1 /*
   2  * Copyright (c) 2005, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/classLoaderDataGraph.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "gc/parallel/parallelArguments.hpp"
  34 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  35 #include "gc/parallel/parMarkBitMap.inline.hpp"
  36 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  37 #include "gc/parallel/psCompactionManager.inline.hpp"
  38 #include "gc/parallel/psOldGen.hpp"
  39 #include "gc/parallel/psParallelCompact.inline.hpp"
  40 #include "gc/parallel/psPromotionManager.inline.hpp"
  41 #include "gc/parallel/psRootType.hpp"
  42 #include "gc/parallel/psScavenge.hpp"
  43 #include "gc/parallel/psYoungGen.hpp"
  44 #include "gc/shared/gcCause.hpp"
  45 #include "gc/shared/gcHeapSummary.hpp"
  46 #include "gc/shared/gcId.hpp"
  47 #include "gc/shared/gcLocker.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/isGCActiveMark.hpp"
  52 #include "gc/shared/oopStorage.inline.hpp"
  53 #include "gc/shared/oopStorageSet.inline.hpp"
  54 #include "gc/shared/oopStorageSetParState.inline.hpp"
  55 #include "gc/shared/referencePolicy.hpp"
  56 #include "gc/shared/referenceProcessor.hpp"
  57 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  58 #include "gc/shared/spaceDecorator.inline.hpp"
  59 #include "gc/shared/taskTerminator.hpp"
  60 #include "gc/shared/weakProcessor.hpp"
  61 #include "gc/shared/workerPolicy.hpp"
  62 #include "gc/shared/workgroup.hpp"
  63 #include "logging/log.hpp"
  64 #include "memory/iterator.inline.hpp"
  65 #include "memory/resourceArea.hpp"
  66 #include "memory/universe.hpp"
  67 #include "oops/access.inline.hpp"
  68 #include "oops/instanceClassLoaderKlass.inline.hpp"
  69 #include "oops/instanceKlass.inline.hpp"
  70 #include "oops/instanceMirrorKlass.inline.hpp"
  71 #include "oops/methodData.hpp"
  72 #include "oops/objArrayKlass.inline.hpp"
  73 #include "oops/oop.inline.hpp"
  74 #include "runtime/atomic.hpp"
  75 #include "runtime/handles.inline.hpp"
  76 #include "runtime/safepoint.hpp"
  77 #include "runtime/vmThread.hpp"
  78 #include "services/memTracker.hpp"
  79 #include "services/memoryService.hpp"
  80 #include "utilities/align.hpp"
  81 #include "utilities/debug.hpp"
  82 #include "utilities/events.hpp"
  83 #include "utilities/formatBuffer.hpp"
  84 #include "utilities/macros.hpp"
  85 #include "utilities/stack.inline.hpp"
  86 #if INCLUDE_JVMCI
  87 #include "jvmci/jvmci.hpp"
  88 #endif
  89 
  90 #include <math.h>
  91 
  92 // All sizes are in HeapWords.
  93 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
  94 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  95 const size_t ParallelCompactData::RegionSizeBytes =
  96   RegionSize << LogHeapWordSize;
  97 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  98 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  99 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
 100 
 101 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
 102 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
 103 const size_t ParallelCompactData::BlockSizeBytes  =
 104   BlockSize << LogHeapWordSize;
 105 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
 106 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
 107 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
 108 
 109 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
 110 const size_t ParallelCompactData::Log2BlocksPerRegion =
 111   Log2RegionSize - Log2BlockSize;
 112 
 113 const ParallelCompactData::RegionData::region_sz_t
 114 ParallelCompactData::RegionData::dc_shift = 27;
 115 
 116 const ParallelCompactData::RegionData::region_sz_t
 117 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
 118 
 119 const ParallelCompactData::RegionData::region_sz_t
 120 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
 121 
 122 const ParallelCompactData::RegionData::region_sz_t
 123 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 124 
 125 const ParallelCompactData::RegionData::region_sz_t
 126 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 127 
 128 const ParallelCompactData::RegionData::region_sz_t
 129 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 130 
 131 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 132 
 133 SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer;
 134 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
 135 
 136 double PSParallelCompact::_dwl_mean;
 137 double PSParallelCompact::_dwl_std_dev;
 138 double PSParallelCompact::_dwl_first_term;
 139 double PSParallelCompact::_dwl_adjustment;
 140 #ifdef  ASSERT
 141 bool   PSParallelCompact::_dwl_initialized = false;
 142 #endif  // #ifdef ASSERT
 143 
 144 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 145                        HeapWord* destination)
 146 {
 147   assert(src_region_idx != 0, "invalid src_region_idx");
 148   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 149   assert(destination != NULL, "invalid destination argument");
 150 
 151   _src_region_idx = src_region_idx;
 152   _partial_obj_size = partial_obj_size;
 153   _destination = destination;
 154 
 155   // These fields may not be updated below, so make sure they're clear.
 156   assert(_dest_region_addr == NULL, "should have been cleared");
 157   assert(_first_src_addr == NULL, "should have been cleared");
 158 
 159   // Determine the number of destination regions for the partial object.
 160   HeapWord* const last_word = destination + partial_obj_size - 1;
 161   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 162   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 163   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 164 
 165   if (beg_region_addr == end_region_addr) {
 166     // One destination region.
 167     _destination_count = 1;
 168     if (end_region_addr == destination) {
 169       // The destination falls on a region boundary, thus the first word of the
 170       // partial object will be the first word copied to the destination region.
 171       _dest_region_addr = end_region_addr;
 172       _first_src_addr = sd.region_to_addr(src_region_idx);
 173     }
 174   } else {
 175     // Two destination regions.  When copied, the partial object will cross a
 176     // destination region boundary, so a word somewhere within the partial
 177     // object will be the first word copied to the second destination region.
 178     _destination_count = 2;
 179     _dest_region_addr = end_region_addr;
 180     const size_t ofs = pointer_delta(end_region_addr, destination);
 181     assert(ofs < _partial_obj_size, "sanity");
 182     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 183   }
 184 }
 185 
 186 void SplitInfo::clear()
 187 {
 188   _src_region_idx = 0;
 189   _partial_obj_size = 0;
 190   _destination = NULL;
 191   _destination_count = 0;
 192   _dest_region_addr = NULL;
 193   _first_src_addr = NULL;
 194   assert(!is_valid(), "sanity");
 195 }
 196 
 197 #ifdef  ASSERT
 198 void SplitInfo::verify_clear()
 199 {
 200   assert(_src_region_idx == 0, "not clear");
 201   assert(_partial_obj_size == 0, "not clear");
 202   assert(_destination == NULL, "not clear");
 203   assert(_destination_count == 0, "not clear");
 204   assert(_dest_region_addr == NULL, "not clear");
 205   assert(_first_src_addr == NULL, "not clear");
 206 }
 207 #endif  // #ifdef ASSERT
 208 
 209 
 210 void PSParallelCompact::print_on_error(outputStream* st) {
 211   _mark_bitmap.print_on_error(st);
 212 }
 213 
 214 #ifndef PRODUCT
 215 const char* PSParallelCompact::space_names[] = {
 216   "old ", "eden", "from", "to  "
 217 };
 218 
 219 void PSParallelCompact::print_region_ranges() {
 220   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 221     return;
 222   }
 223   Log(gc, compaction) log;
 224   ResourceMark rm;
 225   LogStream ls(log.trace());
 226   Universe::print_on(&ls);
 227   log.trace("space  bottom     top        end        new_top");
 228   log.trace("------ ---------- ---------- ---------- ----------");
 229 
 230   for (unsigned int id = 0; id < last_space_id; ++id) {
 231     const MutableSpace* space = _space_info[id].space();
 232     log.trace("%u %s "
 233               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 234               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 235               id, space_names[id],
 236               summary_data().addr_to_region_idx(space->bottom()),
 237               summary_data().addr_to_region_idx(space->top()),
 238               summary_data().addr_to_region_idx(space->end()),
 239               summary_data().addr_to_region_idx(_space_info[id].new_top()));
 240   }
 241 }
 242 
 243 void
 244 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 245 {
 246 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 247 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 248 
 249   ParallelCompactData& sd = PSParallelCompact::summary_data();
 250   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 251   log_develop_trace(gc, compaction)(
 252       REGION_IDX_FORMAT " " PTR_FORMAT " "
 253       REGION_IDX_FORMAT " " PTR_FORMAT " "
 254       REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 255       REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 256       i, p2i(c->data_location()), dci, p2i(c->destination()),
 257       c->partial_obj_size(), c->live_obj_size(),
 258       c->data_size(), c->source_region(), c->destination_count());
 259 
 260 #undef  REGION_IDX_FORMAT
 261 #undef  REGION_DATA_FORMAT
 262 }
 263 
 264 void
 265 print_generic_summary_data(ParallelCompactData& summary_data,
 266                            HeapWord* const beg_addr,
 267                            HeapWord* const end_addr)
 268 {
 269   size_t total_words = 0;
 270   size_t i = summary_data.addr_to_region_idx(beg_addr);
 271   const size_t last = summary_data.addr_to_region_idx(end_addr);
 272   HeapWord* pdest = 0;
 273 
 274   while (i < last) {
 275     ParallelCompactData::RegionData* c = summary_data.region(i);
 276     if (c->data_size() != 0 || c->destination() != pdest) {
 277       print_generic_summary_region(i, c);
 278       total_words += c->data_size();
 279       pdest = c->destination();
 280     }
 281     ++i;
 282   }
 283 
 284   log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 285 }
 286 
 287 void
 288 PSParallelCompact::print_generic_summary_data(ParallelCompactData& summary_data,
 289                                               HeapWord* const beg_addr,
 290                                               HeapWord* const end_addr) {
 291   ::print_generic_summary_data(summary_data,beg_addr, end_addr);
 292 }
 293 
 294 void
 295 print_generic_summary_data(ParallelCompactData& summary_data,
 296                            SpaceInfo* space_info)
 297 {
 298   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 299     return;
 300   }
 301 
 302   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 303     const MutableSpace* space = space_info[id].space();
 304     print_generic_summary_data(summary_data, space->bottom(),
 305                                MAX2(space->top(), space_info[id].new_top()));
 306   }
 307 }
 308 
 309 void
 310 print_initial_summary_data(ParallelCompactData& summary_data,
 311                            const MutableSpace* space) {
 312   if (space->top() == space->bottom()) {
 313     return;
 314   }
 315 
 316   const size_t region_size = ParallelCompactData::RegionSize;
 317   typedef ParallelCompactData::RegionData RegionData;
 318   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 319   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 320   const RegionData* c = summary_data.region(end_region - 1);
 321   HeapWord* end_addr = c->destination() + c->data_size();
 322   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 323 
 324   // Print (and count) the full regions at the beginning of the space.
 325   size_t full_region_count = 0;
 326   size_t i = summary_data.addr_to_region_idx(space->bottom());
 327   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 328     ParallelCompactData::RegionData* c = summary_data.region(i);
 329     log_develop_trace(gc, compaction)(
 330         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 331         i, p2i(c->destination()),
 332         c->partial_obj_size(), c->live_obj_size(),
 333         c->data_size(), c->source_region(), c->destination_count());
 334     ++full_region_count;
 335     ++i;
 336   }
 337 
 338   size_t live_to_right = live_in_space - full_region_count * region_size;
 339 
 340   double max_reclaimed_ratio = 0.0;
 341   size_t max_reclaimed_ratio_region = 0;
 342   size_t max_dead_to_right = 0;
 343   size_t max_live_to_right = 0;
 344 
 345   // Print the 'reclaimed ratio' for regions while there is something live in
 346   // the region or to the right of it.  The remaining regions are empty (and
 347   // uninteresting), and computing the ratio will result in division by 0.
 348   while (i < end_region && live_to_right > 0) {
 349     c = summary_data.region(i);
 350     HeapWord* const region_addr = summary_data.region_to_addr(i);
 351     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 352     const size_t dead_to_right = used_to_right - live_to_right;
 353     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 354 
 355     if (reclaimed_ratio > max_reclaimed_ratio) {
 356             max_reclaimed_ratio = reclaimed_ratio;
 357             max_reclaimed_ratio_region = i;
 358             max_dead_to_right = dead_to_right;
 359             max_live_to_right = live_to_right;
 360     }
 361 
 362     ParallelCompactData::RegionData* c = summary_data.region(i);
 363     log_develop_trace(gc, compaction)(
 364         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d"
 365         "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 366         i, p2i(c->destination()),
 367         c->partial_obj_size(), c->live_obj_size(),
 368         c->data_size(), c->source_region(), c->destination_count(),
 369         reclaimed_ratio, dead_to_right, live_to_right);
 370 
 371 
 372     live_to_right -= c->data_size();
 373     ++i;
 374   }
 375 
 376   // Any remaining regions are empty.  Print one more if there is one.
 377   if (i < end_region) {
 378     ParallelCompactData::RegionData* c = summary_data.region(i);
 379     log_develop_trace(gc, compaction)(
 380         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 381          i, p2i(c->destination()),
 382          c->partial_obj_size(), c->live_obj_size(),
 383          c->data_size(), c->source_region(), c->destination_count());
 384   }
 385 
 386   log_develop_trace(gc, compaction)("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 387                                     max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio);
 388 }
 389 
 390 void
 391 print_initial_summary_data(ParallelCompactData& summary_data,
 392                            SpaceInfo* space_info) {
 393   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 394     return;
 395   }
 396 
 397   unsigned int id = PSParallelCompact::old_space_id;
 398   const MutableSpace* space;
 399   do {
 400     space = space_info[id].space();
 401     print_initial_summary_data(summary_data, space);
 402   } while (++id < PSParallelCompact::eden_space_id);
 403 
 404   do {
 405     space = space_info[id].space();
 406     print_generic_summary_data(summary_data, space->bottom(), space->top());
 407   } while (++id < PSParallelCompact::last_space_id);
 408 }
 409 #endif  // #ifndef PRODUCT
 410 
 411 #ifdef  ASSERT
 412 size_t add_obj_count;
 413 size_t add_obj_size;
 414 size_t mark_bitmap_count;
 415 size_t mark_bitmap_size;
 416 #endif  // #ifdef ASSERT
 417 
 418 ParallelCompactData::ParallelCompactData() :
 419   _region_start(NULL),
 420   DEBUG_ONLY(_region_end(NULL) COMMA)
 421   _region_vspace(NULL),
 422   _reserved_byte_size(0),
 423   _region_data(NULL),
 424   _region_count(0),
 425   _block_vspace(NULL),
 426   _block_data(NULL),
 427   _block_count(0) {}
 428 
 429 bool ParallelCompactData::initialize(MemRegion covered_region)
 430 {
 431   _region_start = covered_region.start();
 432   const size_t region_size = covered_region.word_size();
 433   DEBUG_ONLY(_region_end = _region_start + region_size;)
 434 
 435   assert(region_align_down(_region_start) == _region_start,
 436          "region start not aligned");
 437   assert((region_size & RegionSizeOffsetMask) == 0,
 438          "region size not a multiple of RegionSize");
 439 
 440   bool result = initialize_region_data(region_size) && initialize_block_data();
 441   return result;
 442 }
 443 
 444 PSVirtualSpace*
 445 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 446 {
 447   const size_t raw_bytes = count * element_size;
 448   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 449   const size_t granularity = os::vm_allocation_granularity();
 450   _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity));
 451 
 452   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 453     MAX2(page_sz, granularity);
 454   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
 455   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, page_sz, rs.base(),
 456                        rs.size());
 457 
 458   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 459 
 460   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 461   if (vspace != 0) {
 462     if (vspace->expand_by(_reserved_byte_size)) {
 463       return vspace;
 464     }
 465     delete vspace;
 466     // Release memory reserved in the space.
 467     rs.release();
 468   }
 469 
 470   return 0;
 471 }
 472 
 473 bool ParallelCompactData::initialize_region_data(size_t region_size)
 474 {
 475   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 476   _region_vspace = create_vspace(count, sizeof(RegionData));
 477   if (_region_vspace != 0) {
 478     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 479     _region_count = count;
 480     return true;
 481   }
 482   return false;
 483 }
 484 
 485 bool ParallelCompactData::initialize_block_data()
 486 {
 487   assert(_region_count != 0, "region data must be initialized first");
 488   const size_t count = _region_count << Log2BlocksPerRegion;
 489   _block_vspace = create_vspace(count, sizeof(BlockData));
 490   if (_block_vspace != 0) {
 491     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 492     _block_count = count;
 493     return true;
 494   }
 495   return false;
 496 }
 497 
 498 void ParallelCompactData::clear()
 499 {
 500   memset(_region_data, 0, _region_vspace->committed_size());
 501   memset(_block_data, 0, _block_vspace->committed_size());
 502 }
 503 
 504 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 505   assert(beg_region <= _region_count, "beg_region out of range");
 506   assert(end_region <= _region_count, "end_region out of range");
 507   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 508 
 509   const size_t region_cnt = end_region - beg_region;
 510   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 511 
 512   const size_t beg_block = beg_region * BlocksPerRegion;
 513   const size_t block_cnt = region_cnt * BlocksPerRegion;
 514   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 515 }
 516 
 517 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 518 {
 519   const RegionData* cur_cp = region(region_idx);
 520   const RegionData* const end_cp = region(region_count() - 1);
 521 
 522   HeapWord* result = region_to_addr(region_idx);
 523   if (cur_cp < end_cp) {
 524     do {
 525       result += cur_cp->partial_obj_size();
 526     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 527   }
 528   return result;
 529 }
 530 
 531 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 532 {
 533   const size_t obj_ofs = pointer_delta(addr, _region_start);
 534   const size_t beg_region = obj_ofs >> Log2RegionSize;
 535   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 536 
 537   DEBUG_ONLY(Atomic::inc(&add_obj_count);)
 538   DEBUG_ONLY(Atomic::add(&add_obj_size, len);)
 539 
 540   if (beg_region == end_region) {
 541     // All in one region.
 542     _region_data[beg_region].add_live_obj(len);
 543     return;
 544   }
 545 
 546   // First region.
 547   const size_t beg_ofs = region_offset(addr);
 548   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 549 
 550   Klass* klass = ((oop)addr)->klass();
 551   // Middle regions--completely spanned by this object.
 552   for (size_t region = beg_region + 1; region < end_region; ++region) {
 553     _region_data[region].set_partial_obj_size(RegionSize);
 554     _region_data[region].set_partial_obj_addr(addr);
 555   }
 556 
 557   // Last region.
 558   const size_t end_ofs = region_offset(addr + len - 1);
 559   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 560   _region_data[end_region].set_partial_obj_addr(addr);
 561 }
 562 
 563 void
 564 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 565 {
 566   assert(region_offset(beg) == 0, "not RegionSize aligned");
 567   assert(region_offset(end) == 0, "not RegionSize aligned");
 568 
 569   size_t cur_region = addr_to_region_idx(beg);
 570   const size_t end_region = addr_to_region_idx(end);
 571   HeapWord* addr = beg;
 572   while (cur_region < end_region) {
 573     _region_data[cur_region].set_destination(addr);
 574     _region_data[cur_region].set_destination_count(0);
 575     _region_data[cur_region].set_source_region(cur_region);
 576     _region_data[cur_region].set_data_location(addr);
 577 
 578     // Update live_obj_size so the region appears completely full.
 579     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 580     _region_data[cur_region].set_live_obj_size(live_size);
 581 
 582     ++cur_region;
 583     addr += RegionSize;
 584   }
 585 }
 586 
 587 // Find the point at which a space can be split and, if necessary, record the
 588 // split point.
 589 //
 590 // If the current src region (which overflowed the destination space) doesn't
 591 // have a partial object, the split point is at the beginning of the current src
 592 // region (an "easy" split, no extra bookkeeping required).
 593 //
 594 // If the current src region has a partial object, the split point is in the
 595 // region where that partial object starts (call it the split_region).  If
 596 // split_region has a partial object, then the split point is just after that
 597 // partial object (a "hard" split where we have to record the split data and
 598 // zero the partial_obj_size field).  With a "hard" split, we know that the
 599 // partial_obj ends within split_region because the partial object that caused
 600 // the overflow starts in split_region.  If split_region doesn't have a partial
 601 // obj, then the split is at the beginning of split_region (another "easy"
 602 // split).
 603 HeapWord*
 604 ParallelCompactData::summarize_split_space(size_t src_region,
 605                                            SplitInfo& split_info,
 606                                            HeapWord* destination,
 607                                            HeapWord* target_end,
 608                                            HeapWord** target_next)
 609 {
 610   assert(destination <= target_end, "sanity");
 611   assert(destination + _region_data[src_region].data_size() > target_end,
 612     "region should not fit into target space");
 613   assert(is_region_aligned(target_end), "sanity");
 614 
 615   size_t split_region = src_region;
 616   HeapWord* split_destination = destination;
 617   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 618 
 619   if (destination + partial_obj_size > target_end) {
 620     // The split point is just after the partial object (if any) in the
 621     // src_region that contains the start of the object that overflowed the
 622     // destination space.
 623     //
 624     // Find the start of the "overflow" object and set split_region to the
 625     // region containing it.
 626     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 627     split_region = addr_to_region_idx(overflow_obj);
 628 
 629     // Clear the source_region field of all destination regions whose first word
 630     // came from data after the split point (a non-null source_region field
 631     // implies a region must be filled).
 632     //
 633     // An alternative to the simple loop below:  clear during post_compact(),
 634     // which uses memcpy instead of individual stores, and is easy to
 635     // parallelize.  (The downside is that it clears the entire RegionData
 636     // object as opposed to just one field.)
 637     //
 638     // post_compact() would have to clear the summary data up to the highest
 639     // address that was written during the summary phase, which would be
 640     //
 641     //         max(top, max(new_top, clear_top))
 642     //
 643     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 644     // to target_end.
 645     const RegionData* const sr = region(split_region);
 646     const size_t beg_idx =
 647       addr_to_region_idx(region_align_up(sr->destination() +
 648                                          sr->partial_obj_size()));
 649     const size_t end_idx = addr_to_region_idx(target_end);
 650 
 651     log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
 652     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 653       _region_data[idx].set_source_region(0);
 654     }
 655 
 656     // Set split_destination and partial_obj_size to reflect the split region.
 657     split_destination = sr->destination();
 658     partial_obj_size = sr->partial_obj_size();
 659   }
 660 
 661   // The split is recorded only if a partial object extends onto the region.
 662   if (partial_obj_size != 0) {
 663     _region_data[split_region].set_partial_obj_size(0);
 664     split_info.record(split_region, partial_obj_size, split_destination);
 665   }
 666 
 667   // Setup the continuation addresses.
 668   *target_next = split_destination + partial_obj_size;
 669   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 670 
 671   if (log_develop_is_enabled(Trace, gc, compaction)) {
 672     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 673     log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
 674                                       split_type, p2i(source_next), split_region, partial_obj_size);
 675     log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
 676                                       split_type, p2i(split_destination),
 677                                       addr_to_region_idx(split_destination),
 678                                       p2i(*target_next));
 679 
 680     if (partial_obj_size != 0) {
 681       HeapWord* const po_beg = split_info.destination();
 682       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 683       log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
 684                                         split_type,
 685                                         p2i(po_beg), addr_to_region_idx(po_beg),
 686                                         p2i(po_end), addr_to_region_idx(po_end));
 687     }
 688   }
 689 
 690   return source_next;
 691 }
 692 
 693 bool ParallelCompactData::summarize(SplitInfo& split_info,
 694                                     HeapWord* source_beg, HeapWord* source_end,
 695                                     HeapWord** source_next,
 696                                     HeapWord* target_beg, HeapWord* target_end,
 697                                     HeapWord** target_next)
 698 {
 699   HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 700   log_develop_trace(gc, compaction)(
 701       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 702       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 703       p2i(source_beg), p2i(source_end), p2i(source_next_val),
 704       p2i(target_beg), p2i(target_end), p2i(*target_next));
 705 
 706   size_t cur_region = addr_to_region_idx(source_beg);
 707   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 708 
 709   HeapWord *dest_addr = target_beg;
 710   while (cur_region < end_region) {
 711     // The destination must be set even if the region has no data.
 712     _region_data[cur_region].set_destination(dest_addr);
 713 
 714     size_t words = _region_data[cur_region].data_size();
 715     if (words > 0) {
 716       // If cur_region does not fit entirely into the target space, find a point
 717       // at which the source space can be 'split' so that part is copied to the
 718       // target space and the rest is copied elsewhere.
 719       if (dest_addr + words > target_end) {
 720         assert(source_next != NULL, "source_next is NULL when splitting");
 721         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 722                                              target_end, target_next);
 723         return false;
 724       }
 725 
 726       // Compute the destination_count for cur_region, and if necessary, update
 727       // source_region for a destination region.  The source_region field is
 728       // updated if cur_region is the first (left-most) region to be copied to a
 729       // destination region.
 730       //
 731       // The destination_count calculation is a bit subtle.  A region that has
 732       // data that compacts into itself does not count itself as a destination.
 733       // This maintains the invariant that a zero count means the region is
 734       // available and can be claimed and then filled.
 735       uint destination_count = 0;
 736       if (split_info.is_split(cur_region)) {
 737         // The current region has been split:  the partial object will be copied
 738         // to one destination space and the remaining data will be copied to
 739         // another destination space.  Adjust the initial destination_count and,
 740         // if necessary, set the source_region field if the partial object will
 741         // cross a destination region boundary.
 742         destination_count = split_info.destination_count();
 743         if (destination_count == 2) {
 744           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 745           _region_data[dest_idx].set_source_region(cur_region);
 746         }
 747       }
 748 
 749       HeapWord* const last_addr = dest_addr + words - 1;
 750       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 751       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 752 
 753       // Initially assume that the destination regions will be the same and
 754       // adjust the value below if necessary.  Under this assumption, if
 755       // cur_region == dest_region_2, then cur_region will be compacted
 756       // completely into itself.
 757       destination_count += cur_region == dest_region_2 ? 0 : 1;
 758       if (dest_region_1 != dest_region_2) {
 759         // Destination regions differ; adjust destination_count.
 760         destination_count += 1;
 761         // Data from cur_region will be copied to the start of dest_region_2.
 762         _region_data[dest_region_2].set_source_region(cur_region);
 763       } else if (region_offset(dest_addr) == 0) {
 764         // Data from cur_region will be copied to the start of the destination
 765         // region.
 766         _region_data[dest_region_1].set_source_region(cur_region);
 767       }
 768 
 769       _region_data[cur_region].set_destination_count(destination_count);
 770       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 771       dest_addr += words;
 772     }
 773 
 774     ++cur_region;
 775   }
 776 
 777   *target_next = dest_addr;
 778   return true;
 779 }
 780 
 781 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) {
 782   assert(addr != NULL, "Should detect NULL oop earlier");
 783   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
 784   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 785 
 786   // Region covering the object.
 787   RegionData* const region_ptr = addr_to_region_ptr(addr);
 788   HeapWord* result = region_ptr->destination();
 789 
 790   // If the entire Region is live, the new location is region->destination + the
 791   // offset of the object within in the Region.
 792 
 793   // Run some performance tests to determine if this special case pays off.  It
 794   // is worth it for pointers into the dense prefix.  If the optimization to
 795   // avoid pointer updates in regions that only point to the dense prefix is
 796   // ever implemented, this should be revisited.
 797   if (region_ptr->data_size() == RegionSize) {
 798     result += region_offset(addr);
 799     return result;
 800   }
 801 
 802   // Otherwise, the new location is region->destination + block offset + the
 803   // number of live words in the Block that are (a) to the left of addr and (b)
 804   // due to objects that start in the Block.
 805 
 806   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 807   // threads may fill the block table for a region (harmless, since it is
 808   // idempotent).
 809   if (!region_ptr->blocks_filled()) {
 810     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 811     region_ptr->set_blocks_filled();
 812   }
 813 
 814   HeapWord* const search_start = block_align_down(addr);
 815   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 816 
 817   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 818   const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr));
 819   result += block_offset + live;
 820   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 821   return result;
 822 }
 823 
 824 #ifdef ASSERT
 825 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 826 {
 827   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 828   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 829   for (const size_t* p = beg; p < end; ++p) {
 830     assert(*p == 0, "not zero");
 831   }
 832 }
 833 
 834 void ParallelCompactData::verify_clear()
 835 {
 836   verify_clear(_region_vspace);
 837   verify_clear(_block_vspace);
 838 }
 839 #endif  // #ifdef ASSERT
 840 
 841 STWGCTimer          PSParallelCompact::_gc_timer;
 842 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 843 elapsedTimer        PSParallelCompact::_accumulated_time;
 844 unsigned int        PSParallelCompact::_total_invocations = 0;
 845 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 846 jlong               PSParallelCompact::_time_of_last_gc = 0;
 847 CollectorCounters*  PSParallelCompact::_counters = NULL;
 848 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 849 ParallelCompactData PSParallelCompact::_summary_data;
 850 
 851 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 852 
 853 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 854 
 855 class PCReferenceProcessor: public ReferenceProcessor {
 856 public:
 857   PCReferenceProcessor(
 858     BoolObjectClosure* is_subject_to_discovery,
 859     BoolObjectClosure* is_alive_non_header) :
 860       ReferenceProcessor(is_subject_to_discovery,
 861       ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 862       ParallelGCThreads,   // mt processing degree
 863       true,                // mt discovery
 864       ParallelGCThreads,   // mt discovery degree
 865       true,                // atomic_discovery
 866       is_alive_non_header) {
 867   }
 868 
 869   template<typename T> bool discover(oop obj, ReferenceType type) {
 870     T* referent_addr = (T*) java_lang_ref_Reference::referent_addr_raw(obj);
 871     T heap_oop = RawAccess<>::oop_load(referent_addr);
 872     oop referent = CompressedOops::decode_not_null(heap_oop);
 873     return PSParallelCompact::mark_bitmap()->is_unmarked(referent)
 874         && ReferenceProcessor::discover_reference(obj, type);
 875   }
 876   virtual bool discover_reference(oop obj, ReferenceType type) {
 877     if (UseCompressedOops) {
 878       return discover<narrowOop>(obj, type);
 879     } else {
 880       return discover<oop>(obj, type);
 881     }
 882   }
 883 };
 884 
 885 void PSParallelCompact::post_initialize() {
 886   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 887   _span_based_discoverer.set_span(heap->reserved_region());
 888   _ref_processor =
 889     new PCReferenceProcessor(&_span_based_discoverer,
 890                              &_is_alive_closure); // non-header is alive closure
 891 
 892   _counters = new CollectorCounters("Parallel full collection pauses", 1);
 893 
 894   // Initialize static fields in ParCompactionManager.
 895   ParCompactionManager::initialize(mark_bitmap());
 896 }
 897 
 898 bool PSParallelCompact::initialize() {
 899   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 900   MemRegion mr = heap->reserved_region();
 901 
 902   // Was the old gen get allocated successfully?
 903   if (!heap->old_gen()->is_allocated()) {
 904     return false;
 905   }
 906 
 907   initialize_space_info();
 908   initialize_dead_wood_limiter();
 909 
 910   if (!_mark_bitmap.initialize(mr)) {
 911     vm_shutdown_during_initialization(
 912       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 913       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 914       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 915     return false;
 916   }
 917 
 918   if (!_summary_data.initialize(mr)) {
 919     vm_shutdown_during_initialization(
 920       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 921       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 922       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 923     return false;
 924   }
 925 
 926   return true;
 927 }
 928 
 929 void PSParallelCompact::initialize_space_info()
 930 {
 931   memset(&_space_info, 0, sizeof(_space_info));
 932 
 933   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 934   PSYoungGen* young_gen = heap->young_gen();
 935 
 936   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 937   _space_info[eden_space_id].set_space(young_gen->eden_space());
 938   _space_info[from_space_id].set_space(young_gen->from_space());
 939   _space_info[to_space_id].set_space(young_gen->to_space());
 940 
 941   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 942 }
 943 
 944 void PSParallelCompact::initialize_dead_wood_limiter()
 945 {
 946   const size_t max = 100;
 947   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 948   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 949   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 950   DEBUG_ONLY(_dwl_initialized = true;)
 951   _dwl_adjustment = normal_distribution(1.0);
 952 }
 953 
 954 void
 955 PSParallelCompact::clear_data_covering_space(SpaceId id)
 956 {
 957   // At this point, top is the value before GC, new_top() is the value that will
 958   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 959   // should be marked above top.  The summary data is cleared to the larger of
 960   // top & new_top.
 961   MutableSpace* const space = _space_info[id].space();
 962   HeapWord* const bot = space->bottom();
 963   HeapWord* const top = space->top();
 964   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 965 
 966   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 967   const idx_t end_bit = _mark_bitmap.align_range_end(_mark_bitmap.addr_to_bit(top));
 968   _mark_bitmap.clear_range(beg_bit, end_bit);
 969 
 970   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 971   const size_t end_region =
 972     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 973   _summary_data.clear_range(beg_region, end_region);
 974 
 975   // Clear the data used to 'split' regions.
 976   SplitInfo& split_info = _space_info[id].split_info();
 977   if (split_info.is_valid()) {
 978     split_info.clear();
 979   }
 980   DEBUG_ONLY(split_info.verify_clear();)
 981 }
 982 
 983 void PSParallelCompact::pre_compact()
 984 {
 985   // Update the from & to space pointers in space_info, since they are swapped
 986   // at each young gen gc.  Do the update unconditionally (even though a
 987   // promotion failure does not swap spaces) because an unknown number of young
 988   // collections will have swapped the spaces an unknown number of times.
 989   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
 990   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 991   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 992   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 993 
 994   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 995   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 996 
 997   // Increment the invocation count
 998   heap->increment_total_collections(true);
 999 
1000   // We need to track unique mark sweep invocations as well.
1001   _total_invocations++;
1002 
1003   heap->print_heap_before_gc();
1004   heap->trace_heap_before_gc(&_gc_tracer);
1005 
1006   // Fill in TLABs
1007   heap->ensure_parsability(true);  // retire TLABs
1008 
1009   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
1010     Universe::verify("Before GC");
1011   }
1012 
1013   // Verify object start arrays
1014   if (VerifyObjectStartArray &&
1015       VerifyBeforeGC) {
1016     heap->old_gen()->verify_object_start_array();
1017   }
1018 
1019   DEBUG_ONLY(mark_bitmap()->verify_clear();)
1020   DEBUG_ONLY(summary_data().verify_clear();)
1021 
1022   ParCompactionManager::reset_all_bitmap_query_caches();
1023 }
1024 
1025 void PSParallelCompact::post_compact()
1026 {
1027   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
1028   ParCompactionManager::remove_all_shadow_regions();
1029 
1030   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1031     // Clear the marking bitmap, summary data and split info.
1032     clear_data_covering_space(SpaceId(id));
1033     // Update top().  Must be done after clearing the bitmap and summary data.
1034     _space_info[id].publish_new_top();
1035   }
1036 
1037   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1038   MutableSpace* const from_space = _space_info[from_space_id].space();
1039   MutableSpace* const to_space   = _space_info[to_space_id].space();
1040 
1041   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1042   bool eden_empty = eden_space->is_empty();
1043 
1044   // Update heap occupancy information which is used as input to the soft ref
1045   // clearing policy at the next gc.
1046   Universe::update_heap_info_at_gc();
1047 
1048   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1049     to_space->is_empty();
1050 
1051   PSCardTable* ct = heap->card_table();
1052   MemRegion old_mr = heap->old_gen()->reserved();
1053   if (young_gen_empty) {
1054     ct->clear(MemRegion(old_mr.start(), old_mr.end()));
1055   } else {
1056     ct->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1057   }
1058 
1059   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1060   ClassLoaderDataGraph::purge();
1061   MetaspaceUtils::verify_metrics();
1062 
1063   heap->prune_scavengable_nmethods();
1064 
1065 #if COMPILER2_OR_JVMCI
1066   DerivedPointerTable::update_pointers();
1067 #endif
1068 
1069   if (ZapUnusedHeapArea) {
1070     heap->gen_mangle_unused_area();
1071   }
1072 
1073   // Update time of last GC
1074   reset_millis_since_last_gc();
1075 }
1076 
1077 HeapWord*
1078 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1079                                                     bool maximum_compaction)
1080 {
1081   const size_t region_size = ParallelCompactData::RegionSize;
1082   const ParallelCompactData& sd = summary_data();
1083 
1084   const MutableSpace* const space = _space_info[id].space();
1085   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1086   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1087   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1088 
1089   // Skip full regions at the beginning of the space--they are necessarily part
1090   // of the dense prefix.
1091   size_t full_count = 0;
1092   const RegionData* cp;
1093   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1094     ++full_count;
1095   }
1096 
1097   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1098   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1099   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1100   if (maximum_compaction || cp == end_cp || interval_ended) {
1101     _maximum_compaction_gc_num = total_invocations();
1102     return sd.region_to_addr(cp);
1103   }
1104 
1105   HeapWord* const new_top = _space_info[id].new_top();
1106   const size_t space_live = pointer_delta(new_top, space->bottom());
1107   const size_t space_used = space->used_in_words();
1108   const size_t space_capacity = space->capacity_in_words();
1109 
1110   const double cur_density = double(space_live) / space_capacity;
1111   const double deadwood_density =
1112     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1113   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1114 
1115   log_develop_debug(gc, compaction)(
1116       "cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1117       cur_density, deadwood_density, deadwood_goal);
1118   log_develop_debug(gc, compaction)(
1119       "space_live=" SIZE_FORMAT " space_used=" SIZE_FORMAT " "
1120       "space_cap=" SIZE_FORMAT,
1121       space_live, space_used,
1122       space_capacity);
1123 
1124   // XXX - Use binary search?
1125   HeapWord* dense_prefix = sd.region_to_addr(cp);
1126   const RegionData* full_cp = cp;
1127   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1128   while (cp < end_cp) {
1129     HeapWord* region_destination = cp->destination();
1130     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1131 
1132     log_develop_trace(gc, compaction)(
1133         "c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1134         "dp=" PTR_FORMAT " cdw=" SIZE_FORMAT_W(8),
1135         sd.region(cp), p2i(region_destination),
1136         p2i(dense_prefix), cur_deadwood);
1137 
1138     if (cur_deadwood >= deadwood_goal) {
1139       // Found the region that has the correct amount of deadwood to the left.
1140       // This typically occurs after crossing a fairly sparse set of regions, so
1141       // iterate backwards over those sparse regions, looking for the region
1142       // that has the lowest density of live objects 'to the right.'
1143       size_t space_to_left = sd.region(cp) * region_size;
1144       size_t live_to_left = space_to_left - cur_deadwood;
1145       size_t space_to_right = space_capacity - space_to_left;
1146       size_t live_to_right = space_live - live_to_left;
1147       double density_to_right = double(live_to_right) / space_to_right;
1148       while (cp > full_cp) {
1149         --cp;
1150         const size_t prev_region_live_to_right = live_to_right -
1151           cp->data_size();
1152         const size_t prev_region_space_to_right = space_to_right + region_size;
1153         double prev_region_density_to_right =
1154           double(prev_region_live_to_right) / prev_region_space_to_right;
1155         if (density_to_right <= prev_region_density_to_right) {
1156           return dense_prefix;
1157         }
1158 
1159         log_develop_trace(gc, compaction)(
1160             "backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1161             "pc_d2r=%10.8f",
1162             sd.region(cp), density_to_right,
1163             prev_region_density_to_right);
1164 
1165         dense_prefix -= region_size;
1166         live_to_right = prev_region_live_to_right;
1167         space_to_right = prev_region_space_to_right;
1168         density_to_right = prev_region_density_to_right;
1169       }
1170       return dense_prefix;
1171     }
1172 
1173     dense_prefix += region_size;
1174     ++cp;
1175   }
1176 
1177   return dense_prefix;
1178 }
1179 
1180 #ifndef PRODUCT
1181 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1182                                                  const SpaceId id,
1183                                                  const bool maximum_compaction,
1184                                                  HeapWord* const addr)
1185 {
1186   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1187   RegionData* const cp = summary_data().region(region_idx);
1188   const MutableSpace* const space = _space_info[id].space();
1189   HeapWord* const new_top = _space_info[id].new_top();
1190 
1191   const size_t space_live = pointer_delta(new_top, space->bottom());
1192   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1193   const size_t space_cap = space->capacity_in_words();
1194   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1195   const size_t live_to_right = new_top - cp->destination();
1196   const size_t dead_to_right = space->top() - addr - live_to_right;
1197 
1198   log_develop_debug(gc, compaction)(
1199       "%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1200       "spl=" SIZE_FORMAT " "
1201       "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1202       "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT " "
1203       "ratio=%10.8f",
1204       algorithm, p2i(addr), region_idx,
1205       space_live,
1206       dead_to_left, dead_to_left_pct,
1207       dead_to_right, live_to_right,
1208       double(dead_to_right) / live_to_right);
1209 }
1210 #endif  // #ifndef PRODUCT
1211 
1212 // Return a fraction indicating how much of the generation can be treated as
1213 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1214 // based on the density of live objects in the generation to determine a limit,
1215 // which is then adjusted so the return value is min_percent when the density is
1216 // 1.
1217 //
1218 // The following table shows some return values for a different values of the
1219 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1220 // min_percent is 1.
1221 //
1222 //                          fraction allowed as dead wood
1223 //         -----------------------------------------------------------------
1224 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1225 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1226 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1227 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1228 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1229 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1230 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1231 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1232 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1233 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1234 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1235 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1236 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1237 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1238 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1239 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1240 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1241 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1242 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1243 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1244 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1245 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1246 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1247 
1248 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1249 {
1250   assert(_dwl_initialized, "uninitialized");
1251 
1252   // The raw limit is the value of the normal distribution at x = density.
1253   const double raw_limit = normal_distribution(density);
1254 
1255   // Adjust the raw limit so it becomes the minimum when the density is 1.
1256   //
1257   // First subtract the adjustment value (which is simply the precomputed value
1258   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1259   // Then add the minimum value, so the minimum is returned when the density is
1260   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1261   const double min = double(min_percent) / 100.0;
1262   const double limit = raw_limit - _dwl_adjustment + min;
1263   return MAX2(limit, 0.0);
1264 }
1265 
1266 ParallelCompactData::RegionData*
1267 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1268                                            const RegionData* end)
1269 {
1270   const size_t region_size = ParallelCompactData::RegionSize;
1271   ParallelCompactData& sd = summary_data();
1272   size_t left = sd.region(beg);
1273   size_t right = end > beg ? sd.region(end) - 1 : left;
1274 
1275   // Binary search.
1276   while (left < right) {
1277     // Equivalent to (left + right) / 2, but does not overflow.
1278     const size_t middle = left + (right - left) / 2;
1279     RegionData* const middle_ptr = sd.region(middle);
1280     HeapWord* const dest = middle_ptr->destination();
1281     HeapWord* const addr = sd.region_to_addr(middle);
1282     assert(dest != NULL, "sanity");
1283     assert(dest <= addr, "must move left");
1284 
1285     if (middle > left && dest < addr) {
1286       right = middle - 1;
1287     } else if (middle < right && middle_ptr->data_size() == region_size) {
1288       left = middle + 1;
1289     } else {
1290       return middle_ptr;
1291     }
1292   }
1293   return sd.region(left);
1294 }
1295 
1296 ParallelCompactData::RegionData*
1297 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1298                                           const RegionData* end,
1299                                           size_t dead_words)
1300 {
1301   ParallelCompactData& sd = summary_data();
1302   size_t left = sd.region(beg);
1303   size_t right = end > beg ? sd.region(end) - 1 : left;
1304 
1305   // Binary search.
1306   while (left < right) {
1307     // Equivalent to (left + right) / 2, but does not overflow.
1308     const size_t middle = left + (right - left) / 2;
1309     RegionData* const middle_ptr = sd.region(middle);
1310     HeapWord* const dest = middle_ptr->destination();
1311     HeapWord* const addr = sd.region_to_addr(middle);
1312     assert(dest != NULL, "sanity");
1313     assert(dest <= addr, "must move left");
1314 
1315     const size_t dead_to_left = pointer_delta(addr, dest);
1316     if (middle > left && dead_to_left > dead_words) {
1317       right = middle - 1;
1318     } else if (middle < right && dead_to_left < dead_words) {
1319       left = middle + 1;
1320     } else {
1321       return middle_ptr;
1322     }
1323   }
1324   return sd.region(left);
1325 }
1326 
1327 // The result is valid during the summary phase, after the initial summarization
1328 // of each space into itself, and before final summarization.
1329 inline double
1330 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1331                                    HeapWord* const bottom,
1332                                    HeapWord* const top,
1333                                    HeapWord* const new_top)
1334 {
1335   ParallelCompactData& sd = summary_data();
1336 
1337   assert(cp != NULL, "sanity");
1338   assert(bottom != NULL, "sanity");
1339   assert(top != NULL, "sanity");
1340   assert(new_top != NULL, "sanity");
1341   assert(top >= new_top, "summary data problem?");
1342   assert(new_top > bottom, "space is empty; should not be here");
1343   assert(new_top >= cp->destination(), "sanity");
1344   assert(top >= sd.region_to_addr(cp), "sanity");
1345 
1346   HeapWord* const destination = cp->destination();
1347   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1348   const size_t compacted_region_live = pointer_delta(new_top, destination);
1349   const size_t compacted_region_used = pointer_delta(top,
1350                                                      sd.region_to_addr(cp));
1351   const size_t reclaimable = compacted_region_used - compacted_region_live;
1352 
1353   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1354   return double(reclaimable) / divisor;
1355 }
1356 
1357 // Return the address of the end of the dense prefix, a.k.a. the start of the
1358 // compacted region.  The address is always on a region boundary.
1359 //
1360 // Completely full regions at the left are skipped, since no compaction can
1361 // occur in those regions.  Then the maximum amount of dead wood to allow is
1362 // computed, based on the density (amount live / capacity) of the generation;
1363 // the region with approximately that amount of dead space to the left is
1364 // identified as the limit region.  Regions between the last completely full
1365 // region and the limit region are scanned and the one that has the best
1366 // (maximum) reclaimed_ratio() is selected.
1367 HeapWord*
1368 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1369                                         bool maximum_compaction)
1370 {
1371   const size_t region_size = ParallelCompactData::RegionSize;
1372   const ParallelCompactData& sd = summary_data();
1373 
1374   const MutableSpace* const space = _space_info[id].space();
1375   HeapWord* const top = space->top();
1376   HeapWord* const top_aligned_up = sd.region_align_up(top);
1377   HeapWord* const new_top = _space_info[id].new_top();
1378   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1379   HeapWord* const bottom = space->bottom();
1380   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1381   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1382   const RegionData* const new_top_cp =
1383     sd.addr_to_region_ptr(new_top_aligned_up);
1384 
1385   // Skip full regions at the beginning of the space--they are necessarily part
1386   // of the dense prefix.
1387   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1388   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1389          space->is_empty(), "no dead space allowed to the left");
1390   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1391          "region must have dead space");
1392 
1393   // The gc number is saved whenever a maximum compaction is done, and used to
1394   // determine when the maximum compaction interval has expired.  This avoids
1395   // successive max compactions for different reasons.
1396   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1397   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1398   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1399     total_invocations() == HeapFirstMaximumCompactionCount;
1400   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1401     _maximum_compaction_gc_num = total_invocations();
1402     return sd.region_to_addr(full_cp);
1403   }
1404 
1405   const size_t space_live = pointer_delta(new_top, bottom);
1406   const size_t space_used = space->used_in_words();
1407   const size_t space_capacity = space->capacity_in_words();
1408 
1409   const double density = double(space_live) / double(space_capacity);
1410   const size_t min_percent_free = MarkSweepDeadRatio;
1411   const double limiter = dead_wood_limiter(density, min_percent_free);
1412   const size_t dead_wood_max = space_used - space_live;
1413   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1414                                       dead_wood_max);
1415 
1416   log_develop_debug(gc, compaction)(
1417       "space_live=" SIZE_FORMAT " space_used=" SIZE_FORMAT " "
1418       "space_cap=" SIZE_FORMAT,
1419       space_live, space_used,
1420       space_capacity);
1421   log_develop_debug(gc, compaction)(
1422       "dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1423       "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1424       density, min_percent_free, limiter,
1425       dead_wood_max, dead_wood_limit);
1426 
1427   // Locate the region with the desired amount of dead space to the left.
1428   const RegionData* const limit_cp =
1429     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1430 
1431   // Scan from the first region with dead space to the limit region and find the
1432   // one with the best (largest) reclaimed ratio.
1433   double best_ratio = 0.0;
1434   const RegionData* best_cp = full_cp;
1435   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1436     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1437     if (tmp_ratio > best_ratio) {
1438       best_cp = cp;
1439       best_ratio = tmp_ratio;
1440     }
1441   }
1442 
1443   return sd.region_to_addr(best_cp);
1444 }
1445 
1446 void PSParallelCompact::summarize_spaces_quick()
1447 {
1448   for (unsigned int i = 0; i < last_space_id; ++i) {
1449     const MutableSpace* space = _space_info[i].space();
1450     HeapWord** nta = _space_info[i].new_top_addr();
1451     bool result = _summary_data.summarize(_space_info[i].split_info(),
1452                                           space->bottom(), space->top(), NULL,
1453                                           space->bottom(), space->end(), nta);
1454     assert(result, "space must fit into itself");
1455     _space_info[i].set_dense_prefix(space->bottom());
1456   }
1457 }
1458 
1459 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1460 {
1461   HeapWord* const dense_prefix_end = dense_prefix(id);
1462   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1463   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1464   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1465     // Only enough dead space is filled so that any remaining dead space to the
1466     // left is larger than the minimum filler object.  (The remainder is filled
1467     // during the copy/update phase.)
1468     //
1469     // The size of the dead space to the right of the boundary is not a
1470     // concern, since compaction will be able to use whatever space is
1471     // available.
1472     //
1473     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1474     // surrounds the space to be filled with an object.
1475     //
1476     // In the 32-bit VM, each bit represents two 32-bit words:
1477     //                              +---+
1478     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1479     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1480     //                              +---+
1481     //
1482     // In the 64-bit VM, each bit represents one 64-bit word:
1483     //                              +------------+
1484     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1485     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1486     //                              +------------+
1487     //                          +-------+
1488     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1489     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1490     //                          +-------+
1491     //                      +-----------+
1492     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1493     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1494     //                      +-----------+
1495     //                          +-------+
1496     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1497     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1498     //                          +-------+
1499 
1500     // Initially assume case a, c or e will apply.
1501     size_t obj_len = CollectedHeap::min_fill_size();
1502     HeapWord* obj_beg = dense_prefix_end - obj_len;
1503 
1504 #ifdef  _LP64
1505     if (MinObjAlignment > 1) { // object alignment > heap word size
1506       // Cases a, c or e.
1507     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1508       // Case b above.
1509       obj_beg = dense_prefix_end - 1;
1510     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1511                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1512       // Case d above.
1513       obj_beg = dense_prefix_end - 3;
1514       obj_len = 3;
1515     }
1516 #endif  // #ifdef _LP64
1517 
1518     CollectedHeap::fill_with_object(obj_beg, obj_len);
1519     _mark_bitmap.mark_obj(obj_beg, obj_len);
1520     _summary_data.add_obj(obj_beg, obj_len);
1521     assert(start_array(id) != NULL, "sanity");
1522     start_array(id)->allocate_block(obj_beg);
1523   }
1524 }
1525 
1526 void
1527 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1528 {
1529   assert(id < last_space_id, "id out of range");
1530   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1531          "should have been reset in summarize_spaces_quick()");
1532 
1533   const MutableSpace* space = _space_info[id].space();
1534   if (_space_info[id].new_top() != space->bottom()) {
1535     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1536     _space_info[id].set_dense_prefix(dense_prefix_end);
1537 
1538 #ifndef PRODUCT
1539     if (log_is_enabled(Debug, gc, compaction)) {
1540       print_dense_prefix_stats("ratio", id, maximum_compaction,
1541                                dense_prefix_end);
1542       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1543       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1544     }
1545 #endif  // #ifndef PRODUCT
1546 
1547     // Recompute the summary data, taking into account the dense prefix.  If
1548     // every last byte will be reclaimed, then the existing summary data which
1549     // compacts everything can be left in place.
1550     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1551       // If dead space crosses the dense prefix boundary, it is (at least
1552       // partially) filled with a dummy object, marked live and added to the
1553       // summary data.  This simplifies the copy/update phase and must be done
1554       // before the final locations of objects are determined, to prevent
1555       // leaving a fragment of dead space that is too small to fill.
1556       fill_dense_prefix_end(id);
1557 
1558       // Compute the destination of each Region, and thus each object.
1559       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1560       _summary_data.summarize(_space_info[id].split_info(),
1561                               dense_prefix_end, space->top(), NULL,
1562                               dense_prefix_end, space->end(),
1563                               _space_info[id].new_top_addr());
1564     }
1565   }
1566 
1567   if (log_develop_is_enabled(Trace, gc, compaction)) {
1568     const size_t region_size = ParallelCompactData::RegionSize;
1569     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1570     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1571     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1572     HeapWord* const new_top = _space_info[id].new_top();
1573     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1574     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1575     log_develop_trace(gc, compaction)(
1576         "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1577         "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1578         "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1579         id, space->capacity_in_words(), p2i(dense_prefix_end),
1580         dp_region, dp_words / region_size,
1581         cr_words / region_size, p2i(new_top));
1582   }
1583 }
1584 
1585 #ifndef PRODUCT
1586 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1587                                           HeapWord* dst_beg, HeapWord* dst_end,
1588                                           SpaceId src_space_id,
1589                                           HeapWord* src_beg, HeapWord* src_end)
1590 {
1591   log_develop_trace(gc, compaction)(
1592       "Summarizing %d [%s] into %d [%s]:  "
1593       "src=" PTR_FORMAT "-" PTR_FORMAT " "
1594       SIZE_FORMAT "-" SIZE_FORMAT " "
1595       "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1596       SIZE_FORMAT "-" SIZE_FORMAT,
1597       src_space_id, space_names[src_space_id],
1598       dst_space_id, space_names[dst_space_id],
1599       p2i(src_beg), p2i(src_end),
1600       _summary_data.addr_to_region_idx(src_beg),
1601       _summary_data.addr_to_region_idx(src_end),
1602       p2i(dst_beg), p2i(dst_end),
1603       _summary_data.addr_to_region_idx(dst_beg),
1604       _summary_data.addr_to_region_idx(dst_end));
1605 }
1606 #endif  // #ifndef PRODUCT
1607 
1608 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1609                                       bool maximum_compaction)
1610 {
1611   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
1612 
1613   log_develop_debug(gc, marking)(
1614       "add_obj_count=" SIZE_FORMAT " "
1615       "add_obj_bytes=" SIZE_FORMAT,
1616       add_obj_count,
1617       add_obj_size * HeapWordSize);
1618   log_develop_debug(gc, marking)(
1619       "mark_bitmap_count=" SIZE_FORMAT " "
1620       "mark_bitmap_bytes=" SIZE_FORMAT,
1621       mark_bitmap_count,
1622       mark_bitmap_size * HeapWordSize);
1623 
1624   // Quick summarization of each space into itself, to see how much is live.
1625   summarize_spaces_quick();
1626 
1627   log_develop_trace(gc, compaction)("summary phase:  after summarizing each space to self");
1628   NOT_PRODUCT(print_region_ranges());
1629   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1630 
1631   // The amount of live data that will end up in old space (assuming it fits).
1632   size_t old_space_total_live = 0;
1633   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1634     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1635                                           _space_info[id].space()->bottom());
1636   }
1637 
1638   MutableSpace* const old_space = _space_info[old_space_id].space();
1639   const size_t old_capacity = old_space->capacity_in_words();
1640   if (old_space_total_live > old_capacity) {
1641     // XXX - should also try to expand
1642     maximum_compaction = true;
1643   }
1644 
1645   // Old generations.
1646   summarize_space(old_space_id, maximum_compaction);
1647 
1648   // Summarize the remaining spaces in the young gen.  The initial target space
1649   // is the old gen.  If a space does not fit entirely into the target, then the
1650   // remainder is compacted into the space itself and that space becomes the new
1651   // target.
1652   SpaceId dst_space_id = old_space_id;
1653   HeapWord* dst_space_end = old_space->end();
1654   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1655   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1656     const MutableSpace* space = _space_info[id].space();
1657     const size_t live = pointer_delta(_space_info[id].new_top(),
1658                                       space->bottom());
1659     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1660 
1661     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1662                                   SpaceId(id), space->bottom(), space->top());)
1663     if (live > 0 && live <= available) {
1664       // All the live data will fit.
1665       bool done = _summary_data.summarize(_space_info[id].split_info(),
1666                                           space->bottom(), space->top(),
1667                                           NULL,
1668                                           *new_top_addr, dst_space_end,
1669                                           new_top_addr);
1670       assert(done, "space must fit into old gen");
1671 
1672       // Reset the new_top value for the space.
1673       _space_info[id].set_new_top(space->bottom());
1674     } else if (live > 0) {
1675       // Attempt to fit part of the source space into the target space.
1676       HeapWord* next_src_addr = NULL;
1677       bool done = _summary_data.summarize(_space_info[id].split_info(),
1678                                           space->bottom(), space->top(),
1679                                           &next_src_addr,
1680                                           *new_top_addr, dst_space_end,
1681                                           new_top_addr);
1682       assert(!done, "space should not fit into old gen");
1683       assert(next_src_addr != NULL, "sanity");
1684 
1685       // The source space becomes the new target, so the remainder is compacted
1686       // within the space itself.
1687       dst_space_id = SpaceId(id);
1688       dst_space_end = space->end();
1689       new_top_addr = _space_info[id].new_top_addr();
1690       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1691                                     space->bottom(), dst_space_end,
1692                                     SpaceId(id), next_src_addr, space->top());)
1693       done = _summary_data.summarize(_space_info[id].split_info(),
1694                                      next_src_addr, space->top(),
1695                                      NULL,
1696                                      space->bottom(), dst_space_end,
1697                                      new_top_addr);
1698       assert(done, "space must fit when compacted into itself");
1699       assert(*new_top_addr <= space->top(), "usage should not grow");
1700     }
1701   }
1702 
1703   log_develop_trace(gc, compaction)("Summary_phase:  after final summarization");
1704   NOT_PRODUCT(print_region_ranges());
1705   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1706 }
1707 
1708 // This method should contain all heap-specific policy for invoking a full
1709 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1710 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1711 // before full gc, or any other specialized behavior, it needs to be added here.
1712 //
1713 // Note that this method should only be called from the vm_thread while at a
1714 // safepoint.
1715 //
1716 // Note that the all_soft_refs_clear flag in the soft ref policy
1717 // may be true because this method can be called without intervening
1718 // activity.  For example when the heap space is tight and full measure
1719 // are being taken to free space.
1720 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1721   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1722   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1723          "should be in vm thread");
1724 
1725   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1726   GCCause::Cause gc_cause = heap->gc_cause();
1727   assert(!heap->is_gc_active(), "not reentrant");
1728 
1729   PSAdaptiveSizePolicy* policy = heap->size_policy();
1730   IsGCActiveMark mark;
1731 
1732   if (ScavengeBeforeFullGC) {
1733     PSScavenge::invoke_no_policy();
1734   }
1735 
1736   const bool clear_all_soft_refs =
1737     heap->soft_ref_policy()->should_clear_all_soft_refs();
1738 
1739   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1740                                       maximum_heap_compaction);
1741 }
1742 
1743 // This method contains no policy. You should probably
1744 // be calling invoke() instead.
1745 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1746   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1747   assert(ref_processor() != NULL, "Sanity");
1748 
1749   if (GCLocker::check_active_before_gc()) {
1750     return false;
1751   }
1752 
1753   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1754 
1755   GCIdMark gc_id_mark;
1756   _gc_timer.register_gc_start();
1757   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1758 
1759   TimeStamp marking_start;
1760   TimeStamp compaction_start;
1761   TimeStamp collection_exit;
1762 
1763   GCCause::Cause gc_cause = heap->gc_cause();
1764   PSYoungGen* young_gen = heap->young_gen();
1765   PSOldGen* old_gen = heap->old_gen();
1766   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1767 
1768   // The scope of casr should end after code that can change
1769   // SoftRefPolicy::_should_clear_all_soft_refs.
1770   ClearedAllSoftRefs casr(maximum_heap_compaction,
1771                           heap->soft_ref_policy());
1772 
1773   if (ZapUnusedHeapArea) {
1774     // Save information needed to minimize mangling
1775     heap->record_gen_tops_before_GC();
1776   }
1777 
1778   // Make sure data structures are sane, make the heap parsable, and do other
1779   // miscellaneous bookkeeping.
1780   pre_compact();
1781 
1782   const PreGenGCValues pre_gc_values = heap->get_pre_gc_values();
1783 
1784   // Get the compaction manager reserved for the VM thread.
1785   ParCompactionManager* const vmthread_cm =
1786     ParCompactionManager::manager_array(ParallelScavengeHeap::heap()->workers().total_workers());
1787 
1788   {
1789     ResourceMark rm;
1790 
1791     const uint active_workers =
1792       WorkerPolicy::calc_active_workers(ParallelScavengeHeap::heap()->workers().total_workers(),
1793                                         ParallelScavengeHeap::heap()->workers().active_workers(),
1794                                         Threads::number_of_non_daemon_threads());
1795     ParallelScavengeHeap::heap()->workers().update_active_workers(active_workers);
1796 
1797     GCTraceCPUTime tcpu;
1798     GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true);
1799 
1800     heap->pre_full_gc_dump(&_gc_timer);
1801 
1802     TraceCollectorStats tcs(counters());
1803     TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause);
1804 
1805     if (log_is_enabled(Debug, gc, heap, exit)) {
1806       accumulated_time()->start();
1807     }
1808 
1809     // Let the size policy know we're starting
1810     size_policy->major_collection_begin();
1811 
1812 #if COMPILER2_OR_JVMCI
1813     DerivedPointerTable::clear();
1814 #endif
1815 
1816     ref_processor()->enable_discovery();
1817     ref_processor()->setup_policy(maximum_heap_compaction);
1818 
1819     bool marked_for_unloading = false;
1820 
1821     marking_start.update();
1822     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1823 
1824     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1825       && GCCause::is_user_requested_gc(gc_cause);
1826     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1827 
1828 #if COMPILER2_OR_JVMCI
1829     assert(DerivedPointerTable::is_active(), "Sanity");
1830     DerivedPointerTable::set_active(false);
1831 #endif
1832 
1833     // adjust_roots() updates Universe::_intArrayKlassObj which is
1834     // needed by the compaction for filling holes in the dense prefix.
1835     adjust_roots(vmthread_cm);
1836 
1837     compaction_start.update();
1838     compact();
1839 
1840     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1841     // done before resizing.
1842     post_compact();
1843 
1844     // Let the size policy know we're done
1845     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1846 
1847     if (UseAdaptiveSizePolicy) {
1848       log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1849       log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1850                           old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1851 
1852       // Don't check if the size_policy is ready here.  Let
1853       // the size_policy check that internally.
1854       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1855           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1856         // Swap the survivor spaces if from_space is empty. The
1857         // resize_young_gen() called below is normally used after
1858         // a successful young GC and swapping of survivor spaces;
1859         // otherwise, it will fail to resize the young gen with
1860         // the current implementation.
1861         if (young_gen->from_space()->is_empty()) {
1862           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1863           young_gen->swap_spaces();
1864         }
1865 
1866         // Calculate optimal free space amounts
1867         assert(young_gen->max_gen_size() >
1868           young_gen->from_space()->capacity_in_bytes() +
1869           young_gen->to_space()->capacity_in_bytes(),
1870           "Sizes of space in young gen are out-of-bounds");
1871 
1872         size_t young_live = young_gen->used_in_bytes();
1873         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1874         size_t old_live = old_gen->used_in_bytes();
1875         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1876         size_t max_old_gen_size = old_gen->max_gen_size();
1877         size_t max_eden_size = young_gen->max_gen_size() -
1878           young_gen->from_space()->capacity_in_bytes() -
1879           young_gen->to_space()->capacity_in_bytes();
1880 
1881         // Used for diagnostics
1882         size_policy->clear_generation_free_space_flags();
1883 
1884         size_policy->compute_generations_free_space(young_live,
1885                                                     eden_live,
1886                                                     old_live,
1887                                                     cur_eden,
1888                                                     max_old_gen_size,
1889                                                     max_eden_size,
1890                                                     true /* full gc*/);
1891 
1892         size_policy->check_gc_overhead_limit(eden_live,
1893                                              max_old_gen_size,
1894                                              max_eden_size,
1895                                              true /* full gc*/,
1896                                              gc_cause,
1897                                              heap->soft_ref_policy());
1898 
1899         size_policy->decay_supplemental_growth(true /* full gc*/);
1900 
1901         heap->resize_old_gen(
1902           size_policy->calculated_old_free_size_in_bytes());
1903 
1904         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1905                                size_policy->calculated_survivor_size_in_bytes());
1906       }
1907 
1908       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1909     }
1910 
1911     if (UsePerfData) {
1912       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1913       counters->update_counters();
1914       counters->update_old_capacity(old_gen->capacity_in_bytes());
1915       counters->update_young_capacity(young_gen->capacity_in_bytes());
1916     }
1917 
1918     heap->resize_all_tlabs();
1919 
1920     // Resize the metaspace capacity after a collection
1921     MetaspaceGC::compute_new_size();
1922 
1923     if (log_is_enabled(Debug, gc, heap, exit)) {
1924       accumulated_time()->stop();
1925     }
1926 
1927     heap->print_heap_change(pre_gc_values);
1928 
1929     // Track memory usage and detect low memory
1930     MemoryService::track_memory_usage();
1931     heap->update_counters();
1932 
1933     heap->post_full_gc_dump(&_gc_timer);
1934   }
1935 
1936 #ifdef ASSERT
1937   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
1938     ParCompactionManager* const cm =
1939       ParCompactionManager::manager_array(int(i));
1940     assert(cm->marking_stack()->is_empty(),       "should be empty");
1941     assert(cm->region_stack()->is_empty(), "Region stack " SIZE_FORMAT " is not empty", i);
1942   }
1943 #endif // ASSERT
1944 
1945   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1946     Universe::verify("After GC");
1947   }
1948 
1949   // Re-verify object start arrays
1950   if (VerifyObjectStartArray &&
1951       VerifyAfterGC) {
1952     old_gen->verify_object_start_array();
1953   }
1954 
1955   if (ZapUnusedHeapArea) {
1956     old_gen->object_space()->check_mangled_unused_area_complete();
1957   }
1958 
1959   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1960 
1961   collection_exit.update();
1962 
1963   heap->print_heap_after_gc();
1964   heap->trace_heap_after_gc(&_gc_tracer);
1965 
1966   log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
1967                          marking_start.ticks(), compaction_start.ticks(),
1968                          collection_exit.ticks());
1969 
1970   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1971 
1972   _gc_timer.register_gc_end();
1973 
1974   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1975   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1976 
1977   return true;
1978 }
1979 
1980 class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure {
1981 private:
1982   uint _worker_id;
1983 
1984 public:
1985   PCAddThreadRootsMarkingTaskClosure(uint worker_id) : _worker_id(worker_id) { }
1986   void do_thread(Thread* thread) {
1987     assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
1988 
1989     ResourceMark rm;
1990 
1991     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(_worker_id);
1992 
1993     PCMarkAndPushClosure mark_and_push_closure(cm);
1994     MarkingCodeBlobClosure mark_and_push_in_blobs(&mark_and_push_closure, !CodeBlobToOopClosure::FixRelocations);
1995 
1996     thread->oops_do(&mark_and_push_closure, &mark_and_push_in_blobs);
1997 
1998     // Do the real work
1999     cm->follow_marking_stacks();
2000   }
2001 };
2002 
2003 static void mark_from_roots_work(ParallelRootType::Value root_type, uint worker_id) {
2004   assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
2005 
2006   ParCompactionManager* cm =
2007     ParCompactionManager::gc_thread_compaction_manager(worker_id);
2008   PCMarkAndPushClosure mark_and_push_closure(cm);
2009 
2010   switch (root_type) {
2011     case ParallelRootType::universe:
2012       Universe::oops_do(&mark_and_push_closure);
2013       break;
2014 
2015     case ParallelRootType::object_synchronizer:
2016       ObjectSynchronizer::oops_do(&mark_and_push_closure);
2017       break;
2018 
2019     case ParallelRootType::class_loader_data:
2020       {
2021         CLDToOopClosure cld_closure(&mark_and_push_closure, ClassLoaderData::_claim_strong);
2022         ClassLoaderDataGraph::always_strong_cld_do(&cld_closure);
2023       }
2024       break;
2025 
2026     case ParallelRootType::code_cache:
2027       // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
2028       //ScavengableNMethods::scavengable_nmethods_do(CodeBlobToOopClosure(&mark_and_push_closure));
2029       AOTLoader::oops_do(&mark_and_push_closure);
2030       break;
2031 
2032     case ParallelRootType::sentinel:
2033     DEBUG_ONLY(default:) // DEBUG_ONLY hack will create compile error on release builds (-Wswitch) and runtime check on debug builds
2034       fatal("Bad enumeration value: %u", root_type);
2035       break;
2036   }
2037 
2038   // Do the real work
2039   cm->follow_marking_stacks();
2040 }
2041 
2042 static void steal_marking_work(TaskTerminator& terminator, uint worker_id) {
2043   assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
2044 
2045   ParCompactionManager* cm =
2046     ParCompactionManager::gc_thread_compaction_manager(worker_id);
2047 
2048   oop obj = NULL;
2049   ObjArrayTask task;
2050   do {
2051     while (ParCompactionManager::steal_objarray(worker_id,  task)) {
2052       cm->follow_array((objArrayOop)task.obj(), task.index());
2053       cm->follow_marking_stacks();
2054     }
2055     while (ParCompactionManager::steal(worker_id, obj)) {
2056       cm->follow_contents(obj);
2057       cm->follow_marking_stacks();
2058     }
2059   } while (!terminator.offer_termination());
2060 }
2061 
2062 class MarkFromRootsTask : public AbstractGangTask {
2063   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2064   StrongRootsScope _strong_roots_scope; // needed for Threads::possibly_parallel_threads_do
2065   OopStorageSetStrongParState<false /* concurrent */, false /* is_const */> _oop_storage_set_par_state;
2066   SequentialSubTasksDone _subtasks;
2067   TaskTerminator _terminator;
2068   uint _active_workers;
2069 
2070 public:
2071   MarkFromRootsTask(uint active_workers) :
2072       AbstractGangTask("MarkFromRootsTask"),
2073       _strong_roots_scope(active_workers),
2074       _subtasks(),
2075       _terminator(active_workers, ParCompactionManager::oop_task_queues()),
2076       _active_workers(active_workers) {
2077     _subtasks.set_n_threads(active_workers);
2078     _subtasks.set_n_tasks(ParallelRootType::sentinel);
2079   }
2080 
2081   virtual void work(uint worker_id) {
2082     for (uint task = 0; _subtasks.try_claim_task(task); /*empty*/ ) {
2083       mark_from_roots_work(static_cast<ParallelRootType::Value>(task), worker_id);
2084     }
2085     _subtasks.all_tasks_completed();
2086 
2087     PCAddThreadRootsMarkingTaskClosure closure(worker_id);
2088     Threads::possibly_parallel_threads_do(true /*parallel */, &closure);
2089 
2090     // Mark from OopStorages
2091     {
2092       ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
2093       PCMarkAndPushClosure closure(cm);
2094       _oop_storage_set_par_state.oops_do(&closure);
2095       // Do the real work
2096       cm->follow_marking_stacks();
2097     }
2098 
2099     if (_active_workers > 1) {
2100       steal_marking_work(_terminator, worker_id);
2101     }
2102   }
2103 };
2104 
2105 class PCRefProcTask : public AbstractGangTask {
2106   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2107   ProcessTask& _task;
2108   uint _ergo_workers;
2109   TaskTerminator _terminator;
2110 
2111 public:
2112   PCRefProcTask(ProcessTask& task, uint ergo_workers) :
2113       AbstractGangTask("PCRefProcTask"),
2114       _task(task),
2115       _ergo_workers(ergo_workers),
2116       _terminator(_ergo_workers, ParCompactionManager::oop_task_queues()) {
2117   }
2118 
2119   virtual void work(uint worker_id) {
2120     ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2121     assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
2122 
2123     ParCompactionManager* cm =
2124       ParCompactionManager::gc_thread_compaction_manager(worker_id);
2125     PCMarkAndPushClosure mark_and_push_closure(cm);
2126     ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2127     _task.work(worker_id, *PSParallelCompact::is_alive_closure(),
2128                mark_and_push_closure, follow_stack_closure);
2129 
2130     steal_marking_work(_terminator, worker_id);
2131   }
2132 };
2133 
2134 class RefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2135   void execute(ProcessTask& process_task, uint ergo_workers) {
2136     assert(ParallelScavengeHeap::heap()->workers().active_workers() == ergo_workers,
2137            "Ergonomically chosen workers (%u) must be equal to active workers (%u)",
2138            ergo_workers, ParallelScavengeHeap::heap()->workers().active_workers());
2139 
2140     PCRefProcTask task(process_task, ergo_workers);
2141     ParallelScavengeHeap::heap()->workers().run_task(&task);
2142   }
2143 };
2144 
2145 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2146                                       bool maximum_heap_compaction,
2147                                       ParallelOldTracer *gc_tracer) {
2148   // Recursively traverse all live objects and mark them
2149   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
2150 
2151   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2152   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
2153 
2154   PCMarkAndPushClosure mark_and_push_closure(cm);
2155   ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2156 
2157   // Need new claim bits before marking starts.
2158   ClassLoaderDataGraph::clear_claimed_marks();
2159 
2160   {
2161     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
2162 
2163     MarkFromRootsTask task(active_gc_threads);
2164     ParallelScavengeHeap::heap()->workers().run_task(&task);
2165   }
2166 
2167   // Process reference objects found during marking
2168   {
2169     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
2170 
2171     ReferenceProcessorStats stats;
2172     ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues());
2173 
2174     if (ref_processor()->processing_is_mt()) {
2175       ref_processor()->set_active_mt_degree(active_gc_threads);
2176 
2177       RefProcTaskExecutor task_executor;
2178       stats = ref_processor()->process_discovered_references(
2179         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2180         &task_executor, &pt);
2181     } else {
2182       stats = ref_processor()->process_discovered_references(
2183         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2184         &pt);
2185     }
2186 
2187     gc_tracer->report_gc_reference_stats(stats);
2188     pt.print_all_references();
2189   }
2190 
2191   // This is the point where the entire marking should have completed.
2192   assert(cm->marking_stacks_empty(), "Marking should have completed");
2193 
2194   {
2195     GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer);
2196     WeakProcessor::weak_oops_do(is_alive_closure(), &do_nothing_cl);
2197   }
2198 
2199   {
2200     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
2201 
2202     // Follow system dictionary roots and unload classes.
2203     bool purged_class = SystemDictionary::do_unloading(&_gc_timer);
2204 
2205     // Unload nmethods.
2206     CodeCache::do_unloading(is_alive_closure(), purged_class);
2207 
2208     // Prune dead klasses from subklass/sibling/implementor lists.
2209     Klass::clean_weak_klass_links(purged_class);
2210 
2211     // Clean JVMCI metadata handles.
2212     JVMCI_ONLY(JVMCI::do_unloading(purged_class));
2213   }
2214 
2215   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2216 }
2217 
2218 void PSParallelCompact::adjust_roots(ParCompactionManager* cm) {
2219   // Adjust the pointers to reflect the new locations
2220   GCTraceTime(Info, gc, phases) tm("Adjust Roots", &_gc_timer);
2221 
2222   // Need new claim bits when tracing through and adjusting pointers.
2223   ClassLoaderDataGraph::clear_claimed_marks();
2224 
2225   PCAdjustPointerClosure oop_closure(cm);
2226 
2227   // General strong roots.
2228   Universe::oops_do(&oop_closure);
2229   Threads::oops_do(&oop_closure, NULL);
2230   ObjectSynchronizer::oops_do(&oop_closure);
2231   OopStorageSet::strong_oops_do(&oop_closure);
2232   CLDToOopClosure cld_closure(&oop_closure, ClassLoaderData::_claim_strong);
2233   ClassLoaderDataGraph::cld_do(&cld_closure);
2234 
2235   // Now adjust pointers in remaining weak roots.  (All of which should
2236   // have been cleared if they pointed to non-surviving objects.)
2237   WeakProcessor::oops_do(&oop_closure);
2238 
2239   CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations);
2240   CodeCache::blobs_do(&adjust_from_blobs);
2241   AOT_ONLY(AOTLoader::oops_do(&oop_closure);)
2242 
2243   ref_processor()->weak_oops_do(&oop_closure);
2244   // Roots were visited so references into the young gen in roots
2245   // may have been scanned.  Process them also.
2246   // Should the reference processor have a span that excludes
2247   // young gen objects?
2248   PSScavenge::reference_processor()->weak_oops_do(&oop_closure);
2249 }
2250 
2251 // Helper class to print 8 region numbers per line and then print the total at the end.
2252 class FillableRegionLogger : public StackObj {
2253 private:
2254   Log(gc, compaction) log;
2255   static const int LineLength = 8;
2256   size_t _regions[LineLength];
2257   int _next_index;
2258   bool _enabled;
2259   size_t _total_regions;
2260 public:
2261   FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { }
2262   ~FillableRegionLogger() {
2263     log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
2264   }
2265 
2266   void print_line() {
2267     if (!_enabled || _next_index == 0) {
2268       return;
2269     }
2270     FormatBuffer<> line("Fillable: ");
2271     for (int i = 0; i < _next_index; i++) {
2272       line.append(" " SIZE_FORMAT_W(7), _regions[i]);
2273     }
2274     log.trace("%s", line.buffer());
2275     _next_index = 0;
2276   }
2277 
2278   void handle(size_t region) {
2279     if (!_enabled) {
2280       return;
2281     }
2282     _regions[_next_index++] = region;
2283     if (_next_index == LineLength) {
2284       print_line();
2285     }
2286     _total_regions++;
2287   }
2288 };
2289 
2290 void PSParallelCompact::prepare_region_draining_tasks(uint parallel_gc_threads)
2291 {
2292   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
2293 
2294   // Find the threads that are active
2295   uint worker_id = 0;
2296 
2297   // Find all regions that are available (can be filled immediately) and
2298   // distribute them to the thread stacks.  The iteration is done in reverse
2299   // order (high to low) so the regions will be removed in ascending order.
2300 
2301   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2302 
2303   // id + 1 is used to test termination so unsigned  can
2304   // be used with an old_space_id == 0.
2305   FillableRegionLogger region_logger;
2306   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2307     SpaceInfo* const space_info = _space_info + id;
2308     MutableSpace* const space = space_info->space();
2309     HeapWord* const new_top = space_info->new_top();
2310 
2311     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2312     const size_t end_region =
2313       sd.addr_to_region_idx(sd.region_align_up(new_top));
2314 
2315     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2316       if (sd.region(cur)->claim_unsafe()) {
2317         ParCompactionManager* cm = ParCompactionManager::manager_array(worker_id);
2318         bool result = sd.region(cur)->mark_normal();
2319         assert(result, "Must succeed at this point.");
2320         cm->region_stack()->push(cur);
2321         region_logger.handle(cur);
2322         // Assign regions to tasks in round-robin fashion.
2323         if (++worker_id == parallel_gc_threads) {
2324           worker_id = 0;
2325         }
2326       }
2327     }
2328     region_logger.print_line();
2329   }
2330 }
2331 
2332 class TaskQueue : StackObj {
2333   volatile uint _counter;
2334   uint _size;
2335   uint _insert_index;
2336   PSParallelCompact::UpdateDensePrefixTask* _backing_array;
2337 public:
2338   explicit TaskQueue(uint size) : _counter(0), _size(size), _insert_index(0), _backing_array(NULL) {
2339     _backing_array = NEW_C_HEAP_ARRAY(PSParallelCompact::UpdateDensePrefixTask, _size, mtGC);
2340   }
2341   ~TaskQueue() {
2342     assert(_counter >= _insert_index, "not all queue elements were claimed");
2343     FREE_C_HEAP_ARRAY(T, _backing_array);
2344   }
2345 
2346   void push(const PSParallelCompact::UpdateDensePrefixTask& value) {
2347     assert(_insert_index < _size, "too small backing array");
2348     _backing_array[_insert_index++] = value;
2349   }
2350 
2351   bool try_claim(PSParallelCompact::UpdateDensePrefixTask& reference) {
2352     uint claimed = Atomic::fetch_and_add(&_counter, 1u);
2353     if (claimed < _insert_index) {
2354       reference = _backing_array[claimed];
2355       return true;
2356     } else {
2357       return false;
2358     }
2359   }
2360 };
2361 
2362 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2363 
2364 void PSParallelCompact::enqueue_dense_prefix_tasks(TaskQueue& task_queue,
2365                                                    uint parallel_gc_threads) {
2366   GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer);
2367 
2368   ParallelCompactData& sd = PSParallelCompact::summary_data();
2369 
2370   // Iterate over all the spaces adding tasks for updating
2371   // regions in the dense prefix.  Assume that 1 gc thread
2372   // will work on opening the gaps and the remaining gc threads
2373   // will work on the dense prefix.
2374   unsigned int space_id;
2375   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2376     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2377     const MutableSpace* const space = _space_info[space_id].space();
2378 
2379     if (dense_prefix_end == space->bottom()) {
2380       // There is no dense prefix for this space.
2381       continue;
2382     }
2383 
2384     // The dense prefix is before this region.
2385     size_t region_index_end_dense_prefix =
2386         sd.addr_to_region_idx(dense_prefix_end);
2387     RegionData* const dense_prefix_cp =
2388       sd.region(region_index_end_dense_prefix);
2389     assert(dense_prefix_end == space->end() ||
2390            dense_prefix_cp->available() ||
2391            dense_prefix_cp->claimed(),
2392            "The region after the dense prefix should always be ready to fill");
2393 
2394     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2395 
2396     // Is there dense prefix work?
2397     size_t total_dense_prefix_regions =
2398       region_index_end_dense_prefix - region_index_start;
2399     // How many regions of the dense prefix should be given to
2400     // each thread?
2401     if (total_dense_prefix_regions > 0) {
2402       uint tasks_for_dense_prefix = 1;
2403       if (total_dense_prefix_regions <=
2404           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2405         // Don't over partition.  This assumes that
2406         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2407         // so there are not many regions to process.
2408         tasks_for_dense_prefix = parallel_gc_threads;
2409       } else {
2410         // Over partition
2411         tasks_for_dense_prefix = parallel_gc_threads *
2412           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2413       }
2414       size_t regions_per_thread = total_dense_prefix_regions /
2415         tasks_for_dense_prefix;
2416       // Give each thread at least 1 region.
2417       if (regions_per_thread == 0) {
2418         regions_per_thread = 1;
2419       }
2420 
2421       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2422         if (region_index_start >= region_index_end_dense_prefix) {
2423           break;
2424         }
2425         // region_index_end is not processed
2426         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2427                                        region_index_end_dense_prefix);
2428         task_queue.push(UpdateDensePrefixTask(SpaceId(space_id),
2429                                               region_index_start,
2430                                               region_index_end));
2431         region_index_start = region_index_end;
2432       }
2433     }
2434     // This gets any part of the dense prefix that did not
2435     // fit evenly.
2436     if (region_index_start < region_index_end_dense_prefix) {
2437       task_queue.push(UpdateDensePrefixTask(SpaceId(space_id),
2438                                             region_index_start,
2439                                             region_index_end_dense_prefix));
2440     }
2441   }
2442 }
2443 
2444 #ifdef ASSERT
2445 // Write a histogram of the number of times the block table was filled for a
2446 // region.
2447 void PSParallelCompact::write_block_fill_histogram()
2448 {
2449   if (!log_develop_is_enabled(Trace, gc, compaction)) {
2450     return;
2451   }
2452 
2453   Log(gc, compaction) log;
2454   ResourceMark rm;
2455   LogStream ls(log.trace());
2456   outputStream* out = &ls;
2457 
2458   typedef ParallelCompactData::RegionData rd_t;
2459   ParallelCompactData& sd = summary_data();
2460 
2461   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2462     MutableSpace* const spc = _space_info[id].space();
2463     if (spc->bottom() != spc->top()) {
2464       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2465       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2466       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2467 
2468       size_t histo[5] = { 0, 0, 0, 0, 0 };
2469       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2470       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2471 
2472       for (const rd_t* cur = beg; cur < end; ++cur) {
2473         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2474       }
2475       out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2476       for (size_t i = 0; i < histo_len; ++i) {
2477         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2478                    histo[i], 100.0 * histo[i] / region_cnt);
2479       }
2480       out->cr();
2481     }
2482   }
2483 }
2484 #endif // #ifdef ASSERT
2485 
2486 static void compaction_with_stealing_work(TaskTerminator* terminator, uint worker_id) {
2487   assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
2488 
2489   ParCompactionManager* cm =
2490     ParCompactionManager::gc_thread_compaction_manager(worker_id);
2491 
2492   // Drain the stacks that have been preloaded with regions
2493   // that are ready to fill.
2494 
2495   cm->drain_region_stacks();
2496 
2497   guarantee(cm->region_stack()->is_empty(), "Not empty");
2498 
2499   size_t region_index = 0;
2500 
2501   while (true) {
2502     if (ParCompactionManager::steal(worker_id, region_index)) {
2503       PSParallelCompact::fill_and_update_region(cm, region_index);
2504       cm->drain_region_stacks();
2505     } else if (PSParallelCompact::steal_unavailable_region(cm, region_index)) {
2506       // Fill and update an unavailable region with the help of a shadow region
2507       PSParallelCompact::fill_and_update_shadow_region(cm, region_index);
2508       cm->drain_region_stacks();
2509     } else {
2510       if (terminator->offer_termination()) {
2511         break;
2512       }
2513       // Go around again.
2514     }
2515   }
2516   return;
2517 }
2518 
2519 class UpdateDensePrefixAndCompactionTask: public AbstractGangTask {
2520   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2521   TaskQueue& _tq;
2522   TaskTerminator _terminator;
2523   uint _active_workers;
2524 
2525 public:
2526   UpdateDensePrefixAndCompactionTask(TaskQueue& tq, uint active_workers) :
2527       AbstractGangTask("UpdateDensePrefixAndCompactionTask"),
2528       _tq(tq),
2529       _terminator(active_workers, ParCompactionManager::region_task_queues()),
2530       _active_workers(active_workers) {
2531   }
2532   virtual void work(uint worker_id) {
2533     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
2534 
2535     for (PSParallelCompact::UpdateDensePrefixTask task; _tq.try_claim(task); /* empty */) {
2536       PSParallelCompact::update_and_deadwood_in_dense_prefix(cm,
2537                                                              task._space_id,
2538                                                              task._region_index_start,
2539                                                              task._region_index_end);
2540     }
2541 
2542     // Once a thread has drained it's stack, it should try to steal regions from
2543     // other threads.
2544     compaction_with_stealing_work(&_terminator, worker_id);
2545   }
2546 };
2547 
2548 void PSParallelCompact::compact() {
2549   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
2550 
2551   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2552   PSOldGen* old_gen = heap->old_gen();
2553   old_gen->start_array()->reset();
2554   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
2555 
2556   // for [0..last_space_id)
2557   //     for [0..active_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)
2558   //         push
2559   //     push
2560   //
2561   // max push count is thus: last_space_id * (active_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING + 1)
2562   TaskQueue task_queue(last_space_id * (active_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING + 1));
2563   initialize_shadow_regions(active_gc_threads);
2564   prepare_region_draining_tasks(active_gc_threads);
2565   enqueue_dense_prefix_tasks(task_queue, active_gc_threads);
2566 
2567   {
2568     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
2569 
2570     UpdateDensePrefixAndCompactionTask task(task_queue, active_gc_threads);
2571     ParallelScavengeHeap::heap()->workers().run_task(&task);
2572 
2573 #ifdef  ASSERT
2574     // Verify that all regions have been processed before the deferred updates.
2575     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2576       verify_complete(SpaceId(id));
2577     }
2578 #endif
2579   }
2580 
2581   {
2582     // Update the deferred objects, if any.  Any compaction manager can be used.
2583     GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer);
2584     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2585     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2586       update_deferred_objects(cm, SpaceId(id));
2587     }
2588   }
2589 
2590   DEBUG_ONLY(write_block_fill_histogram());
2591 }
2592 
2593 #ifdef  ASSERT
2594 void PSParallelCompact::verify_complete(SpaceId space_id) {
2595   // All Regions between space bottom() to new_top() should be marked as filled
2596   // and all Regions between new_top() and top() should be available (i.e.,
2597   // should have been emptied).
2598   ParallelCompactData& sd = summary_data();
2599   SpaceInfo si = _space_info[space_id];
2600   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2601   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2602   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2603   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2604   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2605 
2606   bool issued_a_warning = false;
2607 
2608   size_t cur_region;
2609   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2610     const RegionData* const c = sd.region(cur_region);
2611     if (!c->completed()) {
2612       log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
2613                       cur_region, c->destination_count());
2614       issued_a_warning = true;
2615     }
2616   }
2617 
2618   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2619     const RegionData* const c = sd.region(cur_region);
2620     if (!c->available()) {
2621       log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
2622                       cur_region, c->destination_count());
2623       issued_a_warning = true;
2624     }
2625   }
2626 
2627   if (issued_a_warning) {
2628     print_region_ranges();
2629   }
2630 }
2631 #endif  // #ifdef ASSERT
2632 
2633 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2634   _start_array->allocate_block(addr);
2635   compaction_manager()->update_contents(oop(addr));
2636 }
2637 
2638 // Update interior oops in the ranges of regions [beg_region, end_region).
2639 void
2640 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2641                                                        SpaceId space_id,
2642                                                        size_t beg_region,
2643                                                        size_t end_region) {
2644   ParallelCompactData& sd = summary_data();
2645   ParMarkBitMap* const mbm = mark_bitmap();
2646 
2647   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2648   HeapWord* const end_addr = sd.region_to_addr(end_region);
2649   assert(beg_region <= end_region, "bad region range");
2650   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2651 
2652 #ifdef  ASSERT
2653   // Claim the regions to avoid triggering an assert when they are marked as
2654   // filled.
2655   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2656     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2657   }
2658 #endif  // #ifdef ASSERT
2659 
2660   if (beg_addr != space(space_id)->bottom()) {
2661     // Find the first live object or block of dead space that *starts* in this
2662     // range of regions.  If a partial object crosses onto the region, skip it;
2663     // it will be marked for 'deferred update' when the object head is
2664     // processed.  If dead space crosses onto the region, it is also skipped; it
2665     // will be filled when the prior region is processed.  If neither of those
2666     // apply, the first word in the region is the start of a live object or dead
2667     // space.
2668     assert(beg_addr > space(space_id)->bottom(), "sanity");
2669     const RegionData* const cp = sd.region(beg_region);
2670     if (cp->partial_obj_size() != 0) {
2671       beg_addr = sd.partial_obj_end(beg_region);
2672     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2673       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2674     }
2675   }
2676 
2677   if (beg_addr < end_addr) {
2678     // A live object or block of dead space starts in this range of Regions.
2679      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2680 
2681     // Create closures and iterate.
2682     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2683     FillClosure fill_closure(cm, space_id);
2684     ParMarkBitMap::IterationStatus status;
2685     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2686                           dense_prefix_end);
2687     if (status == ParMarkBitMap::incomplete) {
2688       update_closure.do_addr(update_closure.source());
2689     }
2690   }
2691 
2692   // Mark the regions as filled.
2693   RegionData* const beg_cp = sd.region(beg_region);
2694   RegionData* const end_cp = sd.region(end_region);
2695   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2696     cp->set_completed();
2697   }
2698 }
2699 
2700 // Return the SpaceId for the space containing addr.  If addr is not in the
2701 // heap, last_space_id is returned.  In debug mode it expects the address to be
2702 // in the heap and asserts such.
2703 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2704   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2705 
2706   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2707     if (_space_info[id].space()->contains(addr)) {
2708       return SpaceId(id);
2709     }
2710   }
2711 
2712   assert(false, "no space contains the addr");
2713   return last_space_id;
2714 }
2715 
2716 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2717                                                 SpaceId id) {
2718   assert(id < last_space_id, "bad space id");
2719 
2720   ParallelCompactData& sd = summary_data();
2721   const SpaceInfo* const space_info = _space_info + id;
2722   ObjectStartArray* const start_array = space_info->start_array();
2723 
2724   const MutableSpace* const space = space_info->space();
2725   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2726   HeapWord* const beg_addr = space_info->dense_prefix();
2727   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2728 
2729   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2730   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2731   const RegionData* cur_region;
2732   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2733     HeapWord* const addr = cur_region->deferred_obj_addr();
2734     if (addr != NULL) {
2735       if (start_array != NULL) {
2736         start_array->allocate_block(addr);
2737       }
2738       cm->update_contents(oop(addr));
2739       assert(oopDesc::is_oop_or_null(oop(addr)), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2740     }
2741   }
2742 }
2743 
2744 // Skip over count live words starting from beg, and return the address of the
2745 // next live word.  Unless marked, the word corresponding to beg is assumed to
2746 // be dead.  Callers must either ensure beg does not correspond to the middle of
2747 // an object, or account for those live words in some other way.  Callers must
2748 // also ensure that there are enough live words in the range [beg, end) to skip.
2749 HeapWord*
2750 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2751 {
2752   assert(count > 0, "sanity");
2753 
2754   ParMarkBitMap* m = mark_bitmap();
2755   idx_t bits_to_skip = m->words_to_bits(count);
2756   idx_t cur_beg = m->addr_to_bit(beg);
2757   const idx_t search_end = m->align_range_end(m->addr_to_bit(end));
2758 
2759   do {
2760     cur_beg = m->find_obj_beg(cur_beg, search_end);
2761     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2762     const size_t obj_bits = cur_end - cur_beg + 1;
2763     if (obj_bits > bits_to_skip) {
2764       return m->bit_to_addr(cur_beg + bits_to_skip);
2765     }
2766     bits_to_skip -= obj_bits;
2767     cur_beg = cur_end + 1;
2768   } while (bits_to_skip > 0);
2769 
2770   // Skipping the desired number of words landed just past the end of an object.
2771   // Find the start of the next object.
2772   cur_beg = m->find_obj_beg(cur_beg, search_end);
2773   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2774   return m->bit_to_addr(cur_beg);
2775 }
2776 
2777 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2778                                             SpaceId src_space_id,
2779                                             size_t src_region_idx)
2780 {
2781   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2782 
2783   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2784   if (split_info.dest_region_addr() == dest_addr) {
2785     // The partial object ending at the split point contains the first word to
2786     // be copied to dest_addr.
2787     return split_info.first_src_addr();
2788   }
2789 
2790   const ParallelCompactData& sd = summary_data();
2791   ParMarkBitMap* const bitmap = mark_bitmap();
2792   const size_t RegionSize = ParallelCompactData::RegionSize;
2793 
2794   assert(sd.is_region_aligned(dest_addr), "not aligned");
2795   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2796   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2797   HeapWord* const src_region_destination = src_region_ptr->destination();
2798 
2799   assert(dest_addr >= src_region_destination, "wrong src region");
2800   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2801 
2802   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2803   HeapWord* const src_region_end = src_region_beg + RegionSize;
2804 
2805   HeapWord* addr = src_region_beg;
2806   if (dest_addr == src_region_destination) {
2807     // Return the first live word in the source region.
2808     if (partial_obj_size == 0) {
2809       addr = bitmap->find_obj_beg(addr, src_region_end);
2810       assert(addr < src_region_end, "no objects start in src region");
2811     }
2812     return addr;
2813   }
2814 
2815   // Must skip some live data.
2816   size_t words_to_skip = dest_addr - src_region_destination;
2817   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2818 
2819   if (partial_obj_size >= words_to_skip) {
2820     // All the live words to skip are part of the partial object.
2821     addr += words_to_skip;
2822     if (partial_obj_size == words_to_skip) {
2823       // Find the first live word past the partial object.
2824       addr = bitmap->find_obj_beg(addr, src_region_end);
2825       assert(addr < src_region_end, "wrong src region");
2826     }
2827     return addr;
2828   }
2829 
2830   // Skip over the partial object (if any).
2831   if (partial_obj_size != 0) {
2832     words_to_skip -= partial_obj_size;
2833     addr += partial_obj_size;
2834   }
2835 
2836   // Skip over live words due to objects that start in the region.
2837   addr = skip_live_words(addr, src_region_end, words_to_skip);
2838   assert(addr < src_region_end, "wrong src region");
2839   return addr;
2840 }
2841 
2842 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2843                                                      SpaceId src_space_id,
2844                                                      size_t beg_region,
2845                                                      HeapWord* end_addr)
2846 {
2847   ParallelCompactData& sd = summary_data();
2848 
2849 #ifdef ASSERT
2850   MutableSpace* const src_space = _space_info[src_space_id].space();
2851   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2852   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2853          "src_space_id does not match beg_addr");
2854   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2855          "src_space_id does not match end_addr");
2856 #endif // #ifdef ASSERT
2857 
2858   RegionData* const beg = sd.region(beg_region);
2859   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2860 
2861   // Regions up to new_top() are enqueued if they become available.
2862   HeapWord* const new_top = _space_info[src_space_id].new_top();
2863   RegionData* const enqueue_end =
2864     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2865 
2866   for (RegionData* cur = beg; cur < end; ++cur) {
2867     assert(cur->data_size() > 0, "region must have live data");
2868     cur->decrement_destination_count();
2869     if (cur < enqueue_end && cur->available() && cur->claim()) {
2870       if (cur->mark_normal()) {
2871         cm->push_region(sd.region(cur));
2872       } else if (cur->mark_copied()) {
2873         // Try to copy the content of the shadow region back to its corresponding
2874         // heap region if the shadow region is filled. Otherwise, the GC thread
2875         // fills the shadow region will copy the data back (see
2876         // MoveAndUpdateShadowClosure::complete_region).
2877         copy_back(sd.region_to_addr(cur->shadow_region()), sd.region_to_addr(cur));
2878         ParCompactionManager::push_shadow_region_mt_safe(cur->shadow_region());
2879         cur->set_completed();
2880       }
2881     }
2882   }
2883 }
2884 
2885 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2886                                           SpaceId& src_space_id,
2887                                           HeapWord*& src_space_top,
2888                                           HeapWord* end_addr)
2889 {
2890   typedef ParallelCompactData::RegionData RegionData;
2891 
2892   ParallelCompactData& sd = PSParallelCompact::summary_data();
2893   const size_t region_size = ParallelCompactData::RegionSize;
2894 
2895   size_t src_region_idx = 0;
2896 
2897   // Skip empty regions (if any) up to the top of the space.
2898   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2899   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2900   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2901   const RegionData* const top_region_ptr =
2902     sd.addr_to_region_ptr(top_aligned_up);
2903   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2904     ++src_region_ptr;
2905   }
2906 
2907   if (src_region_ptr < top_region_ptr) {
2908     // The next source region is in the current space.  Update src_region_idx
2909     // and the source address to match src_region_ptr.
2910     src_region_idx = sd.region(src_region_ptr);
2911     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2912     if (src_region_addr > closure.source()) {
2913       closure.set_source(src_region_addr);
2914     }
2915     return src_region_idx;
2916   }
2917 
2918   // Switch to a new source space and find the first non-empty region.
2919   unsigned int space_id = src_space_id + 1;
2920   assert(space_id < last_space_id, "not enough spaces");
2921 
2922   HeapWord* const destination = closure.destination();
2923 
2924   do {
2925     MutableSpace* space = _space_info[space_id].space();
2926     HeapWord* const bottom = space->bottom();
2927     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2928 
2929     // Iterate over the spaces that do not compact into themselves.
2930     if (bottom_cp->destination() != bottom) {
2931       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2932       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2933 
2934       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2935         if (src_cp->live_obj_size() > 0) {
2936           // Found it.
2937           assert(src_cp->destination() == destination,
2938                  "first live obj in the space must match the destination");
2939           assert(src_cp->partial_obj_size() == 0,
2940                  "a space cannot begin with a partial obj");
2941 
2942           src_space_id = SpaceId(space_id);
2943           src_space_top = space->top();
2944           const size_t src_region_idx = sd.region(src_cp);
2945           closure.set_source(sd.region_to_addr(src_region_idx));
2946           return src_region_idx;
2947         } else {
2948           assert(src_cp->data_size() == 0, "sanity");
2949         }
2950       }
2951     }
2952   } while (++space_id < last_space_id);
2953 
2954   assert(false, "no source region was found");
2955   return 0;
2956 }
2957 
2958 void PSParallelCompact::fill_region(ParCompactionManager* cm, MoveAndUpdateClosure& closure, size_t region_idx)
2959 {
2960   typedef ParMarkBitMap::IterationStatus IterationStatus;
2961   ParMarkBitMap* const bitmap = mark_bitmap();
2962   ParallelCompactData& sd = summary_data();
2963   RegionData* const region_ptr = sd.region(region_idx);
2964 
2965   // Get the source region and related info.
2966   size_t src_region_idx = region_ptr->source_region();
2967   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2968   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2969   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2970 
2971   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2972 
2973   // Adjust src_region_idx to prepare for decrementing destination counts (the
2974   // destination count is not decremented when a region is copied to itself).
2975   if (src_region_idx == region_idx) {
2976     src_region_idx += 1;
2977   }
2978 
2979   if (bitmap->is_unmarked(closure.source())) {
2980     // The first source word is in the middle of an object; copy the remainder
2981     // of the object or as much as will fit.  The fact that pointer updates were
2982     // deferred will be noted when the object header is processed.
2983     HeapWord* const old_src_addr = closure.source();
2984     closure.copy_partial_obj();
2985     if (closure.is_full()) {
2986       decrement_destination_counts(cm, src_space_id, src_region_idx,
2987                                    closure.source());
2988       region_ptr->set_deferred_obj_addr(NULL);
2989       closure.complete_region(cm, dest_addr, region_ptr);
2990       return;
2991     }
2992 
2993     HeapWord* const end_addr = sd.region_align_down(closure.source());
2994     if (sd.region_align_down(old_src_addr) != end_addr) {
2995       // The partial object was copied from more than one source region.
2996       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2997 
2998       // Move to the next source region, possibly switching spaces as well.  All
2999       // args except end_addr may be modified.
3000       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3001                                        end_addr);
3002     }
3003   }
3004 
3005   do {
3006     HeapWord* const cur_addr = closure.source();
3007     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
3008                                     src_space_top);
3009     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
3010 
3011     if (status == ParMarkBitMap::incomplete) {
3012       // The last obj that starts in the source region does not end in the
3013       // region.
3014       assert(closure.source() < end_addr, "sanity");
3015       HeapWord* const obj_beg = closure.source();
3016       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
3017                                        src_space_top);
3018       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
3019       if (obj_end < range_end) {
3020         // The end was found; the entire object will fit.
3021         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
3022         assert(status != ParMarkBitMap::would_overflow, "sanity");
3023       } else {
3024         // The end was not found; the object will not fit.
3025         assert(range_end < src_space_top, "obj cannot cross space boundary");
3026         status = ParMarkBitMap::would_overflow;
3027       }
3028     }
3029 
3030     if (status == ParMarkBitMap::would_overflow) {
3031       // The last object did not fit.  Note that interior oop updates were
3032       // deferred, then copy enough of the object to fill the region.
3033       region_ptr->set_deferred_obj_addr(closure.destination());
3034       status = closure.copy_until_full(); // copies from closure.source()
3035 
3036       decrement_destination_counts(cm, src_space_id, src_region_idx,
3037                                    closure.source());
3038       closure.complete_region(cm, dest_addr, region_ptr);
3039       return;
3040     }
3041 
3042     if (status == ParMarkBitMap::full) {
3043       decrement_destination_counts(cm, src_space_id, src_region_idx,
3044                                    closure.source());
3045       region_ptr->set_deferred_obj_addr(NULL);
3046       closure.complete_region(cm, dest_addr, region_ptr);
3047       return;
3048     }
3049 
3050     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3051 
3052     // Move to the next source region, possibly switching spaces as well.  All
3053     // args except end_addr may be modified.
3054     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3055                                      end_addr);
3056   } while (true);
3057 }
3058 
3059 void PSParallelCompact::fill_and_update_region(ParCompactionManager* cm, size_t region_idx)
3060 {
3061   MoveAndUpdateClosure cl(mark_bitmap(), cm, region_idx);
3062   fill_region(cm, cl, region_idx);
3063 }
3064 
3065 void PSParallelCompact::fill_and_update_shadow_region(ParCompactionManager* cm, size_t region_idx)
3066 {
3067   // Get a shadow region first
3068   ParallelCompactData& sd = summary_data();
3069   RegionData* const region_ptr = sd.region(region_idx);
3070   size_t shadow_region = ParCompactionManager::pop_shadow_region_mt_safe(region_ptr);
3071   // The InvalidShadow return value indicates the corresponding heap region is available,
3072   // so use MoveAndUpdateClosure to fill the normal region. Otherwise, use
3073   // MoveAndUpdateShadowClosure to fill the acquired shadow region.
3074   if (shadow_region == ParCompactionManager::InvalidShadow) {
3075     MoveAndUpdateClosure cl(mark_bitmap(), cm, region_idx);
3076     region_ptr->shadow_to_normal();
3077     return fill_region(cm, cl, region_idx);
3078   } else {
3079     MoveAndUpdateShadowClosure cl(mark_bitmap(), cm, region_idx, shadow_region);
3080     return fill_region(cm, cl, region_idx);
3081   }
3082 }
3083 
3084 void PSParallelCompact::copy_back(HeapWord *shadow_addr, HeapWord *region_addr)
3085 {
3086   Copy::aligned_conjoint_words(shadow_addr, region_addr, _summary_data.RegionSize);
3087 }
3088 
3089 bool PSParallelCompact::steal_unavailable_region(ParCompactionManager* cm, size_t &region_idx)
3090 {
3091   size_t next = cm->next_shadow_region();
3092   ParallelCompactData& sd = summary_data();
3093   size_t old_new_top = sd.addr_to_region_idx(_space_info[old_space_id].new_top());
3094   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
3095 
3096   while (next < old_new_top) {
3097     if (sd.region(next)->mark_shadow()) {
3098       region_idx = next;
3099       return true;
3100     }
3101     next = cm->move_next_shadow_region_by(active_gc_threads);
3102   }
3103 
3104   return false;
3105 }
3106 
3107 // The shadow region is an optimization to address region dependencies in full GC. The basic
3108 // idea is making more regions available by temporally storing their live objects in empty
3109 // shadow regions to resolve dependencies between them and the destination regions. Therefore,
3110 // GC threads need not wait destination regions to be available before processing sources.
3111 //
3112 // A typical workflow would be:
3113 // After draining its own stack and failing to steal from others, a GC worker would pick an
3114 // unavailable region (destination count > 0) and get a shadow region. Then the worker fills
3115 // the shadow region by copying live objects from source regions of the unavailable one. Once
3116 // the unavailable region becomes available, the data in the shadow region will be copied back.
3117 // Shadow regions are empty regions in the to-space and regions between top and end of other spaces.
3118 //
3119 // For more details, please refer to ยง4.2 of the VEE'19 paper:
3120 // Haoyu Li, Mingyu Wu, Binyu Zang, and Haibo Chen. 2019. ScissorGC: scalable and efficient
3121 // compaction for Java full garbage collection. In Proceedings of the 15th ACM SIGPLAN/SIGOPS
3122 // International Conference on Virtual Execution Environments (VEE 2019). ACM, New York, NY, USA,
3123 // 108-121. DOI: https://doi.org/10.1145/3313808.3313820
3124 void PSParallelCompact::initialize_shadow_regions(uint parallel_gc_threads)
3125 {
3126   const ParallelCompactData& sd = PSParallelCompact::summary_data();
3127 
3128   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
3129     SpaceInfo* const space_info = _space_info + id;
3130     MutableSpace* const space = space_info->space();
3131 
3132     const size_t beg_region =
3133       sd.addr_to_region_idx(sd.region_align_up(MAX2(space_info->new_top(), space->top())));
3134     const size_t end_region =
3135       sd.addr_to_region_idx(sd.region_align_down(space->end()));
3136 
3137     for (size_t cur = beg_region; cur < end_region; ++cur) {
3138       ParCompactionManager::push_shadow_region(cur);
3139     }
3140   }
3141 
3142   size_t beg_region = sd.addr_to_region_idx(_space_info[old_space_id].dense_prefix());
3143   for (uint i = 0; i < parallel_gc_threads; i++) {
3144     ParCompactionManager *cm = ParCompactionManager::manager_array(i);
3145     cm->set_next_shadow_region(beg_region + i);
3146   }
3147 }
3148 
3149 void PSParallelCompact::fill_blocks(size_t region_idx)
3150 {
3151   // Fill in the block table elements for the specified region.  Each block
3152   // table element holds the number of live words in the region that are to the
3153   // left of the first object that starts in the block.  Thus only blocks in
3154   // which an object starts need to be filled.
3155   //
3156   // The algorithm scans the section of the bitmap that corresponds to the
3157   // region, keeping a running total of the live words.  When an object start is
3158   // found, if it's the first to start in the block that contains it, the
3159   // current total is written to the block table element.
3160   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
3161   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
3162   const size_t RegionSize = ParallelCompactData::RegionSize;
3163 
3164   ParallelCompactData& sd = summary_data();
3165   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
3166   if (partial_obj_size >= RegionSize) {
3167     return; // No objects start in this region.
3168   }
3169 
3170   // Ensure the first loop iteration decides that the block has changed.
3171   size_t cur_block = sd.block_count();
3172 
3173   const ParMarkBitMap* const bitmap = mark_bitmap();
3174 
3175   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
3176   assert((size_t)1 << Log2BitsPerBlock ==
3177          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
3178 
3179   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
3180   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
3181   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
3182   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
3183   while (beg_bit < range_end) {
3184     const size_t new_block = beg_bit >> Log2BitsPerBlock;
3185     if (new_block != cur_block) {
3186       cur_block = new_block;
3187       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
3188     }
3189 
3190     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
3191     if (end_bit < range_end - 1) {
3192       live_bits += end_bit - beg_bit + 1;
3193       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
3194     } else {
3195       return;
3196     }
3197   }
3198 }
3199 
3200 jlong PSParallelCompact::millis_since_last_gc() {
3201   // We need a monotonically non-decreasing time in ms but
3202   // os::javaTimeMillis() does not guarantee monotonicity.
3203   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3204   jlong ret_val = now - _time_of_last_gc;
3205   // XXX See note in genCollectedHeap::millis_since_last_gc().
3206   if (ret_val < 0) {
3207     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
3208     return 0;
3209   }
3210   return ret_val;
3211 }
3212 
3213 void PSParallelCompact::reset_millis_since_last_gc() {
3214   // We need a monotonically non-decreasing time in ms but
3215   // os::javaTimeMillis() does not guarantee monotonicity.
3216   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3217 }
3218 
3219 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3220 {
3221   if (source() != copy_destination()) {
3222     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3223     Copy::aligned_conjoint_words(source(), copy_destination(), words_remaining());
3224   }
3225   update_state(words_remaining());
3226   assert(is_full(), "sanity");
3227   return ParMarkBitMap::full;
3228 }
3229 
3230 void MoveAndUpdateClosure::copy_partial_obj()
3231 {
3232   size_t words = words_remaining();
3233 
3234   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3235   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3236   if (end_addr < range_end) {
3237     words = bitmap()->obj_size(source(), end_addr);
3238   }
3239 
3240   // This test is necessary; if omitted, the pointer updates to a partial object
3241   // that crosses the dense prefix boundary could be overwritten.
3242   if (source() != copy_destination()) {
3243     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3244     Copy::aligned_conjoint_words(source(), copy_destination(), words);
3245   }
3246   update_state(words);
3247 }
3248 
3249 void MoveAndUpdateClosure::complete_region(ParCompactionManager *cm, HeapWord *dest_addr,
3250                                            PSParallelCompact::RegionData *region_ptr) {
3251   assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::NormalRegion, "Region should be finished");
3252   region_ptr->set_completed();
3253 }
3254 
3255 ParMarkBitMapClosure::IterationStatus
3256 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3257   assert(destination() != NULL, "sanity");
3258   assert(bitmap()->obj_size(addr) == words, "bad size");
3259 
3260   _source = addr;
3261   assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) ==
3262          destination(), "wrong destination");
3263 
3264   if (words > words_remaining()) {
3265     return ParMarkBitMap::would_overflow;
3266   }
3267 
3268   // The start_array must be updated even if the object is not moving.
3269   if (_start_array != NULL) {
3270     _start_array->allocate_block(destination());
3271   }
3272 
3273   if (copy_destination() != source()) {
3274     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3275     Copy::aligned_conjoint_words(source(), copy_destination(), words);
3276   }
3277 
3278   oop moved_oop = (oop) copy_destination();
3279   compaction_manager()->update_contents(moved_oop);
3280   assert(oopDesc::is_oop_or_null(moved_oop), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3281 
3282   update_state(words);
3283   assert(copy_destination() == cast_from_oop<HeapWord*>(moved_oop) + moved_oop->size(), "sanity");
3284   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3285 }
3286 
3287 void MoveAndUpdateShadowClosure::complete_region(ParCompactionManager *cm, HeapWord *dest_addr,
3288                                                  PSParallelCompact::RegionData *region_ptr) {
3289   assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::ShadowRegion, "Region should be shadow");
3290   // Record the shadow region index
3291   region_ptr->set_shadow_region(_shadow);
3292   // Mark the shadow region as filled to indicate the data is ready to be
3293   // copied back
3294   region_ptr->mark_filled();
3295   // Try to copy the content of the shadow region back to its corresponding
3296   // heap region if available; the GC thread that decreases the destination
3297   // count to zero will do the copying otherwise (see
3298   // PSParallelCompact::decrement_destination_counts).
3299   if (((region_ptr->available() && region_ptr->claim()) || region_ptr->claimed()) && region_ptr->mark_copied()) {
3300     region_ptr->set_completed();
3301     PSParallelCompact::copy_back(PSParallelCompact::summary_data().region_to_addr(_shadow), dest_addr);
3302     ParCompactionManager::push_shadow_region_mt_safe(_shadow);
3303   }
3304 }
3305 
3306 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3307                                      ParCompactionManager* cm,
3308                                      PSParallelCompact::SpaceId space_id) :
3309   ParMarkBitMapClosure(mbm, cm),
3310   _space_id(space_id),
3311   _start_array(PSParallelCompact::start_array(space_id))
3312 {
3313 }
3314 
3315 // Updates the references in the object to their new values.
3316 ParMarkBitMapClosure::IterationStatus
3317 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3318   do_addr(addr);
3319   return ParMarkBitMap::incomplete;
3320 }
3321 
3322 FillClosure::FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
3323   ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
3324   _start_array(PSParallelCompact::start_array(space_id))
3325 {
3326   assert(space_id == PSParallelCompact::old_space_id,
3327          "cannot use FillClosure in the young gen");
3328 }
3329 
3330 ParMarkBitMapClosure::IterationStatus
3331 FillClosure::do_addr(HeapWord* addr, size_t size) {
3332   CollectedHeap::fill_with_objects(addr, size);
3333   HeapWord* const end = addr + size;
3334   do {
3335     _start_array->allocate_block(addr);
3336     addr += oop(addr)->size();
3337   } while (addr < end);
3338   return ParMarkBitMap::incomplete;
3339 }