1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
  27 #endif
  28 
  29 #include "precompiled.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  33 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  34 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  35 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  36 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  37 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  38 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  39 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  40 #include "gc_implementation/g1/g1EvacFailure.hpp"
  41 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  42 #include "gc_implementation/g1/g1Log.hpp"
  43 #include "gc_implementation/g1/g1MarkSweep.hpp"
  44 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  45 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  46 #include "gc_implementation/g1/g1StringDedup.hpp"
  47 #include "gc_implementation/g1/g1YCTypes.hpp"
  48 #include "gc_implementation/g1/heapRegion.inline.hpp"
  49 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  50 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  51 #include "gc_implementation/g1/vm_operations_g1.hpp"
  52 #include "gc_implementation/shared/gcHeapSummary.hpp"
  53 #include "gc_implementation/shared/gcTimer.hpp"
  54 #include "gc_implementation/shared/gcTrace.hpp"
  55 #include "gc_implementation/shared/gcTraceTime.hpp"
  56 #include "gc_implementation/shared/isGCActiveMark.hpp"
  57 #include "memory/gcLocker.inline.hpp"
  58 #include "memory/generationSpec.hpp"
  59 #include "memory/iterator.hpp"
  60 #include "memory/referenceProcessor.hpp"
  61 #include "oops/oop.inline.hpp"
  62 #include "oops/oop.pcgc.inline.hpp"
  63 #include "runtime/prefetch.inline.hpp"
  64 #include "runtime/orderAccess.inline.hpp"
  65 #include "runtime/vmThread.hpp"
  66 #include "utilities/ticks.hpp"
  67 
  68 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  69 
  70 // turn it on so that the contents of the young list (scan-only /
  71 // to-be-collected) are printed at "strategic" points before / during
  72 // / after the collection --- this is useful for debugging
  73 #define YOUNG_LIST_VERBOSE 0
  74 // CURRENT STATUS
  75 // This file is under construction.  Search for "FIXME".
  76 
  77 // INVARIANTS/NOTES
  78 //
  79 // All allocation activity covered by the G1CollectedHeap interface is
  80 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  81 // and allocate_new_tlab, which are the "entry" points to the
  82 // allocation code from the rest of the JVM.  (Note that this does not
  83 // apply to TLAB allocation, which is not part of this interface: it
  84 // is done by clients of this interface.)
  85 
  86 // Notes on implementation of parallelism in different tasks.
  87 //
  88 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  89 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  90 // It does use run_task() which sets _n_workers in the task.
  91 // G1ParTask executes g1_process_strong_roots() ->
  92 // SharedHeap::process_strong_roots() which calls eventually to
  93 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  94 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  95 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  96 //
  97 
  98 // Local to this file.
  99 
 100 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 101   bool _concurrent;
 102 public:
 103   RefineCardTableEntryClosure() : _concurrent(true) { }
 104 
 105   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 106     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 107     // This path is executed by the concurrent refine or mutator threads,
 108     // concurrently, and so we do not care if card_ptr contains references
 109     // that point into the collection set.
 110     assert(!oops_into_cset, "should be");
 111 
 112     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 113       // Caller will actually yield.
 114       return false;
 115     }
 116     // Otherwise, we finished successfully; return true.
 117     return true;
 118   }
 119 
 120   void set_concurrent(bool b) { _concurrent = b; }
 121 };
 122 
 123 
 124 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 125   int _calls;
 126   G1CollectedHeap* _g1h;
 127   CardTableModRefBS* _ctbs;
 128   int _histo[256];
 129 public:
 130   ClearLoggedCardTableEntryClosure() :
 131     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set())
 132   {
 133     for (int i = 0; i < 256; i++) _histo[i] = 0;
 134   }
 135   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 136     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 137       _calls++;
 138       unsigned char* ujb = (unsigned char*)card_ptr;
 139       int ind = (int)(*ujb);
 140       _histo[ind]++;
 141       *card_ptr = -1;
 142     }
 143     return true;
 144   }
 145   int calls() { return _calls; }
 146   void print_histo() {
 147     gclog_or_tty->print_cr("Card table value histogram:");
 148     for (int i = 0; i < 256; i++) {
 149       if (_histo[i] != 0) {
 150         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 151       }
 152     }
 153   }
 154 };
 155 
 156 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 157   int _calls;
 158   G1CollectedHeap* _g1h;
 159   CardTableModRefBS* _ctbs;
 160 public:
 161   RedirtyLoggedCardTableEntryClosure() :
 162     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set()) {}
 163 
 164   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 165     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 166       _calls++;
 167       *card_ptr = 0;
 168     }
 169     return true;
 170   }
 171   int calls() { return _calls; }
 172 };
 173 
 174 YoungList::YoungList(G1CollectedHeap* g1h) :
 175     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 176     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 177   guarantee(check_list_empty(false), "just making sure...");
 178 }
 179 
 180 void YoungList::push_region(HeapRegion *hr) {
 181   assert(!hr->is_young(), "should not already be young");
 182   assert(hr->get_next_young_region() == NULL, "cause it should!");
 183 
 184   hr->set_next_young_region(_head);
 185   _head = hr;
 186 
 187   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 188   ++_length;
 189 }
 190 
 191 void YoungList::add_survivor_region(HeapRegion* hr) {
 192   assert(hr->is_survivor(), "should be flagged as survivor region");
 193   assert(hr->get_next_young_region() == NULL, "cause it should!");
 194 
 195   hr->set_next_young_region(_survivor_head);
 196   if (_survivor_head == NULL) {
 197     _survivor_tail = hr;
 198   }
 199   _survivor_head = hr;
 200   ++_survivor_length;
 201 }
 202 
 203 void YoungList::empty_list(HeapRegion* list) {
 204   while (list != NULL) {
 205     HeapRegion* next = list->get_next_young_region();
 206     list->set_next_young_region(NULL);
 207     list->uninstall_surv_rate_group();
 208     list->set_not_young();
 209     list = next;
 210   }
 211 }
 212 
 213 void YoungList::empty_list() {
 214   assert(check_list_well_formed(), "young list should be well formed");
 215 
 216   empty_list(_head);
 217   _head = NULL;
 218   _length = 0;
 219 
 220   empty_list(_survivor_head);
 221   _survivor_head = NULL;
 222   _survivor_tail = NULL;
 223   _survivor_length = 0;
 224 
 225   _last_sampled_rs_lengths = 0;
 226 
 227   assert(check_list_empty(false), "just making sure...");
 228 }
 229 
 230 bool YoungList::check_list_well_formed() {
 231   bool ret = true;
 232 
 233   uint length = 0;
 234   HeapRegion* curr = _head;
 235   HeapRegion* last = NULL;
 236   while (curr != NULL) {
 237     if (!curr->is_young()) {
 238       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 239                              "incorrectly tagged (y: %d, surv: %d)",
 240                              curr->bottom(), curr->end(),
 241                              curr->is_young(), curr->is_survivor());
 242       ret = false;
 243     }
 244     ++length;
 245     last = curr;
 246     curr = curr->get_next_young_region();
 247   }
 248   ret = ret && (length == _length);
 249 
 250   if (!ret) {
 251     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 252     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 253                            length, _length);
 254   }
 255 
 256   return ret;
 257 }
 258 
 259 bool YoungList::check_list_empty(bool check_sample) {
 260   bool ret = true;
 261 
 262   if (_length != 0) {
 263     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 264                   _length);
 265     ret = false;
 266   }
 267   if (check_sample && _last_sampled_rs_lengths != 0) {
 268     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 269     ret = false;
 270   }
 271   if (_head != NULL) {
 272     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 273     ret = false;
 274   }
 275   if (!ret) {
 276     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 277   }
 278 
 279   return ret;
 280 }
 281 
 282 void
 283 YoungList::rs_length_sampling_init() {
 284   _sampled_rs_lengths = 0;
 285   _curr               = _head;
 286 }
 287 
 288 bool
 289 YoungList::rs_length_sampling_more() {
 290   return _curr != NULL;
 291 }
 292 
 293 void
 294 YoungList::rs_length_sampling_next() {
 295   assert( _curr != NULL, "invariant" );
 296   size_t rs_length = _curr->rem_set()->occupied();
 297 
 298   _sampled_rs_lengths += rs_length;
 299 
 300   // The current region may not yet have been added to the
 301   // incremental collection set (it gets added when it is
 302   // retired as the current allocation region).
 303   if (_curr->in_collection_set()) {
 304     // Update the collection set policy information for this region
 305     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 306   }
 307 
 308   _curr = _curr->get_next_young_region();
 309   if (_curr == NULL) {
 310     _last_sampled_rs_lengths = _sampled_rs_lengths;
 311     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 312   }
 313 }
 314 
 315 void
 316 YoungList::reset_auxilary_lists() {
 317   guarantee( is_empty(), "young list should be empty" );
 318   assert(check_list_well_formed(), "young list should be well formed");
 319 
 320   // Add survivor regions to SurvRateGroup.
 321   _g1h->g1_policy()->note_start_adding_survivor_regions();
 322   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 323 
 324   int young_index_in_cset = 0;
 325   for (HeapRegion* curr = _survivor_head;
 326        curr != NULL;
 327        curr = curr->get_next_young_region()) {
 328     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 329 
 330     // The region is a non-empty survivor so let's add it to
 331     // the incremental collection set for the next evacuation
 332     // pause.
 333     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 334     young_index_in_cset += 1;
 335   }
 336   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 337   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 338 
 339   _head   = _survivor_head;
 340   _length = _survivor_length;
 341   if (_survivor_head != NULL) {
 342     assert(_survivor_tail != NULL, "cause it shouldn't be");
 343     assert(_survivor_length > 0, "invariant");
 344     _survivor_tail->set_next_young_region(NULL);
 345   }
 346 
 347   // Don't clear the survivor list handles until the start of
 348   // the next evacuation pause - we need it in order to re-tag
 349   // the survivor regions from this evacuation pause as 'young'
 350   // at the start of the next.
 351 
 352   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 353 
 354   assert(check_list_well_formed(), "young list should be well formed");
 355 }
 356 
 357 void YoungList::print() {
 358   HeapRegion* lists[] = {_head,   _survivor_head};
 359   const char* names[] = {"YOUNG", "SURVIVOR"};
 360 
 361   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 362     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 363     HeapRegion *curr = lists[list];
 364     if (curr == NULL)
 365       gclog_or_tty->print_cr("  empty");
 366     while (curr != NULL) {
 367       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 368                              HR_FORMAT_PARAMS(curr),
 369                              curr->prev_top_at_mark_start(),
 370                              curr->next_top_at_mark_start(),
 371                              curr->age_in_surv_rate_group_cond());
 372       curr = curr->get_next_young_region();
 373     }
 374   }
 375 
 376   gclog_or_tty->cr();
 377 }
 378 
 379 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 380 {
 381   // Claim the right to put the region on the dirty cards region list
 382   // by installing a self pointer.
 383   HeapRegion* next = hr->get_next_dirty_cards_region();
 384   if (next == NULL) {
 385     HeapRegion* res = (HeapRegion*)
 386       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 387                           NULL);
 388     if (res == NULL) {
 389       HeapRegion* head;
 390       do {
 391         // Put the region to the dirty cards region list.
 392         head = _dirty_cards_region_list;
 393         next = (HeapRegion*)
 394           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 395         if (next == head) {
 396           assert(hr->get_next_dirty_cards_region() == hr,
 397                  "hr->get_next_dirty_cards_region() != hr");
 398           if (next == NULL) {
 399             // The last region in the list points to itself.
 400             hr->set_next_dirty_cards_region(hr);
 401           } else {
 402             hr->set_next_dirty_cards_region(next);
 403           }
 404         }
 405       } while (next != head);
 406     }
 407   }
 408 }
 409 
 410 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 411 {
 412   HeapRegion* head;
 413   HeapRegion* hr;
 414   do {
 415     head = _dirty_cards_region_list;
 416     if (head == NULL) {
 417       return NULL;
 418     }
 419     HeapRegion* new_head = head->get_next_dirty_cards_region();
 420     if (head == new_head) {
 421       // The last region.
 422       new_head = NULL;
 423     }
 424     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 425                                           head);
 426   } while (hr != head);
 427   assert(hr != NULL, "invariant");
 428   hr->set_next_dirty_cards_region(NULL);
 429   return hr;
 430 }
 431 
 432 #ifdef ASSERT
 433 // A region is added to the collection set as it is retired
 434 // so an address p can point to a region which will be in the
 435 // collection set but has not yet been retired.  This method
 436 // therefore is only accurate during a GC pause after all
 437 // regions have been retired.  It is used for debugging
 438 // to check if an nmethod has references to objects that can
 439 // be move during a partial collection.  Though it can be
 440 // inaccurate, it is sufficient for G1 because the conservative
 441 // implementation of is_scavengable() for G1 will indicate that
 442 // all nmethods must be scanned during a partial collection.
 443 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 444   HeapRegion* hr = heap_region_containing(p);
 445   return hr != NULL && hr->in_collection_set();
 446 }
 447 #endif
 448 
 449 // Returns true if the reference points to an object that
 450 // can move in an incremental collection.
 451 bool G1CollectedHeap::is_scavengable(const void* p) {
 452   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 453   G1CollectorPolicy* g1p = g1h->g1_policy();
 454   HeapRegion* hr = heap_region_containing(p);
 455   if (hr == NULL) {
 456      // null
 457      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 458      return false;
 459   } else {
 460     return !hr->isHumongous();
 461   }
 462 }
 463 
 464 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 465   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 466   CardTableModRefBS* ct_bs = g1_barrier_set();
 467 
 468   // Count the dirty cards at the start.
 469   CountNonCleanMemRegionClosure count1(this);
 470   ct_bs->mod_card_iterate(&count1);
 471   int orig_count = count1.n();
 472 
 473   // First clear the logged cards.
 474   ClearLoggedCardTableEntryClosure clear;
 475   dcqs.apply_closure_to_all_completed_buffers(&clear);
 476   dcqs.iterate_closure_all_threads(&clear, false);
 477   clear.print_histo();
 478 
 479   // Now ensure that there's no dirty cards.
 480   CountNonCleanMemRegionClosure count2(this);
 481   ct_bs->mod_card_iterate(&count2);
 482   if (count2.n() != 0) {
 483     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 484                            count2.n(), orig_count);
 485   }
 486   guarantee(count2.n() == 0, "Card table should be clean.");
 487 
 488   RedirtyLoggedCardTableEntryClosure redirty;
 489   dcqs.apply_closure_to_all_completed_buffers(&redirty);
 490   dcqs.iterate_closure_all_threads(&redirty, false);
 491   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 492                          clear.calls(), orig_count);
 493   guarantee(redirty.calls() == clear.calls(),
 494             "Or else mechanism is broken.");
 495 
 496   CountNonCleanMemRegionClosure count3(this);
 497   ct_bs->mod_card_iterate(&count3);
 498   if (count3.n() != orig_count) {
 499     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 500                            orig_count, count3.n());
 501     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 502   }
 503 }
 504 
 505 // Private class members.
 506 
 507 G1CollectedHeap* G1CollectedHeap::_g1h;
 508 
 509 // Private methods.
 510 
 511 HeapRegion*
 512 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 513   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 514   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 515     if (!_secondary_free_list.is_empty()) {
 516       if (G1ConcRegionFreeingVerbose) {
 517         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 518                                "secondary_free_list has %u entries",
 519                                _secondary_free_list.length());
 520       }
 521       // It looks as if there are free regions available on the
 522       // secondary_free_list. Let's move them to the free_list and try
 523       // again to allocate from it.
 524       append_secondary_free_list();
 525 
 526       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 527              "empty we should have moved at least one entry to the free_list");
 528       HeapRegion* res = _free_list.remove_region(is_old);
 529       if (G1ConcRegionFreeingVerbose) {
 530         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 531                                "allocated "HR_FORMAT" from secondary_free_list",
 532                                HR_FORMAT_PARAMS(res));
 533       }
 534       return res;
 535     }
 536 
 537     // Wait here until we get notified either when (a) there are no
 538     // more free regions coming or (b) some regions have been moved on
 539     // the secondary_free_list.
 540     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 541   }
 542 
 543   if (G1ConcRegionFreeingVerbose) {
 544     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 545                            "could not allocate from secondary_free_list");
 546   }
 547   return NULL;
 548 }
 549 
 550 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 551   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 552          "the only time we use this to allocate a humongous region is "
 553          "when we are allocating a single humongous region");
 554 
 555   HeapRegion* res;
 556   if (G1StressConcRegionFreeing) {
 557     if (!_secondary_free_list.is_empty()) {
 558       if (G1ConcRegionFreeingVerbose) {
 559         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 560                                "forced to look at the secondary_free_list");
 561       }
 562       res = new_region_try_secondary_free_list(is_old);
 563       if (res != NULL) {
 564         return res;
 565       }
 566     }
 567   }
 568 
 569   res = _free_list.remove_region(is_old);
 570 
 571   if (res == NULL) {
 572     if (G1ConcRegionFreeingVerbose) {
 573       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 574                              "res == NULL, trying the secondary_free_list");
 575     }
 576     res = new_region_try_secondary_free_list(is_old);
 577   }
 578   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 579     // Currently, only attempts to allocate GC alloc regions set
 580     // do_expand to true. So, we should only reach here during a
 581     // safepoint. If this assumption changes we might have to
 582     // reconsider the use of _expand_heap_after_alloc_failure.
 583     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 584 
 585     ergo_verbose1(ErgoHeapSizing,
 586                   "attempt heap expansion",
 587                   ergo_format_reason("region allocation request failed")
 588                   ergo_format_byte("allocation request"),
 589                   word_size * HeapWordSize);
 590     if (expand(word_size * HeapWordSize)) {
 591       // Given that expand() succeeded in expanding the heap, and we
 592       // always expand the heap by an amount aligned to the heap
 593       // region size, the free list should in theory not be empty.
 594       // In either case remove_region() will check for NULL.
 595       res = _free_list.remove_region(is_old);
 596     } else {
 597       _expand_heap_after_alloc_failure = false;
 598     }
 599   }
 600   return res;
 601 }
 602 
 603 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 604                                                         size_t word_size) {
 605   assert(isHumongous(word_size), "word_size should be humongous");
 606   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 607 
 608   uint first = G1_NULL_HRS_INDEX;
 609   if (num_regions == 1) {
 610     // Only one region to allocate, no need to go through the slower
 611     // path. The caller will attempt the expansion if this fails, so
 612     // let's not try to expand here too.
 613     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 614     if (hr != NULL) {
 615       first = hr->hrs_index();
 616     } else {
 617       first = G1_NULL_HRS_INDEX;
 618     }
 619   } else {
 620     // We can't allocate humongous regions while cleanupComplete() is
 621     // running, since some of the regions we find to be empty might not
 622     // yet be added to the free list and it is not straightforward to
 623     // know which list they are on so that we can remove them. Note
 624     // that we only need to do this if we need to allocate more than
 625     // one region to satisfy the current humongous allocation
 626     // request. If we are only allocating one region we use the common
 627     // region allocation code (see above).
 628     wait_while_free_regions_coming();
 629     append_secondary_free_list_if_not_empty_with_lock();
 630 
 631     if (free_regions() >= num_regions) {
 632       first = _hrs.find_contiguous(num_regions);
 633       if (first != G1_NULL_HRS_INDEX) {
 634         for (uint i = first; i < first + num_regions; ++i) {
 635           HeapRegion* hr = region_at(i);
 636           assert(hr->is_empty(), "sanity");
 637           assert(is_on_master_free_list(hr), "sanity");
 638           hr->set_pending_removal(true);
 639         }
 640         _free_list.remove_all_pending(num_regions);
 641       }
 642     }
 643   }
 644   return first;
 645 }
 646 
 647 HeapWord*
 648 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 649                                                            uint num_regions,
 650                                                            size_t word_size) {
 651   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 652   assert(isHumongous(word_size), "word_size should be humongous");
 653   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 654 
 655   // Index of last region in the series + 1.
 656   uint last = first + num_regions;
 657 
 658   // We need to initialize the region(s) we just discovered. This is
 659   // a bit tricky given that it can happen concurrently with
 660   // refinement threads refining cards on these regions and
 661   // potentially wanting to refine the BOT as they are scanning
 662   // those cards (this can happen shortly after a cleanup; see CR
 663   // 6991377). So we have to set up the region(s) carefully and in
 664   // a specific order.
 665 
 666   // The word size sum of all the regions we will allocate.
 667   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 668   assert(word_size <= word_size_sum, "sanity");
 669 
 670   // This will be the "starts humongous" region.
 671   HeapRegion* first_hr = region_at(first);
 672   // The header of the new object will be placed at the bottom of
 673   // the first region.
 674   HeapWord* new_obj = first_hr->bottom();
 675   // This will be the new end of the first region in the series that
 676   // should also match the end of the last region in the series.
 677   HeapWord* new_end = new_obj + word_size_sum;
 678   // This will be the new top of the first region that will reflect
 679   // this allocation.
 680   HeapWord* new_top = new_obj + word_size;
 681 
 682   // First, we need to zero the header of the space that we will be
 683   // allocating. When we update top further down, some refinement
 684   // threads might try to scan the region. By zeroing the header we
 685   // ensure that any thread that will try to scan the region will
 686   // come across the zero klass word and bail out.
 687   //
 688   // NOTE: It would not have been correct to have used
 689   // CollectedHeap::fill_with_object() and make the space look like
 690   // an int array. The thread that is doing the allocation will
 691   // later update the object header to a potentially different array
 692   // type and, for a very short period of time, the klass and length
 693   // fields will be inconsistent. This could cause a refinement
 694   // thread to calculate the object size incorrectly.
 695   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 696 
 697   // We will set up the first region as "starts humongous". This
 698   // will also update the BOT covering all the regions to reflect
 699   // that there is a single object that starts at the bottom of the
 700   // first region.
 701   first_hr->set_startsHumongous(new_top, new_end);
 702 
 703   // Then, if there are any, we will set up the "continues
 704   // humongous" regions.
 705   HeapRegion* hr = NULL;
 706   for (uint i = first + 1; i < last; ++i) {
 707     hr = region_at(i);
 708     hr->set_continuesHumongous(first_hr);
 709   }
 710   // If we have "continues humongous" regions (hr != NULL), then the
 711   // end of the last one should match new_end.
 712   assert(hr == NULL || hr->end() == new_end, "sanity");
 713 
 714   // Up to this point no concurrent thread would have been able to
 715   // do any scanning on any region in this series. All the top
 716   // fields still point to bottom, so the intersection between
 717   // [bottom,top] and [card_start,card_end] will be empty. Before we
 718   // update the top fields, we'll do a storestore to make sure that
 719   // no thread sees the update to top before the zeroing of the
 720   // object header and the BOT initialization.
 721   OrderAccess::storestore();
 722 
 723   // Now that the BOT and the object header have been initialized,
 724   // we can update top of the "starts humongous" region.
 725   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 726          "new_top should be in this region");
 727   first_hr->set_top(new_top);
 728   if (_hr_printer.is_active()) {
 729     HeapWord* bottom = first_hr->bottom();
 730     HeapWord* end = first_hr->orig_end();
 731     if ((first + 1) == last) {
 732       // the series has a single humongous region
 733       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 734     } else {
 735       // the series has more than one humongous regions
 736       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 737     }
 738   }
 739 
 740   // Now, we will update the top fields of the "continues humongous"
 741   // regions. The reason we need to do this is that, otherwise,
 742   // these regions would look empty and this will confuse parts of
 743   // G1. For example, the code that looks for a consecutive number
 744   // of empty regions will consider them empty and try to
 745   // re-allocate them. We can extend is_empty() to also include
 746   // !continuesHumongous(), but it is easier to just update the top
 747   // fields here. The way we set top for all regions (i.e., top ==
 748   // end for all regions but the last one, top == new_top for the
 749   // last one) is actually used when we will free up the humongous
 750   // region in free_humongous_region().
 751   hr = NULL;
 752   for (uint i = first + 1; i < last; ++i) {
 753     hr = region_at(i);
 754     if ((i + 1) == last) {
 755       // last continues humongous region
 756       assert(hr->bottom() < new_top && new_top <= hr->end(),
 757              "new_top should fall on this region");
 758       hr->set_top(new_top);
 759       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 760     } else {
 761       // not last one
 762       assert(new_top > hr->end(), "new_top should be above this region");
 763       hr->set_top(hr->end());
 764       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 765     }
 766   }
 767   // If we have continues humongous regions (hr != NULL), then the
 768   // end of the last one should match new_end and its top should
 769   // match new_top.
 770   assert(hr == NULL ||
 771          (hr->end() == new_end && hr->top() == new_top), "sanity");
 772 
 773   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 774   _summary_bytes_used += first_hr->used();
 775   _humongous_set.add(first_hr);
 776 
 777   return new_obj;
 778 }
 779 
 780 // If could fit into free regions w/o expansion, try.
 781 // Otherwise, if can expand, do so.
 782 // Otherwise, if using ex regions might help, try with ex given back.
 783 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 784   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 785 
 786   verify_region_sets_optional();
 787 
 788   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 789   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 790   uint x_num = expansion_regions();
 791   uint fs = _hrs.free_suffix();
 792   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 793   if (first == G1_NULL_HRS_INDEX) {
 794     // The only thing we can do now is attempt expansion.
 795     if (fs + x_num >= num_regions) {
 796       // If the number of regions we're trying to allocate for this
 797       // object is at most the number of regions in the free suffix,
 798       // then the call to humongous_obj_allocate_find_first() above
 799       // should have succeeded and we wouldn't be here.
 800       //
 801       // We should only be trying to expand when the free suffix is
 802       // not sufficient for the object _and_ we have some expansion
 803       // room available.
 804       assert(num_regions > fs, "earlier allocation should have succeeded");
 805 
 806       ergo_verbose1(ErgoHeapSizing,
 807                     "attempt heap expansion",
 808                     ergo_format_reason("humongous allocation request failed")
 809                     ergo_format_byte("allocation request"),
 810                     word_size * HeapWordSize);
 811       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 812         // Even though the heap was expanded, it might not have
 813         // reached the desired size. So, we cannot assume that the
 814         // allocation will succeed.
 815         first = humongous_obj_allocate_find_first(num_regions, word_size);
 816       }
 817     }
 818   }
 819 
 820   HeapWord* result = NULL;
 821   if (first != G1_NULL_HRS_INDEX) {
 822     result =
 823       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 824     assert(result != NULL, "it should always return a valid result");
 825 
 826     // A successful humongous object allocation changes the used space
 827     // information of the old generation so we need to recalculate the
 828     // sizes and update the jstat counters here.
 829     g1mm()->update_sizes();
 830   }
 831 
 832   verify_region_sets_optional();
 833 
 834   return result;
 835 }
 836 
 837 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 838   assert_heap_not_locked_and_not_at_safepoint();
 839   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 840 
 841   unsigned int dummy_gc_count_before;
 842   int dummy_gclocker_retry_count = 0;
 843   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 844 }
 845 
 846 HeapWord*
 847 G1CollectedHeap::mem_allocate(size_t word_size,
 848                               bool*  gc_overhead_limit_was_exceeded) {
 849   assert_heap_not_locked_and_not_at_safepoint();
 850 
 851   // Loop until the allocation is satisfied, or unsatisfied after GC.
 852   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 853     unsigned int gc_count_before;
 854 
 855     HeapWord* result = NULL;
 856     if (!isHumongous(word_size)) {
 857       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 858     } else {
 859       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 860     }
 861     if (result != NULL) {
 862       return result;
 863     }
 864 
 865     // Create the garbage collection operation...
 866     VM_G1CollectForAllocation op(gc_count_before, word_size);
 867     // ...and get the VM thread to execute it.
 868     VMThread::execute(&op);
 869 
 870     if (op.prologue_succeeded() && op.pause_succeeded()) {
 871       // If the operation was successful we'll return the result even
 872       // if it is NULL. If the allocation attempt failed immediately
 873       // after a Full GC, it's unlikely we'll be able to allocate now.
 874       HeapWord* result = op.result();
 875       if (result != NULL && !isHumongous(word_size)) {
 876         // Allocations that take place on VM operations do not do any
 877         // card dirtying and we have to do it here. We only have to do
 878         // this for non-humongous allocations, though.
 879         dirty_young_block(result, word_size);
 880       }
 881       return result;
 882     } else {
 883       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 884         return NULL;
 885       }
 886       assert(op.result() == NULL,
 887              "the result should be NULL if the VM op did not succeed");
 888     }
 889 
 890     // Give a warning if we seem to be looping forever.
 891     if ((QueuedAllocationWarningCount > 0) &&
 892         (try_count % QueuedAllocationWarningCount == 0)) {
 893       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 894     }
 895   }
 896 
 897   ShouldNotReachHere();
 898   return NULL;
 899 }
 900 
 901 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 902                                            unsigned int *gc_count_before_ret,
 903                                            int* gclocker_retry_count_ret) {
 904   // Make sure you read the note in attempt_allocation_humongous().
 905 
 906   assert_heap_not_locked_and_not_at_safepoint();
 907   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 908          "be called for humongous allocation requests");
 909 
 910   // We should only get here after the first-level allocation attempt
 911   // (attempt_allocation()) failed to allocate.
 912 
 913   // We will loop until a) we manage to successfully perform the
 914   // allocation or b) we successfully schedule a collection which
 915   // fails to perform the allocation. b) is the only case when we'll
 916   // return NULL.
 917   HeapWord* result = NULL;
 918   for (int try_count = 1; /* we'll return */; try_count += 1) {
 919     bool should_try_gc;
 920     unsigned int gc_count_before;
 921 
 922     {
 923       MutexLockerEx x(Heap_lock);
 924 
 925       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 926                                                       false /* bot_updates */);
 927       if (result != NULL) {
 928         return result;
 929       }
 930 
 931       // If we reach here, attempt_allocation_locked() above failed to
 932       // allocate a new region. So the mutator alloc region should be NULL.
 933       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 934 
 935       if (GC_locker::is_active_and_needs_gc()) {
 936         if (g1_policy()->can_expand_young_list()) {
 937           // No need for an ergo verbose message here,
 938           // can_expand_young_list() does this when it returns true.
 939           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 940                                                       false /* bot_updates */);
 941           if (result != NULL) {
 942             return result;
 943           }
 944         }
 945         should_try_gc = false;
 946       } else {
 947         // The GCLocker may not be active but the GCLocker initiated
 948         // GC may not yet have been performed (GCLocker::needs_gc()
 949         // returns true). In this case we do not try this GC and
 950         // wait until the GCLocker initiated GC is performed, and
 951         // then retry the allocation.
 952         if (GC_locker::needs_gc()) {
 953           should_try_gc = false;
 954         } else {
 955           // Read the GC count while still holding the Heap_lock.
 956           gc_count_before = total_collections();
 957           should_try_gc = true;
 958         }
 959       }
 960     }
 961 
 962     if (should_try_gc) {
 963       bool succeeded;
 964       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 965           GCCause::_g1_inc_collection_pause);
 966       if (result != NULL) {
 967         assert(succeeded, "only way to get back a non-NULL result");
 968         return result;
 969       }
 970 
 971       if (succeeded) {
 972         // If we get here we successfully scheduled a collection which
 973         // failed to allocate. No point in trying to allocate
 974         // further. We'll just return NULL.
 975         MutexLockerEx x(Heap_lock);
 976         *gc_count_before_ret = total_collections();
 977         return NULL;
 978       }
 979     } else {
 980       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 981         MutexLockerEx x(Heap_lock);
 982         *gc_count_before_ret = total_collections();
 983         return NULL;
 984       }
 985       // The GCLocker is either active or the GCLocker initiated
 986       // GC has not yet been performed. Stall until it is and
 987       // then retry the allocation.
 988       GC_locker::stall_until_clear();
 989       (*gclocker_retry_count_ret) += 1;
 990     }
 991 
 992     // We can reach here if we were unsuccessful in scheduling a
 993     // collection (because another thread beat us to it) or if we were
 994     // stalled due to the GC locker. In either can we should retry the
 995     // allocation attempt in case another thread successfully
 996     // performed a collection and reclaimed enough space. We do the
 997     // first attempt (without holding the Heap_lock) here and the
 998     // follow-on attempt will be at the start of the next loop
 999     // iteration (after taking the Heap_lock).
1000     result = _mutator_alloc_region.attempt_allocation(word_size,
1001                                                       false /* bot_updates */);
1002     if (result != NULL) {
1003       return result;
1004     }
1005 
1006     // Give a warning if we seem to be looping forever.
1007     if ((QueuedAllocationWarningCount > 0) &&
1008         (try_count % QueuedAllocationWarningCount == 0)) {
1009       warning("G1CollectedHeap::attempt_allocation_slow() "
1010               "retries %d times", try_count);
1011     }
1012   }
1013 
1014   ShouldNotReachHere();
1015   return NULL;
1016 }
1017 
1018 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1019                                           unsigned int * gc_count_before_ret,
1020                                           int* gclocker_retry_count_ret) {
1021   // The structure of this method has a lot of similarities to
1022   // attempt_allocation_slow(). The reason these two were not merged
1023   // into a single one is that such a method would require several "if
1024   // allocation is not humongous do this, otherwise do that"
1025   // conditional paths which would obscure its flow. In fact, an early
1026   // version of this code did use a unified method which was harder to
1027   // follow and, as a result, it had subtle bugs that were hard to
1028   // track down. So keeping these two methods separate allows each to
1029   // be more readable. It will be good to keep these two in sync as
1030   // much as possible.
1031 
1032   assert_heap_not_locked_and_not_at_safepoint();
1033   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1034          "should only be called for humongous allocations");
1035 
1036   // Humongous objects can exhaust the heap quickly, so we should check if we
1037   // need to start a marking cycle at each humongous object allocation. We do
1038   // the check before we do the actual allocation. The reason for doing it
1039   // before the allocation is that we avoid having to keep track of the newly
1040   // allocated memory while we do a GC.
1041   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1042                                            word_size)) {
1043     collect(GCCause::_g1_humongous_allocation);
1044   }
1045 
1046   // We will loop until a) we manage to successfully perform the
1047   // allocation or b) we successfully schedule a collection which
1048   // fails to perform the allocation. b) is the only case when we'll
1049   // return NULL.
1050   HeapWord* result = NULL;
1051   for (int try_count = 1; /* we'll return */; try_count += 1) {
1052     bool should_try_gc;
1053     unsigned int gc_count_before;
1054 
1055     {
1056       MutexLockerEx x(Heap_lock);
1057 
1058       // Given that humongous objects are not allocated in young
1059       // regions, we'll first try to do the allocation without doing a
1060       // collection hoping that there's enough space in the heap.
1061       result = humongous_obj_allocate(word_size);
1062       if (result != NULL) {
1063         return result;
1064       }
1065 
1066       if (GC_locker::is_active_and_needs_gc()) {
1067         should_try_gc = false;
1068       } else {
1069          // The GCLocker may not be active but the GCLocker initiated
1070         // GC may not yet have been performed (GCLocker::needs_gc()
1071         // returns true). In this case we do not try this GC and
1072         // wait until the GCLocker initiated GC is performed, and
1073         // then retry the allocation.
1074         if (GC_locker::needs_gc()) {
1075           should_try_gc = false;
1076         } else {
1077           // Read the GC count while still holding the Heap_lock.
1078           gc_count_before = total_collections();
1079           should_try_gc = true;
1080         }
1081       }
1082     }
1083 
1084     if (should_try_gc) {
1085       // If we failed to allocate the humongous object, we should try to
1086       // do a collection pause (if we're allowed) in case it reclaims
1087       // enough space for the allocation to succeed after the pause.
1088 
1089       bool succeeded;
1090       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1091           GCCause::_g1_humongous_allocation);
1092       if (result != NULL) {
1093         assert(succeeded, "only way to get back a non-NULL result");
1094         return result;
1095       }
1096 
1097       if (succeeded) {
1098         // If we get here we successfully scheduled a collection which
1099         // failed to allocate. No point in trying to allocate
1100         // further. We'll just return NULL.
1101         MutexLockerEx x(Heap_lock);
1102         *gc_count_before_ret = total_collections();
1103         return NULL;
1104       }
1105     } else {
1106       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1107         MutexLockerEx x(Heap_lock);
1108         *gc_count_before_ret = total_collections();
1109         return NULL;
1110       }
1111       // The GCLocker is either active or the GCLocker initiated
1112       // GC has not yet been performed. Stall until it is and
1113       // then retry the allocation.
1114       GC_locker::stall_until_clear();
1115       (*gclocker_retry_count_ret) += 1;
1116     }
1117 
1118     // We can reach here if we were unsuccessful in scheduling a
1119     // collection (because another thread beat us to it) or if we were
1120     // stalled due to the GC locker. In either can we should retry the
1121     // allocation attempt in case another thread successfully
1122     // performed a collection and reclaimed enough space.  Give a
1123     // warning if we seem to be looping forever.
1124 
1125     if ((QueuedAllocationWarningCount > 0) &&
1126         (try_count % QueuedAllocationWarningCount == 0)) {
1127       warning("G1CollectedHeap::attempt_allocation_humongous() "
1128               "retries %d times", try_count);
1129     }
1130   }
1131 
1132   ShouldNotReachHere();
1133   return NULL;
1134 }
1135 
1136 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1137                                        bool expect_null_mutator_alloc_region) {
1138   assert_at_safepoint(true /* should_be_vm_thread */);
1139   assert(_mutator_alloc_region.get() == NULL ||
1140                                              !expect_null_mutator_alloc_region,
1141          "the current alloc region was unexpectedly found to be non-NULL");
1142 
1143   if (!isHumongous(word_size)) {
1144     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1145                                                       false /* bot_updates */);
1146   } else {
1147     HeapWord* result = humongous_obj_allocate(word_size);
1148     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1149       g1_policy()->set_initiate_conc_mark_if_possible();
1150     }
1151     return result;
1152   }
1153 
1154   ShouldNotReachHere();
1155 }
1156 
1157 class PostMCRemSetClearClosure: public HeapRegionClosure {
1158   G1CollectedHeap* _g1h;
1159   ModRefBarrierSet* _mr_bs;
1160 public:
1161   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1162     _g1h(g1h), _mr_bs(mr_bs) {}
1163 
1164   bool doHeapRegion(HeapRegion* r) {
1165     HeapRegionRemSet* hrrs = r->rem_set();
1166 
1167     if (r->continuesHumongous()) {
1168       // We'll assert that the strong code root list and RSet is empty
1169       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1170       assert(hrrs->occupied() == 0, "RSet should be empty");
1171       return false;
1172     }
1173 
1174     _g1h->reset_gc_time_stamps(r);
1175     hrrs->clear();
1176     // You might think here that we could clear just the cards
1177     // corresponding to the used region.  But no: if we leave a dirty card
1178     // in a region we might allocate into, then it would prevent that card
1179     // from being enqueued, and cause it to be missed.
1180     // Re: the performance cost: we shouldn't be doing full GC anyway!
1181     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1182 
1183     return false;
1184   }
1185 };
1186 
1187 void G1CollectedHeap::clear_rsets_post_compaction() {
1188   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1189   heap_region_iterate(&rs_clear);
1190 }
1191 
1192 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1193   G1CollectedHeap*   _g1h;
1194   UpdateRSOopClosure _cl;
1195   int                _worker_i;
1196 public:
1197   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1198     _cl(g1->g1_rem_set(), worker_i),
1199     _worker_i(worker_i),
1200     _g1h(g1)
1201   { }
1202 
1203   bool doHeapRegion(HeapRegion* r) {
1204     if (!r->continuesHumongous()) {
1205       _cl.set_from(r);
1206       r->oop_iterate(&_cl);
1207     }
1208     return false;
1209   }
1210 };
1211 
1212 class ParRebuildRSTask: public AbstractGangTask {
1213   G1CollectedHeap* _g1;
1214 public:
1215   ParRebuildRSTask(G1CollectedHeap* g1)
1216     : AbstractGangTask("ParRebuildRSTask"),
1217       _g1(g1)
1218   { }
1219 
1220   void work(uint worker_id) {
1221     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1222     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1223                                           _g1->workers()->active_workers(),
1224                                          HeapRegion::RebuildRSClaimValue);
1225   }
1226 };
1227 
1228 class PostCompactionPrinterClosure: public HeapRegionClosure {
1229 private:
1230   G1HRPrinter* _hr_printer;
1231 public:
1232   bool doHeapRegion(HeapRegion* hr) {
1233     assert(!hr->is_young(), "not expecting to find young regions");
1234     // We only generate output for non-empty regions.
1235     if (!hr->is_empty()) {
1236       if (!hr->isHumongous()) {
1237         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1238       } else if (hr->startsHumongous()) {
1239         if (hr->region_num() == 1) {
1240           // single humongous region
1241           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1242         } else {
1243           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1244         }
1245       } else {
1246         assert(hr->continuesHumongous(), "only way to get here");
1247         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1248       }
1249     }
1250     return false;
1251   }
1252 
1253   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1254     : _hr_printer(hr_printer) { }
1255 };
1256 
1257 void G1CollectedHeap::print_hrs_post_compaction() {
1258   PostCompactionPrinterClosure cl(hr_printer());
1259   heap_region_iterate(&cl);
1260 }
1261 
1262 bool G1CollectedHeap::do_collection(bool explicit_gc,
1263                                     bool clear_all_soft_refs,
1264                                     size_t word_size) {
1265   assert_at_safepoint(true /* should_be_vm_thread */);
1266 
1267   if (GC_locker::check_active_before_gc()) {
1268     return false;
1269   }
1270 
1271   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1272   gc_timer->register_gc_start();
1273 
1274   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1275   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1276 
1277   SvcGCMarker sgcm(SvcGCMarker::FULL);
1278   ResourceMark rm;
1279 
1280   print_heap_before_gc();
1281   trace_heap_before_gc(gc_tracer);
1282 
1283   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1284 
1285   verify_region_sets_optional();
1286 
1287   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1288                            collector_policy()->should_clear_all_soft_refs();
1289 
1290   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1291 
1292   {
1293     IsGCActiveMark x;
1294 
1295     // Timing
1296     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1297     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1298     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1299 
1300     {
1301       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1302       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1303       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1304 
1305       double start = os::elapsedTime();
1306       g1_policy()->record_full_collection_start();
1307 
1308       // Note: When we have a more flexible GC logging framework that
1309       // allows us to add optional attributes to a GC log record we
1310       // could consider timing and reporting how long we wait in the
1311       // following two methods.
1312       wait_while_free_regions_coming();
1313       // If we start the compaction before the CM threads finish
1314       // scanning the root regions we might trip them over as we'll
1315       // be moving objects / updating references. So let's wait until
1316       // they are done. By telling them to abort, they should complete
1317       // early.
1318       _cm->root_regions()->abort();
1319       _cm->root_regions()->wait_until_scan_finished();
1320       append_secondary_free_list_if_not_empty_with_lock();
1321 
1322       gc_prologue(true);
1323       increment_total_collections(true /* full gc */);
1324       increment_old_marking_cycles_started();
1325 
1326       assert(used() == recalculate_used(), "Should be equal");
1327 
1328       verify_before_gc();
1329 
1330       pre_full_gc_dump(gc_timer);
1331 
1332       COMPILER2_PRESENT(DerivedPointerTable::clear());
1333 
1334       // Disable discovery and empty the discovered lists
1335       // for the CM ref processor.
1336       ref_processor_cm()->disable_discovery();
1337       ref_processor_cm()->abandon_partial_discovery();
1338       ref_processor_cm()->verify_no_references_recorded();
1339 
1340       // Abandon current iterations of concurrent marking and concurrent
1341       // refinement, if any are in progress. We have to do this before
1342       // wait_until_scan_finished() below.
1343       concurrent_mark()->abort();
1344 
1345       // Make sure we'll choose a new allocation region afterwards.
1346       release_mutator_alloc_region();
1347       abandon_gc_alloc_regions();
1348       g1_rem_set()->cleanupHRRS();
1349 
1350       // We should call this after we retire any currently active alloc
1351       // regions so that all the ALLOC / RETIRE events are generated
1352       // before the start GC event.
1353       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1354 
1355       // We may have added regions to the current incremental collection
1356       // set between the last GC or pause and now. We need to clear the
1357       // incremental collection set and then start rebuilding it afresh
1358       // after this full GC.
1359       abandon_collection_set(g1_policy()->inc_cset_head());
1360       g1_policy()->clear_incremental_cset();
1361       g1_policy()->stop_incremental_cset_building();
1362 
1363       tear_down_region_sets(false /* free_list_only */);
1364       g1_policy()->set_gcs_are_young(true);
1365 
1366       // See the comments in g1CollectedHeap.hpp and
1367       // G1CollectedHeap::ref_processing_init() about
1368       // how reference processing currently works in G1.
1369 
1370       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1371       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1372 
1373       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1374       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1375 
1376       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1377       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1378 
1379       // Do collection work
1380       {
1381         HandleMark hm;  // Discard invalid handles created during gc
1382         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1383       }
1384 
1385       assert(free_regions() == 0, "we should not have added any free regions");
1386       rebuild_region_sets(false /* free_list_only */);
1387 
1388       // Enqueue any discovered reference objects that have
1389       // not been removed from the discovered lists.
1390       ref_processor_stw()->enqueue_discovered_references();
1391 
1392       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1393 
1394       MemoryService::track_memory_usage();
1395 
1396       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1397       ref_processor_stw()->verify_no_references_recorded();
1398 
1399       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1400       ClassLoaderDataGraph::purge();
1401       MetaspaceAux::verify_metrics();
1402 
1403       // Note: since we've just done a full GC, concurrent
1404       // marking is no longer active. Therefore we need not
1405       // re-enable reference discovery for the CM ref processor.
1406       // That will be done at the start of the next marking cycle.
1407       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1408       ref_processor_cm()->verify_no_references_recorded();
1409 
1410       reset_gc_time_stamp();
1411       // Since everything potentially moved, we will clear all remembered
1412       // sets, and clear all cards.  Later we will rebuild remembered
1413       // sets. We will also reset the GC time stamps of the regions.
1414       clear_rsets_post_compaction();
1415       check_gc_time_stamps();
1416 
1417       // Resize the heap if necessary.
1418       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1419 
1420       if (_hr_printer.is_active()) {
1421         // We should do this after we potentially resize the heap so
1422         // that all the COMMIT / UNCOMMIT events are generated before
1423         // the end GC event.
1424 
1425         print_hrs_post_compaction();
1426         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1427       }
1428 
1429       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1430       if (hot_card_cache->use_cache()) {
1431         hot_card_cache->reset_card_counts();
1432         hot_card_cache->reset_hot_cache();
1433       }
1434 
1435       // Rebuild remembered sets of all regions.
1436       if (G1CollectedHeap::use_parallel_gc_threads()) {
1437         uint n_workers =
1438           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1439                                                   workers()->active_workers(),
1440                                                   Threads::number_of_non_daemon_threads());
1441         assert(UseDynamicNumberOfGCThreads ||
1442                n_workers == workers()->total_workers(),
1443                "If not dynamic should be using all the  workers");
1444         workers()->set_active_workers(n_workers);
1445         // Set parallel threads in the heap (_n_par_threads) only
1446         // before a parallel phase and always reset it to 0 after
1447         // the phase so that the number of parallel threads does
1448         // no get carried forward to a serial phase where there
1449         // may be code that is "possibly_parallel".
1450         set_par_threads(n_workers);
1451 
1452         ParRebuildRSTask rebuild_rs_task(this);
1453         assert(check_heap_region_claim_values(
1454                HeapRegion::InitialClaimValue), "sanity check");
1455         assert(UseDynamicNumberOfGCThreads ||
1456                workers()->active_workers() == workers()->total_workers(),
1457                "Unless dynamic should use total workers");
1458         // Use the most recent number of  active workers
1459         assert(workers()->active_workers() > 0,
1460                "Active workers not properly set");
1461         set_par_threads(workers()->active_workers());
1462         workers()->run_task(&rebuild_rs_task);
1463         set_par_threads(0);
1464         assert(check_heap_region_claim_values(
1465                HeapRegion::RebuildRSClaimValue), "sanity check");
1466         reset_heap_region_claim_values();
1467       } else {
1468         RebuildRSOutOfRegionClosure rebuild_rs(this);
1469         heap_region_iterate(&rebuild_rs);
1470       }
1471 
1472       // Rebuild the strong code root lists for each region
1473       rebuild_strong_code_roots();
1474 
1475       if (true) { // FIXME
1476         MetaspaceGC::compute_new_size();
1477       }
1478 
1479 #ifdef TRACESPINNING
1480       ParallelTaskTerminator::print_termination_counts();
1481 #endif
1482 
1483       // Discard all rset updates
1484       JavaThread::dirty_card_queue_set().abandon_logs();
1485       assert(!G1DeferredRSUpdate
1486              || (G1DeferredRSUpdate &&
1487                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1488 
1489       _young_list->reset_sampled_info();
1490       // At this point there should be no regions in the
1491       // entire heap tagged as young.
1492       assert(check_young_list_empty(true /* check_heap */),
1493              "young list should be empty at this point");
1494 
1495       // Update the number of full collections that have been completed.
1496       increment_old_marking_cycles_completed(false /* concurrent */);
1497 
1498       _hrs.verify_optional();
1499       verify_region_sets_optional();
1500 
1501       verify_after_gc();
1502 
1503       // Start a new incremental collection set for the next pause
1504       assert(g1_policy()->collection_set() == NULL, "must be");
1505       g1_policy()->start_incremental_cset_building();
1506 
1507       clear_cset_fast_test();
1508 
1509       init_mutator_alloc_region();
1510 
1511       double end = os::elapsedTime();
1512       g1_policy()->record_full_collection_end();
1513 
1514       if (G1Log::fine()) {
1515         g1_policy()->print_heap_transition();
1516       }
1517 
1518       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1519       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1520       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1521       // before any GC notifications are raised.
1522       g1mm()->update_sizes();
1523 
1524       gc_epilogue(true);
1525     }
1526 
1527     if (G1Log::finer()) {
1528       g1_policy()->print_detailed_heap_transition(true /* full */);
1529     }
1530 
1531     print_heap_after_gc();
1532     trace_heap_after_gc(gc_tracer);
1533 
1534     post_full_gc_dump(gc_timer);
1535 
1536     gc_timer->register_gc_end();
1537     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1538   }
1539 
1540   return true;
1541 }
1542 
1543 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1544   // do_collection() will return whether it succeeded in performing
1545   // the GC. Currently, there is no facility on the
1546   // do_full_collection() API to notify the caller than the collection
1547   // did not succeed (e.g., because it was locked out by the GC
1548   // locker). So, right now, we'll ignore the return value.
1549   bool dummy = do_collection(true,                /* explicit_gc */
1550                              clear_all_soft_refs,
1551                              0                    /* word_size */);
1552 }
1553 
1554 // This code is mostly copied from TenuredGeneration.
1555 void
1556 G1CollectedHeap::
1557 resize_if_necessary_after_full_collection(size_t word_size) {
1558   // Include the current allocation, if any, and bytes that will be
1559   // pre-allocated to support collections, as "used".
1560   const size_t used_after_gc = used();
1561   const size_t capacity_after_gc = capacity();
1562   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1563 
1564   // This is enforced in arguments.cpp.
1565   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1566          "otherwise the code below doesn't make sense");
1567 
1568   // We don't have floating point command-line arguments
1569   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1570   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1571   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1572   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1573 
1574   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1575   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1576 
1577   // We have to be careful here as these two calculations can overflow
1578   // 32-bit size_t's.
1579   double used_after_gc_d = (double) used_after_gc;
1580   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1581   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1582 
1583   // Let's make sure that they are both under the max heap size, which
1584   // by default will make them fit into a size_t.
1585   double desired_capacity_upper_bound = (double) max_heap_size;
1586   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1587                                     desired_capacity_upper_bound);
1588   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1589                                     desired_capacity_upper_bound);
1590 
1591   // We can now safely turn them into size_t's.
1592   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1593   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1594 
1595   // This assert only makes sense here, before we adjust them
1596   // with respect to the min and max heap size.
1597   assert(minimum_desired_capacity <= maximum_desired_capacity,
1598          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1599                  "maximum_desired_capacity = "SIZE_FORMAT,
1600                  minimum_desired_capacity, maximum_desired_capacity));
1601 
1602   // Should not be greater than the heap max size. No need to adjust
1603   // it with respect to the heap min size as it's a lower bound (i.e.,
1604   // we'll try to make the capacity larger than it, not smaller).
1605   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1606   // Should not be less than the heap min size. No need to adjust it
1607   // with respect to the heap max size as it's an upper bound (i.e.,
1608   // we'll try to make the capacity smaller than it, not greater).
1609   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1610 
1611   if (capacity_after_gc < minimum_desired_capacity) {
1612     // Don't expand unless it's significant
1613     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1614     ergo_verbose4(ErgoHeapSizing,
1615                   "attempt heap expansion",
1616                   ergo_format_reason("capacity lower than "
1617                                      "min desired capacity after Full GC")
1618                   ergo_format_byte("capacity")
1619                   ergo_format_byte("occupancy")
1620                   ergo_format_byte_perc("min desired capacity"),
1621                   capacity_after_gc, used_after_gc,
1622                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1623     expand(expand_bytes);
1624 
1625     // No expansion, now see if we want to shrink
1626   } else if (capacity_after_gc > maximum_desired_capacity) {
1627     // Capacity too large, compute shrinking size
1628     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1629     ergo_verbose4(ErgoHeapSizing,
1630                   "attempt heap shrinking",
1631                   ergo_format_reason("capacity higher than "
1632                                      "max desired capacity after Full GC")
1633                   ergo_format_byte("capacity")
1634                   ergo_format_byte("occupancy")
1635                   ergo_format_byte_perc("max desired capacity"),
1636                   capacity_after_gc, used_after_gc,
1637                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1638     shrink(shrink_bytes);
1639   }
1640 }
1641 
1642 
1643 HeapWord*
1644 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1645                                            bool* succeeded) {
1646   assert_at_safepoint(true /* should_be_vm_thread */);
1647 
1648   *succeeded = true;
1649   // Let's attempt the allocation first.
1650   HeapWord* result =
1651     attempt_allocation_at_safepoint(word_size,
1652                                  false /* expect_null_mutator_alloc_region */);
1653   if (result != NULL) {
1654     assert(*succeeded, "sanity");
1655     return result;
1656   }
1657 
1658   // In a G1 heap, we're supposed to keep allocation from failing by
1659   // incremental pauses.  Therefore, at least for now, we'll favor
1660   // expansion over collection.  (This might change in the future if we can
1661   // do something smarter than full collection to satisfy a failed alloc.)
1662   result = expand_and_allocate(word_size);
1663   if (result != NULL) {
1664     assert(*succeeded, "sanity");
1665     return result;
1666   }
1667 
1668   // Expansion didn't work, we'll try to do a Full GC.
1669   bool gc_succeeded = do_collection(false, /* explicit_gc */
1670                                     false, /* clear_all_soft_refs */
1671                                     word_size);
1672   if (!gc_succeeded) {
1673     *succeeded = false;
1674     return NULL;
1675   }
1676 
1677   // Retry the allocation
1678   result = attempt_allocation_at_safepoint(word_size,
1679                                   true /* expect_null_mutator_alloc_region */);
1680   if (result != NULL) {
1681     assert(*succeeded, "sanity");
1682     return result;
1683   }
1684 
1685   // Then, try a Full GC that will collect all soft references.
1686   gc_succeeded = do_collection(false, /* explicit_gc */
1687                                true,  /* clear_all_soft_refs */
1688                                word_size);
1689   if (!gc_succeeded) {
1690     *succeeded = false;
1691     return NULL;
1692   }
1693 
1694   // Retry the allocation once more
1695   result = attempt_allocation_at_safepoint(word_size,
1696                                   true /* expect_null_mutator_alloc_region */);
1697   if (result != NULL) {
1698     assert(*succeeded, "sanity");
1699     return result;
1700   }
1701 
1702   assert(!collector_policy()->should_clear_all_soft_refs(),
1703          "Flag should have been handled and cleared prior to this point");
1704 
1705   // What else?  We might try synchronous finalization later.  If the total
1706   // space available is large enough for the allocation, then a more
1707   // complete compaction phase than we've tried so far might be
1708   // appropriate.
1709   assert(*succeeded, "sanity");
1710   return NULL;
1711 }
1712 
1713 // Attempting to expand the heap sufficiently
1714 // to support an allocation of the given "word_size".  If
1715 // successful, perform the allocation and return the address of the
1716 // allocated block, or else "NULL".
1717 
1718 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1719   assert_at_safepoint(true /* should_be_vm_thread */);
1720 
1721   verify_region_sets_optional();
1722 
1723   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1724   ergo_verbose1(ErgoHeapSizing,
1725                 "attempt heap expansion",
1726                 ergo_format_reason("allocation request failed")
1727                 ergo_format_byte("allocation request"),
1728                 word_size * HeapWordSize);
1729   if (expand(expand_bytes)) {
1730     _hrs.verify_optional();
1731     verify_region_sets_optional();
1732     return attempt_allocation_at_safepoint(word_size,
1733                                  false /* expect_null_mutator_alloc_region */);
1734   }
1735   return NULL;
1736 }
1737 
1738 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1739                                              HeapWord* new_end) {
1740   assert(old_end != new_end, "don't call this otherwise");
1741   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1742 
1743   // Update the committed mem region.
1744   _g1_committed.set_end(new_end);
1745   // Tell the card table about the update.
1746   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1747   // Tell the BOT about the update.
1748   _bot_shared->resize(_g1_committed.word_size());
1749   // Tell the hot card cache about the update
1750   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1751 }
1752 
1753 bool G1CollectedHeap::expand(size_t expand_bytes) {
1754   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1755   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1756                                        HeapRegion::GrainBytes);
1757   ergo_verbose2(ErgoHeapSizing,
1758                 "expand the heap",
1759                 ergo_format_byte("requested expansion amount")
1760                 ergo_format_byte("attempted expansion amount"),
1761                 expand_bytes, aligned_expand_bytes);
1762 
1763   if (_g1_storage.uncommitted_size() == 0) {
1764     ergo_verbose0(ErgoHeapSizing,
1765                       "did not expand the heap",
1766                       ergo_format_reason("heap already fully expanded"));
1767     return false;
1768   }
1769 
1770   // First commit the memory.
1771   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1772   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1773   if (successful) {
1774     // Then propagate this update to the necessary data structures.
1775     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1776     update_committed_space(old_end, new_end);
1777 
1778     FreeRegionList expansion_list("Local Expansion List");
1779     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1780     assert(mr.start() == old_end, "post-condition");
1781     // mr might be a smaller region than what was requested if
1782     // expand_by() was unable to allocate the HeapRegion instances
1783     assert(mr.end() <= new_end, "post-condition");
1784 
1785     size_t actual_expand_bytes = mr.byte_size();
1786     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1787     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1788            "post-condition");
1789     if (actual_expand_bytes < aligned_expand_bytes) {
1790       // We could not expand _hrs to the desired size. In this case we
1791       // need to shrink the committed space accordingly.
1792       assert(mr.end() < new_end, "invariant");
1793 
1794       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1795       // First uncommit the memory.
1796       _g1_storage.shrink_by(diff_bytes);
1797       // Then propagate this update to the necessary data structures.
1798       update_committed_space(new_end, mr.end());
1799     }
1800     _free_list.add_as_tail(&expansion_list);
1801 
1802     if (_hr_printer.is_active()) {
1803       HeapWord* curr = mr.start();
1804       while (curr < mr.end()) {
1805         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1806         _hr_printer.commit(curr, curr_end);
1807         curr = curr_end;
1808       }
1809       assert(curr == mr.end(), "post-condition");
1810     }
1811     g1_policy()->record_new_heap_size(n_regions());
1812   } else {
1813     ergo_verbose0(ErgoHeapSizing,
1814                   "did not expand the heap",
1815                   ergo_format_reason("heap expansion operation failed"));
1816     // The expansion of the virtual storage space was unsuccessful.
1817     // Let's see if it was because we ran out of swap.
1818     if (G1ExitOnExpansionFailure &&
1819         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1820       // We had head room...
1821       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1822     }
1823   }
1824   return successful;
1825 }
1826 
1827 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1828   size_t aligned_shrink_bytes =
1829     ReservedSpace::page_align_size_down(shrink_bytes);
1830   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1831                                          HeapRegion::GrainBytes);
1832   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1833 
1834   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1835   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1836   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1837 
1838   ergo_verbose3(ErgoHeapSizing,
1839                 "shrink the heap",
1840                 ergo_format_byte("requested shrinking amount")
1841                 ergo_format_byte("aligned shrinking amount")
1842                 ergo_format_byte("attempted shrinking amount"),
1843                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1844   if (num_regions_removed > 0) {
1845     _g1_storage.shrink_by(shrunk_bytes);
1846     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1847 
1848     if (_hr_printer.is_active()) {
1849       HeapWord* curr = old_end;
1850       while (curr > new_end) {
1851         HeapWord* curr_end = curr;
1852         curr -= HeapRegion::GrainWords;
1853         _hr_printer.uncommit(curr, curr_end);
1854       }
1855     }
1856 
1857     _expansion_regions += num_regions_removed;
1858     update_committed_space(old_end, new_end);
1859     HeapRegionRemSet::shrink_heap(n_regions());
1860     g1_policy()->record_new_heap_size(n_regions());
1861   } else {
1862     ergo_verbose0(ErgoHeapSizing,
1863                   "did not shrink the heap",
1864                   ergo_format_reason("heap shrinking operation failed"));
1865   }
1866 }
1867 
1868 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1869   verify_region_sets_optional();
1870 
1871   // We should only reach here at the end of a Full GC which means we
1872   // should not not be holding to any GC alloc regions. The method
1873   // below will make sure of that and do any remaining clean up.
1874   abandon_gc_alloc_regions();
1875 
1876   // Instead of tearing down / rebuilding the free lists here, we
1877   // could instead use the remove_all_pending() method on free_list to
1878   // remove only the ones that we need to remove.
1879   tear_down_region_sets(true /* free_list_only */);
1880   shrink_helper(shrink_bytes);
1881   rebuild_region_sets(true /* free_list_only */);
1882 
1883   _hrs.verify_optional();
1884   verify_region_sets_optional();
1885 }
1886 
1887 // Public methods.
1888 
1889 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1890 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1891 #endif // _MSC_VER
1892 
1893 
1894 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1895   SharedHeap(policy_),
1896   _g1_policy(policy_),
1897   _dirty_card_queue_set(false),
1898   _into_cset_dirty_card_queue_set(false),
1899   _is_alive_closure_cm(this),
1900   _is_alive_closure_stw(this),
1901   _ref_processor_cm(NULL),
1902   _ref_processor_stw(NULL),
1903   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1904   _bot_shared(NULL),
1905   _evac_failure_scan_stack(NULL),
1906   _mark_in_progress(false),
1907   _cg1r(NULL), _summary_bytes_used(0),
1908   _g1mm(NULL),
1909   _refine_cte_cl(NULL),
1910   _full_collection(false),
1911   _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
1912   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1913   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1914   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1915   _free_regions_coming(false),
1916   _young_list(new YoungList(this)),
1917   _gc_time_stamp(0),
1918   _retained_old_gc_alloc_region(NULL),
1919   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1920   _old_plab_stats(OldPLABSize, PLABWeight),
1921   _expand_heap_after_alloc_failure(true),
1922   _surviving_young_words(NULL),
1923   _old_marking_cycles_started(0),
1924   _old_marking_cycles_completed(0),
1925   _concurrent_cycle_started(false),
1926   _in_cset_fast_test(),
1927   _dirty_cards_region_list(NULL),
1928   _worker_cset_start_region(NULL),
1929   _worker_cset_start_region_time_stamp(NULL),
1930   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1931   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1932   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1933   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1934 
1935   _g1h = this;
1936   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1937     vm_exit_during_initialization("Failed necessary allocation.");
1938   }
1939 
1940   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1941 
1942   int n_queues = MAX2((int)ParallelGCThreads, 1);
1943   _task_queues = new RefToScanQueueSet(n_queues);
1944 
1945   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1946   assert(n_rem_sets > 0, "Invariant.");
1947 
1948   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1949   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1950   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1951 
1952   for (int i = 0; i < n_queues; i++) {
1953     RefToScanQueue* q = new RefToScanQueue();
1954     q->initialize();
1955     _task_queues->register_queue(i, q);
1956     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1957   }
1958   clear_cset_start_regions();
1959 
1960   // Initialize the G1EvacuationFailureALot counters and flags.
1961   NOT_PRODUCT(reset_evacuation_should_fail();)
1962 
1963   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1964 }
1965 
1966 jint G1CollectedHeap::initialize() {
1967   CollectedHeap::pre_initialize();
1968   os::enable_vtime();
1969 
1970   G1Log::init();
1971 
1972   // Necessary to satisfy locking discipline assertions.
1973 
1974   MutexLocker x(Heap_lock);
1975 
1976   // We have to initialize the printer before committing the heap, as
1977   // it will be used then.
1978   _hr_printer.set_active(G1PrintHeapRegions);
1979 
1980   // While there are no constraints in the GC code that HeapWordSize
1981   // be any particular value, there are multiple other areas in the
1982   // system which believe this to be true (e.g. oop->object_size in some
1983   // cases incorrectly returns the size in wordSize units rather than
1984   // HeapWordSize).
1985   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1986 
1987   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1988   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1989   size_t heap_alignment = collector_policy()->heap_alignment();
1990 
1991   // Ensure that the sizes are properly aligned.
1992   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1993   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1994   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1995 
1996   _refine_cte_cl = new RefineCardTableEntryClosure();
1997 
1998   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1999 
2000   // Reserve the maximum.
2001 
2002   // When compressed oops are enabled, the preferred heap base
2003   // is calculated by subtracting the requested size from the
2004   // 32Gb boundary and using the result as the base address for
2005   // heap reservation. If the requested size is not aligned to
2006   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2007   // into the ReservedHeapSpace constructor) then the actual
2008   // base of the reserved heap may end up differing from the
2009   // address that was requested (i.e. the preferred heap base).
2010   // If this happens then we could end up using a non-optimal
2011   // compressed oops mode.
2012 
2013   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2014                                                  heap_alignment);
2015 
2016   // It is important to do this in a way such that concurrent readers can't
2017   // temporarily think something is in the heap.  (I've actually seen this
2018   // happen in asserts: DLD.)
2019   _reserved.set_word_size(0);
2020   _reserved.set_start((HeapWord*)heap_rs.base());
2021   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2022 
2023   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2024 
2025   // Create the gen rem set (and barrier set) for the entire reserved region.
2026   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2027   set_barrier_set(rem_set()->bs());
2028   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
2029     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2030     return JNI_ENOMEM;
2031   }
2032 
2033   // Also create a G1 rem set.
2034   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2035 
2036   // Carve out the G1 part of the heap.
2037 
2038   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2039   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2040                            g1_rs.size()/HeapWordSize);
2041 
2042   _g1_storage.initialize(g1_rs, 0);
2043   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2044   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2045                   (HeapWord*) _g1_reserved.end());
2046   assert(_hrs.max_length() == _expansion_regions,
2047          err_msg("max length: %u expansion regions: %u",
2048                  _hrs.max_length(), _expansion_regions));
2049 
2050   // Do later initialization work for concurrent refinement.
2051   _cg1r->init();
2052 
2053   // 6843694 - ensure that the maximum region index can fit
2054   // in the remembered set structures.
2055   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2056   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2057 
2058   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2059   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2060   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2061             "too many cards per region");
2062 
2063   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2064 
2065   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2066                                              heap_word_size(init_byte_size));
2067 
2068   _g1h = this;
2069 
2070   _in_cset_fast_test.initialize(_g1_reserved.start(), _g1_reserved.end(), HeapRegion::GrainBytes);
2071 
2072   // Create the ConcurrentMark data structure and thread.
2073   // (Must do this late, so that "max_regions" is defined.)
2074   _cm = new ConcurrentMark(this, heap_rs);
2075   if (_cm == NULL || !_cm->completed_initialization()) {
2076     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2077     return JNI_ENOMEM;
2078   }
2079   _cmThread = _cm->cmThread();
2080 
2081   // Initialize the from_card cache structure of HeapRegionRemSet.
2082   HeapRegionRemSet::init_heap(max_regions());
2083 
2084   // Now expand into the initial heap size.
2085   if (!expand(init_byte_size)) {
2086     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2087     return JNI_ENOMEM;
2088   }
2089 
2090   // Perform any initialization actions delegated to the policy.
2091   g1_policy()->init();
2092 
2093   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2094                                                SATB_Q_FL_lock,
2095                                                G1SATBProcessCompletedThreshold,
2096                                                Shared_SATB_Q_lock);
2097 
2098   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2099                                                 DirtyCardQ_CBL_mon,
2100                                                 DirtyCardQ_FL_lock,
2101                                                 concurrent_g1_refine()->yellow_zone(),
2102                                                 concurrent_g1_refine()->red_zone(),
2103                                                 Shared_DirtyCardQ_lock);
2104 
2105   if (G1DeferredRSUpdate) {
2106     dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2107                                       DirtyCardQ_CBL_mon,
2108                                       DirtyCardQ_FL_lock,
2109                                       -1, // never trigger processing
2110                                       -1, // no limit on length
2111                                       Shared_DirtyCardQ_lock,
2112                                       &JavaThread::dirty_card_queue_set());
2113   }
2114 
2115   // Initialize the card queue set used to hold cards containing
2116   // references into the collection set.
2117   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2118                                              DirtyCardQ_CBL_mon,
2119                                              DirtyCardQ_FL_lock,
2120                                              -1, // never trigger processing
2121                                              -1, // no limit on length
2122                                              Shared_DirtyCardQ_lock,
2123                                              &JavaThread::dirty_card_queue_set());
2124 
2125   // In case we're keeping closure specialization stats, initialize those
2126   // counts and that mechanism.
2127   SpecializationStats::clear();
2128 
2129   // Here we allocate the dummy full region that is required by the
2130   // G1AllocRegion class. If we don't pass an address in the reserved
2131   // space here, lots of asserts fire.
2132 
2133   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2134                                              _g1_reserved.start());
2135   // We'll re-use the same region whether the alloc region will
2136   // require BOT updates or not and, if it doesn't, then a non-young
2137   // region will complain that it cannot support allocations without
2138   // BOT updates. So we'll tag the dummy region as young to avoid that.
2139   dummy_region->set_young();
2140   // Make sure it's full.
2141   dummy_region->set_top(dummy_region->end());
2142   G1AllocRegion::setup(this, dummy_region);
2143 
2144   init_mutator_alloc_region();
2145 
2146   // Do create of the monitoring and management support so that
2147   // values in the heap have been properly initialized.
2148   _g1mm = new G1MonitoringSupport(this);
2149 
2150   G1StringDedup::initialize();
2151 
2152   return JNI_OK;
2153 }
2154 
2155 void G1CollectedHeap::stop() {
2156   // Stop all concurrent threads. We do this to make sure these threads
2157   // do not continue to execute and access resources (e.g. gclog_or_tty)
2158   // that are destroyed during shutdown.
2159   _cg1r->stop();
2160   _cmThread->stop();
2161   if (G1StringDedup::is_enabled()) {
2162     G1StringDedup::stop();
2163   }
2164 }
2165 
2166 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2167   return HeapRegion::max_region_size();
2168 }
2169 
2170 void G1CollectedHeap::ref_processing_init() {
2171   // Reference processing in G1 currently works as follows:
2172   //
2173   // * There are two reference processor instances. One is
2174   //   used to record and process discovered references
2175   //   during concurrent marking; the other is used to
2176   //   record and process references during STW pauses
2177   //   (both full and incremental).
2178   // * Both ref processors need to 'span' the entire heap as
2179   //   the regions in the collection set may be dotted around.
2180   //
2181   // * For the concurrent marking ref processor:
2182   //   * Reference discovery is enabled at initial marking.
2183   //   * Reference discovery is disabled and the discovered
2184   //     references processed etc during remarking.
2185   //   * Reference discovery is MT (see below).
2186   //   * Reference discovery requires a barrier (see below).
2187   //   * Reference processing may or may not be MT
2188   //     (depending on the value of ParallelRefProcEnabled
2189   //     and ParallelGCThreads).
2190   //   * A full GC disables reference discovery by the CM
2191   //     ref processor and abandons any entries on it's
2192   //     discovered lists.
2193   //
2194   // * For the STW processor:
2195   //   * Non MT discovery is enabled at the start of a full GC.
2196   //   * Processing and enqueueing during a full GC is non-MT.
2197   //   * During a full GC, references are processed after marking.
2198   //
2199   //   * Discovery (may or may not be MT) is enabled at the start
2200   //     of an incremental evacuation pause.
2201   //   * References are processed near the end of a STW evacuation pause.
2202   //   * For both types of GC:
2203   //     * Discovery is atomic - i.e. not concurrent.
2204   //     * Reference discovery will not need a barrier.
2205 
2206   SharedHeap::ref_processing_init();
2207   MemRegion mr = reserved_region();
2208 
2209   // Concurrent Mark ref processor
2210   _ref_processor_cm =
2211     new ReferenceProcessor(mr,    // span
2212                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2213                                 // mt processing
2214                            (int) ParallelGCThreads,
2215                                 // degree of mt processing
2216                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2217                                 // mt discovery
2218                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2219                                 // degree of mt discovery
2220                            false,
2221                                 // Reference discovery is not atomic
2222                            &_is_alive_closure_cm);
2223                                 // is alive closure
2224                                 // (for efficiency/performance)
2225 
2226   // STW ref processor
2227   _ref_processor_stw =
2228     new ReferenceProcessor(mr,    // span
2229                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2230                                 // mt processing
2231                            MAX2((int)ParallelGCThreads, 1),
2232                                 // degree of mt processing
2233                            (ParallelGCThreads > 1),
2234                                 // mt discovery
2235                            MAX2((int)ParallelGCThreads, 1),
2236                                 // degree of mt discovery
2237                            true,
2238                                 // Reference discovery is atomic
2239                            &_is_alive_closure_stw);
2240                                 // is alive closure
2241                                 // (for efficiency/performance)
2242 }
2243 
2244 size_t G1CollectedHeap::capacity() const {
2245   return _g1_committed.byte_size();
2246 }
2247 
2248 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2249   assert(!hr->continuesHumongous(), "pre-condition");
2250   hr->reset_gc_time_stamp();
2251   if (hr->startsHumongous()) {
2252     uint first_index = hr->hrs_index() + 1;
2253     uint last_index = hr->last_hc_index();
2254     for (uint i = first_index; i < last_index; i += 1) {
2255       HeapRegion* chr = region_at(i);
2256       assert(chr->continuesHumongous(), "sanity");
2257       chr->reset_gc_time_stamp();
2258     }
2259   }
2260 }
2261 
2262 #ifndef PRODUCT
2263 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2264 private:
2265   unsigned _gc_time_stamp;
2266   bool _failures;
2267 
2268 public:
2269   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2270     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2271 
2272   virtual bool doHeapRegion(HeapRegion* hr) {
2273     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2274     if (_gc_time_stamp != region_gc_time_stamp) {
2275       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2276                              "expected %d", HR_FORMAT_PARAMS(hr),
2277                              region_gc_time_stamp, _gc_time_stamp);
2278       _failures = true;
2279     }
2280     return false;
2281   }
2282 
2283   bool failures() { return _failures; }
2284 };
2285 
2286 void G1CollectedHeap::check_gc_time_stamps() {
2287   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2288   heap_region_iterate(&cl);
2289   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2290 }
2291 #endif // PRODUCT
2292 
2293 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2294                                                  DirtyCardQueue* into_cset_dcq,
2295                                                  bool concurrent,
2296                                                  uint worker_i) {
2297   // Clean cards in the hot card cache
2298   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2299   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2300 
2301   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2302   int n_completed_buffers = 0;
2303   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2304     n_completed_buffers++;
2305   }
2306   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2307   dcqs.clear_n_completed_buffers();
2308   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2309 }
2310 
2311 
2312 // Computes the sum of the storage used by the various regions.
2313 
2314 size_t G1CollectedHeap::used() const {
2315   assert(Heap_lock->owner() != NULL,
2316          "Should be owned on this thread's behalf.");
2317   size_t result = _summary_bytes_used;
2318   // Read only once in case it is set to NULL concurrently
2319   HeapRegion* hr = _mutator_alloc_region.get();
2320   if (hr != NULL)
2321     result += hr->used();
2322   return result;
2323 }
2324 
2325 size_t G1CollectedHeap::used_unlocked() const {
2326   size_t result = _summary_bytes_used;
2327   return result;
2328 }
2329 
2330 class SumUsedClosure: public HeapRegionClosure {
2331   size_t _used;
2332 public:
2333   SumUsedClosure() : _used(0) {}
2334   bool doHeapRegion(HeapRegion* r) {
2335     if (!r->continuesHumongous()) {
2336       _used += r->used();
2337     }
2338     return false;
2339   }
2340   size_t result() { return _used; }
2341 };
2342 
2343 size_t G1CollectedHeap::recalculate_used() const {
2344   double recalculate_used_start = os::elapsedTime();
2345 
2346   SumUsedClosure blk;
2347   heap_region_iterate(&blk);
2348 
2349   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2350   return blk.result();
2351 }
2352 
2353 size_t G1CollectedHeap::unsafe_max_alloc() {
2354   if (free_regions() > 0) return HeapRegion::GrainBytes;
2355   // otherwise, is there space in the current allocation region?
2356 
2357   // We need to store the current allocation region in a local variable
2358   // here. The problem is that this method doesn't take any locks and
2359   // there may be other threads which overwrite the current allocation
2360   // region field. attempt_allocation(), for example, sets it to NULL
2361   // and this can happen *after* the NULL check here but before the call
2362   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2363   // to be a problem in the optimized build, since the two loads of the
2364   // current allocation region field are optimized away.
2365   HeapRegion* hr = _mutator_alloc_region.get();
2366   if (hr == NULL) {
2367     return 0;
2368   }
2369   return hr->free();
2370 }
2371 
2372 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2373   switch (cause) {
2374     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2375     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2376     case GCCause::_g1_humongous_allocation: return true;
2377     default:                                return false;
2378   }
2379 }
2380 
2381 #ifndef PRODUCT
2382 void G1CollectedHeap::allocate_dummy_regions() {
2383   // Let's fill up most of the region
2384   size_t word_size = HeapRegion::GrainWords - 1024;
2385   // And as a result the region we'll allocate will be humongous.
2386   guarantee(isHumongous(word_size), "sanity");
2387 
2388   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2389     // Let's use the existing mechanism for the allocation
2390     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2391     if (dummy_obj != NULL) {
2392       MemRegion mr(dummy_obj, word_size);
2393       CollectedHeap::fill_with_object(mr);
2394     } else {
2395       // If we can't allocate once, we probably cannot allocate
2396       // again. Let's get out of the loop.
2397       break;
2398     }
2399   }
2400 }
2401 #endif // !PRODUCT
2402 
2403 void G1CollectedHeap::increment_old_marking_cycles_started() {
2404   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2405     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2406     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2407     _old_marking_cycles_started, _old_marking_cycles_completed));
2408 
2409   _old_marking_cycles_started++;
2410 }
2411 
2412 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2413   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2414 
2415   // We assume that if concurrent == true, then the caller is a
2416   // concurrent thread that was joined the Suspendible Thread
2417   // Set. If there's ever a cheap way to check this, we should add an
2418   // assert here.
2419 
2420   // Given that this method is called at the end of a Full GC or of a
2421   // concurrent cycle, and those can be nested (i.e., a Full GC can
2422   // interrupt a concurrent cycle), the number of full collections
2423   // completed should be either one (in the case where there was no
2424   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2425   // behind the number of full collections started.
2426 
2427   // This is the case for the inner caller, i.e. a Full GC.
2428   assert(concurrent ||
2429          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2430          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2431          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2432                  "is inconsistent with _old_marking_cycles_completed = %u",
2433                  _old_marking_cycles_started, _old_marking_cycles_completed));
2434 
2435   // This is the case for the outer caller, i.e. the concurrent cycle.
2436   assert(!concurrent ||
2437          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2438          err_msg("for outer caller (concurrent cycle): "
2439                  "_old_marking_cycles_started = %u "
2440                  "is inconsistent with _old_marking_cycles_completed = %u",
2441                  _old_marking_cycles_started, _old_marking_cycles_completed));
2442 
2443   _old_marking_cycles_completed += 1;
2444 
2445   // We need to clear the "in_progress" flag in the CM thread before
2446   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2447   // is set) so that if a waiter requests another System.gc() it doesn't
2448   // incorrectly see that a marking cycle is still in progress.
2449   if (concurrent) {
2450     _cmThread->clear_in_progress();
2451   }
2452 
2453   // This notify_all() will ensure that a thread that called
2454   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2455   // and it's waiting for a full GC to finish will be woken up. It is
2456   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2457   FullGCCount_lock->notify_all();
2458 }
2459 
2460 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2461   _concurrent_cycle_started = true;
2462   _gc_timer_cm->register_gc_start(start_time);
2463 
2464   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2465   trace_heap_before_gc(_gc_tracer_cm);
2466 }
2467 
2468 void G1CollectedHeap::register_concurrent_cycle_end() {
2469   if (_concurrent_cycle_started) {
2470     if (_cm->has_aborted()) {
2471       _gc_tracer_cm->report_concurrent_mode_failure();
2472     }
2473 
2474     _gc_timer_cm->register_gc_end();
2475     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2476 
2477     _concurrent_cycle_started = false;
2478   }
2479 }
2480 
2481 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2482   if (_concurrent_cycle_started) {
2483     trace_heap_after_gc(_gc_tracer_cm);
2484   }
2485 }
2486 
2487 G1YCType G1CollectedHeap::yc_type() {
2488   bool is_young = g1_policy()->gcs_are_young();
2489   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2490   bool is_during_mark = mark_in_progress();
2491 
2492   if (is_initial_mark) {
2493     return InitialMark;
2494   } else if (is_during_mark) {
2495     return DuringMark;
2496   } else if (is_young) {
2497     return Normal;
2498   } else {
2499     return Mixed;
2500   }
2501 }
2502 
2503 void G1CollectedHeap::collect(GCCause::Cause cause) {
2504   assert_heap_not_locked();
2505 
2506   unsigned int gc_count_before;
2507   unsigned int old_marking_count_before;
2508   bool retry_gc;
2509 
2510   do {
2511     retry_gc = false;
2512 
2513     {
2514       MutexLocker ml(Heap_lock);
2515 
2516       // Read the GC count while holding the Heap_lock
2517       gc_count_before = total_collections();
2518       old_marking_count_before = _old_marking_cycles_started;
2519     }
2520 
2521     if (should_do_concurrent_full_gc(cause)) {
2522       // Schedule an initial-mark evacuation pause that will start a
2523       // concurrent cycle. We're setting word_size to 0 which means that
2524       // we are not requesting a post-GC allocation.
2525       VM_G1IncCollectionPause op(gc_count_before,
2526                                  0,     /* word_size */
2527                                  true,  /* should_initiate_conc_mark */
2528                                  g1_policy()->max_pause_time_ms(),
2529                                  cause);
2530 
2531       VMThread::execute(&op);
2532       if (!op.pause_succeeded()) {
2533         if (old_marking_count_before == _old_marking_cycles_started) {
2534           retry_gc = op.should_retry_gc();
2535         } else {
2536           // A Full GC happened while we were trying to schedule the
2537           // initial-mark GC. No point in starting a new cycle given
2538           // that the whole heap was collected anyway.
2539         }
2540 
2541         if (retry_gc) {
2542           if (GC_locker::is_active_and_needs_gc()) {
2543             GC_locker::stall_until_clear();
2544           }
2545         }
2546       }
2547     } else {
2548       if (cause == GCCause::_gc_locker
2549           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2550 
2551         // Schedule a standard evacuation pause. We're setting word_size
2552         // to 0 which means that we are not requesting a post-GC allocation.
2553         VM_G1IncCollectionPause op(gc_count_before,
2554                                    0,     /* word_size */
2555                                    false, /* should_initiate_conc_mark */
2556                                    g1_policy()->max_pause_time_ms(),
2557                                    cause);
2558         VMThread::execute(&op);
2559       } else {
2560         // Schedule a Full GC.
2561         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2562         VMThread::execute(&op);
2563       }
2564     }
2565   } while (retry_gc);
2566 }
2567 
2568 bool G1CollectedHeap::is_in(const void* p) const {
2569   if (_g1_committed.contains(p)) {
2570     // Given that we know that p is in the committed space,
2571     // heap_region_containing_raw() should successfully
2572     // return the containing region.
2573     HeapRegion* hr = heap_region_containing_raw(p);
2574     return hr->is_in(p);
2575   } else {
2576     return false;
2577   }
2578 }
2579 
2580 // Iteration functions.
2581 
2582 // Iterates an OopClosure over all ref-containing fields of objects
2583 // within a HeapRegion.
2584 
2585 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2586   MemRegion _mr;
2587   ExtendedOopClosure* _cl;
2588 public:
2589   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2590     : _mr(mr), _cl(cl) {}
2591   bool doHeapRegion(HeapRegion* r) {
2592     if (!r->continuesHumongous()) {
2593       r->oop_iterate(_cl);
2594     }
2595     return false;
2596   }
2597 };
2598 
2599 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2600   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2601   heap_region_iterate(&blk);
2602 }
2603 
2604 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2605   IterateOopClosureRegionClosure blk(mr, cl);
2606   heap_region_iterate(&blk);
2607 }
2608 
2609 // Iterates an ObjectClosure over all objects within a HeapRegion.
2610 
2611 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2612   ObjectClosure* _cl;
2613 public:
2614   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2615   bool doHeapRegion(HeapRegion* r) {
2616     if (! r->continuesHumongous()) {
2617       r->object_iterate(_cl);
2618     }
2619     return false;
2620   }
2621 };
2622 
2623 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2624   IterateObjectClosureRegionClosure blk(cl);
2625   heap_region_iterate(&blk);
2626 }
2627 
2628 // Calls a SpaceClosure on a HeapRegion.
2629 
2630 class SpaceClosureRegionClosure: public HeapRegionClosure {
2631   SpaceClosure* _cl;
2632 public:
2633   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2634   bool doHeapRegion(HeapRegion* r) {
2635     _cl->do_space(r);
2636     return false;
2637   }
2638 };
2639 
2640 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2641   SpaceClosureRegionClosure blk(cl);
2642   heap_region_iterate(&blk);
2643 }
2644 
2645 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2646   _hrs.iterate(cl);
2647 }
2648 
2649 void
2650 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2651                                                  uint worker_id,
2652                                                  uint no_of_par_workers,
2653                                                  jint claim_value) {
2654   const uint regions = n_regions();
2655   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2656                              no_of_par_workers :
2657                              1);
2658   assert(UseDynamicNumberOfGCThreads ||
2659          no_of_par_workers == workers()->total_workers(),
2660          "Non dynamic should use fixed number of workers");
2661   // try to spread out the starting points of the workers
2662   const HeapRegion* start_hr =
2663                         start_region_for_worker(worker_id, no_of_par_workers);
2664   const uint start_index = start_hr->hrs_index();
2665 
2666   // each worker will actually look at all regions
2667   for (uint count = 0; count < regions; ++count) {
2668     const uint index = (start_index + count) % regions;
2669     assert(0 <= index && index < regions, "sanity");
2670     HeapRegion* r = region_at(index);
2671     // we'll ignore "continues humongous" regions (we'll process them
2672     // when we come across their corresponding "start humongous"
2673     // region) and regions already claimed
2674     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2675       continue;
2676     }
2677     // OK, try to claim it
2678     if (r->claimHeapRegion(claim_value)) {
2679       // success!
2680       assert(!r->continuesHumongous(), "sanity");
2681       if (r->startsHumongous()) {
2682         // If the region is "starts humongous" we'll iterate over its
2683         // "continues humongous" first; in fact we'll do them
2684         // first. The order is important. In on case, calling the
2685         // closure on the "starts humongous" region might de-allocate
2686         // and clear all its "continues humongous" regions and, as a
2687         // result, we might end up processing them twice. So, we'll do
2688         // them first (notice: most closures will ignore them anyway) and
2689         // then we'll do the "starts humongous" region.
2690         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2691           HeapRegion* chr = region_at(ch_index);
2692 
2693           // if the region has already been claimed or it's not
2694           // "continues humongous" we're done
2695           if (chr->claim_value() == claim_value ||
2696               !chr->continuesHumongous()) {
2697             break;
2698           }
2699 
2700           // No one should have claimed it directly. We can given
2701           // that we claimed its "starts humongous" region.
2702           assert(chr->claim_value() != claim_value, "sanity");
2703           assert(chr->humongous_start_region() == r, "sanity");
2704 
2705           if (chr->claimHeapRegion(claim_value)) {
2706             // we should always be able to claim it; no one else should
2707             // be trying to claim this region
2708 
2709             bool res2 = cl->doHeapRegion(chr);
2710             assert(!res2, "Should not abort");
2711 
2712             // Right now, this holds (i.e., no closure that actually
2713             // does something with "continues humongous" regions
2714             // clears them). We might have to weaken it in the future,
2715             // but let's leave these two asserts here for extra safety.
2716             assert(chr->continuesHumongous(), "should still be the case");
2717             assert(chr->humongous_start_region() == r, "sanity");
2718           } else {
2719             guarantee(false, "we should not reach here");
2720           }
2721         }
2722       }
2723 
2724       assert(!r->continuesHumongous(), "sanity");
2725       bool res = cl->doHeapRegion(r);
2726       assert(!res, "Should not abort");
2727     }
2728   }
2729 }
2730 
2731 class ResetClaimValuesClosure: public HeapRegionClosure {
2732 public:
2733   bool doHeapRegion(HeapRegion* r) {
2734     r->set_claim_value(HeapRegion::InitialClaimValue);
2735     return false;
2736   }
2737 };
2738 
2739 void G1CollectedHeap::reset_heap_region_claim_values() {
2740   ResetClaimValuesClosure blk;
2741   heap_region_iterate(&blk);
2742 }
2743 
2744 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2745   ResetClaimValuesClosure blk;
2746   collection_set_iterate(&blk);
2747 }
2748 
2749 #ifdef ASSERT
2750 // This checks whether all regions in the heap have the correct claim
2751 // value. I also piggy-backed on this a check to ensure that the
2752 // humongous_start_region() information on "continues humongous"
2753 // regions is correct.
2754 
2755 class CheckClaimValuesClosure : public HeapRegionClosure {
2756 private:
2757   jint _claim_value;
2758   uint _failures;
2759   HeapRegion* _sh_region;
2760 
2761 public:
2762   CheckClaimValuesClosure(jint claim_value) :
2763     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2764   bool doHeapRegion(HeapRegion* r) {
2765     if (r->claim_value() != _claim_value) {
2766       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2767                              "claim value = %d, should be %d",
2768                              HR_FORMAT_PARAMS(r),
2769                              r->claim_value(), _claim_value);
2770       ++_failures;
2771     }
2772     if (!r->isHumongous()) {
2773       _sh_region = NULL;
2774     } else if (r->startsHumongous()) {
2775       _sh_region = r;
2776     } else if (r->continuesHumongous()) {
2777       if (r->humongous_start_region() != _sh_region) {
2778         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2779                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2780                                HR_FORMAT_PARAMS(r),
2781                                r->humongous_start_region(),
2782                                _sh_region);
2783         ++_failures;
2784       }
2785     }
2786     return false;
2787   }
2788   uint failures() { return _failures; }
2789 };
2790 
2791 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2792   CheckClaimValuesClosure cl(claim_value);
2793   heap_region_iterate(&cl);
2794   return cl.failures() == 0;
2795 }
2796 
2797 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2798 private:
2799   jint _claim_value;
2800   uint _failures;
2801 
2802 public:
2803   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2804     _claim_value(claim_value), _failures(0) { }
2805 
2806   uint failures() { return _failures; }
2807 
2808   bool doHeapRegion(HeapRegion* hr) {
2809     assert(hr->in_collection_set(), "how?");
2810     assert(!hr->isHumongous(), "H-region in CSet");
2811     if (hr->claim_value() != _claim_value) {
2812       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2813                              "claim value = %d, should be %d",
2814                              HR_FORMAT_PARAMS(hr),
2815                              hr->claim_value(), _claim_value);
2816       _failures += 1;
2817     }
2818     return false;
2819   }
2820 };
2821 
2822 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2823   CheckClaimValuesInCSetHRClosure cl(claim_value);
2824   collection_set_iterate(&cl);
2825   return cl.failures() == 0;
2826 }
2827 #endif // ASSERT
2828 
2829 // Clear the cached CSet starting regions and (more importantly)
2830 // the time stamps. Called when we reset the GC time stamp.
2831 void G1CollectedHeap::clear_cset_start_regions() {
2832   assert(_worker_cset_start_region != NULL, "sanity");
2833   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2834 
2835   int n_queues = MAX2((int)ParallelGCThreads, 1);
2836   for (int i = 0; i < n_queues; i++) {
2837     _worker_cset_start_region[i] = NULL;
2838     _worker_cset_start_region_time_stamp[i] = 0;
2839   }
2840 }
2841 
2842 // Given the id of a worker, obtain or calculate a suitable
2843 // starting region for iterating over the current collection set.
2844 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2845   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2846 
2847   HeapRegion* result = NULL;
2848   unsigned gc_time_stamp = get_gc_time_stamp();
2849 
2850   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2851     // Cached starting region for current worker was set
2852     // during the current pause - so it's valid.
2853     // Note: the cached starting heap region may be NULL
2854     // (when the collection set is empty).
2855     result = _worker_cset_start_region[worker_i];
2856     assert(result == NULL || result->in_collection_set(), "sanity");
2857     return result;
2858   }
2859 
2860   // The cached entry was not valid so let's calculate
2861   // a suitable starting heap region for this worker.
2862 
2863   // We want the parallel threads to start their collection
2864   // set iteration at different collection set regions to
2865   // avoid contention.
2866   // If we have:
2867   //          n collection set regions
2868   //          p threads
2869   // Then thread t will start at region floor ((t * n) / p)
2870 
2871   result = g1_policy()->collection_set();
2872   if (G1CollectedHeap::use_parallel_gc_threads()) {
2873     uint cs_size = g1_policy()->cset_region_length();
2874     uint active_workers = workers()->active_workers();
2875     assert(UseDynamicNumberOfGCThreads ||
2876              active_workers == workers()->total_workers(),
2877              "Unless dynamic should use total workers");
2878 
2879     uint end_ind   = (cs_size * worker_i) / active_workers;
2880     uint start_ind = 0;
2881 
2882     if (worker_i > 0 &&
2883         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2884       // Previous workers starting region is valid
2885       // so let's iterate from there
2886       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2887       result = _worker_cset_start_region[worker_i - 1];
2888     }
2889 
2890     for (uint i = start_ind; i < end_ind; i++) {
2891       result = result->next_in_collection_set();
2892     }
2893   }
2894 
2895   // Note: the calculated starting heap region may be NULL
2896   // (when the collection set is empty).
2897   assert(result == NULL || result->in_collection_set(), "sanity");
2898   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2899          "should be updated only once per pause");
2900   _worker_cset_start_region[worker_i] = result;
2901   OrderAccess::storestore();
2902   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2903   return result;
2904 }
2905 
2906 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2907                                                      uint no_of_par_workers) {
2908   uint worker_num =
2909            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2910   assert(UseDynamicNumberOfGCThreads ||
2911          no_of_par_workers == workers()->total_workers(),
2912          "Non dynamic should use fixed number of workers");
2913   const uint start_index = n_regions() * worker_i / worker_num;
2914   return region_at(start_index);
2915 }
2916 
2917 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2918   HeapRegion* r = g1_policy()->collection_set();
2919   while (r != NULL) {
2920     HeapRegion* next = r->next_in_collection_set();
2921     if (cl->doHeapRegion(r)) {
2922       cl->incomplete();
2923       return;
2924     }
2925     r = next;
2926   }
2927 }
2928 
2929 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2930                                                   HeapRegionClosure *cl) {
2931   if (r == NULL) {
2932     // The CSet is empty so there's nothing to do.
2933     return;
2934   }
2935 
2936   assert(r->in_collection_set(),
2937          "Start region must be a member of the collection set.");
2938   HeapRegion* cur = r;
2939   while (cur != NULL) {
2940     HeapRegion* next = cur->next_in_collection_set();
2941     if (cl->doHeapRegion(cur) && false) {
2942       cl->incomplete();
2943       return;
2944     }
2945     cur = next;
2946   }
2947   cur = g1_policy()->collection_set();
2948   while (cur != r) {
2949     HeapRegion* next = cur->next_in_collection_set();
2950     if (cl->doHeapRegion(cur) && false) {
2951       cl->incomplete();
2952       return;
2953     }
2954     cur = next;
2955   }
2956 }
2957 
2958 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2959   return n_regions() > 0 ? region_at(0) : NULL;
2960 }
2961 
2962 
2963 Space* G1CollectedHeap::space_containing(const void* addr) const {
2964   Space* res = heap_region_containing(addr);
2965   return res;
2966 }
2967 
2968 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2969   Space* sp = space_containing(addr);
2970   if (sp != NULL) {
2971     return sp->block_start(addr);
2972   }
2973   return NULL;
2974 }
2975 
2976 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2977   Space* sp = space_containing(addr);
2978   assert(sp != NULL, "block_size of address outside of heap");
2979   return sp->block_size(addr);
2980 }
2981 
2982 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2983   Space* sp = space_containing(addr);
2984   return sp->block_is_obj(addr);
2985 }
2986 
2987 bool G1CollectedHeap::supports_tlab_allocation() const {
2988   return true;
2989 }
2990 
2991 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2992   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2993 }
2994 
2995 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2996   return young_list()->eden_used_bytes();
2997 }
2998 
2999 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
3000 // must be smaller than the humongous object limit.
3001 size_t G1CollectedHeap::max_tlab_size() const {
3002   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
3003 }
3004 
3005 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3006   // Return the remaining space in the cur alloc region, but not less than
3007   // the min TLAB size.
3008 
3009   // Also, this value can be at most the humongous object threshold,
3010   // since we can't allow tlabs to grow big enough to accommodate
3011   // humongous objects.
3012 
3013   HeapRegion* hr = _mutator_alloc_region.get();
3014   size_t max_tlab = max_tlab_size() * wordSize;
3015   if (hr == NULL) {
3016     return max_tlab;
3017   } else {
3018     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
3019   }
3020 }
3021 
3022 size_t G1CollectedHeap::max_capacity() const {
3023   return _g1_reserved.byte_size();
3024 }
3025 
3026 jlong G1CollectedHeap::millis_since_last_gc() {
3027   // assert(false, "NYI");
3028   return 0;
3029 }
3030 
3031 void G1CollectedHeap::prepare_for_verify() {
3032   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3033     ensure_parsability(false);
3034   }
3035   g1_rem_set()->prepare_for_verify();
3036 }
3037 
3038 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3039                                               VerifyOption vo) {
3040   switch (vo) {
3041   case VerifyOption_G1UsePrevMarking:
3042     return hr->obj_allocated_since_prev_marking(obj);
3043   case VerifyOption_G1UseNextMarking:
3044     return hr->obj_allocated_since_next_marking(obj);
3045   case VerifyOption_G1UseMarkWord:
3046     return false;
3047   default:
3048     ShouldNotReachHere();
3049   }
3050   return false; // keep some compilers happy
3051 }
3052 
3053 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3054   switch (vo) {
3055   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3056   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3057   case VerifyOption_G1UseMarkWord:    return NULL;
3058   default:                            ShouldNotReachHere();
3059   }
3060   return NULL; // keep some compilers happy
3061 }
3062 
3063 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3064   switch (vo) {
3065   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3066   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3067   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3068   default:                            ShouldNotReachHere();
3069   }
3070   return false; // keep some compilers happy
3071 }
3072 
3073 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3074   switch (vo) {
3075   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3076   case VerifyOption_G1UseNextMarking: return "NTAMS";
3077   case VerifyOption_G1UseMarkWord:    return "NONE";
3078   default:                            ShouldNotReachHere();
3079   }
3080   return NULL; // keep some compilers happy
3081 }
3082 
3083 class VerifyRootsClosure: public OopClosure {
3084 private:
3085   G1CollectedHeap* _g1h;
3086   VerifyOption     _vo;
3087   bool             _failures;
3088 public:
3089   // _vo == UsePrevMarking -> use "prev" marking information,
3090   // _vo == UseNextMarking -> use "next" marking information,
3091   // _vo == UseMarkWord    -> use mark word from object header.
3092   VerifyRootsClosure(VerifyOption vo) :
3093     _g1h(G1CollectedHeap::heap()),
3094     _vo(vo),
3095     _failures(false) { }
3096 
3097   bool failures() { return _failures; }
3098 
3099   template <class T> void do_oop_nv(T* p) {
3100     T heap_oop = oopDesc::load_heap_oop(p);
3101     if (!oopDesc::is_null(heap_oop)) {
3102       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3103       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3104         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3105                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3106         if (_vo == VerifyOption_G1UseMarkWord) {
3107           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3108         }
3109         obj->print_on(gclog_or_tty);
3110         _failures = true;
3111       }
3112     }
3113   }
3114 
3115   void do_oop(oop* p)       { do_oop_nv(p); }
3116   void do_oop(narrowOop* p) { do_oop_nv(p); }
3117 };
3118 
3119 class G1VerifyCodeRootOopClosure: public OopClosure {
3120   G1CollectedHeap* _g1h;
3121   OopClosure* _root_cl;
3122   nmethod* _nm;
3123   VerifyOption _vo;
3124   bool _failures;
3125 
3126   template <class T> void do_oop_work(T* p) {
3127     // First verify that this root is live
3128     _root_cl->do_oop(p);
3129 
3130     if (!G1VerifyHeapRegionCodeRoots) {
3131       // We're not verifying the code roots attached to heap region.
3132       return;
3133     }
3134 
3135     // Don't check the code roots during marking verification in a full GC
3136     if (_vo == VerifyOption_G1UseMarkWord) {
3137       return;
3138     }
3139 
3140     // Now verify that the current nmethod (which contains p) is
3141     // in the code root list of the heap region containing the
3142     // object referenced by p.
3143 
3144     T heap_oop = oopDesc::load_heap_oop(p);
3145     if (!oopDesc::is_null(heap_oop)) {
3146       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3147 
3148       // Now fetch the region containing the object
3149       HeapRegion* hr = _g1h->heap_region_containing(obj);
3150       HeapRegionRemSet* hrrs = hr->rem_set();
3151       // Verify that the strong code root list for this region
3152       // contains the nmethod
3153       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3154         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3155                               "from nmethod "PTR_FORMAT" not in strong "
3156                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3157                               p, _nm, hr->bottom(), hr->end());
3158         _failures = true;
3159       }
3160     }
3161   }
3162 
3163 public:
3164   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3165     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3166 
3167   void do_oop(oop* p) { do_oop_work(p); }
3168   void do_oop(narrowOop* p) { do_oop_work(p); }
3169 
3170   void set_nmethod(nmethod* nm) { _nm = nm; }
3171   bool failures() { return _failures; }
3172 };
3173 
3174 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3175   G1VerifyCodeRootOopClosure* _oop_cl;
3176 
3177 public:
3178   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3179     _oop_cl(oop_cl) {}
3180 
3181   void do_code_blob(CodeBlob* cb) {
3182     nmethod* nm = cb->as_nmethod_or_null();
3183     if (nm != NULL) {
3184       _oop_cl->set_nmethod(nm);
3185       nm->oops_do(_oop_cl);
3186     }
3187   }
3188 };
3189 
3190 class YoungRefCounterClosure : public OopClosure {
3191   G1CollectedHeap* _g1h;
3192   int              _count;
3193  public:
3194   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3195   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3196   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3197 
3198   int count() { return _count; }
3199   void reset_count() { _count = 0; };
3200 };
3201 
3202 class VerifyKlassClosure: public KlassClosure {
3203   YoungRefCounterClosure _young_ref_counter_closure;
3204   OopClosure *_oop_closure;
3205  public:
3206   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3207   void do_klass(Klass* k) {
3208     k->oops_do(_oop_closure);
3209 
3210     _young_ref_counter_closure.reset_count();
3211     k->oops_do(&_young_ref_counter_closure);
3212     if (_young_ref_counter_closure.count() > 0) {
3213       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3214     }
3215   }
3216 };
3217 
3218 class VerifyLivenessOopClosure: public OopClosure {
3219   G1CollectedHeap* _g1h;
3220   VerifyOption _vo;
3221 public:
3222   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3223     _g1h(g1h), _vo(vo)
3224   { }
3225   void do_oop(narrowOop *p) { do_oop_work(p); }
3226   void do_oop(      oop *p) { do_oop_work(p); }
3227 
3228   template <class T> void do_oop_work(T *p) {
3229     oop obj = oopDesc::load_decode_heap_oop(p);
3230     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3231               "Dead object referenced by a not dead object");
3232   }
3233 };
3234 
3235 class VerifyObjsInRegionClosure: public ObjectClosure {
3236 private:
3237   G1CollectedHeap* _g1h;
3238   size_t _live_bytes;
3239   HeapRegion *_hr;
3240   VerifyOption _vo;
3241 public:
3242   // _vo == UsePrevMarking -> use "prev" marking information,
3243   // _vo == UseNextMarking -> use "next" marking information,
3244   // _vo == UseMarkWord    -> use mark word from object header.
3245   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3246     : _live_bytes(0), _hr(hr), _vo(vo) {
3247     _g1h = G1CollectedHeap::heap();
3248   }
3249   void do_object(oop o) {
3250     VerifyLivenessOopClosure isLive(_g1h, _vo);
3251     assert(o != NULL, "Huh?");
3252     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3253       // If the object is alive according to the mark word,
3254       // then verify that the marking information agrees.
3255       // Note we can't verify the contra-positive of the
3256       // above: if the object is dead (according to the mark
3257       // word), it may not be marked, or may have been marked
3258       // but has since became dead, or may have been allocated
3259       // since the last marking.
3260       if (_vo == VerifyOption_G1UseMarkWord) {
3261         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3262       }
3263 
3264       o->oop_iterate_no_header(&isLive);
3265       if (!_hr->obj_allocated_since_prev_marking(o)) {
3266         size_t obj_size = o->size();    // Make sure we don't overflow
3267         _live_bytes += (obj_size * HeapWordSize);
3268       }
3269     }
3270   }
3271   size_t live_bytes() { return _live_bytes; }
3272 };
3273 
3274 class PrintObjsInRegionClosure : public ObjectClosure {
3275   HeapRegion *_hr;
3276   G1CollectedHeap *_g1;
3277 public:
3278   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3279     _g1 = G1CollectedHeap::heap();
3280   };
3281 
3282   void do_object(oop o) {
3283     if (o != NULL) {
3284       HeapWord *start = (HeapWord *) o;
3285       size_t word_sz = o->size();
3286       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3287                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3288                           (void*) o, word_sz,
3289                           _g1->isMarkedPrev(o),
3290                           _g1->isMarkedNext(o),
3291                           _hr->obj_allocated_since_prev_marking(o));
3292       HeapWord *end = start + word_sz;
3293       HeapWord *cur;
3294       int *val;
3295       for (cur = start; cur < end; cur++) {
3296         val = (int *) cur;
3297         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3298       }
3299     }
3300   }
3301 };
3302 
3303 class VerifyRegionClosure: public HeapRegionClosure {
3304 private:
3305   bool             _par;
3306   VerifyOption     _vo;
3307   bool             _failures;
3308 public:
3309   // _vo == UsePrevMarking -> use "prev" marking information,
3310   // _vo == UseNextMarking -> use "next" marking information,
3311   // _vo == UseMarkWord    -> use mark word from object header.
3312   VerifyRegionClosure(bool par, VerifyOption vo)
3313     : _par(par),
3314       _vo(vo),
3315       _failures(false) {}
3316 
3317   bool failures() {
3318     return _failures;
3319   }
3320 
3321   bool doHeapRegion(HeapRegion* r) {
3322     if (!r->continuesHumongous()) {
3323       bool failures = false;
3324       r->verify(_vo, &failures);
3325       if (failures) {
3326         _failures = true;
3327       } else {
3328         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3329         r->object_iterate(&not_dead_yet_cl);
3330         if (_vo != VerifyOption_G1UseNextMarking) {
3331           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3332             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3333                                    "max_live_bytes "SIZE_FORMAT" "
3334                                    "< calculated "SIZE_FORMAT,
3335                                    r->bottom(), r->end(),
3336                                    r->max_live_bytes(),
3337                                  not_dead_yet_cl.live_bytes());
3338             _failures = true;
3339           }
3340         } else {
3341           // When vo == UseNextMarking we cannot currently do a sanity
3342           // check on the live bytes as the calculation has not been
3343           // finalized yet.
3344         }
3345       }
3346     }
3347     return false; // stop the region iteration if we hit a failure
3348   }
3349 };
3350 
3351 // This is the task used for parallel verification of the heap regions
3352 
3353 class G1ParVerifyTask: public AbstractGangTask {
3354 private:
3355   G1CollectedHeap* _g1h;
3356   VerifyOption     _vo;
3357   bool             _failures;
3358 
3359 public:
3360   // _vo == UsePrevMarking -> use "prev" marking information,
3361   // _vo == UseNextMarking -> use "next" marking information,
3362   // _vo == UseMarkWord    -> use mark word from object header.
3363   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3364     AbstractGangTask("Parallel verify task"),
3365     _g1h(g1h),
3366     _vo(vo),
3367     _failures(false) { }
3368 
3369   bool failures() {
3370     return _failures;
3371   }
3372 
3373   void work(uint worker_id) {
3374     HandleMark hm;
3375     VerifyRegionClosure blk(true, _vo);
3376     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3377                                           _g1h->workers()->active_workers(),
3378                                           HeapRegion::ParVerifyClaimValue);
3379     if (blk.failures()) {
3380       _failures = true;
3381     }
3382   }
3383 };
3384 
3385 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3386   if (SafepointSynchronize::is_at_safepoint()) {
3387     assert(Thread::current()->is_VM_thread(),
3388            "Expected to be executed serially by the VM thread at this point");
3389 
3390     if (!silent) { gclog_or_tty->print("Roots "); }
3391     VerifyRootsClosure rootsCl(vo);
3392     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3393     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3394     VerifyKlassClosure klassCl(this, &rootsCl);
3395 
3396     // We apply the relevant closures to all the oops in the
3397     // system dictionary, the string table and the code cache.
3398     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3399 
3400     // Need cleared claim bits for the strong roots processing
3401     ClassLoaderDataGraph::clear_claimed_marks();
3402 
3403     process_strong_roots(true,      // activate StrongRootsScope
3404                          false,     // we set "is scavenging" to false,
3405                                     // so we don't reset the dirty cards.
3406                          ScanningOption(so),  // roots scanning options
3407                          &rootsCl,
3408                          &blobsCl,
3409                          &klassCl
3410                          );
3411 
3412     bool failures = rootsCl.failures() || codeRootsCl.failures();
3413 
3414     if (vo != VerifyOption_G1UseMarkWord) {
3415       // If we're verifying during a full GC then the region sets
3416       // will have been torn down at the start of the GC. Therefore
3417       // verifying the region sets will fail. So we only verify
3418       // the region sets when not in a full GC.
3419       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3420       verify_region_sets();
3421     }
3422 
3423     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3424     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3425       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3426              "sanity check");
3427 
3428       G1ParVerifyTask task(this, vo);
3429       assert(UseDynamicNumberOfGCThreads ||
3430         workers()->active_workers() == workers()->total_workers(),
3431         "If not dynamic should be using all the workers");
3432       int n_workers = workers()->active_workers();
3433       set_par_threads(n_workers);
3434       workers()->run_task(&task);
3435       set_par_threads(0);
3436       if (task.failures()) {
3437         failures = true;
3438       }
3439 
3440       // Checks that the expected amount of parallel work was done.
3441       // The implication is that n_workers is > 0.
3442       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3443              "sanity check");
3444 
3445       reset_heap_region_claim_values();
3446 
3447       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3448              "sanity check");
3449     } else {
3450       VerifyRegionClosure blk(false, vo);
3451       heap_region_iterate(&blk);
3452       if (blk.failures()) {
3453         failures = true;
3454       }
3455     }
3456     if (!silent) gclog_or_tty->print("RemSet ");
3457     rem_set()->verify();
3458 
3459     if (G1StringDedup::is_enabled()) {
3460       if (!silent) gclog_or_tty->print("StrDedup ");
3461       G1StringDedup::verify();
3462     }
3463 
3464     if (failures) {
3465       gclog_or_tty->print_cr("Heap:");
3466       // It helps to have the per-region information in the output to
3467       // help us track down what went wrong. This is why we call
3468       // print_extended_on() instead of print_on().
3469       print_extended_on(gclog_or_tty);
3470       gclog_or_tty->cr();
3471 #ifndef PRODUCT
3472       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3473         concurrent_mark()->print_reachable("at-verification-failure",
3474                                            vo, false /* all */);
3475       }
3476 #endif
3477       gclog_or_tty->flush();
3478     }
3479     guarantee(!failures, "there should not have been any failures");
3480   } else {
3481     if (!silent) {
3482       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3483       if (G1StringDedup::is_enabled()) {
3484         gclog_or_tty->print(", StrDedup");
3485       }
3486       gclog_or_tty->print(") ");
3487     }
3488   }
3489 }
3490 
3491 void G1CollectedHeap::verify(bool silent) {
3492   verify(silent, VerifyOption_G1UsePrevMarking);
3493 }
3494 
3495 double G1CollectedHeap::verify(bool guard, const char* msg) {
3496   double verify_time_ms = 0.0;
3497 
3498   if (guard && total_collections() >= VerifyGCStartAt) {
3499     double verify_start = os::elapsedTime();
3500     HandleMark hm;  // Discard invalid handles created during verification
3501     prepare_for_verify();
3502     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3503     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3504   }
3505 
3506   return verify_time_ms;
3507 }
3508 
3509 void G1CollectedHeap::verify_before_gc() {
3510   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3511   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3512 }
3513 
3514 void G1CollectedHeap::verify_after_gc() {
3515   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3516   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3517 }
3518 
3519 class PrintRegionClosure: public HeapRegionClosure {
3520   outputStream* _st;
3521 public:
3522   PrintRegionClosure(outputStream* st) : _st(st) {}
3523   bool doHeapRegion(HeapRegion* r) {
3524     r->print_on(_st);
3525     return false;
3526   }
3527 };
3528 
3529 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3530                                        const HeapRegion* hr,
3531                                        const VerifyOption vo) const {
3532   switch (vo) {
3533   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3534   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3535   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3536   default:                            ShouldNotReachHere();
3537   }
3538   return false; // keep some compilers happy
3539 }
3540 
3541 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3542                                        const VerifyOption vo) const {
3543   switch (vo) {
3544   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3545   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3546   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3547   default:                            ShouldNotReachHere();
3548   }
3549   return false; // keep some compilers happy
3550 }
3551 
3552 void G1CollectedHeap::print_on(outputStream* st) const {
3553   st->print(" %-20s", "garbage-first heap");
3554   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3555             capacity()/K, used_unlocked()/K);
3556   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3557             _g1_storage.low_boundary(),
3558             _g1_storage.high(),
3559             _g1_storage.high_boundary());
3560   st->cr();
3561   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3562   uint young_regions = _young_list->length();
3563   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3564             (size_t) young_regions * HeapRegion::GrainBytes / K);
3565   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3566   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3567             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3568   st->cr();
3569   MetaspaceAux::print_on(st);
3570 }
3571 
3572 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3573   print_on(st);
3574 
3575   // Print the per-region information.
3576   st->cr();
3577   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3578                "HS=humongous(starts), HC=humongous(continues), "
3579                "CS=collection set, F=free, TS=gc time stamp, "
3580                "PTAMS=previous top-at-mark-start, "
3581                "NTAMS=next top-at-mark-start)");
3582   PrintRegionClosure blk(st);
3583   heap_region_iterate(&blk);
3584 }
3585 
3586 void G1CollectedHeap::print_on_error(outputStream* st) const {
3587   this->CollectedHeap::print_on_error(st);
3588 
3589   if (_cm != NULL) {
3590     st->cr();
3591     _cm->print_on_error(st);
3592   }
3593 }
3594 
3595 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3596   if (G1CollectedHeap::use_parallel_gc_threads()) {
3597     workers()->print_worker_threads_on(st);
3598   }
3599   _cmThread->print_on(st);
3600   st->cr();
3601   _cm->print_worker_threads_on(st);
3602   _cg1r->print_worker_threads_on(st);
3603   if (G1StringDedup::is_enabled()) {
3604     G1StringDedup::print_worker_threads_on(st);
3605   }
3606 }
3607 
3608 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3609   if (G1CollectedHeap::use_parallel_gc_threads()) {
3610     workers()->threads_do(tc);
3611   }
3612   tc->do_thread(_cmThread);
3613   _cg1r->threads_do(tc);
3614   if (G1StringDedup::is_enabled()) {
3615     G1StringDedup::threads_do(tc);
3616   }
3617 }
3618 
3619 void G1CollectedHeap::print_tracing_info() const {
3620   // We'll overload this to mean "trace GC pause statistics."
3621   if (TraceGen0Time || TraceGen1Time) {
3622     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3623     // to that.
3624     g1_policy()->print_tracing_info();
3625   }
3626   if (G1SummarizeRSetStats) {
3627     g1_rem_set()->print_summary_info();
3628   }
3629   if (G1SummarizeConcMark) {
3630     concurrent_mark()->print_summary_info();
3631   }
3632   g1_policy()->print_yg_surv_rate_info();
3633   SpecializationStats::print();
3634 }
3635 
3636 #ifndef PRODUCT
3637 // Helpful for debugging RSet issues.
3638 
3639 class PrintRSetsClosure : public HeapRegionClosure {
3640 private:
3641   const char* _msg;
3642   size_t _occupied_sum;
3643 
3644 public:
3645   bool doHeapRegion(HeapRegion* r) {
3646     HeapRegionRemSet* hrrs = r->rem_set();
3647     size_t occupied = hrrs->occupied();
3648     _occupied_sum += occupied;
3649 
3650     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3651                            HR_FORMAT_PARAMS(r));
3652     if (occupied == 0) {
3653       gclog_or_tty->print_cr("  RSet is empty");
3654     } else {
3655       hrrs->print();
3656     }
3657     gclog_or_tty->print_cr("----------");
3658     return false;
3659   }
3660 
3661   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3662     gclog_or_tty->cr();
3663     gclog_or_tty->print_cr("========================================");
3664     gclog_or_tty->print_cr("%s", msg);
3665     gclog_or_tty->cr();
3666   }
3667 
3668   ~PrintRSetsClosure() {
3669     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3670     gclog_or_tty->print_cr("========================================");
3671     gclog_or_tty->cr();
3672   }
3673 };
3674 
3675 void G1CollectedHeap::print_cset_rsets() {
3676   PrintRSetsClosure cl("Printing CSet RSets");
3677   collection_set_iterate(&cl);
3678 }
3679 
3680 void G1CollectedHeap::print_all_rsets() {
3681   PrintRSetsClosure cl("Printing All RSets");;
3682   heap_region_iterate(&cl);
3683 }
3684 #endif // PRODUCT
3685 
3686 G1CollectedHeap* G1CollectedHeap::heap() {
3687   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3688          "not a garbage-first heap");
3689   return _g1h;
3690 }
3691 
3692 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3693   // always_do_update_barrier = false;
3694   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3695   // Fill TLAB's and such
3696   accumulate_statistics_all_tlabs();
3697   ensure_parsability(true);
3698 
3699   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3700       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3701     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3702   }
3703 }
3704 
3705 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3706 
3707   if (G1SummarizeRSetStats &&
3708       (G1SummarizeRSetStatsPeriod > 0) &&
3709       // we are at the end of the GC. Total collections has already been increased.
3710       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3711     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3712   }
3713 
3714   // FIXME: what is this about?
3715   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3716   // is set.
3717   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3718                         "derived pointer present"));
3719   // always_do_update_barrier = true;
3720 
3721   resize_all_tlabs();
3722 
3723   // We have just completed a GC. Update the soft reference
3724   // policy with the new heap occupancy
3725   Universe::update_heap_info_at_gc();
3726 }
3727 
3728 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3729                                                unsigned int gc_count_before,
3730                                                bool* succeeded,
3731                                                GCCause::Cause gc_cause) {
3732   assert_heap_not_locked_and_not_at_safepoint();
3733   g1_policy()->record_stop_world_start();
3734   VM_G1IncCollectionPause op(gc_count_before,
3735                              word_size,
3736                              false, /* should_initiate_conc_mark */
3737                              g1_policy()->max_pause_time_ms(),
3738                              gc_cause);
3739   VMThread::execute(&op);
3740 
3741   HeapWord* result = op.result();
3742   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3743   assert(result == NULL || ret_succeeded,
3744          "the result should be NULL if the VM did not succeed");
3745   *succeeded = ret_succeeded;
3746 
3747   assert_heap_not_locked();
3748   return result;
3749 }
3750 
3751 void
3752 G1CollectedHeap::doConcurrentMark() {
3753   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3754   if (!_cmThread->in_progress()) {
3755     _cmThread->set_started();
3756     CGC_lock->notify();
3757   }
3758 }
3759 
3760 size_t G1CollectedHeap::pending_card_num() {
3761   size_t extra_cards = 0;
3762   JavaThread *curr = Threads::first();
3763   while (curr != NULL) {
3764     DirtyCardQueue& dcq = curr->dirty_card_queue();
3765     extra_cards += dcq.size();
3766     curr = curr->next();
3767   }
3768   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3769   size_t buffer_size = dcqs.buffer_size();
3770   size_t buffer_num = dcqs.completed_buffers_num();
3771 
3772   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3773   // in bytes - not the number of 'entries'. We need to convert
3774   // into a number of cards.
3775   return (buffer_size * buffer_num + extra_cards) / oopSize;
3776 }
3777 
3778 size_t G1CollectedHeap::cards_scanned() {
3779   return g1_rem_set()->cardsScanned();
3780 }
3781 
3782 void
3783 G1CollectedHeap::setup_surviving_young_words() {
3784   assert(_surviving_young_words == NULL, "pre-condition");
3785   uint array_length = g1_policy()->young_cset_region_length();
3786   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3787   if (_surviving_young_words == NULL) {
3788     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3789                           "Not enough space for young surv words summary.");
3790   }
3791   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3792 #ifdef ASSERT
3793   for (uint i = 0;  i < array_length; ++i) {
3794     assert( _surviving_young_words[i] == 0, "memset above" );
3795   }
3796 #endif // !ASSERT
3797 }
3798 
3799 void
3800 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3801   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3802   uint array_length = g1_policy()->young_cset_region_length();
3803   for (uint i = 0; i < array_length; ++i) {
3804     _surviving_young_words[i] += surv_young_words[i];
3805   }
3806 }
3807 
3808 void
3809 G1CollectedHeap::cleanup_surviving_young_words() {
3810   guarantee( _surviving_young_words != NULL, "pre-condition" );
3811   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3812   _surviving_young_words = NULL;
3813 }
3814 
3815 #ifdef ASSERT
3816 class VerifyCSetClosure: public HeapRegionClosure {
3817 public:
3818   bool doHeapRegion(HeapRegion* hr) {
3819     // Here we check that the CSet region's RSet is ready for parallel
3820     // iteration. The fields that we'll verify are only manipulated
3821     // when the region is part of a CSet and is collected. Afterwards,
3822     // we reset these fields when we clear the region's RSet (when the
3823     // region is freed) so they are ready when the region is
3824     // re-allocated. The only exception to this is if there's an
3825     // evacuation failure and instead of freeing the region we leave
3826     // it in the heap. In that case, we reset these fields during
3827     // evacuation failure handling.
3828     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3829 
3830     // Here's a good place to add any other checks we'd like to
3831     // perform on CSet regions.
3832     return false;
3833   }
3834 };
3835 #endif // ASSERT
3836 
3837 #if TASKQUEUE_STATS
3838 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3839   st->print_raw_cr("GC Task Stats");
3840   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3841   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3842 }
3843 
3844 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3845   print_taskqueue_stats_hdr(st);
3846 
3847   TaskQueueStats totals;
3848   const int n = workers() != NULL ? workers()->total_workers() : 1;
3849   for (int i = 0; i < n; ++i) {
3850     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3851     totals += task_queue(i)->stats;
3852   }
3853   st->print_raw("tot "); totals.print(st); st->cr();
3854 
3855   DEBUG_ONLY(totals.verify());
3856 }
3857 
3858 void G1CollectedHeap::reset_taskqueue_stats() {
3859   const int n = workers() != NULL ? workers()->total_workers() : 1;
3860   for (int i = 0; i < n; ++i) {
3861     task_queue(i)->stats.reset();
3862   }
3863 }
3864 #endif // TASKQUEUE_STATS
3865 
3866 void G1CollectedHeap::log_gc_header() {
3867   if (!G1Log::fine()) {
3868     return;
3869   }
3870 
3871   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3872 
3873   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3874     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3875     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3876 
3877   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3878 }
3879 
3880 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3881   if (!G1Log::fine()) {
3882     return;
3883   }
3884 
3885   if (G1Log::finer()) {
3886     if (evacuation_failed()) {
3887       gclog_or_tty->print(" (to-space exhausted)");
3888     }
3889     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3890     g1_policy()->phase_times()->note_gc_end();
3891     g1_policy()->phase_times()->print(pause_time_sec);
3892     g1_policy()->print_detailed_heap_transition();
3893   } else {
3894     if (evacuation_failed()) {
3895       gclog_or_tty->print("--");
3896     }
3897     g1_policy()->print_heap_transition();
3898     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3899   }
3900   gclog_or_tty->flush();
3901 }
3902 
3903 bool
3904 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3905   assert_at_safepoint(true /* should_be_vm_thread */);
3906   guarantee(!is_gc_active(), "collection is not reentrant");
3907 
3908   if (GC_locker::check_active_before_gc()) {
3909     return false;
3910   }
3911 
3912   _gc_timer_stw->register_gc_start();
3913 
3914   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3915 
3916   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3917   ResourceMark rm;
3918 
3919   print_heap_before_gc();
3920   trace_heap_before_gc(_gc_tracer_stw);
3921 
3922   verify_region_sets_optional();
3923   verify_dirty_young_regions();
3924 
3925   // This call will decide whether this pause is an initial-mark
3926   // pause. If it is, during_initial_mark_pause() will return true
3927   // for the duration of this pause.
3928   g1_policy()->decide_on_conc_mark_initiation();
3929 
3930   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3931   assert(!g1_policy()->during_initial_mark_pause() ||
3932           g1_policy()->gcs_are_young(), "sanity");
3933 
3934   // We also do not allow mixed GCs during marking.
3935   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3936 
3937   // Record whether this pause is an initial mark. When the current
3938   // thread has completed its logging output and it's safe to signal
3939   // the CM thread, the flag's value in the policy has been reset.
3940   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3941 
3942   // Inner scope for scope based logging, timers, and stats collection
3943   {
3944     EvacuationInfo evacuation_info;
3945 
3946     if (g1_policy()->during_initial_mark_pause()) {
3947       // We are about to start a marking cycle, so we increment the
3948       // full collection counter.
3949       increment_old_marking_cycles_started();
3950       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3951     }
3952 
3953     _gc_tracer_stw->report_yc_type(yc_type());
3954 
3955     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3956 
3957     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3958                                 workers()->active_workers() : 1);
3959     double pause_start_sec = os::elapsedTime();
3960     g1_policy()->phase_times()->note_gc_start(active_workers);
3961     log_gc_header();
3962 
3963     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3964     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3965 
3966     // If the secondary_free_list is not empty, append it to the
3967     // free_list. No need to wait for the cleanup operation to finish;
3968     // the region allocation code will check the secondary_free_list
3969     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3970     // set, skip this step so that the region allocation code has to
3971     // get entries from the secondary_free_list.
3972     if (!G1StressConcRegionFreeing) {
3973       append_secondary_free_list_if_not_empty_with_lock();
3974     }
3975 
3976     assert(check_young_list_well_formed(), "young list should be well formed");
3977     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3978            "sanity check");
3979 
3980     // Don't dynamically change the number of GC threads this early.  A value of
3981     // 0 is used to indicate serial work.  When parallel work is done,
3982     // it will be set.
3983 
3984     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3985       IsGCActiveMark x;
3986 
3987       gc_prologue(false);
3988       increment_total_collections(false /* full gc */);
3989       increment_gc_time_stamp();
3990 
3991       verify_before_gc();
3992 
3993       COMPILER2_PRESENT(DerivedPointerTable::clear());
3994 
3995       // Please see comment in g1CollectedHeap.hpp and
3996       // G1CollectedHeap::ref_processing_init() to see how
3997       // reference processing currently works in G1.
3998 
3999       // Enable discovery in the STW reference processor
4000       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
4001                                             true /*verify_no_refs*/);
4002 
4003       {
4004         // We want to temporarily turn off discovery by the
4005         // CM ref processor, if necessary, and turn it back on
4006         // on again later if we do. Using a scoped
4007         // NoRefDiscovery object will do this.
4008         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4009 
4010         // Forget the current alloc region (we might even choose it to be part
4011         // of the collection set!).
4012         release_mutator_alloc_region();
4013 
4014         // We should call this after we retire the mutator alloc
4015         // region(s) so that all the ALLOC / RETIRE events are generated
4016         // before the start GC event.
4017         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4018 
4019         // This timing is only used by the ergonomics to handle our pause target.
4020         // It is unclear why this should not include the full pause. We will
4021         // investigate this in CR 7178365.
4022         //
4023         // Preserving the old comment here if that helps the investigation:
4024         //
4025         // The elapsed time induced by the start time below deliberately elides
4026         // the possible verification above.
4027         double sample_start_time_sec = os::elapsedTime();
4028 
4029 #if YOUNG_LIST_VERBOSE
4030         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4031         _young_list->print();
4032         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4033 #endif // YOUNG_LIST_VERBOSE
4034 
4035         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4036 
4037         double scan_wait_start = os::elapsedTime();
4038         // We have to wait until the CM threads finish scanning the
4039         // root regions as it's the only way to ensure that all the
4040         // objects on them have been correctly scanned before we start
4041         // moving them during the GC.
4042         bool waited = _cm->root_regions()->wait_until_scan_finished();
4043         double wait_time_ms = 0.0;
4044         if (waited) {
4045           double scan_wait_end = os::elapsedTime();
4046           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4047         }
4048         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4049 
4050 #if YOUNG_LIST_VERBOSE
4051         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4052         _young_list->print();
4053 #endif // YOUNG_LIST_VERBOSE
4054 
4055         if (g1_policy()->during_initial_mark_pause()) {
4056           concurrent_mark()->checkpointRootsInitialPre();
4057         }
4058 
4059 #if YOUNG_LIST_VERBOSE
4060         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4061         _young_list->print();
4062         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4063 #endif // YOUNG_LIST_VERBOSE
4064 
4065         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4066 
4067         _cm->note_start_of_gc();
4068         // We should not verify the per-thread SATB buffers given that
4069         // we have not filtered them yet (we'll do so during the
4070         // GC). We also call this after finalize_cset() to
4071         // ensure that the CSet has been finalized.
4072         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4073                                  true  /* verify_enqueued_buffers */,
4074                                  false /* verify_thread_buffers */,
4075                                  true  /* verify_fingers */);
4076 
4077         if (_hr_printer.is_active()) {
4078           HeapRegion* hr = g1_policy()->collection_set();
4079           while (hr != NULL) {
4080             G1HRPrinter::RegionType type;
4081             if (!hr->is_young()) {
4082               type = G1HRPrinter::Old;
4083             } else if (hr->is_survivor()) {
4084               type = G1HRPrinter::Survivor;
4085             } else {
4086               type = G1HRPrinter::Eden;
4087             }
4088             _hr_printer.cset(hr);
4089             hr = hr->next_in_collection_set();
4090           }
4091         }
4092 
4093 #ifdef ASSERT
4094         VerifyCSetClosure cl;
4095         collection_set_iterate(&cl);
4096 #endif // ASSERT
4097 
4098         setup_surviving_young_words();
4099 
4100         // Initialize the GC alloc regions.
4101         init_gc_alloc_regions(evacuation_info);
4102 
4103         // Actually do the work...
4104         evacuate_collection_set(evacuation_info);
4105 
4106         // We do this to mainly verify the per-thread SATB buffers
4107         // (which have been filtered by now) since we didn't verify
4108         // them earlier. No point in re-checking the stacks / enqueued
4109         // buffers given that the CSet has not changed since last time
4110         // we checked.
4111         _cm->verify_no_cset_oops(false /* verify_stacks */,
4112                                  false /* verify_enqueued_buffers */,
4113                                  true  /* verify_thread_buffers */,
4114                                  true  /* verify_fingers */);
4115 
4116         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4117         g1_policy()->clear_collection_set();
4118 
4119         cleanup_surviving_young_words();
4120 
4121         // Start a new incremental collection set for the next pause.
4122         g1_policy()->start_incremental_cset_building();
4123 
4124         clear_cset_fast_test();
4125 
4126         _young_list->reset_sampled_info();
4127 
4128         // Don't check the whole heap at this point as the
4129         // GC alloc regions from this pause have been tagged
4130         // as survivors and moved on to the survivor list.
4131         // Survivor regions will fail the !is_young() check.
4132         assert(check_young_list_empty(false /* check_heap */),
4133           "young list should be empty");
4134 
4135 #if YOUNG_LIST_VERBOSE
4136         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4137         _young_list->print();
4138 #endif // YOUNG_LIST_VERBOSE
4139 
4140         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4141                                              _young_list->first_survivor_region(),
4142                                              _young_list->last_survivor_region());
4143 
4144         _young_list->reset_auxilary_lists();
4145 
4146         if (evacuation_failed()) {
4147           _summary_bytes_used = recalculate_used();
4148           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4149           for (uint i = 0; i < n_queues; i++) {
4150             if (_evacuation_failed_info_array[i].has_failed()) {
4151               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4152             }
4153           }
4154         } else {
4155           // The "used" of the the collection set have already been subtracted
4156           // when they were freed.  Add in the bytes evacuated.
4157           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4158         }
4159 
4160         if (g1_policy()->during_initial_mark_pause()) {
4161           // We have to do this before we notify the CM threads that
4162           // they can start working to make sure that all the
4163           // appropriate initialization is done on the CM object.
4164           concurrent_mark()->checkpointRootsInitialPost();
4165           set_marking_started();
4166           // Note that we don't actually trigger the CM thread at
4167           // this point. We do that later when we're sure that
4168           // the current thread has completed its logging output.
4169         }
4170 
4171         allocate_dummy_regions();
4172 
4173 #if YOUNG_LIST_VERBOSE
4174         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4175         _young_list->print();
4176         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4177 #endif // YOUNG_LIST_VERBOSE
4178 
4179         init_mutator_alloc_region();
4180 
4181         {
4182           size_t expand_bytes = g1_policy()->expansion_amount();
4183           if (expand_bytes > 0) {
4184             size_t bytes_before = capacity();
4185             // No need for an ergo verbose message here,
4186             // expansion_amount() does this when it returns a value > 0.
4187             if (!expand(expand_bytes)) {
4188               // We failed to expand the heap so let's verify that
4189               // committed/uncommitted amount match the backing store
4190               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4191               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4192             }
4193           }
4194         }
4195 
4196         // We redo the verification but now wrt to the new CSet which
4197         // has just got initialized after the previous CSet was freed.
4198         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4199                                  true  /* verify_enqueued_buffers */,
4200                                  true  /* verify_thread_buffers */,
4201                                  true  /* verify_fingers */);
4202         _cm->note_end_of_gc();
4203 
4204         // This timing is only used by the ergonomics to handle our pause target.
4205         // It is unclear why this should not include the full pause. We will
4206         // investigate this in CR 7178365.
4207         double sample_end_time_sec = os::elapsedTime();
4208         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4209         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4210 
4211         MemoryService::track_memory_usage();
4212 
4213         // In prepare_for_verify() below we'll need to scan the deferred
4214         // update buffers to bring the RSets up-to-date if
4215         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4216         // the update buffers we'll probably need to scan cards on the
4217         // regions we just allocated to (i.e., the GC alloc
4218         // regions). However, during the last GC we called
4219         // set_saved_mark() on all the GC alloc regions, so card
4220         // scanning might skip the [saved_mark_word()...top()] area of
4221         // those regions (i.e., the area we allocated objects into
4222         // during the last GC). But it shouldn't. Given that
4223         // saved_mark_word() is conditional on whether the GC time stamp
4224         // on the region is current or not, by incrementing the GC time
4225         // stamp here we invalidate all the GC time stamps on all the
4226         // regions and saved_mark_word() will simply return top() for
4227         // all the regions. This is a nicer way of ensuring this rather
4228         // than iterating over the regions and fixing them. In fact, the
4229         // GC time stamp increment here also ensures that
4230         // saved_mark_word() will return top() between pauses, i.e.,
4231         // during concurrent refinement. So we don't need the
4232         // is_gc_active() check to decided which top to use when
4233         // scanning cards (see CR 7039627).
4234         increment_gc_time_stamp();
4235 
4236         verify_after_gc();
4237 
4238         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4239         ref_processor_stw()->verify_no_references_recorded();
4240 
4241         // CM reference discovery will be re-enabled if necessary.
4242       }
4243 
4244       // We should do this after we potentially expand the heap so
4245       // that all the COMMIT events are generated before the end GC
4246       // event, and after we retire the GC alloc regions so that all
4247       // RETIRE events are generated before the end GC event.
4248       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4249 
4250       if (mark_in_progress()) {
4251         concurrent_mark()->update_g1_committed();
4252       }
4253 
4254 #ifdef TRACESPINNING
4255       ParallelTaskTerminator::print_termination_counts();
4256 #endif
4257 
4258       gc_epilogue(false);
4259     }
4260 
4261     // Print the remainder of the GC log output.
4262     log_gc_footer(os::elapsedTime() - pause_start_sec);
4263 
4264     // It is not yet to safe to tell the concurrent mark to
4265     // start as we have some optional output below. We don't want the
4266     // output from the concurrent mark thread interfering with this
4267     // logging output either.
4268 
4269     _hrs.verify_optional();
4270     verify_region_sets_optional();
4271 
4272     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4273     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4274 
4275     print_heap_after_gc();
4276     trace_heap_after_gc(_gc_tracer_stw);
4277 
4278     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4279     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4280     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4281     // before any GC notifications are raised.
4282     g1mm()->update_sizes();
4283 
4284     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4285     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4286     _gc_timer_stw->register_gc_end();
4287     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4288   }
4289   // It should now be safe to tell the concurrent mark thread to start
4290   // without its logging output interfering with the logging output
4291   // that came from the pause.
4292 
4293   if (should_start_conc_mark) {
4294     // CAUTION: after the doConcurrentMark() call below,
4295     // the concurrent marking thread(s) could be running
4296     // concurrently with us. Make sure that anything after
4297     // this point does not assume that we are the only GC thread
4298     // running. Note: of course, the actual marking work will
4299     // not start until the safepoint itself is released in
4300     // SuspendibleThreadSet::desynchronize().
4301     doConcurrentMark();
4302   }
4303 
4304   return true;
4305 }
4306 
4307 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4308 {
4309   size_t gclab_word_size;
4310   switch (purpose) {
4311     case GCAllocForSurvived:
4312       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4313       break;
4314     case GCAllocForTenured:
4315       gclab_word_size = _old_plab_stats.desired_plab_sz();
4316       break;
4317     default:
4318       assert(false, "unknown GCAllocPurpose");
4319       gclab_word_size = _old_plab_stats.desired_plab_sz();
4320       break;
4321   }
4322 
4323   // Prevent humongous PLAB sizes for two reasons:
4324   // * PLABs are allocated using a similar paths as oops, but should
4325   //   never be in a humongous region
4326   // * Allowing humongous PLABs needlessly churns the region free lists
4327   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4328 }
4329 
4330 void G1CollectedHeap::init_mutator_alloc_region() {
4331   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4332   _mutator_alloc_region.init();
4333 }
4334 
4335 void G1CollectedHeap::release_mutator_alloc_region() {
4336   _mutator_alloc_region.release();
4337   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4338 }
4339 
4340 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4341   assert_at_safepoint(true /* should_be_vm_thread */);
4342 
4343   _survivor_gc_alloc_region.init();
4344   _old_gc_alloc_region.init();
4345   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4346   _retained_old_gc_alloc_region = NULL;
4347 
4348   // We will discard the current GC alloc region if:
4349   // a) it's in the collection set (it can happen!),
4350   // b) it's already full (no point in using it),
4351   // c) it's empty (this means that it was emptied during
4352   // a cleanup and it should be on the free list now), or
4353   // d) it's humongous (this means that it was emptied
4354   // during a cleanup and was added to the free list, but
4355   // has been subsequently used to allocate a humongous
4356   // object that may be less than the region size).
4357   if (retained_region != NULL &&
4358       !retained_region->in_collection_set() &&
4359       !(retained_region->top() == retained_region->end()) &&
4360       !retained_region->is_empty() &&
4361       !retained_region->isHumongous()) {
4362     retained_region->set_saved_mark();
4363     // The retained region was added to the old region set when it was
4364     // retired. We have to remove it now, since we don't allow regions
4365     // we allocate to in the region sets. We'll re-add it later, when
4366     // it's retired again.
4367     _old_set.remove(retained_region);
4368     bool during_im = g1_policy()->during_initial_mark_pause();
4369     retained_region->note_start_of_copying(during_im);
4370     _old_gc_alloc_region.set(retained_region);
4371     _hr_printer.reuse(retained_region);
4372     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4373   }
4374 }
4375 
4376 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4377   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4378                                          _old_gc_alloc_region.count());
4379   _survivor_gc_alloc_region.release();
4380   // If we have an old GC alloc region to release, we'll save it in
4381   // _retained_old_gc_alloc_region. If we don't
4382   // _retained_old_gc_alloc_region will become NULL. This is what we
4383   // want either way so no reason to check explicitly for either
4384   // condition.
4385   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4386 
4387   if (ResizePLAB) {
4388     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4389     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4390   }
4391 }
4392 
4393 void G1CollectedHeap::abandon_gc_alloc_regions() {
4394   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4395   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4396   _retained_old_gc_alloc_region = NULL;
4397 }
4398 
4399 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4400   _drain_in_progress = false;
4401   set_evac_failure_closure(cl);
4402   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4403 }
4404 
4405 void G1CollectedHeap::finalize_for_evac_failure() {
4406   assert(_evac_failure_scan_stack != NULL &&
4407          _evac_failure_scan_stack->length() == 0,
4408          "Postcondition");
4409   assert(!_drain_in_progress, "Postcondition");
4410   delete _evac_failure_scan_stack;
4411   _evac_failure_scan_stack = NULL;
4412 }
4413 
4414 void G1CollectedHeap::remove_self_forwarding_pointers() {
4415   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4416 
4417   double remove_self_forwards_start = os::elapsedTime();
4418 
4419   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4420 
4421   if (G1CollectedHeap::use_parallel_gc_threads()) {
4422     set_par_threads();
4423     workers()->run_task(&rsfp_task);
4424     set_par_threads(0);
4425   } else {
4426     rsfp_task.work(0);
4427   }
4428 
4429   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4430 
4431   // Reset the claim values in the regions in the collection set.
4432   reset_cset_heap_region_claim_values();
4433 
4434   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4435 
4436   // Now restore saved marks, if any.
4437   assert(_objs_with_preserved_marks.size() ==
4438             _preserved_marks_of_objs.size(), "Both or none.");
4439   while (!_objs_with_preserved_marks.is_empty()) {
4440     oop obj = _objs_with_preserved_marks.pop();
4441     markOop m = _preserved_marks_of_objs.pop();
4442     obj->set_mark(m);
4443   }
4444   _objs_with_preserved_marks.clear(true);
4445   _preserved_marks_of_objs.clear(true);
4446 
4447   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4448 }
4449 
4450 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4451   _evac_failure_scan_stack->push(obj);
4452 }
4453 
4454 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4455   assert(_evac_failure_scan_stack != NULL, "precondition");
4456 
4457   while (_evac_failure_scan_stack->length() > 0) {
4458      oop obj = _evac_failure_scan_stack->pop();
4459      _evac_failure_closure->set_region(heap_region_containing(obj));
4460      obj->oop_iterate_backwards(_evac_failure_closure);
4461   }
4462 }
4463 
4464 oop
4465 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4466                                                oop old) {
4467   assert(obj_in_cs(old),
4468          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4469                  (HeapWord*) old));
4470   markOop m = old->mark();
4471   oop forward_ptr = old->forward_to_atomic(old);
4472   if (forward_ptr == NULL) {
4473     // Forward-to-self succeeded.
4474     assert(_par_scan_state != NULL, "par scan state");
4475     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4476     uint queue_num = _par_scan_state->queue_num();
4477 
4478     _evacuation_failed = true;
4479     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4480     if (_evac_failure_closure != cl) {
4481       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4482       assert(!_drain_in_progress,
4483              "Should only be true while someone holds the lock.");
4484       // Set the global evac-failure closure to the current thread's.
4485       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4486       set_evac_failure_closure(cl);
4487       // Now do the common part.
4488       handle_evacuation_failure_common(old, m);
4489       // Reset to NULL.
4490       set_evac_failure_closure(NULL);
4491     } else {
4492       // The lock is already held, and this is recursive.
4493       assert(_drain_in_progress, "This should only be the recursive case.");
4494       handle_evacuation_failure_common(old, m);
4495     }
4496     return old;
4497   } else {
4498     // Forward-to-self failed. Either someone else managed to allocate
4499     // space for this object (old != forward_ptr) or they beat us in
4500     // self-forwarding it (old == forward_ptr).
4501     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4502            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4503                    "should not be in the CSet",
4504                    (HeapWord*) old, (HeapWord*) forward_ptr));
4505     return forward_ptr;
4506   }
4507 }
4508 
4509 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4510   preserve_mark_if_necessary(old, m);
4511 
4512   HeapRegion* r = heap_region_containing(old);
4513   if (!r->evacuation_failed()) {
4514     r->set_evacuation_failed(true);
4515     _hr_printer.evac_failure(r);
4516   }
4517 
4518   push_on_evac_failure_scan_stack(old);
4519 
4520   if (!_drain_in_progress) {
4521     // prevent recursion in copy_to_survivor_space()
4522     _drain_in_progress = true;
4523     drain_evac_failure_scan_stack();
4524     _drain_in_progress = false;
4525   }
4526 }
4527 
4528 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4529   assert(evacuation_failed(), "Oversaving!");
4530   // We want to call the "for_promotion_failure" version only in the
4531   // case of a promotion failure.
4532   if (m->must_be_preserved_for_promotion_failure(obj)) {
4533     _objs_with_preserved_marks.push(obj);
4534     _preserved_marks_of_objs.push(m);
4535   }
4536 }
4537 
4538 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4539                                                   size_t word_size) {
4540   if (purpose == GCAllocForSurvived) {
4541     HeapWord* result = survivor_attempt_allocation(word_size);
4542     if (result != NULL) {
4543       return result;
4544     } else {
4545       // Let's try to allocate in the old gen in case we can fit the
4546       // object there.
4547       return old_attempt_allocation(word_size);
4548     }
4549   } else {
4550     assert(purpose ==  GCAllocForTenured, "sanity");
4551     HeapWord* result = old_attempt_allocation(word_size);
4552     if (result != NULL) {
4553       return result;
4554     } else {
4555       // Let's try to allocate in the survivors in case we can fit the
4556       // object there.
4557       return survivor_attempt_allocation(word_size);
4558     }
4559   }
4560 
4561   ShouldNotReachHere();
4562   // Trying to keep some compilers happy.
4563   return NULL;
4564 }
4565 
4566 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4567   ParGCAllocBuffer(gclab_word_size), _retired(true) { }
4568 
4569 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
4570   : _g1h(g1h),
4571     _refs(g1h->task_queue(queue_num)),
4572     _dcq(&g1h->dirty_card_queue_set()),
4573     _ct_bs(g1h->g1_barrier_set()),
4574     _g1_rem(g1h->g1_rem_set()),
4575     _hash_seed(17), _queue_num(queue_num),
4576     _term_attempts(0),
4577     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4578     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4579     _age_table(false), _scanner(g1h, this, rp),
4580     _strong_roots_time(0), _term_time(0),
4581     _alloc_buffer_waste(0), _undo_waste(0) {
4582   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4583   // we "sacrifice" entry 0 to keep track of surviving bytes for
4584   // non-young regions (where the age is -1)
4585   // We also add a few elements at the beginning and at the end in
4586   // an attempt to eliminate cache contention
4587   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4588   uint array_length = PADDING_ELEM_NUM +
4589                       real_length +
4590                       PADDING_ELEM_NUM;
4591   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4592   if (_surviving_young_words_base == NULL)
4593     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4594                           "Not enough space for young surv histo.");
4595   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4596   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4597 
4598   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4599   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4600 
4601   _start = os::elapsedTime();
4602 }
4603 
4604 void
4605 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4606 {
4607   st->print_raw_cr("GC Termination Stats");
4608   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4609                    " ------waste (KiB)------");
4610   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4611                    "  total   alloc    undo");
4612   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4613                    " ------- ------- -------");
4614 }
4615 
4616 void
4617 G1ParScanThreadState::print_termination_stats(int i,
4618                                               outputStream* const st) const
4619 {
4620   const double elapsed_ms = elapsed_time() * 1000.0;
4621   const double s_roots_ms = strong_roots_time() * 1000.0;
4622   const double term_ms    = term_time() * 1000.0;
4623   st->print_cr("%3d %9.2f %9.2f %6.2f "
4624                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4625                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4626                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4627                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4628                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4629                alloc_buffer_waste() * HeapWordSize / K,
4630                undo_waste() * HeapWordSize / K);
4631 }
4632 
4633 #ifdef ASSERT
4634 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4635   assert(ref != NULL, "invariant");
4636   assert(UseCompressedOops, "sanity");
4637   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4638   oop p = oopDesc::load_decode_heap_oop(ref);
4639   assert(_g1h->is_in_g1_reserved(p),
4640          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4641   return true;
4642 }
4643 
4644 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4645   assert(ref != NULL, "invariant");
4646   if (has_partial_array_mask(ref)) {
4647     // Must be in the collection set--it's already been copied.
4648     oop p = clear_partial_array_mask(ref);
4649     assert(_g1h->obj_in_cs(p),
4650            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4651   } else {
4652     oop p = oopDesc::load_decode_heap_oop(ref);
4653     assert(_g1h->is_in_g1_reserved(p),
4654            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4655   }
4656   return true;
4657 }
4658 
4659 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4660   if (ref.is_narrow()) {
4661     return verify_ref((narrowOop*) ref);
4662   } else {
4663     return verify_ref((oop*) ref);
4664   }
4665 }
4666 #endif // ASSERT
4667 
4668 void G1ParScanThreadState::trim_queue() {
4669   assert(_evac_failure_cl != NULL, "not set");
4670 
4671   StarTask ref;
4672   do {
4673     // Drain the overflow stack first, so other threads can steal.
4674     while (refs()->pop_overflow(ref)) {
4675       deal_with_reference(ref);
4676     }
4677 
4678     while (refs()->pop_local(ref)) {
4679       deal_with_reference(ref);
4680     }
4681   } while (!refs()->is_empty());
4682 }
4683 
4684 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4685                                      G1ParScanThreadState* par_scan_state) :
4686   _g1(g1), _par_scan_state(par_scan_state),
4687   _worker_id(par_scan_state->queue_num()) { }
4688 
4689 void G1ParCopyHelper::mark_object(oop obj) {
4690 #ifdef ASSERT
4691   HeapRegion* hr = _g1->heap_region_containing(obj);
4692   assert(hr != NULL, "sanity");
4693   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4694 #endif // ASSERT
4695 
4696   // We know that the object is not moving so it's safe to read its size.
4697   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4698 }
4699 
4700 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4701 #ifdef ASSERT
4702   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4703   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4704   assert(from_obj != to_obj, "should not be self-forwarded");
4705 
4706   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4707   assert(from_hr != NULL, "sanity");
4708   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4709 
4710   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4711   assert(to_hr != NULL, "sanity");
4712   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4713 #endif // ASSERT
4714 
4715   // The object might be in the process of being copied by another
4716   // worker so we cannot trust that its to-space image is
4717   // well-formed. So we have to read its size from its from-space
4718   // image which we know should not be changing.
4719   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4720 }
4721 
4722 oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
4723   size_t word_sz = old->size();
4724   HeapRegion* from_region = _g1h->heap_region_containing_raw(old);
4725   // +1 to make the -1 indexes valid...
4726   int       young_index = from_region->young_index_in_cset()+1;
4727   assert( (from_region->is_young() && young_index >  0) ||
4728          (!from_region->is_young() && young_index == 0), "invariant" );
4729   G1CollectorPolicy* g1p = _g1h->g1_policy();
4730   markOop m = old->mark();
4731   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4732                                            : m->age();
4733   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4734                                                              word_sz);
4735   HeapWord* obj_ptr = allocate(alloc_purpose, word_sz);
4736 #ifndef PRODUCT
4737   // Should this evacuation fail?
4738   if (_g1h->evacuation_should_fail()) {
4739     if (obj_ptr != NULL) {
4740       undo_allocation(alloc_purpose, obj_ptr, word_sz);
4741       obj_ptr = NULL;
4742     }
4743   }
4744 #endif // !PRODUCT
4745 
4746   if (obj_ptr == NULL) {
4747     // This will either forward-to-self, or detect that someone else has
4748     // installed a forwarding pointer.
4749     return _g1h->handle_evacuation_failure_par(this, old);
4750   }
4751 
4752   oop obj = oop(obj_ptr);
4753 
4754   // We're going to allocate linearly, so might as well prefetch ahead.
4755   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4756 
4757   oop forward_ptr = old->forward_to_atomic(obj);
4758   if (forward_ptr == NULL) {
4759     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4760 
4761     // alloc_purpose is just a hint to allocate() above, recheck the type of region
4762     // we actually allocated from and update alloc_purpose accordingly
4763     HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
4764     alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;
4765 
4766     if (g1p->track_object_age(alloc_purpose)) {
4767       // We could simply do obj->incr_age(). However, this causes a
4768       // performance issue. obj->incr_age() will first check whether
4769       // the object has a displaced mark by checking its mark word;
4770       // getting the mark word from the new location of the object
4771       // stalls. So, given that we already have the mark word and we
4772       // are about to install it anyway, it's better to increase the
4773       // age on the mark word, when the object does not have a
4774       // displaced mark word. We're not expecting many objects to have
4775       // a displaced marked word, so that case is not optimized
4776       // further (it could be...) and we simply call obj->incr_age().
4777 
4778       if (m->has_displaced_mark_helper()) {
4779         // in this case, we have to install the mark word first,
4780         // otherwise obj looks to be forwarded (the old mark word,
4781         // which contains the forward pointer, was copied)
4782         obj->set_mark(m);
4783         obj->incr_age();
4784       } else {
4785         m = m->incr_age();
4786         obj->set_mark(m);
4787       }
4788       age_table()->add(obj, word_sz);
4789     } else {
4790       obj->set_mark(m);
4791     }
4792 
4793     if (G1StringDedup::is_enabled()) {
4794       G1StringDedup::enqueue_from_evacuation(from_region->is_young(),
4795                                              to_region->is_young(),
4796                                              queue_num(),
4797                                              obj);
4798     }
4799 
4800     size_t* surv_young_words = surviving_young_words();
4801     surv_young_words[young_index] += word_sz;
4802 
4803     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4804       // We keep track of the next start index in the length field of
4805       // the to-space object. The actual length can be found in the
4806       // length field of the from-space object.
4807       arrayOop(obj)->set_length(0);
4808       oop* old_p = set_partial_array_mask(old);
4809       push_on_queue(old_p);
4810     } else {
4811       // No point in using the slower heap_region_containing() method,
4812       // given that we know obj is in the heap.
4813       _scanner.set_region(_g1h->heap_region_containing_raw(obj));
4814       obj->oop_iterate_backwards(&_scanner);
4815     }
4816   } else {
4817     undo_allocation(alloc_purpose, obj_ptr, word_sz);
4818     obj = forward_ptr;
4819   }
4820   return obj;
4821 }
4822 
4823 template <class T>
4824 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4825   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4826     _scanned_klass->record_modified_oops();
4827   }
4828 }
4829 
4830 template <G1Barrier barrier, bool do_mark_object>
4831 template <class T>
4832 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4833   T heap_oop = oopDesc::load_heap_oop(p);
4834 
4835   if (oopDesc::is_null(heap_oop)) {
4836     return;
4837   }
4838 
4839   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4840 
4841   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4842 
4843   if (_g1->in_cset_fast_test(obj)) {
4844     oop forwardee;
4845     if (obj->is_forwarded()) {
4846       forwardee = obj->forwardee();
4847     } else {
4848       forwardee = _par_scan_state->copy_to_survivor_space(obj);
4849     }
4850     assert(forwardee != NULL, "forwardee should not be NULL");
4851     oopDesc::encode_store_heap_oop(p, forwardee);
4852     if (do_mark_object && forwardee != obj) {
4853       // If the object is self-forwarded we don't need to explicitly
4854       // mark it, the evacuation failure protocol will do so.
4855       mark_forwarded_object(obj, forwardee);
4856     }
4857 
4858     if (barrier == G1BarrierKlass) {
4859       do_klass_barrier(p, forwardee);
4860     }
4861   } else {
4862     // The object is not in collection set. If we're a root scanning
4863     // closure during an initial mark pause (i.e. do_mark_object will
4864     // be true) then attempt to mark the object.
4865     if (do_mark_object) {
4866       mark_object(obj);
4867     }
4868   }
4869 
4870   if (barrier == G1BarrierEvac) {
4871     _par_scan_state->update_rs(_from, p, _worker_id);
4872   }
4873 }
4874 
4875 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
4876 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4877 
4878 class G1ParEvacuateFollowersClosure : public VoidClosure {
4879 protected:
4880   G1CollectedHeap*              _g1h;
4881   G1ParScanThreadState*         _par_scan_state;
4882   RefToScanQueueSet*            _queues;
4883   ParallelTaskTerminator*       _terminator;
4884 
4885   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4886   RefToScanQueueSet*      queues()         { return _queues; }
4887   ParallelTaskTerminator* terminator()     { return _terminator; }
4888 
4889 public:
4890   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4891                                 G1ParScanThreadState* par_scan_state,
4892                                 RefToScanQueueSet* queues,
4893                                 ParallelTaskTerminator* terminator)
4894     : _g1h(g1h), _par_scan_state(par_scan_state),
4895       _queues(queues), _terminator(terminator) {}
4896 
4897   void do_void();
4898 
4899 private:
4900   inline bool offer_termination();
4901 };
4902 
4903 bool G1ParEvacuateFollowersClosure::offer_termination() {
4904   G1ParScanThreadState* const pss = par_scan_state();
4905   pss->start_term_time();
4906   const bool res = terminator()->offer_termination();
4907   pss->end_term_time();
4908   return res;
4909 }
4910 
4911 void G1ParEvacuateFollowersClosure::do_void() {
4912   StarTask stolen_task;
4913   G1ParScanThreadState* const pss = par_scan_state();
4914   pss->trim_queue();
4915 
4916   do {
4917     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4918       assert(pss->verify_task(stolen_task), "sanity");
4919       if (stolen_task.is_narrow()) {
4920         pss->deal_with_reference((narrowOop*) stolen_task);
4921       } else {
4922         pss->deal_with_reference((oop*) stolen_task);
4923       }
4924 
4925       // We've just processed a reference and we might have made
4926       // available new entries on the queues. So we have to make sure
4927       // we drain the queues as necessary.
4928       pss->trim_queue();
4929     }
4930   } while (!offer_termination());
4931 }
4932 
4933 class G1KlassScanClosure : public KlassClosure {
4934  G1ParCopyHelper* _closure;
4935  bool             _process_only_dirty;
4936  int              _count;
4937  public:
4938   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4939       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4940   void do_klass(Klass* klass) {
4941     // If the klass has not been dirtied we know that there's
4942     // no references into  the young gen and we can skip it.
4943    if (!_process_only_dirty || klass->has_modified_oops()) {
4944       // Clean the klass since we're going to scavenge all the metadata.
4945       klass->clear_modified_oops();
4946 
4947       // Tell the closure that this klass is the Klass to scavenge
4948       // and is the one to dirty if oops are left pointing into the young gen.
4949       _closure->set_scanned_klass(klass);
4950 
4951       klass->oops_do(_closure);
4952 
4953       _closure->set_scanned_klass(NULL);
4954     }
4955     _count++;
4956   }
4957 };
4958 
4959 class G1ParTask : public AbstractGangTask {
4960 protected:
4961   G1CollectedHeap*       _g1h;
4962   RefToScanQueueSet      *_queues;
4963   ParallelTaskTerminator _terminator;
4964   uint _n_workers;
4965 
4966   Mutex _stats_lock;
4967   Mutex* stats_lock() { return &_stats_lock; }
4968 
4969   size_t getNCards() {
4970     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4971       / G1BlockOffsetSharedArray::N_bytes;
4972   }
4973 
4974 public:
4975   G1ParTask(G1CollectedHeap* g1h,
4976             RefToScanQueueSet *task_queues)
4977     : AbstractGangTask("G1 collection"),
4978       _g1h(g1h),
4979       _queues(task_queues),
4980       _terminator(0, _queues),
4981       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4982   {}
4983 
4984   RefToScanQueueSet* queues() { return _queues; }
4985 
4986   RefToScanQueue *work_queue(int i) {
4987     return queues()->queue(i);
4988   }
4989 
4990   ParallelTaskTerminator* terminator() { return &_terminator; }
4991 
4992   virtual void set_for_termination(int active_workers) {
4993     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4994     // in the young space (_par_seq_tasks) in the G1 heap
4995     // for SequentialSubTasksDone.
4996     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4997     // both of which need setting by set_n_termination().
4998     _g1h->SharedHeap::set_n_termination(active_workers);
4999     _g1h->set_n_termination(active_workers);
5000     terminator()->reset_for_reuse(active_workers);
5001     _n_workers = active_workers;
5002   }
5003 
5004   void work(uint worker_id) {
5005     if (worker_id >= _n_workers) return;  // no work needed this round
5006 
5007     double start_time_ms = os::elapsedTime() * 1000.0;
5008     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
5009 
5010     {
5011       ResourceMark rm;
5012       HandleMark   hm;
5013 
5014       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5015 
5016       G1ParScanThreadState            pss(_g1h, worker_id, rp);
5017       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
5018 
5019       pss.set_evac_failure_closure(&evac_failure_cl);
5020 
5021       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5022       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5023 
5024       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5025       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
5026 
5027       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
5028       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
5029       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5030 
5031       OopClosure*                    scan_root_cl = &only_scan_root_cl;
5032       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5033 
5034       if (_g1h->g1_policy()->during_initial_mark_pause()) {
5035         // We also need to mark copied objects.
5036         scan_root_cl = &scan_mark_root_cl;
5037         scan_klasses_cl = &scan_mark_klasses_cl_s;
5038       }
5039 
5040       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5041 
5042       // Don't scan the scavengable methods in the code cache as part
5043       // of strong root scanning. The code roots that point into a
5044       // region in the collection set are scanned when we scan the
5045       // region's RSet.
5046       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5047 
5048       pss.start_strong_roots();
5049       _g1h->g1_process_strong_roots(/* is scavenging */ true,
5050                                     SharedHeap::ScanningOption(so),
5051                                     scan_root_cl,
5052                                     &push_heap_rs_cl,
5053                                     scan_klasses_cl,
5054                                     worker_id);
5055       pss.end_strong_roots();
5056 
5057       {
5058         double start = os::elapsedTime();
5059         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
5060         evac.do_void();
5061         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
5062         double term_ms = pss.term_time()*1000.0;
5063         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5064         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5065       }
5066       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
5067       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
5068 
5069       if (ParallelGCVerbose) {
5070         MutexLocker x(stats_lock());
5071         pss.print_termination_stats(worker_id);
5072       }
5073 
5074       assert(pss.refs()->is_empty(), "should be empty");
5075 
5076       // Close the inner scope so that the ResourceMark and HandleMark
5077       // destructors are executed here and are included as part of the
5078       // "GC Worker Time".
5079     }
5080 
5081     double end_time_ms = os::elapsedTime() * 1000.0;
5082     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5083   }
5084 };
5085 
5086 // *** Common G1 Evacuation Stuff
5087 
5088 // This method is run in a GC worker.
5089 
5090 void
5091 G1CollectedHeap::
5092 g1_process_strong_roots(bool is_scavenging,
5093                         ScanningOption so,
5094                         OopClosure* scan_non_heap_roots,
5095                         OopsInHeapRegionClosure* scan_rs,
5096                         G1KlassScanClosure* scan_klasses,
5097                         uint worker_i) {
5098 
5099   // First scan the strong roots
5100   double ext_roots_start = os::elapsedTime();
5101   double closure_app_time_sec = 0.0;
5102 
5103   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5104 
5105   assert(so & SO_CodeCache || scan_rs != NULL, "must scan code roots somehow");
5106   // Walk the code cache/strong code roots w/o buffering, because StarTask
5107   // cannot handle unaligned oop locations.
5108   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5109 
5110   process_strong_roots(false, // no scoping; this is parallel code
5111                        is_scavenging, so,
5112                        &buf_scan_non_heap_roots,
5113                        &eager_scan_code_roots,
5114                        scan_klasses
5115                        );
5116 
5117   // Now the CM ref_processor roots.
5118   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5119     // We need to treat the discovered reference lists of the
5120     // concurrent mark ref processor as roots and keep entries
5121     // (which are added by the marking threads) on them live
5122     // until they can be processed at the end of marking.
5123     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5124   }
5125 
5126   // Finish up any enqueued closure apps (attributed as object copy time).
5127   buf_scan_non_heap_roots.done();
5128 
5129   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5130 
5131   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5132 
5133   double ext_root_time_ms =
5134     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5135 
5136   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5137 
5138   // During conc marking we have to filter the per-thread SATB buffers
5139   // to make sure we remove any oops into the CSet (which will show up
5140   // as implicitly live).
5141   double satb_filtering_ms = 0.0;
5142   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5143     if (mark_in_progress()) {
5144       double satb_filter_start = os::elapsedTime();
5145 
5146       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5147 
5148       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5149     }
5150   }
5151   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5152 
5153   // If this is an initial mark pause, and we're not scanning
5154   // the entire code cache, we need to mark the oops in the
5155   // strong code root lists for the regions that are not in
5156   // the collection set.
5157   // Note all threads participate in this set of root tasks.
5158   double mark_strong_code_roots_ms = 0.0;
5159   if (g1_policy()->during_initial_mark_pause() && !(so & SO_CodeCache)) {
5160     double mark_strong_roots_start = os::elapsedTime();
5161     mark_strong_code_roots(worker_i);
5162     mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
5163   }
5164   g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);
5165 
5166   // Now scan the complement of the collection set.
5167   if (scan_rs != NULL) {
5168     g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5169   }
5170   _process_strong_tasks->all_tasks_completed();
5171 }
5172 
5173 void
5174 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
5175   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5176   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
5177 }
5178 
5179 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
5180 private:
5181   BoolObjectClosure* _is_alive;
5182   int _initial_string_table_size;
5183   int _initial_symbol_table_size;
5184 
5185   bool  _process_strings;
5186   int _strings_processed;
5187   int _strings_removed;
5188 
5189   bool  _process_symbols;
5190   int _symbols_processed;
5191   int _symbols_removed;
5192 
5193   bool _do_in_parallel;
5194 public:
5195   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
5196     AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
5197     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
5198     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
5199     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
5200 
5201     _initial_string_table_size = StringTable::the_table()->table_size();
5202     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
5203     if (process_strings) {
5204       StringTable::clear_parallel_claimed_index();
5205     }
5206     if (process_symbols) {
5207       SymbolTable::clear_parallel_claimed_index();
5208     }
5209   }
5210 
5211   ~G1StringSymbolTableUnlinkTask() {
5212     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
5213               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
5214                       StringTable::parallel_claimed_index(), _initial_string_table_size));
5215     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
5216               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
5217                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
5218   }
5219 
5220   void work(uint worker_id) {
5221     if (_do_in_parallel) {
5222       int strings_processed = 0;
5223       int strings_removed = 0;
5224       int symbols_processed = 0;
5225       int symbols_removed = 0;
5226       if (_process_strings) {
5227         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
5228         Atomic::add(strings_processed, &_strings_processed);
5229         Atomic::add(strings_removed, &_strings_removed);
5230       }
5231       if (_process_symbols) {
5232         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
5233         Atomic::add(symbols_processed, &_symbols_processed);
5234         Atomic::add(symbols_removed, &_symbols_removed);
5235       }
5236     } else {
5237       if (_process_strings) {
5238         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
5239       }
5240       if (_process_symbols) {
5241         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
5242       }
5243     }
5244   }
5245 
5246   size_t strings_processed() const { return (size_t)_strings_processed; }
5247   size_t strings_removed()   const { return (size_t)_strings_removed; }
5248 
5249   size_t symbols_processed() const { return (size_t)_symbols_processed; }
5250   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
5251 };
5252 
5253 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5254                                                      bool process_strings, bool process_symbols) {
5255   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5256                    _g1h->workers()->active_workers() : 1);
5257 
5258   G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5259   if (G1CollectedHeap::use_parallel_gc_threads()) {
5260     set_par_threads(n_workers);
5261     workers()->run_task(&g1_unlink_task);
5262     set_par_threads(0);
5263   } else {
5264     g1_unlink_task.work(0);
5265   }
5266   if (G1TraceStringSymbolTableScrubbing) {
5267     gclog_or_tty->print_cr("Cleaned string and symbol table, "
5268                            "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
5269                            "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
5270                            g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
5271                            g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
5272   }
5273 
5274   if (G1StringDedup::is_enabled()) {
5275     G1StringDedup::unlink(is_alive);
5276   }
5277 }
5278 
5279 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
5280  private:
5281   size_t _num_processed;
5282 
5283  public:
5284   RedirtyLoggedCardTableEntryFastClosure() : CardTableEntryClosure(), _num_processed(0) { }
5285 
5286   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
5287     *card_ptr = CardTableModRefBS::dirty_card_val();
5288     _num_processed++;
5289     return true;
5290   }
5291 
5292   size_t num_processed() const { return _num_processed; }
5293 };
5294 
5295 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5296  private:
5297   DirtyCardQueueSet* _queue;
5298  public:
5299   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5300 
5301   virtual void work(uint worker_id) {
5302     double start_time = os::elapsedTime();
5303 
5304     RedirtyLoggedCardTableEntryFastClosure cl;
5305     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
5306       _queue->par_apply_closure_to_all_completed_buffers(&cl);
5307     } else {
5308       _queue->apply_closure_to_all_completed_buffers(&cl);
5309     }
5310 
5311     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
5312     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
5313     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
5314   }
5315 };
5316 
5317 void G1CollectedHeap::redirty_logged_cards() {
5318   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
5319   double redirty_logged_cards_start = os::elapsedTime();
5320 
5321   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5322                    _g1h->workers()->active_workers() : 1);
5323 
5324   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5325   dirty_card_queue_set().reset_for_par_iteration();
5326   if (use_parallel_gc_threads()) {
5327     set_par_threads(n_workers);
5328     workers()->run_task(&redirty_task);
5329     set_par_threads(0);
5330   } else {
5331     redirty_task.work(0);
5332   }
5333 
5334   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5335   dcq.merge_bufferlists(&dirty_card_queue_set());
5336   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5337 
5338   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5339 }
5340 
5341 // Weak Reference Processing support
5342 
5343 // An always "is_alive" closure that is used to preserve referents.
5344 // If the object is non-null then it's alive.  Used in the preservation
5345 // of referent objects that are pointed to by reference objects
5346 // discovered by the CM ref processor.
5347 class G1AlwaysAliveClosure: public BoolObjectClosure {
5348   G1CollectedHeap* _g1;
5349 public:
5350   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5351   bool do_object_b(oop p) {
5352     if (p != NULL) {
5353       return true;
5354     }
5355     return false;
5356   }
5357 };
5358 
5359 bool G1STWIsAliveClosure::do_object_b(oop p) {
5360   // An object is reachable if it is outside the collection set,
5361   // or is inside and copied.
5362   return !_g1->obj_in_cs(p) || p->is_forwarded();
5363 }
5364 
5365 // Non Copying Keep Alive closure
5366 class G1KeepAliveClosure: public OopClosure {
5367   G1CollectedHeap* _g1;
5368 public:
5369   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5370   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5371   void do_oop(      oop* p) {
5372     oop obj = *p;
5373 
5374     if (_g1->obj_in_cs(obj)) {
5375       assert( obj->is_forwarded(), "invariant" );
5376       *p = obj->forwardee();
5377     }
5378   }
5379 };
5380 
5381 // Copying Keep Alive closure - can be called from both
5382 // serial and parallel code as long as different worker
5383 // threads utilize different G1ParScanThreadState instances
5384 // and different queues.
5385 
5386 class G1CopyingKeepAliveClosure: public OopClosure {
5387   G1CollectedHeap*         _g1h;
5388   OopClosure*              _copy_non_heap_obj_cl;
5389   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5390   G1ParScanThreadState*    _par_scan_state;
5391 
5392 public:
5393   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5394                             OopClosure* non_heap_obj_cl,
5395                             OopsInHeapRegionClosure* metadata_obj_cl,
5396                             G1ParScanThreadState* pss):
5397     _g1h(g1h),
5398     _copy_non_heap_obj_cl(non_heap_obj_cl),
5399     _copy_metadata_obj_cl(metadata_obj_cl),
5400     _par_scan_state(pss)
5401   {}
5402 
5403   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5404   virtual void do_oop(      oop* p) { do_oop_work(p); }
5405 
5406   template <class T> void do_oop_work(T* p) {
5407     oop obj = oopDesc::load_decode_heap_oop(p);
5408 
5409     if (_g1h->obj_in_cs(obj)) {
5410       // If the referent object has been forwarded (either copied
5411       // to a new location or to itself in the event of an
5412       // evacuation failure) then we need to update the reference
5413       // field and, if both reference and referent are in the G1
5414       // heap, update the RSet for the referent.
5415       //
5416       // If the referent has not been forwarded then we have to keep
5417       // it alive by policy. Therefore we have copy the referent.
5418       //
5419       // If the reference field is in the G1 heap then we can push
5420       // on the PSS queue. When the queue is drained (after each
5421       // phase of reference processing) the object and it's followers
5422       // will be copied, the reference field set to point to the
5423       // new location, and the RSet updated. Otherwise we need to
5424       // use the the non-heap or metadata closures directly to copy
5425       // the referent object and update the pointer, while avoiding
5426       // updating the RSet.
5427 
5428       if (_g1h->is_in_g1_reserved(p)) {
5429         _par_scan_state->push_on_queue(p);
5430       } else {
5431         assert(!Metaspace::contains((const void*)p),
5432                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5433                               PTR_FORMAT, p));
5434           _copy_non_heap_obj_cl->do_oop(p);
5435         }
5436       }
5437     }
5438 };
5439 
5440 // Serial drain queue closure. Called as the 'complete_gc'
5441 // closure for each discovered list in some of the
5442 // reference processing phases.
5443 
5444 class G1STWDrainQueueClosure: public VoidClosure {
5445 protected:
5446   G1CollectedHeap* _g1h;
5447   G1ParScanThreadState* _par_scan_state;
5448 
5449   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5450 
5451 public:
5452   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5453     _g1h(g1h),
5454     _par_scan_state(pss)
5455   { }
5456 
5457   void do_void() {
5458     G1ParScanThreadState* const pss = par_scan_state();
5459     pss->trim_queue();
5460   }
5461 };
5462 
5463 // Parallel Reference Processing closures
5464 
5465 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5466 // processing during G1 evacuation pauses.
5467 
5468 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5469 private:
5470   G1CollectedHeap*   _g1h;
5471   RefToScanQueueSet* _queues;
5472   FlexibleWorkGang*  _workers;
5473   int                _active_workers;
5474 
5475 public:
5476   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5477                         FlexibleWorkGang* workers,
5478                         RefToScanQueueSet *task_queues,
5479                         int n_workers) :
5480     _g1h(g1h),
5481     _queues(task_queues),
5482     _workers(workers),
5483     _active_workers(n_workers)
5484   {
5485     assert(n_workers > 0, "shouldn't call this otherwise");
5486   }
5487 
5488   // Executes the given task using concurrent marking worker threads.
5489   virtual void execute(ProcessTask& task);
5490   virtual void execute(EnqueueTask& task);
5491 };
5492 
5493 // Gang task for possibly parallel reference processing
5494 
5495 class G1STWRefProcTaskProxy: public AbstractGangTask {
5496   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5497   ProcessTask&     _proc_task;
5498   G1CollectedHeap* _g1h;
5499   RefToScanQueueSet *_task_queues;
5500   ParallelTaskTerminator* _terminator;
5501 
5502 public:
5503   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5504                      G1CollectedHeap* g1h,
5505                      RefToScanQueueSet *task_queues,
5506                      ParallelTaskTerminator* terminator) :
5507     AbstractGangTask("Process reference objects in parallel"),
5508     _proc_task(proc_task),
5509     _g1h(g1h),
5510     _task_queues(task_queues),
5511     _terminator(terminator)
5512   {}
5513 
5514   virtual void work(uint worker_id) {
5515     // The reference processing task executed by a single worker.
5516     ResourceMark rm;
5517     HandleMark   hm;
5518 
5519     G1STWIsAliveClosure is_alive(_g1h);
5520 
5521     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5522     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5523 
5524     pss.set_evac_failure_closure(&evac_failure_cl);
5525 
5526     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5527     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5528 
5529     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5530     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5531 
5532     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5533     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5534 
5535     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5536       // We also need to mark copied objects.
5537       copy_non_heap_cl = &copy_mark_non_heap_cl;
5538       copy_metadata_cl = &copy_mark_metadata_cl;
5539     }
5540 
5541     // Keep alive closure.
5542     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5543 
5544     // Complete GC closure
5545     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5546 
5547     // Call the reference processing task's work routine.
5548     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5549 
5550     // Note we cannot assert that the refs array is empty here as not all
5551     // of the processing tasks (specifically phase2 - pp2_work) execute
5552     // the complete_gc closure (which ordinarily would drain the queue) so
5553     // the queue may not be empty.
5554   }
5555 };
5556 
5557 // Driver routine for parallel reference processing.
5558 // Creates an instance of the ref processing gang
5559 // task and has the worker threads execute it.
5560 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5561   assert(_workers != NULL, "Need parallel worker threads.");
5562 
5563   ParallelTaskTerminator terminator(_active_workers, _queues);
5564   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5565 
5566   _g1h->set_par_threads(_active_workers);
5567   _workers->run_task(&proc_task_proxy);
5568   _g1h->set_par_threads(0);
5569 }
5570 
5571 // Gang task for parallel reference enqueueing.
5572 
5573 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5574   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5575   EnqueueTask& _enq_task;
5576 
5577 public:
5578   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5579     AbstractGangTask("Enqueue reference objects in parallel"),
5580     _enq_task(enq_task)
5581   { }
5582 
5583   virtual void work(uint worker_id) {
5584     _enq_task.work(worker_id);
5585   }
5586 };
5587 
5588 // Driver routine for parallel reference enqueueing.
5589 // Creates an instance of the ref enqueueing gang
5590 // task and has the worker threads execute it.
5591 
5592 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5593   assert(_workers != NULL, "Need parallel worker threads.");
5594 
5595   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5596 
5597   _g1h->set_par_threads(_active_workers);
5598   _workers->run_task(&enq_task_proxy);
5599   _g1h->set_par_threads(0);
5600 }
5601 
5602 // End of weak reference support closures
5603 
5604 // Abstract task used to preserve (i.e. copy) any referent objects
5605 // that are in the collection set and are pointed to by reference
5606 // objects discovered by the CM ref processor.
5607 
5608 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5609 protected:
5610   G1CollectedHeap* _g1h;
5611   RefToScanQueueSet      *_queues;
5612   ParallelTaskTerminator _terminator;
5613   uint _n_workers;
5614 
5615 public:
5616   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5617     AbstractGangTask("ParPreserveCMReferents"),
5618     _g1h(g1h),
5619     _queues(task_queues),
5620     _terminator(workers, _queues),
5621     _n_workers(workers)
5622   { }
5623 
5624   void work(uint worker_id) {
5625     ResourceMark rm;
5626     HandleMark   hm;
5627 
5628     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5629     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5630 
5631     pss.set_evac_failure_closure(&evac_failure_cl);
5632 
5633     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5634 
5635 
5636     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5637     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5638 
5639     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5640     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5641 
5642     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5643     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5644 
5645     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5646       // We also need to mark copied objects.
5647       copy_non_heap_cl = &copy_mark_non_heap_cl;
5648       copy_metadata_cl = &copy_mark_metadata_cl;
5649     }
5650 
5651     // Is alive closure
5652     G1AlwaysAliveClosure always_alive(_g1h);
5653 
5654     // Copying keep alive closure. Applied to referent objects that need
5655     // to be copied.
5656     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5657 
5658     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5659 
5660     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5661     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5662 
5663     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5664     // So this must be true - but assert just in case someone decides to
5665     // change the worker ids.
5666     assert(0 <= worker_id && worker_id < limit, "sanity");
5667     assert(!rp->discovery_is_atomic(), "check this code");
5668 
5669     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5670     for (uint idx = worker_id; idx < limit; idx += stride) {
5671       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5672 
5673       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5674       while (iter.has_next()) {
5675         // Since discovery is not atomic for the CM ref processor, we
5676         // can see some null referent objects.
5677         iter.load_ptrs(DEBUG_ONLY(true));
5678         oop ref = iter.obj();
5679 
5680         // This will filter nulls.
5681         if (iter.is_referent_alive()) {
5682           iter.make_referent_alive();
5683         }
5684         iter.move_to_next();
5685       }
5686     }
5687 
5688     // Drain the queue - which may cause stealing
5689     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5690     drain_queue.do_void();
5691     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5692     assert(pss.refs()->is_empty(), "should be");
5693   }
5694 };
5695 
5696 // Weak Reference processing during an evacuation pause (part 1).
5697 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5698   double ref_proc_start = os::elapsedTime();
5699 
5700   ReferenceProcessor* rp = _ref_processor_stw;
5701   assert(rp->discovery_enabled(), "should have been enabled");
5702 
5703   // Any reference objects, in the collection set, that were 'discovered'
5704   // by the CM ref processor should have already been copied (either by
5705   // applying the external root copy closure to the discovered lists, or
5706   // by following an RSet entry).
5707   //
5708   // But some of the referents, that are in the collection set, that these
5709   // reference objects point to may not have been copied: the STW ref
5710   // processor would have seen that the reference object had already
5711   // been 'discovered' and would have skipped discovering the reference,
5712   // but would not have treated the reference object as a regular oop.
5713   // As a result the copy closure would not have been applied to the
5714   // referent object.
5715   //
5716   // We need to explicitly copy these referent objects - the references
5717   // will be processed at the end of remarking.
5718   //
5719   // We also need to do this copying before we process the reference
5720   // objects discovered by the STW ref processor in case one of these
5721   // referents points to another object which is also referenced by an
5722   // object discovered by the STW ref processor.
5723 
5724   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5725            no_of_gc_workers == workers()->active_workers(),
5726            "Need to reset active GC workers");
5727 
5728   set_par_threads(no_of_gc_workers);
5729   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5730                                                  no_of_gc_workers,
5731                                                  _task_queues);
5732 
5733   if (G1CollectedHeap::use_parallel_gc_threads()) {
5734     workers()->run_task(&keep_cm_referents);
5735   } else {
5736     keep_cm_referents.work(0);
5737   }
5738 
5739   set_par_threads(0);
5740 
5741   // Closure to test whether a referent is alive.
5742   G1STWIsAliveClosure is_alive(this);
5743 
5744   // Even when parallel reference processing is enabled, the processing
5745   // of JNI refs is serial and performed serially by the current thread
5746   // rather than by a worker. The following PSS will be used for processing
5747   // JNI refs.
5748 
5749   // Use only a single queue for this PSS.
5750   G1ParScanThreadState            pss(this, 0, NULL);
5751 
5752   // We do not embed a reference processor in the copying/scanning
5753   // closures while we're actually processing the discovered
5754   // reference objects.
5755   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5756 
5757   pss.set_evac_failure_closure(&evac_failure_cl);
5758 
5759   assert(pss.refs()->is_empty(), "pre-condition");
5760 
5761   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5762   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5763 
5764   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5765   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5766 
5767   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5768   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5769 
5770   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5771     // We also need to mark copied objects.
5772     copy_non_heap_cl = &copy_mark_non_heap_cl;
5773     copy_metadata_cl = &copy_mark_metadata_cl;
5774   }
5775 
5776   // Keep alive closure.
5777   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5778 
5779   // Serial Complete GC closure
5780   G1STWDrainQueueClosure drain_queue(this, &pss);
5781 
5782   // Setup the soft refs policy...
5783   rp->setup_policy(false);
5784 
5785   ReferenceProcessorStats stats;
5786   if (!rp->processing_is_mt()) {
5787     // Serial reference processing...
5788     stats = rp->process_discovered_references(&is_alive,
5789                                               &keep_alive,
5790                                               &drain_queue,
5791                                               NULL,
5792                                               _gc_timer_stw,
5793                                               _gc_tracer_stw->gc_id());
5794   } else {
5795     // Parallel reference processing
5796     assert(rp->num_q() == no_of_gc_workers, "sanity");
5797     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5798 
5799     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5800     stats = rp->process_discovered_references(&is_alive,
5801                                               &keep_alive,
5802                                               &drain_queue,
5803                                               &par_task_executor,
5804                                               _gc_timer_stw,
5805                                               _gc_tracer_stw->gc_id());
5806   }
5807 
5808   _gc_tracer_stw->report_gc_reference_stats(stats);
5809 
5810   // We have completed copying any necessary live referent objects.
5811   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5812 
5813   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5814   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5815 }
5816 
5817 // Weak Reference processing during an evacuation pause (part 2).
5818 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5819   double ref_enq_start = os::elapsedTime();
5820 
5821   ReferenceProcessor* rp = _ref_processor_stw;
5822   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5823 
5824   // Now enqueue any remaining on the discovered lists on to
5825   // the pending list.
5826   if (!rp->processing_is_mt()) {
5827     // Serial reference processing...
5828     rp->enqueue_discovered_references();
5829   } else {
5830     // Parallel reference enqueueing
5831 
5832     assert(no_of_gc_workers == workers()->active_workers(),
5833            "Need to reset active workers");
5834     assert(rp->num_q() == no_of_gc_workers, "sanity");
5835     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5836 
5837     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5838     rp->enqueue_discovered_references(&par_task_executor);
5839   }
5840 
5841   rp->verify_no_references_recorded();
5842   assert(!rp->discovery_enabled(), "should have been disabled");
5843 
5844   // FIXME
5845   // CM's reference processing also cleans up the string and symbol tables.
5846   // Should we do that here also? We could, but it is a serial operation
5847   // and could significantly increase the pause time.
5848 
5849   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5850   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5851 }
5852 
5853 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5854   _expand_heap_after_alloc_failure = true;
5855   _evacuation_failed = false;
5856 
5857   // Should G1EvacuationFailureALot be in effect for this GC?
5858   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5859 
5860   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5861 
5862   // Disable the hot card cache.
5863   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5864   hot_card_cache->reset_hot_cache_claimed_index();
5865   hot_card_cache->set_use_cache(false);
5866 
5867   uint n_workers;
5868   if (G1CollectedHeap::use_parallel_gc_threads()) {
5869     n_workers =
5870       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5871                                      workers()->active_workers(),
5872                                      Threads::number_of_non_daemon_threads());
5873     assert(UseDynamicNumberOfGCThreads ||
5874            n_workers == workers()->total_workers(),
5875            "If not dynamic should be using all the  workers");
5876     workers()->set_active_workers(n_workers);
5877     set_par_threads(n_workers);
5878   } else {
5879     assert(n_par_threads() == 0,
5880            "Should be the original non-parallel value");
5881     n_workers = 1;
5882   }
5883 
5884   G1ParTask g1_par_task(this, _task_queues);
5885 
5886   init_for_evac_failure(NULL);
5887 
5888   rem_set()->prepare_for_younger_refs_iterate(true);
5889 
5890   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5891   double start_par_time_sec = os::elapsedTime();
5892   double end_par_time_sec;
5893 
5894   {
5895     StrongRootsScope srs(this);
5896 
5897     if (G1CollectedHeap::use_parallel_gc_threads()) {
5898       // The individual threads will set their evac-failure closures.
5899       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5900       // These tasks use ShareHeap::_process_strong_tasks
5901       assert(UseDynamicNumberOfGCThreads ||
5902              workers()->active_workers() == workers()->total_workers(),
5903              "If not dynamic should be using all the  workers");
5904       workers()->run_task(&g1_par_task);
5905     } else {
5906       g1_par_task.set_for_termination(n_workers);
5907       g1_par_task.work(0);
5908     }
5909     end_par_time_sec = os::elapsedTime();
5910 
5911     // Closing the inner scope will execute the destructor
5912     // for the StrongRootsScope object. We record the current
5913     // elapsed time before closing the scope so that time
5914     // taken for the SRS destructor is NOT included in the
5915     // reported parallel time.
5916   }
5917 
5918   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5919   g1_policy()->phase_times()->record_par_time(par_time_ms);
5920 
5921   double code_root_fixup_time_ms =
5922         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5923   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5924 
5925   set_par_threads(0);
5926 
5927   // Process any discovered reference objects - we have
5928   // to do this _before_ we retire the GC alloc regions
5929   // as we may have to copy some 'reachable' referent
5930   // objects (and their reachable sub-graphs) that were
5931   // not copied during the pause.
5932   process_discovered_references(n_workers);
5933 
5934   // Weak root processing.
5935   {
5936     G1STWIsAliveClosure is_alive(this);
5937     G1KeepAliveClosure keep_alive(this);
5938     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5939     if (G1StringDedup::is_enabled()) {
5940       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5941     }
5942   }
5943 
5944   release_gc_alloc_regions(n_workers, evacuation_info);
5945   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5946 
5947   // Reset and re-enable the hot card cache.
5948   // Note the counts for the cards in the regions in the
5949   // collection set are reset when the collection set is freed.
5950   hot_card_cache->reset_hot_cache();
5951   hot_card_cache->set_use_cache(true);
5952 
5953   // Migrate the strong code roots attached to each region in
5954   // the collection set. Ideally we would like to do this
5955   // after we have finished the scanning/evacuation of the
5956   // strong code roots for a particular heap region.
5957   migrate_strong_code_roots();
5958 
5959   purge_code_root_memory();
5960 
5961   if (g1_policy()->during_initial_mark_pause()) {
5962     // Reset the claim values set during marking the strong code roots
5963     reset_heap_region_claim_values();
5964   }
5965 
5966   finalize_for_evac_failure();
5967 
5968   if (evacuation_failed()) {
5969     remove_self_forwarding_pointers();
5970 
5971     // Reset the G1EvacuationFailureALot counters and flags
5972     // Note: the values are reset only when an actual
5973     // evacuation failure occurs.
5974     NOT_PRODUCT(reset_evacuation_should_fail();)
5975   }
5976 
5977   // Enqueue any remaining references remaining on the STW
5978   // reference processor's discovered lists. We need to do
5979   // this after the card table is cleaned (and verified) as
5980   // the act of enqueueing entries on to the pending list
5981   // will log these updates (and dirty their associated
5982   // cards). We need these updates logged to update any
5983   // RSets.
5984   enqueue_discovered_references(n_workers);
5985 
5986   if (G1DeferredRSUpdate) {
5987     redirty_logged_cards();
5988   }
5989   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5990 }
5991 
5992 void G1CollectedHeap::free_region(HeapRegion* hr,
5993                                   FreeRegionList* free_list,
5994                                   bool par,
5995                                   bool locked) {
5996   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5997   assert(!hr->is_empty(), "the region should not be empty");
5998   assert(free_list != NULL, "pre-condition");
5999 
6000   // Clear the card counts for this region.
6001   // Note: we only need to do this if the region is not young
6002   // (since we don't refine cards in young regions).
6003   if (!hr->is_young()) {
6004     _cg1r->hot_card_cache()->reset_card_counts(hr);
6005   }
6006   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
6007   free_list->add_ordered(hr);
6008 }
6009 
6010 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
6011                                      FreeRegionList* free_list,
6012                                      bool par) {
6013   assert(hr->startsHumongous(), "this is only for starts humongous regions");
6014   assert(free_list != NULL, "pre-condition");
6015 
6016   size_t hr_capacity = hr->capacity();
6017   // We need to read this before we make the region non-humongous,
6018   // otherwise the information will be gone.
6019   uint last_index = hr->last_hc_index();
6020   hr->set_notHumongous();
6021   free_region(hr, free_list, par);
6022 
6023   uint i = hr->hrs_index() + 1;
6024   while (i < last_index) {
6025     HeapRegion* curr_hr = region_at(i);
6026     assert(curr_hr->continuesHumongous(), "invariant");
6027     curr_hr->set_notHumongous();
6028     free_region(curr_hr, free_list, par);
6029     i += 1;
6030   }
6031 }
6032 
6033 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
6034                                        const HeapRegionSetCount& humongous_regions_removed) {
6035   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
6036     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
6037     _old_set.bulk_remove(old_regions_removed);
6038     _humongous_set.bulk_remove(humongous_regions_removed);
6039   }
6040 
6041 }
6042 
6043 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
6044   assert(list != NULL, "list can't be null");
6045   if (!list->is_empty()) {
6046     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6047     _free_list.add_ordered(list);
6048   }
6049 }
6050 
6051 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
6052   assert(_summary_bytes_used >= bytes,
6053          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
6054                   _summary_bytes_used, bytes));
6055   _summary_bytes_used -= bytes;
6056 }
6057 
6058 class G1ParCleanupCTTask : public AbstractGangTask {
6059   G1SATBCardTableModRefBS* _ct_bs;
6060   G1CollectedHeap* _g1h;
6061   HeapRegion* volatile _su_head;
6062 public:
6063   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6064                      G1CollectedHeap* g1h) :
6065     AbstractGangTask("G1 Par Cleanup CT Task"),
6066     _ct_bs(ct_bs), _g1h(g1h) { }
6067 
6068   void work(uint worker_id) {
6069     HeapRegion* r;
6070     while (r = _g1h->pop_dirty_cards_region()) {
6071       clear_cards(r);
6072     }
6073   }
6074 
6075   void clear_cards(HeapRegion* r) {
6076     // Cards of the survivors should have already been dirtied.
6077     if (!r->is_survivor()) {
6078       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
6079     }
6080   }
6081 };
6082 
6083 #ifndef PRODUCT
6084 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6085   G1CollectedHeap* _g1h;
6086   G1SATBCardTableModRefBS* _ct_bs;
6087 public:
6088   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6089     : _g1h(g1h), _ct_bs(ct_bs) { }
6090   virtual bool doHeapRegion(HeapRegion* r) {
6091     if (r->is_survivor()) {
6092       _g1h->verify_dirty_region(r);
6093     } else {
6094       _g1h->verify_not_dirty_region(r);
6095     }
6096     return false;
6097   }
6098 };
6099 
6100 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6101   // All of the region should be clean.
6102   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6103   MemRegion mr(hr->bottom(), hr->end());
6104   ct_bs->verify_not_dirty_region(mr);
6105 }
6106 
6107 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6108   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6109   // dirty allocated blocks as they allocate them. The thread that
6110   // retires each region and replaces it with a new one will do a
6111   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6112   // not dirty that area (one less thing to have to do while holding
6113   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6114   // is dirty.
6115   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6116   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6117   if (hr->is_young()) {
6118     ct_bs->verify_g1_young_region(mr);
6119   } else {
6120     ct_bs->verify_dirty_region(mr);
6121   }
6122 }
6123 
6124 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6125   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6126   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6127     verify_dirty_region(hr);
6128   }
6129 }
6130 
6131 void G1CollectedHeap::verify_dirty_young_regions() {
6132   verify_dirty_young_list(_young_list->first_region());
6133 }
6134 #endif
6135 
6136 void G1CollectedHeap::cleanUpCardTable() {
6137   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6138   double start = os::elapsedTime();
6139 
6140   {
6141     // Iterate over the dirty cards region list.
6142     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6143 
6144     if (G1CollectedHeap::use_parallel_gc_threads()) {
6145       set_par_threads();
6146       workers()->run_task(&cleanup_task);
6147       set_par_threads(0);
6148     } else {
6149       while (_dirty_cards_region_list) {
6150         HeapRegion* r = _dirty_cards_region_list;
6151         cleanup_task.clear_cards(r);
6152         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6153         if (_dirty_cards_region_list == r) {
6154           // The last region.
6155           _dirty_cards_region_list = NULL;
6156         }
6157         r->set_next_dirty_cards_region(NULL);
6158       }
6159     }
6160 #ifndef PRODUCT
6161     if (G1VerifyCTCleanup || VerifyAfterGC) {
6162       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6163       heap_region_iterate(&cleanup_verifier);
6164     }
6165 #endif
6166   }
6167 
6168   double elapsed = os::elapsedTime() - start;
6169   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6170 }
6171 
6172 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6173   size_t pre_used = 0;
6174   FreeRegionList local_free_list("Local List for CSet Freeing");
6175 
6176   double young_time_ms     = 0.0;
6177   double non_young_time_ms = 0.0;
6178 
6179   // Since the collection set is a superset of the the young list,
6180   // all we need to do to clear the young list is clear its
6181   // head and length, and unlink any young regions in the code below
6182   _young_list->clear();
6183 
6184   G1CollectorPolicy* policy = g1_policy();
6185 
6186   double start_sec = os::elapsedTime();
6187   bool non_young = true;
6188 
6189   HeapRegion* cur = cs_head;
6190   int age_bound = -1;
6191   size_t rs_lengths = 0;
6192 
6193   while (cur != NULL) {
6194     assert(!is_on_master_free_list(cur), "sanity");
6195     if (non_young) {
6196       if (cur->is_young()) {
6197         double end_sec = os::elapsedTime();
6198         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6199         non_young_time_ms += elapsed_ms;
6200 
6201         start_sec = os::elapsedTime();
6202         non_young = false;
6203       }
6204     } else {
6205       if (!cur->is_young()) {
6206         double end_sec = os::elapsedTime();
6207         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6208         young_time_ms += elapsed_ms;
6209 
6210         start_sec = os::elapsedTime();
6211         non_young = true;
6212       }
6213     }
6214 
6215     rs_lengths += cur->rem_set()->occupied_locked();
6216 
6217     HeapRegion* next = cur->next_in_collection_set();
6218     assert(cur->in_collection_set(), "bad CS");
6219     cur->set_next_in_collection_set(NULL);
6220     cur->set_in_collection_set(false);
6221 
6222     if (cur->is_young()) {
6223       int index = cur->young_index_in_cset();
6224       assert(index != -1, "invariant");
6225       assert((uint) index < policy->young_cset_region_length(), "invariant");
6226       size_t words_survived = _surviving_young_words[index];
6227       cur->record_surv_words_in_group(words_survived);
6228 
6229       // At this point the we have 'popped' cur from the collection set
6230       // (linked via next_in_collection_set()) but it is still in the
6231       // young list (linked via next_young_region()). Clear the
6232       // _next_young_region field.
6233       cur->set_next_young_region(NULL);
6234     } else {
6235       int index = cur->young_index_in_cset();
6236       assert(index == -1, "invariant");
6237     }
6238 
6239     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6240             (!cur->is_young() && cur->young_index_in_cset() == -1),
6241             "invariant" );
6242 
6243     if (!cur->evacuation_failed()) {
6244       MemRegion used_mr = cur->used_region();
6245 
6246       // And the region is empty.
6247       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6248       pre_used += cur->used();
6249       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6250     } else {
6251       cur->uninstall_surv_rate_group();
6252       if (cur->is_young()) {
6253         cur->set_young_index_in_cset(-1);
6254       }
6255       cur->set_not_young();
6256       cur->set_evacuation_failed(false);
6257       // The region is now considered to be old.
6258       _old_set.add(cur);
6259       evacuation_info.increment_collectionset_used_after(cur->used());
6260     }
6261     cur = next;
6262   }
6263 
6264   evacuation_info.set_regions_freed(local_free_list.length());
6265   policy->record_max_rs_lengths(rs_lengths);
6266   policy->cset_regions_freed();
6267 
6268   double end_sec = os::elapsedTime();
6269   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6270 
6271   if (non_young) {
6272     non_young_time_ms += elapsed_ms;
6273   } else {
6274     young_time_ms += elapsed_ms;
6275   }
6276 
6277   prepend_to_freelist(&local_free_list);
6278   decrement_summary_bytes(pre_used);
6279   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6280   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6281 }
6282 
6283 // This routine is similar to the above but does not record
6284 // any policy statistics or update free lists; we are abandoning
6285 // the current incremental collection set in preparation of a
6286 // full collection. After the full GC we will start to build up
6287 // the incremental collection set again.
6288 // This is only called when we're doing a full collection
6289 // and is immediately followed by the tearing down of the young list.
6290 
6291 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6292   HeapRegion* cur = cs_head;
6293 
6294   while (cur != NULL) {
6295     HeapRegion* next = cur->next_in_collection_set();
6296     assert(cur->in_collection_set(), "bad CS");
6297     cur->set_next_in_collection_set(NULL);
6298     cur->set_in_collection_set(false);
6299     cur->set_young_index_in_cset(-1);
6300     cur = next;
6301   }
6302 }
6303 
6304 void G1CollectedHeap::set_free_regions_coming() {
6305   if (G1ConcRegionFreeingVerbose) {
6306     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6307                            "setting free regions coming");
6308   }
6309 
6310   assert(!free_regions_coming(), "pre-condition");
6311   _free_regions_coming = true;
6312 }
6313 
6314 void G1CollectedHeap::reset_free_regions_coming() {
6315   assert(free_regions_coming(), "pre-condition");
6316 
6317   {
6318     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6319     _free_regions_coming = false;
6320     SecondaryFreeList_lock->notify_all();
6321   }
6322 
6323   if (G1ConcRegionFreeingVerbose) {
6324     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6325                            "reset free regions coming");
6326   }
6327 }
6328 
6329 void G1CollectedHeap::wait_while_free_regions_coming() {
6330   // Most of the time we won't have to wait, so let's do a quick test
6331   // first before we take the lock.
6332   if (!free_regions_coming()) {
6333     return;
6334   }
6335 
6336   if (G1ConcRegionFreeingVerbose) {
6337     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6338                            "waiting for free regions");
6339   }
6340 
6341   {
6342     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6343     while (free_regions_coming()) {
6344       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6345     }
6346   }
6347 
6348   if (G1ConcRegionFreeingVerbose) {
6349     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6350                            "done waiting for free regions");
6351   }
6352 }
6353 
6354 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6355   assert(heap_lock_held_for_gc(),
6356               "the heap lock should already be held by or for this thread");
6357   _young_list->push_region(hr);
6358 }
6359 
6360 class NoYoungRegionsClosure: public HeapRegionClosure {
6361 private:
6362   bool _success;
6363 public:
6364   NoYoungRegionsClosure() : _success(true) { }
6365   bool doHeapRegion(HeapRegion* r) {
6366     if (r->is_young()) {
6367       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6368                              r->bottom(), r->end());
6369       _success = false;
6370     }
6371     return false;
6372   }
6373   bool success() { return _success; }
6374 };
6375 
6376 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6377   bool ret = _young_list->check_list_empty(check_sample);
6378 
6379   if (check_heap) {
6380     NoYoungRegionsClosure closure;
6381     heap_region_iterate(&closure);
6382     ret = ret && closure.success();
6383   }
6384 
6385   return ret;
6386 }
6387 
6388 class TearDownRegionSetsClosure : public HeapRegionClosure {
6389 private:
6390   HeapRegionSet *_old_set;
6391 
6392 public:
6393   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6394 
6395   bool doHeapRegion(HeapRegion* r) {
6396     if (r->is_empty()) {
6397       // We ignore empty regions, we'll empty the free list afterwards
6398     } else if (r->is_young()) {
6399       // We ignore young regions, we'll empty the young list afterwards
6400     } else if (r->isHumongous()) {
6401       // We ignore humongous regions, we're not tearing down the
6402       // humongous region set
6403     } else {
6404       // The rest should be old
6405       _old_set->remove(r);
6406     }
6407     return false;
6408   }
6409 
6410   ~TearDownRegionSetsClosure() {
6411     assert(_old_set->is_empty(), "post-condition");
6412   }
6413 };
6414 
6415 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6416   assert_at_safepoint(true /* should_be_vm_thread */);
6417 
6418   if (!free_list_only) {
6419     TearDownRegionSetsClosure cl(&_old_set);
6420     heap_region_iterate(&cl);
6421 
6422     // Note that emptying the _young_list is postponed and instead done as
6423     // the first step when rebuilding the regions sets again. The reason for
6424     // this is that during a full GC string deduplication needs to know if
6425     // a collected region was young or old when the full GC was initiated.
6426   }
6427   _free_list.remove_all();
6428 }
6429 
6430 class RebuildRegionSetsClosure : public HeapRegionClosure {
6431 private:
6432   bool            _free_list_only;
6433   HeapRegionSet*   _old_set;
6434   FreeRegionList* _free_list;
6435   size_t          _total_used;
6436 
6437 public:
6438   RebuildRegionSetsClosure(bool free_list_only,
6439                            HeapRegionSet* old_set, FreeRegionList* free_list) :
6440     _free_list_only(free_list_only),
6441     _old_set(old_set), _free_list(free_list), _total_used(0) {
6442     assert(_free_list->is_empty(), "pre-condition");
6443     if (!free_list_only) {
6444       assert(_old_set->is_empty(), "pre-condition");
6445     }
6446   }
6447 
6448   bool doHeapRegion(HeapRegion* r) {
6449     if (r->continuesHumongous()) {
6450       return false;
6451     }
6452 
6453     if (r->is_empty()) {
6454       // Add free regions to the free list
6455       _free_list->add_as_tail(r);
6456     } else if (!_free_list_only) {
6457       assert(!r->is_young(), "we should not come across young regions");
6458 
6459       if (r->isHumongous()) {
6460         // We ignore humongous regions, we left the humongous set unchanged
6461       } else {
6462         // The rest should be old, add them to the old set
6463         _old_set->add(r);
6464       }
6465       _total_used += r->used();
6466     }
6467 
6468     return false;
6469   }
6470 
6471   size_t total_used() {
6472     return _total_used;
6473   }
6474 };
6475 
6476 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6477   assert_at_safepoint(true /* should_be_vm_thread */);
6478 
6479   if (!free_list_only) {
6480     _young_list->empty_list();
6481   }
6482 
6483   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6484   heap_region_iterate(&cl);
6485 
6486   if (!free_list_only) {
6487     _summary_bytes_used = cl.total_used();
6488   }
6489   assert(_summary_bytes_used == recalculate_used(),
6490          err_msg("inconsistent _summary_bytes_used, "
6491                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6492                  _summary_bytes_used, recalculate_used()));
6493 }
6494 
6495 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6496   _refine_cte_cl->set_concurrent(concurrent);
6497 }
6498 
6499 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6500   HeapRegion* hr = heap_region_containing(p);
6501   if (hr == NULL) {
6502     return false;
6503   } else {
6504     return hr->is_in(p);
6505   }
6506 }
6507 
6508 // Methods for the mutator alloc region
6509 
6510 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6511                                                       bool force) {
6512   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6513   assert(!force || g1_policy()->can_expand_young_list(),
6514          "if force is true we should be able to expand the young list");
6515   bool young_list_full = g1_policy()->is_young_list_full();
6516   if (force || !young_list_full) {
6517     HeapRegion* new_alloc_region = new_region(word_size,
6518                                               false /* is_old */,
6519                                               false /* do_expand */);
6520     if (new_alloc_region != NULL) {
6521       set_region_short_lived_locked(new_alloc_region);
6522       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6523       return new_alloc_region;
6524     }
6525   }
6526   return NULL;
6527 }
6528 
6529 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6530                                                   size_t allocated_bytes) {
6531   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6532   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6533 
6534   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6535   _summary_bytes_used += allocated_bytes;
6536   _hr_printer.retire(alloc_region);
6537   // We update the eden sizes here, when the region is retired,
6538   // instead of when it's allocated, since this is the point that its
6539   // used space has been recored in _summary_bytes_used.
6540   g1mm()->update_eden_size();
6541 }
6542 
6543 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6544                                                     bool force) {
6545   return _g1h->new_mutator_alloc_region(word_size, force);
6546 }
6547 
6548 void G1CollectedHeap::set_par_threads() {
6549   // Don't change the number of workers.  Use the value previously set
6550   // in the workgroup.
6551   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6552   uint n_workers = workers()->active_workers();
6553   assert(UseDynamicNumberOfGCThreads ||
6554            n_workers == workers()->total_workers(),
6555       "Otherwise should be using the total number of workers");
6556   if (n_workers == 0) {
6557     assert(false, "Should have been set in prior evacuation pause.");
6558     n_workers = ParallelGCThreads;
6559     workers()->set_active_workers(n_workers);
6560   }
6561   set_par_threads(n_workers);
6562 }
6563 
6564 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6565                                        size_t allocated_bytes) {
6566   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6567 }
6568 
6569 // Methods for the GC alloc regions
6570 
6571 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6572                                                  uint count,
6573                                                  GCAllocPurpose ap) {
6574   assert(FreeList_lock->owned_by_self(), "pre-condition");
6575 
6576   if (count < g1_policy()->max_regions(ap)) {
6577     bool survivor = (ap == GCAllocForSurvived);
6578     HeapRegion* new_alloc_region = new_region(word_size,
6579                                               !survivor,
6580                                               true /* do_expand */);
6581     if (new_alloc_region != NULL) {
6582       // We really only need to do this for old regions given that we
6583       // should never scan survivors. But it doesn't hurt to do it
6584       // for survivors too.
6585       new_alloc_region->set_saved_mark();
6586       if (survivor) {
6587         new_alloc_region->set_survivor();
6588         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6589       } else {
6590         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6591       }
6592       bool during_im = g1_policy()->during_initial_mark_pause();
6593       new_alloc_region->note_start_of_copying(during_im);
6594       return new_alloc_region;
6595     } else {
6596       g1_policy()->note_alloc_region_limit_reached(ap);
6597     }
6598   }
6599   return NULL;
6600 }
6601 
6602 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6603                                              size_t allocated_bytes,
6604                                              GCAllocPurpose ap) {
6605   bool during_im = g1_policy()->during_initial_mark_pause();
6606   alloc_region->note_end_of_copying(during_im);
6607   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6608   if (ap == GCAllocForSurvived) {
6609     young_list()->add_survivor_region(alloc_region);
6610   } else {
6611     _old_set.add(alloc_region);
6612   }
6613   _hr_printer.retire(alloc_region);
6614 }
6615 
6616 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6617                                                        bool force) {
6618   assert(!force, "not supported for GC alloc regions");
6619   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6620 }
6621 
6622 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6623                                           size_t allocated_bytes) {
6624   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6625                                GCAllocForSurvived);
6626 }
6627 
6628 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6629                                                   bool force) {
6630   assert(!force, "not supported for GC alloc regions");
6631   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6632 }
6633 
6634 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6635                                      size_t allocated_bytes) {
6636   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6637                                GCAllocForTenured);
6638 }
6639 // Heap region set verification
6640 
6641 class VerifyRegionListsClosure : public HeapRegionClosure {
6642 private:
6643   HeapRegionSet*   _old_set;
6644   HeapRegionSet*   _humongous_set;
6645   FreeRegionList*  _free_list;
6646 
6647 public:
6648   HeapRegionSetCount _old_count;
6649   HeapRegionSetCount _humongous_count;
6650   HeapRegionSetCount _free_count;
6651 
6652   VerifyRegionListsClosure(HeapRegionSet* old_set,
6653                            HeapRegionSet* humongous_set,
6654                            FreeRegionList* free_list) :
6655     _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
6656     _old_count(), _humongous_count(), _free_count(){ }
6657 
6658   bool doHeapRegion(HeapRegion* hr) {
6659     if (hr->continuesHumongous()) {
6660       return false;
6661     }
6662 
6663     if (hr->is_young()) {
6664       // TODO
6665     } else if (hr->startsHumongous()) {
6666       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->region_num()));
6667       _humongous_count.increment(1u, hr->capacity());
6668     } else if (hr->is_empty()) {
6669       assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->region_num()));
6670       _free_count.increment(1u, hr->capacity());
6671     } else {
6672       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->region_num()));
6673       _old_count.increment(1u, hr->capacity());
6674     }
6675     return false;
6676   }
6677 
6678   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
6679     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6680     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6681         old_set->total_capacity_bytes(), _old_count.capacity()));
6682 
6683     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6684     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6685         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6686 
6687     guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
6688     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6689         free_list->total_capacity_bytes(), _free_count.capacity()));
6690   }
6691 };
6692 
6693 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6694                                              HeapWord* bottom) {
6695   HeapWord* end = bottom + HeapRegion::GrainWords;
6696   MemRegion mr(bottom, end);
6697   assert(_g1_reserved.contains(mr), "invariant");
6698   // This might return NULL if the allocation fails
6699   return new HeapRegion(hrs_index, _bot_shared, mr);
6700 }
6701 
6702 void G1CollectedHeap::verify_region_sets() {
6703   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6704 
6705   // First, check the explicit lists.
6706   _free_list.verify_list();
6707   {
6708     // Given that a concurrent operation might be adding regions to
6709     // the secondary free list we have to take the lock before
6710     // verifying it.
6711     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6712     _secondary_free_list.verify_list();
6713   }
6714 
6715   // If a concurrent region freeing operation is in progress it will
6716   // be difficult to correctly attributed any free regions we come
6717   // across to the correct free list given that they might belong to
6718   // one of several (free_list, secondary_free_list, any local lists,
6719   // etc.). So, if that's the case we will skip the rest of the
6720   // verification operation. Alternatively, waiting for the concurrent
6721   // operation to complete will have a non-trivial effect on the GC's
6722   // operation (no concurrent operation will last longer than the
6723   // interval between two calls to verification) and it might hide
6724   // any issues that we would like to catch during testing.
6725   if (free_regions_coming()) {
6726     return;
6727   }
6728 
6729   // Make sure we append the secondary_free_list on the free_list so
6730   // that all free regions we will come across can be safely
6731   // attributed to the free_list.
6732   append_secondary_free_list_if_not_empty_with_lock();
6733 
6734   // Finally, make sure that the region accounting in the lists is
6735   // consistent with what we see in the heap.
6736 
6737   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6738   heap_region_iterate(&cl);
6739   cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
6740 }
6741 
6742 // Optimized nmethod scanning
6743 
6744 class RegisterNMethodOopClosure: public OopClosure {
6745   G1CollectedHeap* _g1h;
6746   nmethod* _nm;
6747 
6748   template <class T> void do_oop_work(T* p) {
6749     T heap_oop = oopDesc::load_heap_oop(p);
6750     if (!oopDesc::is_null(heap_oop)) {
6751       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6752       HeapRegion* hr = _g1h->heap_region_containing(obj);
6753       assert(!hr->continuesHumongous(),
6754              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6755                      " starting at "HR_FORMAT,
6756                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6757 
6758       // HeapRegion::add_strong_code_root() avoids adding duplicate
6759       // entries but having duplicates is  OK since we "mark" nmethods
6760       // as visited when we scan the strong code root lists during the GC.
6761       hr->add_strong_code_root(_nm);
6762       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
6763              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
6764                      _nm, HR_FORMAT_PARAMS(hr)));
6765     }
6766   }
6767 
6768 public:
6769   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6770     _g1h(g1h), _nm(nm) {}
6771 
6772   void do_oop(oop* p)       { do_oop_work(p); }
6773   void do_oop(narrowOop* p) { do_oop_work(p); }
6774 };
6775 
6776 class UnregisterNMethodOopClosure: public OopClosure {
6777   G1CollectedHeap* _g1h;
6778   nmethod* _nm;
6779 
6780   template <class T> void do_oop_work(T* p) {
6781     T heap_oop = oopDesc::load_heap_oop(p);
6782     if (!oopDesc::is_null(heap_oop)) {
6783       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6784       HeapRegion* hr = _g1h->heap_region_containing(obj);
6785       assert(!hr->continuesHumongous(),
6786              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6787                      " starting at "HR_FORMAT,
6788                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6789 
6790       hr->remove_strong_code_root(_nm);
6791       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
6792              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
6793                      _nm, HR_FORMAT_PARAMS(hr)));
6794     }
6795   }
6796 
6797 public:
6798   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6799     _g1h(g1h), _nm(nm) {}
6800 
6801   void do_oop(oop* p)       { do_oop_work(p); }
6802   void do_oop(narrowOop* p) { do_oop_work(p); }
6803 };
6804 
6805 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6806   CollectedHeap::register_nmethod(nm);
6807 
6808   guarantee(nm != NULL, "sanity");
6809   RegisterNMethodOopClosure reg_cl(this, nm);
6810   nm->oops_do(&reg_cl);
6811 }
6812 
6813 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6814   CollectedHeap::unregister_nmethod(nm);
6815 
6816   guarantee(nm != NULL, "sanity");
6817   UnregisterNMethodOopClosure reg_cl(this, nm);
6818   nm->oops_do(&reg_cl, true);
6819 }
6820 
6821 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
6822 public:
6823   bool doHeapRegion(HeapRegion *hr) {
6824     assert(!hr->isHumongous(),
6825            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
6826                    HR_FORMAT_PARAMS(hr)));
6827     hr->migrate_strong_code_roots();
6828     return false;
6829   }
6830 };
6831 
6832 void G1CollectedHeap::migrate_strong_code_roots() {
6833   MigrateCodeRootsHeapRegionClosure cl;
6834   double migrate_start = os::elapsedTime();
6835   collection_set_iterate(&cl);
6836   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
6837   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
6838 }
6839 
6840 void G1CollectedHeap::purge_code_root_memory() {
6841   double purge_start = os::elapsedTime();
6842   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
6843   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6844   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6845 }
6846 
6847 // Mark all the code roots that point into regions *not* in the
6848 // collection set.
6849 //
6850 // Note we do not want to use a "marking" CodeBlobToOopClosure while
6851 // walking the the code roots lists of regions not in the collection
6852 // set. Suppose we have an nmethod (M) that points to objects in two
6853 // separate regions - one in the collection set (R1) and one not (R2).
6854 // Using a "marking" CodeBlobToOopClosure here would result in "marking"
6855 // nmethod M when walking the code roots for R1. When we come to scan
6856 // the code roots for R2, we would see that M is already marked and it
6857 // would be skipped and the objects in R2 that are referenced from M
6858 // would not be evacuated.
6859 
6860 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
6861 
6862   class MarkStrongCodeRootOopClosure: public OopClosure {
6863     ConcurrentMark* _cm;
6864     HeapRegion* _hr;
6865     uint _worker_id;
6866 
6867     template <class T> void do_oop_work(T* p) {
6868       T heap_oop = oopDesc::load_heap_oop(p);
6869       if (!oopDesc::is_null(heap_oop)) {
6870         oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6871         // Only mark objects in the region (which is assumed
6872         // to be not in the collection set).
6873         if (_hr->is_in(obj)) {
6874           _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
6875         }
6876       }
6877     }
6878 
6879   public:
6880     MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
6881       _cm(cm), _hr(hr), _worker_id(worker_id) {
6882       assert(!_hr->in_collection_set(), "sanity");
6883     }
6884 
6885     void do_oop(narrowOop* p) { do_oop_work(p); }
6886     void do_oop(oop* p)       { do_oop_work(p); }
6887   };
6888 
6889   MarkStrongCodeRootOopClosure _oop_cl;
6890 
6891 public:
6892   MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
6893     _oop_cl(cm, hr, worker_id) {}
6894 
6895   void do_code_blob(CodeBlob* cb) {
6896     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
6897     if (nm != NULL) {
6898       nm->oops_do(&_oop_cl);
6899     }
6900   }
6901 };
6902 
6903 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
6904   G1CollectedHeap* _g1h;
6905   uint _worker_id;
6906 
6907 public:
6908   MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
6909     _g1h(g1h), _worker_id(worker_id) {}
6910 
6911   bool doHeapRegion(HeapRegion *hr) {
6912     HeapRegionRemSet* hrrs = hr->rem_set();
6913     if (hr->continuesHumongous()) {
6914       // Code roots should never be attached to a continuation of a humongous region
6915       assert(hrrs->strong_code_roots_list_length() == 0,
6916              err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
6917                      " starting at "HR_FORMAT", but has "SIZE_FORMAT,
6918                      HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
6919                      hrrs->strong_code_roots_list_length()));
6920       return false;
6921     }
6922 
6923     if (hr->in_collection_set()) {
6924       // Don't mark code roots into regions in the collection set here.
6925       // They will be marked when we scan them.
6926       return false;
6927     }
6928 
6929     MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
6930     hr->strong_code_roots_do(&cb_cl);
6931     return false;
6932   }
6933 };
6934 
6935 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
6936   MarkStrongCodeRootsHRClosure cl(this, worker_id);
6937   if (G1CollectedHeap::use_parallel_gc_threads()) {
6938     heap_region_par_iterate_chunked(&cl,
6939                                     worker_id,
6940                                     workers()->active_workers(),
6941                                     HeapRegion::ParMarkRootClaimValue);
6942   } else {
6943     heap_region_iterate(&cl);
6944   }
6945 }
6946 
6947 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6948   G1CollectedHeap* _g1h;
6949 
6950 public:
6951   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6952     _g1h(g1h) {}
6953 
6954   void do_code_blob(CodeBlob* cb) {
6955     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6956     if (nm == NULL) {
6957       return;
6958     }
6959 
6960     if (ScavengeRootsInCode) {
6961       _g1h->register_nmethod(nm);
6962     }
6963   }
6964 };
6965 
6966 void G1CollectedHeap::rebuild_strong_code_roots() {
6967   RebuildStrongCodeRootClosure blob_cl(this);
6968   CodeCache::blobs_do(&blob_cl);
6969 }