); } void G1CollectedHeap::verify_after_full_collection() { _hrm->verify_optional(); _verifier->verify_region_sets_optional(); _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull); // Clear the previous marking bitmap, if needed for bitmap verification. // Note we cannot do this when we clear the next marking bitmap in // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the // objects marked during a full GC against the previous bitmap. // But we need to clear it before calling check_bitmaps below since // the full GC has compacted objects and updated TAMS but not updated // the prev bitmap. if (G1VerifyBitmaps) { GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification"); _cm->clear_prev_bitmap(workers()); } // This call implicitly verifies that the next bitmap is clear after Full GC. _verifier->check_bitmaps("Full GC End"); // At this point there should be no regions in the // entire heap tagged as young. assert(check_young_list_empty(), "young list should be empty at this point"); // Note: since we've just done a full GC, concurrent // marking is no longer active. Therefore we need not // re-enable reference discovery for the CM ref processor. // That will be done at the start of the next marking cycle. // We also know that the STW processor should no longer // discover any new references. assert(!_ref_processor_stw->discovery_enabled(), "Postcondition"); assert(!_ref_processor_cm->discovery_enabled(), "Postcondition"); _ref_processor_stw->verify_no_references_recorded(); _ref_processor_cm->verify_no_references_recorded(); } void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) { // Post collection logging. // We should do this after we potentially resize the heap so // that all the COMMIT / UNCOMMIT events are generated before // the compaction events. print_hrm_post_compaction(); heap_transition->print(); print_heap_after_gc(); print_heap_regions(); } bool G1CollectedHeap::do_full_collection(bool explicit_gc, bool clear_all_soft_refs) { assert_at_safepoint_on_vm_thread(); if (GCLocker::check_active_before_gc()) { // Full GC was not completed. return false; } const bool do_clear_all_soft_refs = clear_all_soft_refs || soft_ref_policy()->should_clear_all_soft_refs(); G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs); GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true); collector.prepare_collection(); collector.collect(); collector.complete_collection(); // Full collection was successfully completed. return true; } void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { // Currently, there is no facility in the do_full_collection(bool) API to notify // the caller that the collection did not succeed (e.g., because it was locked // out by the GC locker). So, right now, we'll ignore the return value. bool dummy = do_full_collection(true, /* explicit_gc */ clear_all_soft_refs); } void G1CollectedHeap::resize_heap_if_necessary() { assert_at_safepoint_on_vm_thread(); bool should_expand; size_t resize_amount = _heap_sizing_policy->full_collection_resize_amount(should_expand); if (resize_amount == 0) { return; } else if (should_expand) { expand(resize_amount, _workers); } else { shrink(resize_amount); } } HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size, bool do_gc, bool clear_all_soft_refs, bool expect_null_mutator_alloc_region, bool* gc_succeeded) { *gc_succeeded = true; // Let's attempt the allocation first. HeapWord* result = attempt_allocation_at_safepoint(word_size, expect_null_mutator_alloc_region); if (result != NULL) { return result; } // In a G1 heap, we're supposed to keep allocation from failing by // incremental pauses. Therefore, at least for now, we'll favor // expansion over collection. (This might change in the future if we can // do something smarter than full collection to satisfy a failed alloc.) result = expand_and_allocate(word_size); if (result != NULL) { return result; } if (do_gc) { // Expansion didn't work, we'll try to do a Full GC. *gc_succeeded = do_full_collection(false, /* explicit_gc */ clear_all_soft_refs); } return NULL; } HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size, bool* succeeded) { assert_at_safepoint_on_vm_thread(); // Attempts to allocate followed by Full GC. HeapWord* result = satisfy_failed_allocation_helper(word_size, true, /* do_gc */ false, /* clear_all_soft_refs */ false, /* expect_null_mutator_alloc_region */ succeeded); if (result != NULL || !*succeeded) { return result; } // Attempts to allocate followed by Full GC that will collect all soft references. result = satisfy_failed_allocation_helper(word_size, true, /* do_gc */ true, /* clear_all_soft_refs */ true, /* expect_null_mutator_alloc_region */ succeeded); if (result != NULL || !*succeeded) { return result; } // Attempts to allocate, no GC result = satisfy_failed_allocation_helper(word_size, false, /* do_gc */ false, /* clear_all_soft_refs */ true, /* expect_null_mutator_alloc_region */ succeeded); if (result != NULL) { return result; } assert(!soft_ref_policy()->should_clear_all_soft_refs(), "Flag should have been handled and cleared prior to this point"); // What else? We might try synchronous finalization later. If the total // space available is large enough for the allocation, then a more // complete compaction phase than we've tried so far might be // appropriate. return NULL; } // Attempting to expand the heap sufficiently // to support an allocation of the given "word_size". If // successful, perform the allocation and return the address of the // allocated block, or else "NULL". HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) { assert_at_safepoint_on_vm_thread(); _verifier->verify_region_sets_optional(); size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B", word_size * HeapWordSize); if (expand(expand_bytes, _workers)) { _hrm->verify_optional(); _verifier->verify_region_sets_optional(); return attempt_allocation_at_safepoint(word_size, false /* expect_null_mutator_alloc_region */); } return NULL; } bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) { size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); aligned_expand_bytes = align_up(aligned_expand_bytes, HeapRegion::GrainBytes); log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B", expand_bytes, aligned_expand_bytes); if (is_maximal_no_gc()) { log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)"); return false; } double expand_heap_start_time_sec = os::elapsedTime(); uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes); assert(regions_to_expand > 0, "Must expand by at least one region"); uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers); if (expand_time_ms != NULL) { *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS; } if (expanded_by > 0) { size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes; assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); policy()->record_new_heap_size(num_regions()); } else { log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)"); // The expansion of the virtual storage space was unsuccessful. // Let's see if it was because we ran out of swap. if (G1ExitOnExpansionFailure && _hrm->available() >= regions_to_expand) { // We had head room... vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion"); } } return regions_to_expand > 0; } bool G1CollectedHeap::expand_single_region(uint node_index) { uint expanded_by = _hrm->expand_on_preferred_node(node_index); if (expanded_by == 0) { assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available()); log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)"); return false; } policy()->record_new_heap_size(num_regions()); return true; } void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { size_t aligned_shrink_bytes = ReservedSpace::page_align_size_down(shrink_bytes); aligned_shrink_bytes = align_down(aligned_shrink_bytes, HeapRegion::GrainBytes); uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes); uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove); size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes; log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B", shrink_bytes, aligned_shrink_bytes, shrunk_bytes); if (num_regions_removed > 0) { policy()->record_new_heap_size(num_regions()); } else { log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)"); } } void G1CollectedHeap::shrink(size_t shrink_bytes) { _verifier->verify_region_sets_optional(); // We should only reach here at the end of a Full GC or during Remark which // means we should not not be holding to any GC alloc regions. The method // below will make sure of that and do any remaining clean up. _allocator->abandon_gc_alloc_regions(); // Instead of tearing down / rebuilding the free lists here, we // could instead use the remove_all_pending() method on free_list to // remove only the ones that we need to remove. tear_down_region_sets(true /* free_list_only */); shrink_helper(shrink_bytes); rebuild_region_sets(true /* free_list_only */); _hrm->verify_optional(); _verifier->verify_region_sets_optional(); } class OldRegionSetChecker : public HeapRegionSetChecker { public: void check_mt_safety() { // Master Old Set MT safety protocol: // (a) If we're at a safepoint, operations on the master old set // should be invoked: // - by the VM thread (which will serialize them), or // - by the GC workers while holding the FreeList_lock, if we're // at a safepoint for an evacuation pause (this lock is taken // anyway when an GC alloc region is retired so that a new one // is allocated from the free list), or // - by the GC workers while holding the OldSets_lock, if we're at a // safepoint for a cleanup pause. // (b) If we're not at a safepoint, operations on the master old set // should be invoked while holding the Heap_lock. if (SafepointSynchronize::is_at_safepoint()) { guarantee(Thread::current()->is_VM_thread() || FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(), "master old set MT safety protocol at a safepoint"); } else { guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint"); } } bool is_correct_type(HeapRegion* hr) { return hr->is_old(); } const char* get_description() { return "Old Regions"; } }; class ArchiveRegionSetChecker : public HeapRegionSetChecker { public: void check_mt_safety() { guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(), "May only change archive regions during initialization or safepoint."); } bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); } const char* get_description() { return "Archive Regions"; } }; class HumongousRegionSetChecker : public HeapRegionSetChecker { public: void check_mt_safety() { // Humongous Set MT safety protocol: // (a) If we're at a safepoint, operations on the master humongous // set should be invoked by either the VM thread (which will // serialize them) or by the GC workers while holding the // OldSets_lock. // (b) If we're not at a safepoint, operations on the master // humongous set should be invoked while holding the Heap_lock. if (SafepointSynchronize::is_at_safepoint()) { guarantee(Thread::current()->is_VM_thread() || OldSets_lock->owned_by_self(), "master humongous set MT safety protocol at a safepoint"); } else { guarantee(Heap_lock->owned_by_self(), "master humongous set MT safety protocol outside a safepoint"); } } bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); } const char* get_description() { return "Humongous Regions"; } }; G1CollectedHeap::G1CollectedHeap() : CollectedHeap(), _young_gen_sampling_thread(NULL), _workers(NULL), _card_table(NULL), _collection_pause_end(Ticks::now()), _soft_ref_policy(), _old_set("Old Region Set", new OldRegionSetChecker()), _archive_set("Archive Region Set", new ArchiveRegionSetChecker()), _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()), _bot(NULL), _listener(), _numa(G1NUMA::create()), _hrm(NULL), _allocator(NULL), _verifier(NULL), _summary_bytes_used(0), _bytes_used_during_gc(0), _archive_allocator(NULL), _survivor_evac_stats("Young", YoungPLABSize, PLABWeight), _old_evac_stats("Old", OldPLABSize, PLABWeight), _expand_heap_after_alloc_failure(true), _g1mm(NULL), _humongous_reclaim_candidates(), _has_humongous_reclaim_candidates(false), _hr_printer(), _collector_state(), _old_marking_cycles_started(0), _old_marking_cycles_completed(0), _eden(), _survivor(), _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()), _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()), _policy(G1Policy::create_policy(_gc_timer_stw)), _heap_sizing_policy(NULL), _collection_set(this, _policy), _hot_card_cache(NULL), _rem_set(NULL), _cm(NULL), _cm_thread(NULL), _cr(NULL), _task_queues(NULL), _evacuation_failed(false), _evacuation_failed_info_array(NULL), _preserved_marks_set(true /* in_c_heap */), #ifndef PRODUCT _evacuation_failure_alot_for_current_gc(false), _evacuation_failure_alot_gc_number(0), _evacuation_failure_alot_count(0), #endif _ref_processor_stw(NULL), _is_alive_closure_stw(this), _is_subject_to_discovery_stw(this), _ref_processor_cm(NULL), _is_alive_closure_cm(this), _is_subject_to_discovery_cm(this), _region_attr() { _verifier = new G1HeapVerifier(this); _allocator = new G1Allocator(this); _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics()); _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords); // Override the default _filler_array_max_size so that no humongous filler // objects are created. _filler_array_max_size = _humongous_object_threshold_in_words; uint n_queues = ParallelGCThreads; _task_queues = new G1ScannerTasksQueueSet(n_queues); _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC); for (uint i = 0; i < n_queues; i++) { G1ScannerTasksQueue* q = new G1ScannerTasksQueue(); q->initialize(); _task_queues->register_queue(i, q); ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo(); } // Initialize the G1EvacuationFailureALot counters and flags. NOT_PRODUCT(reset_evacuation_should_fail();) _gc_tracer_stw->initialize(); guarantee(_task_queues != NULL, "task_queues allocation failure."); } static size_t actual_reserved_page_size(ReservedSpace rs) { size_t page_size = os::vm_page_size(); if (UseLargePages) { // There are two ways to manage large page memory. // 1. OS supports committing large page memory. // 2. OS doesn't support committing large page memory so ReservedSpace manages it. // And ReservedSpace calls it 'special'. If we failed to set 'special', // we reserved memory without large page. if (os::can_commit_large_page_memory() || rs.special()) { // An alignment at ReservedSpace comes from preferred page size or // heap alignment, and if the alignment came from heap alignment, it could be // larger than large pages size. So need to cap with the large page size. page_size = MIN2(rs.alignment(), os::large_page_size()); } } return page_size; } G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description, size_t size, size_t translation_factor) { size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1); // Allocate a new reserved space, preferring to use large pages. ReservedSpace rs(size, preferred_page_size); size_t page_size = actual_reserved_page_size(rs); G1RegionToSpaceMapper* result = G1RegionToSpaceMapper::create_mapper(rs, size, page_size, HeapRegion::GrainBytes, translation_factor, mtGC); os::trace_page_sizes_for_requested_size(description, size, preferred_page_size, page_size, rs.base(), rs.size()); return result; } jint G1CollectedHeap::initialize_concurrent_refinement() { jint ecode = JNI_OK; _cr = G1ConcurrentRefine::create(&ecode); return ecode; } jint G1CollectedHeap::initialize_young_gen_sampling_thread() { _young_gen_sampling_thread = new G1YoungRemSetSamplingThread(); if (_young_gen_sampling_thread->osthread() == NULL) { vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread"); return JNI_ENOMEM; } return JNI_OK; } jint G1CollectedHeap::initialize() { // Necessary to satisfy locking discipline assertions. MutexLocker x(Heap_lock); // While there are no constraints in the GC code that HeapWordSize // be any particular value, there are multiple other areas in the // system which believe this to be true (e.g. oop->object_size in some // cases incorrectly returns the size in wordSize units rather than // HeapWordSize). guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); size_t init_byte_size = InitialHeapSize; size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes(); // Ensure that the sizes are properly aligned. Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap"); Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap"); // Reserve the maximum. // When compressed oops are enabled, the preferred heap base // is calculated by subtracting the requested size from the // 32Gb boundary and using the result as the base address for // heap reservation. If the requested size is not aligned to // HeapRegion::GrainBytes (i.e. the alignment that is passed // into the ReservedHeapSpace constructor) then the actual // base of the reserved heap may end up differing from the // address that was requested (i.e. the preferred heap base). // If this happens then we could end up using a non-optimal // compressed oops mode. ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size, HeapAlignment); initialize_reserved_region(heap_rs); // Create the barrier set for the entire reserved region. G1CardTable* ct = new G1CardTable(heap_rs.region()); ct->initialize(); G1BarrierSet* bs = new G1BarrierSet(ct); bs->initialize(); assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity"); BarrierSet::set_barrier_set(bs); _card_table = ct; { G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set(); satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold); satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent); } // Create the hot card cache. _hot_card_cache = new G1HotCardCache(this); // Carve out the G1 part of the heap. ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size); size_t page_size = actual_reserved_page_size(heap_rs); G1RegionToSpaceMapper* heap_storage = G1RegionToSpaceMapper::create_heap_mapper(g1_rs, g1_rs.size(), page_size, HeapRegion::GrainBytes, 1, mtJavaHeap); if(heap_storage == NULL) { vm_shutdown_during_initialization("Could not initialize G1 heap"); return JNI_ERR; } os::trace_page_sizes("Heap", MinHeapSize, reserved_byte_size, page_size, heap_rs.base(), heap_rs.size()); heap_storage->set_mapping_changed_listener(&_listener); // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps. G1RegionToSpaceMapper* bot_storage = create_aux_memory_mapper("Block Offset Table", G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize), G1BlockOffsetTable::heap_map_factor()); G1RegionToSpaceMapper* cardtable_storage = create_aux_memory_mapper("Card Table", G1CardTable::compute_size(g1_rs.size() / HeapWordSize), G1CardTable::heap_map_factor()); G1RegionToSpaceMapper* card_counts_storage = create_aux_memory_mapper("Card Counts Table", G1CardCounts::compute_size(g1_rs.size() / HeapWordSize), G1CardCounts::heap_map_factor()); size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size()); G1RegionToSpaceMapper* prev_bitmap_storage = create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor()); G1RegionToSpaceMapper* next_bitmap_storage = create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor()); _hrm = HeapRegionManager::create_manager(this); _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage); _card_table->initialize(cardtable_storage); // Do later initialization work for concurrent refinement. _hot_card_cache->initialize(card_counts_storage); // 6843694 - ensure that the maximum region index can fit // in the remembered set structures. const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; guarantee((max_regions() - 1) <= max_region_idx, "too many regions"); // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not // start within the first card. guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card."); // Also create a G1 rem set. _rem_set = new G1RemSet(this, _card_table, _hot_card_cache); _rem_set->initialize(max_reserved_capacity(), max_regions()); size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, "too many cards per region"); FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1); _bot = new G1BlockOffsetTable(reserved_region(), bot_storage); { HeapWord* start = _hrm->reserved().start(); HeapWord* end = _hrm->reserved().end(); size_t granularity = HeapRegion::GrainBytes; _region_attr.initialize(start, end, granularity); _humongous_reclaim_candidates.initialize(start, end, granularity); } _workers = new WorkGang("GC Thread", ParallelGCThreads, true /* are_GC_task_threads */, false /* are_ConcurrentGC_threads */); if (_workers == NULL) { return JNI_ENOMEM; } _workers->initialize_workers(); _numa->set_region_info(HeapRegion::GrainBytes, page_size); // Create the G1ConcurrentMark data structure and thread. // (Must do this late, so that "max_regions" is defined.) _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage); _cm_thread = _cm->cm_thread(); // Now expand into the initial heap size. if (!expand(init_byte_size, _workers)) { vm_shutdown_during_initialization("Failed to allocate initial heap."); return JNI_ENOMEM; } // Perform any initialization actions delegated to the policy. policy()->init(this, &_collection_set); jint ecode = initialize_concurrent_refinement(); if (ecode != JNI_OK) { return ecode; } ecode = initialize_young_gen_sampling_thread(); if (ecode != JNI_OK) { return ecode; } { G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set(); dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone()); dcqs.set_max_cards(concurrent_refine()->red_zone()); } // Here we allocate the dummy HeapRegion that is required by the // G1AllocRegion class. HeapRegion* dummy_region = _hrm->get_dummy_region(); // We'll re-use the same region whether the alloc region will // require BOT updates or not and, if it doesn't, then a non-young // region will complain that it cannot support allocations without // BOT updates. So we'll tag the dummy region as eden to avoid that. dummy_region->set_eden(); // Make sure it's full. dummy_region->set_top(dummy_region->end()); G1AllocRegion::setup(this, dummy_region); _allocator->init_mutator_alloc_regions(); // Do create of the monitoring and management support so that // values in the heap have been properly initialized. _g1mm = new G1MonitoringSupport(this); G1StringDedup::initialize(); _preserved_marks_set.init(ParallelGCThreads); _collection_set.initialize(max_regions()); G1InitLogger::print(); return JNI_OK; } void G1CollectedHeap::stop() { // Stop all concurrent threads. We do this to make sure these threads // do not continue to execute and access resources (e.g. logging) // that are destroyed during shutdown. _cr->stop(); _young_gen_sampling_thread->stop(); _cm_thread->stop(); if (G1StringDedup::is_enabled()) { G1StringDedup::stop(); } } void G1CollectedHeap::safepoint_synchronize_begin() { SuspendibleThreadSet::synchronize(); } void G1CollectedHeap::safepoint_synchronize_end() { SuspendibleThreadSet::desynchronize(); } void G1CollectedHeap::post_initialize() { CollectedHeap::post_initialize(); ref_processing_init(); } void G1CollectedHeap::ref_processing_init() { // Reference processing in G1 currently works as follows: // // * There are two reference processor instances. One is // used to record and process discovered references // during concurrent marking; the other is used to // record and process references during STW pauses // (both full and incremental). // * Both ref processors need to 'span' the entire heap as // the regions in the collection set may be dotted around. // // * For the concurrent marking ref processor: // * Reference discovery is enabled at concurrent start. // * Reference discovery is disabled and the discovered // references processed etc during remarking. // * Reference discovery is MT (see below). // * Reference discovery requires a barrier (see below). // * Reference processing may or may not be MT // (depending on the value of ParallelRefProcEnabled // and ParallelGCThreads). // * A full GC disables reference discovery by the CM // ref processor and abandons any entries on it's // discovered lists. // // * For the STW processor: // * Non MT discovery is enabled at the start of a full GC. // * Processing and enqueueing during a full GC is non-MT. // * During a full GC, references are processed after marking. // // * Discovery (may or may not be MT) is enabled at the start // of an incremental evacuation pause. // * References are processed near the end of a STW evacuation pause. // * For both types of GC: // * Discovery is atomic - i.e. not concurrent. // * Reference discovery will not need a barrier. bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1); // Concurrent Mark ref processor _ref_processor_cm = new ReferenceProcessor(&_is_subject_to_discovery_cm, mt_processing, // mt processing ParallelGCThreads, // degree of mt processing (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery false, // Reference discovery is not atomic &_is_alive_closure_cm, // is alive closure true); // allow changes to number of processing threads // STW ref processor _ref_processor_stw = new ReferenceProcessor(&_is_subject_to_discovery_stw, mt_processing, // mt processing ParallelGCThreads, // degree of mt processing (ParallelGCThreads > 1), // mt discovery ParallelGCThreads, // degree of mt discovery true, // Reference discovery is atomic &_is_alive_closure_stw, // is alive closure true); // allow changes to number of processing threads } SoftRefPolicy* G1CollectedHeap::soft_ref_policy() { return &_soft_ref_policy; } size_t G1CollectedHeap::capacity() const { return _hrm->length() * HeapRegion::GrainBytes; } size_t G1CollectedHeap::unused_committed_regions_in_bytes() const { return _hrm->total_free_bytes(); } void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) { _hot_card_cache->drain(cl, worker_id); } // Computes the sum of the storage used by the various regions. size_t G1CollectedHeap::used() const { size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions(); if (_archive_allocator != NULL) { result += _archive_allocator->used(); } return result; } size_t G1CollectedHeap::used_unlocked() const { return _summary_bytes_used; } class SumUsedClosure: public HeapRegionClosure { size_t _used; public: SumUsedClosure() : _used(0) {} bool do_heap_region(HeapRegion* r) { _used += r->used(); return false; } size_t result() { return _used; } }; size_t G1CollectedHeap::recalculate_used() const { SumUsedClosure blk; heap_region_iterate(&blk); return blk.result(); } bool G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) { switch (cause) { case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent; case GCCause::_dcmd_gc_run: return ExplicitGCInvokesConcurrent; case GCCause::_wb_conc_mark: return true; default : return false; } } bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { switch (cause) { case GCCause::_g1_humongous_allocation: return true; case GCCause::_g1_periodic_collection: return G1PeriodicGCInvokesConcurrent; case GCCause::_wb_breakpoint: return true; default: return is_user_requested_concurrent_full_gc(cause); } } bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) { if (policy()->force_upgrade_to_full()) { return true; } else if (should_do_concurrent_full_gc(_gc_cause)) { return false; } else if (has_regions_left_for_allocation()) { return false; } else { return true; } } #ifndef PRODUCT void G1CollectedHeap::allocate_dummy_regions() { // Let's fill up most of the region size_t word_size = HeapRegion::GrainWords - 1024; // And as a result the region we'll allocate will be humongous. guarantee(is_humongous(word_size), "sanity"); // _filler_array_max_size is set to humongous object threshold // but temporarily change it to use CollectedHeap::fill_with_object(). AutoModifyRestore temporarily(_filler_array_max_size, word_size); for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { // Let's use the existing mechanism for the allocation HeapWord* dummy_obj = humongous_obj_allocate(word_size); if (dummy_obj != NULL) { MemRegion mr(dummy_obj, word_size); CollectedHeap::fill_with_object(mr); } else { // If we can't allocate once, we probably cannot allocate // again. Let's get out of the loop. break; } } } #endif // !PRODUCT void G1CollectedHeap::increment_old_marking_cycles_started() { assert(_old_marking_cycles_started == _old_marking_cycles_completed || _old_marking_cycles_started == _old_marking_cycles_completed + 1, "Wrong marking cycle count (started: %d, completed: %d)", _old_marking_cycles_started, _old_marking_cycles_completed); _old_marking_cycles_started++; } void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent, bool whole_heap_examined) { MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag); // We assume that if concurrent == true, then the caller is a // concurrent thread that was joined the Suspendible Thread // Set. If there's ever a cheap way to check this, we should add an // assert here. // Given that this method is called at the end of a Full GC or of a // concurrent cycle, and those can be nested (i.e., a Full GC can // interrupt a concurrent cycle), the number of full collections // completed should be either one (in the case where there was no // nesting) or two (when a Full GC interrupted a concurrent cycle) // behind the number of full collections started. // This is the case for the inner caller, i.e. a Full GC. assert(concurrent || (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || (_old_marking_cycles_started == _old_marking_cycles_completed + 2), "for inner caller (Full GC): _old_marking_cycles_started = %u " "is inconsistent with _old_marking_cycles_completed = %u", _old_marking_cycles_started, _old_marking_cycles_completed); // This is the case for the outer caller, i.e. the concurrent cycle. assert(!concurrent || (_old_marking_cycles_started == _old_marking_cycles_completed + 1), "for outer caller (concurrent cycle): " "_old_marking_cycles_started = %u " "is inconsistent with _old_marking_cycles_completed = %u", _old_marking_cycles_started, _old_marking_cycles_completed); _old_marking_cycles_completed += 1; if (whole_heap_examined) { next_whole_heap_examined(); } // We need to clear the "in_progress" flag in the CM thread before // we wake up any waiters (especially when ExplicitInvokesConcurrent // is set) so that if a waiter requests another System.gc() it doesn't // incorrectly see that a marking cycle is still in progress. if (concurrent) { _cm_thread->set_idle(); } // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent) // for a full GC to finish that their wait is over. ml.notify_all(); } void G1CollectedHeap::collect(GCCause::Cause cause) { try_collect(cause); } // Return true if (x < y) with allowance for wraparound. static bool gc_counter_less_than(uint x, uint y) { return (x - y) > (UINT_MAX/2); } // LOG_COLLECT_CONCURRENTLY(cause, msg, args...) // Macro so msg printing is format-checked. #define LOG_COLLECT_CONCURRENTLY(cause, ...) \ do { \ LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt; \ if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) { \ ResourceMark rm; /* For thread name. */ \ LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \ LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \ Thread::current()->name(), \ GCCause::to_string(cause)); \ LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__); \ } \ } while (0) #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \ LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result)) bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause, uint gc_counter, uint old_marking_started_before) { assert_heap_not_locked(); assert(should_do_concurrent_full_gc(cause), "Non-concurrent cause %s", GCCause::to_string(cause)); for (uint i = 1; true; ++i) { // Try to schedule concurrent start evacuation pause that will // start a concurrent cycle. LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i); VM_G1TryInitiateConcMark op(gc_counter, cause, policy()->max_pause_time_ms()); VMThread::execute(&op); // Request is trivially finished. if (cause == GCCause::_g1_periodic_collection) { LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded()); return op.gc_succeeded(); } // If VMOp skipped initiating concurrent marking cycle because // we're terminating, then we're done. if (op.terminating()) { LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating"); return false; } // Lock to get consistent set of values. uint old_marking_started_after; uint old_marking_completed_after; { MutexLocker ml(Heap_lock); // Update gc_counter for retrying VMOp if needed. Captured here to be // consistent with the values we use below for termination tests. If // a retry is needed after a possible wait, and another collection // occurs in the meantime, it will cause our retry to be skipped and // we'll recheck for termination with updated conditions from that // more recent collection. That's what we want, rather than having // our retry possibly perform an unnecessary collection. gc_counter = total_collections(); old_marking_started_after = _old_marking_cycles_started; old_marking_completed_after = _old_marking_cycles_completed; } if (cause == GCCause::_wb_breakpoint) { if (op.gc_succeeded()) { LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true); return true; } // When _wb_breakpoint there can't be another cycle or deferred. assert(!op.cycle_already_in_progress(), "invariant"); assert(!op.whitebox_attached(), "invariant"); // Concurrent cycle attempt might have been cancelled by some other // collection, so retry. Unlike other cases below, we want to retry // even if cancelled by a STW full collection, because we really want // to start a concurrent cycle. if (old_marking_started_before != old_marking_started_after) { LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC"); old_marking_started_before = old_marking_started_after; } } else if (!GCCause::is_user_requested_gc(cause)) { // For an "automatic" (not user-requested) collection, we just need to // ensure that progress is made. // // Request is finished if any of // (1) the VMOp successfully performed a GC, // (2) a concurrent cycle was already in progress, // (3) whitebox is controlling concurrent cycles, // (4) a new cycle was started (by this thread or some other), or // (5) a Full GC was performed. // Cases (4) and (5) are detected together by a change to // _old_marking_cycles_started. // // Note that (1) does not imply (4). If we're still in the mixed // phase of an earlier concurrent collection, the request to make the // collection a concurrent start won't be honored. If we don't check for // both conditions we'll spin doing back-to-back collections. if (op.gc_succeeded() || op.cycle_already_in_progress() || op.whitebox_attached() || (old_marking_started_before != old_marking_started_after)) { LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true); return true; } } else { // User-requested GC. // For a user-requested collection, we want to ensure that a complete // full collection has been performed before returning, but without // waiting for more than needed. // For user-requested GCs (unlike non-UR), a successful VMOp implies a // new cycle was started. That's good, because it's not clear what we // should do otherwise. Trying again just does back to back GCs. // Can't wait for someone else to start a cycle. And returning fails // to meet the goal of ensuring a full collection was performed. assert(!op.gc_succeeded() || (old_marking_started_before != old_marking_started_after), "invariant: succeeded %s, started before %u, started after %u", BOOL_TO_STR(op.gc_succeeded()), old_marking_started_before, old_marking_started_after); // Request is finished if a full collection (concurrent or stw) // was started after this request and has completed, e.g. // started_before < completed_after. if (gc_counter_less_than(old_marking_started_before, old_marking_completed_after)) { LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true); return true; } if (old_marking_started_after != old_marking_completed_after) { // If there is an in-progress cycle (possibly started by us), then // wait for that cycle to complete, e.g. // while completed_now < started_after. LOG_COLLECT_CONCURRENTLY(cause, "wait"); MonitorLocker ml(G1OldGCCount_lock); while (gc_counter_less_than(_old_marking_cycles_completed, old_marking_started_after)) { ml.wait(); } // Request is finished if the collection we just waited for was // started after this request. if (old_marking_started_before != old_marking_started_after) { LOG_COLLECT_CONCURRENTLY(cause, "complete after wait"); return true; } } // If VMOp was successful then it started a new cycle that the above // wait &etc should have recognized as finishing this request. This // differs from a non-user-request, where gc_succeeded does not imply // a new cycle was started. assert(!op.gc_succeeded(), "invariant"); if (op.cycle_already_in_progress()) { // If VMOp failed because a cycle was already in progress, it // is now complete. But it didn't finish this user-requested // GC, so try again. LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress"); continue; } else if (op.whitebox_attached()) { // If WhiteBox wants control, wait for notification of a state // change in the controller, then try again. Don't wait for // release of control, since collections may complete while in // control. Note: This won't recognize a STW full collection // while waiting; we can't wait on multiple monitors. LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall"); MonitorLocker ml(ConcurrentGCBreakpoints::monitor()); if (ConcurrentGCBreakpoints::is_controlled()) { ml.wait(); } continue; } } // Collection failed and should be retried. assert(op.transient_failure(), "invariant"); if (GCLocker::is_active_and_needs_gc()) { // If GCLocker is active, wait until clear before retrying. LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall"); GCLocker::stall_until_clear(); } LOG_COLLECT_CONCURRENTLY(cause, "retry"); } } bool G1CollectedHeap::try_collect(GCCause::Cause cause) { assert_heap_not_locked(); // Lock to get consistent set of values. uint gc_count_before; uint full_gc_count_before; uint old_marking_started_before; { MutexLocker ml(Heap_lock); gc_count_before = total_collections(); full_gc_count_before = total_full_collections(); old_marking_started_before = _old_marking_cycles_started; } if (should_do_concurrent_full_gc(cause)) { return try_collect_concurrently(cause, gc_count_before, old_marking_started_before); } else if (GCLocker::should_discard(cause, gc_count_before)) { // Indicate failure to be consistent with VMOp failure due to // another collection slipping in after our gc_count but before // our request is processed. return false; } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { // Schedule a standard evacuation pause. We're setting word_size // to 0 which means that we are not requesting a post-GC allocation. VM_G1CollectForAllocation op(0, /* word_size */ gc_count_before, cause, policy()->max_pause_time_ms()); VMThread::execute(&op); return op.gc_succeeded(); } else { // Schedule a Full GC. VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause); VMThread::execute(&op); return op.gc_succeeded(); } } bool G1CollectedHeap::is_in(const void* p) const { if (_hrm->reserved().contains(p)) { // Given that we know that p is in the reserved space, // heap_region_containing() should successfully // return the containing region. HeapRegion* hr = heap_region_containing(p); return hr->is_in(p); } else { return false; } } #ifdef ASSERT bool G1CollectedHeap::is_in_exact(const void* p) const { bool contains = reserved_region().contains(p); bool available = _hrm->is_available(addr_to_region((HeapWord*)p)); if (contains && available) { return true; } else { return false; } } #endif // Iteration functions. // Iterates an ObjectClosure over all objects within a HeapRegion. class IterateObjectClosureRegionClosure: public HeapRegionClosure { ObjectClosure* _cl; public: IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} bool do_heap_region(HeapRegion* r) { if (!r->is_continues_humongous()) { r->object_iterate(_cl); } return false; } }; void G1CollectedHeap::object_iterate(ObjectClosure* cl) { IterateObjectClosureRegionClosure blk(cl); heap_region_iterate(&blk); } void G1CollectedHeap::keep_alive(oop obj) { G1BarrierSet::enqueue(obj); } void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { _hrm->iterate(cl); } void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl, HeapRegionClaimer *hrclaimer, uint worker_id) const { _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id)); } void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl, HeapRegionClaimer *hrclaimer) const { _hrm->par_iterate(cl, hrclaimer, 0); } void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) { _collection_set.iterate(cl); } void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id) { _collection_set.par_iterate(cl, hr_claimer, worker_id, workers()->active_workers()); } void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) { _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers()); } HeapWord* G1CollectedHeap::block_start(const void* addr) const { HeapRegion* hr = heap_region_containing(addr); return hr->block_start(addr); } bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { HeapRegion* hr = heap_region_containing(addr); return hr->block_is_obj(addr); } bool G1CollectedHeap::supports_tlab_allocation() const { return true; } size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes; } size_t G1CollectedHeap::tlab_used(Thread* ignored) const { return _eden.length() * HeapRegion::GrainBytes; } // For G1 TLABs should not contain humongous objects, so the maximum TLAB size // must be equal to the humongous object limit. size_t G1CollectedHeap::max_tlab_size() const { return align_down(_humongous_object_threshold_in_words, MinObjAlignment); } size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { return _allocator->unsafe_max_tlab_alloc(); } size_t G1CollectedHeap::max_capacity() const { return _hrm->max_expandable_length() * HeapRegion::GrainBytes; } size_t G1CollectedHeap::max_reserved_capacity() const { return _hrm->max_length() * HeapRegion::GrainBytes; } void G1CollectedHeap::deduplicate_string(oop str) { assert(java_lang_String::is_instance(str), "invariant"); if (G1StringDedup::is_enabled()) { G1StringDedup::deduplicate(str); } } void G1CollectedHeap::prepare_for_verify() { _verifier->prepare_for_verify(); } void G1CollectedHeap::verify(VerifyOption vo) { _verifier->verify(vo); } bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const { return true; } bool G1CollectedHeap::is_heterogeneous_heap() const { return G1Arguments::is_heterogeneous_heap(); } class PrintRegionClosure: public HeapRegionClosure { outputStream* _st; public: PrintRegionClosure(outputStream* st) : _st(st) {} bool do_heap_region(HeapRegion* r) { r->print_on(_st); return false; } }; bool G1CollectedHeap::is_obj_dead_cond(const oop obj, const HeapRegion* hr, const VerifyOption vo) const { switch (vo) { case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr); case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr); case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr); default: ShouldNotReachHere(); } return false; // keep some compilers happy } bool G1CollectedHeap::is_obj_dead_cond(const oop obj, const VerifyOption vo) const { switch (vo) { case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj); case VerifyOption_G1UseNextMarking: return is_obj_ill(obj); case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj); default: ShouldNotReachHere(); } return false; // keep some compilers happy } void G1CollectedHeap::print_heap_regions() const { LogTarget(Trace, gc, heap, region) lt; if (lt.is_enabled()) { LogStream ls(lt); print_regions_on(&ls); } } void G1CollectedHeap::print_on(outputStream* st) const { st->print(" %-20s", "garbage-first heap"); if (_hrm != NULL) { st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", capacity()/K, used_unlocked()/K); st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")", p2i(_hrm->reserved().start()), p2i(_hrm->reserved().end())); } st->cr(); st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); uint young_regions = young_regions_count(); st->print("%u young (" SIZE_FORMAT "K), ", young_regions, (size_t) young_regions * HeapRegion::GrainBytes / K); uint survivor_regions = survivor_regions_count(); st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, (size_t) survivor_regions * HeapRegion::GrainBytes / K); st->cr(); if (_numa->is_enabled()) { uint num_nodes = _numa->num_active_nodes(); st->print(" remaining free region(s) on each NUMA node: "); const int* node_ids = _numa->node_ids(); for (uint node_index = 0; node_index < num_nodes; node_index++) { uint num_free_regions = (_hrm != NULL ? _hrm->num_free_regions(node_index) : 0); st->print("%d=%u ", node_ids[node_index], num_free_regions); } st->cr(); } MetaspaceUtils::print_on(st); } void G1CollectedHeap::print_regions_on(outputStream* st) const { if (_hrm == NULL) { return; } st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, " "HS=humongous(starts), HC=humongous(continues), " "CS=collection set, F=free, " "OA=open archive, CA=closed archive, " "TAMS=top-at-mark-start (previous, next)"); PrintRegionClosure blk(st); heap_region_iterate(&blk); } void G1CollectedHeap::print_extended_on(outputStream* st) const { print_on(st); // Print the per-region information. if (_hrm != NULL) { st->cr(); print_regions_on(st); } } void G1CollectedHeap::print_on_error(outputStream* st) const { this->CollectedHeap::print_on_error(st); if (_cm != NULL) { st->cr(); _cm->print_on_error(st); } } void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { workers()->threads_do(tc); tc->do_thread(_cm_thread); _cm->threads_do(tc); _cr->threads_do(tc); tc->do_thread(_young_gen_sampling_thread); if (G1StringDedup::is_enabled()) { G1StringDedup::threads_do(tc); } } void G1CollectedHeap::print_tracing_info() const { rem_set()->print_summary_info(); concurrent_mark()->print_summary_info(); } #ifndef PRODUCT // Helpful for debugging RSet issues. class PrintRSetsClosure : public HeapRegionClosure { private: const char* _msg; size_t _occupied_sum; public: bool do_heap_region(HeapRegion* r) { HeapRegionRemSet* hrrs = r->rem_set(); size_t occupied = hrrs->occupied(); _occupied_sum += occupied; tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r)); if (occupied == 0) { tty->print_cr(" RSet is empty"); } else { hrrs->print(); } tty->print_cr("----------"); return false; } PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) { tty->cr(); tty->print_cr("========================================"); tty->print_cr("%s", msg); tty->cr(); } ~PrintRSetsClosure() { tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum); tty->print_cr("========================================"); tty->cr(); } }; void G1CollectedHeap::print_cset_rsets() { PrintRSetsClosure cl("Printing CSet RSets"); collection_set_iterate_all(&cl); } void G1CollectedHeap::print_all_rsets() { PrintRSetsClosure cl("Printing All RSets");; heap_region_iterate(&cl); } #endif // PRODUCT bool G1CollectedHeap::print_location(outputStream* st, void* addr) const { return BlockLocationPrinter::print_location(st, addr); } G1HeapSummary G1CollectedHeap::create_g1_heap_summary() { size_t eden_used_bytes = _eden.used_bytes(); size_t survivor_used_bytes = _survivor.used_bytes(); size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked(); size_t eden_capacity_bytes = (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes; VirtualSpaceSummary heap_summary = create_heap_space_summary(); return G1HeapSummary(heap_summary, heap_used, eden_used_bytes, eden_capacity_bytes, survivor_used_bytes, num_regions()); } G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) { return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(), stats->unused(), stats->used(), stats->region_end_waste(), stats->regions_filled(), stats->direct_allocated(), stats->failure_used(), stats->failure_waste()); } void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { const G1HeapSummary& heap_summary = create_g1_heap_summary(); gc_tracer->report_gc_heap_summary(when, heap_summary); const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); gc_tracer->report_metaspace_summary(when, metaspace_summary); } void G1CollectedHeap::gc_prologue(bool full) { assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); // This summary needs to be printed before incrementing total collections. rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections()); // Update common counters. increment_total_collections(full /* full gc */); if (full || collector_state()->in_concurrent_start_gc()) { increment_old_marking_cycles_started(); } // Fill TLAB's and such { Ticks start = Ticks::now(); ensure_parsability(true); Tickspan dt = Ticks::now() - start; phase_times()->record_prepare_tlab_time_ms(dt.seconds() * MILLIUNITS); } if (!full) { // Flush dirty card queues to qset, so later phases don't need to account // for partially filled per-thread queues and such. Not needed for full // collections, which ignore those logs. Ticks start = Ticks::now(); G1BarrierSet::dirty_card_queue_set().concatenate_logs(); Tickspan dt = Ticks::now() - start; phase_times()->record_concatenate_dirty_card_logs_time_ms(dt.seconds() * MILLIUNITS); } } void G1CollectedHeap::gc_epilogue(bool full) { // Update common counters. if (full) { // Update the number of full collections that have been completed. increment_old_marking_cycles_completed(false /* concurrent */, true /* liveness_completed */); } // We are at the end of the GC. Total collections has already been increased. rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1); // FIXME: what is this about? // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" // is set. #if COMPILER2_OR_JVMCI assert(DerivedPointerTable::is_empty(), "derived pointer present"); #endif double start = os::elapsedTime(); resize_all_tlabs(); phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0); MemoryService::track_memory_usage(); // We have just completed a GC. Update the soft reference // policy with the new heap occupancy Universe::update_heap_info_at_gc(); // Print NUMA statistics. _numa->print_statistics(); _collection_pause_end = Ticks::now(); } void G1CollectedHeap::verify_numa_regions(const char* desc) { LogTarget(Trace, gc, heap, verify) lt; if (lt.is_enabled()) { LogStream ls(lt); // Iterate all heap regions to print matching between preferred numa id and actual numa id. G1NodeIndexCheckClosure cl(desc, _numa, &ls); heap_region_iterate(&cl); } } HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, uint gc_count_before, bool* succeeded, GCCause::Cause gc_cause) { assert_heap_not_locked_and_not_at_safepoint(); VM_G1CollectForAllocation op(word_size, gc_count_before, gc_cause, policy()->max_pause_time_ms()); VMThread::execute(&op); HeapWord* result = op.result(); bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded(); assert(result == NULL || ret_succeeded, "the result should be NULL if the VM did not succeed"); *succeeded = ret_succeeded; assert_heap_not_locked(); return result; } void G1CollectedHeap::do_concurrent_mark() { MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag); if (!_cm_thread->in_progress()) { _cm_thread->set_started(); CGC_lock->notify(); } } bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const { // We don't nominate objects with many remembered set entries, on // the assumption that such objects are likely still live. HeapRegionRemSet* rem_set = r->rem_set(); return G1EagerReclaimHumongousObjectsWithStaleRefs ? rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) : G1EagerReclaimHumongousObjects && rem_set->is_empty(); } #ifndef PRODUCT void G1CollectedHeap::verify_region_attr_remset_update() { class VerifyRegionAttrRemSet : public HeapRegionClosure { public: virtual bool do_heap_region(HeapRegion* r) { G1CollectedHeap* g1h = G1CollectedHeap::heap(); bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update(); assert(r->rem_set()->is_tracked() == needs_remset_update, "Region %u remset tracking status (%s) different to region attribute (%s)", r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update)); return false; } } cl; heap_region_iterate(&cl); } #endif class VerifyRegionRemSetClosure : public HeapRegionClosure { public: bool do_heap_region(HeapRegion* hr) { if (!hr->is_archive() && !hr->is_continues_humongous()) { hr->verify_rem_set(); } return false; } }; uint G1CollectedHeap::num_task_queues() const { return _task_queues->size(); } #if TASKQUEUE_STATS void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { st->print_raw_cr("GC Task Stats"); st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr(); st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr(); } void G1CollectedHeap::print_taskqueue_stats() const { if (!log_is_enabled(Trace, gc, task, stats)) { return; } Log(gc, task, stats) log; ResourceMark rm; LogStream ls(log.trace()); outputStream* st = &ls; print_taskqueue_stats_hdr(st); TaskQueueStats totals; const uint n = num_task_queues(); for (uint i = 0; i < n; ++i) { st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr(); totals += task_queue(i)->stats; } st->print_raw("tot "); totals.print(st); st->cr(); DEBUG_ONLY(totals.verify()); } void G1CollectedHeap::reset_taskqueue_stats() { const uint n = num_task_queues(); for (uint i = 0; i < n; ++i) { task_queue(i)->stats.reset(); } } #endif // TASKQUEUE_STATS void G1CollectedHeap::wait_for_root_region_scanning() { double scan_wait_start = os::elapsedTime(); // We have to wait until the CM threads finish scanning the // root regions as it's the only way to ensure that all the // objects on them have been correctly scanned before we start // moving them during the GC. bool waited = _cm->root_regions()->wait_until_scan_finished(); double wait_time_ms = 0.0; if (waited) { double scan_wait_end = os::elapsedTime(); wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0; } phase_times()->record_root_region_scan_wait_time(wait_time_ms); } class G1PrintCollectionSetClosure : public HeapRegionClosure { private: G1HRPrinter* _hr_printer; public: G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { } virtual bool do_heap_region(HeapRegion* r) { _hr_printer->cset(r); return false; } }; void G1CollectedHeap::start_new_collection_set() { double start = os::elapsedTime(); collection_set()->start_incremental_building(); clear_region_attr(); guarantee(_eden.length() == 0, "eden should have been cleared"); policy()->transfer_survivors_to_cset(survivor()); // We redo the verification but now wrt to the new CSet which // has just got initialized after the previous CSet was freed. _cm->verify_no_collection_set_oops(); phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0); } void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) { _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor); evacuation_info.set_collectionset_regions(collection_set()->region_length() + collection_set()->optional_region_length()); _cm->verify_no_collection_set_oops(); if (_hr_printer.is_active()) { G1PrintCollectionSetClosure cl(&_hr_printer); _collection_set.iterate(&cl); _collection_set.iterate_optional(&cl); } } G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const { if (collector_state()->in_concurrent_start_gc()) { return G1HeapVerifier::G1VerifyConcurrentStart; } else if (collector_state()->in_young_only_phase()) { return G1HeapVerifier::G1VerifyYoungNormal; } else { return G1HeapVerifier::G1VerifyMixed; } } void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) { if (VerifyRememberedSets) { log_info(gc, verify)("[Verifying RemSets before GC]"); VerifyRegionRemSetClosure v_cl; heap_region_iterate(&v_cl); } _verifier->verify_before_gc(type); _verifier->check_bitmaps("GC Start"); verify_numa_regions("GC Start"); } void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) { if (VerifyRememberedSets) { log_info(gc, verify)("[Verifying RemSets after GC]"); VerifyRegionRemSetClosure v_cl; heap_region_iterate(&v_cl); } _verifier->verify_after_gc(type); _verifier->check_bitmaps("GC End"); verify_numa_regions("GC End"); } void G1CollectedHeap::expand_heap_after_young_collection(){ size_t expand_bytes = _heap_sizing_policy->young_collection_expansion_amount(); if (expand_bytes > 0) { // No need for an ergo logging here, // expansion_amount() does this when it returns a value > 0. double expand_ms; if (!expand(expand_bytes, _workers, &expand_ms)) { // We failed to expand the heap. Cannot do anything about it. } phase_times()->record_expand_heap_time(expand_ms); } } const char* G1CollectedHeap::young_gc_name() const { if (collector_state()->in_concurrent_start_gc()) { return "Pause Young (Concurrent Start)"; } else if (collector_state()->in_young_only_phase()) { if (collector_state()->in_young_gc_before_mixed()) { return "Pause Young (Prepare Mixed)"; } else { return "Pause Young (Normal)"; } } else { return "Pause Young (Mixed)"; } } bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { assert_at_safepoint_on_vm_thread(); guarantee(!is_gc_active(), "collection is not reentrant"); if (GCLocker::check_active_before_gc()) { return false; } do_collection_pause_at_safepoint_helper(target_pause_time_ms); if (should_upgrade_to_full_gc(gc_cause())) { log_info(gc, ergo)("Attempting maximally compacting collection"); bool result = do_full_collection(false /* explicit gc */, true /* clear_all_soft_refs */); // do_full_collection only fails if blocked by GC locker, but // we've already checked for that above. assert(result, "invariant"); } return true; } void G1CollectedHeap::do_collection_pause_at_safepoint_helper(double target_pause_time_ms) { GCIdMark gc_id_mark; SvcGCMarker sgcm(SvcGCMarker::MINOR); ResourceMark rm; policy()->note_gc_start(); _gc_timer_stw->register_gc_start(); _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start()); wait_for_root_region_scanning(); print_heap_before_gc(); print_heap_regions(); trace_heap_before_gc(_gc_tracer_stw); _verifier->verify_region_sets_optional(); _verifier->verify_dirty_young_regions(); // We should not be doing concurrent start unless the concurrent mark thread is running if (!_cm_thread->should_terminate()) { // This call will decide whether this pause is a concurrent start // pause. If it is, in_concurrent_start_gc() will return true // for the duration of this pause. policy()->decide_on_conc_mark_initiation(); } // We do not allow concurrent start to be piggy-backed on a mixed GC. assert(!collector_state()->in_concurrent_start_gc() || collector_state()->in_young_only_phase(), "sanity"); // We also do not allow mixed GCs during marking. assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity"); // Record whether this pause is a concurrent start. When the current // thread has completed its logging output and it's safe to signal // the CM thread, the flag's value in the policy has been reset. bool should_start_conc_mark = collector_state()->in_concurrent_start_gc(); if (should_start_conc_mark) { _cm->gc_tracer_cm()->set_gc_cause(gc_cause()); } // Inner scope for scope based logging, timers, and stats collection { G1EvacuationInfo evacuation_info; _gc_tracer_stw->report_yc_type(collector_state()->yc_type()); GCTraceCPUTime tcpu; GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true); uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(), workers()->active_workers(), Threads::number_of_non_daemon_threads()); active_workers = workers()->update_active_workers(active_workers); log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers()); G1MonitoringScope ms(g1mm(), false /* full_gc */, collector_state()->yc_type() == Mixed /* all_memory_pools_affected */); G1HeapTransition heap_transition(this); { IsGCActiveMark x; gc_prologue(false); G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type(); verify_before_young_collection(verify_type); { // The elapsed time induced by the start time below deliberately elides // the possible verification above. double sample_start_time_sec = os::elapsedTime(); // Please see comment in g1CollectedHeap.hpp and // G1CollectedHeap::ref_processing_init() to see how // reference processing currently works in G1. _ref_processor_stw->enable_discovery(); // We want to temporarily turn off discovery by the // CM ref processor, if necessary, and turn it back on // on again later if we do. Using a scoped // NoRefDiscovery object will do this. NoRefDiscovery no_cm_discovery(_ref_processor_cm); policy()->record_collection_pause_start(sample_start_time_sec); // Forget the current allocation region (we might even choose it to be part // of the collection set!). _allocator->release_mutator_alloc_regions(); calculate_collection_set(evacuation_info, target_pause_time_ms); G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator()); G1ParScanThreadStateSet per_thread_states(this, &rdcqs, workers()->active_workers(), collection_set()->young_region_length(), collection_set()->optional_region_length()); pre_evacuate_collection_set(evacuation_info, &per_thread_states); // Actually do the work... evacuate_initial_collection_set(&per_thread_states); if (_collection_set.optional_region_length() != 0) { evacuate_optional_collection_set(&per_thread_states); } post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states); start_new_collection_set(); _survivor_evac_stats.adjust_desired_plab_sz(); _old_evac_stats.adjust_desired_plab_sz(); if (should_start_conc_mark) { // We have to do this before we notify the CM threads that // they can start working to make sure that all the // appropriate initialization is done on the CM object. concurrent_mark()->post_concurrent_start(); // Note that we don't actually trigger the CM thread at // this point. We do that later when we're sure that // the current thread has completed its logging output. } allocate_dummy_regions(); _allocator->init_mutator_alloc_regions(); expand_heap_after_young_collection(); double sample_end_time_sec = os::elapsedTime(); double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS; policy()->record_collection_pause_end(pause_time_ms); } verify_after_young_collection(verify_type); gc_epilogue(false); } // Print the remainder of the GC log output. if (evacuation_failed()) { log_info(gc)("To-space exhausted"); } policy()->print_phases(); heap_transition.print(); _hrm->verify_optional(); _verifier->verify_region_sets_optional(); TASKQUEUE_STATS_ONLY(print_taskqueue_stats()); TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); print_heap_after_gc(); print_heap_regions(); trace_heap_after_gc(_gc_tracer_stw); // We must call G1MonitoringSupport::update_sizes() in the same scoping level // as an active TraceMemoryManagerStats object (i.e. before the destructor for the // TraceMemoryManagerStats is called) so that the G1 memory pools are updated // before any GC notifications are raised. g1mm()->update_sizes(); _gc_tracer_stw->report_evacuation_info(&evacuation_info); _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold()); _gc_timer_stw->register_gc_end(); _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions()); } // It should now be safe to tell the concurrent mark thread to start // without its logging output interfering with the logging output // that came from the pause. if (should_start_conc_mark) { // CAUTION: after the doConcurrentMark() call below, the concurrent marking // thread(s) could be running concurrently with us. Make sure that anything // after this point does not assume that we are the only GC thread running. // Note: of course, the actual marking work will not start until the safepoint // itself is released in SuspendibleThreadSet::desynchronize(). do_concurrent_mark(); ConcurrentGCBreakpoints::notify_idle_to_active(); } } void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) { G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs); workers()->run_task(&rsfp_task); } void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) { double remove_self_forwards_start = os::elapsedTime(); remove_self_forwarding_pointers(rdcqs); _preserved_marks_set.restore(workers()); phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0); } void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) { if (!_evacuation_failed) { _evacuation_failed = true; } _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size()); _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m); } bool G1ParEvacuateFollowersClosure::offer_termination() { EventGCPhaseParallel event; G1ParScanThreadState* const pss = par_scan_state(); start_term_time(); const bool res = terminator()->offer_termination(); end_term_time(); event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination)); return res; } void G1ParEvacuateFollowersClosure::do_void() { EventGCPhaseParallel event; G1ParScanThreadState* const pss = par_scan_state(); pss->trim_queue(); event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase)); do { EventGCPhaseParallel event; pss->steal_and_trim_queue(queues()); event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase)); } while (!offer_termination()); } void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred) { uint num_workers = workers()->active_workers(); G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false); workers()->run_task(&unlink_task); } // Clean string dedup data structures. // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to // record the durations of the phases. Hence the almost-copy. class G1StringDedupCleaningTask : public AbstractGangTask { BoolObjectClosure* _is_alive; OopClosure* _keep_alive; G1GCPhaseTimes* _phase_times; public: G1StringDedupCleaningTask(BoolObjectClosure* is_alive, OopClosure* keep_alive, G1GCPhaseTimes* phase_times) : AbstractGangTask("Partial Cleaning Task"), _is_alive(is_alive), _keep_alive(keep_alive), _phase_times(phase_times) { assert(G1StringDedup::is_enabled(), "String deduplication disabled."); StringDedup::gc_prologue(true); } ~G1StringDedupCleaningTask() { StringDedup::gc_epilogue(); } void work(uint worker_id) { StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive); { G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id); StringDedupQueue::unlink_or_oops_do(&cl); } { G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id); StringDedupTable::unlink_or_oops_do(&cl, worker_id); } } }; void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive, OopClosure* keep_alive, G1GCPhaseTimes* phase_times) { G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times); workers()->run_task(&cl); } class G1RedirtyLoggedCardsTask : public AbstractGangTask { private: G1RedirtyCardsQueueSet* _qset; G1CollectedHeap* _g1h; BufferNode* volatile _nodes; void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) { size_t buffer_size = _qset->buffer_size(); BufferNode* next = Atomic::load(&_nodes); while (next != NULL) { BufferNode* node = next; next = Atomic::cmpxchg(&_nodes, node, node->next()); if (next == node) { cl->apply_to_buffer(node, buffer_size, worker_id); next = node->next(); } } } public: G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"), _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { } virtual void work(uint worker_id) { G1GCPhaseTimes* p = _g1h->phase_times(); G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id); RedirtyLoggedCardTableEntryClosure cl(_g1h); par_apply(&cl, worker_id); p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied()); } }; void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) { double redirty_logged_cards_start = os::elapsedTime(); G1RedirtyLoggedCardsTask redirty_task(rdcqs, this); workers()->run_task(&redirty_task); G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set(); dcq.merge_bufferlists(rdcqs); phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0); } // Weak Reference Processing support bool G1STWIsAliveClosure::do_object_b(oop p) { // An object is reachable if it is outside the collection set, // or is inside and copied. return !_g1h->is_in_cset(p) || p->is_forwarded(); } bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) { assert(obj != NULL, "must not be NULL"); assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj)); // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below // may falsely indicate that this is not the case here: however the collection set only // contains old regions when concurrent mark is not running. return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor(); } // Non Copying Keep Alive closure class G1KeepAliveClosure: public OopClosure { G1CollectedHeap*_g1h; public: G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {} void do_oop(narrowOop* p) { guarantee(false, "Not needed"); } void do_oop(oop* p) { oop obj = *p; assert(obj != NULL, "the caller should have filtered out NULL values"); const G1HeapRegionAttr region_attr =_g1h->region_attr(obj); if (!region_attr.is_in_cset_or_humongous()) { return; } if (region_attr.is_in_cset()) { assert( obj->is_forwarded(), "invariant" ); *p = obj->forwardee(); } else { assert(!obj->is_forwarded(), "invariant" ); assert(region_attr.is_humongous(), "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type()); _g1h->set_humongous_is_live(obj); } } }; // Copying Keep Alive closure - can be called from both // serial and parallel code as long as different worker // threads utilize different G1ParScanThreadState instances // and different queues. class G1CopyingKeepAliveClosure: public OopClosure { G1CollectedHeap* _g1h; G1ParScanThreadState* _par_scan_state; public: G1CopyingKeepAliveClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss): _g1h(g1h), _par_scan_state(pss) {} virtual void do_oop(narrowOop* p) { do_oop_work(p); } virtual void do_oop( oop* p) { do_oop_work(p); } template void do_oop_work(T* p) { oop obj = RawAccess<>::oop_load(p); if (_g1h->is_in_cset_or_humongous(obj)) { // If the referent object has been forwarded (either copied // to a new location or to itself in the event of an // evacuation failure) then we need to update the reference // field and, if both reference and referent are in the G1 // heap, update the RSet for the referent. // // If the referent has not been forwarded then we have to keep // it alive by policy. Therefore we have copy the referent. // // When the queue is drained (after each phase of reference processing) // the object and it's followers will be copied, the reference field set // to point to the new location, and the RSet updated. _par_scan_state->push_on_queue(ScannerTask(p)); } } }; // Serial drain queue closure. Called as the 'complete_gc' // closure for each discovered list in some of the // reference processing phases. class G1STWDrainQueueClosure: public VoidClosure { protected: G1CollectedHeap* _g1h; G1ParScanThreadState* _par_scan_state; G1ParScanThreadState* par_scan_state() { return _par_scan_state; } public: G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : _g1h(g1h), _par_scan_state(pss) { } void do_void() { G1ParScanThreadState* const pss = par_scan_state(); pss->trim_queue(); } }; // Parallel Reference Processing closures // Implementation of AbstractRefProcTaskExecutor for parallel reference // processing during G1 evacuation pauses. class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor { private: G1CollectedHeap* _g1h; G1ParScanThreadStateSet* _pss; G1ScannerTasksQueueSet* _queues; WorkGang* _workers; public: G1STWRefProcTaskExecutor(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, WorkGang* workers, G1ScannerTasksQueueSet *task_queues) : _g1h(g1h), _pss(per_thread_states), _queues(task_queues), _workers(workers) { g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers()); } // Executes the given task using concurrent marking worker threads. virtual void execute(ProcessTask& task, uint ergo_workers); }; // Gang task for possibly parallel reference processing class G1STWRefProcTaskProxy: public AbstractGangTask { typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; ProcessTask& _proc_task; G1CollectedHeap* _g1h; G1ParScanThreadStateSet* _pss; G1ScannerTasksQueueSet* _task_queues; TaskTerminator* _terminator; public: G1STWRefProcTaskProxy(ProcessTask& proc_task, G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, G1ScannerTasksQueueSet *task_queues, TaskTerminator* terminator) : AbstractGangTask("Process reference objects in parallel"), _proc_task(proc_task), _g1h(g1h), _pss(per_thread_states), _task_queues(task_queues), _terminator(terminator) {} virtual void work(uint worker_id) { // The reference processing task executed by a single worker. ResourceMark rm; G1STWIsAliveClosure is_alive(_g1h); G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); pss->set_ref_discoverer(NULL); // Keep alive closure. G1CopyingKeepAliveClosure keep_alive(_g1h, pss); // Complete GC closure G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy); // Call the reference processing task's work routine. _proc_task.work(worker_id, is_alive, keep_alive, drain_queue); // Note we cannot assert that the refs array is empty here as not all // of the processing tasks (specifically phase2 - pp2_work) execute // the complete_gc closure (which ordinarily would drain the queue) so // the queue may not be empty. } }; // Driver routine for parallel reference processing. // Creates an instance of the ref processing gang // task and has the worker threads execute it. void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) { assert(_workers != NULL, "Need parallel worker threads."); assert(_workers->active_workers() >= ergo_workers, "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)", ergo_workers, _workers->active_workers()); TaskTerminator terminator(ergo_workers, _queues); G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator); _workers->run_task(&proc_task_proxy, ergo_workers); } // End of weak reference support closures void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) { double ref_proc_start = os::elapsedTime(); ReferenceProcessor* rp = _ref_processor_stw; assert(rp->discovery_enabled(), "should have been enabled"); // Closure to test whether a referent is alive. G1STWIsAliveClosure is_alive(this); // Even when parallel reference processing is enabled, the processing // of JNI refs is serial and performed serially by the current thread // rather than by a worker. The following PSS will be used for processing // JNI refs. // Use only a single queue for this PSS. G1ParScanThreadState* pss = per_thread_states->state_for_worker(0); pss->set_ref_discoverer(NULL); assert(pss->queue_is_empty(), "pre-condition"); // Keep alive closure. G1CopyingKeepAliveClosure keep_alive(this, pss); // Serial Complete GC closure G1STWDrainQueueClosure drain_queue(this, pss); // Setup the soft refs policy... rp->setup_policy(false); ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times(); ReferenceProcessorStats stats; if (!rp->processing_is_mt()) { // Serial reference processing... stats = rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, NULL, pt); } else { uint no_of_gc_workers = workers()->active_workers(); // Parallel reference processing assert(no_of_gc_workers <= rp->max_num_queues(), "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u", no_of_gc_workers, rp->max_num_queues()); G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues); stats = rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor, pt); } _gc_tracer_stw->report_gc_reference_stats(stats); // We have completed copying any necessary live referent objects. assert(pss->queue_is_empty(), "both queue and overflow should be empty"); make_pending_list_reachable(); assert(!rp->discovery_enabled(), "Postcondition"); rp->verify_no_references_recorded(); double ref_proc_time = os::elapsedTime() - ref_proc_start; phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); } void G1CollectedHeap::make_pending_list_reachable() { if (collector_state()->in_concurrent_start_gc()) { oop pll_head = Universe::reference_pending_list(); if (pll_head != NULL) { // Any valid worker id is fine here as we are in the VM thread and single-threaded. _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head); } } } void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) { Ticks start = Ticks::now(); per_thread_states->flush(); phase_times()->record_or_add_time_secs(G1GCPhaseTimes::MergePSS, 0 /* worker_id */, (Ticks::now() - start).seconds()); } class G1PrepareEvacuationTask : public AbstractGangTask { class G1PrepareRegionsClosure : public HeapRegionClosure { G1CollectedHeap* _g1h; G1PrepareEvacuationTask* _parent_task; size_t _worker_humongous_total; size_t _worker_humongous_candidates; bool humongous_region_is_candidate(HeapRegion* region) const { assert(region->is_starts_humongous(), "Must start a humongous object"); oop obj = oop(region->bottom()); // Dead objects cannot be eager reclaim candidates. Due to class // unloading it is unsafe to query their classes so we return early. if (_g1h->is_obj_dead(obj, region)) { return false; } // If we do not have a complete remembered set for the region, then we can // not be sure that we have all references to it. if (!region->rem_set()->is_complete()) { return false; } // Candidate selection must satisfy the following constraints // while concurrent marking is in progress: // // * In order to maintain SATB invariants, an object must not be // reclaimed if it was allocated before the start of marking and // has not had its references scanned. Such an object must have // its references (including type metadata) scanned to ensure no // live objects are missed by the marking process. Objects // allocated after the start of concurrent marking don't need to // be scanned. // // * An object must not be reclaimed if it is on the concurrent // mark stack. Objects allocated after the start of concurrent // marking are never pushed on the mark stack. // // Nominating only objects allocated after the start of concurrent // marking is sufficient to meet both constraints. This may miss // some objects that satisfy the constraints, but the marking data // structures don't support efficiently performing the needed // additional tests or scrubbing of the mark stack. // // However, we presently only nominate is_typeArray() objects. // A humongous object containing references induces remembered // set entries on other regions. In order to reclaim such an // object, those remembered sets would need to be cleaned up. // // We also treat is_typeArray() objects specially, allowing them // to be reclaimed even if allocated before the start of // concurrent mark. For this we rely on mark stack insertion to // exclude is_typeArray() objects, preventing reclaiming an object // that is in the mark stack. We also rely on the metadata for // such objects to be built-in and so ensured to be kept live. // Frequent allocation and drop of large binary blobs is an // important use case for eager reclaim, and this special handling // may reduce needed headroom. return obj->is_typeArray() && _g1h->is_potential_eager_reclaim_candidate(region); } public: G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) : _g1h(g1h), _parent_task(parent_task), _worker_humongous_total(0), _worker_humongous_candidates(0) { } ~G1PrepareRegionsClosure() { _parent_task->add_humongous_candidates(_worker_humongous_candidates); _parent_task->add_humongous_total(_worker_humongous_total); } virtual bool do_heap_region(HeapRegion* hr) { // First prepare the region for scanning _g1h->rem_set()->prepare_region_for_scan(hr); // Now check if region is a humongous candidate if (!hr->is_starts_humongous()) { _g1h->register_region_with_region_attr(hr); return false; } uint index = hr->hrm_index(); if (humongous_region_is_candidate(hr)) { _g1h->set_humongous_reclaim_candidate(index, true); _g1h->register_humongous_region_with_region_attr(index); _worker_humongous_candidates++; // We will later handle the remembered sets of these regions. } else { _g1h->set_humongous_reclaim_candidate(index, false); _g1h->register_region_with_region_attr(hr); } _worker_humongous_total++; return false; } }; G1CollectedHeap* _g1h; HeapRegionClaimer _claimer; volatile size_t _humongous_total; volatile size_t _humongous_candidates; public: G1PrepareEvacuationTask(G1CollectedHeap* g1h) : AbstractGangTask("Prepare Evacuation"), _g1h(g1h), _claimer(_g1h->workers()->active_workers()), _humongous_total(0), _humongous_candidates(0) { } ~G1PrepareEvacuationTask() { _g1h->set_has_humongous_reclaim_candidate(_humongous_candidates > 0); } void work(uint worker_id) { G1PrepareRegionsClosure cl(_g1h, this); _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id); } void add_humongous_candidates(size_t candidates) { Atomic::add(&_humongous_candidates, candidates); } void add_humongous_total(size_t total) { Atomic::add(&_humongous_total, total); } size_t humongous_candidates() { return _humongous_candidates; } size_t humongous_total() { return _humongous_total; } }; void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) { _bytes_used_during_gc = 0; _expand_heap_after_alloc_failure = true; _evacuation_failed = false; // Disable the hot card cache. _hot_card_cache->reset_hot_cache_claimed_index(); _hot_card_cache->set_use_cache(false); // Initialize the GC alloc regions. _allocator->init_gc_alloc_regions(evacuation_info); { Ticks start = Ticks::now(); rem_set()->prepare_for_scan_heap_roots(); phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0); } { G1PrepareEvacuationTask g1_prep_task(this); Tickspan task_time = run_task(&g1_prep_task); phase_times()->record_register_regions(task_time.seconds() * 1000.0, g1_prep_task.humongous_total(), g1_prep_task.humongous_candidates()); } assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table."); _preserved_marks_set.assert_empty(); #if COMPILER2_OR_JVMCI DerivedPointerTable::clear(); #endif // Concurrent start needs claim bits to keep track of the marked-through CLDs. if (collector_state()->in_concurrent_start_gc()) { concurrent_mark()->pre_concurrent_start(); double start_clear_claimed_marks = os::elapsedTime(); ClassLoaderDataGraph::clear_claimed_marks(); double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0; phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms); } // Should G1EvacuationFailureALot be in effect for this GC? NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();) } class G1EvacuateRegionsBaseTask : public AbstractGangTask { protected: G1CollectedHeap* _g1h; G1ParScanThreadStateSet* _per_thread_states; G1ScannerTasksQueueSet* _task_queues; TaskTerminator _terminator; uint _num_workers; void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id, G1GCPhaseTimes::GCParPhases objcopy_phase, G1GCPhaseTimes::GCParPhases termination_phase) { G1GCPhaseTimes* p = _g1h->phase_times(); Ticks start = Ticks::now(); G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, &_terminator, objcopy_phase); cl.do_void(); assert(pss->queue_is_empty(), "should be empty"); Tickspan evac_time = (Ticks::now() - start); p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time()); if (termination_phase == G1GCPhaseTimes::Termination) { p->record_time_secs(termination_phase, worker_id, cl.term_time()); p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts()); } else { p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time()); p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts()); } assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation"); } virtual void start_work(uint worker_id) { } virtual void end_work(uint worker_id) { } virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0; virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0; public: G1EvacuateRegionsBaseTask(const char* name, G1ParScanThreadStateSet* per_thread_states, G1ScannerTasksQueueSet* task_queues, uint num_workers) : AbstractGangTask(name), _g1h(G1CollectedHeap::heap()), _per_thread_states(per_thread_states), _task_queues(task_queues), _terminator(num_workers, _task_queues), _num_workers(num_workers) { } void work(uint worker_id) { start_work(worker_id); { ResourceMark rm; G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id); pss->set_ref_discoverer(_g1h->ref_processor_stw()); scan_roots(pss, worker_id); evacuate_live_objects(pss, worker_id); } end_work(worker_id); } }; class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask { G1RootProcessor* _root_processor; void scan_roots(G1ParScanThreadState* pss, uint worker_id) { _root_processor->evacuate_roots(pss, worker_id); _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy); _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy); } void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) { G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination); } void start_work(uint worker_id) { _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds()); } void end_work(uint worker_id) { _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds()); } public: G1EvacuateRegionsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, G1ScannerTasksQueueSet* task_queues, G1RootProcessor* root_processor, uint num_workers) : G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers), _root_processor(root_processor) { } }; void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) { G1GCPhaseTimes* p = phase_times(); { Ticks start = Ticks::now(); rem_set()->merge_heap_roots(true /* initial_evacuation */); p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0); } Tickspan task_time; const uint num_workers = workers()->active_workers(); Ticks start_processing = Ticks::now(); { G1RootProcessor root_processor(this, num_workers); G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers); task_time = run_task(&g1_par_task); // Closing the inner scope will execute the destructor for the G1RootProcessor object. // To extract its code root fixup time we measure total time of this scope and // subtract from the time the WorkGang task took. } Tickspan total_processing = Ticks::now() - start_processing; p->record_initial_evac_time(task_time.seconds() * 1000.0); p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0); } class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask { void scan_roots(G1ParScanThreadState* pss, uint worker_id) { _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy); _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy); } void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) { G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination); } public: G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states, G1ScannerTasksQueueSet* queues, uint num_workers) : G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) { } }; void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) { class G1MarkScope : public MarkScope { }; Tickspan task_time; Ticks start_processing = Ticks::now(); { G1MarkScope code_mark_scope; G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers()); task_time = run_task(&task); // See comment in evacuate_collection_set() for the reason of the scope. } Tickspan total_processing = Ticks::now() - start_processing; G1GCPhaseTimes* p = phase_times(); p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0); } void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) { const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0; while (!evacuation_failed() && _collection_set.optional_region_length() > 0) { double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms; double time_left_ms = MaxGCPauseMillis - time_used_ms; if (time_left_ms < 0 || !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) { log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms", _collection_set.optional_region_length(), time_left_ms); break; } { Ticks start = Ticks::now(); rem_set()->merge_heap_roots(false /* initial_evacuation */); phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0); } { Ticks start = Ticks::now(); evacuate_next_optional_regions(per_thread_states); phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0); } } _collection_set.abandon_optional_collection_set(per_thread_states); } void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1RedirtyCardsQueueSet* rdcqs, G1ParScanThreadStateSet* per_thread_states) { G1GCPhaseTimes* p = phase_times(); rem_set()->cleanup_after_scan_heap_roots(); // Process any discovered reference objects - we have // to do this _before_ we retire the GC alloc regions // as we may have to copy some 'reachable' referent // objects (and their reachable sub-graphs) that were // not copied during the pause. process_discovered_references(per_thread_states); G1STWIsAliveClosure is_alive(this); G1KeepAliveClosure keep_alive(this); WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, p->weak_phase_times()); if (G1StringDedup::is_enabled()) { double string_dedup_time_ms = os::elapsedTime(); string_dedup_cleaning(&is_alive, &keep_alive, p); double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0; p->record_string_deduplication_time(string_cleanup_time_ms); } _allocator->release_gc_alloc_regions(evacuation_info); if (evacuation_failed()) { restore_after_evac_failure(rdcqs); // Reset the G1EvacuationFailureALot counters and flags NOT_PRODUCT(reset_evacuation_should_fail();) double recalculate_used_start = os::elapsedTime(); set_used(recalculate_used()); p->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0); if (_archive_allocator != NULL) { _archive_allocator->clear_used(); } for (uint i = 0; i < ParallelGCThreads; i++) { if (_evacuation_failed_info_array[i].has_failed()) { _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]); } } } else { // The "used" of the the collection set have already been subtracted // when they were freed. Add in the bytes used. increase_used(_bytes_used_during_gc); } _preserved_marks_set.assert_empty(); merge_per_thread_state_info(per_thread_states); // Reset and re-enable the hot card cache. // Note the counts for the cards in the regions in the // collection set are reset when the collection set is freed. _hot_card_cache->reset_hot_cache(); _hot_card_cache->set_use_cache(true); purge_code_root_memory(); redirty_logged_cards(rdcqs); free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words()); eagerly_reclaim_humongous_regions(); record_obj_copy_mem_stats(); evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before()); evacuation_info.set_bytes_used(_bytes_used_during_gc); #if COMPILER2_OR_JVMCI double start = os::elapsedTime(); DerivedPointerTable::update_pointers(); phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0); #endif policy()->print_age_table(); } void G1CollectedHeap::record_obj_copy_mem_stats() { policy()->old_gen_alloc_tracker()-> add_allocated_bytes_since_last_gc(_old_evac_stats.allocated() * HeapWordSize); _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats), create_g1_evac_summary(&_old_evac_stats)); } void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) { assert(!hr->is_free(), "the region should not be free"); assert(!hr->is_empty(), "the region should not be empty"); assert(_hrm->is_available(hr->hrm_index()), "region should be committed"); if (G1VerifyBitmaps) { MemRegion mr(hr->bottom(), hr->end()); concurrent_mark()->clear_range_in_prev_bitmap(mr); } // Clear the card counts for this region. // Note: we only need to do this if the region is not young // (since we don't refine cards in young regions). if (!hr->is_young()) { _hot_card_cache->reset_card_counts(hr); } // Reset region metadata to allow reuse. hr->hr_clear(true /* clear_space */); _policy->remset_tracker()->update_at_free(hr); if (free_list != NULL) { free_list->add_ordered(hr); } } void G1CollectedHeap::free_humongous_region(HeapRegion* hr, FreeRegionList* free_list) { assert(hr->is_humongous(), "this is only for humongous regions"); assert(free_list != NULL, "pre-condition"); hr->clear_humongous(); free_region(hr, free_list); } void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed) { if (old_regions_removed > 0 || humongous_regions_removed > 0) { MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag); _old_set.bulk_remove(old_regions_removed); _humongous_set.bulk_remove(humongous_regions_removed); } } void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) { assert(list != NULL, "list can't be null"); if (!list->is_empty()) { MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag); _hrm->insert_list_into_free_list(list); } } void G1CollectedHeap::decrement_summary_bytes(size_t bytes) { decrease_used(bytes); } class G1FreeCollectionSetTask : public AbstractGangTask { // Helper class to keep statistics for the collection set freeing class FreeCSetStats { size_t _before_used_bytes; // Usage in regions successfully evacutate size_t _after_used_bytes; // Usage in regions failing evacuation size_t _bytes_allocated_in_old_since_last_gc; // Size of young regions turned into old size_t _failure_used_words; // Live size in failed regions size_t _failure_waste_words; // Wasted size in failed regions size_t _rs_length; // Remembered set size uint _regions_freed; // Number of regions freed public: FreeCSetStats() : _before_used_bytes(0), _after_used_bytes(0), _bytes_allocated_in_old_since_last_gc(0), _failure_used_words(0), _failure_waste_words(0), _rs_length(0), _regions_freed(0) { } void merge_stats(FreeCSetStats* other) { assert(other != NULL, "invariant"); _before_used_bytes += other->_before_used_bytes; _after_used_bytes += other->_after_used_bytes; _bytes_allocated_in_old_since_last_gc += other->_bytes_allocated_in_old_since_last_gc; _failure_used_words += other->_failure_used_words; _failure_waste_words += other->_failure_waste_words; _rs_length += other->_rs_length; _regions_freed += other->_regions_freed; } void report(G1CollectedHeap* g1h, G1EvacuationInfo* evacuation_info) { evacuation_info->set_regions_freed(_regions_freed); evacuation_info->increment_collectionset_used_after(_after_used_bytes); g1h->decrement_summary_bytes(_before_used_bytes); g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words); G1Policy *policy = g1h->policy(); policy->old_gen_alloc_tracker()->add_allocated_bytes_since_last_gc(_bytes_allocated_in_old_since_last_gc); policy->record_rs_length(_rs_length); policy->cset_regions_freed(); } void account_failed_region(HeapRegion* r) { size_t used_words = r->marked_bytes() / HeapWordSize; _failure_used_words += used_words; _failure_waste_words += HeapRegion::GrainWords - used_words; _after_used_bytes += r->used(); // When moving a young gen region to old gen, we "allocate" that whole // region there. This is in addition to any already evacuated objects. // Notify the policy about that. Old gen regions do not cause an // additional allocation: both the objects still in the region and the // ones already moved are accounted for elsewhere. if (r->is_young()) { _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes; } } void account_evacuated_region(HeapRegion* r) { _before_used_bytes += r->used(); _regions_freed += 1; } void account_rs_length(HeapRegion* r) { _rs_length += r->rem_set()->occupied(); } }; // Closure applied to all regions in the collection set. class FreeCSetClosure : public HeapRegionClosure { // Helper to send JFR events for regions. class JFREventForRegion { EventGCPhaseParallel _event; public: JFREventForRegion(HeapRegion* region, uint worker_id) : _event() { _event.set_gcId(GCId::current()); _event.set_gcWorkerId(worker_id); if (region->is_young()) { _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet)); } else { _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet)); } } ~JFREventForRegion() { _event.commit(); } }; // Helper to do timing for region work. class TimerForRegion { Tickspan& _time; Ticks _start_time; public: TimerForRegion(Tickspan& time) : _time(time), _start_time(Ticks::now()) { } ~TimerForRegion() { _time += Ticks::now() - _start_time; } }; // FreeCSetClosure members G1CollectedHeap* _g1h; const size_t* _surviving_young_words; uint _worker_id; Tickspan _young_time; Tickspan _non_young_time; FreeCSetStats* _stats; void assert_in_cset(HeapRegion* r) { assert(r->young_index_in_cset() != 0 && (uint)r->young_index_in_cset() <= _g1h->collection_set()->young_region_length(), "Young index %u is wrong for region %u of type %s with %u young regions", r->young_index_in_cset(), r->hrm_index(), r->get_type_str(), _g1h->collection_set()->young_region_length()); } void handle_evacuated_region(HeapRegion* r) { assert(!r->is_empty(), "Region %u is an empty region in the collection set.", r->hrm_index()); stats()->account_evacuated_region(r); // Free the region and and its remembered set. _g1h->free_region(r, NULL); } void handle_failed_region(HeapRegion* r) { // Do some allocation statistics accounting. Regions that failed evacuation // are always made old, so there is no need to update anything in the young // gen statistics, but we need to update old gen statistics. stats()->account_failed_region(r); // Update the region state due to the failed evacuation. r->handle_evacuation_failure(); // Add region to old set, need to hold lock. MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag); _g1h->old_set_add(r); } Tickspan& timer_for_region(HeapRegion* r) { return r->is_young() ? _young_time : _non_young_time; } FreeCSetStats* stats() { return _stats; } public: FreeCSetClosure(const size_t* surviving_young_words, uint worker_id, FreeCSetStats* stats) : HeapRegionClosure(), _g1h(G1CollectedHeap::heap()), _surviving_young_words(surviving_young_words), _worker_id(worker_id), _young_time(), _non_young_time(), _stats(stats) { } virtual bool do_heap_region(HeapRegion* r) { assert(r->in_collection_set(), "Invariant: %u missing from CSet", r->hrm_index()); JFREventForRegion event(r, _worker_id); TimerForRegion timer(timer_for_region(r)); _g1h->clear_region_attr(r); stats()->account_rs_length(r); if (r->is_young()) { assert_in_cset(r); r->record_surv_words_in_group(_surviving_young_words[r->young_index_in_cset()]); } if (r->evacuation_failed()) { handle_failed_region(r); } else { handle_evacuated_region(r); } assert(!_g1h->is_on_master_free_list(r), "sanity"); return false; } void report_timing(Tickspan parallel_time) { G1GCPhaseTimes* pt = _g1h->phase_times(); pt->record_time_secs(G1GCPhaseTimes::ParFreeCSet, _worker_id, parallel_time.seconds()); if (_young_time.value() > 0) { pt->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, _worker_id, _young_time.seconds()); } if (_non_young_time.value() > 0) { pt->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, _worker_id, _non_young_time.seconds()); } } }; // G1FreeCollectionSetTask members G1CollectedHeap* _g1h; G1EvacuationInfo* _evacuation_info; FreeCSetStats* _worker_stats; HeapRegionClaimer _claimer; const size_t* _surviving_young_words; uint _active_workers; FreeCSetStats* worker_stats(uint worker) { return &_worker_stats[worker]; } void report_statistics() { // Merge the accounting FreeCSetStats total_stats; for (uint worker = 0; worker < _active_workers; worker++) { total_stats.merge_stats(worker_stats(worker)); } total_stats.report(_g1h, _evacuation_info); } public: G1FreeCollectionSetTask(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words, uint active_workers) : AbstractGangTask("G1 Free Collection Set"), _g1h(G1CollectedHeap::heap()), _evacuation_info(evacuation_info), _worker_stats(NEW_C_HEAP_ARRAY(FreeCSetStats, active_workers, mtGC)), _claimer(active_workers), _surviving_young_words(surviving_young_words), _active_workers(active_workers) { for (uint worker = 0; worker < active_workers; worker++) { ::new (&_worker_stats[worker]) FreeCSetStats(); } } ~G1FreeCollectionSetTask() { Ticks serial_time = Ticks::now(); report_statistics(); for (uint worker = 0; worker < _active_workers; worker++) { _worker_stats[worker].~FreeCSetStats(); } FREE_C_HEAP_ARRAY(FreeCSetStats, _worker_stats); _g1h->phase_times()->record_serial_free_cset_time_ms((Ticks::now() - serial_time).seconds() * 1000.0); } virtual void work(uint worker_id) { EventGCPhaseParallel event; Ticks start = Ticks::now(); FreeCSetClosure cl(_surviving_young_words, worker_id, worker_stats(worker_id)); _g1h->collection_set_par_iterate_all(&cl, &_claimer, worker_id); // Report the total parallel time along with some more detailed metrics. cl.report_timing(Ticks::now() - start); event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ParFreeCSet)); } }; void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) { _eden.clear(); // The free collections set is split up in two tasks, the first // frees the collection set and records what regions are free, // and the second one rebuilds the free list. This proved to be // more efficient than adding a sorted list to another. Ticks free_cset_start_time = Ticks::now(); { uint const num_cs_regions = _collection_set.region_length(); uint const num_workers = clamp(num_cs_regions, 1u, workers()->active_workers()); G1FreeCollectionSetTask cl(&evacuation_info, surviving_young_words, num_workers); log_debug(gc, ergo)("Running %s using %u workers for collection set length %u (%u)", cl.name(), num_workers, num_cs_regions, num_regions()); workers()->run_task(&cl, num_workers); } Ticks free_cset_end_time = Ticks::now(); phase_times()->record_total_free_cset_time_ms((free_cset_end_time - free_cset_start_time).seconds() * 1000.0); // Now rebuild the free region list. hrm()->rebuild_free_list(workers()); phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - free_cset_end_time).seconds() * 1000.0); collection_set->clear(); } class G1FreeHumongousRegionClosure : public HeapRegionClosure { private: FreeRegionList* _free_region_list; HeapRegionSet* _proxy_set; uint _humongous_objects_reclaimed; uint _humongous_regions_reclaimed; size_t _freed_bytes; public: G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) : _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) { } virtual bool do_heap_region(HeapRegion* r) { if (!r->is_starts_humongous()) { return false; } G1CollectedHeap* g1h = G1CollectedHeap::heap(); oop obj = (oop)r->bottom(); G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap(); // The following checks whether the humongous object is live are sufficient. // The main additional check (in addition to having a reference from the roots // or the young gen) is whether the humongous object has a remembered set entry. // // A humongous object cannot be live if there is no remembered set for it // because: // - there can be no references from within humongous starts regions referencing // the object because we never allocate other objects into them. // (I.e. there are no intra-region references that may be missed by the // remembered set) // - as soon there is a remembered set entry to the humongous starts region // (i.e. it has "escaped" to an old object) this remembered set entry will stay // until the end of a concurrent mark. // // It is not required to check whether the object has been found dead by marking // or not, in fact it would prevent reclamation within a concurrent cycle, as // all objects allocated during that time are considered live. // SATB marking is even more conservative than the remembered set. // So if at this point in the collection there is no remembered set entry, // nobody has a reference to it. // At the start of collection we flush all refinement logs, and remembered sets // are completely up-to-date wrt to references to the humongous object. // // Other implementation considerations: // - never consider object arrays at this time because they would pose // considerable effort for cleaning up the the remembered sets. This is // required because stale remembered sets might reference locations that // are currently allocated into. uint region_idx = r->hrm_index(); if (!g1h->is_humongous_reclaim_candidate(region_idx) || !r->rem_set()->is_empty()) { log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d", region_idx, (size_t)obj->size() * HeapWordSize, p2i(r->bottom()), r->rem_set()->occupied(), r->rem_set()->strong_code_roots_list_length(), next_bitmap->is_marked(r->bottom()), g1h->is_humongous_reclaim_candidate(region_idx), obj->is_typeArray() ); return false; } guarantee(obj->is_typeArray(), "Only eagerly reclaiming type arrays is supported, but the object " PTR_FORMAT " is not.", p2i(r->bottom())); log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d", region_idx, (size_t)obj->size() * HeapWordSize, p2i(r->bottom()), r->rem_set()->occupied(), r->rem_set()->strong_code_roots_list_length(), next_bitmap->is_marked(r->bottom()), g1h->is_humongous_reclaim_candidate(region_idx), obj->is_typeArray() ); G1ConcurrentMark* const cm = g1h->concurrent_mark(); cm->humongous_object_eagerly_reclaimed(r); assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj), "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s", region_idx, BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)), BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj))); _humongous_objects_reclaimed++; do { HeapRegion* next = g1h->next_region_in_humongous(r); _freed_bytes += r->used(); r->set_containing_set(NULL); _humongous_regions_reclaimed++; g1h->free_humongous_region(r, _free_region_list); r = next; } while (r != NULL); return false; } uint humongous_objects_reclaimed() { return _humongous_objects_reclaimed; } uint humongous_regions_reclaimed() { return _humongous_regions_reclaimed; } size_t bytes_freed() const { return _freed_bytes; } }; void G1CollectedHeap::eagerly_reclaim_humongous_regions() { assert_at_safepoint_on_vm_thread(); if (!G1EagerReclaimHumongousObjects || (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) { phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0); return; } double start_time = os::elapsedTime(); FreeRegionList local_cleanup_list("Local Humongous Cleanup List"); G1FreeHumongousRegionClosure cl(&local_cleanup_list); heap_region_iterate(&cl); remove_from_old_sets(0, cl.humongous_regions_reclaimed()); G1HRPrinter* hrp = hr_printer(); if (hrp->is_active()) { FreeRegionListIterator iter(&local_cleanup_list); while (iter.more_available()) { HeapRegion* hr = iter.get_next(); hrp->cleanup(hr); } } prepend_to_freelist(&local_cleanup_list); decrement_summary_bytes(cl.bytes_freed()); phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0, cl.humongous_objects_reclaimed()); } class G1AbandonCollectionSetClosure : public HeapRegionClosure { public: virtual bool do_heap_region(HeapRegion* r) { assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index()); G1CollectedHeap::heap()->clear_region_attr(r); r->clear_young_index_in_cset(); return false; } }; void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) { G1AbandonCollectionSetClosure cl; collection_set_iterate_all(&cl); collection_set->clear(); collection_set->stop_incremental_building(); } bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) { return _allocator->is_retained_old_region(hr); } void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { _eden.add(hr); _policy->set_region_eden(hr); } #ifdef ASSERT class NoYoungRegionsClosure: public HeapRegionClosure { private: bool _success; public: NoYoungRegionsClosure() : _success(true) { } bool do_heap_region(HeapRegion* r) { if (r->is_young()) { log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young", p2i(r->bottom()), p2i(r->end())); _success = false; } return false; } bool success() { return _success; } }; bool G1CollectedHeap::check_young_list_empty() { bool ret = (young_regions_count() == 0); NoYoungRegionsClosure closure; heap_region_iterate(&closure); ret = ret && closure.success(); return ret; } #endif // ASSERT class TearDownRegionSetsClosure : public HeapRegionClosure { HeapRegionSet *_old_set; public: TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { } bool do_heap_region(HeapRegion* r) { if (r->is_old()) { _old_set->remove(r); } else if(r->is_young()) { r->uninstall_surv_rate_group(); } else { // We ignore free regions, we'll empty the free list afterwards. // We ignore humongous and archive regions, we're not tearing down these // sets. assert(r->is_archive() || r->is_free() || r->is_humongous(), "it cannot be another type"); } return false; } ~TearDownRegionSetsClosure() { assert(_old_set->is_empty(), "post-condition"); } }; void G1CollectedHeap::tear_down_region_sets(bool free_list_only) { assert_at_safepoint_on_vm_thread(); if (!free_list_only) { TearDownRegionSetsClosure cl(&_old_set); heap_region_iterate(&cl); // Note that emptying the _young_list is postponed and instead done as // the first step when rebuilding the regions sets again. The reason for // this is that during a full GC string deduplication needs to know if // a collected region was young or old when the full GC was initiated. } _hrm->remove_all_free_regions(); } void G1CollectedHeap::increase_used(size_t bytes) { _summary_bytes_used += bytes; } void G1CollectedHeap::decrease_used(size_t bytes) { assert(_summary_bytes_used >= bytes, "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT, _summary_bytes_used, bytes); _summary_bytes_used -= bytes; } void G1CollectedHeap::set_used(size_t bytes) { _summary_bytes_used = bytes; } class RebuildRegionSetsClosure : public HeapRegionClosure { private: bool _free_list_only; HeapRegionSet* _old_set; HeapRegionManager* _hrm; size_t _total_used; public: RebuildRegionSetsClosure(bool free_list_only, HeapRegionSet* old_set, HeapRegionManager* hrm) : _free_list_only(free_list_only), _old_set(old_set), _hrm(hrm), _total_used(0) { assert(_hrm->num_free_regions() == 0, "pre-condition"); if (!free_list_only) { assert(_old_set->is_empty(), "pre-condition"); } } bool do_heap_region(HeapRegion* r) { if (r->is_empty()) { assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets."); // Add free regions to the free list r->set_free(); _hrm->insert_into_free_list(r); } else if (!_free_list_only) { assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared."); if (r->is_archive() || r->is_humongous()) { // We ignore archive and humongous regions. We left these sets unchanged. } else { assert(r->is_young() || r->is_free() || r->is_old(), "invariant"); // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such. r->move_to_old(); _old_set->add(r); } _total_used += r->used(); } return false; } size_t total_used() { return _total_used; } }; void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { assert_at_safepoint_on_vm_thread(); if (!free_list_only) { _eden.clear(); _survivor.clear(); } RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm); heap_region_iterate(&cl); if (!free_list_only) { set_used(cl.total_used()); if (_archive_allocator != NULL) { _archive_allocator->clear_used(); } } assert_used_and_recalculate_used_equal(this); } // Methods for the mutator alloc region HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, bool force, uint node_index) { assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); bool should_allocate = policy()->should_allocate_mutator_region(); if (force || should_allocate) { HeapRegion* new_alloc_region = new_region(word_size, HeapRegionType::Eden, false /* do_expand */, node_index); if (new_alloc_region != NULL) { set_region_short_lived_locked(new_alloc_region); _hr_printer.alloc(new_alloc_region, !should_allocate); _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region); _policy->remset_tracker()->update_at_allocate(new_alloc_region); return new_alloc_region; } } return NULL; } void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, size_t allocated_bytes) { assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); assert(alloc_region->is_eden(), "all mutator alloc regions should be eden"); collection_set()->add_eden_region(alloc_region); increase_used(allocated_bytes); _eden.add_used_bytes(allocated_bytes); _hr_printer.retire(alloc_region); // We update the eden sizes here, when the region is retired, // instead of when it's allocated, since this is the point that its // used space has been recorded in _summary_bytes_used. g1mm()->update_eden_size(); } // Methods for the GC alloc regions bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) { if (dest.is_old()) { return true; } else { return survivor_regions_count() < policy()->max_survivor_regions(); } } HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) { assert(FreeList_lock->owned_by_self(), "pre-condition"); if (!has_more_regions(dest)) { return NULL; } HeapRegionType type; if (dest.is_young()) { type = HeapRegionType::Survivor; } else { type = HeapRegionType::Old; } HeapRegion* new_alloc_region = new_region(word_size, type, true /* do_expand */, node_index); if (new_alloc_region != NULL) { if (type.is_survivor()) { new_alloc_region->set_survivor(); _survivor.add(new_alloc_region); _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region); } else { new_alloc_region->set_old(); _verifier->check_bitmaps("Old Region Allocation", new_alloc_region); } _policy->remset_tracker()->update_at_allocate(new_alloc_region); register_region_with_region_attr(new_alloc_region); _hr_printer.alloc(new_alloc_region); return new_alloc_region; } return NULL; } void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, size_t allocated_bytes, G1HeapRegionAttr dest) { _bytes_used_during_gc += allocated_bytes; if (dest.is_old()) { old_set_add(alloc_region); } else { assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type()); _survivor.add_used_bytes(allocated_bytes); } bool const during_im = collector_state()->in_concurrent_start_gc(); if (during_im && allocated_bytes > 0) { _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top()); } _hr_printer.retire(alloc_region); } HeapRegion* G1CollectedHeap::alloc_highest_free_region() { bool expanded = false; uint index = _hrm->find_highest_free(&expanded); if (index != G1_NO_HRM_INDEX) { if (expanded) { log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B", HeapRegion::GrainWords * HeapWordSize); } return _hrm->allocate_free_regions_starting_at(index, 1); } return NULL; } // Optimized nmethod scanning class RegisterNMethodOopClosure: public OopClosure { G1CollectedHeap* _g1h; nmethod* _nm; template void do_oop_work(T* p) { T heap_oop = RawAccess<>::oop_load(p); if (!CompressedOops::is_null(heap_oop)) { oop obj = CompressedOops::decode_not_null(heap_oop); HeapRegion* hr = _g1h->heap_region_containing(obj); assert(!hr->is_continues_humongous(), "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT " starting at " HR_FORMAT, p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries. hr->add_strong_code_root_locked(_nm); } } public: RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : _g1h(g1h), _nm(nm) {} void do_oop(oop* p) { do_oop_work(p); } void do_oop(narrowOop* p) { do_oop_work(p); } }; class UnregisterNMethodOopClosure: public OopClosure { G1CollectedHeap* _g1h; nmethod* _nm; template void do_oop_work(T* p) { T heap_oop = RawAccess<>::oop_load(p); if (!CompressedOops::is_null(heap_oop)) { oop obj = CompressedOops::decode_not_null(heap_oop); HeapRegion* hr = _g1h->heap_region_containing(obj); assert(!hr->is_continues_humongous(), "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT " starting at " HR_FORMAT, p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); hr->remove_strong_code_root(_nm); } } public: UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : _g1h(g1h), _nm(nm) {} void do_oop(oop* p) { do_oop_work(p); } void do_oop(narrowOop* p) { do_oop_work(p); } }; void G1CollectedHeap::register_nmethod(nmethod* nm) { guarantee(nm != NULL, "sanity"); RegisterNMethodOopClosure reg_cl(this, nm); nm->oops_do(®_cl); } void G1CollectedHeap::unregister_nmethod(nmethod* nm) { guarantee(nm != NULL, "sanity"); UnregisterNMethodOopClosure reg_cl(this, nm); nm->oops_do(®_cl, true); } void G1CollectedHeap::purge_code_root_memory() { double purge_start = os::elapsedTime(); G1CodeRootSet::purge(); double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0; phase_times()->record_strong_code_root_purge_time(purge_time_ms); } class RebuildStrongCodeRootClosure: public CodeBlobClosure { G1CollectedHeap* _g1h; public: RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) : _g1h(g1h) {} void do_code_blob(CodeBlob* cb) { nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL; if (nm == NULL) { return; } _g1h->register_nmethod(nm); } }; void G1CollectedHeap::rebuild_strong_code_roots() { RebuildStrongCodeRootClosure blob_cl(this); CodeCache::blobs_do(&blob_cl); } void G1CollectedHeap::initialize_serviceability() { _g1mm->initialize_serviceability(); } MemoryUsage G1CollectedHeap::memory_usage() { return _g1mm->memory_usage(); } GrowableArray G1CollectedHeap::memory_managers() { return _g1mm->memory_managers(); } GrowableArray G1CollectedHeap::memory_pools() { return _g1mm->memory_pools(); }