1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc_implementation/g1/heapRegion.hpp"
  39 #include "gc_interface/collectedHeap.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "memory/barrierSet.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/callnode.hpp"
  50 #include "opto/cfgnode.hpp"
  51 #include "opto/connode.hpp"
  52 #include "opto/graphKit.hpp"
  53 #include "opto/machnode.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/runtime.hpp"
  58 #include "opto/subnode.hpp"
  59 #include "runtime/fprofiler.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/interfaceSupport.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vframe_hp.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/preserveException.hpp"
  71 #if defined AD_MD_HPP
  72 # include AD_MD_HPP
  73 #elif defined TARGET_ARCH_MODEL_x86_32
  74 # include "adfiles/ad_x86_32.hpp"
  75 #elif defined TARGET_ARCH_MODEL_x86_64
  76 # include "adfiles/ad_x86_64.hpp"
  77 #elif defined TARGET_ARCH_MODEL_sparc
  78 # include "adfiles/ad_sparc.hpp"
  79 #elif defined TARGET_ARCH_MODEL_zero
  80 # include "adfiles/ad_zero.hpp"
  81 #elif defined TARGET_ARCH_MODEL_ppc_64
  82 # include "adfiles/ad_ppc_64.hpp"
  83 #endif
  84 
  85 
  86 // For debugging purposes:
  87 //  To force FullGCALot inside a runtime function, add the following two lines
  88 //
  89 //  Universe::release_fullgc_alot_dummy();
  90 //  MarkSweep::invoke(0, "Debugging");
  91 //
  92 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  93 
  94 
  95 
  96 
  97 // Compiled code entry points
  98 address OptoRuntime::_new_instance_Java                           = NULL;
  99 address OptoRuntime::_new_array_Java                              = NULL;
 100 address OptoRuntime::_new_array_nozero_Java                       = NULL;
 101 address OptoRuntime::_multianewarray2_Java                        = NULL;
 102 address OptoRuntime::_multianewarray3_Java                        = NULL;
 103 address OptoRuntime::_multianewarray4_Java                        = NULL;
 104 address OptoRuntime::_multianewarray5_Java                        = NULL;
 105 address OptoRuntime::_multianewarrayN_Java                        = NULL;
 106 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
 107 address OptoRuntime::_g1_wb_post_Java                             = NULL;
 108 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 109 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 110 address OptoRuntime::_rethrow_Java                                = NULL;
 111 
 112 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 113 address OptoRuntime::_register_finalizer_Java                     = NULL;
 114 
 115 # ifdef ENABLE_ZAP_DEAD_LOCALS
 116 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 117 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 118 # endif
 119 
 120 ExceptionBlob* OptoRuntime::_exception_blob;
 121 
 122 RuntimeStub* OptoRuntime::_complete_monitor_unlocking_wrapper;
 123 
 124 // This should be called in an assertion at the start of OptoRuntime routines
 125 // which are entered from compiled code (all of them)
 126 #ifdef ASSERT
 127 static bool check_compiled_frame(JavaThread* thread) {
 128   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 129   RegisterMap map(thread, false);
 130   frame caller = thread->last_frame().sender(&map);
 131   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 132   return true;
 133 }
 134 #endif // ASSERT
 135 
 136 
 137 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 138   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 139   if (var == NULL) { return false; }
 140 
 141 bool OptoRuntime::generate(ciEnv* env) {
 142 
 143   generate_exception_blob();
 144 
 145   generate_complete_monitor_unlocking_wrapper();
 146 
 147   // Note: tls: Means fetching the return oop out of the thread-local storage
 148   //
 149   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 150   // -------------------------------------------------------------------------------------------------------------------------------
 151   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 152   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 153   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 154   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 155   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 156   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 157   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 158   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 159   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 160   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 161   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 162   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 163 
 164   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 165   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 166 
 167 # ifdef ENABLE_ZAP_DEAD_LOCALS
 168   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 169   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 170 # endif
 171   return true;
 172 }
 173 
 174 #undef gen
 175 
 176 
 177 // Helper method to do generation of RunTimeStub's
 178 address OptoRuntime::generate_stub( ciEnv* env,
 179                                     TypeFunc_generator gen, address C_function,
 180                                     const char *name, int is_fancy_jump,
 181                                     bool pass_tls,
 182                                     bool save_argument_registers,
 183                                     bool return_pc ) {
 184   ResourceMark rm;
 185   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 186   return  C.stub_entry_point();
 187 }
 188 
 189 const char* OptoRuntime::stub_name(address entry) {
 190 #ifndef PRODUCT
 191   CodeBlob* cb = CodeCache::find_blob(entry);
 192   RuntimeStub* rs =(RuntimeStub *)cb;
 193   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 194   return rs->name();
 195 #else
 196   // Fast implementation for product mode (maybe it should be inlined too)
 197   return "runtime stub";
 198 #endif
 199 }
 200 
 201 
 202 //=============================================================================
 203 // Opto compiler runtime routines
 204 //=============================================================================
 205 
 206 
 207 //=============================allocation======================================
 208 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 209 // and try allocation again.
 210 
 211 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 212   // After any safepoint, just before going back to compiled code,
 213   // we inform the GC that we will be doing initializing writes to
 214   // this object in the future without emitting card-marks, so
 215   // GC may take any compensating steps.
 216   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 217 
 218   oop new_obj = thread->vm_result();
 219   if (new_obj == NULL)  return;
 220 
 221   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 222          "compiler must check this first");
 223   // GC may decide to give back a safer copy of new_obj.
 224   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 225   thread->set_vm_result(new_obj);
 226 }
 227 
 228 // object allocation
 229 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 230   JRT_BLOCK;
 231 #ifndef PRODUCT
 232   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 233 #endif
 234   assert(check_compiled_frame(thread), "incorrect caller");
 235 
 236   // These checks are cheap to make and support reflective allocation.
 237   int lh = klass->layout_helper();
 238   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 239     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 240     klass->check_valid_for_instantiation(false, THREAD);
 241     if (!HAS_PENDING_EXCEPTION) {
 242       InstanceKlass::cast(klass)->initialize(THREAD);
 243     }
 244   }
 245 
 246   if (!HAS_PENDING_EXCEPTION) {
 247     // Scavenge and allocate an instance.
 248     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 249     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 250     thread->set_vm_result(result);
 251 
 252     // Pass oops back through thread local storage.  Our apparent type to Java
 253     // is that we return an oop, but we can block on exit from this routine and
 254     // a GC can trash the oop in C's return register.  The generated stub will
 255     // fetch the oop from TLS after any possible GC.
 256   }
 257 
 258   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 259   JRT_BLOCK_END;
 260 
 261   if (GraphKit::use_ReduceInitialCardMarks()) {
 262     // inform GC that we won't do card marks for initializing writes.
 263     new_store_pre_barrier(thread);
 264   }
 265 JRT_END
 266 
 267 
 268 // array allocation
 269 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 270   JRT_BLOCK;
 271 #ifndef PRODUCT
 272   SharedRuntime::_new_array_ctr++;            // new array requires GC
 273 #endif
 274   assert(check_compiled_frame(thread), "incorrect caller");
 275 
 276   // Scavenge and allocate an instance.
 277   oop result;
 278 
 279   if (array_type->oop_is_typeArray()) {
 280     // The oopFactory likes to work with the element type.
 281     // (We could bypass the oopFactory, since it doesn't add much value.)
 282     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 283     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 284   } else {
 285     // Although the oopFactory likes to work with the elem_type,
 286     // the compiler prefers the array_type, since it must already have
 287     // that latter value in hand for the fast path.
 288     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
 289     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 290     result = oopFactory::new_objArray(elem_type, len, THREAD);
 291   }
 292 
 293   // Pass oops back through thread local storage.  Our apparent type to Java
 294   // is that we return an oop, but we can block on exit from this routine and
 295   // a GC can trash the oop in C's return register.  The generated stub will
 296   // fetch the oop from TLS after any possible GC.
 297   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 298   thread->set_vm_result(result);
 299   JRT_BLOCK_END;
 300 
 301   if (GraphKit::use_ReduceInitialCardMarks()) {
 302     // inform GC that we won't do card marks for initializing writes.
 303     new_store_pre_barrier(thread);
 304   }
 305 JRT_END
 306 
 307 // array allocation without zeroing
 308 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 309   JRT_BLOCK;
 310 #ifndef PRODUCT
 311   SharedRuntime::_new_array_ctr++;            // new array requires GC
 312 #endif
 313   assert(check_compiled_frame(thread), "incorrect caller");
 314 
 315   // Scavenge and allocate an instance.
 316   oop result;
 317 
 318   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 319   // The oopFactory likes to work with the element type.
 320   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 321   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 322 
 323   // Pass oops back through thread local storage.  Our apparent type to Java
 324   // is that we return an oop, but we can block on exit from this routine and
 325   // a GC can trash the oop in C's return register.  The generated stub will
 326   // fetch the oop from TLS after any possible GC.
 327   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 328   thread->set_vm_result(result);
 329   JRT_BLOCK_END;
 330 
 331   if (GraphKit::use_ReduceInitialCardMarks()) {
 332     // inform GC that we won't do card marks for initializing writes.
 333     new_store_pre_barrier(thread);
 334   }
 335 
 336   oop result = thread->vm_result();
 337   if ((len > 0) && (result != NULL) &&
 338       is_deoptimized_caller_frame(thread)) {
 339     // Zero array here if the caller is deoptimized.
 340     int size = ((typeArrayOop)result)->object_size();
 341     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 342     const size_t hs = arrayOopDesc::header_size(elem_type);
 343     // Align to next 8 bytes to avoid trashing arrays's length.
 344     const size_t aligned_hs = align_object_offset(hs);
 345     HeapWord* obj = (HeapWord*)result;
 346     if (aligned_hs > hs) {
 347       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 348     }
 349     // Optimized zeroing.
 350     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 351   }
 352 
 353 JRT_END
 354 
 355 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 356 
 357 // multianewarray for 2 dimensions
 358 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 359 #ifndef PRODUCT
 360   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 361 #endif
 362   assert(check_compiled_frame(thread), "incorrect caller");
 363   assert(elem_type->is_klass(), "not a class");
 364   jint dims[2];
 365   dims[0] = len1;
 366   dims[1] = len2;
 367   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 368   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 369   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 370   thread->set_vm_result(obj);
 371 JRT_END
 372 
 373 // multianewarray for 3 dimensions
 374 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 375 #ifndef PRODUCT
 376   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 377 #endif
 378   assert(check_compiled_frame(thread), "incorrect caller");
 379   assert(elem_type->is_klass(), "not a class");
 380   jint dims[3];
 381   dims[0] = len1;
 382   dims[1] = len2;
 383   dims[2] = len3;
 384   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 385   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 386   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 387   thread->set_vm_result(obj);
 388 JRT_END
 389 
 390 // multianewarray for 4 dimensions
 391 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 392 #ifndef PRODUCT
 393   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 394 #endif
 395   assert(check_compiled_frame(thread), "incorrect caller");
 396   assert(elem_type->is_klass(), "not a class");
 397   jint dims[4];
 398   dims[0] = len1;
 399   dims[1] = len2;
 400   dims[2] = len3;
 401   dims[3] = len4;
 402   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 403   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 404   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 405   thread->set_vm_result(obj);
 406 JRT_END
 407 
 408 // multianewarray for 5 dimensions
 409 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 410 #ifndef PRODUCT
 411   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 412 #endif
 413   assert(check_compiled_frame(thread), "incorrect caller");
 414   assert(elem_type->is_klass(), "not a class");
 415   jint dims[5];
 416   dims[0] = len1;
 417   dims[1] = len2;
 418   dims[2] = len3;
 419   dims[3] = len4;
 420   dims[4] = len5;
 421   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 422   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 423   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 424   thread->set_vm_result(obj);
 425 JRT_END
 426 
 427 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 428   assert(check_compiled_frame(thread), "incorrect caller");
 429   assert(elem_type->is_klass(), "not a class");
 430   assert(oop(dims)->is_typeArray(), "not an array");
 431 
 432   ResourceMark rm;
 433   jint len = dims->length();
 434   assert(len > 0, "Dimensions array should contain data");
 435   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 436   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 437   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 438 
 439   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 440   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 441   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 442   thread->set_vm_result(obj);
 443 JRT_END
 444 
 445 
 446 const TypeFunc *OptoRuntime::new_instance_Type() {
 447   // create input type (domain)
 448   const Type **fields = TypeTuple::fields(1);
 449   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 450   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 451 
 452   // create result type (range)
 453   fields = TypeTuple::fields(1);
 454   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 455 
 456   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 457 
 458   return TypeFunc::make(domain, range);
 459 }
 460 
 461 
 462 const TypeFunc *OptoRuntime::athrow_Type() {
 463   // create input type (domain)
 464   const Type **fields = TypeTuple::fields(1);
 465   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 466   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 467 
 468   // create result type (range)
 469   fields = TypeTuple::fields(0);
 470 
 471   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 472 
 473   return TypeFunc::make(domain, range);
 474 }
 475 
 476 
 477 const TypeFunc *OptoRuntime::new_array_Type() {
 478   // create input type (domain)
 479   const Type **fields = TypeTuple::fields(2);
 480   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 481   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 482   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 483 
 484   // create result type (range)
 485   fields = TypeTuple::fields(1);
 486   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 487 
 488   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 489 
 490   return TypeFunc::make(domain, range);
 491 }
 492 
 493 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 494   // create input type (domain)
 495   const int nargs = ndim + 1;
 496   const Type **fields = TypeTuple::fields(nargs);
 497   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 498   for( int i = 1; i < nargs; i++ )
 499     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 500   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 501 
 502   // create result type (range)
 503   fields = TypeTuple::fields(1);
 504   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 505   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 506 
 507   return TypeFunc::make(domain, range);
 508 }
 509 
 510 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 511   return multianewarray_Type(2);
 512 }
 513 
 514 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 515   return multianewarray_Type(3);
 516 }
 517 
 518 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 519   return multianewarray_Type(4);
 520 }
 521 
 522 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 523   return multianewarray_Type(5);
 524 }
 525 
 526 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 527   // create input type (domain)
 528   const Type **fields = TypeTuple::fields(2);
 529   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 530   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 531   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 532 
 533   // create result type (range)
 534   fields = TypeTuple::fields(1);
 535   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 536   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 537 
 538   return TypeFunc::make(domain, range);
 539 }
 540 
 541 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 542   const Type **fields = TypeTuple::fields(2);
 543   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 544   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 545   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 546 
 547   // create result type (range)
 548   fields = TypeTuple::fields(0);
 549   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 550 
 551   return TypeFunc::make(domain, range);
 552 }
 553 
 554 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 555 
 556   const Type **fields = TypeTuple::fields(2);
 557   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 558   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 559   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 560 
 561   // create result type (range)
 562   fields = TypeTuple::fields(0);
 563   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 564 
 565   return TypeFunc::make(domain, range);
 566 }
 567 
 568 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 569   // create input type (domain)
 570   const Type **fields = TypeTuple::fields(1);
 571   // Symbol* name of class to be loaded
 572   fields[TypeFunc::Parms+0] = TypeInt::INT;
 573   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 574 
 575   // create result type (range)
 576   fields = TypeTuple::fields(0);
 577   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 578 
 579   return TypeFunc::make(domain, range);
 580 }
 581 
 582 # ifdef ENABLE_ZAP_DEAD_LOCALS
 583 // Type used for stub generation for zap_dead_locals.
 584 // No inputs or outputs
 585 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 586   // create input type (domain)
 587   const Type **fields = TypeTuple::fields(0);
 588   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 589 
 590   // create result type (range)
 591   fields = TypeTuple::fields(0);
 592   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 593 
 594   return TypeFunc::make(domain,range);
 595 }
 596 # endif
 597 
 598 
 599 //-----------------------------------------------------------------------------
 600 // Monitor Handling
 601 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 602   // create input type (domain)
 603   const Type **fields = TypeTuple::fields(2);
 604   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 605   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 606   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 607 
 608   // create result type (range)
 609   fields = TypeTuple::fields(0);
 610 
 611   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 612 
 613   return TypeFunc::make(domain,range);
 614 }
 615 
 616 
 617 //-----------------------------------------------------------------------------
 618 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 619   // create input type (domain)
 620   const Type **fields = TypeTuple::fields(2);
 621   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 622   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 623   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 624 
 625   // create result type (range)
 626   fields = TypeTuple::fields(0);
 627 
 628   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 629 
 630   return TypeFunc::make(domain,range);
 631 }
 632 
 633 const TypeFunc* OptoRuntime::flush_windows_Type() {
 634   // create input type (domain)
 635   const Type** fields = TypeTuple::fields(1);
 636   fields[TypeFunc::Parms+0] = NULL; // void
 637   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 638 
 639   // create result type
 640   fields = TypeTuple::fields(1);
 641   fields[TypeFunc::Parms+0] = NULL; // void
 642   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 643 
 644   return TypeFunc::make(domain, range);
 645 }
 646 
 647 const TypeFunc* OptoRuntime::l2f_Type() {
 648   // create input type (domain)
 649   const Type **fields = TypeTuple::fields(2);
 650   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 651   fields[TypeFunc::Parms+1] = Type::HALF;
 652   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 653 
 654   // create result type (range)
 655   fields = TypeTuple::fields(1);
 656   fields[TypeFunc::Parms+0] = Type::FLOAT;
 657   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 658 
 659   return TypeFunc::make(domain, range);
 660 }
 661 
 662 const TypeFunc* OptoRuntime::modf_Type() {
 663   const Type **fields = TypeTuple::fields(2);
 664   fields[TypeFunc::Parms+0] = Type::FLOAT;
 665   fields[TypeFunc::Parms+1] = Type::FLOAT;
 666   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 667 
 668   // create result type (range)
 669   fields = TypeTuple::fields(1);
 670   fields[TypeFunc::Parms+0] = Type::FLOAT;
 671 
 672   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 673 
 674   return TypeFunc::make(domain, range);
 675 }
 676 
 677 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 678   // create input type (domain)
 679   const Type **fields = TypeTuple::fields(2);
 680   // Symbol* name of class to be loaded
 681   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 682   fields[TypeFunc::Parms+1] = Type::HALF;
 683   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 684 
 685   // create result type (range)
 686   fields = TypeTuple::fields(2);
 687   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 688   fields[TypeFunc::Parms+1] = Type::HALF;
 689   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 690 
 691   return TypeFunc::make(domain, range);
 692 }
 693 
 694 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 695   const Type **fields = TypeTuple::fields(4);
 696   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 697   fields[TypeFunc::Parms+1] = Type::HALF;
 698   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 699   fields[TypeFunc::Parms+3] = Type::HALF;
 700   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 701 
 702   // create result type (range)
 703   fields = TypeTuple::fields(2);
 704   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 705   fields[TypeFunc::Parms+1] = Type::HALF;
 706   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 707 
 708   return TypeFunc::make(domain, range);
 709 }
 710 
 711 //-------------- currentTimeMillis, currentTimeNanos, etc
 712 
 713 const TypeFunc* OptoRuntime::void_long_Type() {
 714   // create input type (domain)
 715   const Type **fields = TypeTuple::fields(0);
 716   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 717 
 718   // create result type (range)
 719   fields = TypeTuple::fields(2);
 720   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 721   fields[TypeFunc::Parms+1] = Type::HALF;
 722   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 723 
 724   return TypeFunc::make(domain, range);
 725 }
 726 
 727 // arraycopy stub variations:
 728 enum ArrayCopyType {
 729   ac_fast,                      // void(ptr, ptr, size_t)
 730   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 731   ac_slow,                      // void(ptr, int, ptr, int, int)
 732   ac_generic                    //  int(ptr, int, ptr, int, int)
 733 };
 734 
 735 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 736   // create input type (domain)
 737   int num_args      = (act == ac_fast ? 3 : 5);
 738   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 739   int argcnt = num_args;
 740   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 741   const Type** fields = TypeTuple::fields(argcnt);
 742   int argp = TypeFunc::Parms;
 743   fields[argp++] = TypePtr::NOTNULL;    // src
 744   if (num_size_args == 0) {
 745     fields[argp++] = TypeInt::INT;      // src_pos
 746   }
 747   fields[argp++] = TypePtr::NOTNULL;    // dest
 748   if (num_size_args == 0) {
 749     fields[argp++] = TypeInt::INT;      // dest_pos
 750     fields[argp++] = TypeInt::INT;      // length
 751   }
 752   while (num_size_args-- > 0) {
 753     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 754     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 755   }
 756   if (act == ac_checkcast) {
 757     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 758   }
 759   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 760   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 761 
 762   // create result type if needed
 763   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 764   fields = TypeTuple::fields(1);
 765   if (retcnt == 0)
 766     fields[TypeFunc::Parms+0] = NULL; // void
 767   else
 768     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 769   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 770   return TypeFunc::make(domain, range);
 771 }
 772 
 773 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 774   // This signature is simple:  Two base pointers and a size_t.
 775   return make_arraycopy_Type(ac_fast);
 776 }
 777 
 778 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 779   // An extension of fast_arraycopy_Type which adds type checking.
 780   return make_arraycopy_Type(ac_checkcast);
 781 }
 782 
 783 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 784   // This signature is exactly the same as System.arraycopy.
 785   // There are no intptr_t (int/long) arguments.
 786   return make_arraycopy_Type(ac_slow);
 787 }
 788 
 789 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 790   // This signature is like System.arraycopy, except that it returns status.
 791   return make_arraycopy_Type(ac_generic);
 792 }
 793 
 794 
 795 const TypeFunc* OptoRuntime::array_fill_Type() {
 796   const Type** fields;
 797   int argp = TypeFunc::Parms;
 798   if (CCallingConventionRequiresIntsAsLongs) {
 799   // create input type (domain): pointer, int, size_t
 800     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
 801     fields[argp++] = TypePtr::NOTNULL;
 802     fields[argp++] = TypeLong::LONG;
 803     fields[argp++] = Type::HALF;
 804   } else {
 805     // create input type (domain): pointer, int, size_t
 806     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 807     fields[argp++] = TypePtr::NOTNULL;
 808     fields[argp++] = TypeInt::INT;
 809   }
 810   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 811   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 812   const TypeTuple *domain = TypeTuple::make(argp, fields);
 813 
 814   // create result type
 815   fields = TypeTuple::fields(1);
 816   fields[TypeFunc::Parms+0] = NULL; // void
 817   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 818 
 819   return TypeFunc::make(domain, range);
 820 }
 821 
 822 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 823 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 824   // create input type (domain)
 825   int num_args      = 3;
 826   if (Matcher::pass_original_key_for_aes()) {
 827     num_args = 4;
 828   }
 829   int argcnt = num_args;
 830   const Type** fields = TypeTuple::fields(argcnt);
 831   int argp = TypeFunc::Parms;
 832   fields[argp++] = TypePtr::NOTNULL;    // src
 833   fields[argp++] = TypePtr::NOTNULL;    // dest
 834   fields[argp++] = TypePtr::NOTNULL;    // k array
 835   if (Matcher::pass_original_key_for_aes()) {
 836     fields[argp++] = TypePtr::NOTNULL;    // original k array
 837   }
 838   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 839   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 840 
 841   // no result type needed
 842   fields = TypeTuple::fields(1);
 843   fields[TypeFunc::Parms+0] = NULL; // void
 844   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 845   return TypeFunc::make(domain, range);
 846 }
 847 
 848 /**
 849  * int updateBytesCRC32(int crc, byte* b, int len)
 850  */
 851 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 852   // create input type (domain)
 853   int num_args      = 3;
 854   int argcnt = num_args;
 855   const Type** fields = TypeTuple::fields(argcnt);
 856   int argp = TypeFunc::Parms;
 857   fields[argp++] = TypeInt::INT;        // crc
 858   fields[argp++] = TypePtr::NOTNULL;    // src
 859   fields[argp++] = TypeInt::INT;        // len
 860   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 861   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 862 
 863   // result type needed
 864   fields = TypeTuple::fields(1);
 865   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 866   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 867   return TypeFunc::make(domain, range);
 868 }
 869 
 870 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 871 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 872   // create input type (domain)
 873   int num_args      = 5;
 874   if (Matcher::pass_original_key_for_aes()) {
 875     num_args = 6;
 876   }
 877   int argcnt = num_args;
 878   const Type** fields = TypeTuple::fields(argcnt);
 879   int argp = TypeFunc::Parms;
 880   fields[argp++] = TypePtr::NOTNULL;    // src
 881   fields[argp++] = TypePtr::NOTNULL;    // dest
 882   fields[argp++] = TypePtr::NOTNULL;    // k array
 883   fields[argp++] = TypePtr::NOTNULL;    // r array
 884   fields[argp++] = TypeInt::INT;        // src len
 885   if (Matcher::pass_original_key_for_aes()) {
 886     fields[argp++] = TypePtr::NOTNULL;    // original k array
 887   }
 888   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 889   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 890 
 891   // returning cipher len (int)
 892   fields = TypeTuple::fields(1);
 893   fields[TypeFunc::Parms+0] = TypeInt::INT;
 894   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 895   return TypeFunc::make(domain, range);
 896 }
 897 
 898 /*
 899  * void implCompress(byte[] buf, int ofs)
 900  */
 901 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 902   // create input type (domain)
 903   int num_args = 2;
 904   int argcnt = num_args;
 905   const Type** fields = TypeTuple::fields(argcnt);
 906   int argp = TypeFunc::Parms;
 907   fields[argp++] = TypePtr::NOTNULL; // buf
 908   fields[argp++] = TypePtr::NOTNULL; // state
 909   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 910   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 911 
 912   // no result type needed
 913   fields = TypeTuple::fields(1);
 914   fields[TypeFunc::Parms+0] = NULL; // void
 915   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 916   return TypeFunc::make(domain, range);
 917 }
 918 
 919 /*
 920  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 921  */
 922 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 923   // create input type (domain)
 924   int num_args = 4;
 925   int argcnt = num_args;
 926   const Type** fields = TypeTuple::fields(argcnt);
 927   int argp = TypeFunc::Parms;
 928   fields[argp++] = TypePtr::NOTNULL; // buf
 929   fields[argp++] = TypePtr::NOTNULL; // state
 930   fields[argp++] = TypeInt::INT;     // ofs
 931   fields[argp++] = TypeInt::INT;     // limit
 932   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 933   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 934 
 935   // returning ofs (int)
 936   fields = TypeTuple::fields(1);
 937   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
 938   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 939   return TypeFunc::make(domain, range);
 940 }
 941 
 942 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
 943   // create input type (domain)
 944   int num_args      = 6;
 945   int argcnt = num_args;
 946   const Type** fields = TypeTuple::fields(argcnt);
 947   int argp = TypeFunc::Parms;
 948   fields[argp++] = TypePtr::NOTNULL;    // x
 949   fields[argp++] = TypeInt::INT;        // xlen
 950   fields[argp++] = TypePtr::NOTNULL;    // y
 951   fields[argp++] = TypeInt::INT;        // ylen
 952   fields[argp++] = TypePtr::NOTNULL;    // z
 953   fields[argp++] = TypeInt::INT;        // zlen
 954   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 955   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 956 
 957   // no result type needed
 958   fields = TypeTuple::fields(1);
 959   fields[TypeFunc::Parms+0] = NULL;
 960   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 961   return TypeFunc::make(domain, range);
 962 }
 963 
 964 const TypeFunc* OptoRuntime::squareToLen_Type() {
 965   // create input type (domain)
 966   int num_args      = 4;
 967   int argcnt = num_args;
 968   const Type** fields = TypeTuple::fields(argcnt);
 969   int argp = TypeFunc::Parms;
 970   fields[argp++] = TypePtr::NOTNULL;    // x
 971   fields[argp++] = TypeInt::INT;        // len
 972   fields[argp++] = TypePtr::NOTNULL;    // z
 973   fields[argp++] = TypeInt::INT;        // zlen
 974   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 975   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 976 
 977   // no result type needed
 978   fields = TypeTuple::fields(1);
 979   fields[TypeFunc::Parms+0] = NULL;
 980   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 981   return TypeFunc::make(domain, range);
 982 }
 983 
 984 // for mulAdd calls, 2 pointers and 3 ints, returning int
 985 const TypeFunc* OptoRuntime::mulAdd_Type() {
 986   // create input type (domain)
 987   int num_args      = 5;
 988   int argcnt = num_args;
 989   const Type** fields = TypeTuple::fields(argcnt);
 990   int argp = TypeFunc::Parms;
 991   fields[argp++] = TypePtr::NOTNULL;    // out
 992   fields[argp++] = TypePtr::NOTNULL;    // in
 993   fields[argp++] = TypeInt::INT;        // offset
 994   fields[argp++] = TypeInt::INT;        // len
 995   fields[argp++] = TypeInt::INT;        // k
 996   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 997   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 998 
 999   // returning carry (int)
1000   fields = TypeTuple::fields(1);
1001   fields[TypeFunc::Parms+0] = TypeInt::INT;
1002   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1003   return TypeFunc::make(domain, range);
1004 }
1005 
1006 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1007   // create input type (domain)
1008   int num_args      = 7;
1009   int argcnt = num_args;
1010   const Type** fields = TypeTuple::fields(argcnt);
1011   int argp = TypeFunc::Parms;
1012   fields[argp++] = TypePtr::NOTNULL;    // a
1013   fields[argp++] = TypePtr::NOTNULL;    // b
1014   fields[argp++] = TypePtr::NOTNULL;    // n
1015   fields[argp++] = TypeInt::INT;        // len
1016   fields[argp++] = TypeLong::LONG;      // inv
1017   fields[argp++] = Type::HALF;
1018   fields[argp++] = TypePtr::NOTNULL;    // result
1019   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1020   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1021 
1022   // result type needed
1023   fields = TypeTuple::fields(1);
1024   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1025 
1026   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1027   return TypeFunc::make(domain, range);
1028 }
1029 
1030 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1031   // create input type (domain)
1032   int num_args      = 6;
1033   int argcnt = num_args;
1034   const Type** fields = TypeTuple::fields(argcnt);
1035   int argp = TypeFunc::Parms;
1036   fields[argp++] = TypePtr::NOTNULL;    // a
1037   fields[argp++] = TypePtr::NOTNULL;    // n
1038   fields[argp++] = TypeInt::INT;        // len
1039   fields[argp++] = TypeLong::LONG;      // inv
1040   fields[argp++] = Type::HALF;
1041   fields[argp++] = TypePtr::NOTNULL;    // result
1042   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1043   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1044 
1045   // result type needed
1046   fields = TypeTuple::fields(1);
1047   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1048 
1049   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1050   return TypeFunc::make(domain, range);
1051 }
1052 
1053 
1054 //------------- Interpreter state access for on stack replacement
1055 const TypeFunc* OptoRuntime::osr_end_Type() {
1056   // create input type (domain)
1057   const Type **fields = TypeTuple::fields(1);
1058   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1059   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1060 
1061   // create result type
1062   fields = TypeTuple::fields(1);
1063   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1064   fields[TypeFunc::Parms+0] = NULL; // void
1065   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1066   return TypeFunc::make(domain, range);
1067 }
1068 
1069 //-------------- methodData update helpers
1070 
1071 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1072   // create input type (domain)
1073   const Type **fields = TypeTuple::fields(2);
1074   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1075   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1076   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1077 
1078   // create result type
1079   fields = TypeTuple::fields(1);
1080   fields[TypeFunc::Parms+0] = NULL; // void
1081   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1082   return TypeFunc::make(domain,range);
1083 }
1084 
1085 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1086   if (receiver == NULL) return;
1087   Klass* receiver_klass = receiver->klass();
1088 
1089   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1090   int empty_row = -1;           // free row, if any is encountered
1091 
1092   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1093   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1094     // if (vc->receiver(row) == receiver_klass)
1095     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1096     intptr_t row_recv = *(mdp + receiver_off);
1097     if (row_recv == (intptr_t) receiver_klass) {
1098       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1099       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1100       *(mdp + count_off) += DataLayout::counter_increment;
1101       return;
1102     } else if (row_recv == 0) {
1103       // else if (vc->receiver(row) == NULL)
1104       empty_row = (int) row;
1105     }
1106   }
1107 
1108   if (empty_row != -1) {
1109     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1110     // vc->set_receiver(empty_row, receiver_klass);
1111     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1112     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1113     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1114     *(mdp + count_off) = DataLayout::counter_increment;
1115   } else {
1116     // Receiver did not match any saved receiver and there is no empty row for it.
1117     // Increment total counter to indicate polymorphic case.
1118     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
1119     *count_p += DataLayout::counter_increment;
1120   }
1121 JRT_END
1122 
1123 //-------------------------------------------------------------------------------------
1124 // register policy
1125 
1126 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1127   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1128   switch (register_save_policy[reg]) {
1129     case 'C': return false; //SOC
1130     case 'E': return true ; //SOE
1131     case 'N': return false; //NS
1132     case 'A': return false; //AS
1133   }
1134   ShouldNotReachHere();
1135   return false;
1136 }
1137 
1138 //-----------------------------------------------------------------------
1139 // Exceptions
1140 //
1141 
1142 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
1143 
1144 // The method is an entry that is always called by a C++ method not
1145 // directly from compiled code. Compiled code will call the C++ method following.
1146 // We can't allow async exception to be installed during  exception processing.
1147 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1148 
1149   // Do not confuse exception_oop with pending_exception. The exception_oop
1150   // is only used to pass arguments into the method. Not for general
1151   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1152   // the runtime stubs checks this on exit.
1153   assert(thread->exception_oop() != NULL, "exception oop is found");
1154   address handler_address = NULL;
1155 
1156   Handle exception(thread, thread->exception_oop());
1157   address pc = thread->exception_pc();
1158 
1159   // Clear out the exception oop and pc since looking up an
1160   // exception handler can cause class loading, which might throw an
1161   // exception and those fields are expected to be clear during
1162   // normal bytecode execution.
1163   thread->clear_exception_oop_and_pc();
1164 
1165   if (TraceExceptions) {
1166     trace_exception(exception(), pc, "");
1167   }
1168 
1169   // for AbortVMOnException flag
1170   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1171 
1172 #ifdef ASSERT
1173   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1174     // should throw an exception here
1175     ShouldNotReachHere();
1176   }
1177 #endif
1178 
1179   // new exception handling: this method is entered only from adapters
1180   // exceptions from compiled java methods are handled in compiled code
1181   // using rethrow node
1182 
1183   nm = CodeCache::find_nmethod(pc);
1184   assert(nm != NULL, "No NMethod found");
1185   if (nm->is_native_method()) {
1186     fatal("Native method should not have path to exception handling");
1187   } else {
1188     // we are switching to old paradigm: search for exception handler in caller_frame
1189     // instead in exception handler of caller_frame.sender()
1190 
1191     if (JvmtiExport::can_post_on_exceptions()) {
1192       // "Full-speed catching" is not necessary here,
1193       // since we're notifying the VM on every catch.
1194       // Force deoptimization and the rest of the lookup
1195       // will be fine.
1196       deoptimize_caller_frame(thread);
1197     }
1198 
1199     // Check the stack guard pages.  If enabled, look for handler in this frame;
1200     // otherwise, forcibly unwind the frame.
1201     //
1202     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1203     bool force_unwind = !thread->reguard_stack();
1204     bool deopting = false;
1205     if (nm->is_deopt_pc(pc)) {
1206       deopting = true;
1207       RegisterMap map(thread, false);
1208       frame deoptee = thread->last_frame().sender(&map);
1209       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1210       // Adjust the pc back to the original throwing pc
1211       pc = deoptee.pc();
1212     }
1213 
1214     // If we are forcing an unwind because of stack overflow then deopt is
1215     // irrelevant since we are throwing the frame away anyway.
1216 
1217     if (deopting && !force_unwind) {
1218       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1219     } else {
1220 
1221       handler_address =
1222         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1223 
1224       if (handler_address == NULL) {
1225         Handle original_exception(thread, exception());
1226         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1227         assert (handler_address != NULL, "must have compiled handler");
1228         // Update the exception cache only when the unwind was not forced
1229         // and there didn't happen another exception during the computation of the
1230         // compiled exception handler.
1231         if (!force_unwind && original_exception() == exception()) {
1232           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1233         }
1234       } else {
1235         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1236       }
1237     }
1238 
1239     thread->set_exception_pc(pc);
1240     thread->set_exception_handler_pc(handler_address);
1241 
1242     // Check if the exception PC is a MethodHandle call site.
1243     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1244   }
1245 
1246   // Restore correct return pc.  Was saved above.
1247   thread->set_exception_oop(exception());
1248   return handler_address;
1249 
1250 JRT_END
1251 
1252 // We are entering here from exception_blob
1253 // If there is a compiled exception handler in this method, we will continue there;
1254 // otherwise we will unwind the stack and continue at the caller of top frame method
1255 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1256 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1257 // we looked up the handler for has been deoptimized in the meantime. If it has been
1258 // we must not use the handler and instead return the deopt blob.
1259 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1260 //
1261 // We are in Java not VM and in debug mode we have a NoHandleMark
1262 //
1263 #ifndef PRODUCT
1264   SharedRuntime::_find_handler_ctr++;          // find exception handler
1265 #endif
1266   debug_only(NoHandleMark __hm;)
1267   nmethod* nm = NULL;
1268   address handler_address = NULL;
1269   {
1270     // Enter the VM
1271 
1272     ResetNoHandleMark rnhm;
1273     handler_address = handle_exception_C_helper(thread, nm);
1274   }
1275 
1276   // Back in java: Use no oops, DON'T safepoint
1277 
1278   // Now check to see if the handler we are returning is in a now
1279   // deoptimized frame
1280 
1281   if (nm != NULL) {
1282     RegisterMap map(thread, false);
1283     frame caller = thread->last_frame().sender(&map);
1284 #ifdef ASSERT
1285     assert(caller.is_compiled_frame(), "must be");
1286 #endif // ASSERT
1287     if (caller.is_deoptimized_frame()) {
1288       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1289     }
1290   }
1291   return handler_address;
1292 }
1293 
1294 //------------------------------rethrow----------------------------------------
1295 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1296 // is either throwing or rethrowing an exception.  The callee-save registers
1297 // have been restored, synchronized objects have been unlocked and the callee
1298 // stack frame has been removed.  The return address was passed in.
1299 // Exception oop is passed as the 1st argument.  This routine is then called
1300 // from the stub.  On exit, we know where to jump in the caller's code.
1301 // After this C code exits, the stub will pop his frame and end in a jump
1302 // (instead of a return).  We enter the caller's default handler.
1303 //
1304 // This must be JRT_LEAF:
1305 //     - caller will not change its state as we cannot block on exit,
1306 //       therefore raw_exception_handler_for_return_address is all it takes
1307 //       to handle deoptimized blobs
1308 //
1309 // However, there needs to be a safepoint check in the middle!  So compiled
1310 // safepoints are completely watertight.
1311 //
1312 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1313 //
1314 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1315 //
1316 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1317 #ifndef PRODUCT
1318   SharedRuntime::_rethrow_ctr++;               // count rethrows
1319 #endif
1320   assert (exception != NULL, "should have thrown a NULLPointerException");
1321 #ifdef ASSERT
1322   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1323     // should throw an exception here
1324     ShouldNotReachHere();
1325   }
1326 #endif
1327 
1328   thread->set_vm_result(exception);
1329   // Frame not compiled (handles deoptimization blob)
1330   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1331 }
1332 
1333 
1334 const TypeFunc *OptoRuntime::rethrow_Type() {
1335   // create input type (domain)
1336   const Type **fields = TypeTuple::fields(1);
1337   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1338   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1339 
1340   // create result type (range)
1341   fields = TypeTuple::fields(1);
1342   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1343   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1344 
1345   return TypeFunc::make(domain, range);
1346 }
1347 
1348 
1349 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1350   // Deoptimize the caller before continuing, as the compiled
1351   // exception handler table may not be valid.
1352   if (!StressCompiledExceptionHandlers && doit) {
1353     deoptimize_caller_frame(thread);
1354   }
1355 }
1356 
1357 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1358   // Called from within the owner thread, so no need for safepoint
1359   RegisterMap reg_map(thread);
1360   frame stub_frame = thread->last_frame();
1361   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1362   frame caller_frame = stub_frame.sender(&reg_map);
1363 
1364   // Deoptimize the caller frame.
1365   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1366 }
1367 
1368 
1369 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1370   // Called from within the owner thread, so no need for safepoint
1371   RegisterMap reg_map(thread);
1372   frame stub_frame = thread->last_frame();
1373   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1374   frame caller_frame = stub_frame.sender(&reg_map);
1375   return caller_frame.is_deoptimized_frame();
1376 }
1377 
1378 
1379 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1380   // create input type (domain)
1381   const Type **fields = TypeTuple::fields(1);
1382   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1383   // // The JavaThread* is passed to each routine as the last argument
1384   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1385   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1386 
1387   // create result type (range)
1388   fields = TypeTuple::fields(0);
1389 
1390   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1391 
1392   return TypeFunc::make(domain,range);
1393 }
1394 
1395 
1396 //-----------------------------------------------------------------------------
1397 // Dtrace support.  entry and exit probes have the same signature
1398 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1399   // create input type (domain)
1400   const Type **fields = TypeTuple::fields(2);
1401   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1402   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1403   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1404 
1405   // create result type (range)
1406   fields = TypeTuple::fields(0);
1407 
1408   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1409 
1410   return TypeFunc::make(domain,range);
1411 }
1412 
1413 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1414   // create input type (domain)
1415   const Type **fields = TypeTuple::fields(2);
1416   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1417   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1418 
1419   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1420 
1421   // create result type (range)
1422   fields = TypeTuple::fields(0);
1423 
1424   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1425 
1426   return TypeFunc::make(domain,range);
1427 }
1428 
1429 
1430 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1431   assert(obj->is_oop(), "must be a valid oop");
1432   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1433   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1434 JRT_END
1435 
1436 //-----------------------------------------------------------------------------
1437 
1438 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1439 
1440 //
1441 // dump the collected NamedCounters.
1442 //
1443 void OptoRuntime::print_named_counters() {
1444   int total_lock_count = 0;
1445   int eliminated_lock_count = 0;
1446 
1447   NamedCounter* c = _named_counters;
1448   while (c) {
1449     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1450       int count = c->count();
1451       if (count > 0) {
1452         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1453         if (Verbose) {
1454           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1455         }
1456         total_lock_count += count;
1457         if (eliminated) {
1458           eliminated_lock_count += count;
1459         }
1460       }
1461     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1462       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1463       if (blc->nonzero()) {
1464         tty->print_cr("%s", c->name());
1465         blc->print_on(tty);
1466       }
1467 #if INCLUDE_RTM_OPT
1468     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1469       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1470       if (rlc->nonzero()) {
1471         tty->print_cr("%s", c->name());
1472         rlc->print_on(tty);
1473       }
1474 #endif
1475     }
1476     c = c->next();
1477   }
1478   if (total_lock_count > 0) {
1479     tty->print_cr("dynamic locks: %d", total_lock_count);
1480     if (eliminated_lock_count) {
1481       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1482                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1483     }
1484   }
1485 }
1486 
1487 //
1488 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1489 //  name which consists of method@line for the inlining tree.
1490 //
1491 
1492 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1493   int max_depth = youngest_jvms->depth();
1494 
1495   // Visit scopes from youngest to oldest.
1496   bool first = true;
1497   stringStream st;
1498   for (int depth = max_depth; depth >= 1; depth--) {
1499     JVMState* jvms = youngest_jvms->of_depth(depth);
1500     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1501     if (!first) {
1502       st.print(" ");
1503     } else {
1504       first = false;
1505     }
1506     int bci = jvms->bci();
1507     if (bci < 0) bci = 0;
1508     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1509     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1510   }
1511   NamedCounter* c;
1512   if (tag == NamedCounter::BiasedLockingCounter) {
1513     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1514   } else if (tag == NamedCounter::RTMLockingCounter) {
1515     c = new RTMLockingNamedCounter(strdup(st.as_string()));
1516   } else {
1517     c = new NamedCounter(strdup(st.as_string()), tag);
1518   }
1519 
1520   // atomically add the new counter to the head of the list.  We only
1521   // add counters so this is safe.
1522   NamedCounter* head;
1523   do {
1524     c->set_next(NULL);
1525     head = _named_counters;
1526     c->set_next(head);
1527   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1528   return c;
1529 }
1530 
1531 //-----------------------------------------------------------------------------
1532 // Non-product code
1533 #ifndef PRODUCT
1534 
1535 int trace_exception_counter = 0;
1536 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1537   ttyLocker ttyl;
1538   trace_exception_counter++;
1539   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1540   exception_oop->print_value();
1541   tty->print(" in ");
1542   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1543   if (blob->is_nmethod()) {
1544     nmethod* nm = blob->as_nmethod_or_null();
1545     nm->method()->print_value();
1546   } else if (blob->is_runtime_stub()) {
1547     tty->print("<runtime-stub>");
1548   } else {
1549     tty->print("<unknown>");
1550   }
1551   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1552   tty->print_cr("]");
1553 }
1554 
1555 #endif  // PRODUCT
1556 
1557 
1558 # ifdef ENABLE_ZAP_DEAD_LOCALS
1559 // Called from call sites in compiled code with oop maps (actually safepoints)
1560 // Zaps dead locals in first java frame.
1561 // Is entry because may need to lock to generate oop maps
1562 // Currently, only used for compiler frames, but someday may be used
1563 // for interpreter frames, too.
1564 
1565 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1566 
1567 // avoid pointers to member funcs with these helpers
1568 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1569 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1570 
1571 
1572 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1573                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1574   assert(JavaThread::current() == thread, "is this needed?");
1575 
1576   if ( !ZapDeadCompiledLocals )  return;
1577 
1578   bool skip = false;
1579 
1580        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1581   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1582   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1583     warning("starting zapping after skipping");
1584 
1585        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1586   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1587   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1588     warning("about to zap last zap");
1589 
1590   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1591 
1592   if ( skip )  return;
1593 
1594   // find java frame and zap it
1595 
1596   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1597     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1598       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1599       return;
1600     }
1601   }
1602   warning("no frame found to zap in zap_dead_Java_locals_C");
1603 }
1604 
1605 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1606   zap_dead_java_or_native_locals(thread, is_java_frame);
1607 JRT_END
1608 
1609 // The following does not work because for one thing, the
1610 // thread state is wrong; it expects java, but it is native.
1611 // Also, the invariants in a native stub are different and
1612 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1613 // in there.
1614 // So for now, we do not zap in native stubs.
1615 
1616 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1617   zap_dead_java_or_native_locals(thread, is_native_frame);
1618 JRT_END
1619 
1620 # endif