1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/orderAccess.inline.hpp"
  53 #include "runtime/osThread.hpp"
  54 #include "runtime/perfMemory.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/statSampler.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "runtime/thread.inline.hpp"
  59 #include "runtime/threadCritical.hpp"
  60 #include "runtime/timer.hpp"
  61 #include "services/attachListener.hpp"
  62 #include "services/memTracker.hpp"
  63 #include "services/runtimeService.hpp"
  64 #include "evtrace/traceEvents.hpp"
  65 #include "utilities/decoder.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/elfFile.hpp"
  69 #include "utilities/growableArray.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 // put OS-includes here
  73 # include <sys/types.h>
  74 # include <sys/mman.h>
  75 # include <sys/stat.h>
  76 # include <sys/select.h>
  77 # include <pthread.h>
  78 # include <signal.h>
  79 # include <errno.h>
  80 # include <dlfcn.h>
  81 # include <stdio.h>
  82 # include <unistd.h>
  83 # include <sys/resource.h>
  84 # include <pthread.h>
  85 # include <sys/stat.h>
  86 # include <sys/time.h>
  87 # include <sys/times.h>
  88 # include <sys/utsname.h>
  89 # include <sys/socket.h>
  90 # include <sys/wait.h>
  91 # include <pwd.h>
  92 # include <poll.h>
  93 # include <semaphore.h>
  94 # include <fcntl.h>
  95 # include <string.h>
  96 # include <syscall.h>
  97 # include <sys/sysinfo.h>
  98 # include <gnu/libc-version.h>
  99 # include <sys/ipc.h>
 100 # include <sys/shm.h>
 101 # include <link.h>
 102 # include <stdint.h>
 103 # include <inttypes.h>
 104 # include <sys/ioctl.h>
 105 
 106 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 107 
 108 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 109 // getrusage() is prepared to handle the associated failure.
 110 #ifndef RUSAGE_THREAD
 111 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 112 #endif
 113 
 114 #define MAX_PATH    (2 * K)
 115 
 116 #define MAX_SECS 100000000
 117 
 118 // for timer info max values which include all bits
 119 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 120 
 121 #define LARGEPAGES_BIT (1 << 6)
 122 ////////////////////////////////////////////////////////////////////////////////
 123 // global variables
 124 julong os::Linux::_physical_memory = 0;
 125 
 126 address   os::Linux::_initial_thread_stack_bottom = NULL;
 127 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 128 
 129 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 130 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 131 Mutex* os::Linux::_createThread_lock = NULL;
 132 pthread_t os::Linux::_main_thread;
 133 int os::Linux::_page_size = -1;
 134 const int os::Linux::_vm_default_page_size = (8 * K);
 135 bool os::Linux::_is_floating_stack = false;
 136 bool os::Linux::_is_NPTL = false;
 137 bool os::Linux::_supports_fast_thread_cpu_time = false;
 138 const char * os::Linux::_glibc_version = NULL;
 139 const char * os::Linux::_libpthread_version = NULL;
 140 pthread_condattr_t os::Linux::_condattr[1];
 141 
 142 static jlong initial_time_count=0;
 143 
 144 static int clock_tics_per_sec = 100;
 145 
 146 // For diagnostics to print a message once. see run_periodic_checks
 147 static sigset_t check_signal_done;
 148 static bool check_signals = true;
 149 
 150 static pid_t _initial_pid = 0;
 151 
 152 /* Signal number used to suspend/resume a thread */
 153 
 154 /* do not use any signal number less than SIGSEGV, see 4355769 */
 155 static int SR_signum = SIGUSR2;
 156 sigset_t SR_sigset;
 157 
 158 /* Used to protect dlsym() calls */
 159 static pthread_mutex_t dl_mutex;
 160 
 161 // Declarations
 162 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 163 
 164 // utility functions
 165 
 166 static int SR_initialize();
 167 
 168 julong os::available_memory() {
 169   return Linux::available_memory();
 170 }
 171 
 172 julong os::Linux::available_memory() {
 173   // values in struct sysinfo are "unsigned long"
 174   struct sysinfo si;
 175   sysinfo(&si);
 176 
 177   return (julong)si.freeram * si.mem_unit;
 178 }
 179 
 180 julong os::physical_memory() {
 181   return Linux::physical_memory();
 182 }
 183 
 184 ////////////////////////////////////////////////////////////////////////////////
 185 // environment support
 186 
 187 bool os::getenv(const char* name, char* buf, int len) {
 188   const char* val = ::getenv(name);
 189   if (val != NULL && strlen(val) < (size_t)len) {
 190     strcpy(buf, val);
 191     return true;
 192   }
 193   if (len > 0) buf[0] = 0;  // return a null string
 194   return false;
 195 }
 196 
 197 
 198 // Return true if user is running as root.
 199 
 200 bool os::have_special_privileges() {
 201   static bool init = false;
 202   static bool privileges = false;
 203   if (!init) {
 204     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 205     init = true;
 206   }
 207   return privileges;
 208 }
 209 
 210 
 211 #ifndef SYS_gettid
 212 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 213   #ifdef __ia64__
 214     #define SYS_gettid 1105
 215   #else
 216     #ifdef __i386__
 217       #define SYS_gettid 224
 218     #else
 219       #ifdef __amd64__
 220         #define SYS_gettid 186
 221       #else
 222         #ifdef __sparc__
 223           #define SYS_gettid 143
 224         #else
 225           #error define gettid for the arch
 226         #endif
 227       #endif
 228     #endif
 229   #endif
 230 #endif
 231 
 232 // Cpu architecture string
 233 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 234 
 235 // pid_t gettid()
 236 //
 237 // Returns the kernel thread id of the currently running thread. Kernel
 238 // thread id is used to access /proc.
 239 //
 240 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 241 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 242 //
 243 pid_t os::Linux::gettid() {
 244   int rslt = syscall(SYS_gettid);
 245   if (rslt == -1) {
 246      // old kernel, no NPTL support
 247      return getpid();
 248   } else {
 249      return (pid_t)rslt;
 250   }
 251 }
 252 
 253 // Most versions of linux have a bug where the number of processors are
 254 // determined by looking at the /proc file system.  In a chroot environment,
 255 // the system call returns 1.  This causes the VM to act as if it is
 256 // a single processor and elide locking (see is_MP() call).
 257 static bool unsafe_chroot_detected = false;
 258 static const char *unstable_chroot_error = "/proc file system not found.\n"
 259                      "Java may be unstable running multithreaded in a chroot "
 260                      "environment on Linux when /proc filesystem is not mounted.";
 261 
 262 void os::Linux::initialize_system_info() {
 263   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 264   if (processor_count() == 1) {
 265     pid_t pid = os::Linux::gettid();
 266     char fname[32];
 267     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 268     FILE *fp = fopen(fname, "r");
 269     if (fp == NULL) {
 270       unsafe_chroot_detected = true;
 271     } else {
 272       fclose(fp);
 273     }
 274   }
 275   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 276   assert(processor_count() > 0, "linux error");
 277 }
 278 
 279 void os::init_system_properties_values() {
 280   // The next steps are taken in the product version:
 281   //
 282   // Obtain the JAVA_HOME value from the location of libjvm.so.
 283   // This library should be located at:
 284   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 285   //
 286   // If "/jre/lib/" appears at the right place in the path, then we
 287   // assume libjvm.so is installed in a JDK and we use this path.
 288   //
 289   // Otherwise exit with message: "Could not create the Java virtual machine."
 290   //
 291   // The following extra steps are taken in the debugging version:
 292   //
 293   // If "/jre/lib/" does NOT appear at the right place in the path
 294   // instead of exit check for $JAVA_HOME environment variable.
 295   //
 296   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 297   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 298   // it looks like libjvm.so is installed there
 299   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 300   //
 301   // Otherwise exit.
 302   //
 303   // Important note: if the location of libjvm.so changes this
 304   // code needs to be changed accordingly.
 305 
 306 // See ld(1):
 307 //      The linker uses the following search paths to locate required
 308 //      shared libraries:
 309 //        1: ...
 310 //        ...
 311 //        7: The default directories, normally /lib and /usr/lib.
 312 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 313 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 314 #else
 315 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 316 #endif
 317 
 318 // Base path of extensions installed on the system.
 319 #define SYS_EXT_DIR     "/usr/java/packages"
 320 #define EXTENSIONS_DIR  "/lib/ext"
 321 #define ENDORSED_DIR    "/lib/endorsed"
 322 
 323   // Buffer that fits several sprintfs.
 324   // Note that the space for the colon and the trailing null are provided
 325   // by the nulls included by the sizeof operator.
 326   const size_t bufsize =
 327     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 328          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 329          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 330   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 331 
 332   // sysclasspath, java_home, dll_dir
 333   {
 334     char *pslash;
 335     os::jvm_path(buf, bufsize);
 336 
 337     // Found the full path to libjvm.so.
 338     // Now cut the path to <java_home>/jre if we can.
 339     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 340     pslash = strrchr(buf, '/');
 341     if (pslash != NULL) {
 342       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 343     }
 344     Arguments::set_dll_dir(buf);
 345 
 346     if (pslash != NULL) {
 347       pslash = strrchr(buf, '/');
 348       if (pslash != NULL) {
 349         *pslash = '\0';          // Get rid of /<arch>.
 350         pslash = strrchr(buf, '/');
 351         if (pslash != NULL) {
 352           *pslash = '\0';        // Get rid of /lib.
 353         }
 354       }
 355     }
 356     Arguments::set_java_home(buf);
 357     set_boot_path('/', ':');
 358   }
 359 
 360   // Where to look for native libraries.
 361   //
 362   // Note: Due to a legacy implementation, most of the library path
 363   // is set in the launcher. This was to accomodate linking restrictions
 364   // on legacy Linux implementations (which are no longer supported).
 365   // Eventually, all the library path setting will be done here.
 366   //
 367   // However, to prevent the proliferation of improperly built native
 368   // libraries, the new path component /usr/java/packages is added here.
 369   // Eventually, all the library path setting will be done here.
 370   {
 371     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 372     // should always exist (until the legacy problem cited above is
 373     // addressed).
 374     const char *v = ::getenv("LD_LIBRARY_PATH");
 375     const char *v_colon = ":";
 376     if (v == NULL) { v = ""; v_colon = ""; }
 377     // That's +1 for the colon and +1 for the trailing '\0'.
 378     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 379                                                      strlen(v) + 1 +
 380                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 381                                                      mtInternal);
 382     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 383     Arguments::set_library_path(ld_library_path);
 384     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 385   }
 386 
 387   // Extensions directories.
 388   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 389   Arguments::set_ext_dirs(buf);
 390 
 391   // Endorsed standards default directory.
 392   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 393   Arguments::set_endorsed_dirs(buf);
 394 
 395   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 396 
 397 #undef DEFAULT_LIBPATH
 398 #undef SYS_EXT_DIR
 399 #undef EXTENSIONS_DIR
 400 #undef ENDORSED_DIR
 401 }
 402 
 403 ////////////////////////////////////////////////////////////////////////////////
 404 // breakpoint support
 405 
 406 void os::breakpoint() {
 407   BREAKPOINT;
 408 }
 409 
 410 extern "C" void breakpoint() {
 411   // use debugger to set breakpoint here
 412 }
 413 
 414 ////////////////////////////////////////////////////////////////////////////////
 415 // signal support
 416 
 417 debug_only(static bool signal_sets_initialized = false);
 418 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 419 
 420 bool os::Linux::is_sig_ignored(int sig) {
 421       struct sigaction oact;
 422       sigaction(sig, (struct sigaction*)NULL, &oact);
 423       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 424                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 425       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 426            return true;
 427       else
 428            return false;
 429 }
 430 
 431 void os::Linux::signal_sets_init() {
 432   // Should also have an assertion stating we are still single-threaded.
 433   assert(!signal_sets_initialized, "Already initialized");
 434   // Fill in signals that are necessarily unblocked for all threads in
 435   // the VM. Currently, we unblock the following signals:
 436   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 437   //                         by -Xrs (=ReduceSignalUsage));
 438   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 439   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 440   // the dispositions or masks wrt these signals.
 441   // Programs embedding the VM that want to use the above signals for their
 442   // own purposes must, at this time, use the "-Xrs" option to prevent
 443   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 444   // (See bug 4345157, and other related bugs).
 445   // In reality, though, unblocking these signals is really a nop, since
 446   // these signals are not blocked by default.
 447   sigemptyset(&unblocked_sigs);
 448   sigemptyset(&allowdebug_blocked_sigs);
 449   sigaddset(&unblocked_sigs, SIGILL);
 450   sigaddset(&unblocked_sigs, SIGSEGV);
 451   sigaddset(&unblocked_sigs, SIGBUS);
 452   sigaddset(&unblocked_sigs, SIGFPE);
 453 #if defined(PPC64)
 454   sigaddset(&unblocked_sigs, SIGTRAP);
 455 #endif
 456   sigaddset(&unblocked_sigs, SR_signum);
 457 
 458   if (!ReduceSignalUsage) {
 459    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 460       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 461       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 462    }
 463    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 464       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 465       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 466    }
 467    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 468       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 469       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 470    }
 471   }
 472   // Fill in signals that are blocked by all but the VM thread.
 473   sigemptyset(&vm_sigs);
 474   if (!ReduceSignalUsage)
 475     sigaddset(&vm_sigs, BREAK_SIGNAL);
 476   debug_only(signal_sets_initialized = true);
 477 
 478 }
 479 
 480 // These are signals that are unblocked while a thread is running Java.
 481 // (For some reason, they get blocked by default.)
 482 sigset_t* os::Linux::unblocked_signals() {
 483   assert(signal_sets_initialized, "Not initialized");
 484   return &unblocked_sigs;
 485 }
 486 
 487 // These are the signals that are blocked while a (non-VM) thread is
 488 // running Java. Only the VM thread handles these signals.
 489 sigset_t* os::Linux::vm_signals() {
 490   assert(signal_sets_initialized, "Not initialized");
 491   return &vm_sigs;
 492 }
 493 
 494 // These are signals that are blocked during cond_wait to allow debugger in
 495 sigset_t* os::Linux::allowdebug_blocked_signals() {
 496   assert(signal_sets_initialized, "Not initialized");
 497   return &allowdebug_blocked_sigs;
 498 }
 499 
 500 void os::Linux::hotspot_sigmask(Thread* thread) {
 501 
 502   //Save caller's signal mask before setting VM signal mask
 503   sigset_t caller_sigmask;
 504   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 505 
 506   OSThread* osthread = thread->osthread();
 507   osthread->set_caller_sigmask(caller_sigmask);
 508 
 509   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 510 
 511   if (!ReduceSignalUsage) {
 512     if (thread->is_VM_thread()) {
 513       // Only the VM thread handles BREAK_SIGNAL ...
 514       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 515     } else {
 516       // ... all other threads block BREAK_SIGNAL
 517       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 518     }
 519   }
 520 }
 521 
 522 //////////////////////////////////////////////////////////////////////////////
 523 // detecting pthread library
 524 
 525 void os::Linux::libpthread_init() {
 526   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 527   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 528   // generic name for earlier versions.
 529   // Define macros here so we can build HotSpot on old systems.
 530 # ifndef _CS_GNU_LIBC_VERSION
 531 # define _CS_GNU_LIBC_VERSION 2
 532 # endif
 533 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 534 # define _CS_GNU_LIBPTHREAD_VERSION 3
 535 # endif
 536 
 537   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 538   if (n > 0) {
 539      char *str = (char *)malloc(n, mtInternal);
 540      confstr(_CS_GNU_LIBC_VERSION, str, n);
 541      os::Linux::set_glibc_version(str);
 542   } else {
 543      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 544      static char _gnu_libc_version[32];
 545      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 546               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 547      os::Linux::set_glibc_version(_gnu_libc_version);
 548   }
 549 
 550   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 551   if (n > 0) {
 552      char *str = (char *)malloc(n, mtInternal);
 553      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 554      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 555      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 556      // is the case. LinuxThreads has a hard limit on max number of threads.
 557      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 558      // On the other hand, NPTL does not have such a limit, sysconf()
 559      // will return -1 and errno is not changed. Check if it is really NPTL.
 560      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 561          strstr(str, "NPTL") &&
 562          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 563        free(str);
 564        os::Linux::set_libpthread_version("linuxthreads");
 565      } else {
 566        os::Linux::set_libpthread_version(str);
 567      }
 568   } else {
 569     // glibc before 2.3.2 only has LinuxThreads.
 570     os::Linux::set_libpthread_version("linuxthreads");
 571   }
 572 
 573   if (strstr(libpthread_version(), "NPTL")) {
 574      os::Linux::set_is_NPTL();
 575   } else {
 576      os::Linux::set_is_LinuxThreads();
 577   }
 578 
 579   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 580   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 581   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 582      os::Linux::set_is_floating_stack();
 583   }
 584 }
 585 
 586 /////////////////////////////////////////////////////////////////////////////
 587 // thread stack
 588 
 589 // Force Linux kernel to expand current thread stack. If "bottom" is close
 590 // to the stack guard, caller should block all signals.
 591 //
 592 // MAP_GROWSDOWN:
 593 //   A special mmap() flag that is used to implement thread stacks. It tells
 594 //   kernel that the memory region should extend downwards when needed. This
 595 //   allows early versions of LinuxThreads to only mmap the first few pages
 596 //   when creating a new thread. Linux kernel will automatically expand thread
 597 //   stack as needed (on page faults).
 598 //
 599 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 600 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 601 //   region, it's hard to tell if the fault is due to a legitimate stack
 602 //   access or because of reading/writing non-exist memory (e.g. buffer
 603 //   overrun). As a rule, if the fault happens below current stack pointer,
 604 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 605 //   application (see Linux kernel fault.c).
 606 //
 607 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 608 //   stack overflow detection.
 609 //
 610 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 611 //   not use this flag. However, the stack of initial thread is not created
 612 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 613 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 614 //   and then attach the thread to JVM.
 615 //
 616 // To get around the problem and allow stack banging on Linux, we need to
 617 // manually expand thread stack after receiving the SIGSEGV.
 618 //
 619 // There are two ways to expand thread stack to address "bottom", we used
 620 // both of them in JVM before 1.5:
 621 //   1. adjust stack pointer first so that it is below "bottom", and then
 622 //      touch "bottom"
 623 //   2. mmap() the page in question
 624 //
 625 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 626 // if current sp is already near the lower end of page 101, and we need to
 627 // call mmap() to map page 100, it is possible that part of the mmap() frame
 628 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 629 // That will destroy the mmap() frame and cause VM to crash.
 630 //
 631 // The following code works by adjusting sp first, then accessing the "bottom"
 632 // page to force a page fault. Linux kernel will then automatically expand the
 633 // stack mapping.
 634 //
 635 // _expand_stack_to() assumes its frame size is less than page size, which
 636 // should always be true if the function is not inlined.
 637 
 638 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 639 #define NOINLINE
 640 #else
 641 #define NOINLINE __attribute__ ((noinline))
 642 #endif
 643 
 644 static void _expand_stack_to(address bottom) NOINLINE;
 645 
 646 static void _expand_stack_to(address bottom) {
 647   address sp;
 648   size_t size;
 649   volatile char *p;
 650 
 651   // Adjust bottom to point to the largest address within the same page, it
 652   // gives us a one-page buffer if alloca() allocates slightly more memory.
 653   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 654   bottom += os::Linux::page_size() - 1;
 655 
 656   // sp might be slightly above current stack pointer; if that's the case, we
 657   // will alloca() a little more space than necessary, which is OK. Don't use
 658   // os::current_stack_pointer(), as its result can be slightly below current
 659   // stack pointer, causing us to not alloca enough to reach "bottom".
 660   sp = (address)&sp;
 661 
 662   if (sp > bottom) {
 663     size = sp - bottom;
 664     p = (volatile char *)alloca(size);
 665     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 666     p[0] = '\0';
 667   }
 668 }
 669 
 670 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 671   assert(t!=NULL, "just checking");
 672   assert(t->osthread()->expanding_stack(), "expand should be set");
 673   assert(t->stack_base() != NULL, "stack_base was not initialized");
 674 
 675   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 676     sigset_t mask_all, old_sigset;
 677     sigfillset(&mask_all);
 678     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 679     _expand_stack_to(addr);
 680     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 681     return true;
 682   }
 683   return false;
 684 }
 685 
 686 //////////////////////////////////////////////////////////////////////////////
 687 // create new thread
 688 
 689 static address highest_vm_reserved_address();
 690 
 691 // check if it's safe to start a new thread
 692 static bool _thread_safety_check(Thread* thread) {
 693   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 694     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 695     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 696     //   allocated (MAP_FIXED) from high address space. Every thread stack
 697     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 698     //   it to other values if they rebuild LinuxThreads).
 699     //
 700     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 701     // the memory region has already been mmap'ed. That means if we have too
 702     // many threads and/or very large heap, eventually thread stack will
 703     // collide with heap.
 704     //
 705     // Here we try to prevent heap/stack collision by comparing current
 706     // stack bottom with the highest address that has been mmap'ed by JVM
 707     // plus a safety margin for memory maps created by native code.
 708     //
 709     // This feature can be disabled by setting ThreadSafetyMargin to 0
 710     //
 711     if (ThreadSafetyMargin > 0) {
 712       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 713 
 714       // not safe if our stack extends below the safety margin
 715       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 716     } else {
 717       return true;
 718     }
 719   } else {
 720     // Floating stack LinuxThreads or NPTL:
 721     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 722     //   there's not enough space left, pthread_create() will fail. If we come
 723     //   here, that means enough space has been reserved for stack.
 724     return true;
 725   }
 726 }
 727 
 728 // Thread start routine for all newly created threads
 729 static void *java_start(Thread *thread) {
 730   // Try to randomize the cache line index of hot stack frames.
 731   // This helps when threads of the same stack traces evict each other's
 732   // cache lines. The threads can be either from the same JVM instance, or
 733   // from different JVM instances. The benefit is especially true for
 734   // processors with hyperthreading technology.
 735   static int counter = 0;
 736   int pid = os::current_process_id();
 737   alloca(((pid ^ counter++) & 7) * 128);
 738 
 739   ThreadLocalStorage::set_thread(thread);
 740 
 741   OSThread* osthread = thread->osthread();
 742   Monitor* sync = osthread->startThread_lock();
 743 
 744   // non floating stack LinuxThreads needs extra check, see above
 745   if (!_thread_safety_check(thread)) {
 746     // notify parent thread
 747     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 748     osthread->set_state(ZOMBIE);
 749     sync->notify_all();
 750     return NULL;
 751   }
 752 
 753   // thread_id is kernel thread id (similar to Solaris LWP id)
 754   osthread->set_thread_id(os::Linux::gettid());
 755 
 756   if (UseNUMA) {
 757     int lgrp_id = os::numa_get_group_id();
 758     if (lgrp_id != -1) {
 759       thread->set_lgrp_id(lgrp_id);
 760     }
 761   }
 762   // initialize signal mask for this thread
 763   os::Linux::hotspot_sigmask(thread);
 764 
 765   // initialize floating point control register
 766   os::Linux::init_thread_fpu_state();
 767 
 768   // handshaking with parent thread
 769   {
 770     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 771 
 772     // notify parent thread
 773     osthread->set_state(INITIALIZED);
 774     sync->notify_all();
 775 
 776     // wait until os::start_thread()
 777     while (osthread->get_state() == INITIALIZED) {
 778       sync->wait(Mutex::_no_safepoint_check_flag);
 779     }
 780   }
 781 
 782   // call one more level start routine
 783   thread->run();
 784 
 785   return 0;
 786 }
 787 
 788 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 789   assert(thread->osthread() == NULL, "caller responsible");
 790 
 791   // Allocate the OSThread object
 792   OSThread* osthread = new OSThread(NULL, NULL);
 793   if (osthread == NULL) {
 794     return false;
 795   }
 796 
 797   // set the correct thread state
 798   osthread->set_thread_type(thr_type);
 799 
 800   // Initial state is ALLOCATED but not INITIALIZED
 801   osthread->set_state(ALLOCATED);
 802 
 803   thread->set_osthread(osthread);
 804 
 805   // init thread attributes
 806   pthread_attr_t attr;
 807   pthread_attr_init(&attr);
 808   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 809 
 810   // stack size
 811   if (os::Linux::supports_variable_stack_size()) {
 812     // calculate stack size if it's not specified by caller
 813     if (stack_size == 0) {
 814       stack_size = os::Linux::default_stack_size(thr_type);
 815 
 816       switch (thr_type) {
 817       case os::java_thread:
 818         // Java threads use ThreadStackSize which default value can be
 819         // changed with the flag -Xss
 820         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 821         stack_size = JavaThread::stack_size_at_create();
 822         break;
 823       case os::compiler_thread:
 824         if (CompilerThreadStackSize > 0) {
 825           stack_size = (size_t)(CompilerThreadStackSize * K);
 826           break;
 827         } // else fall through:
 828           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 829       case os::vm_thread:
 830       case os::pgc_thread:
 831       case os::cgc_thread:
 832       case os::watcher_thread:
 833         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 834         break;
 835       }
 836     }
 837 
 838     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 839     pthread_attr_setstacksize(&attr, stack_size);
 840   } else {
 841     // let pthread_create() pick the default value.
 842   }
 843 
 844   // glibc guard page
 845   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 846 
 847   ThreadState state;
 848 
 849   {
 850     // Serialize thread creation if we are running with fixed stack LinuxThreads
 851     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 852     if (lock) {
 853       os::Linux::createThread_lock()->lock_without_safepoint_check();
 854     }
 855 
 856     pthread_t tid;
 857     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 858 
 859     pthread_attr_destroy(&attr);
 860 
 861     if (ret != 0) {
 862       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 863         perror("pthread_create()");
 864       }
 865       // Need to clean up stuff we've allocated so far
 866       thread->set_osthread(NULL);
 867       delete osthread;
 868       if (lock) os::Linux::createThread_lock()->unlock();
 869       return false;
 870     }
 871 
 872     // Store pthread info into the OSThread
 873     osthread->set_pthread_id(tid);
 874 
 875     // Wait until child thread is either initialized or aborted
 876     {
 877       Monitor* sync_with_child = osthread->startThread_lock();
 878       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 879       while ((state = osthread->get_state()) == ALLOCATED) {
 880         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 881       }
 882     }
 883 
 884     if (lock) {
 885       os::Linux::createThread_lock()->unlock();
 886     }
 887   }
 888 
 889   // Aborted due to thread limit being reached
 890   if (state == ZOMBIE) {
 891       thread->set_osthread(NULL);
 892       delete osthread;
 893       return false;
 894   }
 895 
 896   // The thread is returned suspended (in state INITIALIZED),
 897   // and is started higher up in the call chain
 898   assert(state == INITIALIZED, "race condition");
 899   return true;
 900 }
 901 
 902 /////////////////////////////////////////////////////////////////////////////
 903 // attach existing thread
 904 
 905 // bootstrap the main thread
 906 bool os::create_main_thread(JavaThread* thread) {
 907   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 908   return create_attached_thread(thread);
 909 }
 910 
 911 bool os::create_attached_thread(JavaThread* thread) {
 912 #ifdef ASSERT
 913     thread->verify_not_published();
 914 #endif
 915 
 916   // Allocate the OSThread object
 917   OSThread* osthread = new OSThread(NULL, NULL);
 918 
 919   if (osthread == NULL) {
 920     return false;
 921   }
 922 
 923   // Store pthread info into the OSThread
 924   osthread->set_thread_id(os::Linux::gettid());
 925   osthread->set_pthread_id(::pthread_self());
 926 
 927   // initialize floating point control register
 928   os::Linux::init_thread_fpu_state();
 929 
 930   // Initial thread state is RUNNABLE
 931   osthread->set_state(RUNNABLE);
 932 
 933   thread->set_osthread(osthread);
 934 
 935   if (UseNUMA) {
 936     int lgrp_id = os::numa_get_group_id();
 937     if (lgrp_id != -1) {
 938       thread->set_lgrp_id(lgrp_id);
 939     }
 940   }
 941 
 942   if (os::Linux::is_initial_thread()) {
 943     // If current thread is initial thread, its stack is mapped on demand,
 944     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 945     // the entire stack region to avoid SEGV in stack banging.
 946     // It is also useful to get around the heap-stack-gap problem on SuSE
 947     // kernel (see 4821821 for details). We first expand stack to the top
 948     // of yellow zone, then enable stack yellow zone (order is significant,
 949     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 950     // is no gap between the last two virtual memory regions.
 951 
 952     JavaThread *jt = (JavaThread *)thread;
 953     address addr = jt->stack_yellow_zone_base();
 954     assert(addr != NULL, "initialization problem?");
 955     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 956 
 957     osthread->set_expanding_stack();
 958     os::Linux::manually_expand_stack(jt, addr);
 959     osthread->clear_expanding_stack();
 960   }
 961 
 962   // initialize signal mask for this thread
 963   // and save the caller's signal mask
 964   os::Linux::hotspot_sigmask(thread);
 965 
 966   return true;
 967 }
 968 
 969 void os::pd_start_thread(Thread* thread) {
 970   OSThread * osthread = thread->osthread();
 971   assert(osthread->get_state() != INITIALIZED, "just checking");
 972   Monitor* sync_with_child = osthread->startThread_lock();
 973   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 974   sync_with_child->notify();
 975 }
 976 
 977 // Free Linux resources related to the OSThread
 978 void os::free_thread(OSThread* osthread) {
 979   assert(osthread != NULL, "osthread not set");
 980 
 981   if (Thread::current()->osthread() == osthread) {
 982     // Restore caller's signal mask
 983     sigset_t sigmask = osthread->caller_sigmask();
 984     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 985    }
 986 
 987   delete osthread;
 988 }
 989 
 990 //////////////////////////////////////////////////////////////////////////////
 991 // thread local storage
 992 
 993 // Restore the thread pointer if the destructor is called. This is in case
 994 // someone from JNI code sets up a destructor with pthread_key_create to run
 995 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 996 // will hang or crash. When detachCurrentThread is called the key will be set
 997 // to null and we will not be called again. If detachCurrentThread is never
 998 // called we could loop forever depending on the pthread implementation.
 999 static void restore_thread_pointer(void* p) {
1000   Thread* thread = (Thread*) p;
1001   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1002 }
1003 
1004 int os::allocate_thread_local_storage() {
1005   pthread_key_t key;
1006   int rslt = pthread_key_create(&key, restore_thread_pointer);
1007   assert(rslt == 0, "cannot allocate thread local storage");
1008   return (int)key;
1009 }
1010 
1011 // Note: This is currently not used by VM, as we don't destroy TLS key
1012 // on VM exit.
1013 void os::free_thread_local_storage(int index) {
1014   int rslt = pthread_key_delete((pthread_key_t)index);
1015   assert(rslt == 0, "invalid index");
1016 }
1017 
1018 void os::thread_local_storage_at_put(int index, void* value) {
1019   int rslt = pthread_setspecific((pthread_key_t)index, value);
1020   assert(rslt == 0, "pthread_setspecific failed");
1021 }
1022 
1023 extern "C" Thread* get_thread() {
1024   return ThreadLocalStorage::thread();
1025 }
1026 
1027 //////////////////////////////////////////////////////////////////////////////
1028 // initial thread
1029 
1030 // Check if current thread is the initial thread, similar to Solaris thr_main.
1031 bool os::Linux::is_initial_thread(void) {
1032   char dummy;
1033   // If called before init complete, thread stack bottom will be null.
1034   // Can be called if fatal error occurs before initialization.
1035   if (initial_thread_stack_bottom() == NULL) return false;
1036   assert(initial_thread_stack_bottom() != NULL &&
1037          initial_thread_stack_size()   != 0,
1038          "os::init did not locate initial thread's stack region");
1039   if ((address)&dummy >= initial_thread_stack_bottom() &&
1040       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1041        return true;
1042   else return false;
1043 }
1044 
1045 // Find the virtual memory area that contains addr
1046 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1047   FILE *fp = fopen("/proc/self/maps", "r");
1048   if (fp) {
1049     address low, high;
1050     while (!feof(fp)) {
1051       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1052         if (low <= addr && addr < high) {
1053            if (vma_low)  *vma_low  = low;
1054            if (vma_high) *vma_high = high;
1055            fclose (fp);
1056            return true;
1057         }
1058       }
1059       for (;;) {
1060         int ch = fgetc(fp);
1061         if (ch == EOF || ch == (int)'\n') break;
1062       }
1063     }
1064     fclose(fp);
1065   }
1066   return false;
1067 }
1068 
1069 // Locate initial thread stack. This special handling of initial thread stack
1070 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1071 // bogus value for initial thread.
1072 void os::Linux::capture_initial_stack(size_t max_size) {
1073   // stack size is the easy part, get it from RLIMIT_STACK
1074   size_t stack_size;
1075   struct rlimit rlim;
1076   getrlimit(RLIMIT_STACK, &rlim);
1077   stack_size = rlim.rlim_cur;
1078 
1079   // 6308388: a bug in ld.so will relocate its own .data section to the
1080   //   lower end of primordial stack; reduce ulimit -s value a little bit
1081   //   so we won't install guard page on ld.so's data section.
1082   stack_size -= 2 * page_size();
1083 
1084   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1085   //   7.1, in both cases we will get 2G in return value.
1086   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1087   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1088   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1089   //   in case other parts in glibc still assumes 2M max stack size.
1090   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1091   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1092   if (stack_size > 2 * K * K IA64_ONLY(*2))
1093       stack_size = 2 * K * K IA64_ONLY(*2);
1094   // Try to figure out where the stack base (top) is. This is harder.
1095   //
1096   // When an application is started, glibc saves the initial stack pointer in
1097   // a global variable "__libc_stack_end", which is then used by system
1098   // libraries. __libc_stack_end should be pretty close to stack top. The
1099   // variable is available since the very early days. However, because it is
1100   // a private interface, it could disappear in the future.
1101   //
1102   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1103   // to __libc_stack_end, it is very close to stack top, but isn't the real
1104   // stack top. Note that /proc may not exist if VM is running as a chroot
1105   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1106   // /proc/<pid>/stat could change in the future (though unlikely).
1107   //
1108   // We try __libc_stack_end first. If that doesn't work, look for
1109   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1110   // as a hint, which should work well in most cases.
1111 
1112   uintptr_t stack_start;
1113 
1114   // try __libc_stack_end first
1115   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1116   if (p && *p) {
1117     stack_start = *p;
1118   } else {
1119     // see if we can get the start_stack field from /proc/self/stat
1120     FILE *fp;
1121     int pid;
1122     char state;
1123     int ppid;
1124     int pgrp;
1125     int session;
1126     int nr;
1127     int tpgrp;
1128     unsigned long flags;
1129     unsigned long minflt;
1130     unsigned long cminflt;
1131     unsigned long majflt;
1132     unsigned long cmajflt;
1133     unsigned long utime;
1134     unsigned long stime;
1135     long cutime;
1136     long cstime;
1137     long prio;
1138     long nice;
1139     long junk;
1140     long it_real;
1141     uintptr_t start;
1142     uintptr_t vsize;
1143     intptr_t rss;
1144     uintptr_t rsslim;
1145     uintptr_t scodes;
1146     uintptr_t ecode;
1147     int i;
1148 
1149     // Figure what the primordial thread stack base is. Code is inspired
1150     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1151     // followed by command name surrounded by parentheses, state, etc.
1152     char stat[2048];
1153     int statlen;
1154 
1155     fp = fopen("/proc/self/stat", "r");
1156     if (fp) {
1157       statlen = fread(stat, 1, 2047, fp);
1158       stat[statlen] = '\0';
1159       fclose(fp);
1160 
1161       // Skip pid and the command string. Note that we could be dealing with
1162       // weird command names, e.g. user could decide to rename java launcher
1163       // to "java 1.4.2 :)", then the stat file would look like
1164       //                1234 (java 1.4.2 :)) R ... ...
1165       // We don't really need to know the command string, just find the last
1166       // occurrence of ")" and then start parsing from there. See bug 4726580.
1167       char * s = strrchr(stat, ')');
1168 
1169       i = 0;
1170       if (s) {
1171         // Skip blank chars
1172         do s++; while (isspace(*s));
1173 
1174 #define _UFM UINTX_FORMAT
1175 #define _DFM INTX_FORMAT
1176 
1177         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1178         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1179         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1180              &state,          /* 3  %c  */
1181              &ppid,           /* 4  %d  */
1182              &pgrp,           /* 5  %d  */
1183              &session,        /* 6  %d  */
1184              &nr,             /* 7  %d  */
1185              &tpgrp,          /* 8  %d  */
1186              &flags,          /* 9  %lu  */
1187              &minflt,         /* 10 %lu  */
1188              &cminflt,        /* 11 %lu  */
1189              &majflt,         /* 12 %lu  */
1190              &cmajflt,        /* 13 %lu  */
1191              &utime,          /* 14 %lu  */
1192              &stime,          /* 15 %lu  */
1193              &cutime,         /* 16 %ld  */
1194              &cstime,         /* 17 %ld  */
1195              &prio,           /* 18 %ld  */
1196              &nice,           /* 19 %ld  */
1197              &junk,           /* 20 %ld  */
1198              &it_real,        /* 21 %ld  */
1199              &start,          /* 22 UINTX_FORMAT */
1200              &vsize,          /* 23 UINTX_FORMAT */
1201              &rss,            /* 24 INTX_FORMAT  */
1202              &rsslim,         /* 25 UINTX_FORMAT */
1203              &scodes,         /* 26 UINTX_FORMAT */
1204              &ecode,          /* 27 UINTX_FORMAT */
1205              &stack_start);   /* 28 UINTX_FORMAT */
1206       }
1207 
1208 #undef _UFM
1209 #undef _DFM
1210 
1211       if (i != 28 - 2) {
1212          assert(false, "Bad conversion from /proc/self/stat");
1213          // product mode - assume we are the initial thread, good luck in the
1214          // embedded case.
1215          warning("Can't detect initial thread stack location - bad conversion");
1216          stack_start = (uintptr_t) &rlim;
1217       }
1218     } else {
1219       // For some reason we can't open /proc/self/stat (for example, running on
1220       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1221       // most cases, so don't abort:
1222       warning("Can't detect initial thread stack location - no /proc/self/stat");
1223       stack_start = (uintptr_t) &rlim;
1224     }
1225   }
1226 
1227   // Now we have a pointer (stack_start) very close to the stack top, the
1228   // next thing to do is to figure out the exact location of stack top. We
1229   // can find out the virtual memory area that contains stack_start by
1230   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1231   // and its upper limit is the real stack top. (again, this would fail if
1232   // running inside chroot, because /proc may not exist.)
1233 
1234   uintptr_t stack_top;
1235   address low, high;
1236   if (find_vma((address)stack_start, &low, &high)) {
1237     // success, "high" is the true stack top. (ignore "low", because initial
1238     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1239     stack_top = (uintptr_t)high;
1240   } else {
1241     // failed, likely because /proc/self/maps does not exist
1242     warning("Can't detect initial thread stack location - find_vma failed");
1243     // best effort: stack_start is normally within a few pages below the real
1244     // stack top, use it as stack top, and reduce stack size so we won't put
1245     // guard page outside stack.
1246     stack_top = stack_start;
1247     stack_size -= 16 * page_size();
1248   }
1249 
1250   // stack_top could be partially down the page so align it
1251   stack_top = align_size_up(stack_top, page_size());
1252 
1253   if (max_size && stack_size > max_size) {
1254      _initial_thread_stack_size = max_size;
1255   } else {
1256      _initial_thread_stack_size = stack_size;
1257   }
1258 
1259   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1260   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1261 }
1262 
1263 ////////////////////////////////////////////////////////////////////////////////
1264 // time support
1265 
1266 // Time since start-up in seconds to a fine granularity.
1267 // Used by VMSelfDestructTimer and the MemProfiler.
1268 double os::elapsedTime() {
1269 
1270   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1271 }
1272 
1273 jlong os::elapsed_counter() {
1274   return javaTimeNanos() - initial_time_count;
1275 }
1276 
1277 jlong os::elapsed_frequency() {
1278   return NANOSECS_PER_SEC; // nanosecond resolution
1279 }
1280 
1281 bool os::supports_vtime() { return true; }
1282 bool os::enable_vtime()   { return false; }
1283 bool os::vtime_enabled()  { return false; }
1284 
1285 double os::elapsedVTime() {
1286   struct rusage usage;
1287   int retval = getrusage(RUSAGE_THREAD, &usage);
1288   if (retval == 0) {
1289     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1290   } else {
1291     // better than nothing, but not much
1292     return elapsedTime();
1293   }
1294 }
1295 
1296 jlong os::javaTimeMillis() {
1297   timeval time;
1298   int status = gettimeofday(&time, NULL);
1299   assert(status != -1, "linux error");
1300   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1301 }
1302 
1303 #ifndef CLOCK_MONOTONIC
1304 #define CLOCK_MONOTONIC (1)
1305 #endif
1306 
1307 void os::Linux::clock_init() {
1308   // we do dlopen's in this particular order due to bug in linux
1309   // dynamical loader (see 6348968) leading to crash on exit
1310   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1311   if (handle == NULL) {
1312     handle = dlopen("librt.so", RTLD_LAZY);
1313   }
1314 
1315   if (handle) {
1316     int (*clock_getres_func)(clockid_t, struct timespec*) =
1317            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1318     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1319            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1320     if (clock_getres_func && clock_gettime_func) {
1321       // See if monotonic clock is supported by the kernel. Note that some
1322       // early implementations simply return kernel jiffies (updated every
1323       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1324       // for nano time (though the monotonic property is still nice to have).
1325       // It's fixed in newer kernels, however clock_getres() still returns
1326       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1327       // resolution for now. Hopefully as people move to new kernels, this
1328       // won't be a problem.
1329       struct timespec res;
1330       struct timespec tp;
1331       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1332           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1333         // yes, monotonic clock is supported
1334         _clock_gettime = clock_gettime_func;
1335         return;
1336       } else {
1337         // close librt if there is no monotonic clock
1338         dlclose(handle);
1339       }
1340     }
1341   }
1342   warning("No monotonic clock was available - timed services may " \
1343           "be adversely affected if the time-of-day clock changes");
1344 }
1345 
1346 #ifndef SYS_clock_getres
1347 
1348 #if defined(IA32) || defined(AMD64)
1349 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1350 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1351 #else
1352 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1353 #define sys_clock_getres(x,y)  -1
1354 #endif
1355 
1356 #else
1357 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1358 #endif
1359 
1360 void os::Linux::fast_thread_clock_init() {
1361   if (!UseLinuxPosixThreadCPUClocks) {
1362     return;
1363   }
1364   clockid_t clockid;
1365   struct timespec tp;
1366   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1367       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1368 
1369   // Switch to using fast clocks for thread cpu time if
1370   // the sys_clock_getres() returns 0 error code.
1371   // Note, that some kernels may support the current thread
1372   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1373   // returned by the pthread_getcpuclockid().
1374   // If the fast Posix clocks are supported then the sys_clock_getres()
1375   // must return at least tp.tv_sec == 0 which means a resolution
1376   // better than 1 sec. This is extra check for reliability.
1377 
1378   if(pthread_getcpuclockid_func &&
1379      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1380      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1381 
1382     _supports_fast_thread_cpu_time = true;
1383     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1384   }
1385 }
1386 
1387 jlong os::javaTimeNanos() {
1388   if (Linux::supports_monotonic_clock()) {
1389     struct timespec tp;
1390     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1391     assert(status == 0, "gettime error");
1392     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1393     return result;
1394   } else {
1395     timeval time;
1396     int status = gettimeofday(&time, NULL);
1397     assert(status != -1, "linux error");
1398     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1399     return 1000 * usecs;
1400   }
1401 }
1402 
1403 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1404   if (Linux::supports_monotonic_clock()) {
1405     info_ptr->max_value = ALL_64_BITS;
1406 
1407     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1408     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1409     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1410   } else {
1411     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1412     info_ptr->max_value = ALL_64_BITS;
1413 
1414     // gettimeofday is a real time clock so it skips
1415     info_ptr->may_skip_backward = true;
1416     info_ptr->may_skip_forward = true;
1417   }
1418 
1419   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1420 }
1421 
1422 // Return the real, user, and system times in seconds from an
1423 // arbitrary fixed point in the past.
1424 bool os::getTimesSecs(double* process_real_time,
1425                       double* process_user_time,
1426                       double* process_system_time) {
1427   struct tms ticks;
1428   clock_t real_ticks = times(&ticks);
1429 
1430   if (real_ticks == (clock_t) (-1)) {
1431     return false;
1432   } else {
1433     double ticks_per_second = (double) clock_tics_per_sec;
1434     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1435     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1436     *process_real_time = ((double) real_ticks) / ticks_per_second;
1437 
1438     return true;
1439   }
1440 }
1441 
1442 
1443 char * os::local_time_string(char *buf, size_t buflen) {
1444   struct tm t;
1445   time_t long_time;
1446   time(&long_time);
1447   localtime_r(&long_time, &t);
1448   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1449                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1450                t.tm_hour, t.tm_min, t.tm_sec);
1451   return buf;
1452 }
1453 
1454 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1455   return localtime_r(clock, res);
1456 }
1457 
1458 ////////////////////////////////////////////////////////////////////////////////
1459 // runtime exit support
1460 
1461 // Note: os::shutdown() might be called very early during initialization, or
1462 // called from signal handler. Before adding something to os::shutdown(), make
1463 // sure it is async-safe and can handle partially initialized VM.
1464 void os::shutdown() {
1465 
1466   // allow PerfMemory to attempt cleanup of any persistent resources
1467   perfMemory_exit();
1468 
1469   // needs to remove object in file system
1470   AttachListener::abort();
1471 
1472   // flush buffered output, finish log files
1473   ostream_abort();
1474 
1475   // Check for abort hook
1476   abort_hook_t abort_hook = Arguments::abort_hook();
1477   if (abort_hook != NULL) {
1478     abort_hook();
1479   }
1480 
1481 }
1482 
1483 // Note: os::abort() might be called very early during initialization, or
1484 // called from signal handler. Before adding something to os::abort(), make
1485 // sure it is async-safe and can handle partially initialized VM.
1486 void os::abort(bool dump_core) {
1487   os::shutdown();
1488   if (dump_core) {
1489 #ifndef PRODUCT
1490     fdStream out(defaultStream::output_fd());
1491     out.print_raw("Current thread is ");
1492     char buf[16];
1493     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1494     out.print_raw_cr(buf);
1495     out.print_raw_cr("Dumping core ...");
1496 #endif
1497     ::abort(); // dump core
1498   }
1499 
1500   ::exit(1);
1501 }
1502 
1503 // Die immediately, no exit hook, no abort hook, no cleanup.
1504 void os::die() {
1505   // _exit() on LinuxThreads only kills current thread
1506   ::abort();
1507 }
1508 
1509 
1510 // This method is a copy of JDK's sysGetLastErrorString
1511 // from src/solaris/hpi/src/system_md.c
1512 
1513 size_t os::lasterror(char *buf, size_t len) {
1514 
1515   if (errno == 0)  return 0;
1516 
1517   const char *s = ::strerror(errno);
1518   size_t n = ::strlen(s);
1519   if (n >= len) {
1520     n = len - 1;
1521   }
1522   ::strncpy(buf, s, n);
1523   buf[n] = '\0';
1524   return n;
1525 }
1526 
1527 intx os::current_thread_id() { return (intx)pthread_self(); }
1528 int os::current_process_id() {
1529 
1530   // Under the old linux thread library, linux gives each thread
1531   // its own process id. Because of this each thread will return
1532   // a different pid if this method were to return the result
1533   // of getpid(2). Linux provides no api that returns the pid
1534   // of the launcher thread for the vm. This implementation
1535   // returns a unique pid, the pid of the launcher thread
1536   // that starts the vm 'process'.
1537 
1538   // Under the NPTL, getpid() returns the same pid as the
1539   // launcher thread rather than a unique pid per thread.
1540   // Use gettid() if you want the old pre NPTL behaviour.
1541 
1542   // if you are looking for the result of a call to getpid() that
1543   // returns a unique pid for the calling thread, then look at the
1544   // OSThread::thread_id() method in osThread_linux.hpp file
1545 
1546   return (int)(_initial_pid ? _initial_pid : getpid());
1547 }
1548 
1549 // DLL functions
1550 
1551 const char* os::dll_file_extension() { return ".so"; }
1552 
1553 // This must be hard coded because it's the system's temporary
1554 // directory not the java application's temp directory, ala java.io.tmpdir.
1555 const char* os::get_temp_directory() { return "/tmp"; }
1556 
1557 static bool file_exists(const char* filename) {
1558   struct stat statbuf;
1559   if (filename == NULL || strlen(filename) == 0) {
1560     return false;
1561   }
1562   return os::stat(filename, &statbuf) == 0;
1563 }
1564 
1565 bool os::dll_build_name(char* buffer, size_t buflen,
1566                         const char* pname, const char* fname) {
1567   bool retval = false;
1568   // Copied from libhpi
1569   const size_t pnamelen = pname ? strlen(pname) : 0;
1570 
1571   // Return error on buffer overflow.
1572   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1573     return retval;
1574   }
1575 
1576   if (pnamelen == 0) {
1577     snprintf(buffer, buflen, "lib%s.so", fname);
1578     retval = true;
1579   } else if (strchr(pname, *os::path_separator()) != NULL) {
1580     int n;
1581     char** pelements = split_path(pname, &n);
1582     if (pelements == NULL) {
1583       return false;
1584     }
1585     for (int i = 0 ; i < n ; i++) {
1586       // Really shouldn't be NULL, but check can't hurt
1587       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1588         continue; // skip the empty path values
1589       }
1590       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1591       if (file_exists(buffer)) {
1592         retval = true;
1593         break;
1594       }
1595     }
1596     // release the storage
1597     for (int i = 0 ; i < n ; i++) {
1598       if (pelements[i] != NULL) {
1599         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1600       }
1601     }
1602     if (pelements != NULL) {
1603       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1604     }
1605   } else {
1606     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1607     retval = true;
1608   }
1609   return retval;
1610 }
1611 
1612 // check if addr is inside libjvm.so
1613 bool os::address_is_in_vm(address addr) {
1614   static address libjvm_base_addr;
1615   Dl_info dlinfo;
1616 
1617   if (libjvm_base_addr == NULL) {
1618     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1619       libjvm_base_addr = (address)dlinfo.dli_fbase;
1620     }
1621     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1622   }
1623 
1624   if (dladdr((void *)addr, &dlinfo) != 0) {
1625     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1626   }
1627 
1628   return false;
1629 }
1630 
1631 bool os::dll_address_to_function_name(address addr, char *buf,
1632                                       int buflen, int *offset) {
1633   // buf is not optional, but offset is optional
1634   assert(buf != NULL, "sanity check");
1635 
1636   Dl_info dlinfo;
1637 
1638   if (dladdr((void*)addr, &dlinfo) != 0) {
1639     // see if we have a matching symbol
1640     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1641       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1642         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1643       }
1644       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1645       return true;
1646     }
1647     // no matching symbol so try for just file info
1648     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1649       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1650                           buf, buflen, offset, dlinfo.dli_fname)) {
1651         return true;
1652       }
1653     }
1654   }
1655 
1656   buf[0] = '\0';
1657   if (offset != NULL) *offset = -1;
1658   return false;
1659 }
1660 
1661 struct _address_to_library_name {
1662   address addr;          // input : memory address
1663   size_t  buflen;        //         size of fname
1664   char*   fname;         // output: library name
1665   address base;          //         library base addr
1666 };
1667 
1668 static int address_to_library_name_callback(struct dl_phdr_info *info,
1669                                             size_t size, void *data) {
1670   int i;
1671   bool found = false;
1672   address libbase = NULL;
1673   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1674 
1675   // iterate through all loadable segments
1676   for (i = 0; i < info->dlpi_phnum; i++) {
1677     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1678     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1679       // base address of a library is the lowest address of its loaded
1680       // segments.
1681       if (libbase == NULL || libbase > segbase) {
1682         libbase = segbase;
1683       }
1684       // see if 'addr' is within current segment
1685       if (segbase <= d->addr &&
1686           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1687         found = true;
1688       }
1689     }
1690   }
1691 
1692   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1693   // so dll_address_to_library_name() can fall through to use dladdr() which
1694   // can figure out executable name from argv[0].
1695   if (found && info->dlpi_name && info->dlpi_name[0]) {
1696     d->base = libbase;
1697     if (d->fname) {
1698       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1699     }
1700     return 1;
1701   }
1702   return 0;
1703 }
1704 
1705 bool os::dll_address_to_library_name(address addr, char* buf,
1706                                      int buflen, int* offset) {
1707   // buf is not optional, but offset is optional
1708   assert(buf != NULL, "sanity check");
1709 
1710   Dl_info dlinfo;
1711   struct _address_to_library_name data;
1712 
1713   // There is a bug in old glibc dladdr() implementation that it could resolve
1714   // to wrong library name if the .so file has a base address != NULL. Here
1715   // we iterate through the program headers of all loaded libraries to find
1716   // out which library 'addr' really belongs to. This workaround can be
1717   // removed once the minimum requirement for glibc is moved to 2.3.x.
1718   data.addr = addr;
1719   data.fname = buf;
1720   data.buflen = buflen;
1721   data.base = NULL;
1722   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1723 
1724   if (rslt) {
1725      // buf already contains library name
1726      if (offset) *offset = addr - data.base;
1727      return true;
1728   }
1729   if (dladdr((void*)addr, &dlinfo) != 0) {
1730     if (dlinfo.dli_fname != NULL) {
1731       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1732     }
1733     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1734       *offset = addr - (address)dlinfo.dli_fbase;
1735     }
1736     return true;
1737   }
1738 
1739   buf[0] = '\0';
1740   if (offset) *offset = -1;
1741   return false;
1742 }
1743 
1744   // Loads .dll/.so and
1745   // in case of error it checks if .dll/.so was built for the
1746   // same architecture as Hotspot is running on
1747 
1748 
1749 // Remember the stack's state. The Linux dynamic linker will change
1750 // the stack to 'executable' at most once, so we must safepoint only once.
1751 bool os::Linux::_stack_is_executable = false;
1752 
1753 // VM operation that loads a library.  This is necessary if stack protection
1754 // of the Java stacks can be lost during loading the library.  If we
1755 // do not stop the Java threads, they can stack overflow before the stacks
1756 // are protected again.
1757 class VM_LinuxDllLoad: public VM_Operation {
1758  private:
1759   const char *_filename;
1760   char *_ebuf;
1761   int _ebuflen;
1762   void *_lib;
1763  public:
1764   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1765     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1766   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1767   void doit() {
1768     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1769     os::Linux::_stack_is_executable = true;
1770   }
1771   void* loaded_library() { return _lib; }
1772 };
1773 
1774 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1775 {
1776   void * result = NULL;
1777   bool load_attempted = false;
1778 
1779   // Check whether the library to load might change execution rights
1780   // of the stack. If they are changed, the protection of the stack
1781   // guard pages will be lost. We need a safepoint to fix this.
1782   //
1783   // See Linux man page execstack(8) for more info.
1784   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1785     ElfFile ef(filename);
1786     if (!ef.specifies_noexecstack()) {
1787       if (!is_init_completed()) {
1788         os::Linux::_stack_is_executable = true;
1789         // This is OK - No Java threads have been created yet, and hence no
1790         // stack guard pages to fix.
1791         //
1792         // This should happen only when you are building JDK7 using a very
1793         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1794         //
1795         // Dynamic loader will make all stacks executable after
1796         // this function returns, and will not do that again.
1797         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1798       } else {
1799         warning("You have loaded library %s which might have disabled stack guard. "
1800                 "The VM will try to fix the stack guard now.\n"
1801                 "It's highly recommended that you fix the library with "
1802                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1803                 filename);
1804 
1805         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1806         JavaThread *jt = JavaThread::current();
1807         if (jt->thread_state() != _thread_in_native) {
1808           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1809           // that requires ExecStack. Cannot enter safe point. Let's give up.
1810           warning("Unable to fix stack guard. Giving up.");
1811         } else {
1812           if (!LoadExecStackDllInVMThread) {
1813             // This is for the case where the DLL has an static
1814             // constructor function that executes JNI code. We cannot
1815             // load such DLLs in the VMThread.
1816             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1817           }
1818 
1819           ThreadInVMfromNative tiv(jt);
1820           debug_only(VMNativeEntryWrapper vew;)
1821 
1822           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1823           VMThread::execute(&op);
1824           if (LoadExecStackDllInVMThread) {
1825             result = op.loaded_library();
1826           }
1827           load_attempted = true;
1828         }
1829       }
1830     }
1831   }
1832 
1833   if (!load_attempted) {
1834     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1835   }
1836 
1837   if (result != NULL) {
1838     // Successful loading
1839     return result;
1840   }
1841 
1842   Elf32_Ehdr elf_head;
1843   int diag_msg_max_length=ebuflen-strlen(ebuf);
1844   char* diag_msg_buf=ebuf+strlen(ebuf);
1845 
1846   if (diag_msg_max_length==0) {
1847     // No more space in ebuf for additional diagnostics message
1848     return NULL;
1849   }
1850 
1851 
1852   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1853 
1854   if (file_descriptor < 0) {
1855     // Can't open library, report dlerror() message
1856     return NULL;
1857   }
1858 
1859   bool failed_to_read_elf_head=
1860     (sizeof(elf_head)!=
1861         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1862 
1863   ::close(file_descriptor);
1864   if (failed_to_read_elf_head) {
1865     // file i/o error - report dlerror() msg
1866     return NULL;
1867   }
1868 
1869   typedef struct {
1870     Elf32_Half  code;         // Actual value as defined in elf.h
1871     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1872     char        elf_class;    // 32 or 64 bit
1873     char        endianess;    // MSB or LSB
1874     char*       name;         // String representation
1875   } arch_t;
1876 
1877   #ifndef EM_486
1878   #define EM_486          6               /* Intel 80486 */
1879   #endif
1880 
1881   static const arch_t arch_array[]={
1882     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1883     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1884     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1885     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1886     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1887     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1888     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1889     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1890 #if defined(VM_LITTLE_ENDIAN)
1891     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1892 #else
1893     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1894 #endif
1895     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1896     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1897     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1898     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1899     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1900     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1901     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1902   };
1903 
1904   #if  (defined IA32)
1905     static  Elf32_Half running_arch_code=EM_386;
1906   #elif   (defined AMD64)
1907     static  Elf32_Half running_arch_code=EM_X86_64;
1908   #elif  (defined IA64)
1909     static  Elf32_Half running_arch_code=EM_IA_64;
1910   #elif  (defined __sparc) && (defined _LP64)
1911     static  Elf32_Half running_arch_code=EM_SPARCV9;
1912   #elif  (defined __sparc) && (!defined _LP64)
1913     static  Elf32_Half running_arch_code=EM_SPARC;
1914   #elif  (defined __powerpc64__)
1915     static  Elf32_Half running_arch_code=EM_PPC64;
1916   #elif  (defined __powerpc__)
1917     static  Elf32_Half running_arch_code=EM_PPC;
1918   #elif  (defined ARM)
1919     static  Elf32_Half running_arch_code=EM_ARM;
1920   #elif  (defined S390)
1921     static  Elf32_Half running_arch_code=EM_S390;
1922   #elif  (defined ALPHA)
1923     static  Elf32_Half running_arch_code=EM_ALPHA;
1924   #elif  (defined MIPSEL)
1925     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1926   #elif  (defined PARISC)
1927     static  Elf32_Half running_arch_code=EM_PARISC;
1928   #elif  (defined MIPS)
1929     static  Elf32_Half running_arch_code=EM_MIPS;
1930   #elif  (defined M68K)
1931     static  Elf32_Half running_arch_code=EM_68K;
1932   #else
1933     #error Method os::dll_load requires that one of following is defined:\
1934          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1935   #endif
1936 
1937   // Identify compatability class for VM's architecture and library's architecture
1938   // Obtain string descriptions for architectures
1939 
1940   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1941   int running_arch_index=-1;
1942 
1943   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1944     if (running_arch_code == arch_array[i].code) {
1945       running_arch_index    = i;
1946     }
1947     if (lib_arch.code == arch_array[i].code) {
1948       lib_arch.compat_class = arch_array[i].compat_class;
1949       lib_arch.name         = arch_array[i].name;
1950     }
1951   }
1952 
1953   assert(running_arch_index != -1,
1954     "Didn't find running architecture code (running_arch_code) in arch_array");
1955   if (running_arch_index == -1) {
1956     // Even though running architecture detection failed
1957     // we may still continue with reporting dlerror() message
1958     return NULL;
1959   }
1960 
1961   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1962     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1963     return NULL;
1964   }
1965 
1966 #ifndef S390
1967   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1968     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1969     return NULL;
1970   }
1971 #endif // !S390
1972 
1973   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1974     if ( lib_arch.name!=NULL ) {
1975       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1976         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1977         lib_arch.name, arch_array[running_arch_index].name);
1978     } else {
1979       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1980       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1981         lib_arch.code,
1982         arch_array[running_arch_index].name);
1983     }
1984   }
1985 
1986   return NULL;
1987 }
1988 
1989 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
1990   void * result = ::dlopen(filename, RTLD_LAZY);
1991   if (result == NULL) {
1992     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1993     ebuf[ebuflen-1] = '\0';
1994   }
1995   return result;
1996 }
1997 
1998 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
1999   void * result = NULL;
2000   if (LoadExecStackDllInVMThread) {
2001     result = dlopen_helper(filename, ebuf, ebuflen);
2002   }
2003 
2004   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2005   // library that requires an executable stack, or which does not have this
2006   // stack attribute set, dlopen changes the stack attribute to executable. The
2007   // read protection of the guard pages gets lost.
2008   //
2009   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2010   // may have been queued at the same time.
2011 
2012   if (!_stack_is_executable) {
2013     JavaThread *jt = Threads::first();
2014 
2015     while (jt) {
2016       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2017           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2018         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2019                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2020           warning("Attempt to reguard stack yellow zone failed.");
2021         }
2022       }
2023       jt = jt->next();
2024     }
2025   }
2026 
2027   return result;
2028 }
2029 
2030 /*
2031  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2032  * chances are you might want to run the generated bits against glibc-2.0
2033  * libdl.so, so always use locking for any version of glibc.
2034  */
2035 void* os::dll_lookup(void* handle, const char* name) {
2036   pthread_mutex_lock(&dl_mutex);
2037   void* res = dlsym(handle, name);
2038   pthread_mutex_unlock(&dl_mutex);
2039   return res;
2040 }
2041 
2042 void* os::get_default_process_handle() {
2043   return (void*)::dlopen(NULL, RTLD_LAZY);
2044 }
2045 
2046 static bool _print_ascii_file(const char* filename, outputStream* st) {
2047   int fd = ::open(filename, O_RDONLY);
2048   if (fd == -1) {
2049      return false;
2050   }
2051 
2052   char buf[32];
2053   int bytes;
2054   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2055     st->print_raw(buf, bytes);
2056   }
2057 
2058   ::close(fd);
2059 
2060   return true;
2061 }
2062 
2063 void os::print_dll_info(outputStream *st) {
2064    st->print_cr("Dynamic libraries:");
2065 
2066    char fname[32];
2067    pid_t pid = os::Linux::gettid();
2068 
2069    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2070 
2071    if (!_print_ascii_file(fname, st)) {
2072      st->print("Can not get library information for pid = %d\n", pid);
2073    }
2074 }
2075 
2076 void os::print_os_info_brief(outputStream* st) {
2077   os::Linux::print_distro_info(st);
2078 
2079   os::Posix::print_uname_info(st);
2080 
2081   os::Linux::print_libversion_info(st);
2082 
2083 }
2084 
2085 void os::print_os_info(outputStream* st) {
2086   st->print("OS:");
2087 
2088   os::Linux::print_distro_info(st);
2089 
2090   os::Posix::print_uname_info(st);
2091 
2092   // Print warning if unsafe chroot environment detected
2093   if (unsafe_chroot_detected) {
2094     st->print("WARNING!! ");
2095     st->print_cr("%s", unstable_chroot_error);
2096   }
2097 
2098   os::Linux::print_libversion_info(st);
2099 
2100   os::Posix::print_rlimit_info(st);
2101 
2102   os::Posix::print_load_average(st);
2103 
2104   os::Linux::print_full_memory_info(st);
2105 }
2106 
2107 // Try to identify popular distros.
2108 // Most Linux distributions have a /etc/XXX-release file, which contains
2109 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2110 // file that also contains the OS version string. Some have more than one
2111 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2112 // /etc/redhat-release.), so the order is important.
2113 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2114 // their own specific XXX-release file as well as a redhat-release file.
2115 // Because of this the XXX-release file needs to be searched for before the
2116 // redhat-release file.
2117 // Since Red Hat has a lsb-release file that is not very descriptive the
2118 // search for redhat-release needs to be before lsb-release.
2119 // Since the lsb-release file is the new standard it needs to be searched
2120 // before the older style release files.
2121 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2122 // next to last resort.  The os-release file is a new standard that contains
2123 // distribution information and the system-release file seems to be an old
2124 // standard that has been replaced by the lsb-release and os-release files.
2125 // Searching for the debian_version file is the last resort.  It contains
2126 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2127 // "Debian " is printed before the contents of the debian_version file.
2128 void os::Linux::print_distro_info(outputStream* st) {
2129    if (!_print_ascii_file("/etc/oracle-release", st) &&
2130        !_print_ascii_file("/etc/mandriva-release", st) &&
2131        !_print_ascii_file("/etc/mandrake-release", st) &&
2132        !_print_ascii_file("/etc/sun-release", st) &&
2133        !_print_ascii_file("/etc/redhat-release", st) &&
2134        !_print_ascii_file("/etc/lsb-release", st) &&
2135        !_print_ascii_file("/etc/SuSE-release", st) &&
2136        !_print_ascii_file("/etc/turbolinux-release", st) &&
2137        !_print_ascii_file("/etc/gentoo-release", st) &&
2138        !_print_ascii_file("/etc/ltib-release", st) &&
2139        !_print_ascii_file("/etc/angstrom-version", st) &&
2140        !_print_ascii_file("/etc/system-release", st) &&
2141        !_print_ascii_file("/etc/os-release", st)) {
2142 
2143        if (file_exists("/etc/debian_version")) {
2144          st->print("Debian ");
2145          _print_ascii_file("/etc/debian_version", st);
2146        } else {
2147          st->print("Linux");
2148        }
2149    }
2150    st->cr();
2151 }
2152 
2153 void os::Linux::print_libversion_info(outputStream* st) {
2154   // libc, pthread
2155   st->print("libc:");
2156   st->print("%s ", os::Linux::glibc_version());
2157   st->print("%s ", os::Linux::libpthread_version());
2158   if (os::Linux::is_LinuxThreads()) {
2159      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2160   }
2161   st->cr();
2162 }
2163 
2164 void os::Linux::print_full_memory_info(outputStream* st) {
2165    st->print("\n/proc/meminfo:\n");
2166    _print_ascii_file("/proc/meminfo", st);
2167    st->cr();
2168 }
2169 
2170 void os::print_memory_info(outputStream* st) {
2171 
2172   st->print("Memory:");
2173   st->print(" %dk page", os::vm_page_size()>>10);
2174 
2175   // values in struct sysinfo are "unsigned long"
2176   struct sysinfo si;
2177   sysinfo(&si);
2178 
2179   st->print(", physical " UINT64_FORMAT "k",
2180             os::physical_memory() >> 10);
2181   st->print("(" UINT64_FORMAT "k free)",
2182             os::available_memory() >> 10);
2183   st->print(", swap " UINT64_FORMAT "k",
2184             ((jlong)si.totalswap * si.mem_unit) >> 10);
2185   st->print("(" UINT64_FORMAT "k free)",
2186             ((jlong)si.freeswap * si.mem_unit) >> 10);
2187   st->cr();
2188 }
2189 
2190 void os::pd_print_cpu_info(outputStream* st) {
2191   st->print("\n/proc/cpuinfo:\n");
2192   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2193     st->print("  <Not Available>");
2194   }
2195   st->cr();
2196 }
2197 
2198 void os::print_siginfo(outputStream* st, void* siginfo) {
2199   const siginfo_t* si = (const siginfo_t*)siginfo;
2200 
2201   os::Posix::print_siginfo_brief(st, si);
2202 #if INCLUDE_CDS
2203   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2204       UseSharedSpaces) {
2205     FileMapInfo* mapinfo = FileMapInfo::current_info();
2206     if (mapinfo->is_in_shared_space(si->si_addr)) {
2207       st->print("\n\nError accessing class data sharing archive."   \
2208                 " Mapped file inaccessible during execution, "      \
2209                 " possible disk/network problem.");
2210     }
2211   }
2212 #endif
2213   st->cr();
2214 }
2215 
2216 
2217 static void print_signal_handler(outputStream* st, int sig,
2218                                  char* buf, size_t buflen);
2219 
2220 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2221   st->print_cr("Signal Handlers:");
2222   print_signal_handler(st, SIGSEGV, buf, buflen);
2223   print_signal_handler(st, SIGBUS , buf, buflen);
2224   print_signal_handler(st, SIGFPE , buf, buflen);
2225   print_signal_handler(st, SIGPIPE, buf, buflen);
2226   print_signal_handler(st, SIGXFSZ, buf, buflen);
2227   print_signal_handler(st, SIGILL , buf, buflen);
2228   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2229   print_signal_handler(st, SR_signum, buf, buflen);
2230   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2231   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2232   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2233   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2234 #if defined(PPC64)
2235   print_signal_handler(st, SIGTRAP, buf, buflen);
2236 #endif
2237 }
2238 
2239 static char saved_jvm_path[MAXPATHLEN] = {0};
2240 
2241 // Find the full path to the current module, libjvm.so
2242 void os::jvm_path(char *buf, jint buflen) {
2243   // Error checking.
2244   if (buflen < MAXPATHLEN) {
2245     assert(false, "must use a large-enough buffer");
2246     buf[0] = '\0';
2247     return;
2248   }
2249   // Lazy resolve the path to current module.
2250   if (saved_jvm_path[0] != 0) {
2251     strcpy(buf, saved_jvm_path);
2252     return;
2253   }
2254 
2255   char dli_fname[MAXPATHLEN];
2256   bool ret = dll_address_to_library_name(
2257                 CAST_FROM_FN_PTR(address, os::jvm_path),
2258                 dli_fname, sizeof(dli_fname), NULL);
2259   assert(ret, "cannot locate libjvm");
2260   char *rp = NULL;
2261   if (ret && dli_fname[0] != '\0') {
2262     rp = realpath(dli_fname, buf);
2263   }
2264   if (rp == NULL)
2265     return;
2266 
2267   if (Arguments::created_by_gamma_launcher()) {
2268     // Support for the gamma launcher.  Typical value for buf is
2269     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2270     // the right place in the string, then assume we are installed in a JDK and
2271     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2272     // up the path so it looks like libjvm.so is installed there (append a
2273     // fake suffix hotspot/libjvm.so).
2274     const char *p = buf + strlen(buf) - 1;
2275     for (int count = 0; p > buf && count < 5; ++count) {
2276       for (--p; p > buf && *p != '/'; --p)
2277         /* empty */ ;
2278     }
2279 
2280     if (strncmp(p, "/jre/lib/", 9) != 0) {
2281       // Look for JAVA_HOME in the environment.
2282       char* java_home_var = ::getenv("JAVA_HOME");
2283       if (java_home_var != NULL && java_home_var[0] != 0) {
2284         char* jrelib_p;
2285         int len;
2286 
2287         // Check the current module name "libjvm.so".
2288         p = strrchr(buf, '/');
2289         assert(strstr(p, "/libjvm") == p, "invalid library name");
2290 
2291         rp = realpath(java_home_var, buf);
2292         if (rp == NULL)
2293           return;
2294 
2295         // determine if this is a legacy image or modules image
2296         // modules image doesn't have "jre" subdirectory
2297         len = strlen(buf);
2298         assert(len < buflen, "Ran out of buffer room");
2299         jrelib_p = buf + len;
2300         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2301         if (0 != access(buf, F_OK)) {
2302           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2303         }
2304 
2305         if (0 == access(buf, F_OK)) {
2306           // Use current module name "libjvm.so"
2307           len = strlen(buf);
2308           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2309         } else {
2310           // Go back to path of .so
2311           rp = realpath(dli_fname, buf);
2312           if (rp == NULL)
2313             return;
2314         }
2315       }
2316     }
2317   }
2318 
2319   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2320 }
2321 
2322 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2323   // no prefix required, not even "_"
2324 }
2325 
2326 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2327   // no suffix required
2328 }
2329 
2330 ////////////////////////////////////////////////////////////////////////////////
2331 // sun.misc.Signal support
2332 
2333 static volatile jint sigint_count = 0;
2334 
2335 static void
2336 UserHandler(int sig, void *siginfo, void *context) {
2337   // 4511530 - sem_post is serialized and handled by the manager thread. When
2338   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2339   // don't want to flood the manager thread with sem_post requests.
2340   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2341       return;
2342 
2343   // Ctrl-C is pressed during error reporting, likely because the error
2344   // handler fails to abort. Let VM die immediately.
2345   if (sig == SIGINT && is_error_reported()) {
2346      os::die();
2347   }
2348 
2349   os::signal_notify(sig);
2350 }
2351 
2352 void* os::user_handler() {
2353   return CAST_FROM_FN_PTR(void*, UserHandler);
2354 }
2355 
2356 class Semaphore : public StackObj {
2357   public:
2358     Semaphore();
2359     ~Semaphore();
2360     void signal();
2361     void wait();
2362     bool trywait();
2363     bool timedwait(unsigned int sec, int nsec);
2364   private:
2365     sem_t _semaphore;
2366 };
2367 
2368 Semaphore::Semaphore() {
2369   sem_init(&_semaphore, 0, 0);
2370 }
2371 
2372 Semaphore::~Semaphore() {
2373   sem_destroy(&_semaphore);
2374 }
2375 
2376 void Semaphore::signal() {
2377   sem_post(&_semaphore);
2378 }
2379 
2380 void Semaphore::wait() {
2381   sem_wait(&_semaphore);
2382 }
2383 
2384 bool Semaphore::trywait() {
2385   return sem_trywait(&_semaphore) == 0;
2386 }
2387 
2388 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2389 
2390   struct timespec ts;
2391   // Semaphore's are always associated with CLOCK_REALTIME
2392   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2393   // see unpackTime for discussion on overflow checking
2394   if (sec >= MAX_SECS) {
2395     ts.tv_sec += MAX_SECS;
2396     ts.tv_nsec = 0;
2397   } else {
2398     ts.tv_sec += sec;
2399     ts.tv_nsec += nsec;
2400     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2401       ts.tv_nsec -= NANOSECS_PER_SEC;
2402       ++ts.tv_sec; // note: this must be <= max_secs
2403     }
2404   }
2405 
2406   while (1) {
2407     int result = sem_timedwait(&_semaphore, &ts);
2408     if (result == 0) {
2409       return true;
2410     } else if (errno == EINTR) {
2411       continue;
2412     } else if (errno == ETIMEDOUT) {
2413       return false;
2414     } else {
2415       return false;
2416     }
2417   }
2418 }
2419 
2420 extern "C" {
2421   typedef void (*sa_handler_t)(int);
2422   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2423 }
2424 
2425 void* os::signal(int signal_number, void* handler) {
2426   struct sigaction sigAct, oldSigAct;
2427 
2428   sigfillset(&(sigAct.sa_mask));
2429   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2430   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2431 
2432   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2433     // -1 means registration failed
2434     return (void *)-1;
2435   }
2436 
2437   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2438 }
2439 
2440 void os::signal_raise(int signal_number) {
2441   ::raise(signal_number);
2442 }
2443 
2444 /*
2445  * The following code is moved from os.cpp for making this
2446  * code platform specific, which it is by its very nature.
2447  */
2448 
2449 // Will be modified when max signal is changed to be dynamic
2450 int os::sigexitnum_pd() {
2451   return NSIG;
2452 }
2453 
2454 // a counter for each possible signal value
2455 static volatile jint pending_signals[NSIG+1] = { 0 };
2456 
2457 // Linux(POSIX) specific hand shaking semaphore.
2458 static sem_t sig_sem;
2459 static Semaphore sr_semaphore;
2460 
2461 void os::signal_init_pd() {
2462   // Initialize signal structures
2463   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2464 
2465   // Initialize signal semaphore
2466   ::sem_init(&sig_sem, 0, 0);
2467 }
2468 
2469 void os::signal_notify(int sig) {
2470   Atomic::inc(&pending_signals[sig]);
2471   ::sem_post(&sig_sem);
2472 }
2473 
2474 static int check_pending_signals(bool wait) {
2475   Atomic::store(0, &sigint_count);
2476   for (;;) {
2477     for (int i = 0; i < NSIG + 1; i++) {
2478       jint n = pending_signals[i];
2479       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2480         return i;
2481       }
2482     }
2483     if (!wait) {
2484       return -1;
2485     }
2486     JavaThread *thread = JavaThread::current();
2487     ThreadBlockInVM tbivm(thread);
2488 
2489     bool threadIsSuspended;
2490     do {
2491       thread->set_suspend_equivalent();
2492       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2493       ::sem_wait(&sig_sem);
2494 
2495       // were we externally suspended while we were waiting?
2496       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2497       if (threadIsSuspended) {
2498         //
2499         // The semaphore has been incremented, but while we were waiting
2500         // another thread suspended us. We don't want to continue running
2501         // while suspended because that would surprise the thread that
2502         // suspended us.
2503         //
2504         ::sem_post(&sig_sem);
2505 
2506         thread->java_suspend_self();
2507       }
2508     } while (threadIsSuspended);
2509   }
2510 }
2511 
2512 int os::signal_lookup() {
2513   return check_pending_signals(false);
2514 }
2515 
2516 int os::signal_wait() {
2517   return check_pending_signals(true);
2518 }
2519 
2520 ////////////////////////////////////////////////////////////////////////////////
2521 // Virtual Memory
2522 
2523 int os::vm_page_size() {
2524   // Seems redundant as all get out
2525   assert(os::Linux::page_size() != -1, "must call os::init");
2526   return os::Linux::page_size();
2527 }
2528 
2529 // Solaris allocates memory by pages.
2530 int os::vm_allocation_granularity() {
2531   assert(os::Linux::page_size() != -1, "must call os::init");
2532   return os::Linux::page_size();
2533 }
2534 
2535 // Rationale behind this function:
2536 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2537 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2538 //  samples for JITted code. Here we create private executable mapping over the code cache
2539 //  and then we can use standard (well, almost, as mapping can change) way to provide
2540 //  info for the reporting script by storing timestamp and location of symbol
2541 void linux_wrap_code(char* base, size_t size) {
2542   static volatile jint cnt = 0;
2543 
2544   if (!UseOprofile) {
2545     return;
2546   }
2547 
2548   char buf[PATH_MAX+1];
2549   int num = Atomic::add(1, &cnt);
2550 
2551   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2552            os::get_temp_directory(), os::current_process_id(), num);
2553   unlink(buf);
2554 
2555   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2556 
2557   if (fd != -1) {
2558     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2559     if (rv != (off_t)-1) {
2560       if (::write(fd, "", 1) == 1) {
2561         mmap(base, size,
2562              PROT_READ|PROT_WRITE|PROT_EXEC,
2563              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2564       }
2565     }
2566     ::close(fd);
2567     unlink(buf);
2568   }
2569 }
2570 
2571 static bool recoverable_mmap_error(int err) {
2572   // See if the error is one we can let the caller handle. This
2573   // list of errno values comes from JBS-6843484. I can't find a
2574   // Linux man page that documents this specific set of errno
2575   // values so while this list currently matches Solaris, it may
2576   // change as we gain experience with this failure mode.
2577   switch (err) {
2578   case EBADF:
2579   case EINVAL:
2580   case ENOTSUP:
2581     // let the caller deal with these errors
2582     return true;
2583 
2584   default:
2585     // Any remaining errors on this OS can cause our reserved mapping
2586     // to be lost. That can cause confusion where different data
2587     // structures think they have the same memory mapped. The worst
2588     // scenario is if both the VM and a library think they have the
2589     // same memory mapped.
2590     return false;
2591   }
2592 }
2593 
2594 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2595                                     int err) {
2596   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2597           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2598           strerror(err), err);
2599 }
2600 
2601 static void warn_fail_commit_memory(char* addr, size_t size,
2602                                     size_t alignment_hint, bool exec,
2603                                     int err) {
2604   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2605           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2606           alignment_hint, exec, strerror(err), err);
2607 }
2608 
2609 // NOTE: Linux kernel does not really reserve the pages for us.
2610 //       All it does is to check if there are enough free pages
2611 //       left at the time of mmap(). This could be a potential
2612 //       problem.
2613 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2614   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2615   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2616                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2617   if (res != (uintptr_t) MAP_FAILED) {
2618     if (UseNUMAInterleaving) {
2619       numa_make_global(addr, size);
2620     }
2621     return 0;
2622   }
2623 
2624   int err = errno;  // save errno from mmap() call above
2625 
2626   if (!recoverable_mmap_error(err)) {
2627     warn_fail_commit_memory(addr, size, exec, err);
2628     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2629   }
2630 
2631   return err;
2632 }
2633 
2634 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2635   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2636 }
2637 
2638 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2639                                   const char* mesg) {
2640   assert(mesg != NULL, "mesg must be specified");
2641   int err = os::Linux::commit_memory_impl(addr, size, exec);
2642   if (err != 0) {
2643     // the caller wants all commit errors to exit with the specified mesg:
2644     warn_fail_commit_memory(addr, size, exec, err);
2645     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2646   }
2647 }
2648 
2649 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2650 #ifndef MAP_HUGETLB
2651 #define MAP_HUGETLB 0x40000
2652 #endif
2653 
2654 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2655 #ifndef MADV_HUGEPAGE
2656 #define MADV_HUGEPAGE 14
2657 #endif
2658 
2659 int os::Linux::commit_memory_impl(char* addr, size_t size,
2660                                   size_t alignment_hint, bool exec) {
2661   int err = os::Linux::commit_memory_impl(addr, size, exec);
2662   if (err == 0) {
2663     realign_memory(addr, size, alignment_hint);
2664   }
2665   return err;
2666 }
2667 
2668 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2669                           bool exec) {
2670   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2671 }
2672 
2673 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2674                                   size_t alignment_hint, bool exec,
2675                                   const char* mesg) {
2676   assert(mesg != NULL, "mesg must be specified");
2677   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2678   if (err != 0) {
2679     // the caller wants all commit errors to exit with the specified mesg:
2680     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2681     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2682   }
2683 }
2684 
2685 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2686   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2687     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2688     // be supported or the memory may already be backed by huge pages.
2689     ::madvise(addr, bytes, MADV_HUGEPAGE);
2690   }
2691 }
2692 
2693 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2694   // This method works by doing an mmap over an existing mmaping and effectively discarding
2695   // the existing pages. However it won't work for SHM-based large pages that cannot be
2696   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2697   // small pages on top of the SHM segment. This method always works for small pages, so we
2698   // allow that in any case.
2699   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2700     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2701   }
2702 }
2703 
2704 void os::numa_make_global(char *addr, size_t bytes) {
2705   Linux::numa_interleave_memory(addr, bytes);
2706 }
2707 
2708 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2709 // bind policy to MPOL_PREFERRED for the current thread.
2710 #define USE_MPOL_PREFERRED 0
2711 
2712 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2713   // To make NUMA and large pages more robust when both enabled, we need to ease
2714   // the requirements on where the memory should be allocated. MPOL_BIND is the
2715   // default policy and it will force memory to be allocated on the specified
2716   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2717   // the specified node, but will not force it. Using this policy will prevent
2718   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2719   // free large pages.
2720   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2721   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2722 }
2723 
2724 bool os::numa_topology_changed()   { return false; }
2725 
2726 size_t os::numa_get_groups_num() {
2727   int max_node = Linux::numa_max_node();
2728   return max_node > 0 ? max_node + 1 : 1;
2729 }
2730 
2731 int os::numa_get_group_id() {
2732   int cpu_id = Linux::sched_getcpu();
2733   if (cpu_id != -1) {
2734     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2735     if (lgrp_id != -1) {
2736       return lgrp_id;
2737     }
2738   }
2739   return 0;
2740 }
2741 
2742 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2743   for (size_t i = 0; i < size; i++) {
2744     ids[i] = i;
2745   }
2746   return size;
2747 }
2748 
2749 bool os::get_page_info(char *start, page_info* info) {
2750   return false;
2751 }
2752 
2753 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2754   return end;
2755 }
2756 
2757 
2758 int os::Linux::sched_getcpu_syscall(void) {
2759   unsigned int cpu = 0;
2760   int retval = -1;
2761 
2762 #if defined(IA32)
2763 # ifndef SYS_getcpu
2764 # define SYS_getcpu 318
2765 # endif
2766   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2767 #elif defined(AMD64)
2768 // Unfortunately we have to bring all these macros here from vsyscall.h
2769 // to be able to compile on old linuxes.
2770 # define __NR_vgetcpu 2
2771 # define VSYSCALL_START (-10UL << 20)
2772 # define VSYSCALL_SIZE 1024
2773 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2774   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2775   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2776   retval = vgetcpu(&cpu, NULL, NULL);
2777 #endif
2778 
2779   return (retval == -1) ? retval : cpu;
2780 }
2781 
2782 // Something to do with the numa-aware allocator needs these symbols
2783 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2784 extern "C" JNIEXPORT void numa_error(char *where) { }
2785 extern "C" JNIEXPORT int fork1() { return fork(); }
2786 
2787 
2788 // If we are running with libnuma version > 2, then we should
2789 // be trying to use symbols with versions 1.1
2790 // If we are running with earlier version, which did not have symbol versions,
2791 // we should use the base version.
2792 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2793   void *f = dlvsym(handle, name, "libnuma_1.1");
2794   if (f == NULL) {
2795     f = dlsym(handle, name);
2796   }
2797   return f;
2798 }
2799 
2800 bool os::Linux::libnuma_init() {
2801   // sched_getcpu() should be in libc.
2802   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2803                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2804 
2805   // If it's not, try a direct syscall.
2806   if (sched_getcpu() == -1)
2807     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2808 
2809   if (sched_getcpu() != -1) { // Does it work?
2810     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2811     if (handle != NULL) {
2812       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2813                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2814       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2815                                        libnuma_dlsym(handle, "numa_max_node")));
2816       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2817                                         libnuma_dlsym(handle, "numa_available")));
2818       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2819                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2820       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2821                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2822       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2823                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
2824 
2825 
2826       if (numa_available() != -1) {
2827         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2828         // Create a cpu -> node mapping
2829         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2830         rebuild_cpu_to_node_map();
2831         return true;
2832       }
2833     }
2834   }
2835   return false;
2836 }
2837 
2838 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2839 // The table is later used in get_node_by_cpu().
2840 void os::Linux::rebuild_cpu_to_node_map() {
2841   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2842                               // in libnuma (possible values are starting from 16,
2843                               // and continuing up with every other power of 2, but less
2844                               // than the maximum number of CPUs supported by kernel), and
2845                               // is a subject to change (in libnuma version 2 the requirements
2846                               // are more reasonable) we'll just hardcode the number they use
2847                               // in the library.
2848   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2849 
2850   size_t cpu_num = os::active_processor_count();
2851   size_t cpu_map_size = NCPUS / BitsPerCLong;
2852   size_t cpu_map_valid_size =
2853     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2854 
2855   cpu_to_node()->clear();
2856   cpu_to_node()->at_grow(cpu_num - 1);
2857   size_t node_num = numa_get_groups_num();
2858 
2859   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2860   for (size_t i = 0; i < node_num; i++) {
2861     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2862       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2863         if (cpu_map[j] != 0) {
2864           for (size_t k = 0; k < BitsPerCLong; k++) {
2865             if (cpu_map[j] & (1UL << k)) {
2866               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2867             }
2868           }
2869         }
2870       }
2871     }
2872   }
2873   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2874 }
2875 
2876 int os::Linux::get_node_by_cpu(int cpu_id) {
2877   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2878     return cpu_to_node()->at(cpu_id);
2879   }
2880   return -1;
2881 }
2882 
2883 GrowableArray<int>* os::Linux::_cpu_to_node;
2884 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2885 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2886 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2887 os::Linux::numa_available_func_t os::Linux::_numa_available;
2888 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2889 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2890 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2891 unsigned long* os::Linux::_numa_all_nodes;
2892 
2893 bool os::pd_uncommit_memory(char* addr, size_t size) {
2894   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2895                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2896   return res  != (uintptr_t) MAP_FAILED;
2897 }
2898 
2899 static
2900 address get_stack_commited_bottom(address bottom, size_t size) {
2901   address nbot = bottom;
2902   address ntop = bottom + size;
2903 
2904   size_t page_sz = os::vm_page_size();
2905   unsigned pages = size / page_sz;
2906 
2907   unsigned char vec[1];
2908   unsigned imin = 1, imax = pages + 1, imid;
2909   int mincore_return_value = 0;
2910 
2911   assert(imin <= imax, "Unexpected page size");
2912 
2913   while (imin < imax) {
2914     imid = (imax + imin) / 2;
2915     nbot = ntop - (imid * page_sz);
2916 
2917     // Use a trick with mincore to check whether the page is mapped or not.
2918     // mincore sets vec to 1 if page resides in memory and to 0 if page
2919     // is swapped output but if page we are asking for is unmapped
2920     // it returns -1,ENOMEM
2921     mincore_return_value = mincore(nbot, page_sz, vec);
2922 
2923     if (mincore_return_value == -1) {
2924       // Page is not mapped go up
2925       // to find first mapped page
2926       if (errno != EAGAIN) {
2927         assert(errno == ENOMEM, "Unexpected mincore errno");
2928         imax = imid;
2929       }
2930     } else {
2931       // Page is mapped go down
2932       // to find first not mapped page
2933       imin = imid + 1;
2934     }
2935   }
2936 
2937   nbot = nbot + page_sz;
2938 
2939   // Adjust stack bottom one page up if last checked page is not mapped
2940   if (mincore_return_value == -1) {
2941     nbot = nbot + page_sz;
2942   }
2943 
2944   return nbot;
2945 }
2946 
2947 
2948 // Linux uses a growable mapping for the stack, and if the mapping for
2949 // the stack guard pages is not removed when we detach a thread the
2950 // stack cannot grow beyond the pages where the stack guard was
2951 // mapped.  If at some point later in the process the stack expands to
2952 // that point, the Linux kernel cannot expand the stack any further
2953 // because the guard pages are in the way, and a segfault occurs.
2954 //
2955 // However, it's essential not to split the stack region by unmapping
2956 // a region (leaving a hole) that's already part of the stack mapping,
2957 // so if the stack mapping has already grown beyond the guard pages at
2958 // the time we create them, we have to truncate the stack mapping.
2959 // So, we need to know the extent of the stack mapping when
2960 // create_stack_guard_pages() is called.
2961 
2962 // We only need this for stacks that are growable: at the time of
2963 // writing thread stacks don't use growable mappings (i.e. those
2964 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2965 // only applies to the main thread.
2966 
2967 // If the (growable) stack mapping already extends beyond the point
2968 // where we're going to put our guard pages, truncate the mapping at
2969 // that point by munmap()ping it.  This ensures that when we later
2970 // munmap() the guard pages we don't leave a hole in the stack
2971 // mapping. This only affects the main/initial thread
2972 
2973 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2974 
2975   if (os::Linux::is_initial_thread()) {
2976     // As we manually grow stack up to bottom inside create_attached_thread(),
2977     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2978     // we don't need to do anything special.
2979     // Check it first, before calling heavy function.
2980     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2981     unsigned char vec[1];
2982 
2983     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2984       // Fallback to slow path on all errors, including EAGAIN
2985       stack_extent = (uintptr_t) get_stack_commited_bottom(
2986                                     os::Linux::initial_thread_stack_bottom(),
2987                                     (size_t)addr - stack_extent);
2988     }
2989 
2990     if (stack_extent < (uintptr_t)addr) {
2991       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2992     }
2993   }
2994 
2995   return os::commit_memory(addr, size, !ExecMem);
2996 }
2997 
2998 // If this is a growable mapping, remove the guard pages entirely by
2999 // munmap()ping them.  If not, just call uncommit_memory(). This only
3000 // affects the main/initial thread, but guard against future OS changes
3001 // It's safe to always unmap guard pages for initial thread because we
3002 // always place it right after end of the mapped region
3003 
3004 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3005   uintptr_t stack_extent, stack_base;
3006 
3007   if (os::Linux::is_initial_thread()) {
3008     return ::munmap(addr, size) == 0;
3009   }
3010 
3011   return os::uncommit_memory(addr, size);
3012 }
3013 
3014 static address _highest_vm_reserved_address = NULL;
3015 
3016 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3017 // at 'requested_addr'. If there are existing memory mappings at the same
3018 // location, however, they will be overwritten. If 'fixed' is false,
3019 // 'requested_addr' is only treated as a hint, the return value may or
3020 // may not start from the requested address. Unlike Linux mmap(), this
3021 // function returns NULL to indicate failure.
3022 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3023   char * addr;
3024   int flags;
3025 
3026   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3027   if (fixed) {
3028     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3029     flags |= MAP_FIXED;
3030   }
3031 
3032   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3033   // touch an uncommitted page. Otherwise, the read/write might
3034   // succeed if we have enough swap space to back the physical page.
3035   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3036                        flags, -1, 0);
3037 
3038   if (addr != MAP_FAILED) {
3039     // anon_mmap() should only get called during VM initialization,
3040     // don't need lock (actually we can skip locking even it can be called
3041     // from multiple threads, because _highest_vm_reserved_address is just a
3042     // hint about the upper limit of non-stack memory regions.)
3043     if ((address)addr + bytes > _highest_vm_reserved_address) {
3044       _highest_vm_reserved_address = (address)addr + bytes;
3045     }
3046   }
3047 
3048   return addr == MAP_FAILED ? NULL : addr;
3049 }
3050 
3051 // Don't update _highest_vm_reserved_address, because there might be memory
3052 // regions above addr + size. If so, releasing a memory region only creates
3053 // a hole in the address space, it doesn't help prevent heap-stack collision.
3054 //
3055 static int anon_munmap(char * addr, size_t size) {
3056   return ::munmap(addr, size) == 0;
3057 }
3058 
3059 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3060                          size_t alignment_hint) {
3061   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3062 }
3063 
3064 bool os::pd_release_memory(char* addr, size_t size) {
3065   return anon_munmap(addr, size);
3066 }
3067 
3068 static address highest_vm_reserved_address() {
3069   return _highest_vm_reserved_address;
3070 }
3071 
3072 static bool linux_mprotect(char* addr, size_t size, int prot) {
3073   // Linux wants the mprotect address argument to be page aligned.
3074   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3075 
3076   // According to SUSv3, mprotect() should only be used with mappings
3077   // established by mmap(), and mmap() always maps whole pages. Unaligned
3078   // 'addr' likely indicates problem in the VM (e.g. trying to change
3079   // protection of malloc'ed or statically allocated memory). Check the
3080   // caller if you hit this assert.
3081   assert(addr == bottom, "sanity check");
3082 
3083   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3084   return ::mprotect(bottom, size, prot) == 0;
3085 }
3086 
3087 // Set protections specified
3088 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3089                         bool is_committed) {
3090   unsigned int p = 0;
3091   switch (prot) {
3092   case MEM_PROT_NONE: p = PROT_NONE; break;
3093   case MEM_PROT_READ: p = PROT_READ; break;
3094   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3095   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3096   default:
3097     ShouldNotReachHere();
3098   }
3099   // is_committed is unused.
3100   return linux_mprotect(addr, bytes, p);
3101 }
3102 
3103 bool os::guard_memory(char* addr, size_t size) {
3104   return linux_mprotect(addr, size, PROT_NONE);
3105 }
3106 
3107 bool os::unguard_memory(char* addr, size_t size) {
3108   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3109 }
3110 
3111 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3112   bool result = false;
3113   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3114                  MAP_ANONYMOUS|MAP_PRIVATE,
3115                  -1, 0);
3116   if (p != MAP_FAILED) {
3117     void *aligned_p = align_ptr_up(p, page_size);
3118 
3119     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3120 
3121     munmap(p, page_size * 2);
3122   }
3123 
3124   if (warn && !result) {
3125     warning("TransparentHugePages is not supported by the operating system.");
3126   }
3127 
3128   return result;
3129 }
3130 
3131 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3132   bool result = false;
3133   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3134                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3135                  -1, 0);
3136 
3137   if (p != MAP_FAILED) {
3138     // We don't know if this really is a huge page or not.
3139     FILE *fp = fopen("/proc/self/maps", "r");
3140     if (fp) {
3141       while (!feof(fp)) {
3142         char chars[257];
3143         long x = 0;
3144         if (fgets(chars, sizeof(chars), fp)) {
3145           if (sscanf(chars, "%lx-%*x", &x) == 1
3146               && x == (long)p) {
3147             if (strstr (chars, "hugepage")) {
3148               result = true;
3149               break;
3150             }
3151           }
3152         }
3153       }
3154       fclose(fp);
3155     }
3156     munmap(p, page_size);
3157   }
3158 
3159   if (warn && !result) {
3160     warning("HugeTLBFS is not supported by the operating system.");
3161   }
3162 
3163   return result;
3164 }
3165 
3166 /*
3167 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3168 *
3169 * From the coredump_filter documentation:
3170 *
3171 * - (bit 0) anonymous private memory
3172 * - (bit 1) anonymous shared memory
3173 * - (bit 2) file-backed private memory
3174 * - (bit 3) file-backed shared memory
3175 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3176 *           effective only if the bit 2 is cleared)
3177 * - (bit 5) hugetlb private memory
3178 * - (bit 6) hugetlb shared memory
3179 */
3180 static void set_coredump_filter(void) {
3181   FILE *f;
3182   long cdm;
3183 
3184   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3185     return;
3186   }
3187 
3188   if (fscanf(f, "%lx", &cdm) != 1) {
3189     fclose(f);
3190     return;
3191   }
3192 
3193   rewind(f);
3194 
3195   if ((cdm & LARGEPAGES_BIT) == 0) {
3196     cdm |= LARGEPAGES_BIT;
3197     fprintf(f, "%#lx", cdm);
3198   }
3199 
3200   fclose(f);
3201 }
3202 
3203 // Large page support
3204 
3205 static size_t _large_page_size = 0;
3206 
3207 size_t os::Linux::find_large_page_size() {
3208   size_t large_page_size = 0;
3209 
3210   // large_page_size on Linux is used to round up heap size. x86 uses either
3211   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3212   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3213   // page as large as 256M.
3214   //
3215   // Here we try to figure out page size by parsing /proc/meminfo and looking
3216   // for a line with the following format:
3217   //    Hugepagesize:     2048 kB
3218   //
3219   // If we can't determine the value (e.g. /proc is not mounted, or the text
3220   // format has been changed), we'll use the largest page size supported by
3221   // the processor.
3222 
3223 #ifndef ZERO
3224   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3225                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3226 #endif // ZERO
3227 
3228   FILE *fp = fopen("/proc/meminfo", "r");
3229   if (fp) {
3230     while (!feof(fp)) {
3231       int x = 0;
3232       char buf[16];
3233       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3234         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3235           large_page_size = x * K;
3236           break;
3237         }
3238       } else {
3239         // skip to next line
3240         for (;;) {
3241           int ch = fgetc(fp);
3242           if (ch == EOF || ch == (int)'\n') break;
3243         }
3244       }
3245     }
3246     fclose(fp);
3247   }
3248 
3249   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3250     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3251         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3252         proper_unit_for_byte_size(large_page_size));
3253   }
3254 
3255   return large_page_size;
3256 }
3257 
3258 size_t os::Linux::setup_large_page_size() {
3259   _large_page_size = Linux::find_large_page_size();
3260   const size_t default_page_size = (size_t)Linux::page_size();
3261   if (_large_page_size > default_page_size) {
3262     _page_sizes[0] = _large_page_size;
3263     _page_sizes[1] = default_page_size;
3264     _page_sizes[2] = 0;
3265   }
3266 
3267   return _large_page_size;
3268 }
3269 
3270 bool os::Linux::setup_large_page_type(size_t page_size) {
3271   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3272       FLAG_IS_DEFAULT(UseSHM) &&
3273       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3274 
3275     // The type of large pages has not been specified by the user.
3276 
3277     // Try UseHugeTLBFS and then UseSHM.
3278     UseHugeTLBFS = UseSHM = true;
3279 
3280     // Don't try UseTransparentHugePages since there are known
3281     // performance issues with it turned on. This might change in the future.
3282     UseTransparentHugePages = false;
3283   }
3284 
3285   if (UseTransparentHugePages) {
3286     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3287     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3288       UseHugeTLBFS = false;
3289       UseSHM = false;
3290       return true;
3291     }
3292     UseTransparentHugePages = false;
3293   }
3294 
3295   if (UseHugeTLBFS) {
3296     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3297     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3298       UseSHM = false;
3299       return true;
3300     }
3301     UseHugeTLBFS = false;
3302   }
3303 
3304   return UseSHM;
3305 }
3306 
3307 void os::large_page_init() {
3308   if (!UseLargePages &&
3309       !UseTransparentHugePages &&
3310       !UseHugeTLBFS &&
3311       !UseSHM) {
3312     // Not using large pages.
3313     return;
3314   }
3315 
3316   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3317     // The user explicitly turned off large pages.
3318     // Ignore the rest of the large pages flags.
3319     UseTransparentHugePages = false;
3320     UseHugeTLBFS = false;
3321     UseSHM = false;
3322     return;
3323   }
3324 
3325   size_t large_page_size = Linux::setup_large_page_size();
3326   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3327 
3328   set_coredump_filter();
3329 }
3330 
3331 #ifndef SHM_HUGETLB
3332 #define SHM_HUGETLB 04000
3333 #endif
3334 
3335 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3336   // "exec" is passed in but not used.  Creating the shared image for
3337   // the code cache doesn't have an SHM_X executable permission to check.
3338   assert(UseLargePages && UseSHM, "only for SHM large pages");
3339   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3340 
3341   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3342     return NULL; // Fallback to small pages.
3343   }
3344 
3345   key_t key = IPC_PRIVATE;
3346   char *addr;
3347 
3348   bool warn_on_failure = UseLargePages &&
3349                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3350                          !FLAG_IS_DEFAULT(UseSHM) ||
3351                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3352                         );
3353   char msg[128];
3354 
3355   // Create a large shared memory region to attach to based on size.
3356   // Currently, size is the total size of the heap
3357   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3358   if (shmid == -1) {
3359      // Possible reasons for shmget failure:
3360      // 1. shmmax is too small for Java heap.
3361      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3362      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3363      // 2. not enough large page memory.
3364      //    > check available large pages: cat /proc/meminfo
3365      //    > increase amount of large pages:
3366      //          echo new_value > /proc/sys/vm/nr_hugepages
3367      //      Note 1: different Linux may use different name for this property,
3368      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3369      //      Note 2: it's possible there's enough physical memory available but
3370      //            they are so fragmented after a long run that they can't
3371      //            coalesce into large pages. Try to reserve large pages when
3372      //            the system is still "fresh".
3373      if (warn_on_failure) {
3374        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3375        warning("%s", msg);
3376      }
3377      return NULL;
3378   }
3379 
3380   // attach to the region
3381   addr = (char*)shmat(shmid, req_addr, 0);
3382   int err = errno;
3383 
3384   // Remove shmid. If shmat() is successful, the actual shared memory segment
3385   // will be deleted when it's detached by shmdt() or when the process
3386   // terminates. If shmat() is not successful this will remove the shared
3387   // segment immediately.
3388   shmctl(shmid, IPC_RMID, NULL);
3389 
3390   if ((intptr_t)addr == -1) {
3391      if (warn_on_failure) {
3392        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3393        warning("%s", msg);
3394      }
3395      return NULL;
3396   }
3397 
3398   return addr;
3399 }
3400 
3401 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3402   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3403 
3404   bool warn_on_failure = UseLargePages &&
3405       (!FLAG_IS_DEFAULT(UseLargePages) ||
3406        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3407        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3408 
3409   if (warn_on_failure) {
3410     char msg[128];
3411     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3412         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3413     warning("%s", msg);
3414   }
3415 }
3416 
3417 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3418   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3419   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3420   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3421 
3422   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3423   char* addr = (char*)::mmap(req_addr, bytes, prot,
3424                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3425                              -1, 0);
3426 
3427   if (addr == MAP_FAILED) {
3428     warn_on_large_pages_failure(req_addr, bytes, errno);
3429     return NULL;
3430   }
3431 
3432   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3433 
3434   return addr;
3435 }
3436 
3437 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3438   size_t large_page_size = os::large_page_size();
3439 
3440   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3441 
3442   // Allocate small pages.
3443 
3444   char* start;
3445   if (req_addr != NULL) {
3446     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3447     assert(is_size_aligned(bytes, alignment), "Must be");
3448     start = os::reserve_memory(bytes, req_addr);
3449     assert(start == NULL || start == req_addr, "Must be");
3450   } else {
3451     start = os::reserve_memory_aligned(bytes, alignment);
3452   }
3453 
3454   if (start == NULL) {
3455     return NULL;
3456   }
3457 
3458   assert(is_ptr_aligned(start, alignment), "Must be");
3459 
3460   if (MemTracker::tracking_level() > NMT_minimal) {
3461     // os::reserve_memory_special will record this memory area.
3462     // Need to release it here to prevent overlapping reservations.
3463     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3464     tkr.record((address)start, bytes);
3465   }
3466 
3467   char* end = start + bytes;
3468 
3469   // Find the regions of the allocated chunk that can be promoted to large pages.
3470   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3471   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3472 
3473   size_t lp_bytes = lp_end - lp_start;
3474 
3475   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3476 
3477   if (lp_bytes == 0) {
3478     // The mapped region doesn't even span the start and the end of a large page.
3479     // Fall back to allocate a non-special area.
3480     ::munmap(start, end - start);
3481     return NULL;
3482   }
3483 
3484   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3485 
3486 
3487   void* result;
3488 
3489   if (start != lp_start) {
3490     result = ::mmap(start, lp_start - start, prot,
3491                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3492                     -1, 0);
3493     if (result == MAP_FAILED) {
3494       ::munmap(lp_start, end - lp_start);
3495       return NULL;
3496     }
3497   }
3498 
3499   result = ::mmap(lp_start, lp_bytes, prot,
3500                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3501                   -1, 0);
3502   if (result == MAP_FAILED) {
3503     warn_on_large_pages_failure(req_addr, bytes, errno);
3504     // If the mmap above fails, the large pages region will be unmapped and we
3505     // have regions before and after with small pages. Release these regions.
3506     //
3507     // |  mapped  |  unmapped  |  mapped  |
3508     // ^          ^            ^          ^
3509     // start      lp_start     lp_end     end
3510     //
3511     ::munmap(start, lp_start - start);
3512     ::munmap(lp_end, end - lp_end);
3513     return NULL;
3514   }
3515 
3516   if (lp_end != end) {
3517       result = ::mmap(lp_end, end - lp_end, prot,
3518                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3519                       -1, 0);
3520     if (result == MAP_FAILED) {
3521       ::munmap(start, lp_end - start);
3522       return NULL;
3523     }
3524   }
3525 
3526   return start;
3527 }
3528 
3529 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3530   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3531   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3532   assert(is_power_of_2(alignment), "Must be");
3533   assert(is_power_of_2(os::large_page_size()), "Must be");
3534   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3535 
3536   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3537     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3538   } else {
3539     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3540   }
3541 }
3542 
3543 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3544   assert(UseLargePages, "only for large pages");
3545 
3546   char* addr;
3547   if (UseSHM) {
3548     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3549   } else {
3550     assert(UseHugeTLBFS, "must be");
3551     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3552   }
3553 
3554   if (addr != NULL) {
3555     if (UseNUMAInterleaving) {
3556       numa_make_global(addr, bytes);
3557     }
3558 
3559     // The memory is committed
3560     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3561   }
3562 
3563   return addr;
3564 }
3565 
3566 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3567   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3568   return shmdt(base) == 0;
3569 }
3570 
3571 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3572   return pd_release_memory(base, bytes);
3573 }
3574 
3575 bool os::release_memory_special(char* base, size_t bytes) {
3576   bool res;
3577   if (MemTracker::tracking_level() > NMT_minimal) {
3578     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3579     res = os::Linux::release_memory_special_impl(base, bytes);
3580     if (res) {
3581       tkr.record((address)base, bytes);
3582     }
3583 
3584   } else {
3585     res = os::Linux::release_memory_special_impl(base, bytes);
3586   }
3587   return res;
3588 }
3589 
3590 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3591   assert(UseLargePages, "only for large pages");
3592   bool res;
3593 
3594   if (UseSHM) {
3595     res = os::Linux::release_memory_special_shm(base, bytes);
3596   } else {
3597     assert(UseHugeTLBFS, "must be");
3598     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3599   }
3600   return res;
3601 }
3602 
3603 size_t os::large_page_size() {
3604   return _large_page_size;
3605 }
3606 
3607 // With SysV SHM the entire memory region must be allocated as shared
3608 // memory.
3609 // HugeTLBFS allows application to commit large page memory on demand.
3610 // However, when committing memory with HugeTLBFS fails, the region
3611 // that was supposed to be committed will lose the old reservation
3612 // and allow other threads to steal that memory region. Because of this
3613 // behavior we can't commit HugeTLBFS memory.
3614 bool os::can_commit_large_page_memory() {
3615   return UseTransparentHugePages;
3616 }
3617 
3618 bool os::can_execute_large_page_memory() {
3619   return UseTransparentHugePages || UseHugeTLBFS;
3620 }
3621 
3622 // Reserve memory at an arbitrary address, only if that area is
3623 // available (and not reserved for something else).
3624 
3625 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3626   const int max_tries = 10;
3627   char* base[max_tries];
3628   size_t size[max_tries];
3629   const size_t gap = 0x000000;
3630 
3631   // Assert only that the size is a multiple of the page size, since
3632   // that's all that mmap requires, and since that's all we really know
3633   // about at this low abstraction level.  If we need higher alignment,
3634   // we can either pass an alignment to this method or verify alignment
3635   // in one of the methods further up the call chain.  See bug 5044738.
3636   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3637 
3638   // Repeatedly allocate blocks until the block is allocated at the
3639   // right spot. Give up after max_tries. Note that reserve_memory() will
3640   // automatically update _highest_vm_reserved_address if the call is
3641   // successful. The variable tracks the highest memory address every reserved
3642   // by JVM. It is used to detect heap-stack collision if running with
3643   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3644   // space than needed, it could confuse the collision detecting code. To
3645   // solve the problem, save current _highest_vm_reserved_address and
3646   // calculate the correct value before return.
3647   address old_highest = _highest_vm_reserved_address;
3648 
3649   // Linux mmap allows caller to pass an address as hint; give it a try first,
3650   // if kernel honors the hint then we can return immediately.
3651   char * addr = anon_mmap(requested_addr, bytes, false);
3652   if (addr == requested_addr) {
3653      return requested_addr;
3654   }
3655 
3656   if (addr != NULL) {
3657      // mmap() is successful but it fails to reserve at the requested address
3658      anon_munmap(addr, bytes);
3659   }
3660 
3661   int i;
3662   for (i = 0; i < max_tries; ++i) {
3663     base[i] = reserve_memory(bytes);
3664 
3665     if (base[i] != NULL) {
3666       // Is this the block we wanted?
3667       if (base[i] == requested_addr) {
3668         size[i] = bytes;
3669         break;
3670       }
3671 
3672       // Does this overlap the block we wanted? Give back the overlapped
3673       // parts and try again.
3674 
3675       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3676       if (top_overlap >= 0 && top_overlap < bytes) {
3677         unmap_memory(base[i], top_overlap);
3678         base[i] += top_overlap;
3679         size[i] = bytes - top_overlap;
3680       } else {
3681         size_t bottom_overlap = base[i] + bytes - requested_addr;
3682         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3683           unmap_memory(requested_addr, bottom_overlap);
3684           size[i] = bytes - bottom_overlap;
3685         } else {
3686           size[i] = bytes;
3687         }
3688       }
3689     }
3690   }
3691 
3692   // Give back the unused reserved pieces.
3693 
3694   for (int j = 0; j < i; ++j) {
3695     if (base[j] != NULL) {
3696       unmap_memory(base[j], size[j]);
3697     }
3698   }
3699 
3700   if (i < max_tries) {
3701     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3702     return requested_addr;
3703   } else {
3704     _highest_vm_reserved_address = old_highest;
3705     return NULL;
3706   }
3707 }
3708 
3709 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3710   return ::read(fd, buf, nBytes);
3711 }
3712 
3713 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3714 // Solaris uses poll(), linux uses park().
3715 // Poll() is likely a better choice, assuming that Thread.interrupt()
3716 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3717 // SIGSEGV, see 4355769.
3718 
3719 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3720   assert(thread == Thread::current(),  "thread consistency check");
3721 
3722   ParkEvent * const slp = thread->_SleepEvent ;
3723   slp->reset() ;
3724   OrderAccess::fence() ;
3725 
3726   if (interruptible) {
3727     jlong prevtime = javaTimeNanos();
3728 
3729     for (;;) {
3730       if (os::is_interrupted(thread, true)) {
3731         return OS_INTRPT;
3732       }
3733 
3734       jlong newtime = javaTimeNanos();
3735 
3736       if (newtime - prevtime < 0) {
3737         // time moving backwards, should only happen if no monotonic clock
3738         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3739         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3740       } else {
3741         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3742       }
3743 
3744       if(millis <= 0) {
3745         return OS_OK;
3746       }
3747 
3748       prevtime = newtime;
3749 
3750       {
3751         assert(thread->is_Java_thread(), "sanity check");
3752         JavaThread *jt = (JavaThread *) thread;
3753         ThreadBlockInVM tbivm(jt);
3754         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3755 
3756         jt->set_suspend_equivalent();
3757         // cleared by handle_special_suspend_equivalent_condition() or
3758         // java_suspend_self() via check_and_wait_while_suspended()
3759 
3760         slp->park(millis);
3761 
3762         // were we externally suspended while we were waiting?
3763         jt->check_and_wait_while_suspended();
3764       }
3765     }
3766   } else {
3767     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3768     jlong prevtime = javaTimeNanos();
3769 
3770     for (;;) {
3771       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3772       // the 1st iteration ...
3773       jlong newtime = javaTimeNanos();
3774 
3775       if (newtime - prevtime < 0) {
3776         // time moving backwards, should only happen if no monotonic clock
3777         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3778         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3779       } else {
3780         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3781       }
3782 
3783       if(millis <= 0) break ;
3784 
3785       prevtime = newtime;
3786       slp->park(millis);
3787     }
3788     return OS_OK ;
3789   }
3790 }
3791 
3792 //
3793 // Short sleep, direct OS call.
3794 //
3795 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3796 // sched_yield(2) will actually give up the CPU:
3797 //
3798 //   * Alone on this pariticular CPU, keeps running.
3799 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3800 //     (pre 2.6.39).
3801 //
3802 // So calling this with 0 is an alternative.
3803 //
3804 void os::naked_short_sleep(jlong ms) {
3805   struct timespec req;
3806 
3807   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3808   req.tv_sec = 0;
3809   if (ms > 0) {
3810     req.tv_nsec = (ms % 1000) * 1000000;
3811   }
3812   else {
3813     req.tv_nsec = 1;
3814   }
3815 
3816   nanosleep(&req, NULL);
3817 
3818   return;
3819 }
3820 
3821 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3822 void os::infinite_sleep() {
3823   while (true) {    // sleep forever ...
3824     ::sleep(100);   // ... 100 seconds at a time
3825   }
3826 }
3827 
3828 // Used to convert frequent JVM_Yield() to nops
3829 bool os::dont_yield() {
3830   return DontYieldALot;
3831 }
3832 
3833 void os::yield() {
3834   sched_yield();
3835 }
3836 
3837 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3838 
3839 void os::yield_all(int attempts) {
3840   // Yields to all threads, including threads with lower priorities
3841   // Threads on Linux are all with same priority. The Solaris style
3842   // os::yield_all() with nanosleep(1ms) is not necessary.
3843   sched_yield();
3844 }
3845 
3846 // Called from the tight loops to possibly influence time-sharing heuristics
3847 void os::loop_breaker(int attempts) {
3848   os::yield_all(attempts);
3849 }
3850 
3851 ////////////////////////////////////////////////////////////////////////////////
3852 // thread priority support
3853 
3854 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3855 // only supports dynamic priority, static priority must be zero. For real-time
3856 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3857 // However, for large multi-threaded applications, SCHED_RR is not only slower
3858 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3859 // of 5 runs - Sep 2005).
3860 //
3861 // The following code actually changes the niceness of kernel-thread/LWP. It
3862 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3863 // not the entire user process, and user level threads are 1:1 mapped to kernel
3864 // threads. It has always been the case, but could change in the future. For
3865 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3866 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3867 
3868 int os::java_to_os_priority[CriticalPriority + 1] = {
3869   19,              // 0 Entry should never be used
3870 
3871    4,              // 1 MinPriority
3872    3,              // 2
3873    2,              // 3
3874 
3875    1,              // 4
3876    0,              // 5 NormPriority
3877   -1,              // 6
3878 
3879   -2,              // 7
3880   -3,              // 8
3881   -4,              // 9 NearMaxPriority
3882 
3883   -5,              // 10 MaxPriority
3884 
3885   -5               // 11 CriticalPriority
3886 };
3887 
3888 static int prio_init() {
3889   if (ThreadPriorityPolicy == 1) {
3890     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3891     // if effective uid is not root. Perhaps, a more elegant way of doing
3892     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3893     if (geteuid() != 0) {
3894       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3895         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3896       }
3897       ThreadPriorityPolicy = 0;
3898     }
3899   }
3900   if (UseCriticalJavaThreadPriority) {
3901     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3902   }
3903   return 0;
3904 }
3905 
3906 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3907   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3908 
3909   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3910   return (ret == 0) ? OS_OK : OS_ERR;
3911 }
3912 
3913 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3914   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3915     *priority_ptr = java_to_os_priority[NormPriority];
3916     return OS_OK;
3917   }
3918 
3919   errno = 0;
3920   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3921   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3922 }
3923 
3924 // Hint to the underlying OS that a task switch would not be good.
3925 // Void return because it's a hint and can fail.
3926 void os::hint_no_preempt() {}
3927 
3928 ////////////////////////////////////////////////////////////////////////////////
3929 // suspend/resume support
3930 
3931 //  the low-level signal-based suspend/resume support is a remnant from the
3932 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3933 //  within hotspot. Now there is a single use-case for this:
3934 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3935 //      that runs in the watcher thread.
3936 //  The remaining code is greatly simplified from the more general suspension
3937 //  code that used to be used.
3938 //
3939 //  The protocol is quite simple:
3940 //  - suspend:
3941 //      - sends a signal to the target thread
3942 //      - polls the suspend state of the osthread using a yield loop
3943 //      - target thread signal handler (SR_handler) sets suspend state
3944 //        and blocks in sigsuspend until continued
3945 //  - resume:
3946 //      - sets target osthread state to continue
3947 //      - sends signal to end the sigsuspend loop in the SR_handler
3948 //
3949 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3950 //
3951 
3952 static void resume_clear_context(OSThread *osthread) {
3953   osthread->set_ucontext(NULL);
3954   osthread->set_siginfo(NULL);
3955 }
3956 
3957 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3958   osthread->set_ucontext(context);
3959   osthread->set_siginfo(siginfo);
3960 }
3961 
3962 //
3963 // Handler function invoked when a thread's execution is suspended or
3964 // resumed. We have to be careful that only async-safe functions are
3965 // called here (Note: most pthread functions are not async safe and
3966 // should be avoided.)
3967 //
3968 // Note: sigwait() is a more natural fit than sigsuspend() from an
3969 // interface point of view, but sigwait() prevents the signal hander
3970 // from being run. libpthread would get very confused by not having
3971 // its signal handlers run and prevents sigwait()'s use with the
3972 // mutex granting granting signal.
3973 //
3974 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3975 //
3976 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3977   // Save and restore errno to avoid confusing native code with EINTR
3978   // after sigsuspend.
3979   int old_errno = errno;
3980 
3981   Thread* thread = Thread::current();
3982   OSThread* osthread = thread->osthread();
3983   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3984 
3985   os::SuspendResume::State current = osthread->sr.state();
3986   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3987     suspend_save_context(osthread, siginfo, context);
3988 
3989     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3990     os::SuspendResume::State state = osthread->sr.suspended();
3991     if (state == os::SuspendResume::SR_SUSPENDED) {
3992       sigset_t suspend_set;  // signals for sigsuspend()
3993 
3994       // get current set of blocked signals and unblock resume signal
3995       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3996       sigdelset(&suspend_set, SR_signum);
3997 
3998       sr_semaphore.signal();
3999       // wait here until we are resumed
4000       while (1) {
4001         sigsuspend(&suspend_set);
4002 
4003         os::SuspendResume::State result = osthread->sr.running();
4004         if (result == os::SuspendResume::SR_RUNNING) {
4005           sr_semaphore.signal();
4006           break;
4007         }
4008       }
4009 
4010     } else if (state == os::SuspendResume::SR_RUNNING) {
4011       // request was cancelled, continue
4012     } else {
4013       ShouldNotReachHere();
4014     }
4015 
4016     resume_clear_context(osthread);
4017   } else if (current == os::SuspendResume::SR_RUNNING) {
4018     // request was cancelled, continue
4019   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4020     // ignore
4021   } else {
4022     // ignore
4023   }
4024 
4025   errno = old_errno;
4026 }
4027 
4028 
4029 static int SR_initialize() {
4030   struct sigaction act;
4031   char *s;
4032   /* Get signal number to use for suspend/resume */
4033   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4034     int sig = ::strtol(s, 0, 10);
4035     if (sig > 0 || sig < _NSIG) {
4036         SR_signum = sig;
4037     }
4038   }
4039 
4040   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4041         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4042 
4043   sigemptyset(&SR_sigset);
4044   sigaddset(&SR_sigset, SR_signum);
4045 
4046   /* Set up signal handler for suspend/resume */
4047   act.sa_flags = SA_RESTART|SA_SIGINFO;
4048   act.sa_handler = (void (*)(int)) SR_handler;
4049 
4050   // SR_signum is blocked by default.
4051   // 4528190 - We also need to block pthread restart signal (32 on all
4052   // supported Linux platforms). Note that LinuxThreads need to block
4053   // this signal for all threads to work properly. So we don't have
4054   // to use hard-coded signal number when setting up the mask.
4055   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4056 
4057   if (sigaction(SR_signum, &act, 0) == -1) {
4058     return -1;
4059   }
4060 
4061   // Save signal flag
4062   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4063   return 0;
4064 }
4065 
4066 static int sr_notify(OSThread* osthread) {
4067   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4068   assert_status(status == 0, status, "pthread_kill");
4069   return status;
4070 }
4071 
4072 // "Randomly" selected value for how long we want to spin
4073 // before bailing out on suspending a thread, also how often
4074 // we send a signal to a thread we want to resume
4075 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4076 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4077 
4078 // returns true on success and false on error - really an error is fatal
4079 // but this seems the normal response to library errors
4080 static bool do_suspend(OSThread* osthread) {
4081   assert(osthread->sr.is_running(), "thread should be running");
4082   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4083 
4084   // mark as suspended and send signal
4085   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4086     // failed to switch, state wasn't running?
4087     ShouldNotReachHere();
4088     return false;
4089   }
4090 
4091   if (sr_notify(osthread) != 0) {
4092     ShouldNotReachHere();
4093   }
4094 
4095   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4096   while (true) {
4097     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4098       break;
4099     } else {
4100       // timeout
4101       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4102       if (cancelled == os::SuspendResume::SR_RUNNING) {
4103         return false;
4104       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4105         // make sure that we consume the signal on the semaphore as well
4106         sr_semaphore.wait();
4107         break;
4108       } else {
4109         ShouldNotReachHere();
4110         return false;
4111       }
4112     }
4113   }
4114 
4115   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4116   return true;
4117 }
4118 
4119 static void do_resume(OSThread* osthread) {
4120   assert(osthread->sr.is_suspended(), "thread should be suspended");
4121   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4122 
4123   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4124     // failed to switch to WAKEUP_REQUEST
4125     ShouldNotReachHere();
4126     return;
4127   }
4128 
4129   while (true) {
4130     if (sr_notify(osthread) == 0) {
4131       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4132         if (osthread->sr.is_running()) {
4133           return;
4134         }
4135       }
4136     } else {
4137       ShouldNotReachHere();
4138     }
4139   }
4140 
4141   guarantee(osthread->sr.is_running(), "Must be running!");
4142 }
4143 
4144 ////////////////////////////////////////////////////////////////////////////////
4145 // interrupt support
4146 
4147 void os::interrupt(Thread* thread) {
4148   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4149     "possibility of dangling Thread pointer");
4150 
4151   OSThread* osthread = thread->osthread();
4152 
4153   if (!osthread->interrupted()) {
4154     osthread->set_interrupted(true);
4155     // More than one thread can get here with the same value of osthread,
4156     // resulting in multiple notifications.  We do, however, want the store
4157     // to interrupted() to be visible to other threads before we execute unpark().
4158     OrderAccess::fence();
4159     ParkEvent * const slp = thread->_SleepEvent ;
4160     if (slp != NULL) slp->unpark() ;
4161   }
4162 
4163   // For JSR166. Unpark even if interrupt status already was set
4164   if (thread->is_Java_thread())
4165     ((JavaThread*)thread)->parker()->unpark((JavaThread*)thread);
4166 
4167   ParkEvent * ev = thread->_ParkEvent ;
4168   if (ev != NULL) ev->unpark() ;
4169 
4170 }
4171 
4172 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4173   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4174     "possibility of dangling Thread pointer");
4175 
4176   OSThread* osthread = thread->osthread();
4177 
4178   bool interrupted = osthread->interrupted();
4179 
4180   if (interrupted && clear_interrupted) {
4181     osthread->set_interrupted(false);
4182     // consider thread->_SleepEvent->reset() ... optional optimization
4183   }
4184 
4185   return interrupted;
4186 }
4187 
4188 ///////////////////////////////////////////////////////////////////////////////////
4189 // signal handling (except suspend/resume)
4190 
4191 // This routine may be used by user applications as a "hook" to catch signals.
4192 // The user-defined signal handler must pass unrecognized signals to this
4193 // routine, and if it returns true (non-zero), then the signal handler must
4194 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4195 // routine will never retun false (zero), but instead will execute a VM panic
4196 // routine kill the process.
4197 //
4198 // If this routine returns false, it is OK to call it again.  This allows
4199 // the user-defined signal handler to perform checks either before or after
4200 // the VM performs its own checks.  Naturally, the user code would be making
4201 // a serious error if it tried to handle an exception (such as a null check
4202 // or breakpoint) that the VM was generating for its own correct operation.
4203 //
4204 // This routine may recognize any of the following kinds of signals:
4205 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4206 // It should be consulted by handlers for any of those signals.
4207 //
4208 // The caller of this routine must pass in the three arguments supplied
4209 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4210 // field of the structure passed to sigaction().  This routine assumes that
4211 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4212 //
4213 // Note that the VM will print warnings if it detects conflicting signal
4214 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4215 //
4216 extern "C" JNIEXPORT int
4217 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4218                         void* ucontext, int abort_if_unrecognized);
4219 
4220 void signalHandler(int sig, siginfo_t* info, void* uc) {
4221   assert(info != NULL && uc != NULL, "it must be old kernel");
4222   int orig_errno = errno;  // Preserve errno value over signal handler.
4223   JVM_handle_linux_signal(sig, info, uc, true);
4224   errno = orig_errno;
4225 }
4226 
4227 
4228 // This boolean allows users to forward their own non-matching signals
4229 // to JVM_handle_linux_signal, harmlessly.
4230 bool os::Linux::signal_handlers_are_installed = false;
4231 
4232 // For signal-chaining
4233 struct sigaction os::Linux::sigact[MAXSIGNUM];
4234 unsigned int os::Linux::sigs = 0;
4235 bool os::Linux::libjsig_is_loaded = false;
4236 typedef struct sigaction *(*get_signal_t)(int);
4237 get_signal_t os::Linux::get_signal_action = NULL;
4238 
4239 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4240   struct sigaction *actp = NULL;
4241 
4242   if (libjsig_is_loaded) {
4243     // Retrieve the old signal handler from libjsig
4244     actp = (*get_signal_action)(sig);
4245   }
4246   if (actp == NULL) {
4247     // Retrieve the preinstalled signal handler from jvm
4248     actp = get_preinstalled_handler(sig);
4249   }
4250 
4251   return actp;
4252 }
4253 
4254 static bool call_chained_handler(struct sigaction *actp, int sig,
4255                                  siginfo_t *siginfo, void *context) {
4256   // Call the old signal handler
4257   if (actp->sa_handler == SIG_DFL) {
4258     // It's more reasonable to let jvm treat it as an unexpected exception
4259     // instead of taking the default action.
4260     return false;
4261   } else if (actp->sa_handler != SIG_IGN) {
4262     if ((actp->sa_flags & SA_NODEFER) == 0) {
4263       // automaticlly block the signal
4264       sigaddset(&(actp->sa_mask), sig);
4265     }
4266 
4267     sa_handler_t hand = NULL;
4268     sa_sigaction_t sa = NULL;
4269     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4270     // retrieve the chained handler
4271     if (siginfo_flag_set) {
4272       sa = actp->sa_sigaction;
4273     } else {
4274       hand = actp->sa_handler;
4275     }
4276 
4277     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4278       actp->sa_handler = SIG_DFL;
4279     }
4280 
4281     // try to honor the signal mask
4282     sigset_t oset;
4283     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4284 
4285     // call into the chained handler
4286     if (siginfo_flag_set) {
4287       (*sa)(sig, siginfo, context);
4288     } else {
4289       (*hand)(sig);
4290     }
4291 
4292     // restore the signal mask
4293     pthread_sigmask(SIG_SETMASK, &oset, 0);
4294   }
4295   // Tell jvm's signal handler the signal is taken care of.
4296   return true;
4297 }
4298 
4299 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4300   bool chained = false;
4301   // signal-chaining
4302   if (UseSignalChaining) {
4303     struct sigaction *actp = get_chained_signal_action(sig);
4304     if (actp != NULL) {
4305       chained = call_chained_handler(actp, sig, siginfo, context);
4306     }
4307   }
4308   return chained;
4309 }
4310 
4311 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4312   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4313     return &sigact[sig];
4314   }
4315   return NULL;
4316 }
4317 
4318 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4319   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4320   sigact[sig] = oldAct;
4321   sigs |= (unsigned int)1 << sig;
4322 }
4323 
4324 // for diagnostic
4325 int os::Linux::sigflags[MAXSIGNUM];
4326 
4327 int os::Linux::get_our_sigflags(int sig) {
4328   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4329   return sigflags[sig];
4330 }
4331 
4332 void os::Linux::set_our_sigflags(int sig, int flags) {
4333   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4334   sigflags[sig] = flags;
4335 }
4336 
4337 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4338   // Check for overwrite.
4339   struct sigaction oldAct;
4340   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4341 
4342   void* oldhand = oldAct.sa_sigaction
4343                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4344                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4345   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4346       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4347       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4348     if (AllowUserSignalHandlers || !set_installed) {
4349       // Do not overwrite; user takes responsibility to forward to us.
4350       return;
4351     } else if (UseSignalChaining) {
4352       // save the old handler in jvm
4353       save_preinstalled_handler(sig, oldAct);
4354       // libjsig also interposes the sigaction() call below and saves the
4355       // old sigaction on it own.
4356     } else {
4357       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4358                     "%#lx for signal %d.", (long)oldhand, sig));
4359     }
4360   }
4361 
4362   struct sigaction sigAct;
4363   sigfillset(&(sigAct.sa_mask));
4364   sigAct.sa_handler = SIG_DFL;
4365   if (!set_installed) {
4366     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4367   } else {
4368     sigAct.sa_sigaction = signalHandler;
4369     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4370   }
4371   // Save flags, which are set by ours
4372   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4373   sigflags[sig] = sigAct.sa_flags;
4374 
4375   int ret = sigaction(sig, &sigAct, &oldAct);
4376   assert(ret == 0, "check");
4377 
4378   void* oldhand2  = oldAct.sa_sigaction
4379                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4380                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4381   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4382 }
4383 
4384 // install signal handlers for signals that HotSpot needs to
4385 // handle in order to support Java-level exception handling.
4386 
4387 void os::Linux::install_signal_handlers() {
4388   if (!signal_handlers_are_installed) {
4389     signal_handlers_are_installed = true;
4390 
4391     // signal-chaining
4392     typedef void (*signal_setting_t)();
4393     signal_setting_t begin_signal_setting = NULL;
4394     signal_setting_t end_signal_setting = NULL;
4395     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4396                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4397     if (begin_signal_setting != NULL) {
4398       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4399                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4400       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4401                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4402       libjsig_is_loaded = true;
4403       assert(UseSignalChaining, "should enable signal-chaining");
4404     }
4405     if (libjsig_is_loaded) {
4406       // Tell libjsig jvm is setting signal handlers
4407       (*begin_signal_setting)();
4408     }
4409 
4410     set_signal_handler(SIGSEGV, true);
4411     set_signal_handler(SIGPIPE, true);
4412     set_signal_handler(SIGBUS, true);
4413     set_signal_handler(SIGILL, true);
4414     set_signal_handler(SIGFPE, true);
4415 #if defined(PPC64)
4416     set_signal_handler(SIGTRAP, true);
4417 #endif
4418     set_signal_handler(SIGXFSZ, true);
4419 
4420     if (libjsig_is_loaded) {
4421       // Tell libjsig jvm finishes setting signal handlers
4422       (*end_signal_setting)();
4423     }
4424 
4425     // We don't activate signal checker if libjsig is in place, we trust ourselves
4426     // and if UserSignalHandler is installed all bets are off.
4427     // Log that signal checking is off only if -verbose:jni is specified.
4428     if (CheckJNICalls) {
4429       if (libjsig_is_loaded) {
4430         if (PrintJNIResolving) {
4431           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4432         }
4433         check_signals = false;
4434       }
4435       if (AllowUserSignalHandlers) {
4436         if (PrintJNIResolving) {
4437           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4438         }
4439         check_signals = false;
4440       }
4441     }
4442   }
4443 }
4444 
4445 // This is the fastest way to get thread cpu time on Linux.
4446 // Returns cpu time (user+sys) for any thread, not only for current.
4447 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4448 // It might work on 2.6.10+ with a special kernel/glibc patch.
4449 // For reference, please, see IEEE Std 1003.1-2004:
4450 //   http://www.unix.org/single_unix_specification
4451 
4452 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4453   struct timespec tp;
4454   int rc = os::Linux::clock_gettime(clockid, &tp);
4455   assert(rc == 0, "clock_gettime is expected to return 0 code");
4456 
4457   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4458 }
4459 
4460 /////
4461 // glibc on Linux platform uses non-documented flag
4462 // to indicate, that some special sort of signal
4463 // trampoline is used.
4464 // We will never set this flag, and we should
4465 // ignore this flag in our diagnostic
4466 #ifdef SIGNIFICANT_SIGNAL_MASK
4467 #undef SIGNIFICANT_SIGNAL_MASK
4468 #endif
4469 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4470 
4471 static const char* get_signal_handler_name(address handler,
4472                                            char* buf, int buflen) {
4473   int offset = 0;
4474   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4475   if (found) {
4476     // skip directory names
4477     const char *p1, *p2;
4478     p1 = buf;
4479     size_t len = strlen(os::file_separator());
4480     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4481     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4482   } else {
4483     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4484   }
4485   return buf;
4486 }
4487 
4488 static void print_signal_handler(outputStream* st, int sig,
4489                                  char* buf, size_t buflen) {
4490   struct sigaction sa;
4491 
4492   sigaction(sig, NULL, &sa);
4493 
4494   // See comment for SIGNIFICANT_SIGNAL_MASK define
4495   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4496 
4497   st->print("%s: ", os::exception_name(sig, buf, buflen));
4498 
4499   address handler = (sa.sa_flags & SA_SIGINFO)
4500     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4501     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4502 
4503   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4504     st->print("SIG_DFL");
4505   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4506     st->print("SIG_IGN");
4507   } else {
4508     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4509   }
4510 
4511   st->print(", sa_mask[0]=");
4512   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4513 
4514   address rh = VMError::get_resetted_sighandler(sig);
4515   // May be, handler was resetted by VMError?
4516   if(rh != NULL) {
4517     handler = rh;
4518     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4519   }
4520 
4521   st->print(", sa_flags=");
4522   os::Posix::print_sa_flags(st, sa.sa_flags);
4523 
4524   // Check: is it our handler?
4525   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4526      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4527     // It is our signal handler
4528     // check for flags, reset system-used one!
4529     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4530       st->print(
4531                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4532                 os::Linux::get_our_sigflags(sig));
4533     }
4534   }
4535   st->cr();
4536 }
4537 
4538 
4539 #define DO_SIGNAL_CHECK(sig) \
4540   if (!sigismember(&check_signal_done, sig)) \
4541     os::Linux::check_signal_handler(sig)
4542 
4543 // This method is a periodic task to check for misbehaving JNI applications
4544 // under CheckJNI, we can add any periodic checks here
4545 
4546 void os::run_periodic_checks() {
4547 
4548   if (check_signals == false) return;
4549 
4550   // SEGV and BUS if overridden could potentially prevent
4551   // generation of hs*.log in the event of a crash, debugging
4552   // such a case can be very challenging, so we absolutely
4553   // check the following for a good measure:
4554   DO_SIGNAL_CHECK(SIGSEGV);
4555   DO_SIGNAL_CHECK(SIGILL);
4556   DO_SIGNAL_CHECK(SIGFPE);
4557   DO_SIGNAL_CHECK(SIGBUS);
4558   DO_SIGNAL_CHECK(SIGPIPE);
4559   DO_SIGNAL_CHECK(SIGXFSZ);
4560 #if defined(PPC64)
4561   DO_SIGNAL_CHECK(SIGTRAP);
4562 #endif
4563 
4564   // ReduceSignalUsage allows the user to override these handlers
4565   // see comments at the very top and jvm_solaris.h
4566   if (!ReduceSignalUsage) {
4567     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4568     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4569     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4570     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4571   }
4572 
4573   DO_SIGNAL_CHECK(SR_signum);
4574   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4575 }
4576 
4577 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4578 
4579 static os_sigaction_t os_sigaction = NULL;
4580 
4581 void os::Linux::check_signal_handler(int sig) {
4582   char buf[O_BUFLEN];
4583   address jvmHandler = NULL;
4584 
4585 
4586   struct sigaction act;
4587   if (os_sigaction == NULL) {
4588     // only trust the default sigaction, in case it has been interposed
4589     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4590     if (os_sigaction == NULL) return;
4591   }
4592 
4593   os_sigaction(sig, (struct sigaction*)NULL, &act);
4594 
4595 
4596   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4597 
4598   address thisHandler = (act.sa_flags & SA_SIGINFO)
4599     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4600     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4601 
4602 
4603   switch(sig) {
4604   case SIGSEGV:
4605   case SIGBUS:
4606   case SIGFPE:
4607   case SIGPIPE:
4608   case SIGILL:
4609   case SIGXFSZ:
4610     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4611     break;
4612 
4613   case SHUTDOWN1_SIGNAL:
4614   case SHUTDOWN2_SIGNAL:
4615   case SHUTDOWN3_SIGNAL:
4616   case BREAK_SIGNAL:
4617     jvmHandler = (address)user_handler();
4618     break;
4619 
4620   case INTERRUPT_SIGNAL:
4621     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4622     break;
4623 
4624   default:
4625     if (sig == SR_signum) {
4626       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4627     } else {
4628       return;
4629     }
4630     break;
4631   }
4632 
4633   if (thisHandler != jvmHandler) {
4634     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4635     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4636     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4637     // No need to check this sig any longer
4638     sigaddset(&check_signal_done, sig);
4639     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4640     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4641       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4642                     exception_name(sig, buf, O_BUFLEN));
4643     }
4644   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4645     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4646     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4647     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4648     // No need to check this sig any longer
4649     sigaddset(&check_signal_done, sig);
4650   }
4651 
4652   // Dump all the signal
4653   if (sigismember(&check_signal_done, sig)) {
4654     print_signal_handlers(tty, buf, O_BUFLEN);
4655   }
4656 }
4657 
4658 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4659 
4660 extern bool signal_name(int signo, char* buf, size_t len);
4661 
4662 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4663   if (0 < exception_code && exception_code <= SIGRTMAX) {
4664     // signal
4665     if (!signal_name(exception_code, buf, size)) {
4666       jio_snprintf(buf, size, "SIG%d", exception_code);
4667     }
4668     return buf;
4669   } else {
4670     return NULL;
4671   }
4672 }
4673 
4674 // this is called _before_ the most of global arguments have been parsed
4675 void os::init(void) {
4676   char dummy;   /* used to get a guess on initial stack address */
4677 //  first_hrtime = gethrtime();
4678 
4679   // With LinuxThreads the JavaMain thread pid (primordial thread)
4680   // is different than the pid of the java launcher thread.
4681   // So, on Linux, the launcher thread pid is passed to the VM
4682   // via the sun.java.launcher.pid property.
4683   // Use this property instead of getpid() if it was correctly passed.
4684   // See bug 6351349.
4685   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4686 
4687   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4688 
4689   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4690 
4691   init_random(1234567);
4692 
4693   ThreadCritical::initialize();
4694 
4695   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4696   if (Linux::page_size() == -1) {
4697     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4698                   strerror(errno)));
4699   }
4700   init_page_sizes((size_t) Linux::page_size());
4701 
4702   Linux::initialize_system_info();
4703 
4704   // main_thread points to the aboriginal thread
4705   Linux::_main_thread = pthread_self();
4706 
4707   Linux::clock_init();
4708   initial_time_count = javaTimeNanos();
4709 
4710   // pthread_condattr initialization for monotonic clock
4711   int status;
4712   pthread_condattr_t* _condattr = os::Linux::condAttr();
4713   if ((status = pthread_condattr_init(_condattr)) != 0) {
4714     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4715   }
4716   // Only set the clock if CLOCK_MONOTONIC is available
4717   if (Linux::supports_monotonic_clock()) {
4718     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4719       if (status == EINVAL) {
4720         warning("Unable to use monotonic clock with relative timed-waits" \
4721                 " - changes to the time-of-day clock may have adverse affects");
4722       } else {
4723         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4724       }
4725     }
4726   }
4727   // else it defaults to CLOCK_REALTIME
4728 
4729   pthread_mutex_init(&dl_mutex, NULL);
4730 
4731   // If the pagesize of the VM is greater than 8K determine the appropriate
4732   // number of initial guard pages.  The user can change this with the
4733   // command line arguments, if needed.
4734   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4735     StackYellowPages = 1;
4736     StackRedPages = 1;
4737     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4738   }
4739 }
4740 
4741 // To install functions for atexit system call
4742 extern "C" {
4743   static void perfMemory_exit_helper() {
4744     perfMemory_exit();
4745   }
4746 }
4747 
4748 // this is called _after_ the global arguments have been parsed
4749 jint os::init_2(void)
4750 {
4751   Linux::fast_thread_clock_init();
4752 
4753   // Allocate a single page and mark it as readable for safepoint polling
4754   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4755   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4756 
4757   os::set_polling_page( polling_page );
4758 
4759 #ifndef PRODUCT
4760   if(Verbose && PrintMiscellaneous)
4761     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4762 #endif
4763 
4764   if (!UseMembar) {
4765     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4766     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4767     os::set_memory_serialize_page( mem_serialize_page );
4768 
4769 #ifndef PRODUCT
4770     if(Verbose && PrintMiscellaneous)
4771       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4772 #endif
4773   }
4774 
4775   // initialize suspend/resume support - must do this before signal_sets_init()
4776   if (SR_initialize() != 0) {
4777     perror("SR_initialize failed");
4778     return JNI_ERR;
4779   }
4780 
4781   Linux::signal_sets_init();
4782   Linux::install_signal_handlers();
4783 
4784   // Check minimum allowable stack size for thread creation and to initialize
4785   // the java system classes, including StackOverflowError - depends on page
4786   // size.  Add a page for compiler2 recursion in main thread.
4787   // Add in 2*BytesPerWord times page size to account for VM stack during
4788   // class initialization depending on 32 or 64 bit VM.
4789   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4790             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4791                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4792 
4793   size_t threadStackSizeInBytes = ThreadStackSize * K;
4794   if (threadStackSizeInBytes != 0 &&
4795       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4796         tty->print_cr("\nThe stack size specified is too small, "
4797                       "Specify at least %dk",
4798                       os::Linux::min_stack_allowed/ K);
4799         return JNI_ERR;
4800   }
4801 
4802   // Make the stack size a multiple of the page size so that
4803   // the yellow/red zones can be guarded.
4804   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4805         vm_page_size()));
4806 
4807   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4808 
4809 #if defined(IA32)
4810   workaround_expand_exec_shield_cs_limit();
4811 #endif
4812 
4813   Linux::libpthread_init();
4814   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4815      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4816           Linux::glibc_version(), Linux::libpthread_version(),
4817           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4818   }
4819 
4820   if (UseNUMA) {
4821     if (!Linux::libnuma_init()) {
4822       UseNUMA = false;
4823     } else {
4824       if ((Linux::numa_max_node() < 1)) {
4825         // There's only one node(they start from 0), disable NUMA.
4826         UseNUMA = false;
4827       }
4828     }
4829     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4830     // we can make the adaptive lgrp chunk resizing work. If the user specified
4831     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4832     // disable adaptive resizing.
4833     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4834       if (FLAG_IS_DEFAULT(UseNUMA)) {
4835         UseNUMA = false;
4836       } else {
4837         if (FLAG_IS_DEFAULT(UseLargePages) &&
4838             FLAG_IS_DEFAULT(UseSHM) &&
4839             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4840           UseLargePages = false;
4841         } else {
4842           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4843           UseAdaptiveSizePolicy = false;
4844           UseAdaptiveNUMAChunkSizing = false;
4845         }
4846       }
4847     }
4848     if (!UseNUMA && ForceNUMA) {
4849       UseNUMA = true;
4850     }
4851   }
4852 
4853   if (MaxFDLimit) {
4854     // set the number of file descriptors to max. print out error
4855     // if getrlimit/setrlimit fails but continue regardless.
4856     struct rlimit nbr_files;
4857     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4858     if (status != 0) {
4859       if (PrintMiscellaneous && (Verbose || WizardMode))
4860         perror("os::init_2 getrlimit failed");
4861     } else {
4862       nbr_files.rlim_cur = nbr_files.rlim_max;
4863       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4864       if (status != 0) {
4865         if (PrintMiscellaneous && (Verbose || WizardMode))
4866           perror("os::init_2 setrlimit failed");
4867       }
4868     }
4869   }
4870 
4871   // Initialize lock used to serialize thread creation (see os::create_thread)
4872   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4873 
4874   // at-exit methods are called in the reverse order of their registration.
4875   // atexit functions are called on return from main or as a result of a
4876   // call to exit(3C). There can be only 32 of these functions registered
4877   // and atexit() does not set errno.
4878 
4879   if (PerfAllowAtExitRegistration) {
4880     // only register atexit functions if PerfAllowAtExitRegistration is set.
4881     // atexit functions can be delayed until process exit time, which
4882     // can be problematic for embedded VM situations. Embedded VMs should
4883     // call DestroyJavaVM() to assure that VM resources are released.
4884 
4885     // note: perfMemory_exit_helper atexit function may be removed in
4886     // the future if the appropriate cleanup code can be added to the
4887     // VM_Exit VMOperation's doit method.
4888     if (atexit(perfMemory_exit_helper) != 0) {
4889       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4890     }
4891   }
4892 
4893   // initialize thread priority policy
4894   prio_init();
4895 
4896   return JNI_OK;
4897 }
4898 
4899 // Mark the polling page as unreadable
4900 void os::make_polling_page_unreadable(void) {
4901   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4902     fatal("Could not disable polling page");
4903 };
4904 
4905 // Mark the polling page as readable
4906 void os::make_polling_page_readable(void) {
4907   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4908     fatal("Could not enable polling page");
4909   }
4910 };
4911 
4912 int os::active_processor_count() {
4913   // Linux doesn't yet have a (official) notion of processor sets,
4914   // so just return the number of online processors.
4915   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4916   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4917   return online_cpus;
4918 }
4919 
4920 void os::set_native_thread_name(const char *name) {
4921   // Not yet implemented.
4922   return;
4923 }
4924 
4925 bool os::distribute_processes(uint length, uint* distribution) {
4926   // Not yet implemented.
4927   return false;
4928 }
4929 
4930 bool os::bind_to_processor(uint processor_id) {
4931   // Not yet implemented.
4932   return false;
4933 }
4934 
4935 ///
4936 
4937 void os::SuspendedThreadTask::internal_do_task() {
4938   if (do_suspend(_thread->osthread())) {
4939     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4940     do_task(context);
4941     do_resume(_thread->osthread());
4942   }
4943 }
4944 
4945 class PcFetcher : public os::SuspendedThreadTask {
4946 public:
4947   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4948   ExtendedPC result();
4949 protected:
4950   void do_task(const os::SuspendedThreadTaskContext& context);
4951 private:
4952   ExtendedPC _epc;
4953 };
4954 
4955 ExtendedPC PcFetcher::result() {
4956   guarantee(is_done(), "task is not done yet.");
4957   return _epc;
4958 }
4959 
4960 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4961   Thread* thread = context.thread();
4962   OSThread* osthread = thread->osthread();
4963   if (osthread->ucontext() != NULL) {
4964     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4965   } else {
4966     // NULL context is unexpected, double-check this is the VMThread
4967     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4968   }
4969 }
4970 
4971 // Suspends the target using the signal mechanism and then grabs the PC before
4972 // resuming the target. Used by the flat-profiler only
4973 ExtendedPC os::get_thread_pc(Thread* thread) {
4974   // Make sure that it is called by the watcher for the VMThread
4975   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4976   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4977 
4978   PcFetcher fetcher(thread);
4979   fetcher.run();
4980   return fetcher.result();
4981 }
4982 
4983 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4984 {
4985    if (is_NPTL()) {
4986       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4987    } else {
4988       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4989       // word back to default 64bit precision if condvar is signaled. Java
4990       // wants 53bit precision.  Save and restore current value.
4991       int fpu = get_fpu_control_word();
4992       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4993       set_fpu_control_word(fpu);
4994       return status;
4995    }
4996 }
4997 
4998 ////////////////////////////////////////////////////////////////////////////////
4999 // debug support
5000 
5001 bool os::find(address addr, outputStream* st) {
5002   Dl_info dlinfo;
5003   memset(&dlinfo, 0, sizeof(dlinfo));
5004   if (dladdr(addr, &dlinfo) != 0) {
5005     st->print(PTR_FORMAT ": ", addr);
5006     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5007       st->print("%s+%#x", dlinfo.dli_sname,
5008                  addr - (intptr_t)dlinfo.dli_saddr);
5009     } else if (dlinfo.dli_fbase != NULL) {
5010       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5011     } else {
5012       st->print("<absolute address>");
5013     }
5014     if (dlinfo.dli_fname != NULL) {
5015       st->print(" in %s", dlinfo.dli_fname);
5016     }
5017     if (dlinfo.dli_fbase != NULL) {
5018       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5019     }
5020     st->cr();
5021 
5022     if (Verbose) {
5023       // decode some bytes around the PC
5024       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5025       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5026       address       lowest = (address) dlinfo.dli_sname;
5027       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5028       if (begin < lowest)  begin = lowest;
5029       Dl_info dlinfo2;
5030       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5031           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5032         end = (address) dlinfo2.dli_saddr;
5033       Disassembler::decode(begin, end, st);
5034     }
5035     return true;
5036   }
5037   return false;
5038 }
5039 
5040 ////////////////////////////////////////////////////////////////////////////////
5041 // misc
5042 
5043 // This does not do anything on Linux. This is basically a hook for being
5044 // able to use structured exception handling (thread-local exception filters)
5045 // on, e.g., Win32.
5046 void
5047 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5048                          JavaCallArguments* args, Thread* thread) {
5049   f(value, method, args, thread);
5050 }
5051 
5052 void os::print_statistics() {
5053 }
5054 
5055 int os::message_box(const char* title, const char* message) {
5056   int i;
5057   fdStream err(defaultStream::error_fd());
5058   for (i = 0; i < 78; i++) err.print_raw("=");
5059   err.cr();
5060   err.print_raw_cr(title);
5061   for (i = 0; i < 78; i++) err.print_raw("-");
5062   err.cr();
5063   err.print_raw_cr(message);
5064   for (i = 0; i < 78; i++) err.print_raw("=");
5065   err.cr();
5066 
5067   char buf[16];
5068   // Prevent process from exiting upon "read error" without consuming all CPU
5069   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5070 
5071   return buf[0] == 'y' || buf[0] == 'Y';
5072 }
5073 
5074 int os::stat(const char *path, struct stat *sbuf) {
5075   char pathbuf[MAX_PATH];
5076   if (strlen(path) > MAX_PATH - 1) {
5077     errno = ENAMETOOLONG;
5078     return -1;
5079   }
5080   os::native_path(strcpy(pathbuf, path));
5081   return ::stat(pathbuf, sbuf);
5082 }
5083 
5084 bool os::check_heap(bool force) {
5085   return true;
5086 }
5087 
5088 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5089   return ::vsnprintf(buf, count, format, args);
5090 }
5091 
5092 // Is a (classpath) directory empty?
5093 bool os::dir_is_empty(const char* path) {
5094   DIR *dir = NULL;
5095   struct dirent *ptr;
5096 
5097   dir = opendir(path);
5098   if (dir == NULL) return true;
5099 
5100   /* Scan the directory */
5101   bool result = true;
5102   char buf[sizeof(struct dirent) + MAX_PATH];
5103   while (result && (ptr = ::readdir(dir)) != NULL) {
5104     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5105       result = false;
5106     }
5107   }
5108   closedir(dir);
5109   return result;
5110 }
5111 
5112 // This code originates from JDK's sysOpen and open64_w
5113 // from src/solaris/hpi/src/system_md.c
5114 
5115 #ifndef O_DELETE
5116 #define O_DELETE 0x10000
5117 #endif
5118 
5119 // Open a file. Unlink the file immediately after open returns
5120 // if the specified oflag has the O_DELETE flag set.
5121 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5122 
5123 int os::open(const char *path, int oflag, int mode) {
5124 
5125   if (strlen(path) > MAX_PATH - 1) {
5126     errno = ENAMETOOLONG;
5127     return -1;
5128   }
5129   int fd;
5130   int o_delete = (oflag & O_DELETE);
5131   oflag = oflag & ~O_DELETE;
5132 
5133   fd = ::open64(path, oflag, mode);
5134   if (fd == -1) return -1;
5135 
5136   //If the open succeeded, the file might still be a directory
5137   {
5138     struct stat64 buf64;
5139     int ret = ::fstat64(fd, &buf64);
5140     int st_mode = buf64.st_mode;
5141 
5142     if (ret != -1) {
5143       if ((st_mode & S_IFMT) == S_IFDIR) {
5144         errno = EISDIR;
5145         ::close(fd);
5146         return -1;
5147       }
5148     } else {
5149       ::close(fd);
5150       return -1;
5151     }
5152   }
5153 
5154     /*
5155      * All file descriptors that are opened in the JVM and not
5156      * specifically destined for a subprocess should have the
5157      * close-on-exec flag set.  If we don't set it, then careless 3rd
5158      * party native code might fork and exec without closing all
5159      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5160      * UNIXProcess.c), and this in turn might:
5161      *
5162      * - cause end-of-file to fail to be detected on some file
5163      *   descriptors, resulting in mysterious hangs, or
5164      *
5165      * - might cause an fopen in the subprocess to fail on a system
5166      *   suffering from bug 1085341.
5167      *
5168      * (Yes, the default setting of the close-on-exec flag is a Unix
5169      * design flaw)
5170      *
5171      * See:
5172      * 1085341: 32-bit stdio routines should support file descriptors >255
5173      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5174      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5175      */
5176 #ifdef FD_CLOEXEC
5177     {
5178         int flags = ::fcntl(fd, F_GETFD);
5179         if (flags != -1)
5180             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5181     }
5182 #endif
5183 
5184   if (o_delete != 0) {
5185     ::unlink(path);
5186   }
5187   return fd;
5188 }
5189 
5190 
5191 // create binary file, rewriting existing file if required
5192 int os::create_binary_file(const char* path, bool rewrite_existing) {
5193   int oflags = O_WRONLY | O_CREAT;
5194   if (!rewrite_existing) {
5195     oflags |= O_EXCL;
5196   }
5197   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5198 }
5199 
5200 // return current position of file pointer
5201 jlong os::current_file_offset(int fd) {
5202   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5203 }
5204 
5205 // move file pointer to the specified offset
5206 jlong os::seek_to_file_offset(int fd, jlong offset) {
5207   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5208 }
5209 
5210 // This code originates from JDK's sysAvailable
5211 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5212 
5213 int os::available(int fd, jlong *bytes) {
5214   jlong cur, end;
5215   int mode;
5216   struct stat64 buf64;
5217 
5218   if (::fstat64(fd, &buf64) >= 0) {
5219     mode = buf64.st_mode;
5220     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5221       /*
5222       * XXX: is the following call interruptible? If so, this might
5223       * need to go through the INTERRUPT_IO() wrapper as for other
5224       * blocking, interruptible calls in this file.
5225       */
5226       int n;
5227       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5228         *bytes = n;
5229         return 1;
5230       }
5231     }
5232   }
5233   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5234     return 0;
5235   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5236     return 0;
5237   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5238     return 0;
5239   }
5240   *bytes = end - cur;
5241   return 1;
5242 }
5243 
5244 int os::socket_available(int fd, jint *pbytes) {
5245   // Linux doc says EINTR not returned, unlike Solaris
5246   int ret = ::ioctl(fd, FIONREAD, pbytes);
5247 
5248   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5249   // is expected to return 0 on failure and 1 on success to the jdk.
5250   return (ret < 0) ? 0 : 1;
5251 }
5252 
5253 // Map a block of memory.
5254 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5255                      char *addr, size_t bytes, bool read_only,
5256                      bool allow_exec) {
5257   int prot;
5258   int flags = MAP_PRIVATE;
5259 
5260   if (read_only) {
5261     prot = PROT_READ;
5262   } else {
5263     prot = PROT_READ | PROT_WRITE;
5264   }
5265 
5266   if (allow_exec) {
5267     prot |= PROT_EXEC;
5268   }
5269 
5270   if (addr != NULL) {
5271     flags |= MAP_FIXED;
5272   }
5273 
5274   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5275                                      fd, file_offset);
5276   if (mapped_address == MAP_FAILED) {
5277     return NULL;
5278   }
5279   return mapped_address;
5280 }
5281 
5282 
5283 // Remap a block of memory.
5284 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5285                        char *addr, size_t bytes, bool read_only,
5286                        bool allow_exec) {
5287   // same as map_memory() on this OS
5288   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5289                         allow_exec);
5290 }
5291 
5292 
5293 // Unmap a block of memory.
5294 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5295   return munmap(addr, bytes) == 0;
5296 }
5297 
5298 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5299 
5300 static clockid_t thread_cpu_clockid(Thread* thread) {
5301   pthread_t tid = thread->osthread()->pthread_id();
5302   clockid_t clockid;
5303 
5304   // Get thread clockid
5305   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5306   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5307   return clockid;
5308 }
5309 
5310 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5311 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5312 // of a thread.
5313 //
5314 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5315 // the fast estimate available on the platform.
5316 
5317 jlong os::current_thread_cpu_time() {
5318   if (os::Linux::supports_fast_thread_cpu_time()) {
5319     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5320   } else {
5321     // return user + sys since the cost is the same
5322     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5323   }
5324 }
5325 
5326 jlong os::thread_cpu_time(Thread* thread) {
5327   // consistent with what current_thread_cpu_time() returns
5328   if (os::Linux::supports_fast_thread_cpu_time()) {
5329     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5330   } else {
5331     return slow_thread_cpu_time(thread, true /* user + sys */);
5332   }
5333 }
5334 
5335 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5336   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5337     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5338   } else {
5339     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5340   }
5341 }
5342 
5343 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5344   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5345     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5346   } else {
5347     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5348   }
5349 }
5350 
5351 //
5352 //  -1 on error.
5353 //
5354 
5355 PRAGMA_DIAG_PUSH
5356 PRAGMA_FORMAT_NONLITERAL_IGNORED
5357 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5358   static bool proc_task_unchecked = true;
5359   static const char *proc_stat_path = "/proc/%d/stat";
5360   pid_t  tid = thread->osthread()->thread_id();
5361   char *s;
5362   char stat[2048];
5363   int statlen;
5364   char proc_name[64];
5365   int count;
5366   long sys_time, user_time;
5367   char cdummy;
5368   int idummy;
5369   long ldummy;
5370   FILE *fp;
5371 
5372   // The /proc/<tid>/stat aggregates per-process usage on
5373   // new Linux kernels 2.6+ where NPTL is supported.
5374   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5375   // See bug 6328462.
5376   // There possibly can be cases where there is no directory
5377   // /proc/self/task, so we check its availability.
5378   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5379     // This is executed only once
5380     proc_task_unchecked = false;
5381     fp = fopen("/proc/self/task", "r");
5382     if (fp != NULL) {
5383       proc_stat_path = "/proc/self/task/%d/stat";
5384       fclose(fp);
5385     }
5386   }
5387 
5388   sprintf(proc_name, proc_stat_path, tid);
5389   fp = fopen(proc_name, "r");
5390   if ( fp == NULL ) return -1;
5391   statlen = fread(stat, 1, 2047, fp);
5392   stat[statlen] = '\0';
5393   fclose(fp);
5394 
5395   // Skip pid and the command string. Note that we could be dealing with
5396   // weird command names, e.g. user could decide to rename java launcher
5397   // to "java 1.4.2 :)", then the stat file would look like
5398   //                1234 (java 1.4.2 :)) R ... ...
5399   // We don't really need to know the command string, just find the last
5400   // occurrence of ")" and then start parsing from there. See bug 4726580.
5401   s = strrchr(stat, ')');
5402   if (s == NULL ) return -1;
5403 
5404   // Skip blank chars
5405   do s++; while (isspace(*s));
5406 
5407   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5408                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5409                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5410                  &user_time, &sys_time);
5411   if ( count != 13 ) return -1;
5412   if (user_sys_cpu_time) {
5413     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5414   } else {
5415     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5416   }
5417 }
5418 PRAGMA_DIAG_POP
5419 
5420 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5421   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5422   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5423   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5424   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5425 }
5426 
5427 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5428   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5429   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5430   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5431   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5432 }
5433 
5434 bool os::is_thread_cpu_time_supported() {
5435   return true;
5436 }
5437 
5438 // System loadavg support.  Returns -1 if load average cannot be obtained.
5439 // Linux doesn't yet have a (official) notion of processor sets,
5440 // so just return the system wide load average.
5441 int os::loadavg(double loadavg[], int nelem) {
5442   return ::getloadavg(loadavg, nelem);
5443 }
5444 
5445 void os::pause() {
5446   char filename[MAX_PATH];
5447   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5448     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5449   } else {
5450     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5451   }
5452 
5453   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5454   if (fd != -1) {
5455     struct stat buf;
5456     ::close(fd);
5457     while (::stat(filename, &buf) == 0) {
5458       (void)::poll(NULL, 0, 100);
5459     }
5460   } else {
5461     jio_fprintf(stderr,
5462       "Could not open pause file '%s', continuing immediately.\n", filename);
5463   }
5464 }
5465 
5466 
5467 // Refer to the comments in os_solaris.cpp park-unpark.
5468 //
5469 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5470 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5471 // For specifics regarding the bug see GLIBC BUGID 261237 :
5472 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5473 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5474 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5475 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5476 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5477 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5478 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5479 // of libpthread avoids the problem, but isn't practical.
5480 //
5481 // Possible remedies:
5482 //
5483 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5484 //      This is palliative and probabilistic, however.  If the thread is preempted
5485 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5486 //      than the minimum period may have passed, and the abstime may be stale (in the
5487 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5488 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5489 //
5490 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5491 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5492 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5493 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5494 //      thread.
5495 //
5496 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5497 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5498 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5499 //      This also works well.  In fact it avoids kernel-level scalability impediments
5500 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5501 //      timers in a graceful fashion.
5502 //
5503 // 4.   When the abstime value is in the past it appears that control returns
5504 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5505 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5506 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5507 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5508 //      It may be possible to avoid reinitialization by checking the return
5509 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5510 //      condvar we must establish the invariant that cond_signal() is only called
5511 //      within critical sections protected by the adjunct mutex.  This prevents
5512 //      cond_signal() from "seeing" a condvar that's in the midst of being
5513 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5514 //      desirable signal-after-unlock optimization that avoids futile context switching.
5515 //
5516 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5517 //      structure when a condvar is used or initialized.  cond_destroy()  would
5518 //      release the helper structure.  Our reinitialize-after-timedwait fix
5519 //      put excessive stress on malloc/free and locks protecting the c-heap.
5520 //
5521 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5522 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5523 // and only enabling the work-around for vulnerable environments.
5524 
5525 // utility to compute the abstime argument to timedwait:
5526 // millis is the relative timeout time
5527 // abstime will be the absolute timeout time
5528 // TODO: replace compute_abstime() with unpackTime()
5529 
5530 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5531   if (millis < 0)  millis = 0;
5532 
5533   jlong seconds = millis / 1000;
5534   millis %= 1000;
5535   if (seconds > 50000000) { // see man cond_timedwait(3T)
5536     seconds = 50000000;
5537   }
5538 
5539   if (os::Linux::supports_monotonic_clock()) {
5540     struct timespec now;
5541     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5542     assert_status(status == 0, status, "clock_gettime");
5543     abstime->tv_sec = now.tv_sec  + seconds;
5544     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5545     if (nanos >= NANOSECS_PER_SEC) {
5546       abstime->tv_sec += 1;
5547       nanos -= NANOSECS_PER_SEC;
5548     }
5549     abstime->tv_nsec = nanos;
5550   } else {
5551     struct timeval now;
5552     int status = gettimeofday(&now, NULL);
5553     assert(status == 0, "gettimeofday");
5554     abstime->tv_sec = now.tv_sec  + seconds;
5555     long usec = now.tv_usec + millis * 1000;
5556     if (usec >= 1000000) {
5557       abstime->tv_sec += 1;
5558       usec -= 1000000;
5559     }
5560     abstime->tv_nsec = usec * 1000;
5561   }
5562   return abstime;
5563 }
5564 
5565 
5566 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5567 // Conceptually TryPark() should be equivalent to park(0).
5568 
5569 int os::PlatformEvent::TryPark() {
5570   for (;;) {
5571     const int v = _Event ;
5572     guarantee ((v == 0) || (v == 1), "invariant") ;
5573     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5574   }
5575 }
5576 
5577 void os::PlatformEvent::park() {       // AKA "down()"
5578   // Invariant: Only the thread associated with the Event/PlatformEvent
5579   // may call park().
5580   // TODO: assert that _Assoc != NULL or _Assoc == Self
5581   int v ;
5582   for (;;) {
5583       v = _Event ;
5584       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5585   }
5586   guarantee (v >= 0, "invariant") ;
5587   if (v == 0) {
5588      // Do this the hard way by blocking ...
5589      int status = pthread_mutex_lock(_mutex);
5590      assert_status(status == 0, status, "mutex_lock");
5591      guarantee (_nParked == 0, "invariant") ;
5592      ++ _nParked ;
5593      while (_Event < 0) {
5594         status = pthread_cond_wait(_cond, _mutex);
5595         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5596         // Treat this the same as if the wait was interrupted
5597         if (status == ETIME) { status = EINTR; }
5598         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5599      }
5600      -- _nParked ;
5601 
5602     _Event = 0 ;
5603      status = pthread_mutex_unlock(_mutex);
5604      assert_status(status == 0, status, "mutex_unlock");
5605     // Paranoia to ensure our locked and lock-free paths interact
5606     // correctly with each other.
5607     OrderAccess::fence();
5608   }
5609   guarantee (_Event >= 0, "invariant") ;
5610 }
5611 
5612 int os::PlatformEvent::park(jlong millis) {
5613   guarantee (_nParked == 0, "invariant") ;
5614 
5615   int v ;
5616   for (;;) {
5617       v = _Event ;
5618       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5619   }
5620   guarantee (v >= 0, "invariant") ;
5621   if (v != 0) return OS_OK ;
5622 
5623   // We do this the hard way, by blocking the thread.
5624   // Consider enforcing a minimum timeout value.
5625   struct timespec abst;
5626   compute_abstime(&abst, millis);
5627 
5628   int ret = OS_TIMEOUT;
5629   int status = pthread_mutex_lock(_mutex);
5630   assert_status(status == 0, status, "mutex_lock");
5631   guarantee (_nParked == 0, "invariant") ;
5632   ++_nParked ;
5633 
5634   // Object.wait(timo) will return because of
5635   // (a) notification
5636   // (b) timeout
5637   // (c) thread.interrupt
5638   //
5639   // Thread.interrupt and object.notify{All} both call Event::set.
5640   // That is, we treat thread.interrupt as a special case of notification.
5641   // The underlying Solaris implementation, cond_timedwait, admits
5642   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5643   // JVM from making those visible to Java code.  As such, we must
5644   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5645   //
5646   // TODO: properly differentiate simultaneous notify+interrupt.
5647   // In that case, we should propagate the notify to another waiter.
5648 
5649   while (_Event < 0) {
5650     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5651     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5652       pthread_cond_destroy (_cond);
5653       pthread_cond_init (_cond, os::Linux::condAttr()) ;
5654     }
5655     assert_status(status == 0 || status == EINTR ||
5656                   status == ETIME || status == ETIMEDOUT,
5657                   status, "cond_timedwait");
5658     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5659     if (status == ETIME || status == ETIMEDOUT) break ;
5660     // We consume and ignore EINTR and spurious wakeups.
5661   }
5662   --_nParked ;
5663   if (_Event >= 0) {
5664      ret = OS_OK;
5665   }
5666   _Event = 0 ;
5667   status = pthread_mutex_unlock(_mutex);
5668   assert_status(status == 0, status, "mutex_unlock");
5669   assert (_nParked == 0, "invariant") ;
5670   // Paranoia to ensure our locked and lock-free paths interact
5671   // correctly with each other.
5672   OrderAccess::fence();
5673   return ret;
5674 }
5675 
5676 void os::PlatformEvent::unpark() {
5677   // Transitions for _Event:
5678   //    0 :=> 1
5679   //    1 :=> 1
5680   //   -1 :=> either 0 or 1; must signal target thread
5681   //          That is, we can safely transition _Event from -1 to either
5682   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5683   //          unpark() calls.
5684   // See also: "Semaphores in Plan 9" by Mullender & Cox
5685   //
5686   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5687   // that it will take two back-to-back park() calls for the owning
5688   // thread to block. This has the benefit of forcing a spurious return
5689   // from the first park() call after an unpark() call which will help
5690   // shake out uses of park() and unpark() without condition variables.
5691 
5692   if (Atomic::xchg(1, &_Event) >= 0) return;
5693 
5694   // Wait for the thread associated with the event to vacate
5695   int status = pthread_mutex_lock(_mutex);
5696   assert_status(status == 0, status, "mutex_lock");
5697   int AnyWaiters = _nParked;
5698   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5699   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5700     AnyWaiters = 0;
5701     pthread_cond_signal(_cond);
5702   }
5703   status = pthread_mutex_unlock(_mutex);
5704   assert_status(status == 0, status, "mutex_unlock");
5705   if (AnyWaiters != 0) {
5706     status = pthread_cond_signal(_cond);
5707     assert_status(status == 0, status, "cond_signal");
5708   }
5709 
5710   // Note that we signal() _after dropping the lock for "immortal" Events.
5711   // This is safe and avoids a common class of  futile wakeups.  In rare
5712   // circumstances this can cause a thread to return prematurely from
5713   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5714   // simply re-test the condition and re-park itself.
5715 }
5716 
5717 
5718 // JSR166
5719 // -------------------------------------------------------
5720 
5721 /*
5722  * The solaris and linux implementations of park/unpark are fairly
5723  * conservative for now, but can be improved. They currently use a
5724  * mutex/condvar pair, plus a a count.
5725  * Park decrements count if > 0, else does a condvar wait.  Unpark
5726  * sets count to 1 and signals condvar.  Only one thread ever waits
5727  * on the condvar. Contention seen when trying to park implies that someone
5728  * is unparking you, so don't wait. And spurious returns are fine, so there
5729  * is no need to track notifications.
5730  */
5731 
5732 /*
5733  * This code is common to linux and solaris and will be moved to a
5734  * common place in dolphin.
5735  *
5736  * The passed in time value is either a relative time in nanoseconds
5737  * or an absolute time in milliseconds. Either way it has to be unpacked
5738  * into suitable seconds and nanoseconds components and stored in the
5739  * given timespec structure.
5740  * Given time is a 64-bit value and the time_t used in the timespec is only
5741  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5742  * overflow if times way in the future are given. Further on Solaris versions
5743  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5744  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5745  * As it will be 28 years before "now + 100000000" will overflow we can
5746  * ignore overflow and just impose a hard-limit on seconds using the value
5747  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5748  * years from "now".
5749  */
5750 
5751 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5752   assert (time > 0, "convertTime");
5753   time_t max_secs = 0;
5754 
5755   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
5756     struct timeval now;
5757     int status = gettimeofday(&now, NULL);
5758     assert(status == 0, "gettimeofday");
5759 
5760     max_secs = now.tv_sec + MAX_SECS;
5761 
5762     if (isAbsolute) {
5763       jlong secs = time / 1000;
5764       if (secs > max_secs) {
5765         absTime->tv_sec = max_secs;
5766       } else {
5767         absTime->tv_sec = secs;
5768       }
5769       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5770     } else {
5771       jlong secs = time / NANOSECS_PER_SEC;
5772       if (secs >= MAX_SECS) {
5773         absTime->tv_sec = max_secs;
5774         absTime->tv_nsec = 0;
5775       } else {
5776         absTime->tv_sec = now.tv_sec + secs;
5777         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5778         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5779           absTime->tv_nsec -= NANOSECS_PER_SEC;
5780           ++absTime->tv_sec; // note: this must be <= max_secs
5781         }
5782       }
5783     }
5784   } else {
5785     // must be relative using monotonic clock
5786     struct timespec now;
5787     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5788     assert_status(status == 0, status, "clock_gettime");
5789     max_secs = now.tv_sec + MAX_SECS;
5790     jlong secs = time / NANOSECS_PER_SEC;
5791     if (secs >= MAX_SECS) {
5792       absTime->tv_sec = max_secs;
5793       absTime->tv_nsec = 0;
5794     } else {
5795       absTime->tv_sec = now.tv_sec + secs;
5796       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5797       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5798         absTime->tv_nsec -= NANOSECS_PER_SEC;
5799         ++absTime->tv_sec; // note: this must be <= max_secs
5800       }
5801     }
5802   }
5803   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5804   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5805   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5806   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5807 }
5808 
5809 void Parker::park(bool isAbsolute, jlong time) {
5810   // Ideally we'd do something useful while spinning, such
5811   // as calling unpackTime().
5812 
5813   Thread* thread = Thread::current();
5814   assert(thread == AssociatedWith, "must be associated thread");
5815   assert(thread->is_Java_thread(), "must be Java thread");
5816   JavaThread *jt = (JavaThread *)thread;
5817 
5818   if (EnableEventTracing && EnableEventTracingParkEvents && thread->park_priority() >= 0) {
5819     TraceEvents::write_thread_park_begin(jt, isAbsolute, time);
5820   }
5821 
5822   // before ThreadBlockInVM below so the event is never written in a safepoint (destruction order)
5823   TraceEventThreadParkEnd event(thread);
5824 
5825   // Optional fast-path check:
5826   // Return immediately if a permit is available.
5827   // We depend on Atomic::xchg() having full barrier semantics
5828   // since we are doing a lock-free update to _counter.
5829   {
5830     intptr_t unpark_seq = Atomic::xchg_ptr(0, &_counter);
5831     if (unpark_seq > 0) {
5832       event.fill(unpark_seq, TraceTypes::park_immediate_fast);
5833       return;
5834     }
5835   }
5836 
5837   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5838   // Check interrupt before trying to wait
5839   if (Thread::is_interrupted(thread, false)) {
5840     event.fill(-1, TraceTypes::park_interrupted_fast);
5841     return;
5842   }
5843 
5844   // Next, demultiplex/decode time arguments
5845   timespec absTime;
5846   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5847     event.fill(-1, TraceTypes::park_no_wait_time);
5848     return;
5849   }
5850   if (time > 0) {
5851     unpackTime(&absTime, isAbsolute, time);
5852   }
5853 
5854 
5855   // Enter safepoint region
5856   // Beware of deadlocks such as 6317397.
5857   // The per-thread Parker:: mutex is a classic leaf-lock.
5858   // In particular a thread must never block on the Threads_lock while
5859   // holding the Parker:: mutex.  If safepoints are pending both the
5860   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5861   ThreadBlockInVM tbivm(jt);
5862 
5863   // Don't wait if cannot get lock since interference arises from
5864   // unblocking.  Also. check interrupt before trying wait
5865   if (Thread::is_interrupted(thread, false)) {
5866     event.fill(-1, TraceTypes::park_interrupted_slow);
5867     return;
5868   }
5869   if (pthread_mutex_trylock(_mutex) != 0) {
5870     event.fill(-1, TraceTypes::park_locked);
5871     return;
5872   }
5873 
5874   int status ;
5875   if (_counter > 0)  { // no wait needed
5876     event.fill(_counter, TraceTypes::park_immediate_slow);
5877     _counter = 0;
5878     status = pthread_mutex_unlock(_mutex);
5879     assert (status == 0, "invariant") ;
5880     // Paranoia to ensure our locked and lock-free paths interact
5881     // correctly with each other and Java-level accesses.
5882     OrderAccess::fence();
5883     return;
5884   }
5885 
5886 #ifdef ASSERT
5887   // Don't catch signals while blocked; let the running threads have the signals.
5888   // (This allows a debugger to break into the running thread.)
5889   sigset_t oldsigs;
5890   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5891   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5892 #endif
5893 
5894   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5895   jt->set_suspend_equivalent();
5896   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5897 
5898   assert(_cur_index == -1, "invariant");
5899   if (time == 0) {
5900     _cur_index = REL_INDEX; // arbitrary choice when not timed
5901     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
5902   } else {
5903     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5904     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
5905     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5906       pthread_cond_destroy (&_cond[_cur_index]) ;
5907       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5908     }
5909   }
5910   _cur_index = -1;
5911   assert_status(status == 0 || status == EINTR ||
5912                 status == ETIME || status == ETIMEDOUT,
5913                 status, "cond_timedwait");
5914 
5915 #ifdef ASSERT
5916   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5917 #endif
5918 
5919   TraceTypes::park_return_code return_code;
5920   switch (status) {
5921     case 0:
5922       return_code = TraceTypes::park_normal;
5923       break;
5924     case ETIMEDOUT:
5925       return_code = TraceTypes::park_timedout;
5926       break;
5927     default:
5928       assert(false, "unexpected pthread_cond_(timed)wait return code");
5929       return_code = TraceTypes::park_unknown;
5930   }
5931   event.fill(_counter, return_code);
5932 
5933   _counter = 0 ;
5934   status = pthread_mutex_unlock(_mutex) ;
5935   assert_status(status == 0, status, "invariant") ;
5936   // Paranoia to ensure our locked and lock-free paths interact
5937   // correctly with each other and Java-level accesses.
5938   OrderAccess::fence();
5939 
5940   // If externally suspended while waiting, re-suspend
5941   if (jt->handle_special_suspend_equivalent_condition()) {
5942     jt->java_suspend_self();
5943   }
5944 }
5945 
5946 void Parker::unpark(JavaThread *thread) {
5947   int status;
5948   status = pthread_mutex_lock(_mutex);
5949   assert (status == 0, "invariant") ;
5950   if (thread != AssociatedWith) {
5951     status = pthread_mutex_unlock(_mutex);
5952     assert (status == 0, "invariant") ;
5953     return;
5954   }
5955   TraceEventThreadUnpark e(thread);
5956   intptr_t s = e.seq();
5957   assert(s > 0, "seq must be greater zero");
5958   s = Atomic::xchg_ptr(s, &_counter);
5959   e.set_chained_seq(s);
5960   if (s < 1) {
5961     // thread might be parked
5962     if (_cur_index != -1) {
5963       // thread is definitely parked
5964       if (WorkAroundNPTLTimedWaitHang) {
5965         status = pthread_cond_signal (&_cond[_cur_index]);
5966         assert (status == 0, "invariant");
5967         status = pthread_mutex_unlock(_mutex);
5968         assert (status == 0, "invariant");
5969       } else {
5970         // must capture correct index before unlocking
5971         int index = _cur_index;
5972         status = pthread_mutex_unlock(_mutex);
5973         assert (status == 0, "invariant");
5974         status = pthread_cond_signal (&_cond[index]);
5975         assert (status == 0, "invariant");
5976       }
5977     } else {
5978       status = pthread_mutex_unlock(_mutex);
5979       assert (status == 0, "invariant") ;
5980     }
5981   } else {
5982     status = pthread_mutex_unlock(_mutex);
5983     assert (status == 0, "invariant") ;
5984   }
5985 }
5986 
5987 
5988 extern char** environ;
5989 
5990 // Run the specified command in a separate process. Return its exit value,
5991 // or -1 on failure (e.g. can't fork a new process).
5992 // Unlike system(), this function can be called from signal handler. It
5993 // doesn't block SIGINT et al.
5994 int os::fork_and_exec(char* cmd) {
5995   const char * argv[4] = {"sh", "-c", cmd, NULL};
5996 
5997   pid_t pid = fork();
5998 
5999   if (pid < 0) {
6000     // fork failed
6001     return -1;
6002 
6003   } else if (pid == 0) {
6004     // child process
6005 
6006     execve("/bin/sh", (char* const*)argv, environ);
6007 
6008     // execve failed
6009     _exit(-1);
6010 
6011   } else  {
6012     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6013     // care about the actual exit code, for now.
6014 
6015     int status;
6016 
6017     // Wait for the child process to exit.  This returns immediately if
6018     // the child has already exited. */
6019     while (waitpid(pid, &status, 0) < 0) {
6020         switch (errno) {
6021         case ECHILD: return 0;
6022         case EINTR: break;
6023         default: return -1;
6024         }
6025     }
6026 
6027     if (WIFEXITED(status)) {
6028        // The child exited normally; get its exit code.
6029        return WEXITSTATUS(status);
6030     } else if (WIFSIGNALED(status)) {
6031        // The child exited because of a signal
6032        // The best value to return is 0x80 + signal number,
6033        // because that is what all Unix shells do, and because
6034        // it allows callers to distinguish between process exit and
6035        // process death by signal.
6036        return 0x80 + WTERMSIG(status);
6037     } else {
6038        // Unknown exit code; pass it through
6039        return status;
6040     }
6041   }
6042 }
6043 
6044 // is_headless_jre()
6045 //
6046 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
6047 // in order to report if we are running in a headless jre
6048 //
6049 // Since JDK8 xawt/libmawt.so was moved into the same directory
6050 // as libawt.so, and renamed libawt_xawt.so
6051 //
6052 bool os::is_headless_jre() {
6053     struct stat statbuf;
6054     char buf[MAXPATHLEN];
6055     char libmawtpath[MAXPATHLEN];
6056     const char *xawtstr  = "/xawt/libmawt.so";
6057     const char *new_xawtstr = "/libawt_xawt.so";
6058     char *p;
6059 
6060     // Get path to libjvm.so
6061     os::jvm_path(buf, sizeof(buf));
6062 
6063     // Get rid of libjvm.so
6064     p = strrchr(buf, '/');
6065     if (p == NULL) return false;
6066     else *p = '\0';
6067 
6068     // Get rid of client or server
6069     p = strrchr(buf, '/');
6070     if (p == NULL) return false;
6071     else *p = '\0';
6072 
6073     // check xawt/libmawt.so
6074     strcpy(libmawtpath, buf);
6075     strcat(libmawtpath, xawtstr);
6076     if (::stat(libmawtpath, &statbuf) == 0) return false;
6077 
6078     // check libawt_xawt.so
6079     strcpy(libmawtpath, buf);
6080     strcat(libmawtpath, new_xawtstr);
6081     if (::stat(libmawtpath, &statbuf) == 0) return false;
6082 
6083     return true;
6084 }
6085 
6086 // Get the default path to the core file
6087 // Returns the length of the string
6088 int os::get_core_path(char* buffer, size_t bufferSize) {
6089   const char* p = get_current_directory(buffer, bufferSize);
6090 
6091   if (p == NULL) {
6092     assert(p != NULL, "failed to get current directory");
6093     return 0;
6094   }
6095 
6096   return strlen(buffer);
6097 }
6098 
6099 /////////////// Unit tests ///////////////
6100 
6101 #ifndef PRODUCT
6102 
6103 #define test_log(...) \
6104   do {\
6105     if (VerboseInternalVMTests) { \
6106       tty->print_cr(__VA_ARGS__); \
6107       tty->flush(); \
6108     }\
6109   } while (false)
6110 
6111 class TestReserveMemorySpecial : AllStatic {
6112  public:
6113   static void small_page_write(void* addr, size_t size) {
6114     size_t page_size = os::vm_page_size();
6115 
6116     char* end = (char*)addr + size;
6117     for (char* p = (char*)addr; p < end; p += page_size) {
6118       *p = 1;
6119     }
6120   }
6121 
6122   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6123     if (!UseHugeTLBFS) {
6124       return;
6125     }
6126 
6127     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6128 
6129     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6130 
6131     if (addr != NULL) {
6132       small_page_write(addr, size);
6133 
6134       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6135     }
6136   }
6137 
6138   static void test_reserve_memory_special_huge_tlbfs_only() {
6139     if (!UseHugeTLBFS) {
6140       return;
6141     }
6142 
6143     size_t lp = os::large_page_size();
6144 
6145     for (size_t size = lp; size <= lp * 10; size += lp) {
6146       test_reserve_memory_special_huge_tlbfs_only(size);
6147     }
6148   }
6149 
6150   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6151     if (!UseHugeTLBFS) {
6152         return;
6153     }
6154 
6155     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6156         size, alignment);
6157 
6158     assert(size >= os::large_page_size(), "Incorrect input to test");
6159 
6160     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6161 
6162     if (addr != NULL) {
6163       small_page_write(addr, size);
6164 
6165       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6166     }
6167   }
6168 
6169   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6170     size_t lp = os::large_page_size();
6171     size_t ag = os::vm_allocation_granularity();
6172 
6173     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6174       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6175     }
6176   }
6177 
6178   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6179     size_t lp = os::large_page_size();
6180     size_t ag = os::vm_allocation_granularity();
6181 
6182     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6183     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6184     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6185     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6186     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6187     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6188     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6189     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6190     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6191   }
6192 
6193   static void test_reserve_memory_special_huge_tlbfs() {
6194     if (!UseHugeTLBFS) {
6195       return;
6196     }
6197 
6198     test_reserve_memory_special_huge_tlbfs_only();
6199     test_reserve_memory_special_huge_tlbfs_mixed();
6200   }
6201 
6202   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6203     if (!UseSHM) {
6204       return;
6205     }
6206 
6207     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6208 
6209     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6210 
6211     if (addr != NULL) {
6212       assert(is_ptr_aligned(addr, alignment), "Check");
6213       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6214 
6215       small_page_write(addr, size);
6216 
6217       os::Linux::release_memory_special_shm(addr, size);
6218     }
6219   }
6220 
6221   static void test_reserve_memory_special_shm() {
6222     size_t lp = os::large_page_size();
6223     size_t ag = os::vm_allocation_granularity();
6224 
6225     for (size_t size = ag; size < lp * 3; size += ag) {
6226       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6227         test_reserve_memory_special_shm(size, alignment);
6228       }
6229     }
6230   }
6231 
6232   static void test() {
6233     test_reserve_memory_special_huge_tlbfs();
6234     test_reserve_memory_special_shm();
6235   }
6236 };
6237 
6238 void TestReserveMemorySpecial_test() {
6239   TestReserveMemorySpecial::test();
6240 }
6241 
6242 #endif