1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Analytics.hpp"
  27 #include "gc/g1/g1Arguments.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1CollectionSetCandidates.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1ConcurrentRefine.hpp"
  34 #include "gc/g1/g1ConcurrentRefineStats.hpp"
  35 #include "gc/g1/g1CollectionSetChooser.hpp"
  36 #include "gc/g1/g1HeterogeneousHeapPolicy.hpp"
  37 #include "gc/g1/g1HotCardCache.hpp"
  38 #include "gc/g1/g1IHOPControl.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1Policy.hpp"
  41 #include "gc/g1/g1SurvivorRegions.hpp"
  42 #include "gc/g1/g1YoungGenSizer.hpp"
  43 #include "gc/g1/heapRegion.inline.hpp"
  44 #include "gc/g1/heapRegionRemSet.hpp"
  45 #include "gc/shared/concurrentGCBreakpoints.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "logging/log.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "utilities/debug.hpp"
  52 #include "utilities/growableArray.hpp"
  53 #include "utilities/pair.hpp"
  54 
  55 G1Policy::G1Policy(STWGCTimer* gc_timer) :
  56   _predictor(G1ConfidencePercent / 100.0),
  57   _analytics(new G1Analytics(&_predictor)),
  58   _remset_tracker(),
  59   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  60   _ihop_control(create_ihop_control(&_predictor)),
  61   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
  62   _full_collection_start_sec(0.0),
  63   _collection_pause_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC),
  64   _young_list_target_length(0),
  65   _young_list_fixed_length(0),
  66   _young_list_max_length(0),
  67   _eden_surv_rate_group(new G1SurvRateGroup()),
  68   _survivor_surv_rate_group(new G1SurvRateGroup()),
  69   _reserve_factor((double) G1ReservePercent / 100.0),
  70   _reserve_regions(0),
  71   _young_gen_sizer(G1YoungGenSizer::create_gen_sizer()),
  72   _free_regions_at_end_of_collection(0),
  73   _rs_length(0),
  74   _rs_length_prediction(0),
  75   _pending_cards_at_gc_start(0),
  76   _old_gen_alloc_tracker(),
  77   _concurrent_start_to_mixed(),
  78   _collection_set(NULL),
  79   _g1h(NULL),
  80   _phase_times_timer(gc_timer),
  81   _phase_times(NULL),
  82   _mark_remark_start_sec(0),
  83   _mark_cleanup_start_sec(0),
  84   _tenuring_threshold(MaxTenuringThreshold),
  85   _max_survivor_regions(0),
  86   _survivors_age_table(true)
  87 {
  88 }
  89 
  90 G1Policy::~G1Policy() {
  91   delete _ihop_control;
  92   delete _young_gen_sizer;
  93 }
  94 
  95 G1Policy* G1Policy::create_policy(STWGCTimer* gc_timer_stw) {
  96   if (G1Arguments::is_heterogeneous_heap()) {
  97     return new G1HeterogeneousHeapPolicy(gc_timer_stw);
  98   } else {
  99     return new G1Policy(gc_timer_stw);
 100   }
 101 }
 102 
 103 G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
 104 
 105 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
 106   _g1h = g1h;
 107   _collection_set = collection_set;
 108 
 109   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 110 
 111   if (!use_adaptive_young_list_length()) {
 112     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 113   }
 114   _young_gen_sizer->adjust_max_new_size(_g1h->max_expandable_regions());
 115 
 116   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 117 
 118   update_young_list_max_and_target_length();
 119   // We may immediately start allocating regions and placing them on the
 120   // collection set list. Initialize the per-collection set info
 121   _collection_set->start_incremental_building();
 122 }
 123 
 124 void G1Policy::note_gc_start() {
 125   phase_times()->note_gc_start();
 126 }
 127 
 128 class G1YoungLengthPredictor {
 129   const double _base_time_ms;
 130   const double _base_free_regions;
 131   const double _target_pause_time_ms;
 132   const G1Policy* const _policy;
 133 
 134  public:
 135   G1YoungLengthPredictor(double base_time_ms,
 136                          double base_free_regions,
 137                          double target_pause_time_ms,
 138                          const G1Policy* policy) :
 139     _base_time_ms(base_time_ms),
 140     _base_free_regions(base_free_regions),
 141     _target_pause_time_ms(target_pause_time_ms),
 142     _policy(policy) {}
 143 
 144   bool will_fit(uint young_length) const {
 145     if (young_length >= _base_free_regions) {
 146       // end condition 1: not enough space for the young regions
 147       return false;
 148     }
 149 
 150     size_t bytes_to_copy = 0;
 151     const double copy_time_ms = _policy->predict_eden_copy_time_ms(young_length, &bytes_to_copy);
 152     const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
 153     const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
 154     if (pause_time_ms > _target_pause_time_ms) {
 155       // end condition 2: prediction is over the target pause time
 156       return false;
 157     }
 158 
 159     const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
 160 
 161     // When copying, we will likely need more bytes free than is live in the region.
 162     // Add some safety margin to factor in the confidence of our guess, and the
 163     // natural expected waste.
 164     // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 165     // of the calculation: the lower the confidence, the more headroom.
 166     // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 167     // copying due to anticipated waste in the PLABs.
 168     const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 169     const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 170 
 171     if (expected_bytes_to_copy > free_bytes) {
 172       // end condition 3: out-of-space
 173       return false;
 174     }
 175 
 176     // success!
 177     return true;
 178   }
 179 };
 180 
 181 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
 182   // re-calculate the necessary reserve
 183   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 184   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 185   // smaller than 1.0) we'll get 1.
 186   _reserve_regions = (uint) ceil(reserve_regions_d);
 187 
 188   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 189 
 190   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 191 }
 192 
 193 uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const {
 194   uint desired_min_length = 0;
 195   if (use_adaptive_young_list_length()) {
 196     if (_analytics->num_alloc_rate_ms() > 3) {
 197       double now_sec = os::elapsedTime();
 198       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 199       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 200       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 201     } else {
 202       // otherwise we don't have enough info to make the prediction
 203     }
 204   }
 205   desired_min_length += base_min_length;
 206   // make sure we don't go below any user-defined minimum bound
 207   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 208 }
 209 
 210 uint G1Policy::calculate_young_list_desired_max_length() const {
 211   // Here, we might want to also take into account any additional
 212   // constraints (i.e., user-defined minimum bound). Currently, we
 213   // effectively don't set this bound.
 214   return _young_gen_sizer->max_desired_young_length();
 215 }
 216 
 217 uint G1Policy::update_young_list_max_and_target_length() {
 218   return update_young_list_max_and_target_length(_analytics->predict_rs_length());
 219 }
 220 
 221 uint G1Policy::update_young_list_max_and_target_length(size_t rs_length) {
 222   uint unbounded_target_length = update_young_list_target_length(rs_length);
 223   update_max_gc_locker_expansion();
 224   return unbounded_target_length;
 225 }
 226 
 227 uint G1Policy::update_young_list_target_length(size_t rs_length) {
 228   YoungTargetLengths young_lengths = young_list_target_lengths(rs_length);
 229   _young_list_target_length = young_lengths.first;
 230 
 231   return young_lengths.second;
 232 }
 233 
 234 G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_length) const {
 235   YoungTargetLengths result;
 236 
 237   // Calculate the absolute and desired min bounds first.
 238 
 239   // This is how many young regions we already have (currently: the survivors).
 240   const uint base_min_length = _g1h->survivor_regions_count();
 241   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 242   // This is the absolute minimum young length. Ensure that we
 243   // will at least have one eden region available for allocation.
 244   uint absolute_min_length = base_min_length + MAX2(_g1h->eden_regions_count(), (uint)1);
 245   // If we shrank the young list target it should not shrink below the current size.
 246   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 247   // Calculate the absolute and desired max bounds.
 248 
 249   uint desired_max_length = calculate_young_list_desired_max_length();
 250 
 251   uint young_list_target_length = 0;
 252   if (use_adaptive_young_list_length()) {
 253     if (collector_state()->in_young_only_phase()) {
 254       young_list_target_length =
 255                         calculate_young_list_target_length(rs_length,
 256                                                            base_min_length,
 257                                                            desired_min_length,
 258                                                            desired_max_length);
 259     } else {
 260       // Don't calculate anything and let the code below bound it to
 261       // the desired_min_length, i.e., do the next GC as soon as
 262       // possible to maximize how many old regions we can add to it.
 263     }
 264   } else {
 265     // The user asked for a fixed young gen so we'll fix the young gen
 266     // whether the next GC is young or mixed.
 267     young_list_target_length = _young_list_fixed_length;
 268   }
 269 
 270   result.second = young_list_target_length;
 271 
 272   // We will try our best not to "eat" into the reserve.
 273   uint absolute_max_length = 0;
 274   if (_free_regions_at_end_of_collection > _reserve_regions) {
 275     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 276   }
 277   if (desired_max_length > absolute_max_length) {
 278     desired_max_length = absolute_max_length;
 279   }
 280 
 281   // Make sure we don't go over the desired max length, nor under the
 282   // desired min length. In case they clash, desired_min_length wins
 283   // which is why that test is second.
 284   if (young_list_target_length > desired_max_length) {
 285     young_list_target_length = desired_max_length;
 286   }
 287   if (young_list_target_length < desired_min_length) {
 288     young_list_target_length = desired_min_length;
 289   }
 290 
 291   assert(young_list_target_length > base_min_length,
 292          "we should be able to allocate at least one eden region");
 293   assert(young_list_target_length >= absolute_min_length, "post-condition");
 294 
 295   result.first = young_list_target_length;
 296   return result;
 297 }
 298 
 299 uint G1Policy::calculate_young_list_target_length(size_t rs_length,
 300                                                   uint base_min_length,
 301                                                   uint desired_min_length,
 302                                                   uint desired_max_length) const {
 303   assert(use_adaptive_young_list_length(), "pre-condition");
 304   assert(collector_state()->in_young_only_phase(), "only call this for young GCs");
 305 
 306   // In case some edge-condition makes the desired max length too small...
 307   if (desired_max_length <= desired_min_length) {
 308     return desired_min_length;
 309   }
 310 
 311   // We'll adjust min_young_length and max_young_length not to include
 312   // the already allocated young regions (i.e., so they reflect the
 313   // min and max eden regions we'll allocate). The base_min_length
 314   // will be reflected in the predictions by the
 315   // survivor_regions_evac_time prediction.
 316   assert(desired_min_length > base_min_length, "invariant");
 317   uint min_young_length = desired_min_length - base_min_length;
 318   assert(desired_max_length > base_min_length, "invariant");
 319   uint max_young_length = desired_max_length - base_min_length;
 320 
 321   const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 322   const size_t pending_cards = _analytics->predict_pending_cards();
 323   const double base_time_ms = predict_base_elapsed_time_ms(pending_cards, rs_length);
 324   const uint available_free_regions = _free_regions_at_end_of_collection;
 325   const uint base_free_regions =
 326     available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
 327 
 328   // Here, we will make sure that the shortest young length that
 329   // makes sense fits within the target pause time.
 330 
 331   G1YoungLengthPredictor p(base_time_ms,
 332                            base_free_regions,
 333                            target_pause_time_ms,
 334                            this);
 335   if (p.will_fit(min_young_length)) {
 336     // The shortest young length will fit into the target pause time;
 337     // we'll now check whether the absolute maximum number of young
 338     // regions will fit in the target pause time. If not, we'll do
 339     // a binary search between min_young_length and max_young_length.
 340     if (p.will_fit(max_young_length)) {
 341       // The maximum young length will fit into the target pause time.
 342       // We are done so set min young length to the maximum length (as
 343       // the result is assumed to be returned in min_young_length).
 344       min_young_length = max_young_length;
 345     } else {
 346       // The maximum possible number of young regions will not fit within
 347       // the target pause time so we'll search for the optimal
 348       // length. The loop invariants are:
 349       //
 350       // min_young_length < max_young_length
 351       // min_young_length is known to fit into the target pause time
 352       // max_young_length is known not to fit into the target pause time
 353       //
 354       // Going into the loop we know the above hold as we've just
 355       // checked them. Every time around the loop we check whether
 356       // the middle value between min_young_length and
 357       // max_young_length fits into the target pause time. If it
 358       // does, it becomes the new min. If it doesn't, it becomes
 359       // the new max. This way we maintain the loop invariants.
 360 
 361       assert(min_young_length < max_young_length, "invariant");
 362       uint diff = (max_young_length - min_young_length) / 2;
 363       while (diff > 0) {
 364         uint young_length = min_young_length + diff;
 365         if (p.will_fit(young_length)) {
 366           min_young_length = young_length;
 367         } else {
 368           max_young_length = young_length;
 369         }
 370         assert(min_young_length <  max_young_length, "invariant");
 371         diff = (max_young_length - min_young_length) / 2;
 372       }
 373       // The results is min_young_length which, according to the
 374       // loop invariants, should fit within the target pause time.
 375 
 376       // These are the post-conditions of the binary search above:
 377       assert(min_young_length < max_young_length,
 378              "otherwise we should have discovered that max_young_length "
 379              "fits into the pause target and not done the binary search");
 380       assert(p.will_fit(min_young_length),
 381              "min_young_length, the result of the binary search, should "
 382              "fit into the pause target");
 383       assert(!p.will_fit(min_young_length + 1),
 384              "min_young_length, the result of the binary search, should be "
 385              "optimal, so no larger length should fit into the pause target");
 386     }
 387   } else {
 388     // Even the minimum length doesn't fit into the pause time
 389     // target, return it as the result nevertheless.
 390   }
 391   return base_min_length + min_young_length;
 392 }
 393 
 394 double G1Policy::predict_survivor_regions_evac_time() const {
 395   double survivor_regions_evac_time = 0.0;
 396   const GrowableArray<HeapRegion*>* survivor_regions = _g1h->survivor()->regions();
 397   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 398        it != survivor_regions->end();
 399        ++it) {
 400     survivor_regions_evac_time += predict_region_total_time_ms(*it, collector_state()->in_young_only_phase());
 401   }
 402   return survivor_regions_evac_time;
 403 }
 404 
 405 G1GCPhaseTimes* G1Policy::phase_times() const {
 406   // Lazy allocation because it must follow initialization of all the
 407   // OopStorage objects by various other subsystems.
 408   if (_phase_times == NULL) {
 409     _phase_times = new G1GCPhaseTimes(_phase_times_timer, ParallelGCThreads);
 410   }
 411   return _phase_times;
 412 }
 413 
 414 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_length) {
 415   guarantee(use_adaptive_young_list_length(), "should not call this otherwise" );
 416 
 417   if (rs_length > _rs_length_prediction) {
 418     // add 10% to avoid having to recalculate often
 419     size_t rs_length_prediction = rs_length * 1100 / 1000;
 420     update_rs_length_prediction(rs_length_prediction);
 421 
 422     update_young_list_max_and_target_length(rs_length_prediction);
 423   }
 424 }
 425 
 426 void G1Policy::update_rs_length_prediction() {
 427   update_rs_length_prediction(_analytics->predict_rs_length());
 428 }
 429 
 430 void G1Policy::update_rs_length_prediction(size_t prediction) {
 431   if (collector_state()->in_young_only_phase() && use_adaptive_young_list_length()) {
 432     _rs_length_prediction = prediction;
 433   }
 434 }
 435 
 436 void G1Policy::record_full_collection_start() {
 437   _full_collection_start_sec = os::elapsedTime();
 438   // Release the future to-space so that it is available for compaction into.
 439   collector_state()->set_in_young_only_phase(false);
 440   collector_state()->set_in_full_gc(true);
 441   _collection_set->clear_candidates();
 442   _pending_cards_at_gc_start = 0;
 443 }
 444 
 445 void G1Policy::record_full_collection_end() {
 446   // Consider this like a collection pause for the purposes of allocation
 447   // since last pause.
 448   double end_sec = os::elapsedTime();
 449   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 450   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 451 
 452   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 453 
 454   collector_state()->set_in_full_gc(false);
 455 
 456   // "Nuke" the heuristics that control the young/mixed GC
 457   // transitions and make sure we start with young GCs after the Full GC.
 458   collector_state()->set_in_young_only_phase(true);
 459   collector_state()->set_in_young_gc_before_mixed(false);
 460   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 461   collector_state()->set_in_concurrent_start_gc(false);
 462   collector_state()->set_mark_or_rebuild_in_progress(false);
 463   collector_state()->set_clearing_next_bitmap(false);
 464 
 465   _eden_surv_rate_group->start_adding_regions();
 466   // also call this on any additional surv rate groups
 467 
 468   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 469   _survivor_surv_rate_group->reset();
 470   update_young_list_max_and_target_length();
 471   update_rs_length_prediction();
 472 
 473   _old_gen_alloc_tracker.reset_after_full_gc();
 474 
 475   record_pause(FullGC, _full_collection_start_sec, end_sec);
 476 }
 477 
 478 static void log_refinement_stats(const char* kind, const G1ConcurrentRefineStats& stats) {
 479   log_debug(gc, refine, stats)
 480            ("%s refinement: %.2fms, refined: " SIZE_FORMAT
 481             ", precleaned: " SIZE_FORMAT ", dirtied: " SIZE_FORMAT,
 482             kind,
 483             stats.refinement_time().seconds() * MILLIUNITS,
 484             stats.refined_cards(),
 485             stats.precleaned_cards(),
 486             stats.dirtied_cards());
 487 }
 488 
 489 void G1Policy::record_concurrent_refinement_stats() {
 490   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
 491   _pending_cards_at_gc_start = dcqs.num_cards();
 492 
 493   // Collect per-thread stats, mostly from mutator activity.
 494   G1ConcurrentRefineStats mut_stats = dcqs.get_and_reset_refinement_stats();
 495 
 496   // Collect specialized concurrent refinement thread stats.
 497   G1ConcurrentRefine* cr = _g1h->concurrent_refine();
 498   G1ConcurrentRefineStats cr_stats = cr->get_and_reset_refinement_stats();
 499 
 500   G1ConcurrentRefineStats total_stats = mut_stats + cr_stats;
 501 
 502   log_refinement_stats("Mutator", mut_stats);
 503   log_refinement_stats("Concurrent", cr_stats);
 504   log_refinement_stats("Total", total_stats);
 505 
 506   // Record the rate at which cards were refined.
 507   // Don't update the rate if the current sample is empty or time is zero.
 508   Tickspan refinement_time = total_stats.refinement_time();
 509   size_t refined_cards = total_stats.refined_cards();
 510   if ((refined_cards > 0) && (refinement_time > Tickspan())) {
 511     double rate = refined_cards / (refinement_time.seconds() * MILLIUNITS);
 512     _analytics->report_concurrent_refine_rate_ms(rate);
 513     log_debug(gc, refine, stats)("Concurrent refinement rate: %.2f cards/ms", rate);
 514   }
 515 
 516   // Record mutator's card logging rate.
 517   double mut_start_time = _analytics->prev_collection_pause_end_ms();
 518   double mut_end_time = phase_times()->cur_collection_start_sec() * MILLIUNITS;
 519   double mut_time = mut_end_time - mut_start_time;
 520   // Unlike above for conc-refine rate, here we should not require a
 521   // non-empty sample, since an application could go some time with only
 522   // young-gen or filtered out writes.  But we'll ignore unusually short
 523   // sample periods, as they may just pollute the predictions.
 524   if (mut_time > 1.0) {   // Require > 1ms sample time.
 525     double dirtied_rate = total_stats.dirtied_cards() / mut_time;
 526     _analytics->report_dirtied_cards_rate_ms(dirtied_rate);
 527     log_debug(gc, refine, stats)("Generate dirty cards rate: %.2f cards/ms", dirtied_rate);
 528   }
 529 }
 530 
 531 void G1Policy::record_collection_pause_start(double start_time_sec) {
 532   // We only need to do this here as the policy will only be applied
 533   // to the GC we're about to start. so, no point is calculating this
 534   // every time we calculate / recalculate the target young length.
 535   update_survivors_policy();
 536 
 537   assert(max_survivor_regions() + _g1h->num_used_regions() <= _g1h->max_regions(),
 538          "Maximum survivor regions %u plus used regions %u exceeds max regions %u",
 539          max_survivor_regions(), _g1h->num_used_regions(), _g1h->max_regions());
 540   assert_used_and_recalculate_used_equal(_g1h);
 541 
 542   phase_times()->record_cur_collection_start_sec(start_time_sec);
 543 
 544   record_concurrent_refinement_stats();
 545 
 546   _collection_set->reset_bytes_used_before();
 547 
 548   // do that for any other surv rate groups
 549   _eden_surv_rate_group->stop_adding_regions();
 550   _survivors_age_table.clear();
 551 
 552   assert(_g1h->collection_set()->verify_young_ages(), "region age verification failed");
 553 }
 554 
 555 void G1Policy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
 556   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 557   collector_state()->set_in_concurrent_start_gc(false);
 558 }
 559 
 560 void G1Policy::record_concurrent_mark_remark_start() {
 561   _mark_remark_start_sec = os::elapsedTime();
 562 }
 563 
 564 void G1Policy::record_concurrent_mark_remark_end() {
 565   double end_time_sec = os::elapsedTime();
 566   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 567   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 568   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 569 
 570   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 571 }
 572 
 573 void G1Policy::record_concurrent_mark_cleanup_start() {
 574   _mark_cleanup_start_sec = os::elapsedTime();
 575 }
 576 
 577 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 578   return phase_times()->average_time_ms(phase);
 579 }
 580 
 581 double G1Policy::young_other_time_ms() const {
 582   return phase_times()->young_cset_choice_time_ms() +
 583          phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
 584 }
 585 
 586 double G1Policy::non_young_other_time_ms() const {
 587   return phase_times()->non_young_cset_choice_time_ms() +
 588          phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
 589 }
 590 
 591 double G1Policy::other_time_ms(double pause_time_ms) const {
 592   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
 593 }
 594 
 595 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
 596   return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms() - phase_times()->total_rebuild_freelist_time_ms();
 597 }
 598 
 599 bool G1Policy::about_to_start_mixed_phase() const {
 600   return _g1h->concurrent_mark()->cm_thread()->during_cycle() || collector_state()->in_young_gc_before_mixed();
 601 }
 602 
 603 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 604   if (about_to_start_mixed_phase()) {
 605     return false;
 606   }
 607 
 608   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 609 
 610   size_t cur_used_bytes = _g1h->non_young_capacity_bytes();
 611   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 612   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 613 
 614   bool result = false;
 615   if (marking_request_bytes > marking_initiating_used_threshold) {
 616     result = collector_state()->in_young_only_phase() && !collector_state()->in_young_gc_before_mixed();
 617     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 618                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 619                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1h->capacity() * 100, source);
 620   }
 621 
 622   return result;
 623 }
 624 
 625 double G1Policy::logged_cards_processing_time() const {
 626   double all_cards_processing_time = average_time_ms(G1GCPhaseTimes::ScanHR) + average_time_ms(G1GCPhaseTimes::OptScanHR);
 627   size_t logged_dirty_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
 628   size_t scan_heap_roots_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
 629                                  phase_times()->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
 630   // This may happen if there are duplicate cards in different log buffers.
 631   if (logged_dirty_cards > scan_heap_roots_cards) {
 632     return all_cards_processing_time + average_time_ms(G1GCPhaseTimes::MergeLB);
 633   }
 634   return (all_cards_processing_time * logged_dirty_cards / scan_heap_roots_cards) + average_time_ms(G1GCPhaseTimes::MergeLB);
 635 }
 636 
 637 // Anything below that is considered to be zero
 638 #define MIN_TIMER_GRANULARITY 0.0000001
 639 
 640 void G1Policy::record_collection_pause_end(double pause_time_ms) {
 641   G1GCPhaseTimes* p = phase_times();
 642 
 643   double end_time_sec = os::elapsedTime();
 644 
 645   PauseKind this_pause = young_gc_pause_kind();
 646 
 647   bool update_stats = !_g1h->evacuation_failed();
 648 
 649   record_pause(this_pause, end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 650 
 651   _collection_pause_end_millis = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 652 
 653   if (is_concurrent_start_pause(this_pause)) {
 654     record_concurrent_mark_init_end(0.0);
 655   } else {
 656     maybe_start_marking();
 657   }
 658 
 659   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
 660   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 661     // This usually happens due to the timer not having the required
 662     // granularity. Some Linuxes are the usual culprits.
 663     // We'll just set it to something (arbitrarily) small.
 664     app_time_ms = 1.0;
 665   }
 666 
 667   if (update_stats) {
 668     // We maintain the invariant that all objects allocated by mutator
 669     // threads will be allocated out of eden regions. So, we can use
 670     // the eden region number allocated since the previous GC to
 671     // calculate the application's allocate rate. The only exception
 672     // to that is humongous objects that are allocated separately. But
 673     // given that humongous object allocations do not really affect
 674     // either the pause's duration nor when the next pause will take
 675     // place we can safely ignore them here.
 676     uint regions_allocated = _collection_set->eden_region_length();
 677     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 678     _analytics->report_alloc_rate_ms(alloc_rate_ms);
 679 
 680     _analytics->compute_pause_time_ratios(end_time_sec, pause_time_ms);
 681     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
 682   }
 683 
 684   if (is_last_young_pause(this_pause)) {
 685     assert(!is_concurrent_start_pause(this_pause),
 686            "The young GC before mixed is not allowed to be concurrent start GC");
 687     // This has been the young GC before we start doing mixed GCs. We already
 688     // decided to start mixed GCs much earlier, so there is nothing to do except
 689     // advancing the state.
 690     collector_state()->set_in_young_only_phase(false);
 691     collector_state()->set_in_young_gc_before_mixed(false);
 692   } else if (is_mixed_pause(this_pause)) {
 693     // This is a mixed GC. Here we decide whether to continue doing more
 694     // mixed GCs or not.
 695     if (!next_gc_should_be_mixed("continue mixed GCs",
 696                                  "do not continue mixed GCs")) {
 697       collector_state()->set_in_young_only_phase(true);
 698 
 699       clear_collection_set_candidates();
 700       maybe_start_marking();
 701     }
 702   } else {
 703     assert(is_young_only_pause(this_pause), "must be");
 704   }
 705 
 706   _eden_surv_rate_group->start_adding_regions();
 707 
 708   double merge_hcc_time_ms = average_time_ms(G1GCPhaseTimes::MergeHCC);
 709   if (update_stats) {
 710     size_t const total_log_buffer_cards = p->sum_thread_work_items(G1GCPhaseTimes::MergeHCC, G1GCPhaseTimes::MergeHCCDirtyCards) +
 711                                           p->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
 712     // Update prediction for card merge; MergeRSDirtyCards includes the cards from the Eager Reclaim phase.
 713     size_t const total_cards_merged = p->sum_thread_work_items(G1GCPhaseTimes::MergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
 714                                       p->sum_thread_work_items(G1GCPhaseTimes::OptMergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
 715                                       total_log_buffer_cards;
 716 
 717     // The threshold for the number of cards in a given sampling which we consider
 718     // large enough so that the impact from setup and other costs is negligible.
 719     size_t const CardsNumSamplingThreshold = 10;
 720 
 721     if (total_cards_merged > CardsNumSamplingThreshold) {
 722       double avg_time_merge_cards = average_time_ms(G1GCPhaseTimes::MergeER) +
 723                                     average_time_ms(G1GCPhaseTimes::MergeRS) +
 724                                     average_time_ms(G1GCPhaseTimes::MergeHCC) +
 725                                     average_time_ms(G1GCPhaseTimes::MergeLB) +
 726                                     average_time_ms(G1GCPhaseTimes::OptMergeRS);
 727       _analytics->report_cost_per_card_merge_ms(avg_time_merge_cards / total_cards_merged,
 728                                                 is_young_only_pause(this_pause));
 729     }
 730 
 731     // Update prediction for card scan
 732     size_t const total_cards_scanned = p->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
 733                                        p->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
 734 
 735     if (total_cards_scanned > CardsNumSamplingThreshold) {
 736       double avg_time_dirty_card_scan = average_time_ms(G1GCPhaseTimes::ScanHR) +
 737                                         average_time_ms(G1GCPhaseTimes::OptScanHR);
 738 
 739       _analytics->report_cost_per_card_scan_ms(avg_time_dirty_card_scan / total_cards_scanned,
 740                                                is_young_only_pause(this_pause));
 741     }
 742 
 743     // Update prediction for the ratio between cards from the remembered
 744     // sets and actually scanned cards from the remembered sets.
 745     // Cards from the remembered sets are all cards not duplicated by cards from
 746     // the logs.
 747     // Due to duplicates in the log buffers, the number of actually scanned cards
 748     // can be smaller than the cards in the log buffers.
 749     const size_t from_rs_length_cards = (total_cards_scanned > total_log_buffer_cards) ? total_cards_scanned - total_log_buffer_cards : 0;
 750     double merge_to_scan_ratio = 0.0;
 751     if (total_cards_scanned > 0) {
 752       merge_to_scan_ratio = (double) from_rs_length_cards / total_cards_scanned;
 753     }
 754     _analytics->report_card_merge_to_scan_ratio(merge_to_scan_ratio,
 755                                                 is_young_only_pause(this_pause));
 756 
 757     const size_t recorded_rs_length = _collection_set->recorded_rs_length();
 758     const size_t rs_length_diff = _rs_length > recorded_rs_length ? _rs_length - recorded_rs_length : 0;
 759     _analytics->report_rs_length_diff(rs_length_diff);
 760 
 761     // Update prediction for copy cost per byte
 762     size_t copied_bytes = p->sum_thread_work_items(G1GCPhaseTimes::MergePSS, G1GCPhaseTimes::MergePSSCopiedBytes);
 763 
 764     if (copied_bytes > 0) {
 765       double cost_per_byte_ms = (average_time_ms(G1GCPhaseTimes::ObjCopy) + average_time_ms(G1GCPhaseTimes::OptObjCopy)) / copied_bytes;
 766       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->mark_or_rebuild_in_progress());
 767     }
 768 
 769     if (_collection_set->young_region_length() > 0) {
 770       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
 771                                                         _collection_set->young_region_length());
 772     }
 773 
 774     if (_collection_set->old_region_length() > 0) {
 775       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 776                                                             _collection_set->old_region_length());
 777     }
 778 
 779     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 780 
 781     // Do not update RS lengths and the number of pending cards with information from mixed gc:
 782     // these are is wildly different to during young only gc and mess up young gen sizing right
 783     // after the mixed gc phase.
 784     // During mixed gc we do not use them for young gen sizing.
 785     if (is_young_only_pause(this_pause)) {
 786       _analytics->report_pending_cards((double) _pending_cards_at_gc_start);
 787       _analytics->report_rs_length((double) _rs_length);
 788     }
 789   }
 790 
 791   assert(!(is_concurrent_start_pause(this_pause) && collector_state()->mark_or_rebuild_in_progress()),
 792          "If the last pause has been concurrent start, we should not have been in the marking window");
 793   if (is_concurrent_start_pause(this_pause)) {
 794     collector_state()->set_mark_or_rebuild_in_progress(true);
 795   }
 796 
 797   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 798 
 799   update_rs_length_prediction();
 800 
 801   // Do not update dynamic IHOP due to G1 periodic collection as it is highly likely
 802   // that in this case we are not running in a "normal" operating mode.
 803   if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
 804     // IHOP control wants to know the expected young gen length if it were not
 805     // restrained by the heap reserve. Using the actual length would make the
 806     // prediction too small and the limit the young gen every time we get to the
 807     // predicted target occupancy.
 808     size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 809 
 810     _old_gen_alloc_tracker.reset_after_young_gc(app_time_ms / 1000.0);
 811     update_ihop_prediction(_old_gen_alloc_tracker.last_cycle_duration(),
 812                            _old_gen_alloc_tracker.last_cycle_old_bytes(),
 813                            last_unrestrained_young_length * HeapRegion::GrainBytes,
 814                            is_young_only_pause(this_pause));
 815 
 816     _ihop_control->send_trace_event(_g1h->gc_tracer_stw());
 817   } else {
 818     // Any garbage collection triggered as periodic collection resets the time-to-mixed
 819     // measurement. Periodic collection typically means that the application is "inactive", i.e.
 820     // the marking threads may have received an uncharacterisic amount of cpu time
 821     // for completing the marking, i.e. are faster than expected.
 822     // This skews the predicted marking length towards smaller values which might cause
 823     // the mark start being too late.
 824     _concurrent_start_to_mixed.reset();
 825   }
 826 
 827   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 828   double scan_logged_cards_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 829 
 830   if (scan_logged_cards_time_goal_ms < merge_hcc_time_ms) {
 831     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 832                                 "Logged Cards Scan time goal: %1.2fms Scan HCC time: %1.2fms",
 833                                 scan_logged_cards_time_goal_ms, merge_hcc_time_ms);
 834 
 835     scan_logged_cards_time_goal_ms = 0;
 836   } else {
 837     scan_logged_cards_time_goal_ms -= merge_hcc_time_ms;
 838   }
 839 
 840   double const logged_cards_time = logged_cards_processing_time();
 841 
 842   log_debug(gc, ergo, refine)("Concurrent refinement times: Logged Cards Scan time goal: %1.2fms Logged Cards Scan time: %1.2fms HCC time: %1.2fms",
 843                               scan_logged_cards_time_goal_ms, logged_cards_time, merge_hcc_time_ms);
 844 
 845   _g1h->concurrent_refine()->adjust(logged_cards_time,
 846                                     phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards),
 847                                     scan_logged_cards_time_goal_ms);
 848 }
 849 
 850 G1IHOPControl* G1Policy::create_ihop_control(const G1Predictions* predictor){
 851   if (G1UseAdaptiveIHOP) {
 852     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 853                                      predictor,
 854                                      G1ReservePercent,
 855                                      G1HeapWastePercent);
 856   } else {
 857     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 858   }
 859 }
 860 
 861 void G1Policy::update_ihop_prediction(double mutator_time_s,
 862                                       size_t mutator_alloc_bytes,
 863                                       size_t young_gen_size,
 864                                       bool this_gc_was_young_only) {
 865   // Always try to update IHOP prediction. Even evacuation failures give information
 866   // about e.g. whether to start IHOP earlier next time.
 867 
 868   // Avoid using really small application times that might create samples with
 869   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 870   double const min_valid_time = 1e-6;
 871 
 872   bool report = false;
 873 
 874   double marking_to_mixed_time = -1.0;
 875   if (!this_gc_was_young_only && _concurrent_start_to_mixed.has_result()) {
 876     marking_to_mixed_time = _concurrent_start_to_mixed.last_marking_time();
 877     assert(marking_to_mixed_time > 0.0,
 878            "Concurrent start to mixed time must be larger than zero but is %.3f",
 879            marking_to_mixed_time);
 880     if (marking_to_mixed_time > min_valid_time) {
 881       _ihop_control->update_marking_length(marking_to_mixed_time);
 882       report = true;
 883     }
 884   }
 885 
 886   // As an approximation for the young gc promotion rates during marking we use
 887   // all of them. In many applications there are only a few if any young gcs during
 888   // marking, which makes any prediction useless. This increases the accuracy of the
 889   // prediction.
 890   if (this_gc_was_young_only && mutator_time_s > min_valid_time) {
 891     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 892     report = true;
 893   }
 894 
 895   if (report) {
 896     report_ihop_statistics();
 897   }
 898 }
 899 
 900 void G1Policy::report_ihop_statistics() {
 901   _ihop_control->print();
 902 }
 903 
 904 void G1Policy::print_phases() {
 905   phase_times()->print();
 906 }
 907 
 908 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
 909                                               size_t rs_length) const {
 910   size_t effective_scanned_cards = _analytics->predict_scan_card_num(rs_length, collector_state()->in_young_only_phase());
 911   return
 912     _analytics->predict_card_merge_time_ms(pending_cards + rs_length, collector_state()->in_young_only_phase()) +
 913     _analytics->predict_card_scan_time_ms(effective_scanned_cards, collector_state()->in_young_only_phase()) +
 914     _analytics->predict_constant_other_time_ms() +
 915     predict_survivor_regions_evac_time();
 916 }
 917 
 918 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
 919   size_t rs_length = _analytics->predict_rs_length();
 920   return predict_base_elapsed_time_ms(pending_cards, rs_length);
 921 }
 922 
 923 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
 924   size_t bytes_to_copy;
 925   if (!hr->is_young()) {
 926     bytes_to_copy = hr->max_live_bytes();
 927   } else {
 928     bytes_to_copy = (size_t) (hr->used() * hr->surv_rate_prediction(_predictor));
 929   }
 930   return bytes_to_copy;
 931 }
 932 
 933 double G1Policy::predict_eden_copy_time_ms(uint count, size_t* bytes_to_copy) const {
 934   if (count == 0) {
 935     return 0.0;
 936   }
 937   size_t const expected_bytes = _eden_surv_rate_group->accum_surv_rate_pred(count) * HeapRegion::GrainBytes;
 938   if (bytes_to_copy != NULL) {
 939     *bytes_to_copy = expected_bytes;
 940   }
 941   return _analytics->predict_object_copy_time_ms(expected_bytes, collector_state()->mark_or_rebuild_in_progress());
 942 }
 943 
 944 double G1Policy::predict_region_copy_time_ms(HeapRegion* hr) const {
 945   size_t const bytes_to_copy = predict_bytes_to_copy(hr);
 946   return _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->mark_or_rebuild_in_progress());
 947 }
 948 
 949 double G1Policy::predict_region_non_copy_time_ms(HeapRegion* hr,
 950                                                  bool for_young_gc) const {
 951   size_t rs_length = hr->rem_set()->occupied();
 952   size_t scan_card_num = _analytics->predict_scan_card_num(rs_length, for_young_gc);
 953 
 954   double region_elapsed_time_ms =
 955     _analytics->predict_card_merge_time_ms(rs_length, collector_state()->in_young_only_phase()) +
 956     _analytics->predict_card_scan_time_ms(scan_card_num, collector_state()->in_young_only_phase());
 957 
 958   // The prediction of the "other" time for this region is based
 959   // upon the region type and NOT the GC type.
 960   if (hr->is_young()) {
 961     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
 962   } else {
 963     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
 964   }
 965   return region_elapsed_time_ms;
 966 }
 967 
 968 double G1Policy::predict_region_total_time_ms(HeapRegion* hr, bool for_young_gc) const {
 969   return predict_region_non_copy_time_ms(hr, for_young_gc) + predict_region_copy_time_ms(hr);
 970 }
 971 
 972 bool G1Policy::should_allocate_mutator_region() const {
 973   uint young_list_length = _g1h->young_regions_count();
 974   uint young_list_target_length = _young_list_target_length;
 975   return young_list_length < young_list_target_length;
 976 }
 977 
 978 bool G1Policy::can_expand_young_list() const {
 979   uint young_list_length = _g1h->young_regions_count();
 980   uint young_list_max_length = _young_list_max_length;
 981   return young_list_length < young_list_max_length;
 982 }
 983 
 984 bool G1Policy::use_adaptive_young_list_length() const {
 985   return _young_gen_sizer->use_adaptive_young_list_length();
 986 }
 987 
 988 size_t G1Policy::desired_survivor_size(uint max_regions) const {
 989   size_t const survivor_capacity = HeapRegion::GrainWords * max_regions;
 990   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
 991 }
 992 
 993 void G1Policy::print_age_table() {
 994   _survivors_age_table.print_age_table(_tenuring_threshold);
 995 }
 996 
 997 void G1Policy::update_max_gc_locker_expansion() {
 998   uint expansion_region_num = 0;
 999   if (GCLockerEdenExpansionPercent > 0) {
1000     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1001     double expansion_region_num_d = perc * (double) _young_list_target_length;
1002     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1003     // less than 1.0) we'll get 1.
1004     expansion_region_num = (uint) ceil(expansion_region_num_d);
1005   } else {
1006     assert(expansion_region_num == 0, "sanity");
1007   }
1008   _young_list_max_length = _young_list_target_length + expansion_region_num;
1009   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1010 }
1011 
1012 // Calculates survivor space parameters.
1013 void G1Policy::update_survivors_policy() {
1014   double max_survivor_regions_d =
1015                  (double) _young_list_target_length / (double) SurvivorRatio;
1016 
1017   // Calculate desired survivor size based on desired max survivor regions (unconstrained
1018   // by remaining heap). Otherwise we may cause undesired promotions as we are
1019   // already getting close to end of the heap, impacting performance even more.
1020   uint const desired_max_survivor_regions = ceil(max_survivor_regions_d);
1021   size_t const survivor_size = desired_survivor_size(desired_max_survivor_regions);
1022 
1023   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(survivor_size);
1024   if (UsePerfData) {
1025     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
1026     _policy_counters->desired_survivor_size()->set_value(survivor_size * oopSize);
1027   }
1028   // The real maximum survivor size is bounded by the number of regions that can
1029   // be allocated into.
1030   _max_survivor_regions = MIN2(desired_max_survivor_regions,
1031                                _g1h->num_free_or_available_regions());
1032 }
1033 
1034 bool G1Policy::force_concurrent_start_if_outside_cycle(GCCause::Cause gc_cause) {
1035   // We actually check whether we are marking here and not if we are in a
1036   // reclamation phase. This means that we will schedule a concurrent mark
1037   // even while we are still in the process of reclaiming memory.
1038   bool during_cycle = _g1h->concurrent_mark()->cm_thread()->during_cycle();
1039   if (!during_cycle) {
1040     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). "
1041                         "GC cause: %s",
1042                         GCCause::to_string(gc_cause));
1043     collector_state()->set_initiate_conc_mark_if_possible(true);
1044     return true;
1045   } else {
1046     log_debug(gc, ergo)("Do not request concurrent cycle initiation "
1047                         "(concurrent cycle already in progress). GC cause: %s",
1048                         GCCause::to_string(gc_cause));
1049     return false;
1050   }
1051 }
1052 
1053 void G1Policy::initiate_conc_mark() {
1054   collector_state()->set_in_concurrent_start_gc(true);
1055   collector_state()->set_initiate_conc_mark_if_possible(false);
1056 }
1057 
1058 void G1Policy::decide_on_conc_mark_initiation() {
1059   // We are about to decide on whether this pause will be a
1060   // concurrent start pause.
1061 
1062   // First, collector_state()->in_concurrent_start_gc() should not be already set. We
1063   // will set it here if we have to. However, it should be cleared by
1064   // the end of the pause (it's only set for the duration of a
1065   // concurrent start pause).
1066   assert(!collector_state()->in_concurrent_start_gc(), "pre-condition");
1067 
1068   if (collector_state()->initiate_conc_mark_if_possible()) {
1069     // We had noticed on a previous pause that the heap occupancy has
1070     // gone over the initiating threshold and we should start a
1071     // concurrent marking cycle.  Or we've been explicitly requested
1072     // to start a concurrent marking cycle.  Either way, we initiate
1073     // one if not inhibited for some reason.
1074 
1075     GCCause::Cause cause = _g1h->gc_cause();
1076     if ((cause != GCCause::_wb_breakpoint) &&
1077         ConcurrentGCBreakpoints::is_controlled()) {
1078       log_debug(gc, ergo)("Do not initiate concurrent cycle (whitebox controlled)");
1079     } else if (!about_to_start_mixed_phase() && collector_state()->in_young_only_phase()) {
1080       // Initiate a new concurrent start if there is no marking or reclamation going on.
1081       initiate_conc_mark();
1082       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1083     } else if (_g1h->is_user_requested_concurrent_full_gc(cause) ||
1084                (cause == GCCause::_wb_breakpoint)) {
1085       // Initiate a user requested concurrent start or run to a breakpoint.
1086       // A concurrent start must be young only GC, so the collector state
1087       // must be updated to reflect this.
1088       collector_state()->set_in_young_only_phase(true);
1089       collector_state()->set_in_young_gc_before_mixed(false);
1090 
1091       // We might have ended up coming here about to start a mixed phase with a collection set
1092       // active. The following remark might change the change the "evacuation efficiency" of
1093       // the regions in this set, leading to failing asserts later.
1094       // Since the concurrent cycle will recreate the collection set anyway, simply drop it here.
1095       clear_collection_set_candidates();
1096       abort_time_to_mixed_tracking();
1097       initiate_conc_mark();
1098       log_debug(gc, ergo)("Initiate concurrent cycle (%s requested concurrent cycle)",
1099                           (cause == GCCause::_wb_breakpoint) ? "run_to breakpoint" : "user");
1100     } else {
1101       // The concurrent marking thread is still finishing up the
1102       // previous cycle. If we start one right now the two cycles
1103       // overlap. In particular, the concurrent marking thread might
1104       // be in the process of clearing the next marking bitmap (which
1105       // we will use for the next cycle if we start one). Starting a
1106       // cycle now will be bad given that parts of the marking
1107       // information might get cleared by the marking thread. And we
1108       // cannot wait for the marking thread to finish the cycle as it
1109       // periodically yields while clearing the next marking bitmap
1110       // and, if it's in a yield point, it's waiting for us to
1111       // finish. So, at this point we will not start a cycle and we'll
1112       // let the concurrent marking thread complete the last one.
1113       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1114     }
1115   }
1116 }
1117 
1118 void G1Policy::record_concurrent_mark_cleanup_end() {
1119   G1CollectionSetCandidates* candidates = G1CollectionSetChooser::build(_g1h->workers(), _g1h->num_regions());
1120   _collection_set->set_candidates(candidates);
1121 
1122   bool mixed_gc_pending = next_gc_should_be_mixed("request mixed gcs", "request young-only gcs");
1123   if (!mixed_gc_pending) {
1124     clear_collection_set_candidates();
1125     abort_time_to_mixed_tracking();
1126   }
1127   collector_state()->set_in_young_gc_before_mixed(mixed_gc_pending);
1128   collector_state()->set_mark_or_rebuild_in_progress(false);
1129 
1130   double end_sec = os::elapsedTime();
1131   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1132   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1133   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1134 
1135   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1136 }
1137 
1138 double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const {
1139   return percent_of(reclaimable_bytes, _g1h->capacity());
1140 }
1141 
1142 class G1ClearCollectionSetCandidateRemSets : public HeapRegionClosure {
1143   virtual bool do_heap_region(HeapRegion* r) {
1144     r->rem_set()->clear_locked(true /* only_cardset */);
1145     return false;
1146   }
1147 };
1148 
1149 void G1Policy::clear_collection_set_candidates() {
1150   // Clear remembered sets of remaining candidate regions and the actual candidate
1151   // set.
1152   G1ClearCollectionSetCandidateRemSets cl;
1153   _collection_set->candidates()->iterate(&cl);
1154   _collection_set->clear_candidates();
1155 }
1156 
1157 void G1Policy::maybe_start_marking() {
1158   if (need_to_start_conc_mark("end of GC")) {
1159     // Note: this might have already been set, if during the last
1160     // pause we decided to start a cycle but at the beginning of
1161     // this pause we decided to postpone it. That's OK.
1162     collector_state()->set_initiate_conc_mark_if_possible(true);
1163   }
1164 }
1165 
1166 bool G1Policy::is_young_only_pause(PauseKind kind) {
1167   assert(kind != FullGC, "must be");
1168   assert(kind != Remark, "must be");
1169   assert(kind != Cleanup, "must be");
1170   return kind == ConcurrentStartGC || kind == LastYoungGC || kind == YoungOnlyGC;
1171 }
1172 
1173 bool G1Policy::is_mixed_pause(PauseKind kind) {
1174   assert(kind != FullGC, "must be");
1175   assert(kind != Remark, "must be");
1176   assert(kind != Cleanup, "must be");
1177   return kind == MixedGC;
1178 }
1179 
1180 bool G1Policy::is_last_young_pause(PauseKind kind) {
1181   return kind == LastYoungGC;
1182 }
1183 
1184 bool G1Policy::is_concurrent_start_pause(PauseKind kind) {
1185   return kind == ConcurrentStartGC;
1186 }
1187 
1188 G1Policy::PauseKind G1Policy::young_gc_pause_kind() const {
1189   assert(!collector_state()->in_full_gc(), "must be");
1190   if (collector_state()->in_concurrent_start_gc()) {
1191     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1192     return ConcurrentStartGC;
1193   } else if (collector_state()->in_young_gc_before_mixed()) {
1194     assert(!collector_state()->in_concurrent_start_gc(), "must be");
1195     return LastYoungGC;
1196   } else if (collector_state()->in_mixed_phase()) {
1197     assert(!collector_state()->in_concurrent_start_gc(), "must be");
1198     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1199     return MixedGC;
1200   } else {
1201     assert(!collector_state()->in_concurrent_start_gc(), "must be");
1202     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1203     return YoungOnlyGC;
1204   }
1205 }
1206 
1207 void G1Policy::record_pause(PauseKind kind, double start, double end) {
1208   // Manage the MMU tracker. For some reason it ignores Full GCs.
1209   if (kind != FullGC) {
1210     _mmu_tracker->add_pause(start, end);
1211   }
1212   // Manage the mutator time tracking from concurrent start to first mixed gc.
1213   switch (kind) {
1214     case FullGC:
1215       abort_time_to_mixed_tracking();
1216       break;
1217     case Cleanup:
1218     case Remark:
1219     case YoungOnlyGC:
1220     case LastYoungGC:
1221       _concurrent_start_to_mixed.add_pause(end - start);
1222       break;
1223     case ConcurrentStartGC:
1224       if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
1225         _concurrent_start_to_mixed.record_concurrent_start_end(end);
1226       }
1227       break;
1228     case MixedGC:
1229       _concurrent_start_to_mixed.record_mixed_gc_start(start);
1230       break;
1231     default:
1232       ShouldNotReachHere();
1233   }
1234 }
1235 
1236 void G1Policy::abort_time_to_mixed_tracking() {
1237   _concurrent_start_to_mixed.reset();
1238 }
1239 
1240 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1241                                        const char* false_action_str) const {
1242   G1CollectionSetCandidates* candidates = _collection_set->candidates();
1243 
1244   if (candidates->is_empty()) {
1245     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1246     return false;
1247   }
1248 
1249   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1250   size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1251   double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1252   double threshold = (double) G1HeapWastePercent;
1253   if (reclaimable_percent <= threshold) {
1254     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1255                         false_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1256     return false;
1257   }
1258   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1259                       true_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1260   return true;
1261 }
1262 
1263 uint G1Policy::calc_min_old_cset_length() const {
1264   // The min old CSet region bound is based on the maximum desired
1265   // number of mixed GCs after a cycle. I.e., even if some old regions
1266   // look expensive, we should add them to the CSet anyway to make
1267   // sure we go through the available old regions in no more than the
1268   // maximum desired number of mixed GCs.
1269   //
1270   // The calculation is based on the number of marked regions we added
1271   // to the CSet candidates in the first place, not how many remain, so
1272   // that the result is the same during all mixed GCs that follow a cycle.
1273 
1274   const size_t region_num = _collection_set->candidates()->num_regions();
1275   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1276   size_t result = region_num / gc_num;
1277   // emulate ceiling
1278   if (result * gc_num < region_num) {
1279     result += 1;
1280   }
1281   return (uint) result;
1282 }
1283 
1284 uint G1Policy::calc_max_old_cset_length() const {
1285   // The max old CSet region bound is based on the threshold expressed
1286   // as a percentage of the heap size. I.e., it should bound the
1287   // number of old regions added to the CSet irrespective of how many
1288   // of them are available.
1289 
1290   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1291   const size_t region_num = g1h->num_regions();
1292   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1293   size_t result = region_num * perc / 100;
1294   // emulate ceiling
1295   if (100 * result < region_num * perc) {
1296     result += 1;
1297   }
1298   return (uint) result;
1299 }
1300 
1301 void G1Policy::calculate_old_collection_set_regions(G1CollectionSetCandidates* candidates,
1302                                                     double time_remaining_ms,
1303                                                     uint& num_initial_regions,
1304                                                     uint& num_optional_regions) {
1305   assert(candidates != NULL, "Must be");
1306 
1307   num_initial_regions = 0;
1308   num_optional_regions = 0;
1309   uint num_expensive_regions = 0;
1310 
1311   double predicted_old_time_ms = 0.0;
1312   double predicted_initial_time_ms = 0.0;
1313   double predicted_optional_time_ms = 0.0;
1314 
1315   double optional_threshold_ms = time_remaining_ms * optional_prediction_fraction();
1316 
1317   const uint min_old_cset_length = calc_min_old_cset_length();
1318   const uint max_old_cset_length = MAX2(min_old_cset_length, calc_max_old_cset_length());
1319   const uint max_optional_regions = max_old_cset_length - min_old_cset_length;
1320   bool check_time_remaining = use_adaptive_young_list_length();
1321 
1322   uint candidate_idx = candidates->cur_idx();
1323 
1324   log_debug(gc, ergo, cset)("Start adding old regions to collection set. Min %u regions, max %u regions, "
1325                             "time remaining %1.2fms, optional threshold %1.2fms",
1326                             min_old_cset_length, max_old_cset_length, time_remaining_ms, optional_threshold_ms);
1327 
1328   HeapRegion* hr = candidates->at(candidate_idx);
1329   while (hr != NULL) {
1330     if (num_initial_regions + num_optional_regions >= max_old_cset_length) {
1331       // Added maximum number of old regions to the CSet.
1332       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Maximum number of regions). "
1333                                 "Initial %u regions, optional %u regions",
1334                                 num_initial_regions, num_optional_regions);
1335       break;
1336     }
1337 
1338     // Stop adding regions if the remaining reclaimable space is
1339     // not above G1HeapWastePercent.
1340     size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1341     double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1342     double threshold = (double) G1HeapWastePercent;
1343     if (reclaimable_percent <= threshold) {
1344       // We've added enough old regions that the amount of uncollected
1345       // reclaimable space is at or below the waste threshold. Stop
1346       // adding old regions to the CSet.
1347       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Reclaimable percentage below threshold). "
1348                                 "Reclaimable: " SIZE_FORMAT "%s (%1.2f%%) threshold: " UINTX_FORMAT "%%",
1349                                 byte_size_in_proper_unit(reclaimable_bytes), proper_unit_for_byte_size(reclaimable_bytes),
1350                                 reclaimable_percent, G1HeapWastePercent);
1351       break;
1352     }
1353 
1354     double predicted_time_ms = predict_region_total_time_ms(hr, false);
1355     time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
1356     // Add regions to old set until we reach the minimum amount
1357     if (num_initial_regions < min_old_cset_length) {
1358       predicted_old_time_ms += predicted_time_ms;
1359       num_initial_regions++;
1360       // Record the number of regions added with no time remaining
1361       if (time_remaining_ms == 0.0) {
1362         num_expensive_regions++;
1363       }
1364     } else if (!check_time_remaining) {
1365       // In the non-auto-tuning case, we'll finish adding regions
1366       // to the CSet if we reach the minimum.
1367       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Region amount reached min).");
1368       break;
1369     } else {
1370       // Keep adding regions to old set until we reach the optional threshold
1371       if (time_remaining_ms > optional_threshold_ms) {
1372         predicted_old_time_ms += predicted_time_ms;
1373         num_initial_regions++;
1374       } else if (time_remaining_ms > 0) {
1375         // Keep adding optional regions until time is up.
1376         assert(num_optional_regions < max_optional_regions, "Should not be possible.");
1377         predicted_optional_time_ms += predicted_time_ms;
1378         num_optional_regions++;
1379       } else {
1380         log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Predicted time too high).");
1381         break;
1382       }
1383     }
1384     hr = candidates->at(++candidate_idx);
1385   }
1386   if (hr == NULL) {
1387     log_debug(gc, ergo, cset)("Old candidate collection set empty.");
1388   }
1389 
1390   if (num_expensive_regions > 0) {
1391     log_debug(gc, ergo, cset)("Added %u initial old regions to collection set although the predicted time was too high.",
1392                               num_expensive_regions);
1393   }
1394 
1395   log_debug(gc, ergo, cset)("Finish choosing collection set old regions. Initial: %u, optional: %u, "
1396                             "predicted old time: %1.2fms, predicted optional time: %1.2fms, time remaining: %1.2f",
1397                             num_initial_regions, num_optional_regions,
1398                             predicted_initial_time_ms, predicted_optional_time_ms, time_remaining_ms);
1399 }
1400 
1401 void G1Policy::calculate_optional_collection_set_regions(G1CollectionSetCandidates* candidates,
1402                                                          uint const max_optional_regions,
1403                                                          double time_remaining_ms,
1404                                                          uint& num_optional_regions) {
1405   assert(_g1h->collector_state()->in_mixed_phase(), "Should only be called in mixed phase");
1406 
1407   num_optional_regions = 0;
1408   double prediction_ms = 0;
1409   uint candidate_idx = candidates->cur_idx();
1410 
1411   HeapRegion* r = candidates->at(candidate_idx);
1412   while (num_optional_regions < max_optional_regions) {
1413     assert(r != NULL, "Region must exist");
1414     prediction_ms += predict_region_total_time_ms(r, false);
1415 
1416     if (prediction_ms > time_remaining_ms) {
1417       log_debug(gc, ergo, cset)("Prediction %.3fms for region %u does not fit remaining time: %.3fms.",
1418                                 prediction_ms, r->hrm_index(), time_remaining_ms);
1419       break;
1420     }
1421     // This region will be included in the next optional evacuation.
1422 
1423     time_remaining_ms -= prediction_ms;
1424     num_optional_regions++;
1425     r = candidates->at(++candidate_idx);
1426   }
1427 
1428   log_debug(gc, ergo, cset)("Prepared %u regions out of %u for optional evacuation. Predicted time: %.3fms",
1429                             num_optional_regions, max_optional_regions, prediction_ms);
1430 }
1431 
1432 void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1433   note_start_adding_survivor_regions();
1434 
1435   HeapRegion* last = NULL;
1436   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1437        it != survivors->regions()->end();
1438        ++it) {
1439     HeapRegion* curr = *it;
1440     set_region_survivor(curr);
1441 
1442     // The region is a non-empty survivor so let's add it to
1443     // the incremental collection set for the next evacuation
1444     // pause.
1445     _collection_set->add_survivor_regions(curr);
1446 
1447     last = curr;
1448   }
1449   note_stop_adding_survivor_regions();
1450 
1451   // Don't clear the survivor list handles until the start of
1452   // the next evacuation pause - we need it in order to re-tag
1453   // the survivor regions from this evacuation pause as 'young'
1454   // at the start of the next.
1455 }