1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/handles.inline.hpp"
  31 #include "runtime/interfaceSupport.hpp"
  32 #include "runtime/mutexLocker.hpp"
  33 #include "runtime/objectMonitor.hpp"
  34 #include "runtime/objectMonitor.inline.hpp"
  35 #include "runtime/orderAccess.inline.hpp"
  36 #include "runtime/osThread.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "runtime/thread.inline.hpp"
  39 #include "services/threadService.hpp"
  40 #include "trace/tracing.hpp"
  41 #include "trace/traceMacros.hpp"
  42 #include "evtrace/traceEvents.hpp"
  43 #include "utilities/dtrace.hpp"
  44 #include "utilities/macros.hpp"
  45 #include "utilities/preserveException.hpp"
  46 #ifdef TARGET_OS_FAMILY_linux
  47 # include "os_linux.inline.hpp"
  48 #endif
  49 #ifdef TARGET_OS_FAMILY_solaris
  50 # include "os_solaris.inline.hpp"
  51 #endif
  52 #ifdef TARGET_OS_FAMILY_windows
  53 # include "os_windows.inline.hpp"
  54 #endif
  55 #ifdef TARGET_OS_FAMILY_bsd
  56 # include "os_bsd.inline.hpp"
  57 #endif
  58 
  59 #if defined(__GNUC__) && !defined(IA64) && !defined(PPC64)
  60   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  61   #define ATTR __attribute__((noinline))
  62 #else
  63   #define ATTR
  64 #endif
  65 
  66 
  67 #ifdef DTRACE_ENABLED
  68 
  69 // Only bother with this argument setup if dtrace is available
  70 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  71 
  72 
  73 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  74   char* bytes = NULL;                                                      \
  75   int len = 0;                                                             \
  76   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  77   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  78   if (klassname != NULL) {                                                 \
  79     bytes = (char*)klassname->bytes();                                     \
  80     len = klassname->utf8_length();                                        \
  81   }
  82 
  83 #ifndef USDT2
  84 
  85 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
  86   jlong, uintptr_t, char*, int);
  87 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
  88   jlong, uintptr_t, char*, int);
  89 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
  90   jlong, uintptr_t, char*, int);
  91 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
  92   jlong, uintptr_t, char*, int);
  93 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
  94   jlong, uintptr_t, char*, int);
  95 
  96 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)       \
  97   {                                                                        \
  98     if (DTraceMonitorProbes) {                                            \
  99       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
 100       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
 101                        (monitor), bytes, len, (millis));                   \
 102     }                                                                      \
 103   }
 104 
 105 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)             \
 106   {                                                                        \
 107     if (DTraceMonitorProbes) {                                            \
 108       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
 109       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
 110                        (uintptr_t)(monitor), bytes, len);                  \
 111     }                                                                      \
 112   }
 113 
 114 #else /* USDT2 */
 115 
 116 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
 117   {                                                                        \
 118     if (DTraceMonitorProbes) {                                            \
 119       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 120       HOTSPOT_MONITOR_WAIT(jtid,                                           \
 121                        (monitor), bytes, len, (millis));                   \
 122     }                                                                      \
 123   }
 124 
 125 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
 126 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
 127 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
 128 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
 129 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
 130 
 131 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
 132   {                                                                        \
 133     if (DTraceMonitorProbes) {                                            \
 134       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 135       HOTSPOT_MONITOR_##probe(jtid,                                               \
 136                        (uintptr_t)(monitor), bytes, len);                  \
 137     }                                                                      \
 138   }
 139 
 140 #endif /* USDT2 */
 141 #else //  ndef DTRACE_ENABLED
 142 
 143 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 144 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 145 
 146 #endif // ndef DTRACE_ENABLED
 147 
 148 // Tunables ...
 149 // The knob* variables are effectively final.  Once set they should
 150 // never be modified hence.  Consider using __read_mostly with GCC.
 151 
 152 int ObjectMonitor::Knob_Verbose    = 0 ;
 153 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
 154 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
 155 static int Knob_HandOff            = 0 ;
 156 static int Knob_ReportSettings     = 0 ;
 157 
 158 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
 159 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
 160 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
 161 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
 162 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
 163 static int Knob_SpinEarly          = 1 ;
 164 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
 165 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
 166 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
 167 static int Knob_Bonus              = 100 ;     // spin success bonus
 168 static int Knob_BonusB             = 100 ;     // spin success bonus
 169 static int Knob_Penalty            = 200 ;     // spin failure penalty
 170 static int Knob_Poverty            = 1000 ;
 171 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
 172 static int Knob_FixedSpin          = 0 ;
 173 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
 174 static int Knob_UsePause           = 1 ;
 175 static int Knob_ExitPolicy         = 0 ;
 176 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
 177 static int Knob_ResetEvent         = 0 ;
 178 static int BackOffMask             = 0 ;
 179 
 180 static int Knob_FastHSSEC          = 0 ;
 181 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
 182 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
 183 static volatile int InitDone       = 0 ;
 184 
 185 #define TrySpin TrySpin_VaryDuration
 186 
 187 // -----------------------------------------------------------------------------
 188 // Theory of operations -- Monitors lists, thread residency, etc:
 189 //
 190 // * A thread acquires ownership of a monitor by successfully
 191 //   CAS()ing the _owner field from null to non-null.
 192 //
 193 // * Invariant: A thread appears on at most one monitor list --
 194 //   cxq, EntryList or WaitSet -- at any one time.
 195 //
 196 // * Contending threads "push" themselves onto the cxq with CAS
 197 //   and then spin/park.
 198 //
 199 // * After a contending thread eventually acquires the lock it must
 200 //   dequeue itself from either the EntryList or the cxq.
 201 //
 202 // * The exiting thread identifies and unparks an "heir presumptive"
 203 //   tentative successor thread on the EntryList.  Critically, the
 204 //   exiting thread doesn't unlink the successor thread from the EntryList.
 205 //   After having been unparked, the wakee will recontend for ownership of
 206 //   the monitor.   The successor (wakee) will either acquire the lock or
 207 //   re-park itself.
 208 //
 209 //   Succession is provided for by a policy of competitive handoff.
 210 //   The exiting thread does _not_ grant or pass ownership to the
 211 //   successor thread.  (This is also referred to as "handoff" succession").
 212 //   Instead the exiting thread releases ownership and possibly wakes
 213 //   a successor, so the successor can (re)compete for ownership of the lock.
 214 //   If the EntryList is empty but the cxq is populated the exiting
 215 //   thread will drain the cxq into the EntryList.  It does so by
 216 //   by detaching the cxq (installing null with CAS) and folding
 217 //   the threads from the cxq into the EntryList.  The EntryList is
 218 //   doubly linked, while the cxq is singly linked because of the
 219 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 220 //
 221 // * Concurrency invariants:
 222 //
 223 //   -- only the monitor owner may access or mutate the EntryList.
 224 //      The mutex property of the monitor itself protects the EntryList
 225 //      from concurrent interference.
 226 //   -- Only the monitor owner may detach the cxq.
 227 //
 228 // * The monitor entry list operations avoid locks, but strictly speaking
 229 //   they're not lock-free.  Enter is lock-free, exit is not.
 230 //   For a description of 'Methods and apparatus providing non-blocking access
 231 //   to a resource,' see U.S. Pat. No. 7844973.
 232 //
 233 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 234 //   detaching thread.  This mechanism is immune from the ABA corruption.
 235 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 236 //
 237 // * Taken together, the cxq and the EntryList constitute or form a
 238 //   single logical queue of threads stalled trying to acquire the lock.
 239 //   We use two distinct lists to improve the odds of a constant-time
 240 //   dequeue operation after acquisition (in the ::enter() epilog) and
 241 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 242 //   A key desideratum is to minimize queue & monitor metadata manipulation
 243 //   that occurs while holding the monitor lock -- that is, we want to
 244 //   minimize monitor lock holds times.  Note that even a small amount of
 245 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 246 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 247 //   locks and monitor metadata.
 248 //
 249 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
 250 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 251 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 252 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 253 //
 254 //   The EntryList is ordered by the prevailing queue discipline and
 255 //   can be organized in any convenient fashion, such as a doubly-linked list or
 256 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 257 //   to operate in constant-time.  If we need a priority queue then something akin
 258 //   to Solaris' sleepq would work nicely.  Viz.,
 259 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 260 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 261 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 262 //   EntryList accordingly.
 263 //
 264 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 265 //   somewhat similar to an elevator-scan.
 266 //
 267 // * The monitor synchronization subsystem avoids the use of native
 268 //   synchronization primitives except for the narrow platform-specific
 269 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 270 //   the semantics of park-unpark.  Put another way, this monitor implementation
 271 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 272 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 273 //   underlying OS manages the READY<->RUN transitions.
 274 //
 275 // * Waiting threads reside on the WaitSet list -- wait() puts
 276 //   the caller onto the WaitSet.
 277 //
 278 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 279 //   either the EntryList or cxq.  Subsequent exit() operations will
 280 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 281 //   it's likely the notifyee would simply impale itself on the lock held
 282 //   by the notifier.
 283 //
 284 // * An interesting alternative is to encode cxq as (List,LockByte) where
 285 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 286 //   variable, like _recursions, in the scheme.  The threads or Events that form
 287 //   the list would have to be aligned in 256-byte addresses.  A thread would
 288 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 289 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 290 //   Note that is is *not* word-tearing, but it does presume that full-word
 291 //   CAS operations are coherent with intermix with STB operations.  That's true
 292 //   on most common processors.
 293 //
 294 // * See also http://blogs.sun.com/dave
 295 
 296 
 297 // -----------------------------------------------------------------------------
 298 // Enter support
 299 
 300 bool ObjectMonitor::try_enter(Thread* THREAD) {
 301   if (THREAD != _owner) {
 302     if (THREAD->is_lock_owned ((address)_owner)) {
 303        assert(_recursions == 0, "internal state error");
 304        _owner = THREAD ;
 305        _recursions = 1 ;
 306        OwnerIsThread = 1 ;
 307        return true;
 308     }
 309     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
 310       return false;
 311     }
 312     return true;
 313   } else {
 314     _recursions++;
 315     return true;
 316   }
 317 }
 318 
 319 void ATTR ObjectMonitor::enter(int after_wait, TRAPS) {
 320   // The following code is ordered to check the most common cases first
 321   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 322   Thread * const Self = THREAD ;
 323   void * cur ;
 324 
 325   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
 326   if (cur == NULL) {
 327      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 328      assert (_recursions == 0   , "invariant") ;
 329      assert (_owner      == Self, "invariant") ;
 330      // CONSIDER: set or assert OwnerIsThread == 1
 331      return ;
 332   }
 333 
 334   if (cur == Self) {
 335      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 336      _recursions ++ ;
 337      return ;
 338   }
 339 
 340   if (Self->is_lock_owned ((address)cur)) {
 341     assert (_recursions == 0, "internal state error");
 342     _recursions = 1 ;
 343     // Commute owner from a thread-specific on-stack BasicLockObject address to
 344     // a full-fledged "Thread *".
 345     _owner = Self ;
 346     OwnerIsThread = 1 ;
 347     return ;
 348   }
 349 
 350   // We've encountered genuine contention.
 351   assert (Self->_Stalled == 0, "invariant") ;
 352   Self->_Stalled = intptr_t(this) ;
 353 
 354   // Try one round of spinning *before* enqueueing Self
 355   // and before going through the awkward and expensive state
 356   // transitions.  The following spin is strictly optional ...
 357   // Note that if we acquire the monitor from an initial spin
 358   // we forgo posting JVMTI events and firing DTRACE probes.
 359   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 360      assert (_owner == Self      , "invariant") ;
 361      assert (_recursions == 0    , "invariant") ;
 362      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 363      Self->_Stalled = 0 ;
 364      return ;
 365   }
 366 
 367   assert (_owner != Self          , "invariant") ;
 368   assert (_succ  != Self          , "invariant") ;
 369   assert (Self->is_Java_thread()  , "invariant") ;
 370   JavaThread * jt = (JavaThread *) Self ;
 371   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
 372   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
 373   assert (this->object() != NULL  , "invariant") ;
 374   assert (_count >= 0, "invariant") ;
 375 
 376   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 377   // Ensure the object-monitor relationship remains stable while there's contention.
 378   Atomic::inc_ptr(&_count);
 379 
 380   EventJavaMonitorEnter event;
 381 
 382   int trace_flags = 0;
 383   { // Change java thread status to indicate blocked on monitor enter.
 384     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 385 
 386     if (EnableEventTracing) {
 387       TraceEvents::write_monitor_contended_enter(this, (TraceTypes::monitor_enter_wait) after_wait);
 388     }
 389 
 390     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 391     if (JvmtiExport::should_post_monitor_contended_enter()) {
 392       JvmtiExport::post_monitor_contended_enter(jt, this);
 393 
 394       // The current thread does not yet own the monitor and does not
 395       // yet appear on any queues that would get it made the successor.
 396       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 397       // handler cannot accidentally consume an unpark() meant for the
 398       // ParkEvent associated with this ObjectMonitor.
 399     }
 400 
 401     OSThreadContendState osts(Self->osthread());
 402     ThreadBlockInVM tbivm(jt);
 403 
 404     Self->set_current_pending_monitor(this);
 405 
 406     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 407     for (;;) {
 408       jt->set_suspend_equivalent();
 409       // cleared by handle_special_suspend_equivalent_condition()
 410       // or java_suspend_self()
 411 
 412       trace_flags |= EnterI (THREAD) ;
 413 
 414       if (!ExitSuspendEquivalent(jt)) break ;
 415 
 416       //
 417       // We have acquired the contended monitor, but while we were
 418       // waiting another thread suspended us. We don't want to enter
 419       // the monitor while suspended because that would surprise the
 420       // thread that suspended us.
 421       //
 422           _recursions = 0 ;
 423       _succ = NULL ;
 424       exit (false, Self) ;
 425 
 426       jt->java_suspend_self();
 427     }
 428     Self->set_current_pending_monitor(NULL);
 429 
 430     // We cleared the pending monitor info since we've just gotten past
 431     // the enter-check-for-suspend dance and we now own the monitor free
 432     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 433     // destructor can go to a safepoint at the end of this block. If we
 434     // do a thread dump during that safepoint, then this thread will show
 435     // as having "-locked" the monitor, but the OS and java.lang.Thread
 436     // states will still report that the thread is blocked trying to
 437     // acquire it.
 438   }
 439 
 440   Atomic::dec_ptr(&_count);
 441   assert (_count >= 0, "invariant") ;
 442   Self->_Stalled = 0 ;
 443 
 444   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 445   assert (_recursions == 0     , "invariant") ;
 446   assert (_owner == Self       , "invariant") ;
 447   assert (_succ  != Self       , "invariant") ;
 448   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 449 
 450   // The thread -- now the owner -- is back in vm mode.
 451   // Report the glorious news via TI,DTrace and jvmstat.
 452   // The probe effect is non-trivial.  All the reportage occurs
 453   // while we hold the monitor, increasing the length of the critical
 454   // section.  Amdahl's parallel speedup law comes vividly into play.
 455   //
 456   // Another option might be to aggregate the events (thread local or
 457   // per-monitor aggregation) and defer reporting until a more opportune
 458   // time -- such as next time some thread encounters contention but has
 459   // yet to acquire the lock.  While spinning that thread could
 460   // spinning we could increment JVMStat counters, etc.
 461 
 462   if (EnableEventTracing) {
 463     TraceEvents::write_monitor_contended_entered(this, (TraceTypes::monitor_entered_flags) trace_flags);
 464   }
 465 
 466   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 467   if (JvmtiExport::should_post_monitor_contended_entered()) {
 468     JvmtiExport::post_monitor_contended_entered(jt, this);
 469 
 470     // The current thread already owns the monitor and is not going to
 471     // call park() for the remainder of the monitor enter protocol. So
 472     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 473     // event handler consumed an unpark() issued by the thread that
 474     // just exited the monitor.
 475   }
 476 
 477   if (event.should_commit()) {
 478     event.set_klass(((oop)this->object())->klass());
 479     event.set_previousOwner((TYPE_JAVALANGTHREAD)_previous_owner_tid);
 480     event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
 481     event.commit();
 482   }
 483 
 484   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
 485      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
 486   }
 487 }
 488 
 489 
 490 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 491 // Callers must compensate as needed.
 492 
 493 int ObjectMonitor::TryLock (Thread * Self) {
 494    for (;;) {
 495       void * own = _owner ;
 496       if (own != NULL) return 0 ;
 497       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
 498          // Either guarantee _recursions == 0 or set _recursions = 0.
 499          assert (_recursions == 0, "invariant") ;
 500          assert (_owner == Self, "invariant") ;
 501          // CONSIDER: set or assert that OwnerIsThread == 1
 502          return 1 ;
 503       }
 504       // The lock had been free momentarily, but we lost the race to the lock.
 505       // Interference -- the CAS failed.
 506       // We can either return -1 or retry.
 507       // Retry doesn't make as much sense because the lock was just acquired.
 508       if (true) return -1 ;
 509    }
 510 }
 511 
 512 int ATTR ObjectMonitor::EnterI (TRAPS) {
 513     int trace_flags = 0;
 514 
 515     Thread * Self = THREAD ;
 516     assert (Self->is_Java_thread(), "invariant") ;
 517     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
 518 
 519     // Try the lock - TATAS
 520     if (TryLock (Self) > 0) {
 521         assert (_succ != Self              , "invariant") ;
 522         assert (_owner == Self             , "invariant") ;
 523         assert (_Responsible != Self       , "invariant") ;
 524         return trace_flags;
 525     }
 526 
 527     DeferredInitialize () ;
 528 
 529     // We try one round of spinning *before* enqueueing Self.
 530     //
 531     // If the _owner is ready but OFFPROC we could use a YieldTo()
 532     // operation to donate the remainder of this thread's quantum
 533     // to the owner.  This has subtle but beneficial affinity
 534     // effects.
 535 
 536     if (TrySpin (Self) > 0) {
 537         assert (_owner == Self        , "invariant") ;
 538         assert (_succ != Self         , "invariant") ;
 539         assert (_Responsible != Self  , "invariant") ;
 540         return trace_flags;
 541     }
 542 
 543     // The Spin failed -- Enqueue and park the thread ...
 544     assert (_succ  != Self            , "invariant") ;
 545     assert (_owner != Self            , "invariant") ;
 546     assert (_Responsible != Self      , "invariant") ;
 547 
 548     // Enqueue "Self" on ObjectMonitor's _cxq.
 549     //
 550     // Node acts as a proxy for Self.
 551     // As an aside, if were to ever rewrite the synchronization code mostly
 552     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 553     // Java objects.  This would avoid awkward lifecycle and liveness issues,
 554     // as well as eliminate a subset of ABA issues.
 555     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 556     //
 557 
 558     ObjectWaiter node(Self) ;
 559     Self->_ParkEvent->reset() ;
 560     node._prev   = (ObjectWaiter *) 0xBAD ;
 561     node.TState  = ObjectWaiter::TS_CXQ ;
 562 
 563     // Push "Self" onto the front of the _cxq.
 564     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 565     // Note that spinning tends to reduce the rate at which threads
 566     // enqueue and dequeue on EntryList|cxq.
 567     ObjectWaiter * nxt ;
 568     for (;;) {
 569         node._next = nxt = _cxq ;
 570         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
 571 
 572         // Interference - the CAS failed because _cxq changed.  Just retry.
 573         // As an optional optimization we retry the lock.
 574         if (TryLock (Self) > 0) {
 575             assert (_succ != Self         , "invariant") ;
 576             assert (_owner == Self        , "invariant") ;
 577             assert (_Responsible != Self  , "invariant") ;
 578             return trace_flags;
 579         }
 580     }
 581 
 582     trace_flags |= TraceTypes::entered_queued;
 583 
 584     // Check for cxq|EntryList edge transition to non-null.  This indicates
 585     // the onset of contention.  While contention persists exiting threads
 586     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 587     // operations revert to the faster 1-0 mode.  This enter operation may interleave
 588     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 589     // arrange for one of the contending thread to use a timed park() operations
 590     // to detect and recover from the race.  (Stranding is form of progress failure
 591     // where the monitor is unlocked but all the contending threads remain parked).
 592     // That is, at least one of the contended threads will periodically poll _owner.
 593     // One of the contending threads will become the designated "Responsible" thread.
 594     // The Responsible thread uses a timed park instead of a normal indefinite park
 595     // operation -- it periodically wakes and checks for and recovers from potential
 596     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 597     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 598     // be responsible for a monitor.
 599     //
 600     // Currently, one of the contended threads takes on the added role of "Responsible".
 601     // A viable alternative would be to use a dedicated "stranding checker" thread
 602     // that periodically iterated over all the threads (or active monitors) and unparked
 603     // successors where there was risk of stranding.  This would help eliminate the
 604     // timer scalability issues we see on some platforms as we'd only have one thread
 605     // -- the checker -- parked on a timer.
 606 
 607     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
 608         // Try to assume the role of responsible thread for the monitor.
 609         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 610         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 611     }
 612 
 613     // The lock have been released while this thread was occupied queueing
 614     // itself onto _cxq.  To close the race and avoid "stranding" and
 615     // progress-liveness failure we must resample-retry _owner before parking.
 616     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 617     // In this case the ST-MEMBAR is accomplished with CAS().
 618     //
 619     // TODO: Defer all thread state transitions until park-time.
 620     // Since state transitions are heavy and inefficient we'd like
 621     // to defer the state transitions until absolutely necessary,
 622     // and in doing so avoid some transitions ...
 623 
 624     TEVENT (Inflated enter - Contention) ;
 625     int nWakeups = 0 ;
 626     int RecheckInterval = 1 ;
 627 
 628     for (;;) {
 629 
 630         if (TryLock (Self) > 0) break ;
 631         assert (_owner != Self, "invariant") ;
 632 
 633         if ((SyncFlags & 2) && _Responsible == NULL) {
 634            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 635         }
 636 
 637         // park self
 638         if (_Responsible == Self || (SyncFlags & 1)) {
 639             TEVENT (Inflated enter - park TIMED) ;
 640             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
 641             // Increase the RecheckInterval, but clamp the value.
 642             RecheckInterval *= 8 ;
 643             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
 644         } else {
 645             TEVENT (Inflated enter - park UNTIMED) ;
 646             Self->_ParkEvent->park() ;
 647         }
 648 
 649         trace_flags |= TraceTypes::entered_parked;
 650 
 651         if (TryLock(Self) > 0) break ;
 652 
 653         // The lock is still contested.
 654         // Keep a tally of the # of futile wakeups.
 655         // Note that the counter is not protected by a lock or updated by atomics.
 656         // That is by design - we trade "lossy" counters which are exposed to
 657         // races during updates for a lower probe effect.
 658         TEVENT (Inflated enter - Futile wakeup) ;
 659         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 660            ObjectMonitor::_sync_FutileWakeups->inc() ;
 661         }
 662         ++ nWakeups ;
 663 
 664         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 665         // We can defer clearing _succ until after the spin completes
 666         // TrySpin() must tolerate being called with _succ == Self.
 667         // Try yet another round of adaptive spinning.
 668         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
 669 
 670         // We can find that we were unpark()ed and redesignated _succ while
 671         // we were spinning.  That's harmless.  If we iterate and call park(),
 672         // park() will consume the event and return immediately and we'll
 673         // just spin again.  This pattern can repeat, leaving _succ to simply
 674         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 675         // Alternately, we can sample fired() here, and if set, forgo spinning
 676         // in the next iteration.
 677 
 678         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 679            Self->_ParkEvent->reset() ;
 680            OrderAccess::fence() ;
 681         }
 682         if (_succ == Self) _succ = NULL ;
 683 
 684         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 685         OrderAccess::fence() ;
 686     }
 687 
 688     // Egress :
 689     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 690     // Normally we'll find Self on the EntryList .
 691     // From the perspective of the lock owner (this thread), the
 692     // EntryList is stable and cxq is prepend-only.
 693     // The head of cxq is volatile but the interior is stable.
 694     // In addition, Self.TState is stable.
 695 
 696     assert (_owner == Self      , "invariant") ;
 697     assert (object() != NULL    , "invariant") ;
 698     // I'd like to write:
 699     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 700     // but as we're at a safepoint that's not safe.
 701 
 702     UnlinkAfterAcquire (Self, &node) ;
 703     if (_succ == Self) _succ = NULL ;
 704 
 705     assert (_succ != Self, "invariant") ;
 706     if (_Responsible == Self) {
 707         _Responsible = NULL ;
 708         OrderAccess::fence(); // Dekker pivot-point
 709 
 710         // We may leave threads on cxq|EntryList without a designated
 711         // "Responsible" thread.  This is benign.  When this thread subsequently
 712         // exits the monitor it can "see" such preexisting "old" threads --
 713         // threads that arrived on the cxq|EntryList before the fence, above --
 714         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 715         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 716         // non-null and elect a new "Responsible" timer thread.
 717         //
 718         // This thread executes:
 719         //    ST Responsible=null; MEMBAR    (in enter epilog - here)
 720         //    LD cxq|EntryList               (in subsequent exit)
 721         //
 722         // Entering threads in the slow/contended path execute:
 723         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 724         //    The (ST cxq; MEMBAR) is accomplished with CAS().
 725         //
 726         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 727         // exit operation from floating above the ST Responsible=null.
 728     }
 729 
 730     // We've acquired ownership with CAS().
 731     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 732     // But since the CAS() this thread may have also stored into _succ,
 733     // EntryList, cxq or Responsible.  These meta-data updates must be
 734     // visible __before this thread subsequently drops the lock.
 735     // Consider what could occur if we didn't enforce this constraint --
 736     // STs to monitor meta-data and user-data could reorder with (become
 737     // visible after) the ST in exit that drops ownership of the lock.
 738     // Some other thread could then acquire the lock, but observe inconsistent
 739     // or old monitor meta-data and heap data.  That violates the JMM.
 740     // To that end, the 1-0 exit() operation must have at least STST|LDST
 741     // "release" barrier semantics.  Specifically, there must be at least a
 742     // STST|LDST barrier in exit() before the ST of null into _owner that drops
 743     // the lock.   The barrier ensures that changes to monitor meta-data and data
 744     // protected by the lock will be visible before we release the lock, and
 745     // therefore before some other thread (CPU) has a chance to acquire the lock.
 746     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 747     //
 748     // Critically, any prior STs to _succ or EntryList must be visible before
 749     // the ST of null into _owner in the *subsequent* (following) corresponding
 750     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 751     // execute a serializing instruction.
 752 
 753     if (SyncFlags & 8) {
 754        OrderAccess::fence() ;
 755     }
 756     return trace_flags;
 757 }
 758 
 759 // ReenterI() is a specialized inline form of the latter half of the
 760 // contended slow-path from EnterI().  We use ReenterI() only for
 761 // monitor reentry in wait().
 762 //
 763 // In the future we should reconcile EnterI() and ReenterI(), adding
 764 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 765 // loop accordingly.
 766 
 767 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
 768     assert (Self != NULL                , "invariant") ;
 769     assert (SelfNode != NULL            , "invariant") ;
 770     assert (SelfNode->_thread == Self   , "invariant") ;
 771     assert (_waiters > 0                , "invariant") ;
 772     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
 773     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
 774     JavaThread * jt = (JavaThread *) Self ;
 775 
 776     int nWakeups = 0 ;
 777     for (;;) {
 778         ObjectWaiter::TStates v = SelfNode->TState ;
 779         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
 780         assert    (_owner != Self, "invariant") ;
 781 
 782         if (TryLock (Self) > 0) break ;
 783         if (TrySpin (Self) > 0) break ;
 784 
 785         TEVENT (Wait Reentry - parking) ;
 786 
 787         // State transition wrappers around park() ...
 788         // ReenterI() wisely defers state transitions until
 789         // it's clear we must park the thread.
 790         {
 791            OSThreadContendState osts(Self->osthread());
 792            ThreadBlockInVM tbivm(jt);
 793 
 794            // cleared by handle_special_suspend_equivalent_condition()
 795            // or java_suspend_self()
 796            jt->set_suspend_equivalent();
 797            if (SyncFlags & 1) {
 798               Self->_ParkEvent->park ((jlong)1000) ;
 799            } else {
 800               Self->_ParkEvent->park () ;
 801            }
 802 
 803            // were we externally suspended while we were waiting?
 804            for (;;) {
 805               if (!ExitSuspendEquivalent (jt)) break ;
 806               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 807               jt->java_suspend_self();
 808               jt->set_suspend_equivalent();
 809            }
 810         }
 811 
 812         // Try again, but just so we distinguish between futile wakeups and
 813         // successful wakeups.  The following test isn't algorithmically
 814         // necessary, but it helps us maintain sensible statistics.
 815         if (TryLock(Self) > 0) break ;
 816 
 817         // The lock is still contested.
 818         // Keep a tally of the # of futile wakeups.
 819         // Note that the counter is not protected by a lock or updated by atomics.
 820         // That is by design - we trade "lossy" counters which are exposed to
 821         // races during updates for a lower probe effect.
 822         TEVENT (Wait Reentry - futile wakeup) ;
 823         ++ nWakeups ;
 824 
 825         // Assuming this is not a spurious wakeup we'll normally
 826         // find that _succ == Self.
 827         if (_succ == Self) _succ = NULL ;
 828 
 829         // Invariant: after clearing _succ a contending thread
 830         // *must* retry  _owner before parking.
 831         OrderAccess::fence() ;
 832 
 833         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 834           ObjectMonitor::_sync_FutileWakeups->inc() ;
 835         }
 836     }
 837 
 838     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 839     // Normally we'll find Self on the EntryList.
 840     // Unlinking from the EntryList is constant-time and atomic-free.
 841     // From the perspective of the lock owner (this thread), the
 842     // EntryList is stable and cxq is prepend-only.
 843     // The head of cxq is volatile but the interior is stable.
 844     // In addition, Self.TState is stable.
 845 
 846     assert (_owner == Self, "invariant") ;
 847     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 848     UnlinkAfterAcquire (Self, SelfNode) ;
 849     if (_succ == Self) _succ = NULL ;
 850     assert (_succ != Self, "invariant") ;
 851     SelfNode->TState = ObjectWaiter::TS_RUN ;
 852     OrderAccess::fence() ;      // see comments at the end of EnterI()
 853 }
 854 
 855 // after the thread acquires the lock in ::enter().  Equally, we could defer
 856 // unlinking the thread until ::exit()-time.
 857 
 858 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
 859 {
 860     assert (_owner == Self, "invariant") ;
 861     assert (SelfNode->_thread == Self, "invariant") ;
 862 
 863     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 864         // Normal case: remove Self from the DLL EntryList .
 865         // This is a constant-time operation.
 866         ObjectWaiter * nxt = SelfNode->_next ;
 867         ObjectWaiter * prv = SelfNode->_prev ;
 868         if (nxt != NULL) nxt->_prev = prv ;
 869         if (prv != NULL) prv->_next = nxt ;
 870         if (SelfNode == _EntryList ) _EntryList = nxt ;
 871         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 872         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 873         TEVENT (Unlink from EntryList) ;
 874     } else {
 875         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 876         // Inopportune interleaving -- Self is still on the cxq.
 877         // This usually means the enqueue of self raced an exiting thread.
 878         // Normally we'll find Self near the front of the cxq, so
 879         // dequeueing is typically fast.  If needbe we can accelerate
 880         // this with some MCS/CHL-like bidirectional list hints and advisory
 881         // back-links so dequeueing from the interior will normally operate
 882         // in constant-time.
 883         // Dequeue Self from either the head (with CAS) or from the interior
 884         // with a linear-time scan and normal non-atomic memory operations.
 885         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 886         // and then unlink Self from EntryList.  We have to drain eventually,
 887         // so it might as well be now.
 888 
 889         ObjectWaiter * v = _cxq ;
 890         assert (v != NULL, "invariant") ;
 891         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
 892             // The CAS above can fail from interference IFF a "RAT" arrived.
 893             // In that case Self must be in the interior and can no longer be
 894             // at the head of cxq.
 895             if (v == SelfNode) {
 896                 assert (_cxq != v, "invariant") ;
 897                 v = _cxq ;          // CAS above failed - start scan at head of list
 898             }
 899             ObjectWaiter * p ;
 900             ObjectWaiter * q = NULL ;
 901             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
 902                 q = p ;
 903                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 904             }
 905             assert (v != SelfNode,  "invariant") ;
 906             assert (p == SelfNode,  "Node not found on cxq") ;
 907             assert (p != _cxq,      "invariant") ;
 908             assert (q != NULL,      "invariant") ;
 909             assert (q->_next == p,  "invariant") ;
 910             q->_next = p->_next ;
 911         }
 912         TEVENT (Unlink from cxq) ;
 913     }
 914 
 915     // Diagnostic hygiene ...
 916     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
 917     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
 918     SelfNode->TState = ObjectWaiter::TS_RUN ;
 919 }
 920 
 921 // -----------------------------------------------------------------------------
 922 // Exit support
 923 //
 924 // exit()
 925 // ~~~~~~
 926 // Note that the collector can't reclaim the objectMonitor or deflate
 927 // the object out from underneath the thread calling ::exit() as the
 928 // thread calling ::exit() never transitions to a stable state.
 929 // This inhibits GC, which in turn inhibits asynchronous (and
 930 // inopportune) reclamation of "this".
 931 //
 932 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 933 // There's one exception to the claim above, however.  EnterI() can call
 934 // exit() to drop a lock if the acquirer has been externally suspended.
 935 // In that case exit() is called with _thread_state as _thread_blocked,
 936 // but the monitor's _count field is > 0, which inhibits reclamation.
 937 //
 938 // 1-0 exit
 939 // ~~~~~~~~
 940 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 941 // the fast-path operators have been optimized so the common ::exit()
 942 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
 943 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 944 // greatly improves latency -- MEMBAR and CAS having considerable local
 945 // latency on modern processors -- but at the cost of "stranding".  Absent the
 946 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 947 // ::enter() path, resulting in the entering thread being stranding
 948 // and a progress-liveness failure.   Stranding is extremely rare.
 949 // We use timers (timed park operations) & periodic polling to detect
 950 // and recover from stranding.  Potentially stranded threads periodically
 951 // wake up and poll the lock.  See the usage of the _Responsible variable.
 952 //
 953 // The CAS() in enter provides for safety and exclusion, while the CAS or
 954 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 955 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
 956 // We detect and recover from stranding with timers.
 957 //
 958 // If a thread transiently strands it'll park until (a) another
 959 // thread acquires the lock and then drops the lock, at which time the
 960 // exiting thread will notice and unpark the stranded thread, or, (b)
 961 // the timer expires.  If the lock is high traffic then the stranding latency
 962 // will be low due to (a).  If the lock is low traffic then the odds of
 963 // stranding are lower, although the worst-case stranding latency
 964 // is longer.  Critically, we don't want to put excessive load in the
 965 // platform's timer subsystem.  We want to minimize both the timer injection
 966 // rate (timers created/sec) as well as the number of timers active at
 967 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 968 // the integral of the # of active timers at any instant over time).
 969 // Both impinge on OS scalability.  Given that, at most one thread parked on
 970 // a monitor will use a timer.
 971 
 972 void ATTR ObjectMonitor::exit(intptr_t *exit_stack_id_for_wait, bool not_suspended, TRAPS) {
 973    Thread * Self = THREAD ;
 974    if (THREAD != _owner) {
 975      if (THREAD->is_lock_owned((address) _owner)) {
 976        // Transmute _owner from a BasicLock pointer to a Thread address.
 977        // We don't need to hold _mutex for this transition.
 978        // Non-null to Non-null is safe as long as all readers can
 979        // tolerate either flavor.
 980        assert (_recursions == 0, "invariant") ;
 981        _owner = THREAD ;
 982        _recursions = 0 ;
 983        OwnerIsThread = 1 ;
 984      } else {
 985        // NOTE: we need to handle unbalanced monitor enter/exit
 986        // in native code by throwing an exception.
 987        // TODO: Throw an IllegalMonitorStateException ?
 988        TEVENT (Exit - Throw IMSX) ;
 989        assert(false, "Non-balanced monitor enter/exit!");
 990        if (false) {
 991           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 992        }
 993        return;
 994      }
 995    }
 996 
 997    if (_recursions != 0) {
 998      _recursions--;        // this is simple recursive enter
 999      TEVENT (Inflated exit - recursive) ;
1000      return ;
1001    }
1002 
1003    // Invariant: after setting Responsible=null an thread must execute
1004    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
1005    if ((SyncFlags & 4) == 0) {
1006       _Responsible = NULL ;
1007    }
1008 
1009 #if INCLUDE_TRACE
1010    // get the owner's thread id for the MonitorEnter event
1011    // if it is enabled and the thread isn't suspended
1012    if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
1013      _previous_owner_tid = SharedRuntime::get_java_tid(Self);
1014    }
1015 #endif
1016 
1017    TraceEventMonitorContendedExited event(this);
1018    if (exit_stack_id_for_wait != NULL) {
1019      // This is a temporary exit for Object.wait().
1020      // We don't want to use the current stack trace as the lock site, so if we
1021      // end up writing the event, we allocate a stack id that we resolve later
1022      // when the monitor is really exited. When there are multiple waits, we
1023      // reuse the first preallocated stack id.
1024      event.set_use_or_preallocate_stack_id_at((TraceTypes::stack_id *) exit_stack_id_for_wait);
1025      event.set_resolve_stack(false);
1026    } else {
1027      // true exit
1028      event.set_resolve_stack(true);
1029      if (_trace_exit_stack != 0) {
1030        event.set_use_stack_id(_trace_exit_stack);
1031        event.enable(); // always write the exit event to resolve the stack
1032      }
1033    }
1034    if ((intptr_t(_EntryList) | intptr_t(_cxq)) != 0) {
1035       // there are queued threads -- we are definitely writing a trace event
1036       event.enable();
1037    }
1038 
1039    _trace_exit_stack = 0;
1040 
1041    for (;;) {
1042       assert (THREAD == _owner, "invariant") ;
1043 
1044       //
1045       // NOTE: we have removed all code paths for ExitPolicy != 0 and QMode != 0
1046       //       knob values for simplicity of event tracing.
1047       //
1048 
1049       // release semantics: prior loads and stores from within the critical section
1050       // must not float (reorder) past the following store that drops the lock.
1051       // On SPARC that requires MEMBAR #loadstore|#storestore.
1052       // But of course in TSO #loadstore|#storestore is not required.
1053       // I'd like to write one of the following:
1054       // A.  OrderAccess::release() ; _owner = NULL
1055       // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
1056       // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
1057       // store into a _dummy variable.  That store is not needed, but can result
1058       // in massive wasteful coherency traffic on classic SMP systems.
1059       // Instead, I use release_store(), which is implemented as just a simple
1060       // ST on x64, x86 and SPARC.
1061       OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1062       OrderAccess::storeload() ;                         // See if we need to wake a successor
1063       bool queues_empty = ((intptr_t(_EntryList) | intptr_t(_cxq)) == 0);
1064       bool have_succ = (_succ != NULL);
1065       if (!queues_empty) {
1066           // some thread might have entered itself on _cxq in the meantime
1067           event.enable();
1068       }
1069       if (queues_empty || have_succ) {
1070           TEVENT (Inflated exit - simple egress) ;
1071           return ;
1072       }
1073       TEVENT (Inflated exit - complex egress) ;
1074 
1075       // Normally the exiting thread is responsible for ensuring succession,
1076       // but if other successors are ready or other entering threads are spinning
1077       // then this thread can simply store NULL into _owner and exit without
1078       // waking a successor.  The existence of spinners or ready successors
1079       // guarantees proper succession (liveness).  Responsibility passes to the
1080       // ready or running successors.  The exiting thread delegates the duty.
1081       // More precisely, if a successor already exists this thread is absolved
1082       // of the responsibility of waking (unparking) one.
1083       //
1084       // The _succ variable is critical to reducing futile wakeup frequency.
1085       // _succ identifies the "heir presumptive" thread that has been made
1086       // ready (unparked) but that has not yet run.  We need only one such
1087       // successor thread to guarantee progress.
1088       // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1089       // section 3.3 "Futile Wakeup Throttling" for details.
1090       //
1091       // Note that spinners in Enter() also set _succ non-null.
1092       // In the current implementation spinners opportunistically set
1093       // _succ so that exiting threads might avoid waking a successor.
1094       // Another less appealing alternative would be for the exiting thread
1095       // to drop the lock and then spin briefly to see if a spinner managed
1096       // to acquire the lock.  If so, the exiting thread could exit
1097       // immediately without waking a successor, otherwise the exiting
1098       // thread would need to dequeue and wake a successor.
1099       // (Note that we'd need to make the post-drop spin short, but no
1100       // shorter than the worst-case round-trip cache-line migration time.
1101       // The dropped lock needs to become visible to the spinner, and then
1102       // the acquisition of the lock by the spinner must become visible to
1103       // the exiting thread).
1104       //
1105 
1106       // It appears that an heir-presumptive (successor) must be made ready.
1107       // Only the current lock owner can manipulate the EntryList or
1108       // drain _cxq, so we need to reacquire the lock.  If we fail
1109       // to reacquire the lock the responsibility for ensuring succession
1110       // falls to the new owner.
1111       //
1112       if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1113           return ;
1114       }
1115       TEVENT (Exit - Reacquired) ;
1116 
1117       guarantee (_owner == THREAD, "invariant") ;
1118 
1119       ObjectWaiter * w = NULL ;
1120 
1121       w = _EntryList  ;
1122       if (w != NULL) {
1123           // I'd like to write: guarantee (w->_thread != Self).
1124           // But in practice an exiting thread may find itself on the EntryList.
1125           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1126           // then calls exit().  Exit release the lock by setting O._owner to NULL.
1127           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1128           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1129           // release the lock "O".  T2 resumes immediately after the ST of null into
1130           // _owner, above.  T2 notices that the EntryList is populated, so it
1131           // reacquires the lock and then finds itself on the EntryList.
1132           // Given all that, we have to tolerate the circumstance where "w" is
1133           // associated with Self.
1134           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1135           ExitEpilog (Self, w) ;
1136           return ;
1137       }
1138 
1139       // If we find that both _cxq and EntryList are null then just
1140       // re-run the exit protocol from the top.
1141       w = _cxq ;
1142       if (w == NULL) continue ;
1143 
1144       // Drain _cxq into EntryList - bulk transfer.
1145       // First, detach _cxq.
1146       // The following loop is tantamount to: w = swap (&cxq, NULL)
1147       for (;;) {
1148           assert (w != NULL, "Invariant") ;
1149           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1150           if (u == w) break ;
1151           w = u ;
1152       }
1153       TEVENT (Inflated exit - drain cxq into EntryList) ;
1154 
1155       assert (w != NULL              , "invariant") ;
1156       assert (_EntryList  == NULL    , "invariant") ;
1157 
1158       // Convert the LIFO SLL anchored by _cxq into a DLL.
1159       // The list reorganization step operates in O(LENGTH(w)) time.
1160       // It's critical that this step operate quickly as
1161       // "Self" still holds the outer-lock, restricting parallelism
1162       // and effectively lengthening the critical section.
1163       // Invariant: s chases t chases u.
1164       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1165       // we have faster access to the tail.
1166 
1167       _EntryList = w ;
1168       ObjectWaiter * q = NULL ;
1169       ObjectWaiter * p ;
1170       for (p = w ; p != NULL ; p = p->_next) {
1171           guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1172           p->TState = ObjectWaiter::TS_ENTER ;
1173           p->_prev = q ;
1174           q = p ;
1175       }
1176 
1177       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1178       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1179 
1180       // See if we can abdicate to a spinner instead of waking a thread.
1181       // A primary goal of the implementation is to reduce the
1182       // context-switch rate.
1183       if (_succ != NULL) continue;
1184 
1185       w = _EntryList  ;
1186       if (w != NULL) {
1187           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1188           ExitEpilog (Self, w) ;
1189           return ;
1190       }
1191    }
1192 }
1193 
1194 // ExitSuspendEquivalent:
1195 // A faster alternate to handle_special_suspend_equivalent_condition()
1196 //
1197 // handle_special_suspend_equivalent_condition() unconditionally
1198 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1199 // operations have high latency.  Note that in ::enter() we call HSSEC
1200 // while holding the monitor, so we effectively lengthen the critical sections.
1201 //
1202 // There are a number of possible solutions:
1203 //
1204 // A.  To ameliorate the problem we might also defer state transitions
1205 //     to as late as possible -- just prior to parking.
1206 //     Given that, we'd call HSSEC after having returned from park(),
1207 //     but before attempting to acquire the monitor.  This is only a
1208 //     partial solution.  It avoids calling HSSEC while holding the
1209 //     monitor (good), but it still increases successor reacquisition latency --
1210 //     the interval between unparking a successor and the time the successor
1211 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1212 //     If we use this technique we can also avoid EnterI()-exit() loop
1213 //     in ::enter() where we iteratively drop the lock and then attempt
1214 //     to reacquire it after suspending.
1215 //
1216 // B.  In the future we might fold all the suspend bits into a
1217 //     composite per-thread suspend flag and then update it with CAS().
1218 //     Alternately, a Dekker-like mechanism with multiple variables
1219 //     would suffice:
1220 //       ST Self->_suspend_equivalent = false
1221 //       MEMBAR
1222 //       LD Self_>_suspend_flags
1223 //
1224 
1225 
1226 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1227    int Mode = Knob_FastHSSEC ;
1228    if (Mode && !jSelf->is_external_suspend()) {
1229       assert (jSelf->is_suspend_equivalent(), "invariant") ;
1230       jSelf->clear_suspend_equivalent() ;
1231       if (2 == Mode) OrderAccess::storeload() ;
1232       if (!jSelf->is_external_suspend()) return false ;
1233       // We raced a suspension -- fall thru into the slow path
1234       TEVENT (ExitSuspendEquivalent - raced) ;
1235       jSelf->set_suspend_equivalent() ;
1236    }
1237    return jSelf->handle_special_suspend_equivalent_condition() ;
1238 }
1239 
1240 
1241 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1242    assert (_owner == Self, "invariant") ;
1243 
1244    // Exit protocol:
1245    // 1. ST _succ = wakee
1246    // 2. membar #loadstore|#storestore;
1247    // 2. ST _owner = NULL
1248    // 3. unpark(wakee)
1249 
1250    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
1251    ParkEvent * Trigger = Wakee->_event ;
1252 
1253    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1254    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1255    // out-of-scope (non-extant).
1256    Wakee  = NULL ;
1257 
1258    // Drop the lock
1259    OrderAccess::release_store_ptr (&_owner, NULL) ;
1260    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
1261 
1262    if (SafepointSynchronize::do_call_back()) {
1263       TEVENT (unpark before SAFEPOINT) ;
1264    }
1265 
1266    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1267    Trigger->unpark() ;
1268 
1269    // Maintain stats and report events to JVMTI
1270    if (ObjectMonitor::_sync_Parks != NULL) {
1271       ObjectMonitor::_sync_Parks->inc() ;
1272    }
1273 }
1274 
1275 
1276 // -----------------------------------------------------------------------------
1277 // Class Loader deadlock handling.
1278 //
1279 // complete_exit exits a lock returning recursion count
1280 // complete_exit/reenter operate as a wait without waiting
1281 // complete_exit requires an inflated monitor
1282 // The _owner field is not always the Thread addr even with an
1283 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1284 // thread due to contention.
1285 void ObjectMonitor::complete_exit(intptr_t *saved_recursions, intptr_t *saved_trace_exit_stack, TRAPS) {
1286    Thread * const Self = THREAD;
1287    assert(Self->is_Java_thread(), "Must be Java thread!");
1288    JavaThread *jt = (JavaThread *)THREAD;
1289 
1290    DeferredInitialize();
1291 
1292    if (THREAD != _owner) {
1293     if (THREAD->is_lock_owned ((address)_owner)) {
1294        assert(_recursions == 0, "internal state error");
1295        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
1296        _recursions = 0 ;
1297        OwnerIsThread = 1 ;
1298     }
1299    }
1300 
1301    guarantee(Self == _owner, "complete_exit not owner");
1302    // record old recursion level and exit stack
1303    if (saved_recursions != NULL) *saved_recursions = _recursions;
1304    if (saved_recursions != NULL) *saved_trace_exit_stack = _trace_exit_stack;
1305    _recursions = 0;
1306    exit(saved_trace_exit_stack, true, Self);
1307    guarantee (_owner != Self, "invariant");
1308 }
1309 
1310 // reenter() enters a lock and sets recursion count
1311 // complete_exit/reenter operate as a wait without waiting
1312 void ObjectMonitor::reenter(intptr_t saved_recursions, intptr_t saved_trace_exit_stack, TRAPS) {
1313    Thread * const Self = THREAD;
1314    assert(Self->is_Java_thread(), "Must be Java thread!");
1315    JavaThread *jt = (JavaThread *)THREAD;
1316 
1317    guarantee(_owner != Self, "reenter already owner");
1318    enter (THREAD);       // enter the monitor
1319    guarantee (_recursions == 0, "reenter recursion");
1320    _recursions = saved_recursions;
1321    _trace_exit_stack = saved_trace_exit_stack;
1322 }
1323 
1324 
1325 // -----------------------------------------------------------------------------
1326 // A macro is used below because there may already be a pending
1327 // exception which should not abort the execution of the routines
1328 // which use this (which is why we don't put this into check_slow and
1329 // call it with a CHECK argument).
1330 
1331 #define CHECK_OWNER()                                                             \
1332   do {                                                                            \
1333     if (THREAD != _owner) {                                                       \
1334       if (THREAD->is_lock_owned((address) _owner)) {                              \
1335         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1336         _recursions = 0;                                                          \
1337         OwnerIsThread = 1 ;                                                       \
1338       } else {                                                                    \
1339         TEVENT (Throw IMSX) ;                                                     \
1340         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1341       }                                                                           \
1342     }                                                                             \
1343   } while (false)
1344 
1345 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1346 // TODO-FIXME: remove check_slow() -- it's likely dead.
1347 
1348 void ObjectMonitor::check_slow(TRAPS) {
1349   TEVENT (check_slow - throw IMSX) ;
1350   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1351   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1352 }
1353 
1354 static int Adjust (volatile int * adr, int dx) {
1355   int v ;
1356   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
1357   return v ;
1358 }
1359 
1360 // helper method for posting a monitor wait event
1361 void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
1362                                                            jlong notifier_tid,
1363                                                            jlong timeout,
1364                                                            bool timedout) {
1365   event->set_klass(((oop)this->object())->klass());
1366   event->set_timeout((TYPE_ULONG)timeout);
1367   event->set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
1368   event->set_notifier((TYPE_OSTHREAD)notifier_tid);
1369   event->set_timedOut((TYPE_BOOLEAN)timedout);
1370   event->commit();
1371 }
1372 
1373 // -----------------------------------------------------------------------------
1374 // Wait/Notify/NotifyAll
1375 //
1376 // Note: a subset of changes to ObjectMonitor::wait()
1377 // will need to be replicated in complete_exit above
1378 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1379    Thread * const Self = THREAD ;
1380    assert(Self->is_Java_thread(), "Must be Java thread!");
1381    JavaThread *jt = (JavaThread *)THREAD;
1382 
1383    DeferredInitialize () ;
1384 
1385    // Throw IMSX or IEX.
1386    CHECK_OWNER();
1387 
1388    EventJavaMonitorWait event;
1389 
1390    // check for a pending interrupt
1391    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1392      // post monitor waited event.  Note that this is past-tense, we are done waiting.
1393      if (JvmtiExport::should_post_monitor_waited()) {
1394         // Note: 'false' parameter is passed here because the
1395         // wait was not timed out due to thread interrupt.
1396         JvmtiExport::post_monitor_waited(jt, this, false);
1397 
1398         // In this short circuit of the monitor wait protocol, the
1399         // current thread never drops ownership of the monitor and
1400         // never gets added to the wait queue so the current thread
1401         // cannot be made the successor. This means that the
1402         // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1403         // consume an unpark() meant for the ParkEvent associated with
1404         // this ObjectMonitor.
1405      }
1406      if (event.should_commit()) {
1407        post_monitor_wait_event(&event, 0, millis, false);
1408      }
1409      TEVENT (Wait - Throw IEX) ;
1410      THROW(vmSymbols::java_lang_InterruptedException());
1411      return ;
1412    }
1413 
1414    TEVENT (Wait) ;
1415 
1416    assert (Self->_Stalled == 0, "invariant") ;
1417    Self->_Stalled = intptr_t(this) ;
1418    jt->set_current_waiting_monitor(this);
1419 
1420    // create a node to be put into the queue
1421    // Critically, after we reset() the event but prior to park(), we must check
1422    // for a pending interrupt.
1423    ObjectWaiter node(Self);
1424    node.TState = ObjectWaiter::TS_WAIT ;
1425    Self->_ParkEvent->reset() ;
1426    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1427 
1428    // Enter the waiting queue, which is a circular doubly linked list in this case
1429    // but it could be a priority queue or any data structure.
1430    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1431    // by the the owner of the monitor *except* in the case where park()
1432    // returns because of a timeout of interrupt.  Contention is exceptionally rare
1433    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1434 
1435    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
1436    AddWaiter (&node) ;
1437    Thread::SpinRelease (&_WaitSetLock) ;
1438 
1439    if ((SyncFlags & 4) == 0) {
1440       _Responsible = NULL ;
1441    }
1442    intptr_t saved_recursions = _recursions; // record the old recursion count
1443    intptr_t saved_trace_exit_stack = _trace_exit_stack;
1444    _waiters++;                  // increment the number of waiters
1445    _recursions = 0;             // set the recursion level to be 1
1446    exit(&saved_trace_exit_stack, true, Self); // exit, knows how to handle exit stack
1447    guarantee (_owner != Self, "invariant") ;
1448 
1449    // The thread is on the WaitSet list - now park() it.
1450    // On MP systems it's conceivable that a brief spin before we park
1451    // could be profitable.
1452    //
1453    // TODO-FIXME: change the following logic to a loop of the form
1454    //   while (!timeout && !interrupted && _notified == 0) park()
1455 
1456    int ret = OS_OK ;
1457    int WasNotified = 0 ;
1458    { // State transition wrappers
1459      OSThread* osthread = Self->osthread();
1460      OSThreadWaitState osts(osthread, true);
1461      {
1462        ThreadBlockInVM tbivm(jt);
1463        // Thread is in thread_blocked state and oop access is unsafe.
1464        jt->set_suspend_equivalent();
1465 
1466        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1467            // Intentionally empty
1468        } else
1469        if (node._notified == 0) {
1470          if (millis <= 0) {
1471             Self->_ParkEvent->park () ;
1472          } else {
1473             ret = Self->_ParkEvent->park (millis) ;
1474          }
1475        }
1476 
1477        // were we externally suspended while we were waiting?
1478        if (ExitSuspendEquivalent (jt)) {
1479           // TODO-FIXME: add -- if succ == Self then succ = null.
1480           jt->java_suspend_self();
1481        }
1482 
1483      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1484 
1485 
1486      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1487      // from the WaitSet to the EntryList.
1488      // See if we need to remove Node from the WaitSet.
1489      // We use double-checked locking to avoid grabbing _WaitSetLock
1490      // if the thread is not on the wait queue.
1491      //
1492      // Note that we don't need a fence before the fetch of TState.
1493      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1494      // written by the is thread. (perhaps the fetch might even be satisfied
1495      // by a look-aside into the processor's own store buffer, although given
1496      // the length of the code path between the prior ST and this load that's
1497      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1498      // then we'll acquire the lock and then re-fetch a fresh TState value.
1499      // That is, we fail toward safety.
1500 
1501      if (node.TState == ObjectWaiter::TS_WAIT) {
1502          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1503          if (node.TState == ObjectWaiter::TS_WAIT) {
1504             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
1505             assert(node._notified == 0, "invariant");
1506             node.TState = ObjectWaiter::TS_RUN ;
1507          }
1508          Thread::SpinRelease (&_WaitSetLock) ;
1509      }
1510 
1511      // The thread is now either on off-list (TS_RUN),
1512      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1513      // The Node's TState variable is stable from the perspective of this thread.
1514      // No other threads will asynchronously modify TState.
1515      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
1516      OrderAccess::loadload() ;
1517      if (_succ == Self) _succ = NULL ;
1518      WasNotified = node._notified ;
1519 
1520      // Reentry phase -- reacquire the monitor.
1521      // re-enter contended monitor after object.wait().
1522      // retain OBJECT_WAIT state until re-enter successfully completes
1523      // Thread state is thread_in_vm and oop access is again safe,
1524      // although the raw address of the object may have changed.
1525      // (Don't cache naked oops over safepoints, of course).
1526 
1527      // post monitor waited event. Note that this is past-tense, we are done waiting.
1528      if (JvmtiExport::should_post_monitor_waited()) {
1529        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1530 
1531        if (node._notified != 0 && _succ == Self) {
1532          // In this part of the monitor wait-notify-reenter protocol it
1533          // is possible (and normal) for another thread to do a fastpath
1534          // monitor enter-exit while this thread is still trying to get
1535          // to the reenter portion of the protocol.
1536          //
1537          // The ObjectMonitor was notified and the current thread is
1538          // the successor which also means that an unpark() has already
1539          // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1540          // consume the unpark() that was done when the successor was
1541          // set because the same ParkEvent is shared between Java
1542          // monitors and JVM/TI RawMonitors (for now).
1543          //
1544          // We redo the unpark() to ensure forward progress, i.e., we
1545          // don't want all pending threads hanging (parked) with none
1546          // entering the unlocked monitor.
1547          node._event->unpark();
1548        }
1549      }
1550 
1551      if (event.should_commit()) {
1552        post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
1553      }
1554 
1555      OrderAccess::fence() ;
1556 
1557      assert (Self->_Stalled != 0, "invariant") ;
1558      Self->_Stalled = 0 ;
1559 
1560      assert (_owner != Self, "invariant") ;
1561      ObjectWaiter::TStates v = node.TState ;
1562      if (v == ObjectWaiter::TS_RUN) {
1563          int after_wait = TraceTypes::enter_after_wait_other;
1564          if (node._notified) {
1565            after_wait = TraceTypes::enter_after_wait_notify;
1566          } else if (ret == OS_TIMEOUT) {
1567            after_wait = TraceTypes::enter_after_wait_timeout;
1568          }
1569          enter (after_wait, Self) ;
1570      } else {
1571          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
1572          ReenterI (Self, &node) ;
1573          node.wait_reenter_end(this);
1574      }
1575 
1576      // Self has reacquired the lock.
1577      // Lifecycle - the node representing Self must not appear on any queues.
1578      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1579      // want residual elements associated with this thread left on any lists.
1580      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
1581      assert    (_owner == Self, "invariant") ;
1582      assert    (_succ != Self , "invariant") ;
1583    } // OSThreadWaitState()
1584 
1585    jt->set_current_waiting_monitor(NULL);
1586 
1587    guarantee (_recursions == 0, "invariant") ;
1588    // restore the saved recursion count and exit stack
1589    _recursions = saved_recursions;
1590    _trace_exit_stack = saved_trace_exit_stack;
1591    _waiters--;             // decrement the number of waiters
1592 
1593    // Verify a few postconditions
1594    assert (_owner == Self       , "invariant") ;
1595    assert (_succ  != Self       , "invariant") ;
1596    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
1597 
1598    if (SyncFlags & 32) {
1599       OrderAccess::fence() ;
1600    }
1601 
1602    // check if the notification happened
1603    if (!WasNotified) {
1604      // no, it could be timeout or Thread.interrupt() or both
1605      // check for interrupt event, otherwise it is timeout
1606      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1607        TEVENT (Wait - throw IEX from epilog) ;
1608        THROW(vmSymbols::java_lang_InterruptedException());
1609      }
1610    }
1611 
1612    // NOTE: Spurious wake up will be consider as timeout.
1613    // Monitor notify has precedence over thread interrupt.
1614 }
1615 
1616 
1617 // Consider:
1618 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1619 // then instead of transferring a thread from the WaitSet to the EntryList
1620 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1621 
1622 void ObjectMonitor::notify(TRAPS) {
1623   CHECK_OWNER();
1624   if (_WaitSet == NULL) {
1625      TEVENT (Empty-Notify) ;
1626      return ;
1627   }
1628   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1629 
1630   int Policy = Knob_MoveNotifyee ;
1631 
1632   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
1633   ObjectWaiter * iterator = DequeueWaiter() ;
1634   if (iterator != NULL) {
1635      TEVENT (Notify1 - Transfer) ;
1636      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1637      guarantee (iterator->_notified == 0, "invariant") ;
1638      if (Policy != 4) {
1639         iterator->TState = ObjectWaiter::TS_ENTER ;
1640      }
1641      iterator->_notified = 1 ;
1642      Thread * Self = THREAD;
1643      iterator->_notifier_tid = Self->osthread()->thread_id();
1644 
1645      ObjectWaiter * List = _EntryList ;
1646      if (List != NULL) {
1647         assert (List->_prev == NULL, "invariant") ;
1648         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1649         assert (List != iterator, "invariant") ;
1650      }
1651 
1652      if (Policy == 0) {       // prepend to EntryList
1653          if (List == NULL) {
1654              iterator->_next = iterator->_prev = NULL ;
1655              _EntryList = iterator ;
1656          } else {
1657              List->_prev = iterator ;
1658              iterator->_next = List ;
1659              iterator->_prev = NULL ;
1660              _EntryList = iterator ;
1661         }
1662      } else
1663      if (Policy == 1) {      // append to EntryList
1664          if (List == NULL) {
1665              iterator->_next = iterator->_prev = NULL ;
1666              _EntryList = iterator ;
1667          } else {
1668             // CONSIDER:  finding the tail currently requires a linear-time walk of
1669             // the EntryList.  We can make tail access constant-time by converting to
1670             // a CDLL instead of using our current DLL.
1671             ObjectWaiter * Tail ;
1672             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1673             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1674             Tail->_next = iterator ;
1675             iterator->_prev = Tail ;
1676             iterator->_next = NULL ;
1677         }
1678      } else
1679      if (Policy == 2) {      // prepend to cxq
1680          // prepend to cxq
1681          if (List == NULL) {
1682              iterator->_next = iterator->_prev = NULL ;
1683              _EntryList = iterator ;
1684          } else {
1685             iterator->TState = ObjectWaiter::TS_CXQ ;
1686             for (;;) {
1687                 ObjectWaiter * Front = _cxq ;
1688                 iterator->_next = Front ;
1689                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1690                     break ;
1691                 }
1692             }
1693          }
1694      } else
1695      if (Policy == 3) {      // append to cxq
1696         iterator->TState = ObjectWaiter::TS_CXQ ;
1697         for (;;) {
1698             ObjectWaiter * Tail ;
1699             Tail = _cxq ;
1700             if (Tail == NULL) {
1701                 iterator->_next = NULL ;
1702                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1703                    break ;
1704                 }
1705             } else {
1706                 while (Tail->_next != NULL) Tail = Tail->_next ;
1707                 Tail->_next = iterator ;
1708                 iterator->_prev = Tail ;
1709                 iterator->_next = NULL ;
1710                 break ;
1711             }
1712         }
1713      } else {
1714         ParkEvent * ev = iterator->_event ;
1715         iterator->TState = ObjectWaiter::TS_RUN ;
1716         OrderAccess::fence() ;
1717         ev->unpark() ;
1718      }
1719 
1720      if (Policy < 4) {
1721        iterator->wait_reenter_begin(this);
1722      }
1723 
1724      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1725      // move the add-to-EntryList operation, above, outside the critical section
1726      // protected by _WaitSetLock.  In practice that's not useful.  With the
1727      // exception of  wait() timeouts and interrupts the monitor owner
1728      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1729      // on _WaitSetLock so it's not profitable to reduce the length of the
1730      // critical section.
1731   }
1732 
1733   Thread::SpinRelease (&_WaitSetLock) ;
1734 
1735   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1736      ObjectMonitor::_sync_Notifications->inc() ;
1737   }
1738 }
1739 
1740 
1741 void ObjectMonitor::notifyAll(TRAPS) {
1742   CHECK_OWNER();
1743   ObjectWaiter* iterator;
1744   if (_WaitSet == NULL) {
1745       TEVENT (Empty-NotifyAll) ;
1746       return ;
1747   }
1748   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1749 
1750   int Policy = Knob_MoveNotifyee ;
1751   int Tally = 0 ;
1752   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
1753 
1754   for (;;) {
1755      iterator = DequeueWaiter () ;
1756      if (iterator == NULL) break ;
1757      TEVENT (NotifyAll - Transfer1) ;
1758      ++Tally ;
1759 
1760      // Disposition - what might we do with iterator ?
1761      // a.  add it directly to the EntryList - either tail or head.
1762      // b.  push it onto the front of the _cxq.
1763      // For now we use (a).
1764 
1765      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1766      guarantee (iterator->_notified == 0, "invariant") ;
1767      iterator->_notified = 1 ;
1768      Thread * Self = THREAD;
1769      iterator->_notifier_tid = Self->osthread()->thread_id();
1770      if (Policy != 4) {
1771         iterator->TState = ObjectWaiter::TS_ENTER ;
1772      }
1773 
1774      ObjectWaiter * List = _EntryList ;
1775      if (List != NULL) {
1776         assert (List->_prev == NULL, "invariant") ;
1777         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1778         assert (List != iterator, "invariant") ;
1779      }
1780 
1781      if (Policy == 0) {       // prepend to EntryList
1782          if (List == NULL) {
1783              iterator->_next = iterator->_prev = NULL ;
1784              _EntryList = iterator ;
1785          } else {
1786              List->_prev = iterator ;
1787              iterator->_next = List ;
1788              iterator->_prev = NULL ;
1789              _EntryList = iterator ;
1790         }
1791      } else
1792      if (Policy == 1) {      // append to EntryList
1793          if (List == NULL) {
1794              iterator->_next = iterator->_prev = NULL ;
1795              _EntryList = iterator ;
1796          } else {
1797             // CONSIDER:  finding the tail currently requires a linear-time walk of
1798             // the EntryList.  We can make tail access constant-time by converting to
1799             // a CDLL instead of using our current DLL.
1800             ObjectWaiter * Tail ;
1801             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1802             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1803             Tail->_next = iterator ;
1804             iterator->_prev = Tail ;
1805             iterator->_next = NULL ;
1806         }
1807      } else
1808      if (Policy == 2) {      // prepend to cxq
1809          // prepend to cxq
1810          iterator->TState = ObjectWaiter::TS_CXQ ;
1811          for (;;) {
1812              ObjectWaiter * Front = _cxq ;
1813              iterator->_next = Front ;
1814              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1815                  break ;
1816              }
1817          }
1818      } else
1819      if (Policy == 3) {      // append to cxq
1820         iterator->TState = ObjectWaiter::TS_CXQ ;
1821         for (;;) {
1822             ObjectWaiter * Tail ;
1823             Tail = _cxq ;
1824             if (Tail == NULL) {
1825                 iterator->_next = NULL ;
1826                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1827                    break ;
1828                 }
1829             } else {
1830                 while (Tail->_next != NULL) Tail = Tail->_next ;
1831                 Tail->_next = iterator ;
1832                 iterator->_prev = Tail ;
1833                 iterator->_next = NULL ;
1834                 break ;
1835             }
1836         }
1837      } else {
1838         ParkEvent * ev = iterator->_event ;
1839         iterator->TState = ObjectWaiter::TS_RUN ;
1840         OrderAccess::fence() ;
1841         ev->unpark() ;
1842      }
1843 
1844      if (Policy < 4) {
1845        iterator->wait_reenter_begin(this);
1846      }
1847 
1848      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1849      // move the add-to-EntryList operation, above, outside the critical section
1850      // protected by _WaitSetLock.  In practice that's not useful.  With the
1851      // exception of  wait() timeouts and interrupts the monitor owner
1852      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1853      // on _WaitSetLock so it's not profitable to reduce the length of the
1854      // critical section.
1855   }
1856 
1857   Thread::SpinRelease (&_WaitSetLock) ;
1858 
1859   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1860      ObjectMonitor::_sync_Notifications->inc(Tally) ;
1861   }
1862 }
1863 
1864 // -----------------------------------------------------------------------------
1865 // Adaptive Spinning Support
1866 //
1867 // Adaptive spin-then-block - rational spinning
1868 //
1869 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1870 // algorithm.  On high order SMP systems it would be better to start with
1871 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1872 // a contending thread could enqueue itself on the cxq and then spin locally
1873 // on a thread-specific variable such as its ParkEvent._Event flag.
1874 // That's left as an exercise for the reader.  Note that global spinning is
1875 // not problematic on Niagara, as the L2$ serves the interconnect and has both
1876 // low latency and massive bandwidth.
1877 //
1878 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1879 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1880 // (duration) or we can fix the count at approximately the duration of
1881 // a context switch and vary the frequency.   Of course we could also
1882 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1883 // For a description of 'Adaptive spin-then-block mutual exclusion in
1884 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1885 //
1886 // This implementation varies the duration "D", where D varies with
1887 // the success rate of recent spin attempts. (D is capped at approximately
1888 // length of a round-trip context switch).  The success rate for recent
1889 // spin attempts is a good predictor of the success rate of future spin
1890 // attempts.  The mechanism adapts automatically to varying critical
1891 // section length (lock modality), system load and degree of parallelism.
1892 // D is maintained per-monitor in _SpinDuration and is initialized
1893 // optimistically.  Spin frequency is fixed at 100%.
1894 //
1895 // Note that _SpinDuration is volatile, but we update it without locks
1896 // or atomics.  The code is designed so that _SpinDuration stays within
1897 // a reasonable range even in the presence of races.  The arithmetic
1898 // operations on _SpinDuration are closed over the domain of legal values,
1899 // so at worst a race will install and older but still legal value.
1900 // At the very worst this introduces some apparent non-determinism.
1901 // We might spin when we shouldn't or vice-versa, but since the spin
1902 // count are relatively short, even in the worst case, the effect is harmless.
1903 //
1904 // Care must be taken that a low "D" value does not become an
1905 // an absorbing state.  Transient spinning failures -- when spinning
1906 // is overall profitable -- should not cause the system to converge
1907 // on low "D" values.  We want spinning to be stable and predictable
1908 // and fairly responsive to change and at the same time we don't want
1909 // it to oscillate, become metastable, be "too" non-deterministic,
1910 // or converge on or enter undesirable stable absorbing states.
1911 //
1912 // We implement a feedback-based control system -- using past behavior
1913 // to predict future behavior.  We face two issues: (a) if the
1914 // input signal is random then the spin predictor won't provide optimal
1915 // results, and (b) if the signal frequency is too high then the control
1916 // system, which has some natural response lag, will "chase" the signal.
1917 // (b) can arise from multimodal lock hold times.  Transient preemption
1918 // can also result in apparent bimodal lock hold times.
1919 // Although sub-optimal, neither condition is particularly harmful, as
1920 // in the worst-case we'll spin when we shouldn't or vice-versa.
1921 // The maximum spin duration is rather short so the failure modes aren't bad.
1922 // To be conservative, I've tuned the gain in system to bias toward
1923 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1924 // "rings" or oscillates between spinning and not spinning.  This happens
1925 // when spinning is just on the cusp of profitability, however, so the
1926 // situation is not dire.  The state is benign -- there's no need to add
1927 // hysteresis control to damp the transition rate between spinning and
1928 // not spinning.
1929 //
1930 
1931 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
1932 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
1933 
1934 // Spinning: Fixed frequency (100%), vary duration
1935 
1936 
1937 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
1938 
1939     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1940     int ctr = Knob_FixedSpin ;
1941     if (ctr != 0) {
1942         while (--ctr >= 0) {
1943             if (TryLock (Self) > 0) return 1 ;
1944             SpinPause () ;
1945         }
1946         return 0 ;
1947     }
1948 
1949     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
1950       if (TryLock(Self) > 0) {
1951         // Increase _SpinDuration ...
1952         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1953         // Raising _SpurDuration to the poverty line is key.
1954         int x = _SpinDuration ;
1955         if (x < Knob_SpinLimit) {
1956            if (x < Knob_Poverty) x = Knob_Poverty ;
1957            _SpinDuration = x + Knob_BonusB ;
1958         }
1959         return 1 ;
1960       }
1961       SpinPause () ;
1962     }
1963 
1964     // Admission control - verify preconditions for spinning
1965     //
1966     // We always spin a little bit, just to prevent _SpinDuration == 0 from
1967     // becoming an absorbing state.  Put another way, we spin briefly to
1968     // sample, just in case the system load, parallelism, contention, or lock
1969     // modality changed.
1970     //
1971     // Consider the following alternative:
1972     // Periodically set _SpinDuration = _SpinLimit and try a long/full
1973     // spin attempt.  "Periodically" might mean after a tally of
1974     // the # of failed spin attempts (or iterations) reaches some threshold.
1975     // This takes us into the realm of 1-out-of-N spinning, where we
1976     // hold the duration constant but vary the frequency.
1977 
1978     ctr = _SpinDuration  ;
1979     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
1980     if (ctr <= 0) return 0 ;
1981 
1982     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
1983     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1984        TEVENT (Spin abort - notrunnable [TOP]);
1985        return 0 ;
1986     }
1987 
1988     int MaxSpin = Knob_MaxSpinners ;
1989     if (MaxSpin >= 0) {
1990        if (_Spinner > MaxSpin) {
1991           TEVENT (Spin abort -- too many spinners) ;
1992           return 0 ;
1993        }
1994        // Slighty racy, but benign ...
1995        Adjust (&_Spinner, 1) ;
1996     }
1997 
1998     // We're good to spin ... spin ingress.
1999     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2000     // when preparing to LD...CAS _owner, etc and the CAS is likely
2001     // to succeed.
2002     int hits    = 0 ;
2003     int msk     = 0 ;
2004     int caspty  = Knob_CASPenalty ;
2005     int oxpty   = Knob_OXPenalty ;
2006     int sss     = Knob_SpinSetSucc ;
2007     if (sss && _succ == NULL ) _succ = Self ;
2008     Thread * prv = NULL ;
2009 
2010     // There are three ways to exit the following loop:
2011     // 1.  A successful spin where this thread has acquired the lock.
2012     // 2.  Spin failure with prejudice
2013     // 3.  Spin failure without prejudice
2014 
2015     while (--ctr >= 0) {
2016 
2017       // Periodic polling -- Check for pending GC
2018       // Threads may spin while they're unsafe.
2019       // We don't want spinning threads to delay the JVM from reaching
2020       // a stop-the-world safepoint or to steal cycles from GC.
2021       // If we detect a pending safepoint we abort in order that
2022       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2023       // this thread, if safe, doesn't steal cycles from GC.
2024       // This is in keeping with the "no loitering in runtime" rule.
2025       // We periodically check to see if there's a safepoint pending.
2026       if ((ctr & 0xFF) == 0) {
2027          if (SafepointSynchronize::do_call_back()) {
2028             TEVENT (Spin: safepoint) ;
2029             goto Abort ;           // abrupt spin egress
2030          }
2031          if (Knob_UsePause & 1) SpinPause () ;
2032 
2033          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
2034          if (hits > 50 && scb != NULL) {
2035             int abend = (*scb)(SpinCallbackArgument, 0) ;
2036          }
2037       }
2038 
2039       if (Knob_UsePause & 2) SpinPause() ;
2040 
2041       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
2042       // This is useful on classic SMP systems, but is of less utility on
2043       // N1-style CMT platforms.
2044       //
2045       // Trade-off: lock acquisition latency vs coherency bandwidth.
2046       // Lock hold times are typically short.  A histogram
2047       // of successful spin attempts shows that we usually acquire
2048       // the lock early in the spin.  That suggests we want to
2049       // sample _owner frequently in the early phase of the spin,
2050       // but then back-off and sample less frequently as the spin
2051       // progresses.  The back-off makes a good citizen on SMP big
2052       // SMP systems.  Oversampling _owner can consume excessive
2053       // coherency bandwidth.  Relatedly, if we _oversample _owner we
2054       // can inadvertently interfere with the the ST m->owner=null.
2055       // executed by the lock owner.
2056       if (ctr & msk) continue ;
2057       ++hits ;
2058       if ((hits & 0xF) == 0) {
2059         // The 0xF, above, corresponds to the exponent.
2060         // Consider: (msk+1)|msk
2061         msk = ((msk << 2)|3) & BackOffMask ;
2062       }
2063 
2064       // Probe _owner with TATAS
2065       // If this thread observes the monitor transition or flicker
2066       // from locked to unlocked to locked, then the odds that this
2067       // thread will acquire the lock in this spin attempt go down
2068       // considerably.  The same argument applies if the CAS fails
2069       // or if we observe _owner change from one non-null value to
2070       // another non-null value.   In such cases we might abort
2071       // the spin without prejudice or apply a "penalty" to the
2072       // spin count-down variable "ctr", reducing it by 100, say.
2073 
2074       Thread * ox = (Thread *) _owner ;
2075       if (ox == NULL) {
2076          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2077          if (ox == NULL) {
2078             // The CAS succeeded -- this thread acquired ownership
2079             // Take care of some bookkeeping to exit spin state.
2080             if (sss && _succ == Self) {
2081                _succ = NULL ;
2082             }
2083             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2084 
2085             // Increase _SpinDuration :
2086             // The spin was successful (profitable) so we tend toward
2087             // longer spin attempts in the future.
2088             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2089             // If we acquired the lock early in the spin cycle it
2090             // makes sense to increase _SpinDuration proportionally.
2091             // Note that we don't clamp SpinDuration precisely at SpinLimit.
2092             int x = _SpinDuration ;
2093             if (x < Knob_SpinLimit) {
2094                 if (x < Knob_Poverty) x = Knob_Poverty ;
2095                 _SpinDuration = x + Knob_Bonus ;
2096             }
2097             return 1 ;
2098          }
2099 
2100          // The CAS failed ... we can take any of the following actions:
2101          // * penalize: ctr -= Knob_CASPenalty
2102          // * exit spin with prejudice -- goto Abort;
2103          // * exit spin without prejudice.
2104          // * Since CAS is high-latency, retry again immediately.
2105          prv = ox ;
2106          TEVENT (Spin: cas failed) ;
2107          if (caspty == -2) break ;
2108          if (caspty == -1) goto Abort ;
2109          ctr -= caspty ;
2110          continue ;
2111       }
2112 
2113       // Did lock ownership change hands ?
2114       if (ox != prv && prv != NULL ) {
2115           TEVENT (spin: Owner changed)
2116           if (oxpty == -2) break ;
2117           if (oxpty == -1) goto Abort ;
2118           ctr -= oxpty ;
2119       }
2120       prv = ox ;
2121 
2122       // Abort the spin if the owner is not executing.
2123       // The owner must be executing in order to drop the lock.
2124       // Spinning while the owner is OFFPROC is idiocy.
2125       // Consider: ctr -= RunnablePenalty ;
2126       if (Knob_OState && NotRunnable (Self, ox)) {
2127          TEVENT (Spin abort - notrunnable);
2128          goto Abort ;
2129       }
2130       if (sss && _succ == NULL ) _succ = Self ;
2131    }
2132 
2133    // Spin failed with prejudice -- reduce _SpinDuration.
2134    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2135    // AIMD is globally stable.
2136    TEVENT (Spin failure) ;
2137    {
2138      int x = _SpinDuration ;
2139      if (x > 0) {
2140         // Consider an AIMD scheme like: x -= (x >> 3) + 100
2141         // This is globally sample and tends to damp the response.
2142         x -= Knob_Penalty ;
2143         if (x < 0) x = 0 ;
2144         _SpinDuration = x ;
2145      }
2146    }
2147 
2148  Abort:
2149    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2150    if (sss && _succ == Self) {
2151       _succ = NULL ;
2152       // Invariant: after setting succ=null a contending thread
2153       // must recheck-retry _owner before parking.  This usually happens
2154       // in the normal usage of TrySpin(), but it's safest
2155       // to make TrySpin() as foolproof as possible.
2156       OrderAccess::fence() ;
2157       if (TryLock(Self) > 0) return 1 ;
2158    }
2159    return 0 ;
2160 }
2161 
2162 // NotRunnable() -- informed spinning
2163 //
2164 // Don't bother spinning if the owner is not eligible to drop the lock.
2165 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2166 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2167 // The thread must be runnable in order to drop the lock in timely fashion.
2168 // If the _owner is not runnable then spinning will not likely be
2169 // successful (profitable).
2170 //
2171 // Beware -- the thread referenced by _owner could have died
2172 // so a simply fetch from _owner->_thread_state might trap.
2173 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2174 // Because of the lifecycle issues the schedctl and _thread_state values
2175 // observed by NotRunnable() might be garbage.  NotRunnable must
2176 // tolerate this and consider the observed _thread_state value
2177 // as advisory.
2178 //
2179 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2180 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
2181 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2182 // with the LSB of _owner.  Another option would be to probablistically probe
2183 // the putative _owner->TypeTag value.
2184 //
2185 // Checking _thread_state isn't perfect.  Even if the thread is
2186 // in_java it might be blocked on a page-fault or have been preempted
2187 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2188 // with schedctl.sc_state gives us a good picture of what the
2189 // thread is doing, however.
2190 //
2191 // TODO: check schedctl.sc_state.
2192 // We'll need to use SafeFetch32() to read from the schedctl block.
2193 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2194 //
2195 // The return value from NotRunnable() is *advisory* -- the
2196 // result is based on sampling and is not necessarily coherent.
2197 // The caller must tolerate false-negative and false-positive errors.
2198 // Spinning, in general, is probabilistic anyway.
2199 
2200 
2201 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2202     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2203     if (!OwnerIsThread) return 0 ;
2204 
2205     if (ox == NULL) return 0 ;
2206 
2207     // Avoid transitive spinning ...
2208     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2209     // Immediately after T1 acquires L it's possible that T2, also
2210     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2211     // This occurs transiently after T1 acquired L but before
2212     // T1 managed to clear T1.Stalled.  T2 does not need to abort
2213     // its spin in this circumstance.
2214     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2215 
2216     if (BlockedOn == 1) return 1 ;
2217     if (BlockedOn != 0) {
2218       return BlockedOn != intptr_t(this) && _owner == ox ;
2219     }
2220 
2221     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2222     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2223     // consider also: jst != _thread_in_Java -- but that's overspecific.
2224     return jst == _thread_blocked || jst == _thread_in_native ;
2225 }
2226 
2227 
2228 // -----------------------------------------------------------------------------
2229 // WaitSet management ...
2230 
2231 ObjectWaiter::ObjectWaiter(Thread* thread) {
2232   _next     = NULL;
2233   _prev     = NULL;
2234   _notified = 0;
2235   TState    = TS_RUN ;
2236   _thread   = thread;
2237   _event    = thread->_ParkEvent ;
2238   _active   = false;
2239   assert (_event != NULL, "invariant") ;
2240 }
2241 
2242 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2243   JavaThread *jt = (JavaThread *)this->_thread;
2244   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2245 }
2246 
2247 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2248   JavaThread *jt = (JavaThread *)this->_thread;
2249   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2250 }
2251 
2252 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2253   assert(node != NULL, "should not dequeue NULL node");
2254   assert(node->_prev == NULL, "node already in list");
2255   assert(node->_next == NULL, "node already in list");
2256   // put node at end of queue (circular doubly linked list)
2257   if (_WaitSet == NULL) {
2258     _WaitSet = node;
2259     node->_prev = node;
2260     node->_next = node;
2261   } else {
2262     ObjectWaiter* head = _WaitSet ;
2263     ObjectWaiter* tail = head->_prev;
2264     assert(tail->_next == head, "invariant check");
2265     tail->_next = node;
2266     head->_prev = node;
2267     node->_next = head;
2268     node->_prev = tail;
2269   }
2270 }
2271 
2272 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2273   // dequeue the very first waiter
2274   ObjectWaiter* waiter = _WaitSet;
2275   if (waiter) {
2276     DequeueSpecificWaiter(waiter);
2277   }
2278   return waiter;
2279 }
2280 
2281 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2282   assert(node != NULL, "should not dequeue NULL node");
2283   assert(node->_prev != NULL, "node already removed from list");
2284   assert(node->_next != NULL, "node already removed from list");
2285   // when the waiter has woken up because of interrupt,
2286   // timeout or other spurious wake-up, dequeue the
2287   // waiter from waiting list
2288   ObjectWaiter* next = node->_next;
2289   if (next == node) {
2290     assert(node->_prev == node, "invariant check");
2291     _WaitSet = NULL;
2292   } else {
2293     ObjectWaiter* prev = node->_prev;
2294     assert(prev->_next == node, "invariant check");
2295     assert(next->_prev == node, "invariant check");
2296     next->_prev = prev;
2297     prev->_next = next;
2298     if (_WaitSet == node) {
2299       _WaitSet = next;
2300     }
2301   }
2302   node->_next = NULL;
2303   node->_prev = NULL;
2304 }
2305 
2306 // -----------------------------------------------------------------------------
2307 // PerfData support
2308 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
2309 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
2310 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
2311 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
2312 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
2313 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
2314 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
2315 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
2316 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
2317 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
2318 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
2319 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
2320 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
2321 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
2322 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
2323 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
2324 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
2325 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
2326 
2327 // One-shot global initialization for the sync subsystem.
2328 // We could also defer initialization and initialize on-demand
2329 // the first time we call inflate().  Initialization would
2330 // be protected - like so many things - by the MonitorCache_lock.
2331 
2332 void ObjectMonitor::Initialize () {
2333   static int InitializationCompleted = 0 ;
2334   assert (InitializationCompleted == 0, "invariant") ;
2335   InitializationCompleted = 1 ;
2336   if (UsePerfData) {
2337       EXCEPTION_MARK ;
2338       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2339       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2340       NEWPERFCOUNTER(_sync_Inflations) ;
2341       NEWPERFCOUNTER(_sync_Deflations) ;
2342       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
2343       NEWPERFCOUNTER(_sync_FutileWakeups) ;
2344       NEWPERFCOUNTER(_sync_Parks) ;
2345       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
2346       NEWPERFCOUNTER(_sync_Notifications) ;
2347       NEWPERFCOUNTER(_sync_SlowEnter) ;
2348       NEWPERFCOUNTER(_sync_SlowExit) ;
2349       NEWPERFCOUNTER(_sync_SlowNotify) ;
2350       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
2351       NEWPERFCOUNTER(_sync_FailedSpins) ;
2352       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
2353       NEWPERFCOUNTER(_sync_PrivateA) ;
2354       NEWPERFCOUNTER(_sync_PrivateB) ;
2355       NEWPERFCOUNTER(_sync_MonInCirculation) ;
2356       NEWPERFCOUNTER(_sync_MonScavenged) ;
2357       NEWPERFVARIABLE(_sync_MonExtant) ;
2358       #undef NEWPERFCOUNTER
2359   }
2360 }
2361 
2362 
2363 // Compile-time asserts
2364 // When possible, it's better to catch errors deterministically at
2365 // compile-time than at runtime.  The down-side to using compile-time
2366 // asserts is that error message -- often something about negative array
2367 // indices -- is opaque.
2368 
2369 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2370 
2371 void ObjectMonitor::ctAsserts() {
2372   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2373 }
2374 
2375 
2376 static char * kvGet (char * kvList, const char * Key) {
2377     if (kvList == NULL) return NULL ;
2378     size_t n = strlen (Key) ;
2379     char * Search ;
2380     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2381         if (strncmp (Search, Key, n) == 0) {
2382             if (Search[n] == '=') return Search + n + 1 ;
2383             if (Search[n] == 0)   return (char *) "1" ;
2384         }
2385     }
2386     return NULL ;
2387 }
2388 
2389 static int kvGetInt (char * kvList, const char * Key, int Default) {
2390     char * v = kvGet (kvList, Key) ;
2391     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2392     if (Knob_ReportSettings && v != NULL) {
2393         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2394         ::fflush (stdout) ;
2395     }
2396     return rslt ;
2397 }
2398 
2399 void ObjectMonitor::DeferredInitialize () {
2400   if (InitDone > 0) return ;
2401   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2402       while (InitDone != 1) ;
2403       return ;
2404   }
2405 
2406   // One-shot global initialization ...
2407   // The initialization is idempotent, so we don't need locks.
2408   // In the future consider doing this via os::init_2().
2409   // SyncKnobs consist of <Key>=<Value> pairs in the style
2410   // of environment variables.  Start by converting ':' to NUL.
2411 
2412   if (SyncKnobs == NULL) SyncKnobs = "" ;
2413 
2414   size_t sz = strlen (SyncKnobs) ;
2415   char * knobs = (char *) malloc (sz + 2) ;
2416   if (knobs == NULL) {
2417      vm_exit_out_of_memory (sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs") ;
2418      guarantee (0, "invariant") ;
2419   }
2420   strcpy (knobs, SyncKnobs) ;
2421   knobs[sz+1] = 0 ;
2422   for (char * p = knobs ; *p ; p++) {
2423      if (*p == ':') *p = 0 ;
2424   }
2425 
2426   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2427   SETKNOB(ReportSettings) ;
2428   SETKNOB(Verbose) ;
2429   SETKNOB(FixedSpin) ;
2430   SETKNOB(SpinLimit) ;
2431   SETKNOB(SpinBase) ;
2432   SETKNOB(SpinBackOff);
2433   SETKNOB(CASPenalty) ;
2434   SETKNOB(OXPenalty) ;
2435   SETKNOB(LogSpins) ;
2436   SETKNOB(SpinSetSucc) ;
2437   SETKNOB(SuccEnabled) ;
2438   SETKNOB(SuccRestrict) ;
2439   SETKNOB(Penalty) ;
2440   SETKNOB(Bonus) ;
2441   SETKNOB(BonusB) ;
2442   SETKNOB(Poverty) ;
2443   SETKNOB(SpinAfterFutile) ;
2444   SETKNOB(UsePause) ;
2445   SETKNOB(SpinEarly) ;
2446   SETKNOB(OState) ;
2447   SETKNOB(MaxSpinners) ;
2448   SETKNOB(PreSpin) ;
2449   SETKNOB(ExitPolicy) ;
2450   SETKNOB(QMode);
2451   SETKNOB(ResetEvent) ;
2452   SETKNOB(MoveNotifyee) ;
2453   SETKNOB(FastHSSEC) ;
2454   #undef SETKNOB
2455 
2456   guarantee(Knob_ExitPolicy == 0, "Sorry, event tracing does not support non-default ExitPolicy");
2457   guarantee(Knob_QMode == 0,      "Sorry, event tracing does not support non-default QMode");
2458 
2459   if (os::is_MP()) {
2460      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2461      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2462      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2463   } else {
2464      Knob_SpinLimit = 0 ;
2465      Knob_SpinBase  = 0 ;
2466      Knob_PreSpin   = 0 ;
2467      Knob_FixedSpin = -1 ;
2468   }
2469 
2470   if (Knob_LogSpins == 0) {
2471      ObjectMonitor::_sync_FailedSpins = NULL ;
2472   }
2473 
2474   free (knobs) ;
2475   OrderAccess::fence() ;
2476   InitDone = 1 ;
2477 }
2478 
2479 #ifndef PRODUCT
2480 void ObjectMonitor::verify() {
2481 }
2482 
2483 void ObjectMonitor::print() {
2484 }
2485 #endif