1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/evacuationInfo.hpp"
  30 #include "gc_implementation/g1/g1AllocRegion.hpp"
  31 #include "gc_implementation/g1/g1HRPrinter.hpp"
  32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  33 #include "gc_implementation/g1/g1RemSet.hpp"
  34 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  35 #include "gc_implementation/g1/g1YCTypes.hpp"
  36 #include "gc_implementation/g1/heapRegionSeq.hpp"
  37 #include "gc_implementation/g1/heapRegionSet.hpp"
  38 #include "gc_implementation/shared/hSpaceCounters.hpp"
  39 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
  40 #include "memory/barrierSet.hpp"
  41 #include "memory/memRegion.hpp"
  42 #include "memory/sharedHeap.hpp"
  43 #include "utilities/stack.hpp"
  44 
  45 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  46 // It uses the "Garbage First" heap organization and algorithm, which
  47 // may combine concurrent marking with parallel, incremental compaction of
  48 // heap subsets that will yield large amounts of garbage.
  49 
  50 // Forward declarations
  51 class HeapRegion;
  52 class HRRSCleanupTask;
  53 class GenerationSpec;
  54 class OopsInHeapRegionClosure;
  55 class G1KlassScanClosure;
  56 class G1ScanHeapEvacClosure;
  57 class ObjectClosure;
  58 class SpaceClosure;
  59 class CompactibleSpaceClosure;
  60 class Space;
  61 class G1CollectorPolicy;
  62 class GenRemSet;
  63 class G1RemSet;
  64 class HeapRegionRemSetIterator;
  65 class ConcurrentMark;
  66 class ConcurrentMarkThread;
  67 class ConcurrentG1Refine;
  68 class ConcurrentGCTimer;
  69 class GenerationCounters;
  70 class STWGCTimer;
  71 class G1NewTracer;
  72 class G1OldTracer;
  73 class EvacuationFailedInfo;
  74 class nmethod;
  75 class Ticks;
  76 
  77 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  78 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  79 
  80 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  81 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  82 
  83 enum GCAllocPurpose {
  84   GCAllocForTenured,
  85   GCAllocForSurvived,
  86   GCAllocPurposeCount
  87 };
  88 
  89 class YoungList : public CHeapObj<mtGC> {
  90 private:
  91   G1CollectedHeap* _g1h;
  92 
  93   HeapRegion* _head;
  94 
  95   HeapRegion* _survivor_head;
  96   HeapRegion* _survivor_tail;
  97 
  98   HeapRegion* _curr;
  99 
 100   uint        _length;
 101   uint        _survivor_length;
 102 
 103   size_t      _last_sampled_rs_lengths;
 104   size_t      _sampled_rs_lengths;
 105 
 106   void         empty_list(HeapRegion* list);
 107 
 108 public:
 109   YoungList(G1CollectedHeap* g1h);
 110 
 111   void         push_region(HeapRegion* hr);
 112   void         add_survivor_region(HeapRegion* hr);
 113 
 114   void         empty_list();
 115   bool         is_empty() { return _length == 0; }
 116   uint         length() { return _length; }
 117   uint         survivor_length() { return _survivor_length; }
 118 
 119   // Currently we do not keep track of the used byte sum for the
 120   // young list and the survivors and it'd be quite a lot of work to
 121   // do so. When we'll eventually replace the young list with
 122   // instances of HeapRegionLinkedList we'll get that for free. So,
 123   // we'll report the more accurate information then.
 124   size_t       eden_used_bytes() {
 125     assert(length() >= survivor_length(), "invariant");
 126     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
 127   }
 128   size_t       survivor_used_bytes() {
 129     return (size_t) survivor_length() * HeapRegion::GrainBytes;
 130   }
 131 
 132   void rs_length_sampling_init();
 133   bool rs_length_sampling_more();
 134   void rs_length_sampling_next();
 135 
 136   void reset_sampled_info() {
 137     _last_sampled_rs_lengths =   0;
 138   }
 139   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 140 
 141   // for development purposes
 142   void reset_auxilary_lists();
 143   void clear() { _head = NULL; _length = 0; }
 144 
 145   void clear_survivors() {
 146     _survivor_head    = NULL;
 147     _survivor_tail    = NULL;
 148     _survivor_length  = 0;
 149   }
 150 
 151   HeapRegion* first_region() { return _head; }
 152   HeapRegion* first_survivor_region() { return _survivor_head; }
 153   HeapRegion* last_survivor_region() { return _survivor_tail; }
 154 
 155   // debugging
 156   bool          check_list_well_formed();
 157   bool          check_list_empty(bool check_sample = true);
 158   void          print();
 159 };
 160 
 161 class MutatorAllocRegion : public G1AllocRegion {
 162 protected:
 163   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 164   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 165 public:
 166   MutatorAllocRegion()
 167     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
 168 };
 169 
 170 class SurvivorGCAllocRegion : public G1AllocRegion {
 171 protected:
 172   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 173   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 174 public:
 175   SurvivorGCAllocRegion()
 176   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
 177 };
 178 
 179 class OldGCAllocRegion : public G1AllocRegion {
 180 protected:
 181   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 182   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 183 public:
 184   OldGCAllocRegion()
 185   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
 186 };
 187 
 188 // The G1 STW is alive closure.
 189 // An instance is embedded into the G1CH and used as the
 190 // (optional) _is_alive_non_header closure in the STW
 191 // reference processor. It is also extensively used during
 192 // reference processing during STW evacuation pauses.
 193 class G1STWIsAliveClosure: public BoolObjectClosure {
 194   G1CollectedHeap* _g1;
 195 public:
 196   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 197   bool do_object_b(oop p);
 198 };
 199 
 200 class RefineCardTableEntryClosure;
 201 
 202 class G1CollectedHeap : public SharedHeap {
 203   friend class VM_G1CollectForAllocation;
 204   friend class VM_G1CollectFull;
 205   friend class VM_G1IncCollectionPause;
 206   friend class VMStructs;
 207   friend class MutatorAllocRegion;
 208   friend class SurvivorGCAllocRegion;
 209   friend class OldGCAllocRegion;
 210 
 211   // Closures used in implementation.
 212   template <G1Barrier barrier, bool do_mark_object>
 213   friend class G1ParCopyClosure;
 214   friend class G1IsAliveClosure;
 215   friend class G1EvacuateFollowersClosure;
 216   friend class G1ParScanThreadState;
 217   friend class G1ParScanClosureSuper;
 218   friend class G1ParEvacuateFollowersClosure;
 219   friend class G1ParTask;
 220   friend class G1FreeGarbageRegionClosure;
 221   friend class RefineCardTableEntryClosure;
 222   friend class G1PrepareCompactClosure;
 223   friend class RegionSorter;
 224   friend class RegionResetter;
 225   friend class CountRCClosure;
 226   friend class EvacPopObjClosure;
 227   friend class G1ParCleanupCTTask;
 228 
 229   // Other related classes.
 230   friend class G1MarkSweep;
 231 
 232 private:
 233   // The one and only G1CollectedHeap, so static functions can find it.
 234   static G1CollectedHeap* _g1h;
 235 
 236   static size_t _humongous_object_threshold_in_words;
 237 
 238   // Storage for the G1 heap.
 239   VirtualSpace _g1_storage;
 240   MemRegion    _g1_reserved;
 241 
 242   // The part of _g1_storage that is currently committed.
 243   MemRegion _g1_committed;
 244 
 245   // The master free list. It will satisfy all new region allocations.
 246   FreeRegionList _free_list;
 247 
 248   // The secondary free list which contains regions that have been
 249   // freed up during the cleanup process. This will be appended to the
 250   // master free list when appropriate.
 251   FreeRegionList _secondary_free_list;
 252 
 253   // It keeps track of the old regions.
 254   HeapRegionSet _old_set;
 255 
 256   // It keeps track of the humongous regions.
 257   HeapRegionSet _humongous_set;
 258 
 259   // The number of regions we could create by expansion.
 260   uint _expansion_regions;
 261 
 262   // The block offset table for the G1 heap.
 263   G1BlockOffsetSharedArray* _bot_shared;
 264 
 265   // Tears down the region sets / lists so that they are empty and the
 266   // regions on the heap do not belong to a region set / list. The
 267   // only exception is the humongous set which we leave unaltered. If
 268   // free_list_only is true, it will only tear down the master free
 269   // list. It is called before a Full GC (free_list_only == false) or
 270   // before heap shrinking (free_list_only == true).
 271   void tear_down_region_sets(bool free_list_only);
 272 
 273   // Rebuilds the region sets / lists so that they are repopulated to
 274   // reflect the contents of the heap. The only exception is the
 275   // humongous set which was not torn down in the first place. If
 276   // free_list_only is true, it will only rebuild the master free
 277   // list. It is called after a Full GC (free_list_only == false) or
 278   // after heap shrinking (free_list_only == true).
 279   void rebuild_region_sets(bool free_list_only);
 280 
 281   // The sequence of all heap regions in the heap.
 282   HeapRegionSeq _hrs;
 283 
 284   // Alloc region used to satisfy mutator allocation requests.
 285   MutatorAllocRegion _mutator_alloc_region;
 286 
 287   // Alloc region used to satisfy allocation requests by the GC for
 288   // survivor objects.
 289   SurvivorGCAllocRegion _survivor_gc_alloc_region;
 290 
 291   // PLAB sizing policy for survivors.
 292   PLABStats _survivor_plab_stats;
 293 
 294   // Alloc region used to satisfy allocation requests by the GC for
 295   // old objects.
 296   OldGCAllocRegion _old_gc_alloc_region;
 297 
 298   // PLAB sizing policy for tenured objects.
 299   PLABStats _old_plab_stats;
 300 
 301   PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
 302     PLABStats* stats = NULL;
 303 
 304     switch (purpose) {
 305     case GCAllocForSurvived:
 306       stats = &_survivor_plab_stats;
 307       break;
 308     case GCAllocForTenured:
 309       stats = &_old_plab_stats;
 310       break;
 311     default:
 312       assert(false, "unrecognized GCAllocPurpose");
 313     }
 314 
 315     return stats;
 316   }
 317 
 318   // The last old region we allocated to during the last GC.
 319   // Typically, it is not full so we should re-use it during the next GC.
 320   HeapRegion* _retained_old_gc_alloc_region;
 321 
 322   // It specifies whether we should attempt to expand the heap after a
 323   // region allocation failure. If heap expansion fails we set this to
 324   // false so that we don't re-attempt the heap expansion (it's likely
 325   // that subsequent expansion attempts will also fail if one fails).
 326   // Currently, it is only consulted during GC and it's reset at the
 327   // start of each GC.
 328   bool _expand_heap_after_alloc_failure;
 329 
 330   // It resets the mutator alloc region before new allocations can take place.
 331   void init_mutator_alloc_region();
 332 
 333   // It releases the mutator alloc region.
 334   void release_mutator_alloc_region();
 335 
 336   // It initializes the GC alloc regions at the start of a GC.
 337   void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
 338 
 339   // It releases the GC alloc regions at the end of a GC.
 340   void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
 341 
 342   // It does any cleanup that needs to be done on the GC alloc regions
 343   // before a Full GC.
 344   void abandon_gc_alloc_regions();
 345 
 346   // Helper for monitoring and management support.
 347   G1MonitoringSupport* _g1mm;
 348 
 349   // Determines PLAB size for a particular allocation purpose.
 350   size_t desired_plab_sz(GCAllocPurpose purpose);
 351 
 352   // Outside of GC pauses, the number of bytes used in all regions other
 353   // than the current allocation region.
 354   size_t _summary_bytes_used;
 355 
 356   // This is used for a quick test on whether a reference points into
 357   // the collection set or not. Basically, we have an array, with one
 358   // byte per region, and that byte denotes whether the corresponding
 359   // region is in the collection set or not. The entry corresponding
 360   // the bottom of the heap, i.e., region 0, is pointed to by
 361   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
 362   // biased so that it actually points to address 0 of the address
 363   // space, to make the test as fast as possible (we can simply shift
 364   // the address to address into it, instead of having to subtract the
 365   // bottom of the heap from the address before shifting it; basically
 366   // it works in the same way the card table works).
 367   bool* _in_cset_fast_test;
 368 
 369   // The allocated array used for the fast test on whether a reference
 370   // points into the collection set or not. This field is also used to
 371   // free the array.
 372   bool* _in_cset_fast_test_base;
 373 
 374   // The length of the _in_cset_fast_test_base array.
 375   uint _in_cset_fast_test_length;
 376 
 377   volatile unsigned _gc_time_stamp;
 378 
 379   size_t* _surviving_young_words;
 380 
 381   G1HRPrinter _hr_printer;
 382 
 383   void setup_surviving_young_words();
 384   void update_surviving_young_words(size_t* surv_young_words);
 385   void cleanup_surviving_young_words();
 386 
 387   // It decides whether an explicit GC should start a concurrent cycle
 388   // instead of doing a STW GC. Currently, a concurrent cycle is
 389   // explicitly started if:
 390   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 391   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 392   // (c) cause == _g1_humongous_allocation
 393   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 394 
 395   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 396   // concurrent cycles) we have started.
 397   volatile unsigned int _old_marking_cycles_started;
 398 
 399   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 400   // concurrent cycles) we have completed.
 401   volatile unsigned int _old_marking_cycles_completed;
 402 
 403   bool _concurrent_cycle_started;
 404 
 405   // This is a non-product method that is helpful for testing. It is
 406   // called at the end of a GC and artificially expands the heap by
 407   // allocating a number of dead regions. This way we can induce very
 408   // frequent marking cycles and stress the cleanup / concurrent
 409   // cleanup code more (as all the regions that will be allocated by
 410   // this method will be found dead by the marking cycle).
 411   void allocate_dummy_regions() PRODUCT_RETURN;
 412 
 413   // Clear RSets after a compaction. It also resets the GC time stamps.
 414   void clear_rsets_post_compaction();
 415 
 416   // If the HR printer is active, dump the state of the regions in the
 417   // heap after a compaction.
 418   void print_hrs_post_compaction();
 419 
 420   double verify(bool guard, const char* msg);
 421   void verify_before_gc();
 422   void verify_after_gc();
 423 
 424   void log_gc_header();
 425   void log_gc_footer(double pause_time_sec);
 426 
 427   // These are macros so that, if the assert fires, we get the correct
 428   // line number, file, etc.
 429 
 430 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 431   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 432           (_extra_message_),                                                  \
 433           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 434           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 435           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 436 
 437 #define assert_heap_locked()                                                  \
 438   do {                                                                        \
 439     assert(Heap_lock->owned_by_self(),                                        \
 440            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 441   } while (0)
 442 
 443 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 444   do {                                                                        \
 445     assert(Heap_lock->owned_by_self() ||                                      \
 446            (SafepointSynchronize::is_at_safepoint() &&                        \
 447              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 448            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 449                                         "should be at a safepoint"));         \
 450   } while (0)
 451 
 452 #define assert_heap_locked_and_not_at_safepoint()                             \
 453   do {                                                                        \
 454     assert(Heap_lock->owned_by_self() &&                                      \
 455                                     !SafepointSynchronize::is_at_safepoint(), \
 456           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 457                                        "should not be at a safepoint"));      \
 458   } while (0)
 459 
 460 #define assert_heap_not_locked()                                              \
 461   do {                                                                        \
 462     assert(!Heap_lock->owned_by_self(),                                       \
 463         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 464   } while (0)
 465 
 466 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 467   do {                                                                        \
 468     assert(!Heap_lock->owned_by_self() &&                                     \
 469                                     !SafepointSynchronize::is_at_safepoint(), \
 470       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 471                                    "should not be at a safepoint"));          \
 472   } while (0)
 473 
 474 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 475   do {                                                                        \
 476     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 477               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 478            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 479   } while (0)
 480 
 481 #define assert_not_at_safepoint()                                             \
 482   do {                                                                        \
 483     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 484            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 485   } while (0)
 486 
 487 protected:
 488 
 489   // The young region list.
 490   YoungList*  _young_list;
 491 
 492   // The current policy object for the collector.
 493   G1CollectorPolicy* _g1_policy;
 494 
 495   // This is the second level of trying to allocate a new region. If
 496   // new_region() didn't find a region on the free_list, this call will
 497   // check whether there's anything available on the
 498   // secondary_free_list and/or wait for more regions to appear on
 499   // that list, if _free_regions_coming is set.
 500   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 501 
 502   // Try to allocate a single non-humongous HeapRegion sufficient for
 503   // an allocation of the given word_size. If do_expand is true,
 504   // attempt to expand the heap if necessary to satisfy the allocation
 505   // request. If the region is to be used as an old region or for a
 506   // humongous object, set is_old to true. If not, to false.
 507   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 508 
 509   // Attempt to satisfy a humongous allocation request of the given
 510   // size by finding a contiguous set of free regions of num_regions
 511   // length and remove them from the master free list. Return the
 512   // index of the first region or G1_NULL_HRS_INDEX if the search
 513   // was unsuccessful.
 514   uint humongous_obj_allocate_find_first(uint num_regions,
 515                                          size_t word_size);
 516 
 517   // Initialize a contiguous set of free regions of length num_regions
 518   // and starting at index first so that they appear as a single
 519   // humongous region.
 520   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 521                                                       uint num_regions,
 522                                                       size_t word_size);
 523 
 524   // Attempt to allocate a humongous object of the given size. Return
 525   // NULL if unsuccessful.
 526   HeapWord* humongous_obj_allocate(size_t word_size);
 527 
 528   // The following two methods, allocate_new_tlab() and
 529   // mem_allocate(), are the two main entry points from the runtime
 530   // into the G1's allocation routines. They have the following
 531   // assumptions:
 532   //
 533   // * They should both be called outside safepoints.
 534   //
 535   // * They should both be called without holding the Heap_lock.
 536   //
 537   // * All allocation requests for new TLABs should go to
 538   //   allocate_new_tlab().
 539   //
 540   // * All non-TLAB allocation requests should go to mem_allocate().
 541   //
 542   // * If either call cannot satisfy the allocation request using the
 543   //   current allocating region, they will try to get a new one. If
 544   //   this fails, they will attempt to do an evacuation pause and
 545   //   retry the allocation.
 546   //
 547   // * If all allocation attempts fail, even after trying to schedule
 548   //   an evacuation pause, allocate_new_tlab() will return NULL,
 549   //   whereas mem_allocate() will attempt a heap expansion and/or
 550   //   schedule a Full GC.
 551   //
 552   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 553   //   should never be called with word_size being humongous. All
 554   //   humongous allocation requests should go to mem_allocate() which
 555   //   will satisfy them with a special path.
 556 
 557   virtual HeapWord* allocate_new_tlab(size_t word_size);
 558 
 559   virtual HeapWord* mem_allocate(size_t word_size,
 560                                  bool*  gc_overhead_limit_was_exceeded);
 561 
 562   // The following three methods take a gc_count_before_ret
 563   // parameter which is used to return the GC count if the method
 564   // returns NULL. Given that we are required to read the GC count
 565   // while holding the Heap_lock, and these paths will take the
 566   // Heap_lock at some point, it's easier to get them to read the GC
 567   // count while holding the Heap_lock before they return NULL instead
 568   // of the caller (namely: mem_allocate()) having to also take the
 569   // Heap_lock just to read the GC count.
 570 
 571   // First-level mutator allocation attempt: try to allocate out of
 572   // the mutator alloc region without taking the Heap_lock. This
 573   // should only be used for non-humongous allocations.
 574   inline HeapWord* attempt_allocation(size_t word_size,
 575                                       unsigned int* gc_count_before_ret,
 576                                       int* gclocker_retry_count_ret);
 577 
 578   // Second-level mutator allocation attempt: take the Heap_lock and
 579   // retry the allocation attempt, potentially scheduling a GC
 580   // pause. This should only be used for non-humongous allocations.
 581   HeapWord* attempt_allocation_slow(size_t word_size,
 582                                     unsigned int* gc_count_before_ret,
 583                                     int* gclocker_retry_count_ret);
 584 
 585   // Takes the Heap_lock and attempts a humongous allocation. It can
 586   // potentially schedule a GC pause.
 587   HeapWord* attempt_allocation_humongous(size_t word_size,
 588                                          unsigned int* gc_count_before_ret,
 589                                          int* gclocker_retry_count_ret);
 590 
 591   // Allocation attempt that should be called during safepoints (e.g.,
 592   // at the end of a successful GC). expect_null_mutator_alloc_region
 593   // specifies whether the mutator alloc region is expected to be NULL
 594   // or not.
 595   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 596                                        bool expect_null_mutator_alloc_region);
 597 
 598   // It dirties the cards that cover the block so that so that the post
 599   // write barrier never queues anything when updating objects on this
 600   // block. It is assumed (and in fact we assert) that the block
 601   // belongs to a young region.
 602   inline void dirty_young_block(HeapWord* start, size_t word_size);
 603 
 604   // Allocate blocks during garbage collection. Will ensure an
 605   // allocation region, either by picking one or expanding the
 606   // heap, and then allocate a block of the given size. The block
 607   // may not be a humongous - it must fit into a single heap region.
 608   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
 609 
 610   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
 611                                     HeapRegion*    alloc_region,
 612                                     bool           par,
 613                                     size_t         word_size);
 614 
 615   // Ensure that no further allocations can happen in "r", bearing in mind
 616   // that parallel threads might be attempting allocations.
 617   void par_allocate_remaining_space(HeapRegion* r);
 618 
 619   // Allocation attempt during GC for a survivor object / PLAB.
 620   inline HeapWord* survivor_attempt_allocation(size_t word_size);
 621 
 622   // Allocation attempt during GC for an old object / PLAB.
 623   inline HeapWord* old_attempt_allocation(size_t word_size);
 624 
 625   // These methods are the "callbacks" from the G1AllocRegion class.
 626 
 627   // For mutator alloc regions.
 628   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 629   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 630                                    size_t allocated_bytes);
 631 
 632   // For GC alloc regions.
 633   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 634                                   GCAllocPurpose ap);
 635   void retire_gc_alloc_region(HeapRegion* alloc_region,
 636                               size_t allocated_bytes, GCAllocPurpose ap);
 637 
 638   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 639   //   inspection request and should collect the entire heap
 640   // - if clear_all_soft_refs is true, all soft references should be
 641   //   cleared during the GC
 642   // - if explicit_gc is false, word_size describes the allocation that
 643   //   the GC should attempt (at least) to satisfy
 644   // - it returns false if it is unable to do the collection due to the
 645   //   GC locker being active, true otherwise
 646   bool do_collection(bool explicit_gc,
 647                      bool clear_all_soft_refs,
 648                      size_t word_size);
 649 
 650   // Callback from VM_G1CollectFull operation.
 651   // Perform a full collection.
 652   virtual void do_full_collection(bool clear_all_soft_refs);
 653 
 654   // Resize the heap if necessary after a full collection.  If this is
 655   // after a collect-for allocation, "word_size" is the allocation size,
 656   // and will be considered part of the used portion of the heap.
 657   void resize_if_necessary_after_full_collection(size_t word_size);
 658 
 659   // Callback from VM_G1CollectForAllocation operation.
 660   // This function does everything necessary/possible to satisfy a
 661   // failed allocation request (including collection, expansion, etc.)
 662   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
 663 
 664   // Attempting to expand the heap sufficiently
 665   // to support an allocation of the given "word_size".  If
 666   // successful, perform the allocation and return the address of the
 667   // allocated block, or else "NULL".
 668   HeapWord* expand_and_allocate(size_t word_size);
 669 
 670   // Process any reference objects discovered during
 671   // an incremental evacuation pause.
 672   void process_discovered_references(uint no_of_gc_workers);
 673 
 674   // Enqueue any remaining discovered references
 675   // after processing.
 676   void enqueue_discovered_references(uint no_of_gc_workers);
 677 
 678 public:
 679 
 680   G1MonitoringSupport* g1mm() {
 681     assert(_g1mm != NULL, "should have been initialized");
 682     return _g1mm;
 683   }
 684 
 685   // Expand the garbage-first heap by at least the given size (in bytes!).
 686   // Returns true if the heap was expanded by the requested amount;
 687   // false otherwise.
 688   // (Rounds up to a HeapRegion boundary.)
 689   bool expand(size_t expand_bytes);
 690 
 691   // Do anything common to GC's.
 692   virtual void gc_prologue(bool full);
 693   virtual void gc_epilogue(bool full);
 694 
 695   // We register a region with the fast "in collection set" test. We
 696   // simply set to true the array slot corresponding to this region.
 697   void register_region_with_in_cset_fast_test(HeapRegion* r) {
 698     assert(_in_cset_fast_test_base != NULL, "sanity");
 699     assert(r->in_collection_set(), "invariant");
 700     uint index = r->hrs_index();
 701     assert(index < _in_cset_fast_test_length, "invariant");
 702     assert(!_in_cset_fast_test_base[index], "invariant");
 703     _in_cset_fast_test_base[index] = true;
 704   }
 705 
 706   // This is a fast test on whether a reference points into the
 707   // collection set or not. Assume that the reference
 708   // points into the heap.
 709   inline bool in_cset_fast_test(oop obj);
 710 
 711   void clear_cset_fast_test() {
 712     assert(_in_cset_fast_test_base != NULL, "sanity");
 713     memset(_in_cset_fast_test_base, false,
 714            (size_t) _in_cset_fast_test_length * sizeof(bool));
 715   }
 716 
 717   // This is called at the start of either a concurrent cycle or a Full
 718   // GC to update the number of old marking cycles started.
 719   void increment_old_marking_cycles_started();
 720 
 721   // This is called at the end of either a concurrent cycle or a Full
 722   // GC to update the number of old marking cycles completed. Those two
 723   // can happen in a nested fashion, i.e., we start a concurrent
 724   // cycle, a Full GC happens half-way through it which ends first,
 725   // and then the cycle notices that a Full GC happened and ends
 726   // too. The concurrent parameter is a boolean to help us do a bit
 727   // tighter consistency checking in the method. If concurrent is
 728   // false, the caller is the inner caller in the nesting (i.e., the
 729   // Full GC). If concurrent is true, the caller is the outer caller
 730   // in this nesting (i.e., the concurrent cycle). Further nesting is
 731   // not currently supported. The end of this call also notifies
 732   // the FullGCCount_lock in case a Java thread is waiting for a full
 733   // GC to happen (e.g., it called System.gc() with
 734   // +ExplicitGCInvokesConcurrent).
 735   void increment_old_marking_cycles_completed(bool concurrent);
 736 
 737   unsigned int old_marking_cycles_completed() {
 738     return _old_marking_cycles_completed;
 739   }
 740 
 741   void register_concurrent_cycle_start(const Ticks& start_time);
 742   void register_concurrent_cycle_end();
 743   void trace_heap_after_concurrent_cycle();
 744 
 745   G1YCType yc_type();
 746 
 747   G1HRPrinter* hr_printer() { return &_hr_printer; }
 748 
 749   // Frees a non-humongous region by initializing its contents and
 750   // adding it to the free list that's passed as a parameter (this is
 751   // usually a local list which will be appended to the master free
 752   // list later). The used bytes of freed regions are accumulated in
 753   // pre_used. If par is true, the region's RSet will not be freed
 754   // up. The assumption is that this will be done later.
 755   // The locked parameter indicates if the caller has already taken
 756   // care of proper synchronization. This may allow some optimizations.
 757   void free_region(HeapRegion* hr,
 758                    FreeRegionList* free_list,
 759                    bool par,
 760                    bool locked = false);
 761 
 762   // Frees a humongous region by collapsing it into individual regions
 763   // and calling free_region() for each of them. The freed regions
 764   // will be added to the free list that's passed as a parameter (this
 765   // is usually a local list which will be appended to the master free
 766   // list later). The used bytes of freed regions are accumulated in
 767   // pre_used. If par is true, the region's RSet will not be freed
 768   // up. The assumption is that this will be done later.
 769   void free_humongous_region(HeapRegion* hr,
 770                              FreeRegionList* free_list,
 771                              bool par);
 772 protected:
 773 
 774   // Shrink the garbage-first heap by at most the given size (in bytes!).
 775   // (Rounds down to a HeapRegion boundary.)
 776   virtual void shrink(size_t expand_bytes);
 777   void shrink_helper(size_t expand_bytes);
 778 
 779   #if TASKQUEUE_STATS
 780   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 781   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 782   void reset_taskqueue_stats();
 783   #endif // TASKQUEUE_STATS
 784 
 785   // Schedule the VM operation that will do an evacuation pause to
 786   // satisfy an allocation request of word_size. *succeeded will
 787   // return whether the VM operation was successful (it did do an
 788   // evacuation pause) or not (another thread beat us to it or the GC
 789   // locker was active). Given that we should not be holding the
 790   // Heap_lock when we enter this method, we will pass the
 791   // gc_count_before (i.e., total_collections()) as a parameter since
 792   // it has to be read while holding the Heap_lock. Currently, both
 793   // methods that call do_collection_pause() release the Heap_lock
 794   // before the call, so it's easy to read gc_count_before just before.
 795   HeapWord* do_collection_pause(size_t         word_size,
 796                                 unsigned int   gc_count_before,
 797                                 bool*          succeeded,
 798                                 GCCause::Cause gc_cause);
 799 
 800   // The guts of the incremental collection pause, executed by the vm
 801   // thread. It returns false if it is unable to do the collection due
 802   // to the GC locker being active, true otherwise
 803   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 804 
 805   // Actually do the work of evacuating the collection set.
 806   void evacuate_collection_set(EvacuationInfo& evacuation_info);
 807 
 808   // The g1 remembered set of the heap.
 809   G1RemSet* _g1_rem_set;
 810 
 811   // A set of cards that cover the objects for which the Rsets should be updated
 812   // concurrently after the collection.
 813   DirtyCardQueueSet _dirty_card_queue_set;
 814 
 815   // The closure used to refine a single card.
 816   RefineCardTableEntryClosure* _refine_cte_cl;
 817 
 818   // A function to check the consistency of dirty card logs.
 819   void check_ct_logs_at_safepoint();
 820 
 821   // A DirtyCardQueueSet that is used to hold cards that contain
 822   // references into the current collection set. This is used to
 823   // update the remembered sets of the regions in the collection
 824   // set in the event of an evacuation failure.
 825   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 826 
 827   // After a collection pause, make the regions in the CS into free
 828   // regions.
 829   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
 830 
 831   // Abandon the current collection set without recording policy
 832   // statistics or updating free lists.
 833   void abandon_collection_set(HeapRegion* cs_head);
 834 
 835   // Applies "scan_non_heap_roots" to roots outside the heap,
 836   // "scan_rs" to roots inside the heap (having done "set_region" to
 837   // indicate the region in which the root resides),
 838   // and does "scan_metadata" If "scan_rs" is
 839   // NULL, then this step is skipped.  The "worker_i"
 840   // param is for use with parallel roots processing, and should be
 841   // the "i" of the calling parallel worker thread's work(i) function.
 842   // In the sequential case this param will be ignored.
 843   void g1_process_strong_roots(bool is_scavenging,
 844                                ScanningOption so,
 845                                OopClosure* scan_non_heap_roots,
 846                                OopsInHeapRegionClosure* scan_rs,
 847                                G1KlassScanClosure* scan_klasses,
 848                                uint worker_i);
 849 
 850   // Apply "blk" to all the weak roots of the system.  These include
 851   // JNI weak roots, the code cache, system dictionary, symbol table,
 852   // string table, and referents of reachable weak refs.
 853   void g1_process_weak_roots(OopClosure* root_closure);
 854 
 855   // Notifies all the necessary spaces that the committed space has
 856   // been updated (either expanded or shrunk). It should be called
 857   // after _g1_storage is updated.
 858   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
 859 
 860   // The concurrent marker (and the thread it runs in.)
 861   ConcurrentMark* _cm;
 862   ConcurrentMarkThread* _cmThread;
 863   bool _mark_in_progress;
 864 
 865   // The concurrent refiner.
 866   ConcurrentG1Refine* _cg1r;
 867 
 868   // The parallel task queues
 869   RefToScanQueueSet *_task_queues;
 870 
 871   // True iff a evacuation has failed in the current collection.
 872   bool _evacuation_failed;
 873 
 874   EvacuationFailedInfo* _evacuation_failed_info_array;
 875 
 876   // Failed evacuations cause some logical from-space objects to have
 877   // forwarding pointers to themselves.  Reset them.
 878   void remove_self_forwarding_pointers();
 879 
 880   // Together, these store an object with a preserved mark, and its mark value.
 881   Stack<oop, mtGC>     _objs_with_preserved_marks;
 882   Stack<markOop, mtGC> _preserved_marks_of_objs;
 883 
 884   // Preserve the mark of "obj", if necessary, in preparation for its mark
 885   // word being overwritten with a self-forwarding-pointer.
 886   void preserve_mark_if_necessary(oop obj, markOop m);
 887 
 888   // The stack of evac-failure objects left to be scanned.
 889   GrowableArray<oop>*    _evac_failure_scan_stack;
 890   // The closure to apply to evac-failure objects.
 891 
 892   OopsInHeapRegionClosure* _evac_failure_closure;
 893   // Set the field above.
 894   void
 895   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 896     _evac_failure_closure = evac_failure_closure;
 897   }
 898 
 899   // Push "obj" on the scan stack.
 900   void push_on_evac_failure_scan_stack(oop obj);
 901   // Process scan stack entries until the stack is empty.
 902   void drain_evac_failure_scan_stack();
 903   // True iff an invocation of "drain_scan_stack" is in progress; to
 904   // prevent unnecessary recursion.
 905   bool _drain_in_progress;
 906 
 907   // Do any necessary initialization for evacuation-failure handling.
 908   // "cl" is the closure that will be used to process evac-failure
 909   // objects.
 910   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 911   // Do any necessary cleanup for evacuation-failure handling data
 912   // structures.
 913   void finalize_for_evac_failure();
 914 
 915   // An attempt to evacuate "obj" has failed; take necessary steps.
 916   oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
 917   void handle_evacuation_failure_common(oop obj, markOop m);
 918 
 919 #ifndef PRODUCT
 920   // Support for forcing evacuation failures. Analogous to
 921   // PromotionFailureALot for the other collectors.
 922 
 923   // Records whether G1EvacuationFailureALot should be in effect
 924   // for the current GC
 925   bool _evacuation_failure_alot_for_current_gc;
 926 
 927   // Used to record the GC number for interval checking when
 928   // determining whether G1EvaucationFailureALot is in effect
 929   // for the current GC.
 930   size_t _evacuation_failure_alot_gc_number;
 931 
 932   // Count of the number of evacuations between failures.
 933   volatile size_t _evacuation_failure_alot_count;
 934 
 935   // Set whether G1EvacuationFailureALot should be in effect
 936   // for the current GC (based upon the type of GC and which
 937   // command line flags are set);
 938   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 939                                                   bool during_initial_mark,
 940                                                   bool during_marking);
 941 
 942   inline void set_evacuation_failure_alot_for_current_gc();
 943 
 944   // Return true if it's time to cause an evacuation failure.
 945   inline bool evacuation_should_fail();
 946 
 947   // Reset the G1EvacuationFailureALot counters.  Should be called at
 948   // the end of an evacuation pause in which an evacuation failure occurred.
 949   inline void reset_evacuation_should_fail();
 950 #endif // !PRODUCT
 951 
 952   // ("Weak") Reference processing support.
 953   //
 954   // G1 has 2 instances of the reference processor class. One
 955   // (_ref_processor_cm) handles reference object discovery
 956   // and subsequent processing during concurrent marking cycles.
 957   //
 958   // The other (_ref_processor_stw) handles reference object
 959   // discovery and processing during full GCs and incremental
 960   // evacuation pauses.
 961   //
 962   // During an incremental pause, reference discovery will be
 963   // temporarily disabled for _ref_processor_cm and will be
 964   // enabled for _ref_processor_stw. At the end of the evacuation
 965   // pause references discovered by _ref_processor_stw will be
 966   // processed and discovery will be disabled. The previous
 967   // setting for reference object discovery for _ref_processor_cm
 968   // will be re-instated.
 969   //
 970   // At the start of marking:
 971   //  * Discovery by the CM ref processor is verified to be inactive
 972   //    and it's discovered lists are empty.
 973   //  * Discovery by the CM ref processor is then enabled.
 974   //
 975   // At the end of marking:
 976   //  * Any references on the CM ref processor's discovered
 977   //    lists are processed (possibly MT).
 978   //
 979   // At the start of full GC we:
 980   //  * Disable discovery by the CM ref processor and
 981   //    empty CM ref processor's discovered lists
 982   //    (without processing any entries).
 983   //  * Verify that the STW ref processor is inactive and it's
 984   //    discovered lists are empty.
 985   //  * Temporarily set STW ref processor discovery as single threaded.
 986   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 987   //    field.
 988   //  * Finally enable discovery by the STW ref processor.
 989   //
 990   // The STW ref processor is used to record any discovered
 991   // references during the full GC.
 992   //
 993   // At the end of a full GC we:
 994   //  * Enqueue any reference objects discovered by the STW ref processor
 995   //    that have non-live referents. This has the side-effect of
 996   //    making the STW ref processor inactive by disabling discovery.
 997   //  * Verify that the CM ref processor is still inactive
 998   //    and no references have been placed on it's discovered
 999   //    lists (also checked as a precondition during initial marking).
1000 
1001   // The (stw) reference processor...
1002   ReferenceProcessor* _ref_processor_stw;
1003 
1004   STWGCTimer* _gc_timer_stw;
1005   ConcurrentGCTimer* _gc_timer_cm;
1006 
1007   G1OldTracer* _gc_tracer_cm;
1008   G1NewTracer* _gc_tracer_stw;
1009 
1010   // During reference object discovery, the _is_alive_non_header
1011   // closure (if non-null) is applied to the referent object to
1012   // determine whether the referent is live. If so then the
1013   // reference object does not need to be 'discovered' and can
1014   // be treated as a regular oop. This has the benefit of reducing
1015   // the number of 'discovered' reference objects that need to
1016   // be processed.
1017   //
1018   // Instance of the is_alive closure for embedding into the
1019   // STW reference processor as the _is_alive_non_header field.
1020   // Supplying a value for the _is_alive_non_header field is
1021   // optional but doing so prevents unnecessary additions to
1022   // the discovered lists during reference discovery.
1023   G1STWIsAliveClosure _is_alive_closure_stw;
1024 
1025   // The (concurrent marking) reference processor...
1026   ReferenceProcessor* _ref_processor_cm;
1027 
1028   // Instance of the concurrent mark is_alive closure for embedding
1029   // into the Concurrent Marking reference processor as the
1030   // _is_alive_non_header field. Supplying a value for the
1031   // _is_alive_non_header field is optional but doing so prevents
1032   // unnecessary additions to the discovered lists during reference
1033   // discovery.
1034   G1CMIsAliveClosure _is_alive_closure_cm;
1035 
1036   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
1037   HeapRegion** _worker_cset_start_region;
1038 
1039   // Time stamp to validate the regions recorded in the cache
1040   // used by G1CollectedHeap::start_cset_region_for_worker().
1041   // The heap region entry for a given worker is valid iff
1042   // the associated time stamp value matches the current value
1043   // of G1CollectedHeap::_gc_time_stamp.
1044   unsigned int* _worker_cset_start_region_time_stamp;
1045 
1046   enum G1H_process_strong_roots_tasks {
1047     G1H_PS_filter_satb_buffers,
1048     G1H_PS_refProcessor_oops_do,
1049     // Leave this one last.
1050     G1H_PS_NumElements
1051   };
1052 
1053   SubTasksDone* _process_strong_tasks;
1054 
1055   volatile bool _free_regions_coming;
1056 
1057 public:
1058 
1059   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
1060 
1061   void set_refine_cte_cl_concurrency(bool concurrent);
1062 
1063   RefToScanQueue *task_queue(int i) const;
1064 
1065   // A set of cards where updates happened during the GC
1066   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
1067 
1068   // A DirtyCardQueueSet that is used to hold cards that contain
1069   // references into the current collection set. This is used to
1070   // update the remembered sets of the regions in the collection
1071   // set in the event of an evacuation failure.
1072   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
1073         { return _into_cset_dirty_card_queue_set; }
1074 
1075   // Create a G1CollectedHeap with the specified policy.
1076   // Must call the initialize method afterwards.
1077   // May not return if something goes wrong.
1078   G1CollectedHeap(G1CollectorPolicy* policy);
1079 
1080   // Initialize the G1CollectedHeap to have the initial and
1081   // maximum sizes and remembered and barrier sets
1082   // specified by the policy object.
1083   jint initialize();
1084 
1085   virtual void stop();
1086 
1087   // Return the (conservative) maximum heap alignment for any G1 heap
1088   static size_t conservative_max_heap_alignment();
1089 
1090   // Initialize weak reference processing.
1091   virtual void ref_processing_init();
1092 
1093   void set_par_threads(uint t) {
1094     SharedHeap::set_par_threads(t);
1095     // Done in SharedHeap but oddly there are
1096     // two _process_strong_tasks's in a G1CollectedHeap
1097     // so do it here too.
1098     _process_strong_tasks->set_n_threads(t);
1099   }
1100 
1101   // Set _n_par_threads according to a policy TBD.
1102   void set_par_threads();
1103 
1104   void set_n_termination(int t) {
1105     _process_strong_tasks->set_n_threads(t);
1106   }
1107 
1108   virtual CollectedHeap::Name kind() const {
1109     return CollectedHeap::G1CollectedHeap;
1110   }
1111 
1112   // The current policy object for the collector.
1113   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1114 
1115   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
1116 
1117   // Adaptive size policy.  No such thing for g1.
1118   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1119 
1120   // The rem set and barrier set.
1121   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1122 
1123   unsigned get_gc_time_stamp() {
1124     return _gc_time_stamp;
1125   }
1126 
1127   inline void reset_gc_time_stamp();
1128 
1129   void check_gc_time_stamps() PRODUCT_RETURN;
1130 
1131   inline void increment_gc_time_stamp();
1132 
1133   // Reset the given region's GC timestamp. If it's starts humongous,
1134   // also reset the GC timestamp of its corresponding
1135   // continues humongous regions too.
1136   void reset_gc_time_stamps(HeapRegion* hr);
1137 
1138   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1139                                   DirtyCardQueue* into_cset_dcq,
1140                                   bool concurrent, uint worker_i);
1141 
1142   // The shared block offset table array.
1143   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1144 
1145   // Reference Processing accessors
1146 
1147   // The STW reference processor....
1148   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1149 
1150   // The Concurrent Marking reference processor...
1151   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1152 
1153   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
1154   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
1155 
1156   virtual size_t capacity() const;
1157   virtual size_t used() const;
1158   // This should be called when we're not holding the heap lock. The
1159   // result might be a bit inaccurate.
1160   size_t used_unlocked() const;
1161   size_t recalculate_used() const;
1162 
1163   // These virtual functions do the actual allocation.
1164   // Some heaps may offer a contiguous region for shared non-blocking
1165   // allocation, via inlined code (by exporting the address of the top and
1166   // end fields defining the extent of the contiguous allocation region.)
1167   // But G1CollectedHeap doesn't yet support this.
1168 
1169   // Return an estimate of the maximum allocation that could be performed
1170   // without triggering any collection or expansion activity.  In a
1171   // generational collector, for example, this is probably the largest
1172   // allocation that could be supported (without expansion) in the youngest
1173   // generation.  It is "unsafe" because no locks are taken; the result
1174   // should be treated as an approximation, not a guarantee, for use in
1175   // heuristic resizing decisions.
1176   virtual size_t unsafe_max_alloc();
1177 
1178   virtual bool is_maximal_no_gc() const {
1179     return _g1_storage.uncommitted_size() == 0;
1180   }
1181 
1182   // The total number of regions in the heap.
1183   uint n_regions() { return _hrs.length(); }
1184 
1185   // The max number of regions in the heap.
1186   uint max_regions() { return _hrs.max_length(); }
1187 
1188   // The number of regions that are completely free.
1189   uint free_regions() { return _free_list.length(); }
1190 
1191   // The number of regions that are not completely free.
1192   uint used_regions() { return n_regions() - free_regions(); }
1193 
1194   // The number of regions available for "regular" expansion.
1195   uint expansion_regions() { return _expansion_regions; }
1196 
1197   // Factory method for HeapRegion instances. It will return NULL if
1198   // the allocation fails.
1199   HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
1200 
1201   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1202   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1203   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1204   void verify_dirty_young_regions() PRODUCT_RETURN;
1205 
1206   // verify_region_sets() performs verification over the region
1207   // lists. It will be compiled in the product code to be used when
1208   // necessary (i.e., during heap verification).
1209   void verify_region_sets();
1210 
1211   // verify_region_sets_optional() is planted in the code for
1212   // list verification in non-product builds (and it can be enabled in
1213   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1214 #if HEAP_REGION_SET_FORCE_VERIFY
1215   void verify_region_sets_optional() {
1216     verify_region_sets();
1217   }
1218 #else // HEAP_REGION_SET_FORCE_VERIFY
1219   void verify_region_sets_optional() { }
1220 #endif // HEAP_REGION_SET_FORCE_VERIFY
1221 
1222 #ifdef ASSERT
1223   bool is_on_master_free_list(HeapRegion* hr) {
1224     return hr->containing_set() == &_free_list;
1225   }
1226 #endif // ASSERT
1227 
1228   // Wrapper for the region list operations that can be called from
1229   // methods outside this class.
1230 
1231   void secondary_free_list_add(FreeRegionList* list) {
1232     _secondary_free_list.add_ordered(list);
1233   }
1234 
1235   void append_secondary_free_list() {
1236     _free_list.add_ordered(&_secondary_free_list);
1237   }
1238 
1239   void append_secondary_free_list_if_not_empty_with_lock() {
1240     // If the secondary free list looks empty there's no reason to
1241     // take the lock and then try to append it.
1242     if (!_secondary_free_list.is_empty()) {
1243       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1244       append_secondary_free_list();
1245     }
1246   }
1247 
1248   inline void old_set_remove(HeapRegion* hr);
1249 
1250   size_t non_young_capacity_bytes() {
1251     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1252   }
1253 
1254   void set_free_regions_coming();
1255   void reset_free_regions_coming();
1256   bool free_regions_coming() { return _free_regions_coming; }
1257   void wait_while_free_regions_coming();
1258 
1259   // Determine whether the given region is one that we are using as an
1260   // old GC alloc region.
1261   bool is_old_gc_alloc_region(HeapRegion* hr) {
1262     return hr == _retained_old_gc_alloc_region;
1263   }
1264 
1265   // Perform a collection of the heap; intended for use in implementing
1266   // "System.gc".  This probably implies as full a collection as the
1267   // "CollectedHeap" supports.
1268   virtual void collect(GCCause::Cause cause);
1269 
1270   // The same as above but assume that the caller holds the Heap_lock.
1271   void collect_locked(GCCause::Cause cause);
1272 
1273   // True iff an evacuation has failed in the most-recent collection.
1274   bool evacuation_failed() { return _evacuation_failed; }
1275 
1276   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
1277   void prepend_to_freelist(FreeRegionList* list);
1278   void decrement_summary_bytes(size_t bytes);
1279 
1280   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1281   virtual bool is_in(const void* p) const;
1282 
1283   // Return "TRUE" iff the given object address is within the collection
1284   // set.
1285   inline bool obj_in_cs(oop obj);
1286 
1287   // Return "TRUE" iff the given object address is in the reserved
1288   // region of g1.
1289   bool is_in_g1_reserved(const void* p) const {
1290     return _g1_reserved.contains(p);
1291   }
1292 
1293   // Returns a MemRegion that corresponds to the space that has been
1294   // reserved for the heap
1295   MemRegion g1_reserved() {
1296     return _g1_reserved;
1297   }
1298 
1299   // Returns a MemRegion that corresponds to the space that has been
1300   // committed in the heap
1301   MemRegion g1_committed() {
1302     return _g1_committed;
1303   }
1304 
1305   virtual bool is_in_closed_subset(const void* p) const;
1306 
1307   G1SATBCardTableModRefBS* g1_barrier_set() {
1308     return (G1SATBCardTableModRefBS*) barrier_set();
1309   }
1310 
1311   // This resets the card table to all zeros.  It is used after
1312   // a collection pause which used the card table to claim cards.
1313   void cleanUpCardTable();
1314 
1315   // Iteration functions.
1316 
1317   // Iterate over all the ref-containing fields of all objects, calling
1318   // "cl.do_oop" on each.
1319   virtual void oop_iterate(ExtendedOopClosure* cl);
1320 
1321   // Same as above, restricted to a memory region.
1322   void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
1323 
1324   // Iterate over all objects, calling "cl.do_object" on each.
1325   virtual void object_iterate(ObjectClosure* cl);
1326 
1327   virtual void safe_object_iterate(ObjectClosure* cl) {
1328     object_iterate(cl);
1329   }
1330 
1331   // Iterate over all spaces in use in the heap, in ascending address order.
1332   virtual void space_iterate(SpaceClosure* cl);
1333 
1334   // Iterate over heap regions, in address order, terminating the
1335   // iteration early if the "doHeapRegion" method returns "true".
1336   void heap_region_iterate(HeapRegionClosure* blk) const;
1337 
1338   // Return the region with the given index. It assumes the index is valid.
1339   inline HeapRegion* region_at(uint index) const;
1340 
1341   // Divide the heap region sequence into "chunks" of some size (the number
1342   // of regions divided by the number of parallel threads times some
1343   // overpartition factor, currently 4).  Assumes that this will be called
1344   // in parallel by ParallelGCThreads worker threads with discinct worker
1345   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
1346   // calls will use the same "claim_value", and that that claim value is
1347   // different from the claim_value of any heap region before the start of
1348   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
1349   // attempting to claim the first region in each chunk, and, if
1350   // successful, applying the closure to each region in the chunk (and
1351   // setting the claim value of the second and subsequent regions of the
1352   // chunk.)  For now requires that "doHeapRegion" always returns "false",
1353   // i.e., that a closure never attempt to abort a traversal.
1354   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
1355                                        uint worker,
1356                                        uint no_of_par_workers,
1357                                        jint claim_value);
1358 
1359   // It resets all the region claim values to the default.
1360   void reset_heap_region_claim_values();
1361 
1362   // Resets the claim values of regions in the current
1363   // collection set to the default.
1364   void reset_cset_heap_region_claim_values();
1365 
1366 #ifdef ASSERT
1367   bool check_heap_region_claim_values(jint claim_value);
1368 
1369   // Same as the routine above but only checks regions in the
1370   // current collection set.
1371   bool check_cset_heap_region_claim_values(jint claim_value);
1372 #endif // ASSERT
1373 
1374   // Clear the cached cset start regions and (more importantly)
1375   // the time stamps. Called when we reset the GC time stamp.
1376   void clear_cset_start_regions();
1377 
1378   // Given the id of a worker, obtain or calculate a suitable
1379   // starting region for iterating over the current collection set.
1380   HeapRegion* start_cset_region_for_worker(uint worker_i);
1381 
1382   // This is a convenience method that is used by the
1383   // HeapRegionIterator classes to calculate the starting region for
1384   // each worker so that they do not all start from the same region.
1385   HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
1386 
1387   // Iterate over the regions (if any) in the current collection set.
1388   void collection_set_iterate(HeapRegionClosure* blk);
1389 
1390   // As above but starting from region r
1391   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1392 
1393   // Returns the first (lowest address) compactible space in the heap.
1394   virtual CompactibleSpace* first_compactible_space();
1395 
1396   // A CollectedHeap will contain some number of spaces.  This finds the
1397   // space containing a given address, or else returns NULL.
1398   virtual Space* space_containing(const void* addr) const;
1399 
1400   // A G1CollectedHeap will contain some number of heap regions.  This
1401   // finds the region containing a given address, or else returns NULL.
1402   template <class T>
1403   inline HeapRegion* heap_region_containing(const T addr) const;
1404 
1405   // Like the above, but requires "addr" to be in the heap (to avoid a
1406   // null-check), and unlike the above, may return an continuing humongous
1407   // region.
1408   template <class T>
1409   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1410 
1411   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1412   // each address in the (reserved) heap is a member of exactly
1413   // one block.  The defining characteristic of a block is that it is
1414   // possible to find its size, and thus to progress forward to the next
1415   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1416   // represent Java objects, or they might be free blocks in a
1417   // free-list-based heap (or subheap), as long as the two kinds are
1418   // distinguishable and the size of each is determinable.
1419 
1420   // Returns the address of the start of the "block" that contains the
1421   // address "addr".  We say "blocks" instead of "object" since some heaps
1422   // may not pack objects densely; a chunk may either be an object or a
1423   // non-object.
1424   virtual HeapWord* block_start(const void* addr) const;
1425 
1426   // Requires "addr" to be the start of a chunk, and returns its size.
1427   // "addr + size" is required to be the start of a new chunk, or the end
1428   // of the active area of the heap.
1429   virtual size_t block_size(const HeapWord* addr) const;
1430 
1431   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1432   // the block is an object.
1433   virtual bool block_is_obj(const HeapWord* addr) const;
1434 
1435   // Does this heap support heap inspection? (+PrintClassHistogram)
1436   virtual bool supports_heap_inspection() const { return true; }
1437 
1438   // Section on thread-local allocation buffers (TLABs)
1439   // See CollectedHeap for semantics.
1440 
1441   bool supports_tlab_allocation() const;
1442   size_t tlab_capacity(Thread* ignored) const;
1443   size_t tlab_used(Thread* ignored) const;
1444   size_t max_tlab_size() const;
1445   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1446 
1447   // Can a compiler initialize a new object without store barriers?
1448   // This permission only extends from the creation of a new object
1449   // via a TLAB up to the first subsequent safepoint. If such permission
1450   // is granted for this heap type, the compiler promises to call
1451   // defer_store_barrier() below on any slow path allocation of
1452   // a new object for which such initializing store barriers will
1453   // have been elided. G1, like CMS, allows this, but should be
1454   // ready to provide a compensating write barrier as necessary
1455   // if that storage came out of a non-young region. The efficiency
1456   // of this implementation depends crucially on being able to
1457   // answer very efficiently in constant time whether a piece of
1458   // storage in the heap comes from a young region or not.
1459   // See ReduceInitialCardMarks.
1460   virtual bool can_elide_tlab_store_barriers() const {
1461     return true;
1462   }
1463 
1464   virtual bool card_mark_must_follow_store() const {
1465     return true;
1466   }
1467 
1468   inline bool is_in_young(const oop obj);
1469 
1470 #ifdef ASSERT
1471   virtual bool is_in_partial_collection(const void* p);
1472 #endif
1473 
1474   virtual bool is_scavengable(const void* addr);
1475 
1476   // We don't need barriers for initializing stores to objects
1477   // in the young gen: for the SATB pre-barrier, there is no
1478   // pre-value that needs to be remembered; for the remembered-set
1479   // update logging post-barrier, we don't maintain remembered set
1480   // information for young gen objects.
1481   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1482 
1483   // Returns "true" iff the given word_size is "very large".
1484   static bool isHumongous(size_t word_size) {
1485     // Note this has to be strictly greater-than as the TLABs
1486     // are capped at the humongous thresold and we want to
1487     // ensure that we don't try to allocate a TLAB as
1488     // humongous and that we don't allocate a humongous
1489     // object in a TLAB.
1490     return word_size > _humongous_object_threshold_in_words;
1491   }
1492 
1493   // Update mod union table with the set of dirty cards.
1494   void updateModUnion();
1495 
1496   // Set the mod union bits corresponding to the given memRegion.  Note
1497   // that this is always a safe operation, since it doesn't clear any
1498   // bits.
1499   void markModUnionRange(MemRegion mr);
1500 
1501   // Records the fact that a marking phase is no longer in progress.
1502   void set_marking_complete() {
1503     _mark_in_progress = false;
1504   }
1505   void set_marking_started() {
1506     _mark_in_progress = true;
1507   }
1508   bool mark_in_progress() {
1509     return _mark_in_progress;
1510   }
1511 
1512   // Print the maximum heap capacity.
1513   virtual size_t max_capacity() const;
1514 
1515   virtual jlong millis_since_last_gc();
1516 
1517 
1518   // Convenience function to be used in situations where the heap type can be
1519   // asserted to be this type.
1520   static G1CollectedHeap* heap();
1521 
1522   void set_region_short_lived_locked(HeapRegion* hr);
1523   // add appropriate methods for any other surv rate groups
1524 
1525   YoungList* young_list() const { return _young_list; }
1526 
1527   // debugging
1528   bool check_young_list_well_formed() {
1529     return _young_list->check_list_well_formed();
1530   }
1531 
1532   bool check_young_list_empty(bool check_heap,
1533                               bool check_sample = true);
1534 
1535   // *** Stuff related to concurrent marking.  It's not clear to me that so
1536   // many of these need to be public.
1537 
1538   // The functions below are helper functions that a subclass of
1539   // "CollectedHeap" can use in the implementation of its virtual
1540   // functions.
1541   // This performs a concurrent marking of the live objects in a
1542   // bitmap off to the side.
1543   void doConcurrentMark();
1544 
1545   bool isMarkedPrev(oop obj) const;
1546   bool isMarkedNext(oop obj) const;
1547 
1548   // Determine if an object is dead, given the object and also
1549   // the region to which the object belongs. An object is dead
1550   // iff a) it was not allocated since the last mark and b) it
1551   // is not marked.
1552 
1553   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1554     return
1555       !hr->obj_allocated_since_prev_marking(obj) &&
1556       !isMarkedPrev(obj);
1557   }
1558 
1559   // This function returns true when an object has been
1560   // around since the previous marking and hasn't yet
1561   // been marked during this marking.
1562 
1563   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1564     return
1565       !hr->obj_allocated_since_next_marking(obj) &&
1566       !isMarkedNext(obj);
1567   }
1568 
1569   // Determine if an object is dead, given only the object itself.
1570   // This will find the region to which the object belongs and
1571   // then call the region version of the same function.
1572 
1573   // Added if it is NULL it isn't dead.
1574 
1575   inline bool is_obj_dead(const oop obj) const;
1576 
1577   inline bool is_obj_ill(const oop obj) const;
1578 
1579   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1580   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1581   bool is_marked(oop obj, VerifyOption vo);
1582   const char* top_at_mark_start_str(VerifyOption vo);
1583 
1584   ConcurrentMark* concurrent_mark() const { return _cm; }
1585 
1586   // Refinement
1587 
1588   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1589 
1590   // The dirty cards region list is used to record a subset of regions
1591   // whose cards need clearing. The list if populated during the
1592   // remembered set scanning and drained during the card table
1593   // cleanup. Although the methods are reentrant, population/draining
1594   // phases must not overlap. For synchronization purposes the last
1595   // element on the list points to itself.
1596   HeapRegion* _dirty_cards_region_list;
1597   void push_dirty_cards_region(HeapRegion* hr);
1598   HeapRegion* pop_dirty_cards_region();
1599 
1600   // Optimized nmethod scanning support routines
1601 
1602   // Register the given nmethod with the G1 heap
1603   virtual void register_nmethod(nmethod* nm);
1604 
1605   // Unregister the given nmethod from the G1 heap
1606   virtual void unregister_nmethod(nmethod* nm);
1607 
1608   // Migrate the nmethods in the code root lists of the regions
1609   // in the collection set to regions in to-space. In the event
1610   // of an evacuation failure, nmethods that reference objects
1611   // that were not successfullly evacuated are not migrated.
1612   void migrate_strong_code_roots();
1613 
1614   // Free up superfluous code root memory.
1615   void purge_code_root_memory();
1616 
1617   // During an initial mark pause, mark all the code roots that
1618   // point into regions *not* in the collection set.
1619   void mark_strong_code_roots(uint worker_id);
1620 
1621   // Rebuild the stong code root lists for each region
1622   // after a full GC
1623   void rebuild_strong_code_roots();
1624 
1625   // Delete entries for dead interned string and clean up unreferenced symbols
1626   // in symbol table, possibly in parallel.
1627   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
1628 
1629   // Redirty logged cards in the refinement queue.
1630   void redirty_logged_cards();
1631   // Verification
1632 
1633   // The following is just to alert the verification code
1634   // that a full collection has occurred and that the
1635   // remembered sets are no longer up to date.
1636   bool _full_collection;
1637   void set_full_collection() { _full_collection = true;}
1638   void clear_full_collection() {_full_collection = false;}
1639   bool full_collection() {return _full_collection;}
1640 
1641   // Perform any cleanup actions necessary before allowing a verification.
1642   virtual void prepare_for_verify();
1643 
1644   // Perform verification.
1645 
1646   // vo == UsePrevMarking  -> use "prev" marking information,
1647   // vo == UseNextMarking -> use "next" marking information
1648   // vo == UseMarkWord    -> use the mark word in the object header
1649   //
1650   // NOTE: Only the "prev" marking information is guaranteed to be
1651   // consistent most of the time, so most calls to this should use
1652   // vo == UsePrevMarking.
1653   // Currently, there is only one case where this is called with
1654   // vo == UseNextMarking, which is to verify the "next" marking
1655   // information at the end of remark.
1656   // Currently there is only one place where this is called with
1657   // vo == UseMarkWord, which is to verify the marking during a
1658   // full GC.
1659   void verify(bool silent, VerifyOption vo);
1660 
1661   // Override; it uses the "prev" marking information
1662   virtual void verify(bool silent);
1663 
1664   // The methods below are here for convenience and dispatch the
1665   // appropriate method depending on value of the given VerifyOption
1666   // parameter. The values for that parameter, and their meanings,
1667   // are the same as those above.
1668 
1669   bool is_obj_dead_cond(const oop obj,
1670                         const HeapRegion* hr,
1671                         const VerifyOption vo) const;
1672 
1673   bool is_obj_dead_cond(const oop obj,
1674                         const VerifyOption vo) const;
1675 
1676   // Printing
1677 
1678   virtual void print_on(outputStream* st) const;
1679   virtual void print_extended_on(outputStream* st) const;
1680   virtual void print_on_error(outputStream* st) const;
1681 
1682   virtual void print_gc_threads_on(outputStream* st) const;
1683   virtual void gc_threads_do(ThreadClosure* tc) const;
1684 
1685   // Override
1686   void print_tracing_info() const;
1687 
1688   // The following two methods are helpful for debugging RSet issues.
1689   void print_cset_rsets() PRODUCT_RETURN;
1690   void print_all_rsets() PRODUCT_RETURN;
1691 
1692 public:
1693   size_t pending_card_num();
1694   size_t cards_scanned();
1695 
1696 protected:
1697   size_t _max_heap_capacity;
1698 };
1699 
1700 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
1701 private:
1702   bool        _retired;
1703 
1704 public:
1705   G1ParGCAllocBuffer(size_t gclab_word_size);
1706 
1707   void set_buf(HeapWord* buf) {
1708     ParGCAllocBuffer::set_buf(buf);
1709     _retired = false;
1710   }
1711 
1712   void retire(bool end_of_gc, bool retain) {
1713     if (_retired)
1714       return;
1715     ParGCAllocBuffer::retire(end_of_gc, retain);
1716     _retired = true;
1717   }
1718 };
1719 
1720 class G1ParScanThreadState : public StackObj {
1721 protected:
1722   G1CollectedHeap* _g1h;
1723   RefToScanQueue*  _refs;
1724   DirtyCardQueue   _dcq;
1725   G1SATBCardTableModRefBS* _ct_bs;
1726   G1RemSet* _g1_rem;
1727 
1728   G1ParGCAllocBuffer  _surviving_alloc_buffer;
1729   G1ParGCAllocBuffer  _tenured_alloc_buffer;
1730   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
1731   ageTable            _age_table;
1732 
1733   G1ParScanClosure    _scanner;
1734 
1735   size_t           _alloc_buffer_waste;
1736   size_t           _undo_waste;
1737 
1738   OopsInHeapRegionClosure*      _evac_failure_cl;
1739 
1740   int  _hash_seed;
1741   uint _queue_num;
1742 
1743   size_t _term_attempts;
1744 
1745   double _start;
1746   double _start_strong_roots;
1747   double _strong_roots_time;
1748   double _start_term;
1749   double _term_time;
1750 
1751   // Map from young-age-index (0 == not young, 1 is youngest) to
1752   // surviving words. base is what we get back from the malloc call
1753   size_t* _surviving_young_words_base;
1754   // this points into the array, as we use the first few entries for padding
1755   size_t* _surviving_young_words;
1756 
1757 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
1758 
1759   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
1760 
1761   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
1762 
1763   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
1764   G1SATBCardTableModRefBS* ctbs()                { return _ct_bs; }
1765 
1766   template <class T> inline void immediate_rs_update(HeapRegion* from, T* p, int tid);
1767 
1768   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
1769     // If the new value of the field points to the same region or
1770     // is the to-space, we don't need to include it in the Rset updates.
1771     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
1772       size_t card_index = ctbs()->index_for(p);
1773       // If the card hasn't been added to the buffer, do it.
1774       if (ctbs()->mark_card_deferred(card_index)) {
1775         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
1776       }
1777     }
1778   }
1779 
1780 public:
1781   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp);
1782 
1783   ~G1ParScanThreadState() {
1784     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
1785   }
1786 
1787   RefToScanQueue*   refs()            { return _refs;             }
1788   ageTable*         age_table()       { return &_age_table;       }
1789 
1790   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
1791     return _alloc_buffers[purpose];
1792   }
1793 
1794   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
1795   size_t undo_waste() const                      { return _undo_waste; }
1796 
1797 #ifdef ASSERT
1798   bool verify_ref(narrowOop* ref) const;
1799   bool verify_ref(oop* ref) const;
1800   bool verify_task(StarTask ref) const;
1801 #endif // ASSERT
1802 
1803   template <class T> void push_on_queue(T* ref) {
1804     assert(verify_ref(ref), "sanity");
1805     refs()->push(ref);
1806   }
1807 
1808   template <class T> inline void update_rs(HeapRegion* from, T* p, int tid);
1809 
1810   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
1811     HeapWord* obj = NULL;
1812     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
1813     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
1814       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
1815       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
1816       alloc_buf->retire(false /* end_of_gc */, false /* retain */);
1817 
1818       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
1819       if (buf == NULL) return NULL; // Let caller handle allocation failure.
1820       // Otherwise.
1821       alloc_buf->set_word_size(gclab_word_size);
1822       alloc_buf->set_buf(buf);
1823 
1824       obj = alloc_buf->allocate(word_sz);
1825       assert(obj != NULL, "buffer was definitely big enough...");
1826     } else {
1827       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
1828     }
1829     return obj;
1830   }
1831 
1832   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
1833     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
1834     if (obj != NULL) return obj;
1835     return allocate_slow(purpose, word_sz);
1836   }
1837 
1838   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
1839     if (alloc_buffer(purpose)->contains(obj)) {
1840       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
1841              "should contain whole object");
1842       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
1843     } else {
1844       CollectedHeap::fill_with_object(obj, word_sz);
1845       add_to_undo_waste(word_sz);
1846     }
1847   }
1848 
1849   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
1850     _evac_failure_cl = evac_failure_cl;
1851   }
1852   OopsInHeapRegionClosure* evac_failure_closure() {
1853     return _evac_failure_cl;
1854   }
1855 
1856   int* hash_seed() { return &_hash_seed; }
1857   uint queue_num() { return _queue_num; }
1858 
1859   size_t term_attempts() const  { return _term_attempts; }
1860   void note_term_attempt() { _term_attempts++; }
1861 
1862   void start_strong_roots() {
1863     _start_strong_roots = os::elapsedTime();
1864   }
1865   void end_strong_roots() {
1866     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
1867   }
1868   double strong_roots_time() const { return _strong_roots_time; }
1869 
1870   void start_term_time() {
1871     note_term_attempt();
1872     _start_term = os::elapsedTime();
1873   }
1874   void end_term_time() {
1875     _term_time += (os::elapsedTime() - _start_term);
1876   }
1877   double term_time() const { return _term_time; }
1878 
1879   double elapsed_time() const {
1880     return os::elapsedTime() - _start;
1881   }
1882 
1883   static void
1884     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
1885   void
1886     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
1887 
1888   size_t* surviving_young_words() {
1889     // We add on to hide entry 0 which accumulates surviving words for
1890     // age -1 regions (i.e. non-young ones)
1891     return _surviving_young_words;
1892   }
1893 
1894   void retire_alloc_buffers() {
1895     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1896       size_t waste = _alloc_buffers[ap]->words_remaining();
1897       add_to_alloc_buffer_waste(waste);
1898       _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
1899                                                  true /* end_of_gc */,
1900                                                  false /* retain */);
1901     }
1902   }
1903 private:
1904   #define G1_PARTIAL_ARRAY_MASK 0x2
1905 
1906   inline bool has_partial_array_mask(oop* ref) const {
1907     return ((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) == G1_PARTIAL_ARRAY_MASK;
1908   }
1909 
1910   // We never encode partial array oops as narrowOop*, so return false immediately.
1911   // This allows the compiler to create optimized code when popping references from
1912   // the work queue.
1913   inline bool has_partial_array_mask(narrowOop* ref) const {
1914     assert(((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) != G1_PARTIAL_ARRAY_MASK, "Partial array oop reference encoded as narrowOop*");
1915     return false;
1916   }
1917 
1918   // Only implement set_partial_array_mask() for regular oops, not for narrowOops.
1919   // We always encode partial arrays as regular oop, to allow the
1920   // specialization for has_partial_array_mask() for narrowOops above.
1921   // This means that unintentional use of this method with narrowOops are caught
1922   // by the compiler.
1923   inline oop* set_partial_array_mask(oop obj) const {
1924     assert(((uintptr_t)(void *)obj & G1_PARTIAL_ARRAY_MASK) == 0, "Information loss!");
1925     return (oop*) ((uintptr_t)(void *)obj | G1_PARTIAL_ARRAY_MASK);
1926   }
1927 
1928   inline oop clear_partial_array_mask(oop* ref) const {
1929     return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
1930   }
1931 
1932   inline void do_oop_partial_array(oop* p);
1933 
1934   // This method is applied to the fields of the objects that have just been copied.
1935   template <class T> void do_oop_evac(T* p, HeapRegion* from) {
1936     assert(!oopDesc::is_null(oopDesc::load_decode_heap_oop(p)),
1937            "Reference should not be NULL here as such are never pushed to the task queue.");
1938     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
1939 
1940     // Although we never intentionally push references outside of the collection
1941     // set, due to (benign) races in the claim mechanism during RSet scanning more
1942     // than one thread might claim the same card. So the same card may be
1943     // processed multiple times. So redo this check.
1944     if (_g1h->in_cset_fast_test(obj)) {
1945       oop forwardee;
1946       if (obj->is_forwarded()) {
1947         forwardee = obj->forwardee();
1948       } else {
1949         forwardee = copy_to_survivor_space(obj);
1950       }
1951       assert(forwardee != NULL, "forwardee should not be NULL");
1952       oopDesc::encode_store_heap_oop(p, forwardee);
1953     }
1954 
1955     assert(obj != NULL, "Must be");
1956     update_rs(from, p, queue_num());
1957   }
1958 public:
1959 
1960   oop copy_to_survivor_space(oop const obj);
1961 
1962   template <class T> inline void deal_with_reference(T* ref_to_scan);
1963 
1964   inline void deal_with_reference(StarTask ref);
1965 
1966 public:
1967   void trim_queue();
1968 };
1969 
1970 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP