1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Analytics.hpp"
  27 #include "gc/g1/g1Arguments.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1CollectionSetCandidates.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1ConcurrentRefine.hpp"
  34 #include "gc/g1/g1ConcurrentRefineStats.hpp"
  35 #include "gc/g1/g1CollectionSetChooser.hpp"
  36 #include "gc/g1/g1HeterogeneousHeapPolicy.hpp"
  37 #include "gc/g1/g1HotCardCache.hpp"
  38 #include "gc/g1/g1IHOPControl.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1Policy.hpp"
  41 #include "gc/g1/g1SurvivorRegions.hpp"
  42 #include "gc/g1/g1YoungGenSizer.hpp"
  43 #include "gc/g1/heapRegion.inline.hpp"
  44 #include "gc/g1/heapRegionRemSet.hpp"
  45 #include "gc/shared/concurrentGCBreakpoints.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "logging/log.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "utilities/debug.hpp"
  53 #include "utilities/growableArray.hpp"
  54 #include "utilities/pair.hpp"
  55 
  56 G1Policy::G1Policy(STWGCTimer* gc_timer) :
  57   _predictor(G1ConfidencePercent / 100.0),
  58   _analytics(new G1Analytics(&_predictor)),
  59   _remset_tracker(),
  60   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  61   _ihop_control(create_ihop_control(&_predictor)),
  62   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
  63   _full_collection_start_sec(0.0),
  64   _young_list_desired_length(0),
  65   _young_list_target_length(0),
  66   _young_list_max_length(0),
  67   _eden_surv_rate_group(new G1SurvRateGroup()),
  68   _survivor_surv_rate_group(new G1SurvRateGroup()),
  69   _reserve_factor((double) G1ReservePercent / 100.0),
  70   _reserve_regions(0),
  71   _young_gen_sizer(G1YoungGenSizer::create_gen_sizer()),
  72   _free_regions_at_end_of_collection(0),
  73   _rs_length(0),
  74   _rs_length_prediction(0),
  75   _pending_cards_at_gc_start(0),
  76   _old_gen_alloc_tracker(),
  77   _concurrent_start_to_mixed(),
  78   _collection_set(NULL),
  79   _g1h(NULL),
  80   _phase_times_timer(gc_timer),
  81   _phase_times(NULL),
  82   _mark_remark_start_sec(0),
  83   _mark_cleanup_start_sec(0),
  84   _tenuring_threshold(MaxTenuringThreshold),
  85   _max_survivor_regions(0),
  86   _survivors_age_table(true)
  87 {
  88 }
  89 
  90 G1Policy::~G1Policy() {
  91   delete _ihop_control;
  92   delete _young_gen_sizer;
  93 }
  94 
  95 G1Policy* G1Policy::create_policy(STWGCTimer* gc_timer_stw) {
  96   if (G1Arguments::is_heterogeneous_heap()) {
  97     return new G1HeterogeneousHeapPolicy(gc_timer_stw);
  98   } else {
  99     return new G1Policy(gc_timer_stw);
 100   }
 101 }
 102 
 103 G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
 104 
 105 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
 106   _g1h = g1h;
 107   _collection_set = collection_set;
 108 
 109   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 110 
 111   _young_gen_sizer->adjust_max_new_size(_g1h->max_expandable_regions());
 112 
 113   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 114 
 115   update_young_length_bounds();
 116   // We may immediately start allocating regions and placing them on the
 117   // collection set list. Initialize the per-collection set info
 118   _collection_set->start_incremental_building();
 119 }
 120 
 121 void G1Policy::note_gc_start() {
 122   phase_times()->note_gc_start();
 123 }
 124 
 125 class G1YoungLengthPredictor {
 126   const double _base_time_ms;
 127   const double _base_free_regions;
 128   const double _target_pause_time_ms;
 129   const G1Policy* const _policy;
 130 
 131  public:
 132   G1YoungLengthPredictor(double base_time_ms,
 133                          double base_free_regions,
 134                          double target_pause_time_ms,
 135                          const G1Policy* policy) :
 136     _base_time_ms(base_time_ms),
 137     _base_free_regions(base_free_regions),
 138     _target_pause_time_ms(target_pause_time_ms),
 139     _policy(policy) {}
 140 
 141   bool will_fit(uint young_length) const {
 142     if (young_length >= _base_free_regions) {
 143       // end condition 1: not enough space for the young regions
 144       return false;
 145     }
 146 
 147     size_t bytes_to_copy = 0;
 148     const double copy_time_ms = _policy->predict_eden_copy_time_ms(young_length, &bytes_to_copy);
 149     const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
 150     const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
 151     if (pause_time_ms > _target_pause_time_ms) {
 152       // end condition 2: prediction is over the target pause time
 153       return false;
 154     }
 155 
 156     const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
 157 
 158     // When copying, we will likely need more bytes free than is live in the region.
 159     // Add some safety margin to factor in the confidence of our guess, and the
 160     // natural expected waste.
 161     // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 162     // of the calculation: the lower the confidence, the more headroom.
 163     // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 164     // copying due to anticipated waste in the PLABs.
 165     const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 166     const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 167 
 168     if (expected_bytes_to_copy > free_bytes) {
 169       // end condition 3: out-of-space
 170       return false;
 171     }
 172 
 173     // success!
 174     return true;
 175   }
 176 };
 177 
 178 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
 179   // re-calculate the necessary reserve
 180   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 181   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 182   // smaller than 1.0) we'll get 1.
 183   _reserve_regions = (uint) ceil(reserve_regions_d);
 184 
 185   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 186 
 187   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 188 }
 189 
 190 uint G1Policy::calculate_desired_eden_length_by_mmu() const {
 191   // One could argue that any useful eden length to keep any MMU would be 1, but
 192   // in theory this is possible. Other constraints enforce a minimum eden of 1
 193   // anyway.
 194   uint desired_min_length = 0;
 195   if (use_adaptive_young_list_length()) {
 196     double now_sec = os::elapsedTime();
 197     double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 198     double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 199     desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 200   }
 201   return desired_min_length;
 202 }
 203 
 204 void G1Policy::update_young_length_bounds() {
 205   update_young_length_bounds(_analytics->predict_rs_length());
 206 }
 207 
 208 void G1Policy::update_young_length_bounds(size_t rs_length) {
 209   _young_list_desired_length = calculate_young_desired_length(rs_length);
 210   _young_list_target_length = calculate_young_target_length(_young_list_desired_length);
 211   _young_list_max_length = calculate_young_max_length(_young_list_target_length);
 212 
 213   log_debug(gc,ergo,heap)("Young list lengths: desired: %u, target: %u, max: %u",
 214                           _young_list_desired_length,
 215                           _young_list_target_length,
 216                           _young_list_max_length);
 217 }
 218 
 219 // Calculates desired young gen length. It is calculated from:
 220 //
 221 // - sizer min/max bounds on young gen
 222 // - pause time goal for whole young gen evacuation
 223 // - MMU goal influencing eden to make GCs spaced apart.
 224 // - a minimum one eden region length.
 225 //
 226 // We may enter with already allocated eden and survivor regions, that may be
 227 // higher than the maximum, or the above goals may result in a desired value
 228 // smaller than are already allocated.
 229 // The main reason is revising young length, with our without the GCLocker being
 230 // active.
 231 //
 232 uint G1Policy::calculate_young_desired_length(size_t rs_length) const {
 233   uint min_young_length_by_sizer = _young_gen_sizer->min_desired_young_length();
 234   uint max_young_length_by_sizer = _young_gen_sizer->max_desired_young_length();
 235 
 236   assert(min_young_length_by_sizer >= 1, "invariant");
 237   assert(max_young_length_by_sizer >= min_young_length_by_sizer, "invariant");
 238 
 239   // Absolute minimum eden length.
 240   // Enforcing a minimum eden length helps at startup when the predictors are not
 241   // yet trained on the application to avoid unnecessary (but very short) full gcs
 242   // on very small (initial) heaps.
 243   uint const MinDesiredEdenLength = 1;
 244 
 245   // Calculate the absolute and desired min bounds first.
 246 
 247   // This is how many survivor regions we already have.
 248   const uint survivor_length = _g1h->survivor_regions_count();
 249   // Size of the already allocated young gen.
 250   const uint allocated_young_length = _g1h->young_regions_count();
 251   // This is the absolute minimum young length that we can return. Ensure that we
 252   // don't go below any user-defined minimum bound; but we might have already
 253   // allocated more than that for reasons. In this case, use that.
 254   uint absolute_min_young_length = MAX2(allocated_young_length, min_young_length_by_sizer);
 255   // Calculate the absolute max bounds. After evac failure or when revising the
 256   // young length we might have exceeded absolute min length or absolute_max_length,
 257   // so adjust the result accordingly.
 258   uint absolute_max_young_length = MAX2(max_young_length_by_sizer, absolute_min_young_length);
 259 
 260   uint desired_eden_length_by_mmu = 0;
 261   uint desired_eden_length_by_pause = 0;
 262   uint desired_eden_length_before_mixed = 0;
 263 
 264   uint desired_young_length = 0;
 265   if (use_adaptive_young_list_length()) {
 266     desired_eden_length_by_mmu = calculate_desired_eden_length_by_mmu();
 267 
 268     const size_t pending_cards = _analytics->predict_pending_cards();
 269     double survivor_base_time_ms = predict_base_elapsed_time_ms(pending_cards, rs_length);
 270 
 271     if (!next_gc_should_be_mixed(NULL, NULL)) {
 272       desired_eden_length_by_pause =
 273         calculate_desired_eden_length_by_pause(survivor_base_time_ms,
 274                                                absolute_min_young_length - survivor_length,
 275                                                absolute_max_young_length - survivor_length);
 276     } else {
 277       desired_eden_length_before_mixed =
 278         calculate_desired_eden_length_before_mixed(survivor_base_time_ms,
 279                                                    absolute_min_young_length - survivor_length,
 280                                                    absolute_max_young_length - survivor_length);
 281     }
 282     // Above either sets desired_eden_length_by_pause or desired_eden_length_before_mixed,
 283     // the other is zero. Use the one that has been set below.
 284     uint desired_eden_length = MAX2(desired_eden_length_by_pause,
 285                                     desired_eden_length_before_mixed);
 286 
 287     // Finally incorporate MMU concerns; assume that it overrides the pause time
 288     // goal, as the default value has been chosen to effectively disable it.
 289     // Also request at least one eden region, see above for reasons.
 290     desired_eden_length = MAX3(desired_eden_length,
 291                                desired_eden_length_by_mmu,
 292                                MinDesiredEdenLength);
 293 
 294     desired_young_length = desired_eden_length + survivor_length;
 295   } else {
 296     // The user asked for a fixed young gen so we'll fix the young gen
 297     // whether the next GC is young or mixed.
 298     desired_young_length = min_young_length_by_sizer;
 299   }
 300   // Clamp to absolute min/max after we determined desired lengths.
 301   desired_young_length = clamp(desired_young_length, absolute_min_young_length, absolute_max_young_length);
 302 
 303   log_trace(gc, ergo, heap)("Young desired length %u "
 304                             "survivor length %u "
 305                             "allocated young length %u "
 306                             "absolute min young length %u "
 307                             "absolute max young length %u "
 308                             "desired eden length by mmu %u "
 309                             "desired eden length by pause %u "
 310                             "desired eden length before mixed %u"
 311                             "desired eden length by default %u",
 312                             desired_young_length, survivor_length,
 313                             allocated_young_length, absolute_min_young_length,
 314                             absolute_max_young_length, desired_eden_length_by_mmu,
 315                             desired_eden_length_by_pause,
 316                             desired_eden_length_before_mixed,
 317                             MinDesiredEdenLength);
 318 
 319   assert(desired_young_length >= allocated_young_length, "must be");
 320   return desired_young_length;
 321 }
 322 
 323 // Limit the desired (wished) young length by current free regions. If the request
 324 // can be satisfied without using up reserve regions, do so, otherwise eat into
 325 // the reserve, giving away at most what the heap sizer allows.
 326 uint G1Policy::calculate_young_target_length(uint desired_young_length) const {
 327   uint allocated_young_length = _g1h->young_regions_count();
 328 
 329   uint receiving_additional_eden;
 330   if (allocated_young_length >= desired_young_length) {
 331     // Already used up all we actually want (may happen as G1 revises the
 332     // young list length concurrently, or caused by gclocker). Do not allow more,
 333     // potentially resulting in GC.
 334     receiving_additional_eden = 0;
 335     log_trace(gc, ergo, heap)("Young target length: Already used up desired young %u allocated %u",
 336                               desired_young_length,
 337                               allocated_young_length);
 338   } else {
 339     // Now look at how many free regions are there currently, and the heap reserve.
 340     // We will try our best not to "eat" into the reserve as long as we can. If we
 341     // do, we at most eat the sizer's minimum regions into the reserve or half the
 342     // reserve rounded up (if possible; this is an arbitrary value).
 343 
 344     uint max_to_eat_into_reserve = MIN2(_young_gen_sizer->min_desired_young_length(),
 345                                         (_reserve_regions + 1) / 2);
 346 
 347     log_trace(gc, ergo, heap)("Young target length: Common "
 348                               "free regions at end of collection %u "
 349                               "desired young length %u "
 350                               "reserve region %u "
 351                               "max to eat into reserve %u",
 352                               _free_regions_at_end_of_collection,
 353                               desired_young_length,
 354                               _reserve_regions,
 355                               max_to_eat_into_reserve);
 356 
 357     if (_free_regions_at_end_of_collection <= _reserve_regions) {
 358       // Fully eat (or already eating) into the reserve, hand back at most absolute_min_length regions.
 359       uint receiving_young = MIN3(_free_regions_at_end_of_collection,
 360                                   desired_young_length,
 361                                   max_to_eat_into_reserve);
 362       // We could already have allocated more regions than what we could get
 363       // above.
 364       receiving_additional_eden = allocated_young_length < receiving_young ?
 365                                   receiving_young - allocated_young_length : 0;
 366 
 367       log_trace(gc, ergo, heap)("Young target length: Fully eat into reserve "
 368                                 "receiving young %u receiving additional eden %u",
 369                                 receiving_young,
 370                                 receiving_additional_eden);
 371     } else if (_free_regions_at_end_of_collection < (desired_young_length + _reserve_regions)) {
 372       // Partially eat into the reserve, at most max_to_eat_into_reserve regions.
 373       uint free_outside_reserve = _free_regions_at_end_of_collection - _reserve_regions;
 374       assert(free_outside_reserve < desired_young_length,
 375              "must be %u %u",
 376              free_outside_reserve, desired_young_length);
 377 
 378       uint receiving_within_reserve = MIN2(desired_young_length - free_outside_reserve,
 379                                            max_to_eat_into_reserve);
 380       uint receiving_young = free_outside_reserve + receiving_within_reserve;
 381       // Again, we could have already allocated more than we could get.
 382       receiving_additional_eden = allocated_young_length < receiving_young ?
 383                                   receiving_young - allocated_young_length : 0;
 384 
 385       log_trace(gc, ergo, heap)("Young target length: Partially eat into reserve "
 386                                 "free outside reserve %u "
 387                                 "receiving within reserve %u "
 388                                 "receiving young %u "
 389                                 "receiving additional eden %u",
 390                                 free_outside_reserve, receiving_within_reserve,
 391                                 receiving_young, receiving_additional_eden);
 392     } else {
 393       // No need to use the reserve.
 394       receiving_additional_eden = desired_young_length - allocated_young_length;
 395       log_trace(gc, ergo, heap)("Young target length: No need to use reserve "
 396                                 "receiving additional eden %u",
 397                                 receiving_additional_eden);
 398     }
 399   }
 400 
 401   uint target_young_length = allocated_young_length + receiving_additional_eden;
 402 
 403   assert(target_young_length >= allocated_young_length, "must be");
 404 
 405   log_trace(gc, ergo, heap)("Young target length: "
 406                             "young target length %u "
 407                             "allocated young length %u "
 408                             "received additional eden %u",
 409                             target_young_length, allocated_young_length,
 410                             receiving_additional_eden);
 411   return target_young_length;
 412 }
 413 
 414 uint G1Policy::calculate_desired_eden_length_by_pause(double base_time_ms,
 415                                                       uint min_eden_length,
 416                                                       uint max_eden_length) const {
 417   assert(use_adaptive_young_list_length(), "pre-condition");
 418 
 419   assert(min_eden_length <= max_eden_length, "must be %u %u", min_eden_length, max_eden_length);
 420 
 421   // Here, we will make sure that the shortest young length that
 422   // makes sense fits within the target pause time.
 423 
 424   G1YoungLengthPredictor p(base_time_ms,
 425                            _free_regions_at_end_of_collection,
 426                            _mmu_tracker->max_gc_time() * 1000.0,
 427                            this);
 428   if (p.will_fit(min_eden_length)) {
 429     // The shortest young length will fit into the target pause time;
 430     // we'll now check whether the absolute maximum number of young
 431     // regions will fit in the target pause time. If not, we'll do
 432     // a binary search between min_young_length and max_young_length.
 433     if (p.will_fit(max_eden_length)) {
 434       // The maximum young length will fit into the target pause time.
 435       // We are done so set min young length to the maximum length (as
 436       // the result is assumed to be returned in min_young_length).
 437       min_eden_length = max_eden_length;
 438     } else {
 439       // The maximum possible number of young regions will not fit within
 440       // the target pause time so we'll search for the optimal
 441       // length. The loop invariants are:
 442       //
 443       // min_young_length < max_young_length
 444       // min_young_length is known to fit into the target pause time
 445       // max_young_length is known not to fit into the target pause time
 446       //
 447       // Going into the loop we know the above hold as we've just
 448       // checked them. Every time around the loop we check whether
 449       // the middle value between min_young_length and
 450       // max_young_length fits into the target pause time. If it
 451       // does, it becomes the new min. If it doesn't, it becomes
 452       // the new max. This way we maintain the loop invariants.
 453 
 454       assert(min_eden_length < max_eden_length, "invariant");
 455       uint diff = (max_eden_length - min_eden_length) / 2;
 456       while (diff > 0) {
 457         uint eden_length = min_eden_length + diff;
 458         if (p.will_fit(eden_length)) {
 459           min_eden_length = eden_length;
 460         } else {
 461           max_eden_length = eden_length;
 462         }
 463         assert(min_eden_length <  max_eden_length, "invariant");
 464         diff = (max_eden_length - min_eden_length) / 2;
 465       }
 466       // The results is min_young_length which, according to the
 467       // loop invariants, should fit within the target pause time.
 468 
 469       // These are the post-conditions of the binary search above:
 470       assert(min_eden_length < max_eden_length,
 471              "otherwise we should have discovered that max_eden_length "
 472              "fits into the pause target and not done the binary search");
 473       assert(p.will_fit(min_eden_length),
 474              "min_eden_length, the result of the binary search, should "
 475              "fit into the pause target");
 476       assert(!p.will_fit(min_eden_length + 1),
 477              "min_eden_length, the result of the binary search, should be "
 478              "optimal, so no larger length should fit into the pause target");
 479     }
 480   } else {
 481     // Even the minimum length doesn't fit into the pause time
 482     // target, return it as the result nevertheless.
 483   }
 484   return min_eden_length;
 485 }
 486 
 487 uint G1Policy::calculate_desired_eden_length_before_mixed(double survivor_base_time_ms,
 488                                                           uint min_eden_length,
 489                                                           uint max_eden_length) const {
 490   G1CollectionSetCandidates* candidates = _collection_set->candidates();
 491 
 492   uint min_old_regions_end = MIN2(candidates->cur_idx() + calc_min_old_cset_length(), candidates->num_regions());
 493   double predicted_region_evac_time_ms = survivor_base_time_ms;
 494   for (uint i = candidates->cur_idx(); i < min_old_regions_end; i++) {
 495     HeapRegion* r = candidates->at(i);
 496     predicted_region_evac_time_ms += predict_region_total_time_ms(r, false);
 497   }
 498   uint desired_eden_length_by_min_cset_length =
 499      calculate_desired_eden_length_by_pause(predicted_region_evac_time_ms,
 500                                             min_eden_length,
 501                                             max_eden_length);
 502 
 503   return desired_eden_length_by_min_cset_length;
 504 }
 505 
 506 double G1Policy::predict_survivor_regions_evac_time() const {
 507   double survivor_regions_evac_time = 0.0;
 508   const GrowableArray<HeapRegion*>* survivor_regions = _g1h->survivor()->regions();
 509   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 510        it != survivor_regions->end();
 511        ++it) {
 512     survivor_regions_evac_time += predict_region_total_time_ms(*it, collector_state()->in_young_only_phase());
 513   }
 514   return survivor_regions_evac_time;
 515 }
 516 
 517 G1GCPhaseTimes* G1Policy::phase_times() const {
 518   // Lazy allocation because it must follow initialization of all the
 519   // OopStorage objects by various other subsystems.
 520   if (_phase_times == NULL) {
 521     _phase_times = new G1GCPhaseTimes(_phase_times_timer, ParallelGCThreads);
 522   }
 523   return _phase_times;
 524 }
 525 
 526 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_length) {
 527   guarantee(use_adaptive_young_list_length(), "should not call this otherwise" );
 528 
 529   if (rs_length > _rs_length_prediction) {
 530     // add 10% to avoid having to recalculate often
 531     size_t rs_length_prediction = rs_length * 1100 / 1000;
 532     update_rs_length_prediction(rs_length_prediction);
 533     update_young_length_bounds(rs_length_prediction);
 534   }
 535 }
 536 
 537 void G1Policy::update_rs_length_prediction() {
 538   update_rs_length_prediction(_analytics->predict_rs_length());
 539 }
 540 
 541 void G1Policy::update_rs_length_prediction(size_t prediction) {
 542   if (collector_state()->in_young_only_phase() && use_adaptive_young_list_length()) {
 543     _rs_length_prediction = prediction;
 544   }
 545 }
 546 
 547 void G1Policy::record_full_collection_start() {
 548   _full_collection_start_sec = os::elapsedTime();
 549   // Release the future to-space so that it is available for compaction into.
 550   collector_state()->set_in_young_only_phase(false);
 551   collector_state()->set_in_full_gc(true);
 552   _collection_set->clear_candidates();
 553   _pending_cards_at_gc_start = 0;
 554 }
 555 
 556 void G1Policy::record_full_collection_end() {
 557   // Consider this like a collection pause for the purposes of allocation
 558   // since last pause.
 559   double end_sec = os::elapsedTime();
 560   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 561   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 562 
 563   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 564 
 565   collector_state()->set_in_full_gc(false);
 566 
 567   // "Nuke" the heuristics that control the young/mixed GC
 568   // transitions and make sure we start with young GCs after the Full GC.
 569   collector_state()->set_in_young_only_phase(true);
 570   collector_state()->set_in_young_gc_before_mixed(false);
 571   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 572   collector_state()->set_in_concurrent_start_gc(false);
 573   collector_state()->set_mark_or_rebuild_in_progress(false);
 574   collector_state()->set_clearing_next_bitmap(false);
 575 
 576   _eden_surv_rate_group->start_adding_regions();
 577   // also call this on any additional surv rate groups
 578 
 579   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 580   _survivor_surv_rate_group->reset();
 581   update_young_length_bounds();
 582   update_rs_length_prediction();
 583 
 584   _old_gen_alloc_tracker.reset_after_full_gc();
 585 
 586   record_pause(FullGC, _full_collection_start_sec, end_sec);
 587 }
 588 
 589 static void log_refinement_stats(const char* kind, const G1ConcurrentRefineStats& stats) {
 590   log_debug(gc, refine, stats)
 591            ("%s refinement: %.2fms, refined: " SIZE_FORMAT
 592             ", precleaned: " SIZE_FORMAT ", dirtied: " SIZE_FORMAT,
 593             kind,
 594             stats.refinement_time().seconds() * MILLIUNITS,
 595             stats.refined_cards(),
 596             stats.precleaned_cards(),
 597             stats.dirtied_cards());
 598 }
 599 
 600 void G1Policy::record_concurrent_refinement_stats() {
 601   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
 602   _pending_cards_at_gc_start = dcqs.num_cards();
 603 
 604   // Collect per-thread stats, mostly from mutator activity.
 605   G1ConcurrentRefineStats mut_stats = dcqs.get_and_reset_refinement_stats();
 606 
 607   // Collect specialized concurrent refinement thread stats.
 608   G1ConcurrentRefine* cr = _g1h->concurrent_refine();
 609   G1ConcurrentRefineStats cr_stats = cr->get_and_reset_refinement_stats();
 610 
 611   G1ConcurrentRefineStats total_stats = mut_stats + cr_stats;
 612 
 613   log_refinement_stats("Mutator", mut_stats);
 614   log_refinement_stats("Concurrent", cr_stats);
 615   log_refinement_stats("Total", total_stats);
 616 
 617   // Record the rate at which cards were refined.
 618   // Don't update the rate if the current sample is empty or time is zero.
 619   Tickspan refinement_time = total_stats.refinement_time();
 620   size_t refined_cards = total_stats.refined_cards();
 621   if ((refined_cards > 0) && (refinement_time > Tickspan())) {
 622     double rate = refined_cards / (refinement_time.seconds() * MILLIUNITS);
 623     _analytics->report_concurrent_refine_rate_ms(rate);
 624     log_debug(gc, refine, stats)("Concurrent refinement rate: %.2f cards/ms", rate);
 625   }
 626 
 627   // Record mutator's card logging rate.
 628   double mut_start_time = _analytics->prev_collection_pause_end_ms();
 629   double mut_end_time = phase_times()->cur_collection_start_sec() * MILLIUNITS;
 630   double mut_time = mut_end_time - mut_start_time;
 631   // Unlike above for conc-refine rate, here we should not require a
 632   // non-empty sample, since an application could go some time with only
 633   // young-gen or filtered out writes.  But we'll ignore unusually short
 634   // sample periods, as they may just pollute the predictions.
 635   if (mut_time > 1.0) {   // Require > 1ms sample time.
 636     double dirtied_rate = total_stats.dirtied_cards() / mut_time;
 637     _analytics->report_dirtied_cards_rate_ms(dirtied_rate);
 638     log_debug(gc, refine, stats)("Generate dirty cards rate: %.2f cards/ms", dirtied_rate);
 639   }
 640 }
 641 
 642 void G1Policy::record_collection_pause_start(double start_time_sec) {
 643   // We only need to do this here as the policy will only be applied
 644   // to the GC we're about to start. so, no point is calculating this
 645   // every time we calculate / recalculate the target young length.
 646   update_survivors_policy();
 647 
 648   assert(max_survivor_regions() + _g1h->num_used_regions() <= _g1h->max_regions(),
 649          "Maximum survivor regions %u plus used regions %u exceeds max regions %u",
 650          max_survivor_regions(), _g1h->num_used_regions(), _g1h->max_regions());
 651   assert_used_and_recalculate_used_equal(_g1h);
 652 
 653   phase_times()->record_cur_collection_start_sec(start_time_sec);
 654 
 655   record_concurrent_refinement_stats();
 656 
 657   _collection_set->reset_bytes_used_before();
 658 
 659   // do that for any other surv rate groups
 660   _eden_surv_rate_group->stop_adding_regions();
 661   _survivors_age_table.clear();
 662 
 663   assert(_g1h->collection_set()->verify_young_ages(), "region age verification failed");
 664 }
 665 
 666 void G1Policy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
 667   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 668   collector_state()->set_in_concurrent_start_gc(false);
 669 }
 670 
 671 void G1Policy::record_concurrent_mark_remark_start() {
 672   _mark_remark_start_sec = os::elapsedTime();
 673 }
 674 
 675 void G1Policy::record_concurrent_mark_remark_end() {
 676   double end_time_sec = os::elapsedTime();
 677   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 678   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 679   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 680 
 681   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 682 }
 683 
 684 void G1Policy::record_concurrent_mark_cleanup_start() {
 685   _mark_cleanup_start_sec = os::elapsedTime();
 686 }
 687 
 688 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 689   return phase_times()->average_time_ms(phase);
 690 }
 691 
 692 double G1Policy::young_other_time_ms() const {
 693   return phase_times()->young_cset_choice_time_ms() +
 694          phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
 695 }
 696 
 697 double G1Policy::non_young_other_time_ms() const {
 698   return phase_times()->non_young_cset_choice_time_ms() +
 699          phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
 700 }
 701 
 702 double G1Policy::other_time_ms(double pause_time_ms) const {
 703   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
 704 }
 705 
 706 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
 707   return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms() - phase_times()->total_rebuild_freelist_time_ms();
 708 }
 709 
 710 bool G1Policy::about_to_start_mixed_phase() const {
 711   return _g1h->concurrent_mark()->cm_thread()->during_cycle() || collector_state()->in_young_gc_before_mixed();
 712 }
 713 
 714 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 715   if (about_to_start_mixed_phase()) {
 716     return false;
 717   }
 718 
 719   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 720 
 721   size_t cur_used_bytes = _g1h->non_young_capacity_bytes();
 722   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 723   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 724 
 725   bool result = false;
 726   if (marking_request_bytes > marking_initiating_used_threshold) {
 727     result = collector_state()->in_young_only_phase() && !collector_state()->in_young_gc_before_mixed();
 728     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 729                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 730                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1h->capacity() * 100, source);
 731   }
 732 
 733   return result;
 734 }
 735 
 736 double G1Policy::logged_cards_processing_time() const {
 737   double all_cards_processing_time = average_time_ms(G1GCPhaseTimes::ScanHR) + average_time_ms(G1GCPhaseTimes::OptScanHR);
 738   size_t logged_dirty_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
 739   size_t scan_heap_roots_cards = phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
 740                                  phase_times()->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
 741   // This may happen if there are duplicate cards in different log buffers.
 742   if (logged_dirty_cards > scan_heap_roots_cards) {
 743     return all_cards_processing_time + average_time_ms(G1GCPhaseTimes::MergeLB);
 744   }
 745   return (all_cards_processing_time * logged_dirty_cards / scan_heap_roots_cards) + average_time_ms(G1GCPhaseTimes::MergeLB);
 746 }
 747 
 748 // Anything below that is considered to be zero
 749 #define MIN_TIMER_GRANULARITY 0.0000001
 750 
 751 void G1Policy::record_collection_pause_end(double pause_time_ms) {
 752   G1GCPhaseTimes* p = phase_times();
 753 
 754   double end_time_sec = os::elapsedTime();
 755 
 756   PauseKind this_pause = young_gc_pause_kind();
 757 
 758   bool update_stats = !_g1h->evacuation_failed();
 759 
 760   record_pause(this_pause, end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 761 
 762   if (is_concurrent_start_pause(this_pause)) {
 763     record_concurrent_mark_init_end(0.0);
 764   } else {
 765     maybe_start_marking();
 766   }
 767 
 768   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
 769   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 770     // This usually happens due to the timer not having the required
 771     // granularity. Some Linuxes are the usual culprits.
 772     // We'll just set it to something (arbitrarily) small.
 773     app_time_ms = 1.0;
 774   }
 775 
 776   if (update_stats) {
 777     // We maintain the invariant that all objects allocated by mutator
 778     // threads will be allocated out of eden regions. So, we can use
 779     // the eden region number allocated since the previous GC to
 780     // calculate the application's allocate rate. The only exception
 781     // to that is humongous objects that are allocated separately. But
 782     // given that humongous object allocations do not really affect
 783     // either the pause's duration nor when the next pause will take
 784     // place we can safely ignore them here.
 785     uint regions_allocated = _collection_set->eden_region_length();
 786     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 787     _analytics->report_alloc_rate_ms(alloc_rate_ms);
 788 
 789     _analytics->compute_pause_time_ratios(end_time_sec, pause_time_ms);
 790     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
 791   }
 792 
 793   if (is_last_young_pause(this_pause)) {
 794     assert(!is_concurrent_start_pause(this_pause),
 795            "The young GC before mixed is not allowed to be concurrent start GC");
 796     // This has been the young GC before we start doing mixed GCs. We already
 797     // decided to start mixed GCs much earlier, so there is nothing to do except
 798     // advancing the state.
 799     collector_state()->set_in_young_only_phase(false);
 800     collector_state()->set_in_young_gc_before_mixed(false);
 801   } else if (is_mixed_pause(this_pause)) {
 802     // This is a mixed GC. Here we decide whether to continue doing more
 803     // mixed GCs or not.
 804     if (!next_gc_should_be_mixed("continue mixed GCs",
 805                                  "do not continue mixed GCs")) {
 806       collector_state()->set_in_young_only_phase(true);
 807 
 808       clear_collection_set_candidates();
 809       maybe_start_marking();
 810     }
 811   } else {
 812     assert(is_young_only_pause(this_pause), "must be");
 813   }
 814 
 815   _eden_surv_rate_group->start_adding_regions();
 816 
 817   double merge_hcc_time_ms = average_time_ms(G1GCPhaseTimes::MergeHCC);
 818   if (update_stats) {
 819     size_t const total_log_buffer_cards = p->sum_thread_work_items(G1GCPhaseTimes::MergeHCC, G1GCPhaseTimes::MergeHCCDirtyCards) +
 820                                           p->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards);
 821     // Update prediction for card merge; MergeRSDirtyCards includes the cards from the Eager Reclaim phase.
 822     size_t const total_cards_merged = p->sum_thread_work_items(G1GCPhaseTimes::MergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
 823                                       p->sum_thread_work_items(G1GCPhaseTimes::OptMergeRS, G1GCPhaseTimes::MergeRSDirtyCards) +
 824                                       total_log_buffer_cards;
 825 
 826     // The threshold for the number of cards in a given sampling which we consider
 827     // large enough so that the impact from setup and other costs is negligible.
 828     size_t const CardsNumSamplingThreshold = 10;
 829 
 830     if (total_cards_merged > CardsNumSamplingThreshold) {
 831       double avg_time_merge_cards = average_time_ms(G1GCPhaseTimes::MergeER) +
 832                                     average_time_ms(G1GCPhaseTimes::MergeRS) +
 833                                     average_time_ms(G1GCPhaseTimes::MergeHCC) +
 834                                     average_time_ms(G1GCPhaseTimes::MergeLB) +
 835                                     average_time_ms(G1GCPhaseTimes::OptMergeRS);
 836       _analytics->report_cost_per_card_merge_ms(avg_time_merge_cards / total_cards_merged,
 837                                                 is_young_only_pause(this_pause));
 838     }
 839 
 840     // Update prediction for card scan
 841     size_t const total_cards_scanned = p->sum_thread_work_items(G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ScanHRScannedCards) +
 842                                        p->sum_thread_work_items(G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::ScanHRScannedCards);
 843 
 844     if (total_cards_scanned > CardsNumSamplingThreshold) {
 845       double avg_time_dirty_card_scan = average_time_ms(G1GCPhaseTimes::ScanHR) +
 846                                         average_time_ms(G1GCPhaseTimes::OptScanHR);
 847 
 848       _analytics->report_cost_per_card_scan_ms(avg_time_dirty_card_scan / total_cards_scanned,
 849                                                is_young_only_pause(this_pause));
 850     }
 851 
 852     // Update prediction for the ratio between cards from the remembered
 853     // sets and actually scanned cards from the remembered sets.
 854     // Cards from the remembered sets are all cards not duplicated by cards from
 855     // the logs.
 856     // Due to duplicates in the log buffers, the number of actually scanned cards
 857     // can be smaller than the cards in the log buffers.
 858     const size_t from_rs_length_cards = (total_cards_scanned > total_log_buffer_cards) ? total_cards_scanned - total_log_buffer_cards : 0;
 859     double merge_to_scan_ratio = 0.0;
 860     if (total_cards_scanned > 0) {
 861       merge_to_scan_ratio = (double) from_rs_length_cards / total_cards_scanned;
 862     }
 863     _analytics->report_card_merge_to_scan_ratio(merge_to_scan_ratio,
 864                                                 is_young_only_pause(this_pause));
 865 
 866     const size_t recorded_rs_length = _collection_set->recorded_rs_length();
 867     const size_t rs_length_diff = _rs_length > recorded_rs_length ? _rs_length - recorded_rs_length : 0;
 868     _analytics->report_rs_length_diff(rs_length_diff);
 869 
 870     // Update prediction for copy cost per byte
 871     size_t copied_bytes = p->sum_thread_work_items(G1GCPhaseTimes::MergePSS, G1GCPhaseTimes::MergePSSCopiedBytes);
 872 
 873     if (copied_bytes > 0) {
 874       double cost_per_byte_ms = (average_time_ms(G1GCPhaseTimes::ObjCopy) + average_time_ms(G1GCPhaseTimes::OptObjCopy)) / copied_bytes;
 875       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->mark_or_rebuild_in_progress());
 876     }
 877 
 878     if (_collection_set->young_region_length() > 0) {
 879       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
 880                                                         _collection_set->young_region_length());
 881     }
 882 
 883     if (_collection_set->old_region_length() > 0) {
 884       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 885                                                             _collection_set->old_region_length());
 886     }
 887 
 888     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 889 
 890     // Do not update RS lengths and the number of pending cards with information from mixed gc:
 891     // these are is wildly different to during young only gc and mess up young gen sizing right
 892     // after the mixed gc phase.
 893     // During mixed gc we do not use them for young gen sizing.
 894     if (is_young_only_pause(this_pause)) {
 895       _analytics->report_pending_cards((double) _pending_cards_at_gc_start);
 896       _analytics->report_rs_length((double) _rs_length);
 897     }
 898   }
 899 
 900   assert(!(is_concurrent_start_pause(this_pause) && collector_state()->mark_or_rebuild_in_progress()),
 901          "If the last pause has been concurrent start, we should not have been in the marking window");
 902   if (is_concurrent_start_pause(this_pause)) {
 903     collector_state()->set_mark_or_rebuild_in_progress(true);
 904   }
 905 
 906   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 907 
 908   update_rs_length_prediction();
 909 
 910   // Do not update dynamic IHOP due to G1 periodic collection as it is highly likely
 911   // that in this case we are not running in a "normal" operating mode.
 912   if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
 913     update_young_length_bounds();
 914 
 915     _old_gen_alloc_tracker.reset_after_young_gc(app_time_ms / 1000.0);
 916     update_ihop_prediction(_old_gen_alloc_tracker.last_cycle_duration(),
 917                            _old_gen_alloc_tracker.last_cycle_old_bytes(),
 918                            is_young_only_pause(this_pause));
 919 
 920     _ihop_control->send_trace_event(_g1h->gc_tracer_stw());
 921   } else {
 922     // Any garbage collection triggered as periodic collection resets the time-to-mixed
 923     // measurement. Periodic collection typically means that the application is "inactive", i.e.
 924     // the marking threads may have received an uncharacterisic amount of cpu time
 925     // for completing the marking, i.e. are faster than expected.
 926     // This skews the predicted marking length towards smaller values which might cause
 927     // the mark start being too late.
 928     _concurrent_start_to_mixed.reset();
 929   }
 930 
 931   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 932   double scan_logged_cards_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 933 
 934   if (scan_logged_cards_time_goal_ms < merge_hcc_time_ms) {
 935     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 936                                 "Logged Cards Scan time goal: %1.2fms Scan HCC time: %1.2fms",
 937                                 scan_logged_cards_time_goal_ms, merge_hcc_time_ms);
 938 
 939     scan_logged_cards_time_goal_ms = 0;
 940   } else {
 941     scan_logged_cards_time_goal_ms -= merge_hcc_time_ms;
 942   }
 943 
 944   double const logged_cards_time = logged_cards_processing_time();
 945 
 946   log_debug(gc, ergo, refine)("Concurrent refinement times: Logged Cards Scan time goal: %1.2fms Logged Cards Scan time: %1.2fms HCC time: %1.2fms",
 947                               scan_logged_cards_time_goal_ms, logged_cards_time, merge_hcc_time_ms);
 948 
 949   _g1h->concurrent_refine()->adjust(logged_cards_time,
 950                                     phase_times()->sum_thread_work_items(G1GCPhaseTimes::MergeLB, G1GCPhaseTimes::MergeLBDirtyCards),
 951                                     scan_logged_cards_time_goal_ms);
 952 }
 953 
 954 G1IHOPControl* G1Policy::create_ihop_control(const G1Predictions* predictor){
 955   if (G1UseAdaptiveIHOP) {
 956     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 957                                      predictor,
 958                                      G1ReservePercent,
 959                                      G1HeapWastePercent);
 960   } else {
 961     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 962   }
 963 }
 964 
 965 void G1Policy::update_ihop_prediction(double mutator_time_s,
 966                                       size_t mutator_alloc_bytes,
 967                                       bool this_gc_was_young_only) {
 968   // Always try to update IHOP prediction. Even evacuation failures give information
 969   // about e.g. whether to start IHOP earlier next time.
 970 
 971   // Avoid using really small application times that might create samples with
 972   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 973   double const min_valid_time = 1e-6;
 974 
 975   bool report = false;
 976 
 977   double marking_to_mixed_time = -1.0;
 978   if (!this_gc_was_young_only && _concurrent_start_to_mixed.has_result()) {
 979     marking_to_mixed_time = _concurrent_start_to_mixed.last_marking_time();
 980     assert(marking_to_mixed_time > 0.0,
 981            "Concurrent start to mixed time must be larger than zero but is %.3f",
 982            marking_to_mixed_time);
 983     if (marking_to_mixed_time > min_valid_time) {
 984       _ihop_control->update_marking_length(marking_to_mixed_time);
 985       report = true;
 986     }
 987   }
 988 
 989   // As an approximation for the young gc promotion rates during marking we use
 990   // all of them. In many applications there are only a few if any young gcs during
 991   // marking, which makes any prediction useless. This increases the accuracy of the
 992   // prediction.
 993   if (this_gc_was_young_only && mutator_time_s > min_valid_time) {
 994     // IHOP control wants to know the expected young gen length if it were not
 995     // restrained by the heap reserve. Using the actual length would make the
 996     // prediction too small and the limit the young gen every time we get to the
 997     // predicted target occupancy.
 998     size_t young_gen_size = young_list_desired_length() * HeapRegion::GrainBytes;
 999     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
1000     report = true;
1001   }
1002 
1003   if (report) {
1004     report_ihop_statistics();
1005   }
1006 }
1007 
1008 void G1Policy::report_ihop_statistics() {
1009   _ihop_control->print();
1010 }
1011 
1012 void G1Policy::print_phases() {
1013   phase_times()->print();
1014 }
1015 
1016 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
1017                                               size_t rs_length) const {
1018   size_t effective_scanned_cards = _analytics->predict_scan_card_num(rs_length, collector_state()->in_young_only_phase());
1019   return
1020     _analytics->predict_card_merge_time_ms(pending_cards + rs_length, collector_state()->in_young_only_phase()) +
1021     _analytics->predict_card_scan_time_ms(effective_scanned_cards, collector_state()->in_young_only_phase()) +
1022     _analytics->predict_constant_other_time_ms() +
1023     predict_survivor_regions_evac_time();
1024 }
1025 
1026 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
1027   size_t rs_length = _analytics->predict_rs_length();
1028   return predict_base_elapsed_time_ms(pending_cards, rs_length);
1029 }
1030 
1031 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
1032   size_t bytes_to_copy;
1033   if (!hr->is_young()) {
1034     bytes_to_copy = hr->max_live_bytes();
1035   } else {
1036     bytes_to_copy = (size_t) (hr->used() * hr->surv_rate_prediction(_predictor));
1037   }
1038   return bytes_to_copy;
1039 }
1040 
1041 double G1Policy::predict_eden_copy_time_ms(uint count, size_t* bytes_to_copy) const {
1042   if (count == 0) {
1043     return 0.0;
1044   }
1045   size_t const expected_bytes = _eden_surv_rate_group->accum_surv_rate_pred(count) * HeapRegion::GrainBytes;
1046   if (bytes_to_copy != NULL) {
1047     *bytes_to_copy = expected_bytes;
1048   }
1049   return _analytics->predict_object_copy_time_ms(expected_bytes, collector_state()->mark_or_rebuild_in_progress());
1050 }
1051 
1052 double G1Policy::predict_region_copy_time_ms(HeapRegion* hr) const {
1053   size_t const bytes_to_copy = predict_bytes_to_copy(hr);
1054   return _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->mark_or_rebuild_in_progress());
1055 }
1056 
1057 double G1Policy::predict_region_non_copy_time_ms(HeapRegion* hr,
1058                                                  bool for_young_gc) const {
1059   size_t rs_length = hr->rem_set()->occupied();
1060   size_t scan_card_num = _analytics->predict_scan_card_num(rs_length, for_young_gc);
1061 
1062   double region_elapsed_time_ms =
1063     _analytics->predict_card_merge_time_ms(rs_length, collector_state()->in_young_only_phase()) +
1064     _analytics->predict_card_scan_time_ms(scan_card_num, collector_state()->in_young_only_phase());
1065 
1066   // The prediction of the "other" time for this region is based
1067   // upon the region type and NOT the GC type.
1068   if (hr->is_young()) {
1069     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
1070   } else {
1071     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
1072   }
1073   return region_elapsed_time_ms;
1074 }
1075 
1076 double G1Policy::predict_region_total_time_ms(HeapRegion* hr, bool for_young_gc) const {
1077   return predict_region_non_copy_time_ms(hr, for_young_gc) + predict_region_copy_time_ms(hr);
1078 }
1079 
1080 bool G1Policy::should_allocate_mutator_region() const {
1081   uint young_list_length = _g1h->young_regions_count();
1082   uint young_list_target_length = _young_list_target_length;
1083   return young_list_length < young_list_target_length;
1084 }
1085 
1086 bool G1Policy::can_expand_young_list() const {
1087   uint young_list_length = _g1h->young_regions_count();
1088   uint young_list_max_length = _young_list_max_length;
1089   return young_list_length < young_list_max_length;
1090 }
1091 
1092 bool G1Policy::use_adaptive_young_list_length() const {
1093   return _young_gen_sizer->use_adaptive_young_list_length();
1094 }
1095 
1096 size_t G1Policy::desired_survivor_size(uint max_regions) const {
1097   size_t const survivor_capacity = HeapRegion::GrainWords * max_regions;
1098   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
1099 }
1100 
1101 void G1Policy::print_age_table() {
1102   _survivors_age_table.print_age_table(_tenuring_threshold);
1103 }
1104 
1105 uint G1Policy::calculate_young_max_length(uint target_young_length) const {
1106   uint expansion_region_num = 0;
1107   if (GCLockerEdenExpansionPercent > 0) {
1108     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1109     double expansion_region_num_d = perc * (double) _young_list_target_length;
1110     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1111     // less than 1.0) we'll get 1.
1112     expansion_region_num = (uint) ceil(expansion_region_num_d);
1113   } else {
1114     assert(expansion_region_num == 0, "sanity");
1115   }
1116   uint max_length = target_young_length + expansion_region_num;
1117   assert(target_young_length <= max_length, "post-condition");
1118   return max_length;
1119 }
1120 
1121 // Calculates survivor space parameters.
1122 void G1Policy::update_survivors_policy() {
1123   double max_survivor_regions_d =
1124                  (double) _young_list_target_length / (double) SurvivorRatio;
1125 
1126   // Calculate desired survivor size based on desired max survivor regions (unconstrained
1127   // by remaining heap). Otherwise we may cause undesired promotions as we are
1128   // already getting close to end of the heap, impacting performance even more.
1129   uint const desired_max_survivor_regions = ceil(max_survivor_regions_d);
1130   size_t const survivor_size = desired_survivor_size(desired_max_survivor_regions);
1131 
1132   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(survivor_size);
1133   if (UsePerfData) {
1134     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
1135     _policy_counters->desired_survivor_size()->set_value(survivor_size * oopSize);
1136   }
1137   // The real maximum survivor size is bounded by the number of regions that can
1138   // be allocated into.
1139   _max_survivor_regions = MIN2(desired_max_survivor_regions,
1140                                _g1h->num_free_or_available_regions());
1141 }
1142 
1143 bool G1Policy::force_concurrent_start_if_outside_cycle(GCCause::Cause gc_cause) {
1144   // We actually check whether we are marking here and not if we are in a
1145   // reclamation phase. This means that we will schedule a concurrent mark
1146   // even while we are still in the process of reclaiming memory.
1147   bool during_cycle = _g1h->concurrent_mark()->cm_thread()->during_cycle();
1148   if (!during_cycle) {
1149     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). "
1150                         "GC cause: %s",
1151                         GCCause::to_string(gc_cause));
1152     collector_state()->set_initiate_conc_mark_if_possible(true);
1153     return true;
1154   } else {
1155     log_debug(gc, ergo)("Do not request concurrent cycle initiation "
1156                         "(concurrent cycle already in progress). GC cause: %s",
1157                         GCCause::to_string(gc_cause));
1158     return false;
1159   }
1160 }
1161 
1162 void G1Policy::initiate_conc_mark() {
1163   collector_state()->set_in_concurrent_start_gc(true);
1164   collector_state()->set_initiate_conc_mark_if_possible(false);
1165 }
1166 
1167 void G1Policy::decide_on_conc_mark_initiation() {
1168   // We are about to decide on whether this pause will be a
1169   // concurrent start pause.
1170 
1171   // First, collector_state()->in_concurrent_start_gc() should not be already set. We
1172   // will set it here if we have to. However, it should be cleared by
1173   // the end of the pause (it's only set for the duration of a
1174   // concurrent start pause).
1175   assert(!collector_state()->in_concurrent_start_gc(), "pre-condition");
1176 
1177   if (collector_state()->initiate_conc_mark_if_possible()) {
1178     // We had noticed on a previous pause that the heap occupancy has
1179     // gone over the initiating threshold and we should start a
1180     // concurrent marking cycle.  Or we've been explicitly requested
1181     // to start a concurrent marking cycle.  Either way, we initiate
1182     // one if not inhibited for some reason.
1183 
1184     GCCause::Cause cause = _g1h->gc_cause();
1185     if ((cause != GCCause::_wb_breakpoint) &&
1186         ConcurrentGCBreakpoints::is_controlled()) {
1187       log_debug(gc, ergo)("Do not initiate concurrent cycle (whitebox controlled)");
1188     } else if (!about_to_start_mixed_phase() && collector_state()->in_young_only_phase()) {
1189       // Initiate a new concurrent start if there is no marking or reclamation going on.
1190       initiate_conc_mark();
1191       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1192     } else if (_g1h->is_user_requested_concurrent_full_gc(cause) ||
1193                (cause == GCCause::_wb_breakpoint)) {
1194       // Initiate a user requested concurrent start or run to a breakpoint.
1195       // A concurrent start must be young only GC, so the collector state
1196       // must be updated to reflect this.
1197       collector_state()->set_in_young_only_phase(true);
1198       collector_state()->set_in_young_gc_before_mixed(false);
1199 
1200       // We might have ended up coming here about to start a mixed phase with a collection set
1201       // active. The following remark might change the change the "evacuation efficiency" of
1202       // the regions in this set, leading to failing asserts later.
1203       // Since the concurrent cycle will recreate the collection set anyway, simply drop it here.
1204       clear_collection_set_candidates();
1205       abort_time_to_mixed_tracking();
1206       initiate_conc_mark();
1207       log_debug(gc, ergo)("Initiate concurrent cycle (%s requested concurrent cycle)",
1208                           (cause == GCCause::_wb_breakpoint) ? "run_to breakpoint" : "user");
1209     } else {
1210       // The concurrent marking thread is still finishing up the
1211       // previous cycle. If we start one right now the two cycles
1212       // overlap. In particular, the concurrent marking thread might
1213       // be in the process of clearing the next marking bitmap (which
1214       // we will use for the next cycle if we start one). Starting a
1215       // cycle now will be bad given that parts of the marking
1216       // information might get cleared by the marking thread. And we
1217       // cannot wait for the marking thread to finish the cycle as it
1218       // periodically yields while clearing the next marking bitmap
1219       // and, if it's in a yield point, it's waiting for us to
1220       // finish. So, at this point we will not start a cycle and we'll
1221       // let the concurrent marking thread complete the last one.
1222       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1223     }
1224   }
1225 }
1226 
1227 void G1Policy::record_concurrent_mark_cleanup_end() {
1228   G1CollectionSetCandidates* candidates = G1CollectionSetChooser::build(_g1h->workers(), _g1h->num_regions());
1229   _collection_set->set_candidates(candidates);
1230 
1231   bool mixed_gc_pending = next_gc_should_be_mixed("request mixed gcs", "request young-only gcs");
1232   if (!mixed_gc_pending) {
1233     clear_collection_set_candidates();
1234     abort_time_to_mixed_tracking();
1235   }
1236   collector_state()->set_in_young_gc_before_mixed(mixed_gc_pending);
1237   collector_state()->set_mark_or_rebuild_in_progress(false);
1238 
1239   double end_sec = os::elapsedTime();
1240   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1241   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1242   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1243 
1244   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1245 }
1246 
1247 double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const {
1248   return percent_of(reclaimable_bytes, _g1h->capacity());
1249 }
1250 
1251 class G1ClearCollectionSetCandidateRemSets : public HeapRegionClosure {
1252   virtual bool do_heap_region(HeapRegion* r) {
1253     r->rem_set()->clear_locked(true /* only_cardset */);
1254     return false;
1255   }
1256 };
1257 
1258 void G1Policy::clear_collection_set_candidates() {
1259   // Clear remembered sets of remaining candidate regions and the actual candidate
1260   // set.
1261   G1ClearCollectionSetCandidateRemSets cl;
1262   _collection_set->candidates()->iterate(&cl);
1263   _collection_set->clear_candidates();
1264 }
1265 
1266 void G1Policy::maybe_start_marking() {
1267   if (need_to_start_conc_mark("end of GC")) {
1268     // Note: this might have already been set, if during the last
1269     // pause we decided to start a cycle but at the beginning of
1270     // this pause we decided to postpone it. That's OK.
1271     collector_state()->set_initiate_conc_mark_if_possible(true);
1272   }
1273 }
1274 
1275 bool G1Policy::is_young_only_pause(PauseKind kind) {
1276   assert(kind != FullGC, "must be");
1277   assert(kind != Remark, "must be");
1278   assert(kind != Cleanup, "must be");
1279   return kind == ConcurrentStartGC || kind == LastYoungGC || kind == YoungOnlyGC;
1280 }
1281 
1282 bool G1Policy::is_mixed_pause(PauseKind kind) {
1283   assert(kind != FullGC, "must be");
1284   assert(kind != Remark, "must be");
1285   assert(kind != Cleanup, "must be");
1286   return kind == MixedGC;
1287 }
1288 
1289 bool G1Policy::is_last_young_pause(PauseKind kind) {
1290   return kind == LastYoungGC;
1291 }
1292 
1293 bool G1Policy::is_concurrent_start_pause(PauseKind kind) {
1294   return kind == ConcurrentStartGC;
1295 }
1296 
1297 G1Policy::PauseKind G1Policy::young_gc_pause_kind() const {
1298   assert(!collector_state()->in_full_gc(), "must be");
1299   if (collector_state()->in_concurrent_start_gc()) {
1300     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1301     return ConcurrentStartGC;
1302   } else if (collector_state()->in_young_gc_before_mixed()) {
1303     assert(!collector_state()->in_concurrent_start_gc(), "must be");
1304     return LastYoungGC;
1305   } else if (collector_state()->in_mixed_phase()) {
1306     assert(!collector_state()->in_concurrent_start_gc(), "must be");
1307     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1308     return MixedGC;
1309   } else {
1310     assert(!collector_state()->in_concurrent_start_gc(), "must be");
1311     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1312     return YoungOnlyGC;
1313   }
1314 }
1315 
1316 void G1Policy::record_pause(PauseKind kind, double start, double end) {
1317   // Manage the MMU tracker. For some reason it ignores Full GCs.
1318   if (kind != FullGC) {
1319     _mmu_tracker->add_pause(start, end);
1320   }
1321   // Manage the mutator time tracking from concurrent start to first mixed gc.
1322   switch (kind) {
1323     case FullGC:
1324       abort_time_to_mixed_tracking();
1325       break;
1326     case Cleanup:
1327     case Remark:
1328     case YoungOnlyGC:
1329     case LastYoungGC:
1330       _concurrent_start_to_mixed.add_pause(end - start);
1331       break;
1332     case ConcurrentStartGC:
1333       if (_g1h->gc_cause() != GCCause::_g1_periodic_collection) {
1334         _concurrent_start_to_mixed.record_concurrent_start_end(end);
1335       }
1336       break;
1337     case MixedGC:
1338       _concurrent_start_to_mixed.record_mixed_gc_start(start);
1339       break;
1340     default:
1341       ShouldNotReachHere();
1342   }
1343 }
1344 
1345 void G1Policy::abort_time_to_mixed_tracking() {
1346   _concurrent_start_to_mixed.reset();
1347 }
1348 
1349 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1350                                        const char* false_action_str) const {
1351   G1CollectionSetCandidates* candidates = _collection_set->candidates();
1352 
1353   if (candidates == NULL || candidates->is_empty()) {
1354     if (false_action_str != NULL) {
1355       log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1356     }
1357     return false;
1358   }
1359 
1360   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1361   size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1362   double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1363   double threshold = (double) G1HeapWastePercent;
1364   if (reclaimable_percent <= threshold) {
1365     if (false_action_str != NULL) {
1366       log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1367                           false_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1368     }
1369     return false;
1370   }
1371   if (true_action_str != NULL) {
1372     log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1373                         true_action_str, candidates->num_remaining(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1374   }
1375   return true;
1376 }
1377 
1378 uint G1Policy::calc_min_old_cset_length() const {
1379   // The min old CSet region bound is based on the maximum desired
1380   // number of mixed GCs after a cycle. I.e., even if some old regions
1381   // look expensive, we should add them to the CSet anyway to make
1382   // sure we go through the available old regions in no more than the
1383   // maximum desired number of mixed GCs.
1384   //
1385   // The calculation is based on the number of marked regions we added
1386   // to the CSet candidates in the first place, not how many remain, so
1387   // that the result is the same during all mixed GCs that follow a cycle.
1388 
1389   const size_t region_num = _collection_set->candidates()->num_regions();
1390   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1391   size_t result = region_num / gc_num;
1392   // emulate ceiling
1393   if (result * gc_num < region_num) {
1394     result += 1;
1395   }
1396   return (uint) result;
1397 }
1398 
1399 uint G1Policy::calc_max_old_cset_length() const {
1400   // The max old CSet region bound is based on the threshold expressed
1401   // as a percentage of the heap size. I.e., it should bound the
1402   // number of old regions added to the CSet irrespective of how many
1403   // of them are available.
1404 
1405   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1406   const size_t region_num = g1h->num_regions();
1407   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1408   size_t result = region_num * perc / 100;
1409   // emulate ceiling
1410   if (100 * result < region_num * perc) {
1411     result += 1;
1412   }
1413   return (uint) result;
1414 }
1415 
1416 void G1Policy::calculate_old_collection_set_regions(G1CollectionSetCandidates* candidates,
1417                                                     double time_remaining_ms,
1418                                                     uint& num_initial_regions,
1419                                                     uint& num_optional_regions) {
1420   assert(candidates != NULL, "Must be");
1421 
1422   num_initial_regions = 0;
1423   num_optional_regions = 0;
1424   uint num_expensive_regions = 0;
1425 
1426   double predicted_old_time_ms = 0.0;
1427   double predicted_initial_time_ms = 0.0;
1428   double predicted_optional_time_ms = 0.0;
1429 
1430   double optional_threshold_ms = time_remaining_ms * optional_prediction_fraction();
1431 
1432   const uint min_old_cset_length = calc_min_old_cset_length();
1433   const uint max_old_cset_length = MAX2(min_old_cset_length, calc_max_old_cset_length());
1434   const uint max_optional_regions = max_old_cset_length - min_old_cset_length;
1435   bool check_time_remaining = use_adaptive_young_list_length();
1436 
1437   uint candidate_idx = candidates->cur_idx();
1438 
1439   log_debug(gc, ergo, cset)("Start adding old regions to collection set. Min %u regions, max %u regions, "
1440                             "time remaining %1.2fms, optional threshold %1.2fms",
1441                             min_old_cset_length, max_old_cset_length, time_remaining_ms, optional_threshold_ms);
1442 
1443   HeapRegion* hr = candidates->at(candidate_idx);
1444   while (hr != NULL) {
1445     if (num_initial_regions + num_optional_regions >= max_old_cset_length) {
1446       // Added maximum number of old regions to the CSet.
1447       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Maximum number of regions). "
1448                                 "Initial %u regions, optional %u regions",
1449                                 num_initial_regions, num_optional_regions);
1450       break;
1451     }
1452 
1453     // Stop adding regions if the remaining reclaimable space is
1454     // not above G1HeapWastePercent.
1455     size_t reclaimable_bytes = candidates->remaining_reclaimable_bytes();
1456     double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1457     double threshold = (double) G1HeapWastePercent;
1458     if (reclaimable_percent <= threshold) {
1459       // We've added enough old regions that the amount of uncollected
1460       // reclaimable space is at or below the waste threshold. Stop
1461       // adding old regions to the CSet.
1462       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Reclaimable percentage below threshold). "
1463                                 "Reclaimable: " SIZE_FORMAT "%s (%1.2f%%) threshold: " UINTX_FORMAT "%%",
1464                                 byte_size_in_proper_unit(reclaimable_bytes), proper_unit_for_byte_size(reclaimable_bytes),
1465                                 reclaimable_percent, G1HeapWastePercent);
1466       break;
1467     }
1468 
1469     double predicted_time_ms = predict_region_total_time_ms(hr, false);
1470     time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
1471     // Add regions to old set until we reach the minimum amount
1472     if (num_initial_regions < min_old_cset_length) {
1473       predicted_old_time_ms += predicted_time_ms;
1474       num_initial_regions++;
1475       // Record the number of regions added with no time remaining
1476       if (time_remaining_ms == 0.0) {
1477         num_expensive_regions++;
1478       }
1479     } else if (!check_time_remaining) {
1480       // In the non-auto-tuning case, we'll finish adding regions
1481       // to the CSet if we reach the minimum.
1482       log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Region amount reached min).");
1483       break;
1484     } else {
1485       // Keep adding regions to old set until we reach the optional threshold
1486       if (time_remaining_ms > optional_threshold_ms) {
1487         predicted_old_time_ms += predicted_time_ms;
1488         num_initial_regions++;
1489       } else if (time_remaining_ms > 0) {
1490         // Keep adding optional regions until time is up.
1491         assert(num_optional_regions < max_optional_regions, "Should not be possible.");
1492         predicted_optional_time_ms += predicted_time_ms;
1493         num_optional_regions++;
1494       } else {
1495         log_debug(gc, ergo, cset)("Finish adding old regions to collection set (Predicted time too high).");
1496         break;
1497       }
1498     }
1499     hr = candidates->at(++candidate_idx);
1500   }
1501   if (hr == NULL) {
1502     log_debug(gc, ergo, cset)("Old candidate collection set empty.");
1503   }
1504 
1505   if (num_expensive_regions > 0) {
1506     log_debug(gc, ergo, cset)("Added %u initial old regions to collection set although the predicted time was too high.",
1507                               num_expensive_regions);
1508   }
1509 
1510   log_debug(gc, ergo, cset)("Finish choosing collection set old regions. Initial: %u, optional: %u, "
1511                             "predicted old time: %1.2fms, predicted optional time: %1.2fms, time remaining: %1.2f",
1512                             num_initial_regions, num_optional_regions,
1513                             predicted_initial_time_ms, predicted_optional_time_ms, time_remaining_ms);
1514 }
1515 
1516 void G1Policy::calculate_optional_collection_set_regions(G1CollectionSetCandidates* candidates,
1517                                                          uint const max_optional_regions,
1518                                                          double time_remaining_ms,
1519                                                          uint& num_optional_regions) {
1520   assert(_g1h->collector_state()->in_mixed_phase(), "Should only be called in mixed phase");
1521 
1522   num_optional_regions = 0;
1523   double prediction_ms = 0;
1524   uint candidate_idx = candidates->cur_idx();
1525 
1526   HeapRegion* r = candidates->at(candidate_idx);
1527   while (num_optional_regions < max_optional_regions) {
1528     assert(r != NULL, "Region must exist");
1529     prediction_ms += predict_region_total_time_ms(r, false);
1530 
1531     if (prediction_ms > time_remaining_ms) {
1532       log_debug(gc, ergo, cset)("Prediction %.3fms for region %u does not fit remaining time: %.3fms.",
1533                                 prediction_ms, r->hrm_index(), time_remaining_ms);
1534       break;
1535     }
1536     // This region will be included in the next optional evacuation.
1537 
1538     time_remaining_ms -= prediction_ms;
1539     num_optional_regions++;
1540     r = candidates->at(++candidate_idx);
1541   }
1542 
1543   log_debug(gc, ergo, cset)("Prepared %u regions out of %u for optional evacuation. Predicted time: %.3fms",
1544                             num_optional_regions, max_optional_regions, prediction_ms);
1545 }
1546 
1547 void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1548   note_start_adding_survivor_regions();
1549 
1550   HeapRegion* last = NULL;
1551   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1552        it != survivors->regions()->end();
1553        ++it) {
1554     HeapRegion* curr = *it;
1555     set_region_survivor(curr);
1556 
1557     // The region is a non-empty survivor so let's add it to
1558     // the incremental collection set for the next evacuation
1559     // pause.
1560     _collection_set->add_survivor_regions(curr);
1561 
1562     last = curr;
1563   }
1564   note_stop_adding_survivor_regions();
1565 
1566   // Don't clear the survivor list handles until the start of
1567   // the next evacuation pause - we need it in order to re-tag
1568   // the survivor regions from this evacuation pause as 'young'
1569   // at the start of the next.
1570 }