1 /*
   2  * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/classLoaderDataGraph.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "gc/serial/defNewGeneration.hpp"
  34 #include "gc/shared/adaptiveSizePolicy.hpp"
  35 #include "gc/shared/cardTableBarrierSet.hpp"
  36 #include "gc/shared/cardTableRS.hpp"
  37 #include "gc/shared/collectedHeap.inline.hpp"
  38 #include "gc/shared/collectorCounters.hpp"
  39 #include "gc/shared/gcId.hpp"
  40 #include "gc/shared/gcLocker.hpp"
  41 #include "gc/shared/gcPolicyCounters.hpp"
  42 #include "gc/shared/gcTrace.hpp"
  43 #include "gc/shared/gcTraceTime.inline.hpp"
  44 #include "gc/shared/genArguments.hpp"
  45 #include "gc/shared/gcVMOperations.hpp"
  46 #include "gc/shared/genCollectedHeap.hpp"
  47 #include "gc/shared/genOopClosures.inline.hpp"
  48 #include "gc/shared/generationSpec.hpp"
  49 #include "gc/shared/gcInitLogger.hpp"
  50 #include "gc/shared/locationPrinter.inline.hpp"
  51 #include "gc/shared/oopStorage.inline.hpp"
  52 #include "gc/shared/oopStorageSet.inline.hpp"
  53 #include "gc/shared/oopStorageParState.inline.hpp"
  54 #include "gc/shared/scavengableNMethods.hpp"
  55 #include "gc/shared/space.hpp"
  56 #include "gc/shared/strongRootsScope.hpp"
  57 #include "gc/shared/weakProcessor.hpp"
  58 #include "gc/shared/workgroup.hpp"
  59 #include "memory/filemap.hpp"
  60 #include "memory/iterator.hpp"
  61 #include "memory/metaspaceCounters.hpp"
  62 #include "memory/resourceArea.hpp"
  63 #include "memory/universe.hpp"
  64 #include "oops/oop.inline.hpp"
  65 #include "runtime/biasedLocking.hpp"
  66 #include "runtime/handles.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/java.hpp"
  69 #include "runtime/vmThread.hpp"
  70 #include "services/memoryService.hpp"
  71 #include "utilities/autoRestore.hpp"
  72 #include "utilities/debug.hpp"
  73 #include "utilities/formatBuffer.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/stack.inline.hpp"
  76 #include "utilities/vmError.hpp"
  77 #if INCLUDE_JVMCI
  78 #include "jvmci/jvmci.hpp"
  79 #endif
  80 
  81 GenCollectedHeap::GenCollectedHeap(Generation::Name young,
  82                                    Generation::Name old,
  83                                    const char* policy_counters_name) :
  84   CollectedHeap(),
  85   _young_gen(NULL),
  86   _old_gen(NULL),
  87   _young_gen_spec(new GenerationSpec(young,
  88                                      NewSize,
  89                                      MaxNewSize,
  90                                      GenAlignment)),
  91   _old_gen_spec(new GenerationSpec(old,
  92                                    OldSize,
  93                                    MaxOldSize,
  94                                    GenAlignment)),
  95   _rem_set(NULL),
  96   _soft_ref_gen_policy(),
  97   _size_policy(NULL),
  98   _gc_policy_counters(new GCPolicyCounters(policy_counters_name, 2, 2)),
  99   _incremental_collection_failed(false),
 100   _full_collections_completed(0),
 101   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
 102   _young_manager(NULL),
 103   _old_manager(NULL) {
 104 }
 105 
 106 jint GenCollectedHeap::initialize() {
 107   // While there are no constraints in the GC code that HeapWordSize
 108   // be any particular value, there are multiple other areas in the
 109   // system which believe this to be true (e.g. oop->object_size in some
 110   // cases incorrectly returns the size in wordSize units rather than
 111   // HeapWordSize).
 112   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 113 
 114   // Allocate space for the heap.
 115 
 116   ReservedHeapSpace heap_rs = allocate(HeapAlignment);
 117 
 118   if (!heap_rs.is_reserved()) {
 119     vm_shutdown_during_initialization(
 120       "Could not reserve enough space for object heap");
 121     return JNI_ENOMEM;
 122   }
 123 
 124   initialize_reserved_region(heap_rs);
 125 
 126   _rem_set = create_rem_set(heap_rs.region());
 127   _rem_set->initialize();
 128   CardTableBarrierSet *bs = new CardTableBarrierSet(_rem_set);
 129   bs->initialize();
 130   BarrierSet::set_barrier_set(bs);
 131 
 132   ReservedSpace young_rs = heap_rs.first_part(_young_gen_spec->max_size());
 133   _young_gen = _young_gen_spec->init(young_rs, rem_set());
 134   ReservedSpace old_rs = heap_rs.last_part(_young_gen_spec->max_size());
 135 
 136   old_rs = old_rs.first_part(_old_gen_spec->max_size());
 137   _old_gen = _old_gen_spec->init(old_rs, rem_set());
 138 
 139   GCInitLogger::print();
 140 
 141   return JNI_OK;
 142 }
 143 
 144 CardTableRS* GenCollectedHeap::create_rem_set(const MemRegion& reserved_region) {
 145   return new CardTableRS(reserved_region, false /* scan_concurrently */);
 146 }
 147 
 148 void GenCollectedHeap::initialize_size_policy(size_t init_eden_size,
 149                                               size_t init_promo_size,
 150                                               size_t init_survivor_size) {
 151   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 152   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 153                                         init_promo_size,
 154                                         init_survivor_size,
 155                                         max_gc_pause_sec,
 156                                         GCTimeRatio);
 157 }
 158 
 159 ReservedHeapSpace GenCollectedHeap::allocate(size_t alignment) {
 160   // Now figure out the total size.
 161   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 162   assert(alignment % pageSize == 0, "Must be");
 163 
 164   // Check for overflow.
 165   size_t total_reserved = _young_gen_spec->max_size() + _old_gen_spec->max_size();
 166   if (total_reserved < _young_gen_spec->max_size()) {
 167     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 168                                   "the maximum representable size");
 169   }
 170   assert(total_reserved % alignment == 0,
 171          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 172          SIZE_FORMAT, total_reserved, alignment);
 173 
 174   ReservedHeapSpace heap_rs = Universe::reserve_heap(total_reserved, alignment);
 175 
 176   os::trace_page_sizes("Heap",
 177                        MinHeapSize,
 178                        total_reserved,
 179                        alignment,
 180                        heap_rs.base(),
 181                        heap_rs.size());
 182 
 183   return heap_rs;
 184 }
 185 
 186 class GenIsScavengable : public BoolObjectClosure {
 187 public:
 188   bool do_object_b(oop obj) {
 189     return GenCollectedHeap::heap()->is_in_young(obj);
 190   }
 191 };
 192 
 193 static GenIsScavengable _is_scavengable;
 194 
 195 void GenCollectedHeap::post_initialize() {
 196   CollectedHeap::post_initialize();
 197   ref_processing_init();
 198 
 199   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 200 
 201   initialize_size_policy(def_new_gen->eden()->capacity(),
 202                          _old_gen->capacity(),
 203                          def_new_gen->from()->capacity());
 204 
 205   MarkSweep::initialize();
 206 
 207   ScavengableNMethods::initialize(&_is_scavengable);
 208 }
 209 
 210 void GenCollectedHeap::ref_processing_init() {
 211   _young_gen->ref_processor_init();
 212   _old_gen->ref_processor_init();
 213 }
 214 
 215 PreGenGCValues GenCollectedHeap::get_pre_gc_values() const {
 216   const DefNewGeneration* const def_new_gen = (DefNewGeneration*) young_gen();
 217 
 218   return PreGenGCValues(def_new_gen->used(),
 219                         def_new_gen->capacity(),
 220                         def_new_gen->eden()->used(),
 221                         def_new_gen->eden()->capacity(),
 222                         def_new_gen->from()->used(),
 223                         def_new_gen->from()->capacity(),
 224                         old_gen()->used(),
 225                         old_gen()->capacity());
 226 }
 227 
 228 GenerationSpec* GenCollectedHeap::young_gen_spec() const {
 229   return _young_gen_spec;
 230 }
 231 
 232 GenerationSpec* GenCollectedHeap::old_gen_spec() const {
 233   return _old_gen_spec;
 234 }
 235 
 236 size_t GenCollectedHeap::capacity() const {
 237   return _young_gen->capacity() + _old_gen->capacity();
 238 }
 239 
 240 size_t GenCollectedHeap::used() const {
 241   return _young_gen->used() + _old_gen->used();
 242 }
 243 
 244 void GenCollectedHeap::save_used_regions() {
 245   _old_gen->save_used_region();
 246   _young_gen->save_used_region();
 247 }
 248 
 249 size_t GenCollectedHeap::max_capacity() const {
 250   return _young_gen->max_capacity() + _old_gen->max_capacity();
 251 }
 252 
 253 // Update the _full_collections_completed counter
 254 // at the end of a stop-world full GC.
 255 unsigned int GenCollectedHeap::update_full_collections_completed() {
 256   MonitorLocker ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 257   assert(_full_collections_completed <= _total_full_collections,
 258          "Can't complete more collections than were started");
 259   _full_collections_completed = _total_full_collections;
 260   ml.notify_all();
 261   return _full_collections_completed;
 262 }
 263 
 264 // Update the _full_collections_completed counter, as appropriate,
 265 // at the end of a concurrent GC cycle. Note the conditional update
 266 // below to allow this method to be called by a concurrent collector
 267 // without synchronizing in any manner with the VM thread (which
 268 // may already have initiated a STW full collection "concurrently").
 269 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 270   MonitorLocker ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 271   assert((_full_collections_completed <= _total_full_collections) &&
 272          (count <= _total_full_collections),
 273          "Can't complete more collections than were started");
 274   if (count > _full_collections_completed) {
 275     _full_collections_completed = count;
 276     ml.notify_all();
 277   }
 278   return _full_collections_completed;
 279 }
 280 
 281 // Return true if any of the following is true:
 282 // . the allocation won't fit into the current young gen heap
 283 // . gc locker is occupied (jni critical section)
 284 // . heap memory is tight -- the most recent previous collection
 285 //   was a full collection because a partial collection (would
 286 //   have) failed and is likely to fail again
 287 bool GenCollectedHeap::should_try_older_generation_allocation(size_t word_size) const {
 288   size_t young_capacity = _young_gen->capacity_before_gc();
 289   return    (word_size > heap_word_size(young_capacity))
 290          || GCLocker::is_active_and_needs_gc()
 291          || incremental_collection_failed();
 292 }
 293 
 294 HeapWord* GenCollectedHeap::expand_heap_and_allocate(size_t size, bool   is_tlab) {
 295   HeapWord* result = NULL;
 296   if (_old_gen->should_allocate(size, is_tlab)) {
 297     result = _old_gen->expand_and_allocate(size, is_tlab);
 298   }
 299   if (result == NULL) {
 300     if (_young_gen->should_allocate(size, is_tlab)) {
 301       result = _young_gen->expand_and_allocate(size, is_tlab);
 302     }
 303   }
 304   assert(result == NULL || is_in_reserved(result), "result not in heap");
 305   return result;
 306 }
 307 
 308 HeapWord* GenCollectedHeap::mem_allocate_work(size_t size,
 309                                               bool is_tlab,
 310                                               bool* gc_overhead_limit_was_exceeded) {
 311   // In general gc_overhead_limit_was_exceeded should be false so
 312   // set it so here and reset it to true only if the gc time
 313   // limit is being exceeded as checked below.
 314   *gc_overhead_limit_was_exceeded = false;
 315 
 316   HeapWord* result = NULL;
 317 
 318   // Loop until the allocation is satisfied, or unsatisfied after GC.
 319   for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 320     HandleMark hm; // Discard any handles allocated in each iteration.
 321 
 322     // First allocation attempt is lock-free.
 323     Generation *young = _young_gen;
 324     assert(young->supports_inline_contig_alloc(),
 325       "Otherwise, must do alloc within heap lock");
 326     if (young->should_allocate(size, is_tlab)) {
 327       result = young->par_allocate(size, is_tlab);
 328       if (result != NULL) {
 329         assert(is_in_reserved(result), "result not in heap");
 330         return result;
 331       }
 332     }
 333     uint gc_count_before;  // Read inside the Heap_lock locked region.
 334     {
 335       MutexLocker ml(Heap_lock);
 336       log_trace(gc, alloc)("GenCollectedHeap::mem_allocate_work: attempting locked slow path allocation");
 337       // Note that only large objects get a shot at being
 338       // allocated in later generations.
 339       bool first_only = !should_try_older_generation_allocation(size);
 340 
 341       result = attempt_allocation(size, is_tlab, first_only);
 342       if (result != NULL) {
 343         assert(is_in_reserved(result), "result not in heap");
 344         return result;
 345       }
 346 
 347       if (GCLocker::is_active_and_needs_gc()) {
 348         if (is_tlab) {
 349           return NULL;  // Caller will retry allocating individual object.
 350         }
 351         if (!is_maximal_no_gc()) {
 352           // Try and expand heap to satisfy request.
 353           result = expand_heap_and_allocate(size, is_tlab);
 354           // Result could be null if we are out of space.
 355           if (result != NULL) {
 356             return result;
 357           }
 358         }
 359 
 360         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 361           return NULL; // We didn't get to do a GC and we didn't get any memory.
 362         }
 363 
 364         // If this thread is not in a jni critical section, we stall
 365         // the requestor until the critical section has cleared and
 366         // GC allowed. When the critical section clears, a GC is
 367         // initiated by the last thread exiting the critical section; so
 368         // we retry the allocation sequence from the beginning of the loop,
 369         // rather than causing more, now probably unnecessary, GC attempts.
 370         JavaThread* jthr = JavaThread::current();
 371         if (!jthr->in_critical()) {
 372           MutexUnlocker mul(Heap_lock);
 373           // Wait for JNI critical section to be exited
 374           GCLocker::stall_until_clear();
 375           gclocker_stalled_count += 1;
 376           continue;
 377         } else {
 378           if (CheckJNICalls) {
 379             fatal("Possible deadlock due to allocating while"
 380                   " in jni critical section");
 381           }
 382           return NULL;
 383         }
 384       }
 385 
 386       // Read the gc count while the heap lock is held.
 387       gc_count_before = total_collections();
 388     }
 389 
 390     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 391     VMThread::execute(&op);
 392     if (op.prologue_succeeded()) {
 393       result = op.result();
 394       if (op.gc_locked()) {
 395          assert(result == NULL, "must be NULL if gc_locked() is true");
 396          continue;  // Retry and/or stall as necessary.
 397       }
 398 
 399       // Allocation has failed and a collection
 400       // has been done.  If the gc time limit was exceeded the
 401       // this time, return NULL so that an out-of-memory
 402       // will be thrown.  Clear gc_overhead_limit_exceeded
 403       // so that the overhead exceeded does not persist.
 404 
 405       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 406       const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 407 
 408       if (limit_exceeded && softrefs_clear) {
 409         *gc_overhead_limit_was_exceeded = true;
 410         size_policy()->set_gc_overhead_limit_exceeded(false);
 411         if (op.result() != NULL) {
 412           CollectedHeap::fill_with_object(op.result(), size);
 413         }
 414         return NULL;
 415       }
 416       assert(result == NULL || is_in_reserved(result),
 417              "result not in heap");
 418       return result;
 419     }
 420 
 421     // Give a warning if we seem to be looping forever.
 422     if ((QueuedAllocationWarningCount > 0) &&
 423         (try_count % QueuedAllocationWarningCount == 0)) {
 424           log_warning(gc, ergo)("GenCollectedHeap::mem_allocate_work retries %d times,"
 425                                 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
 426     }
 427   }
 428 }
 429 
 430 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 431                                                bool is_tlab,
 432                                                bool first_only) {
 433   HeapWord* res = NULL;
 434 
 435   if (_young_gen->should_allocate(size, is_tlab)) {
 436     res = _young_gen->allocate(size, is_tlab);
 437     if (res != NULL || first_only) {
 438       return res;
 439     }
 440   }
 441 
 442   if (_old_gen->should_allocate(size, is_tlab)) {
 443     res = _old_gen->allocate(size, is_tlab);
 444   }
 445 
 446   return res;
 447 }
 448 
 449 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 450                                          bool* gc_overhead_limit_was_exceeded) {
 451   return mem_allocate_work(size,
 452                            false /* is_tlab */,
 453                            gc_overhead_limit_was_exceeded);
 454 }
 455 
 456 bool GenCollectedHeap::must_clear_all_soft_refs() {
 457   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 458          _gc_cause == GCCause::_wb_full_gc;
 459 }
 460 
 461 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 462                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 463                                           bool restore_marks_for_biased_locking) {
 464   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 465   GCTraceTime(Trace, gc, phases) t1(title);
 466   TraceCollectorStats tcs(gen->counters());
 467   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause());
 468 
 469   gen->stat_record()->invocations++;
 470   gen->stat_record()->accumulated_time.start();
 471 
 472   // Must be done anew before each collection because
 473   // a previous collection will do mangling and will
 474   // change top of some spaces.
 475   record_gen_tops_before_GC();
 476 
 477   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 478 
 479   if (run_verification && VerifyBeforeGC) {
 480     HandleMark hm;  // Discard invalid handles created during verification
 481     Universe::verify("Before GC");
 482   }
 483   COMPILER2_OR_JVMCI_PRESENT(DerivedPointerTable::clear());
 484 
 485   if (restore_marks_for_biased_locking) {
 486     // We perform this mark word preservation work lazily
 487     // because it's only at this point that we know whether we
 488     // absolutely have to do it; we want to avoid doing it for
 489     // scavenge-only collections where it's unnecessary
 490     BiasedLocking::preserve_marks();
 491   }
 492 
 493   // Do collection work
 494   {
 495     // Note on ref discovery: For what appear to be historical reasons,
 496     // GCH enables and disabled (by enqueing) refs discovery.
 497     // In the future this should be moved into the generation's
 498     // collect method so that ref discovery and enqueueing concerns
 499     // are local to a generation. The collect method could return
 500     // an appropriate indication in the case that notification on
 501     // the ref lock was needed. This will make the treatment of
 502     // weak refs more uniform (and indeed remove such concerns
 503     // from GCH). XXX
 504 
 505     HandleMark hm;  // Discard invalid handles created during gc
 506     save_marks();   // save marks for all gens
 507     // We want to discover references, but not process them yet.
 508     // This mode is disabled in process_discovered_references if the
 509     // generation does some collection work, or in
 510     // enqueue_discovered_references if the generation returns
 511     // without doing any work.
 512     ReferenceProcessor* rp = gen->ref_processor();
 513     // If the discovery of ("weak") refs in this generation is
 514     // atomic wrt other collectors in this configuration, we
 515     // are guaranteed to have empty discovered ref lists.
 516     if (rp->discovery_is_atomic()) {
 517       rp->enable_discovery();
 518       rp->setup_policy(clear_soft_refs);
 519     } else {
 520       // collect() below will enable discovery as appropriate
 521     }
 522     gen->collect(full, clear_soft_refs, size, is_tlab);
 523     if (!rp->enqueuing_is_done()) {
 524       rp->disable_discovery();
 525     } else {
 526       rp->set_enqueuing_is_done(false);
 527     }
 528     rp->verify_no_references_recorded();
 529   }
 530 
 531   COMPILER2_OR_JVMCI_PRESENT(DerivedPointerTable::update_pointers());
 532 
 533   gen->stat_record()->accumulated_time.stop();
 534 
 535   update_gc_stats(gen, full);
 536 
 537   if (run_verification && VerifyAfterGC) {
 538     HandleMark hm;  // Discard invalid handles created during verification
 539     Universe::verify("After GC");
 540   }
 541 }
 542 
 543 void GenCollectedHeap::do_collection(bool           full,
 544                                      bool           clear_all_soft_refs,
 545                                      size_t         size,
 546                                      bool           is_tlab,
 547                                      GenerationType max_generation) {
 548   ResourceMark rm;
 549   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 550 
 551   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 552   assert(my_thread->is_VM_thread() ||
 553          my_thread->is_ConcurrentGC_thread(),
 554          "incorrect thread type capability");
 555   assert(Heap_lock->is_locked(),
 556          "the requesting thread should have the Heap_lock");
 557   guarantee(!is_gc_active(), "collection is not reentrant");
 558 
 559   if (GCLocker::check_active_before_gc()) {
 560     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 561   }
 562 
 563   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 564                           soft_ref_policy()->should_clear_all_soft_refs();
 565 
 566   ClearedAllSoftRefs casr(do_clear_all_soft_refs, soft_ref_policy());
 567 
 568   AutoModifyRestore<bool> temporarily(_is_gc_active, true);
 569 
 570   bool complete = full && (max_generation == OldGen);
 571   bool old_collects_young = complete && !ScavengeBeforeFullGC;
 572   bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 573 
 574   const PreGenGCValues pre_gc_values = get_pre_gc_values();
 575 
 576   bool run_verification = total_collections() >= VerifyGCStartAt;
 577   bool prepared_for_verification = false;
 578   bool do_full_collection = false;
 579 
 580   if (do_young_collection) {
 581     GCIdMark gc_id_mark;
 582     GCTraceCPUTime tcpu;
 583     GCTraceTime(Info, gc) t("Pause Young", NULL, gc_cause(), true);
 584 
 585     print_heap_before_gc();
 586 
 587     if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 588       prepare_for_verify();
 589       prepared_for_verification = true;
 590     }
 591 
 592     gc_prologue(complete);
 593     increment_total_collections(complete);
 594 
 595     collect_generation(_young_gen,
 596                        full,
 597                        size,
 598                        is_tlab,
 599                        run_verification && VerifyGCLevel <= 0,
 600                        do_clear_all_soft_refs,
 601                        false);
 602 
 603     if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 604         size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 605       // Allocation request was met by young GC.
 606       size = 0;
 607     }
 608 
 609     // Ask if young collection is enough. If so, do the final steps for young collection,
 610     // and fallthrough to the end.
 611     do_full_collection = should_do_full_collection(size, full, is_tlab, max_generation);
 612     if (!do_full_collection) {
 613       // Adjust generation sizes.
 614       _young_gen->compute_new_size();
 615 
 616       print_heap_change(pre_gc_values);
 617 
 618       // Track memory usage and detect low memory after GC finishes
 619       MemoryService::track_memory_usage();
 620 
 621       gc_epilogue(complete);
 622     }
 623 
 624     print_heap_after_gc();
 625 
 626   } else {
 627     // No young collection, ask if we need to perform Full collection.
 628     do_full_collection = should_do_full_collection(size, full, is_tlab, max_generation);
 629   }
 630 
 631   if (do_full_collection) {
 632     GCIdMark gc_id_mark;
 633     GCTraceCPUTime tcpu;
 634     GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 635 
 636     print_heap_before_gc();
 637 
 638     if (!prepared_for_verification && run_verification &&
 639         VerifyGCLevel <= 1 && VerifyBeforeGC) {
 640       prepare_for_verify();
 641     }
 642 
 643     if (!do_young_collection) {
 644       gc_prologue(complete);
 645       increment_total_collections(complete);
 646     }
 647 
 648     // Accounting quirk: total full collections would be incremented when "complete"
 649     // is set, by calling increment_total_collections above. However, we also need to
 650     // account Full collections that had "complete" unset.
 651     if (!complete) {
 652       increment_total_full_collections();
 653     }
 654 
 655     collect_generation(_old_gen,
 656                        full,
 657                        size,
 658                        is_tlab,
 659                        run_verification && VerifyGCLevel <= 1,
 660                        do_clear_all_soft_refs,
 661                        true);
 662 
 663     // Adjust generation sizes.
 664     _old_gen->compute_new_size();
 665     _young_gen->compute_new_size();
 666 
 667     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 668     ClassLoaderDataGraph::purge();
 669     MetaspaceUtils::verify_metrics();
 670     // Resize the metaspace capacity after full collections
 671     MetaspaceGC::compute_new_size();
 672     update_full_collections_completed();
 673 
 674     print_heap_change(pre_gc_values);
 675 
 676     // Track memory usage and detect low memory after GC finishes
 677     MemoryService::track_memory_usage();
 678 
 679     // Need to tell the epilogue code we are done with Full GC, regardless what was
 680     // the initial value for "complete" flag.
 681     gc_epilogue(true);
 682 
 683     BiasedLocking::restore_marks();
 684 
 685     print_heap_after_gc();
 686   }
 687 }
 688 
 689 bool GenCollectedHeap::should_do_full_collection(size_t size, bool full, bool is_tlab,
 690                                                  GenCollectedHeap::GenerationType max_gen) const {
 691   return max_gen == OldGen && _old_gen->should_collect(full, size, is_tlab);
 692 }
 693 
 694 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 695   ScavengableNMethods::register_nmethod(nm);
 696 }
 697 
 698 void GenCollectedHeap::unregister_nmethod(nmethod* nm) {
 699   ScavengableNMethods::unregister_nmethod(nm);
 700 }
 701 
 702 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 703   ScavengableNMethods::verify_nmethod(nm);
 704 }
 705 
 706 void GenCollectedHeap::flush_nmethod(nmethod* nm) {
 707   // Do nothing.
 708 }
 709 
 710 void GenCollectedHeap::prune_scavengable_nmethods() {
 711   ScavengableNMethods::prune_nmethods();
 712 }
 713 
 714 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 715   GCCauseSetter x(this, GCCause::_allocation_failure);
 716   HeapWord* result = NULL;
 717 
 718   assert(size != 0, "Precondition violated");
 719   if (GCLocker::is_active_and_needs_gc()) {
 720     // GC locker is active; instead of a collection we will attempt
 721     // to expand the heap, if there's room for expansion.
 722     if (!is_maximal_no_gc()) {
 723       result = expand_heap_and_allocate(size, is_tlab);
 724     }
 725     return result;   // Could be null if we are out of space.
 726   } else if (!incremental_collection_will_fail(false /* don't consult_young */)) {
 727     // Do an incremental collection.
 728     do_collection(false,                     // full
 729                   false,                     // clear_all_soft_refs
 730                   size,                      // size
 731                   is_tlab,                   // is_tlab
 732                   GenCollectedHeap::OldGen); // max_generation
 733   } else {
 734     log_trace(gc)(" :: Trying full because partial may fail :: ");
 735     // Try a full collection; see delta for bug id 6266275
 736     // for the original code and why this has been simplified
 737     // with from-space allocation criteria modified and
 738     // such allocation moved out of the safepoint path.
 739     do_collection(true,                      // full
 740                   false,                     // clear_all_soft_refs
 741                   size,                      // size
 742                   is_tlab,                   // is_tlab
 743                   GenCollectedHeap::OldGen); // max_generation
 744   }
 745 
 746   result = attempt_allocation(size, is_tlab, false /*first_only*/);
 747 
 748   if (result != NULL) {
 749     assert(is_in_reserved(result), "result not in heap");
 750     return result;
 751   }
 752 
 753   // OK, collection failed, try expansion.
 754   result = expand_heap_and_allocate(size, is_tlab);
 755   if (result != NULL) {
 756     return result;
 757   }
 758 
 759   // If we reach this point, we're really out of memory. Try every trick
 760   // we can to reclaim memory. Force collection of soft references. Force
 761   // a complete compaction of the heap. Any additional methods for finding
 762   // free memory should be here, especially if they are expensive. If this
 763   // attempt fails, an OOM exception will be thrown.
 764   {
 765     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 766 
 767     do_collection(true,                      // full
 768                   true,                      // clear_all_soft_refs
 769                   size,                      // size
 770                   is_tlab,                   // is_tlab
 771                   GenCollectedHeap::OldGen); // max_generation
 772   }
 773 
 774   result = attempt_allocation(size, is_tlab, false /* first_only */);
 775   if (result != NULL) {
 776     assert(is_in_reserved(result), "result not in heap");
 777     return result;
 778   }
 779 
 780   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 781     "Flag should have been handled and cleared prior to this point");
 782 
 783   // What else?  We might try synchronous finalization later.  If the total
 784   // space available is large enough for the allocation, then a more
 785   // complete compaction phase than we've tried so far might be
 786   // appropriate.
 787   return NULL;
 788 }
 789 
 790 #ifdef ASSERT
 791 class AssertNonScavengableClosure: public OopClosure {
 792 public:
 793   virtual void do_oop(oop* p) {
 794     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 795       "Referent should not be scavengable.");  }
 796   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 797 };
 798 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 799 #endif
 800 
 801 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 802                                      ScanningOption so,
 803                                      OopClosure* strong_roots,
 804                                      CLDClosure* strong_cld_closure,
 805                                      CLDClosure* weak_cld_closure,
 806                                      CodeBlobToOopClosure* code_roots) {
 807   // General roots.
 808   assert(code_roots != NULL, "code root closure should always be set");
 809   // _n_termination for _process_strong_tasks should be set up stream
 810   // in a method not running in a GC worker.  Otherwise the GC worker
 811   // could be trying to change the termination condition while the task
 812   // is executing in another GC worker.
 813 
 814   if (_process_strong_tasks->try_claim_task(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 815     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 816   }
 817 
 818   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 819   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 820 
 821   bool is_par = scope->n_threads() > 1;
 822   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 823 
 824   if (_process_strong_tasks->try_claim_task(GCH_PS_Universe_oops_do)) {
 825     Universe::oops_do(strong_roots);
 826   }
 827 
 828   if (_process_strong_tasks->try_claim_task(GCH_PS_ObjectSynchronizer_oops_do)) {
 829     ObjectSynchronizer::oops_do(strong_roots);
 830   }
 831 #if INCLUDE_AOT
 832   if (UseAOT && _process_strong_tasks->try_claim_task(GCH_PS_aot_oops_do)) {
 833     AOTLoader::oops_do(strong_roots);
 834   }
 835 #endif
 836   if (_process_strong_tasks->try_claim_task(GCH_PS_OopStorageSet_oops_do)) {
 837     OopStorageSet::strong_oops_do(strong_roots);
 838   }
 839 
 840   if (_process_strong_tasks->try_claim_task(GCH_PS_CodeCache_oops_do)) {
 841     if (so & SO_ScavengeCodeCache) {
 842       assert(code_roots != NULL, "must supply closure for code cache");
 843 
 844       // We only visit parts of the CodeCache when scavenging.
 845       ScavengableNMethods::nmethods_do(code_roots);
 846     }
 847     if (so & SO_AllCodeCache) {
 848       assert(code_roots != NULL, "must supply closure for code cache");
 849 
 850       // CMSCollector uses this to do intermediate-strength collections.
 851       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 852       CodeCache::blobs_do(code_roots);
 853     }
 854     // Verify that the code cache contents are not subject to
 855     // movement by a scavenging collection.
 856     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 857     DEBUG_ONLY(ScavengableNMethods::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 858   }
 859 }
 860 
 861 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 862                                            OopsInGenClosure* root_closure,
 863                                            OopsInGenClosure* old_gen_closure,
 864                                            CLDClosure* cld_closure) {
 865   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 866 
 867   process_roots(scope, SO_ScavengeCodeCache, root_closure,
 868                 cld_closure, cld_closure, &mark_code_closure);
 869 
 870   if (_process_strong_tasks->try_claim_task(GCH_PS_younger_gens)) {
 871     root_closure->reset_generation();
 872   }
 873 
 874   // When collection is parallel, all threads get to cooperate to do
 875   // old generation scanning.
 876   old_gen_closure->set_generation(_old_gen);
 877   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 878   old_gen_closure->reset_generation();
 879 
 880   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 881 }
 882 
 883 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 884                                           bool is_adjust_phase,
 885                                           ScanningOption so,
 886                                           bool only_strong_roots,
 887                                           OopsInGenClosure* root_closure,
 888                                           CLDClosure* cld_closure) {
 889   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 890   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 891 
 892   process_roots(scope, so, root_closure, cld_closure, weak_cld_closure, &mark_code_closure);
 893   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 894 }
 895 
 896 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 897   WeakProcessor::oops_do(root_closure);
 898   _young_gen->ref_processor()->weak_oops_do(root_closure);
 899   _old_gen->ref_processor()->weak_oops_do(root_closure);
 900 }
 901 
 902 bool GenCollectedHeap::no_allocs_since_save_marks() {
 903   return _young_gen->no_allocs_since_save_marks() &&
 904          _old_gen->no_allocs_since_save_marks();
 905 }
 906 
 907 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 908   return _young_gen->supports_inline_contig_alloc();
 909 }
 910 
 911 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 912   return _young_gen->top_addr();
 913 }
 914 
 915 HeapWord** GenCollectedHeap::end_addr() const {
 916   return _young_gen->end_addr();
 917 }
 918 
 919 // public collection interfaces
 920 
 921 void GenCollectedHeap::collect(GCCause::Cause cause) {
 922   if ((cause == GCCause::_wb_young_gc) ||
 923       (cause == GCCause::_gc_locker)) {
 924     // Young collection for WhiteBox or GCLocker.
 925     collect(cause, YoungGen);
 926   } else {
 927 #ifdef ASSERT
 928   if (cause == GCCause::_scavenge_alot) {
 929     // Young collection only.
 930     collect(cause, YoungGen);
 931   } else {
 932     // Stop-the-world full collection.
 933     collect(cause, OldGen);
 934   }
 935 #else
 936     // Stop-the-world full collection.
 937     collect(cause, OldGen);
 938 #endif
 939   }
 940 }
 941 
 942 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 943   // The caller doesn't have the Heap_lock
 944   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 945   MutexLocker ml(Heap_lock);
 946   collect_locked(cause, max_generation);
 947 }
 948 
 949 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 950   // The caller has the Heap_lock
 951   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 952   collect_locked(cause, OldGen);
 953 }
 954 
 955 // this is the private collection interface
 956 // The Heap_lock is expected to be held on entry.
 957 
 958 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 959   // Read the GC count while holding the Heap_lock
 960   unsigned int gc_count_before      = total_collections();
 961   unsigned int full_gc_count_before = total_full_collections();
 962 
 963   if (GCLocker::should_discard(cause, gc_count_before)) {
 964     return;
 965   }
 966 
 967   {
 968     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 969     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 970                          cause, max_generation);
 971     VMThread::execute(&op);
 972   }
 973 }
 974 
 975 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 976    do_full_collection(clear_all_soft_refs, OldGen);
 977 }
 978 
 979 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 980                                           GenerationType last_generation) {
 981   do_collection(true,                   // full
 982                 clear_all_soft_refs,    // clear_all_soft_refs
 983                 0,                      // size
 984                 false,                  // is_tlab
 985                 last_generation);       // last_generation
 986   // Hack XXX FIX ME !!!
 987   // A scavenge may not have been attempted, or may have
 988   // been attempted and failed, because the old gen was too full
 989   if (gc_cause() == GCCause::_gc_locker && incremental_collection_failed()) {
 990     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 991     // This time allow the old gen to be collected as well
 992     do_collection(true,                // full
 993                   clear_all_soft_refs, // clear_all_soft_refs
 994                   0,                   // size
 995                   false,               // is_tlab
 996                   OldGen);             // last_generation
 997   }
 998 }
 999 
1000 bool GenCollectedHeap::is_in_young(oop p) {
1001   bool result = cast_from_oop<HeapWord*>(p) < _old_gen->reserved().start();
1002   assert(result == _young_gen->is_in_reserved(p),
1003          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
1004   return result;
1005 }
1006 
1007 // Returns "TRUE" iff "p" points into the committed areas of the heap.
1008 bool GenCollectedHeap::is_in(const void* p) const {
1009   return _young_gen->is_in(p) || _old_gen->is_in(p);
1010 }
1011 
1012 #ifdef ASSERT
1013 // Don't implement this by using is_in_young().  This method is used
1014 // in some cases to check that is_in_young() is correct.
1015 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
1016   assert(is_in_reserved(p) || p == NULL,
1017     "Does not work if address is non-null and outside of the heap");
1018   return p < _young_gen->reserved().end() && p != NULL;
1019 }
1020 #endif
1021 
1022 void GenCollectedHeap::oop_iterate(OopIterateClosure* cl) {
1023   _young_gen->oop_iterate(cl);
1024   _old_gen->oop_iterate(cl);
1025 }
1026 
1027 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
1028   _young_gen->object_iterate(cl);
1029   _old_gen->object_iterate(cl);
1030 }
1031 
1032 Space* GenCollectedHeap::space_containing(const void* addr) const {
1033   Space* res = _young_gen->space_containing(addr);
1034   if (res != NULL) {
1035     return res;
1036   }
1037   res = _old_gen->space_containing(addr);
1038   assert(res != NULL, "Could not find containing space");
1039   return res;
1040 }
1041 
1042 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
1043   assert(is_in_reserved(addr), "block_start of address outside of heap");
1044   if (_young_gen->is_in_reserved(addr)) {
1045     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1046     return _young_gen->block_start(addr);
1047   }
1048 
1049   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1050   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1051   return _old_gen->block_start(addr);
1052 }
1053 
1054 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1055   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1056   assert(block_start(addr) == addr, "addr must be a block start");
1057   if (_young_gen->is_in_reserved(addr)) {
1058     return _young_gen->block_is_obj(addr);
1059   }
1060 
1061   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1062   return _old_gen->block_is_obj(addr);
1063 }
1064 
1065 bool GenCollectedHeap::supports_tlab_allocation() const {
1066   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1067   return _young_gen->supports_tlab_allocation();
1068 }
1069 
1070 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1071   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1072   if (_young_gen->supports_tlab_allocation()) {
1073     return _young_gen->tlab_capacity();
1074   }
1075   return 0;
1076 }
1077 
1078 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
1079   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1080   if (_young_gen->supports_tlab_allocation()) {
1081     return _young_gen->tlab_used();
1082   }
1083   return 0;
1084 }
1085 
1086 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1087   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1088   if (_young_gen->supports_tlab_allocation()) {
1089     return _young_gen->unsafe_max_tlab_alloc();
1090   }
1091   return 0;
1092 }
1093 
1094 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t min_size,
1095                                               size_t requested_size,
1096                                               size_t* actual_size) {
1097   bool gc_overhead_limit_was_exceeded;
1098   HeapWord* result = mem_allocate_work(requested_size /* size */,
1099                                        true /* is_tlab */,
1100                                        &gc_overhead_limit_was_exceeded);
1101   if (result != NULL) {
1102     *actual_size = requested_size;
1103   }
1104 
1105   return result;
1106 }
1107 
1108 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1109 // from the list headed by "*prev_ptr".
1110 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1111   bool first = true;
1112   size_t min_size = 0;   // "first" makes this conceptually infinite.
1113   ScratchBlock **smallest_ptr, *smallest;
1114   ScratchBlock  *cur = *prev_ptr;
1115   while (cur) {
1116     assert(*prev_ptr == cur, "just checking");
1117     if (first || cur->num_words < min_size) {
1118       smallest_ptr = prev_ptr;
1119       smallest     = cur;
1120       min_size     = smallest->num_words;
1121       first        = false;
1122     }
1123     prev_ptr = &cur->next;
1124     cur     =  cur->next;
1125   }
1126   smallest      = *smallest_ptr;
1127   *smallest_ptr = smallest->next;
1128   return smallest;
1129 }
1130 
1131 // Sort the scratch block list headed by res into decreasing size order,
1132 // and set "res" to the result.
1133 static void sort_scratch_list(ScratchBlock*& list) {
1134   ScratchBlock* sorted = NULL;
1135   ScratchBlock* unsorted = list;
1136   while (unsorted) {
1137     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1138     smallest->next  = sorted;
1139     sorted          = smallest;
1140   }
1141   list = sorted;
1142 }
1143 
1144 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1145                                                size_t max_alloc_words) {
1146   ScratchBlock* res = NULL;
1147   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1148   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1149   sort_scratch_list(res);
1150   return res;
1151 }
1152 
1153 void GenCollectedHeap::release_scratch() {
1154   _young_gen->reset_scratch();
1155   _old_gen->reset_scratch();
1156 }
1157 
1158 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1159   void do_generation(Generation* gen) {
1160     gen->prepare_for_verify();
1161   }
1162 };
1163 
1164 void GenCollectedHeap::prepare_for_verify() {
1165   ensure_parsability(false);        // no need to retire TLABs
1166   GenPrepareForVerifyClosure blk;
1167   generation_iterate(&blk, false);
1168 }
1169 
1170 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1171                                           bool old_to_young) {
1172   if (old_to_young) {
1173     cl->do_generation(_old_gen);
1174     cl->do_generation(_young_gen);
1175   } else {
1176     cl->do_generation(_young_gen);
1177     cl->do_generation(_old_gen);
1178   }
1179 }
1180 
1181 bool GenCollectedHeap::is_maximal_no_gc() const {
1182   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1183 }
1184 
1185 void GenCollectedHeap::save_marks() {
1186   _young_gen->save_marks();
1187   _old_gen->save_marks();
1188 }
1189 
1190 GenCollectedHeap* GenCollectedHeap::heap() {
1191   // SerialHeap is the only subtype of GenCollectedHeap.
1192   return named_heap<GenCollectedHeap>(CollectedHeap::Serial);
1193 }
1194 
1195 #if INCLUDE_SERIALGC
1196 void GenCollectedHeap::prepare_for_compaction() {
1197   // Start by compacting into same gen.
1198   CompactPoint cp(_old_gen);
1199   _old_gen->prepare_for_compaction(&cp);
1200   _young_gen->prepare_for_compaction(&cp);
1201 }
1202 #endif // INCLUDE_SERIALGC
1203 
1204 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1205   log_debug(gc, verify)("%s", _old_gen->name());
1206   _old_gen->verify();
1207 
1208   log_debug(gc, verify)("%s", _old_gen->name());
1209   _young_gen->verify();
1210 
1211   log_debug(gc, verify)("RemSet");
1212   rem_set()->verify();
1213 }
1214 
1215 void GenCollectedHeap::print_on(outputStream* st) const {
1216   if (_young_gen != NULL) {
1217     _young_gen->print_on(st);
1218   }
1219   if (_old_gen != NULL) {
1220     _old_gen->print_on(st);
1221   }
1222   MetaspaceUtils::print_on(st);
1223 }
1224 
1225 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1226 }
1227 
1228 bool GenCollectedHeap::print_location(outputStream* st, void* addr) const {
1229   return BlockLocationPrinter<GenCollectedHeap>::print_location(st, addr);
1230 }
1231 
1232 void GenCollectedHeap::print_tracing_info() const {
1233   if (log_is_enabled(Debug, gc, heap, exit)) {
1234     LogStreamHandle(Debug, gc, heap, exit) lsh;
1235     _young_gen->print_summary_info_on(&lsh);
1236     _old_gen->print_summary_info_on(&lsh);
1237   }
1238 }
1239 
1240 void GenCollectedHeap::print_heap_change(const PreGenGCValues& pre_gc_values) const {
1241   const DefNewGeneration* const def_new_gen = (DefNewGeneration*) young_gen();
1242 
1243   log_info(gc, heap)(HEAP_CHANGE_FORMAT" "
1244                      HEAP_CHANGE_FORMAT" "
1245                      HEAP_CHANGE_FORMAT,
1246                      HEAP_CHANGE_FORMAT_ARGS(def_new_gen->short_name(),
1247                                              pre_gc_values.young_gen_used(),
1248                                              pre_gc_values.young_gen_capacity(),
1249                                              def_new_gen->used(),
1250                                              def_new_gen->capacity()),
1251                      HEAP_CHANGE_FORMAT_ARGS("Eden",
1252                                              pre_gc_values.eden_used(),
1253                                              pre_gc_values.eden_capacity(),
1254                                              def_new_gen->eden()->used(),
1255                                              def_new_gen->eden()->capacity()),
1256                      HEAP_CHANGE_FORMAT_ARGS("From",
1257                                              pre_gc_values.from_used(),
1258                                              pre_gc_values.from_capacity(),
1259                                              def_new_gen->from()->used(),
1260                                              def_new_gen->from()->capacity()));
1261   log_info(gc, heap)(HEAP_CHANGE_FORMAT,
1262                      HEAP_CHANGE_FORMAT_ARGS(old_gen()->short_name(),
1263                                              pre_gc_values.old_gen_used(),
1264                                              pre_gc_values.old_gen_capacity(),
1265                                              old_gen()->used(),
1266                                              old_gen()->capacity()));
1267   MetaspaceUtils::print_metaspace_change(pre_gc_values.metaspace_sizes());
1268 }
1269 
1270 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1271  private:
1272   bool _full;
1273  public:
1274   void do_generation(Generation* gen) {
1275     gen->gc_prologue(_full);
1276   }
1277   GenGCPrologueClosure(bool full) : _full(full) {};
1278 };
1279 
1280 void GenCollectedHeap::gc_prologue(bool full) {
1281   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1282 
1283   // Fill TLAB's and such
1284   ensure_parsability(true);   // retire TLABs
1285 
1286   // Walk generations
1287   GenGCPrologueClosure blk(full);
1288   generation_iterate(&blk, false);  // not old-to-young.
1289 };
1290 
1291 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1292  private:
1293   bool _full;
1294  public:
1295   void do_generation(Generation* gen) {
1296     gen->gc_epilogue(_full);
1297   }
1298   GenGCEpilogueClosure(bool full) : _full(full) {};
1299 };
1300 
1301 void GenCollectedHeap::gc_epilogue(bool full) {
1302 #if COMPILER2_OR_JVMCI
1303   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1304   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1305   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1306 #endif // COMPILER2_OR_JVMCI
1307 
1308   resize_all_tlabs();
1309 
1310   GenGCEpilogueClosure blk(full);
1311   generation_iterate(&blk, false);  // not old-to-young.
1312 
1313   if (!CleanChunkPoolAsync) {
1314     Chunk::clean_chunk_pool();
1315   }
1316 
1317   MetaspaceCounters::update_performance_counters();
1318   CompressedClassSpaceCounters::update_performance_counters();
1319 };
1320 
1321 #ifndef PRODUCT
1322 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1323  private:
1324  public:
1325   void do_generation(Generation* gen) {
1326     gen->record_spaces_top();
1327   }
1328 };
1329 
1330 void GenCollectedHeap::record_gen_tops_before_GC() {
1331   if (ZapUnusedHeapArea) {
1332     GenGCSaveTopsBeforeGCClosure blk;
1333     generation_iterate(&blk, false);  // not old-to-young.
1334   }
1335 }
1336 #endif  // not PRODUCT
1337 
1338 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1339  public:
1340   void do_generation(Generation* gen) {
1341     gen->ensure_parsability();
1342   }
1343 };
1344 
1345 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1346   CollectedHeap::ensure_parsability(retire_tlabs);
1347   GenEnsureParsabilityClosure ep_cl;
1348   generation_iterate(&ep_cl, false);
1349 }
1350 
1351 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1352                                               oop obj,
1353                                               size_t obj_size) {
1354   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1355   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1356   HeapWord* result = NULL;
1357 
1358   result = old_gen->expand_and_allocate(obj_size, false);
1359 
1360   if (result != NULL) {
1361     Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(obj), result, obj_size);
1362   }
1363   return oop(result);
1364 }
1365 
1366 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1367   jlong _time;   // in ms
1368   jlong _now;    // in ms
1369 
1370  public:
1371   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1372 
1373   jlong time() { return _time; }
1374 
1375   void do_generation(Generation* gen) {
1376     _time = MIN2(_time, gen->time_of_last_gc(_now));
1377   }
1378 };
1379 
1380 jlong GenCollectedHeap::millis_since_last_gc() {
1381   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1382   // provided the underlying platform provides such a time source
1383   // (and it is bug free). So we still have to guard against getting
1384   // back a time later than 'now'.
1385   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1386   GenTimeOfLastGCClosure tolgc_cl(now);
1387   // iterate over generations getting the oldest
1388   // time that a generation was collected
1389   generation_iterate(&tolgc_cl, false);
1390 
1391   jlong retVal = now - tolgc_cl.time();
1392   if (retVal < 0) {
1393     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1394        ". returning zero instead.", retVal);
1395     return 0;
1396   }
1397   return retVal;
1398 }