1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interpreterRuntime.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/forte.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiRedefineClassesTrace.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/hashtable.inline.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 #ifdef TARGET_ARCH_x86
  62 # include "nativeInst_x86.hpp"
  63 # include "vmreg_x86.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_sparc
  66 # include "nativeInst_sparc.hpp"
  67 # include "vmreg_sparc.inline.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_zero
  70 # include "nativeInst_zero.hpp"
  71 # include "vmreg_zero.inline.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_arm
  74 # include "nativeInst_arm.hpp"
  75 # include "vmreg_arm.inline.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_ppc
  78 # include "nativeInst_ppc.hpp"
  79 # include "vmreg_ppc.inline.hpp"
  80 #endif
  81 #ifdef COMPILER1
  82 #include "c1/c1_Runtime1.hpp"
  83 #endif
  84 
  85 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  86 
  87 // Shared stub locations
  88 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  89 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  90 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  93 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  94 address             SharedRuntime::_memento_stack_trace_return_handler;
  95 address             SharedRuntime::_memento_stack_trace_exception_handler;
  96 
  97 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  98 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  99 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
 100 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
 101 
 102 #ifdef COMPILER2
 103 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 104 #endif // COMPILER2
 105 
 106 
 107 //----------------------------generate_stubs-----------------------------------
 108 void SharedRuntime::generate_stubs() {
 109   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 110   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 111   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 112   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 113   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 114   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 115 
 116   generate_memento_stack_trace_blob();
 117 
 118 #ifdef COMPILER2
 119   // Vectors are generated only by C2.
 120   if (is_wide_vector(MaxVectorSize)) {
 121     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 122   }
 123 #endif // COMPILER2
 124   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 125   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 126 
 127   generate_deopt_blob();
 128 
 129 #ifdef COMPILER2
 130   generate_uncommon_trap_blob();
 131 #endif // COMPILER2
 132 }
 133 
 134 #include <math.h>
 135 
 136 #ifndef USDT2
 137 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 138 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 139                       char*, int, char*, int, char*, int);
 140 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 141                       char*, int, char*, int, char*, int);
 142 #endif /* !USDT2 */
 143 
 144 // Implementation of SharedRuntime
 145 
 146 #ifndef PRODUCT
 147 // For statistics
 148 int SharedRuntime::_ic_miss_ctr = 0;
 149 int SharedRuntime::_wrong_method_ctr = 0;
 150 int SharedRuntime::_resolve_static_ctr = 0;
 151 int SharedRuntime::_resolve_virtual_ctr = 0;
 152 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 153 int SharedRuntime::_implicit_null_throws = 0;
 154 int SharedRuntime::_implicit_div0_throws = 0;
 155 int SharedRuntime::_throw_null_ctr = 0;
 156 
 157 int SharedRuntime::_nof_normal_calls = 0;
 158 int SharedRuntime::_nof_optimized_calls = 0;
 159 int SharedRuntime::_nof_inlined_calls = 0;
 160 int SharedRuntime::_nof_megamorphic_calls = 0;
 161 int SharedRuntime::_nof_static_calls = 0;
 162 int SharedRuntime::_nof_inlined_static_calls = 0;
 163 int SharedRuntime::_nof_interface_calls = 0;
 164 int SharedRuntime::_nof_optimized_interface_calls = 0;
 165 int SharedRuntime::_nof_inlined_interface_calls = 0;
 166 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 167 int SharedRuntime::_nof_removable_exceptions = 0;
 168 
 169 int SharedRuntime::_new_instance_ctr=0;
 170 int SharedRuntime::_new_array_ctr=0;
 171 int SharedRuntime::_multi1_ctr=0;
 172 int SharedRuntime::_multi2_ctr=0;
 173 int SharedRuntime::_multi3_ctr=0;
 174 int SharedRuntime::_multi4_ctr=0;
 175 int SharedRuntime::_multi5_ctr=0;
 176 int SharedRuntime::_mon_enter_stub_ctr=0;
 177 int SharedRuntime::_mon_exit_stub_ctr=0;
 178 int SharedRuntime::_mon_enter_ctr=0;
 179 int SharedRuntime::_mon_exit_ctr=0;
 180 int SharedRuntime::_partial_subtype_ctr=0;
 181 int SharedRuntime::_jbyte_array_copy_ctr=0;
 182 int SharedRuntime::_jshort_array_copy_ctr=0;
 183 int SharedRuntime::_jint_array_copy_ctr=0;
 184 int SharedRuntime::_jlong_array_copy_ctr=0;
 185 int SharedRuntime::_oop_array_copy_ctr=0;
 186 int SharedRuntime::_checkcast_array_copy_ctr=0;
 187 int SharedRuntime::_unsafe_array_copy_ctr=0;
 188 int SharedRuntime::_generic_array_copy_ctr=0;
 189 int SharedRuntime::_slow_array_copy_ctr=0;
 190 int SharedRuntime::_find_handler_ctr=0;
 191 int SharedRuntime::_rethrow_ctr=0;
 192 
 193 int     SharedRuntime::_ICmiss_index                    = 0;
 194 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 195 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 196 
 197 
 198 void SharedRuntime::trace_ic_miss(address at) {
 199   for (int i = 0; i < _ICmiss_index; i++) {
 200     if (_ICmiss_at[i] == at) {
 201       _ICmiss_count[i]++;
 202       return;
 203     }
 204   }
 205   int index = _ICmiss_index++;
 206   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 207   _ICmiss_at[index] = at;
 208   _ICmiss_count[index] = 1;
 209 }
 210 
 211 void SharedRuntime::print_ic_miss_histogram() {
 212   if (ICMissHistogram) {
 213     tty->print_cr ("IC Miss Histogram:");
 214     int tot_misses = 0;
 215     for (int i = 0; i < _ICmiss_index; i++) {
 216       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 217       tot_misses += _ICmiss_count[i];
 218     }
 219     tty->print_cr ("Total IC misses: %7d", tot_misses);
 220   }
 221 }
 222 #endif // PRODUCT
 223 
 224 #if INCLUDE_ALL_GCS
 225 
 226 // G1 write-barrier pre: executed before a pointer store.
 227 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 228   if (orig == NULL) {
 229     assert(false, "should be optimized out");
 230     return;
 231   }
 232   assert(orig->is_oop(true /* ignore mark word */), "Error");
 233   // store the original value that was in the field reference
 234   thread->satb_mark_queue().enqueue(orig);
 235 JRT_END
 236 
 237 // G1 write-barrier post: executed after a pointer store.
 238 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 239   thread->dirty_card_queue().enqueue(card_addr);
 240 JRT_END
 241 
 242 #endif // INCLUDE_ALL_GCS
 243 
 244 
 245 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 246   return x * y;
 247 JRT_END
 248 
 249 
 250 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 251   if (x == min_jlong && y == CONST64(-1)) {
 252     return x;
 253   } else {
 254     return x / y;
 255   }
 256 JRT_END
 257 
 258 
 259 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 260   if (x == min_jlong && y == CONST64(-1)) {
 261     return 0;
 262   } else {
 263     return x % y;
 264   }
 265 JRT_END
 266 
 267 
 268 const juint  float_sign_mask  = 0x7FFFFFFF;
 269 const juint  float_infinity   = 0x7F800000;
 270 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 271 const julong double_infinity  = CONST64(0x7FF0000000000000);
 272 
 273 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 274 #ifdef _WIN64
 275   // 64-bit Windows on amd64 returns the wrong values for
 276   // infinity operands.
 277   union { jfloat f; juint i; } xbits, ybits;
 278   xbits.f = x;
 279   ybits.f = y;
 280   // x Mod Infinity == x unless x is infinity
 281   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 282        ((ybits.i & float_sign_mask) == float_infinity) ) {
 283     return x;
 284   }
 285 #endif
 286   return ((jfloat)fmod((double)x,(double)y));
 287 JRT_END
 288 
 289 
 290 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 291 #ifdef _WIN64
 292   union { jdouble d; julong l; } xbits, ybits;
 293   xbits.d = x;
 294   ybits.d = y;
 295   // x Mod Infinity == x unless x is infinity
 296   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 297        ((ybits.l & double_sign_mask) == double_infinity) ) {
 298     return x;
 299   }
 300 #endif
 301   return ((jdouble)fmod((double)x,(double)y));
 302 JRT_END
 303 
 304 #ifdef __SOFTFP__
 305 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 306   return x + y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 310   return x - y;
 311 JRT_END
 312 
 313 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 314   return x * y;
 315 JRT_END
 316 
 317 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 318   return x / y;
 319 JRT_END
 320 
 321 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 322   return x + y;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 326   return x - y;
 327 JRT_END
 328 
 329 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 330   return x * y;
 331 JRT_END
 332 
 333 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 334   return x / y;
 335 JRT_END
 336 
 337 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 338   return (jfloat)x;
 339 JRT_END
 340 
 341 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 342   return (jdouble)x;
 343 JRT_END
 344 
 345 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 346   return (jdouble)x;
 347 JRT_END
 348 
 349 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 350   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 351 JRT_END
 352 
 353 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 354   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 355 JRT_END
 356 
 357 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 358   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 359 JRT_END
 360 
 361 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 362   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 363 JRT_END
 364 
 365 // Functions to return the opposite of the aeabi functions for nan.
 366 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 367   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 371   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 375   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 379   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 383   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 384 JRT_END
 385 
 386 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 387   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 388 JRT_END
 389 
 390 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 391   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 392 JRT_END
 393 
 394 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 395   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 396 JRT_END
 397 
 398 // Intrinsics make gcc generate code for these.
 399 float  SharedRuntime::fneg(float f)   {
 400   return -f;
 401 }
 402 
 403 double SharedRuntime::dneg(double f)  {
 404   return -f;
 405 }
 406 
 407 #endif // __SOFTFP__
 408 
 409 #if defined(__SOFTFP__) || defined(E500V2)
 410 // Intrinsics make gcc generate code for these.
 411 double SharedRuntime::dabs(double f)  {
 412   return (f <= (double)0.0) ? (double)0.0 - f : f;
 413 }
 414 
 415 #endif
 416 
 417 #if defined(__SOFTFP__) || defined(PPC32)
 418 double SharedRuntime::dsqrt(double f) {
 419   return sqrt(f);
 420 }
 421 #endif
 422 
 423 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 424   if (g_isnan(x))
 425     return 0;
 426   if (x >= (jfloat) max_jint)
 427     return max_jint;
 428   if (x <= (jfloat) min_jint)
 429     return min_jint;
 430   return (jint) x;
 431 JRT_END
 432 
 433 
 434 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 435   if (g_isnan(x))
 436     return 0;
 437   if (x >= (jfloat) max_jlong)
 438     return max_jlong;
 439   if (x <= (jfloat) min_jlong)
 440     return min_jlong;
 441   return (jlong) x;
 442 JRT_END
 443 
 444 
 445 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 446   if (g_isnan(x))
 447     return 0;
 448   if (x >= (jdouble) max_jint)
 449     return max_jint;
 450   if (x <= (jdouble) min_jint)
 451     return min_jint;
 452   return (jint) x;
 453 JRT_END
 454 
 455 
 456 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 457   if (g_isnan(x))
 458     return 0;
 459   if (x >= (jdouble) max_jlong)
 460     return max_jlong;
 461   if (x <= (jdouble) min_jlong)
 462     return min_jlong;
 463   return (jlong) x;
 464 JRT_END
 465 
 466 
 467 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 468   return (jfloat)x;
 469 JRT_END
 470 
 471 
 472 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 473   return (jfloat)x;
 474 JRT_END
 475 
 476 
 477 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 478   return (jdouble)x;
 479 JRT_END
 480 
 481 // Exception handling accross interpreter/compiler boundaries
 482 //
 483 // exception_handler_for_return_address(...) returns the continuation address.
 484 // The continuation address is the entry point of the exception handler of the
 485 // previous frame depending on the return address.
 486 
 487 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 488   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 489   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 490 
 491   // Reset method handle flag.
 492   thread->set_is_method_handle_return(false);
 493 
 494   // The fastest case first
 495   CodeBlob* blob = CodeCache::find_blob(return_address);
 496   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 497   if (nm != NULL) {
 498     // Set flag if return address is a method handle call site.
 499     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 500     // native nmethods don't have exception handlers
 501     assert(!nm->is_native_method(), "no exception handler");
 502     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 503     if (nm->is_deopt_pc(return_address)) {
 504       // If we come here because of a stack overflow, the stack may be
 505       // unguarded. Reguard the stack otherwise if we return to the
 506       // deopt blob and the stack bang causes a stack overflow we
 507       // crash.
 508       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 509       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 510       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 511       return SharedRuntime::deopt_blob()->unpack_with_exception();
 512     } else {
 513       return nm->exception_begin();
 514     }
 515   }
 516 
 517   // Entry code
 518   if (StubRoutines::returns_to_call_stub(return_address)) {
 519     return StubRoutines::catch_exception_entry();
 520   }
 521   // Interpreted code
 522   if (Interpreter::contains(return_address)) {
 523     return Interpreter::rethrow_exception_entry();
 524   }
 525 
 526   if (SharedRuntime::is_memento_stack_trace_return_handler(return_address)) {
 527     return SharedRuntime::get_memento_stack_trace_exception_handler();
 528   }
 529 
 530   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 531   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 532 
 533 #ifndef PRODUCT
 534   { ResourceMark rm;
 535     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 536     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 537     tty->print_cr("b) other problem");
 538   }
 539 #endif // PRODUCT
 540 
 541   ShouldNotReachHere();
 542   return NULL;
 543 }
 544 
 545 
 546 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 547   return raw_exception_handler_for_return_address(thread, return_address);
 548 JRT_END
 549 
 550 
 551 address SharedRuntime::get_poll_stub(address pc) {
 552   address stub;
 553   // Look up the code blob
 554   CodeBlob *cb = CodeCache::find_blob(pc);
 555 
 556   // Should be an nmethod
 557   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 558 
 559   // Look up the relocation information
 560   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 561     "safepoint polling: type must be poll" );
 562 
 563   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 564     "Only polling locations are used for safepoint");
 565 
 566   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 567   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 568   if (at_poll_return) {
 569     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 570            "polling page return stub not created yet");
 571     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 572   } else if (has_wide_vectors) {
 573     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 574            "polling page vectors safepoint stub not created yet");
 575     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 576   } else {
 577     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 578            "polling page safepoint stub not created yet");
 579     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 580   }
 581 #ifndef PRODUCT
 582   if( TraceSafepoint ) {
 583     char buf[256];
 584     jio_snprintf(buf, sizeof(buf),
 585                  "... found polling page %s exception at pc = "
 586                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 587                  at_poll_return ? "return" : "loop",
 588                  (intptr_t)pc, (intptr_t)stub);
 589     tty->print_raw_cr(buf);
 590   }
 591 #endif // PRODUCT
 592   return stub;
 593 }
 594 
 595 
 596 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 597   assert(caller.is_interpreted_frame(), "");
 598   int args_size = ArgumentSizeComputer(sig).size() + 1;
 599   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 600   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 601   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 602   return result;
 603 }
 604 
 605 
 606 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 607   if (JvmtiExport::can_post_on_exceptions()) {
 608     vframeStream vfst(thread, true);
 609     methodHandle method = methodHandle(thread, vfst.method());
 610     address bcp = method()->bcp_from(vfst.bci());
 611     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 612   }
 613   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 614 }
 615 
 616 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 617   Handle h_exception = Exceptions::new_exception(thread, name, message);
 618   throw_and_post_jvmti_exception(thread, h_exception);
 619 }
 620 
 621 // The interpreter code to call this tracing function is only
 622 // called/generated when TraceRedefineClasses has the right bits
 623 // set. Since obsolete methods are never compiled, we don't have
 624 // to modify the compilers to generate calls to this function.
 625 //
 626 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 627     JavaThread* thread, Method* method))
 628   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 629 
 630   if (method->is_obsolete()) {
 631     // We are calling an obsolete method, but this is not necessarily
 632     // an error. Our method could have been redefined just after we
 633     // fetched the Method* from the constant pool.
 634 
 635     // RC_TRACE macro has an embedded ResourceMark
 636     RC_TRACE_WITH_THREAD(0x00001000, thread,
 637                          ("calling obsolete method '%s'",
 638                           method->name_and_sig_as_C_string()));
 639     if (RC_TRACE_ENABLED(0x00002000)) {
 640       // this option is provided to debug calls to obsolete methods
 641       guarantee(false, "faulting at call to an obsolete method.");
 642     }
 643   }
 644   return 0;
 645 JRT_END
 646 
 647 // ret_pc points into caller; we are returning caller's exception handler
 648 // for given exception
 649 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 650                                                     bool force_unwind, bool top_frame_only) {
 651   assert(nm != NULL, "must exist");
 652   ResourceMark rm;
 653 
 654   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 655   // determine handler bci, if any
 656   EXCEPTION_MARK;
 657 
 658   int handler_bci = -1;
 659   int scope_depth = 0;
 660   if (!force_unwind) {
 661     int bci = sd->bci();
 662     bool recursive_exception = false;
 663     do {
 664       bool skip_scope_increment = false;
 665       // exception handler lookup
 666       KlassHandle ek (THREAD, exception->klass());
 667       methodHandle mh(THREAD, sd->method());
 668       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 669       if (HAS_PENDING_EXCEPTION) {
 670         recursive_exception = true;
 671         // We threw an exception while trying to find the exception handler.
 672         // Transfer the new exception to the exception handle which will
 673         // be set into thread local storage, and do another lookup for an
 674         // exception handler for this exception, this time starting at the
 675         // BCI of the exception handler which caused the exception to be
 676         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 677         // argument to ensure that the correct exception is thrown (4870175).
 678         exception = Handle(THREAD, PENDING_EXCEPTION);
 679         CLEAR_PENDING_EXCEPTION;
 680         if (handler_bci >= 0) {
 681           bci = handler_bci;
 682           handler_bci = -1;
 683           skip_scope_increment = true;
 684         }
 685       }
 686       else {
 687         recursive_exception = false;
 688       }
 689       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 690         sd = sd->sender();
 691         if (sd != NULL) {
 692           bci = sd->bci();
 693         }
 694         ++scope_depth;
 695       }
 696     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 697   }
 698 
 699   // found handling method => lookup exception handler
 700   int catch_pco = ret_pc - nm->code_begin();
 701 
 702   ExceptionHandlerTable table(nm);
 703   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 704   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 705     // Allow abbreviated catch tables.  The idea is to allow a method
 706     // to materialize its exceptions without committing to the exact
 707     // routing of exceptions.  In particular this is needed for adding
 708     // a synthethic handler to unlock monitors when inlining
 709     // synchonized methods since the unlock path isn't represented in
 710     // the bytecodes.
 711     t = table.entry_for(catch_pco, -1, 0);
 712   }
 713 
 714 #ifdef COMPILER1
 715   if (t == NULL && nm->is_compiled_by_c1()) {
 716     assert(nm->unwind_handler_begin() != NULL, "");
 717     return nm->unwind_handler_begin();
 718   }
 719 #endif
 720 
 721   if (t == NULL) {
 722     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 723     tty->print_cr("   Exception:");
 724     exception->print();
 725     tty->cr();
 726     tty->print_cr(" Compiled exception table :");
 727     table.print();
 728     nm->print_code();
 729     guarantee(false, "missing exception handler");
 730     return NULL;
 731   }
 732 
 733   return nm->code_begin() + t->pco();
 734 }
 735 
 736 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 737   // These errors occur only at call sites
 738   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 739 JRT_END
 740 
 741 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 742   // These errors occur only at call sites
 743   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 744 JRT_END
 745 
 746 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 747   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 748 JRT_END
 749 
 750 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 751   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 752 JRT_END
 753 
 754 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 755   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 756   // cache sites (when the callee activation is not yet set up) so we are at a call site
 757   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 758 JRT_END
 759 
 760 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 761   // We avoid using the normal exception construction in this case because
 762   // it performs an upcall to Java, and we're already out of stack space.
 763   Klass* k = SystemDictionary::StackOverflowError_klass();
 764   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 765   Handle exception (thread, exception_oop);
 766   if (StackTraceInThrowable) {
 767     java_lang_Throwable::fill_in_stack_trace(exception);
 768   }
 769   throw_and_post_jvmti_exception(thread, exception);
 770 JRT_END
 771 
 772 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 773                                                            address pc,
 774                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 775 {
 776   address target_pc = NULL;
 777 
 778   if (Interpreter::contains(pc)) {
 779 #ifdef CC_INTERP
 780     // C++ interpreter doesn't throw implicit exceptions
 781     ShouldNotReachHere();
 782 #else
 783     switch (exception_kind) {
 784       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 785       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 786       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 787       default:                      ShouldNotReachHere();
 788     }
 789 #endif // !CC_INTERP
 790   } else {
 791     switch (exception_kind) {
 792       case STACK_OVERFLOW: {
 793         // Stack overflow only occurs upon frame setup; the callee is
 794         // going to be unwound. Dispatch to a shared runtime stub
 795         // which will cause the StackOverflowError to be fabricated
 796         // and processed.
 797         // Stack overflow should never occur during deoptimization:
 798         // the compiled method bangs the stack by as much as the
 799         // interpreter would need in case of a deoptimization. The
 800         // deoptimization blob and uncommon trap blob bang the stack
 801         // in a debug VM to verify the correctness of the compiled
 802         // method stack banging.
 803         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 804         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 805         return StubRoutines::throw_StackOverflowError_entry();
 806       }
 807 
 808       case IMPLICIT_NULL: {
 809         if (VtableStubs::contains(pc)) {
 810           // We haven't yet entered the callee frame. Fabricate an
 811           // exception and begin dispatching it in the caller. Since
 812           // the caller was at a call site, it's safe to destroy all
 813           // caller-saved registers, as these entry points do.
 814           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 815 
 816           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 817           if (vt_stub == NULL) return NULL;
 818 
 819           if (vt_stub->is_abstract_method_error(pc)) {
 820             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 821             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 822             return StubRoutines::throw_AbstractMethodError_entry();
 823           } else {
 824             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 825             return StubRoutines::throw_NullPointerException_at_call_entry();
 826           }
 827         } else {
 828           CodeBlob* cb = CodeCache::find_blob(pc);
 829 
 830           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 831           if (cb == NULL) return NULL;
 832 
 833           // Exception happened in CodeCache. Must be either:
 834           // 1. Inline-cache check in C2I handler blob,
 835           // 2. Inline-cache check in nmethod, or
 836           // 3. Implict null exception in nmethod
 837 
 838           if (!cb->is_nmethod()) {
 839             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 840             if (!is_in_blob) {
 841               cb->print();
 842               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 843             }
 844             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 845             // There is no handler here, so we will simply unwind.
 846             return StubRoutines::throw_NullPointerException_at_call_entry();
 847           }
 848 
 849           // Otherwise, it's an nmethod.  Consult its exception handlers.
 850           nmethod* nm = (nmethod*)cb;
 851           if (nm->inlinecache_check_contains(pc)) {
 852             // exception happened inside inline-cache check code
 853             // => the nmethod is not yet active (i.e., the frame
 854             // is not set up yet) => use return address pushed by
 855             // caller => don't push another return address
 856             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 857             return StubRoutines::throw_NullPointerException_at_call_entry();
 858           }
 859 
 860           if (nm->method()->is_method_handle_intrinsic()) {
 861             // exception happened inside MH dispatch code, similar to a vtable stub
 862             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 863             return StubRoutines::throw_NullPointerException_at_call_entry();
 864           }
 865 
 866 #ifndef PRODUCT
 867           _implicit_null_throws++;
 868 #endif
 869           target_pc = nm->continuation_for_implicit_exception(pc);
 870           // If there's an unexpected fault, target_pc might be NULL,
 871           // in which case we want to fall through into the normal
 872           // error handling code.
 873         }
 874 
 875         break; // fall through
 876       }
 877 
 878 
 879       case IMPLICIT_DIVIDE_BY_ZERO: {
 880         nmethod* nm = CodeCache::find_nmethod(pc);
 881         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 882 #ifndef PRODUCT
 883         _implicit_div0_throws++;
 884 #endif
 885         target_pc = nm->continuation_for_implicit_exception(pc);
 886         // If there's an unexpected fault, target_pc might be NULL,
 887         // in which case we want to fall through into the normal
 888         // error handling code.
 889         break; // fall through
 890       }
 891 
 892       default: ShouldNotReachHere();
 893     }
 894 
 895     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 896 
 897     // for AbortVMOnException flag
 898     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 899     if (exception_kind == IMPLICIT_NULL) {
 900       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 901     } else {
 902       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 903     }
 904     return target_pc;
 905   }
 906 
 907   ShouldNotReachHere();
 908   return NULL;
 909 }
 910 
 911 
 912 /**
 913  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 914  * installed in the native function entry of all native Java methods before
 915  * they get linked to their actual native methods.
 916  *
 917  * \note
 918  * This method actually never gets called!  The reason is because
 919  * the interpreter's native entries call NativeLookup::lookup() which
 920  * throws the exception when the lookup fails.  The exception is then
 921  * caught and forwarded on the return from NativeLookup::lookup() call
 922  * before the call to the native function.  This might change in the future.
 923  */
 924 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 925 {
 926   // We return a bad value here to make sure that the exception is
 927   // forwarded before we look at the return value.
 928   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 929 }
 930 JNI_END
 931 
 932 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 933   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 934 }
 935 
 936 
 937 #ifndef PRODUCT
 938 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 939   const frame f = thread->last_frame();
 940   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 941 #ifndef PRODUCT
 942   methodHandle mh(THREAD, f.interpreter_frame_method());
 943   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 944 #endif // !PRODUCT
 945   return preserve_this_value;
 946 JRT_END
 947 #endif // !PRODUCT
 948 
 949 
 950 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 951   os::yield_all(attempts);
 952 JRT_END
 953 
 954 
 955 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 956   assert(obj->is_oop(), "must be a valid oop");
 957   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 958   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 959 JRT_END
 960 
 961 
 962 jlong SharedRuntime::get_java_tid(Thread* thread) {
 963   if (thread != NULL) {
 964     if (thread->is_Java_thread()) {
 965       oop obj = ((JavaThread*)thread)->threadObj();
 966       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 967     }
 968   }
 969   return 0;
 970 }
 971 
 972 /**
 973  * This function ought to be a void function, but cannot be because
 974  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 975  * 6254741.  Once that is fixed we can remove the dummy return value.
 976  */
 977 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 978   return dtrace_object_alloc_base(Thread::current(), o, size);
 979 }
 980 
 981 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 982   assert(DTraceAllocProbes, "wrong call");
 983   Klass* klass = o->klass();
 984   Symbol* name = klass->name();
 985 #ifndef USDT2
 986   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 987                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 988 #else /* USDT2 */
 989   HOTSPOT_OBJECT_ALLOC(
 990                    get_java_tid(thread),
 991                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 992 #endif /* USDT2 */
 993   return 0;
 994 }
 995 
 996 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 997     JavaThread* thread, Method* method))
 998   assert(DTraceMethodProbes, "wrong call");
 999   Symbol* kname = method->klass_name();
1000   Symbol* name = method->name();
1001   Symbol* sig = method->signature();
1002 #ifndef USDT2
1003   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
1004       kname->bytes(), kname->utf8_length(),
1005       name->bytes(), name->utf8_length(),
1006       sig->bytes(), sig->utf8_length());
1007 #else /* USDT2 */
1008   HOTSPOT_METHOD_ENTRY(
1009       get_java_tid(thread),
1010       (char *) kname->bytes(), kname->utf8_length(),
1011       (char *) name->bytes(), name->utf8_length(),
1012       (char *) sig->bytes(), sig->utf8_length());
1013 #endif /* USDT2 */
1014   return 0;
1015 JRT_END
1016 
1017 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1018     JavaThread* thread, Method* method))
1019   assert(DTraceMethodProbes, "wrong call");
1020   Symbol* kname = method->klass_name();
1021   Symbol* name = method->name();
1022   Symbol* sig = method->signature();
1023 #ifndef USDT2
1024   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
1025       kname->bytes(), kname->utf8_length(),
1026       name->bytes(), name->utf8_length(),
1027       sig->bytes(), sig->utf8_length());
1028 #else /* USDT2 */
1029   HOTSPOT_METHOD_RETURN(
1030       get_java_tid(thread),
1031       (char *) kname->bytes(), kname->utf8_length(),
1032       (char *) name->bytes(), name->utf8_length(),
1033       (char *) sig->bytes(), sig->utf8_length());
1034 #endif /* USDT2 */
1035   return 0;
1036 JRT_END
1037 
1038 
1039 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1040 // for a call current in progress, i.e., arguments has been pushed on stack
1041 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1042 // vtable updates, etc.  Caller frame must be compiled.
1043 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1044   ResourceMark rm(THREAD);
1045 
1046   // last java frame on stack (which includes native call frames)
1047   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1048 
1049   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1050 }
1051 
1052 
1053 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1054 // for a call current in progress, i.e., arguments has been pushed on stack
1055 // but callee has not been invoked yet.  Caller frame must be compiled.
1056 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1057                                               vframeStream& vfst,
1058                                               Bytecodes::Code& bc,
1059                                               CallInfo& callinfo, TRAPS) {
1060   Handle receiver;
1061   Handle nullHandle;  //create a handy null handle for exception returns
1062 
1063   assert(!vfst.at_end(), "Java frame must exist");
1064 
1065   // Find caller and bci from vframe
1066   methodHandle caller(THREAD, vfst.method());
1067   int          bci   = vfst.bci();
1068 
1069   // Find bytecode
1070   Bytecode_invoke bytecode(caller, bci);
1071   bc = bytecode.invoke_code();
1072   int bytecode_index = bytecode.index();
1073 
1074   // Find receiver for non-static call
1075   if (bc != Bytecodes::_invokestatic &&
1076       bc != Bytecodes::_invokedynamic &&
1077       bc != Bytecodes::_invokehandle) {
1078     // This register map must be update since we need to find the receiver for
1079     // compiled frames. The receiver might be in a register.
1080     RegisterMap reg_map2(thread);
1081     frame stubFrame   = thread->last_frame();
1082     // Caller-frame is a compiled frame
1083     frame callerFrame = stubFrame.sender(&reg_map2);
1084 
1085     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1086     if (callee.is_null()) {
1087       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1088     }
1089     // Retrieve from a compiled argument list
1090     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1091 
1092     if (receiver.is_null()) {
1093       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1094     }
1095   }
1096 
1097   // Resolve method. This is parameterized by bytecode.
1098   constantPoolHandle constants(THREAD, caller->constants());
1099   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1100   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1101 
1102 #ifdef ASSERT
1103   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1104   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1105     assert(receiver.not_null(), "should have thrown exception");
1106     KlassHandle receiver_klass(THREAD, receiver->klass());
1107     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1108                             // klass is already loaded
1109     KlassHandle static_receiver_klass(THREAD, rk);
1110     // Method handle invokes might have been optimized to a direct call
1111     // so don't check for the receiver class.
1112     // FIXME this weakens the assert too much
1113     methodHandle callee = callinfo.selected_method();
1114     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1115            callee->is_method_handle_intrinsic() ||
1116            callee->is_compiled_lambda_form(),
1117            "actual receiver must be subclass of static receiver klass");
1118     if (receiver_klass->oop_is_instance()) {
1119       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1120         tty->print_cr("ERROR: Klass not yet initialized!!");
1121         receiver_klass()->print();
1122       }
1123       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1124     }
1125   }
1126 #endif
1127 
1128   return receiver;
1129 }
1130 
1131 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1132   ResourceMark rm(THREAD);
1133   // We need first to check if any Java activations (compiled, interpreted)
1134   // exist on the stack since last JavaCall.  If not, we need
1135   // to get the target method from the JavaCall wrapper.
1136   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1137   methodHandle callee_method;
1138   if (vfst.at_end()) {
1139     // No Java frames were found on stack since we did the JavaCall.
1140     // Hence the stack can only contain an entry_frame.  We need to
1141     // find the target method from the stub frame.
1142     RegisterMap reg_map(thread, false);
1143     frame fr = thread->last_frame();
1144     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1145     fr = fr.sender(&reg_map);
1146     assert(fr.is_entry_frame(), "must be");
1147     // fr is now pointing to the entry frame.
1148     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1149     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1150   } else {
1151     Bytecodes::Code bc;
1152     CallInfo callinfo;
1153     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1154     callee_method = callinfo.selected_method();
1155   }
1156   assert(callee_method()->is_method(), "must be");
1157   return callee_method;
1158 }
1159 
1160 // Resolves a call.
1161 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1162                                            bool is_virtual,
1163                                            bool is_optimized, TRAPS) {
1164   methodHandle callee_method;
1165   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1166   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1167     int retry_count = 0;
1168     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1169            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1170       // If has a pending exception then there is no need to re-try to
1171       // resolve this method.
1172       // If the method has been redefined, we need to try again.
1173       // Hack: we have no way to update the vtables of arrays, so don't
1174       // require that java.lang.Object has been updated.
1175 
1176       // It is very unlikely that method is redefined more than 100 times
1177       // in the middle of resolve. If it is looping here more than 100 times
1178       // means then there could be a bug here.
1179       guarantee((retry_count++ < 100),
1180                 "Could not resolve to latest version of redefined method");
1181       // method is redefined in the middle of resolve so re-try.
1182       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1183     }
1184   }
1185   return callee_method;
1186 }
1187 
1188 // Resolves a call.  The compilers generate code for calls that go here
1189 // and are patched with the real destination of the call.
1190 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1191                                            bool is_virtual,
1192                                            bool is_optimized, TRAPS) {
1193 
1194   ResourceMark rm(thread);
1195   RegisterMap cbl_map(thread, false);
1196   frame caller_frame = thread->last_frame().sender(&cbl_map);
1197 
1198   CodeBlob* caller_cb = caller_frame.cb();
1199   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1200   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1201 
1202   // make sure caller is not getting deoptimized
1203   // and removed before we are done with it.
1204   // CLEANUP - with lazy deopt shouldn't need this lock
1205   nmethodLocker caller_lock(caller_nm);
1206 
1207   // determine call info & receiver
1208   // note: a) receiver is NULL for static calls
1209   //       b) an exception is thrown if receiver is NULL for non-static calls
1210   CallInfo call_info;
1211   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1212   Handle receiver = find_callee_info(thread, invoke_code,
1213                                      call_info, CHECK_(methodHandle()));
1214   methodHandle callee_method = call_info.selected_method();
1215 
1216   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1217          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1218          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1219          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1220 
1221   assert(caller_nm->is_alive(), "It should be alive");
1222 
1223 #ifndef PRODUCT
1224   // tracing/debugging/statistics
1225   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1226                 (is_virtual) ? (&_resolve_virtual_ctr) :
1227                                (&_resolve_static_ctr);
1228   Atomic::inc(addr);
1229 
1230   if (TraceCallFixup) {
1231     ResourceMark rm(thread);
1232     tty->print("resolving %s%s (%s) call to",
1233       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1234       Bytecodes::name(invoke_code));
1235     callee_method->print_short_name(tty);
1236     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1237   }
1238 #endif
1239 
1240   // JSR 292 key invariant:
1241   // If the resolved method is a MethodHandle invoke target, the call
1242   // site must be a MethodHandle call site, because the lambda form might tail-call
1243   // leaving the stack in a state unknown to either caller or callee
1244   // TODO detune for now but we might need it again
1245 //  assert(!callee_method->is_compiled_lambda_form() ||
1246 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1247 
1248   // Compute entry points. This might require generation of C2I converter
1249   // frames, so we cannot be holding any locks here. Furthermore, the
1250   // computation of the entry points is independent of patching the call.  We
1251   // always return the entry-point, but we only patch the stub if the call has
1252   // not been deoptimized.  Return values: For a virtual call this is an
1253   // (cached_oop, destination address) pair. For a static call/optimized
1254   // virtual this is just a destination address.
1255 
1256   StaticCallInfo static_call_info;
1257   CompiledICInfo virtual_call_info;
1258 
1259   // Make sure the callee nmethod does not get deoptimized and removed before
1260   // we are done patching the code.
1261   nmethod* callee_nm = callee_method->code();
1262   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1263     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1264     callee_nm = NULL;
1265   }
1266   nmethodLocker nl_callee(callee_nm);
1267 #ifdef ASSERT
1268   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1269 #endif
1270 
1271   if (is_virtual) {
1272     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1273     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1274     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1275     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1276                      is_optimized, static_bound, virtual_call_info,
1277                      CHECK_(methodHandle()));
1278   } else {
1279     // static call
1280     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1281   }
1282 
1283   // grab lock, check for deoptimization and potentially patch caller
1284   {
1285     MutexLocker ml_patch(CompiledIC_lock);
1286 
1287     // Lock blocks for safepoint during which both nmethods can change state.
1288 
1289     // Now that we are ready to patch if the Method* was redefined then
1290     // don't update call site and let the caller retry.
1291     // Don't update call site if callee nmethod was unloaded or deoptimized.
1292     // Don't update call site if callee nmethod was replaced by an other nmethod
1293     // which may happen when multiply alive nmethod (tiered compilation)
1294     // will be supported.
1295     if (!callee_method->is_old() &&
1296         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1297 #ifdef ASSERT
1298       // We must not try to patch to jump to an already unloaded method.
1299       if (dest_entry_point != 0) {
1300         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1301         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1302                "should not call unloaded nmethod");
1303       }
1304 #endif
1305       if (is_virtual) {
1306         nmethod* nm = callee_nm;
1307         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
1308         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1309         if (inline_cache->is_clean()) {
1310           inline_cache->set_to_monomorphic(virtual_call_info);
1311         }
1312       } else {
1313         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1314         if (ssc->is_clean()) ssc->set(static_call_info);
1315       }
1316     }
1317 
1318   } // unlock CompiledIC_lock
1319 
1320   return callee_method;
1321 }
1322 
1323 
1324 // Inline caches exist only in compiled code
1325 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1326 #ifdef ASSERT
1327   RegisterMap reg_map(thread, false);
1328   frame stub_frame = thread->last_frame();
1329   assert(stub_frame.is_runtime_frame(), "sanity check");
1330   frame caller_frame = stub_frame.sender(&reg_map);
1331   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1332 #endif /* ASSERT */
1333 
1334   methodHandle callee_method;
1335   JRT_BLOCK
1336     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1337     // Return Method* through TLS
1338     thread->set_vm_result_2(callee_method());
1339   JRT_BLOCK_END
1340   // return compiled code entry point after potential safepoints
1341   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1342   return callee_method->verified_code_entry();
1343 JRT_END
1344 
1345 
1346 // Handle call site that has been made non-entrant
1347 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1348   // 6243940 We might end up in here if the callee is deoptimized
1349   // as we race to call it.  We don't want to take a safepoint if
1350   // the caller was interpreted because the caller frame will look
1351   // interpreted to the stack walkers and arguments are now
1352   // "compiled" so it is much better to make this transition
1353   // invisible to the stack walking code. The i2c path will
1354   // place the callee method in the callee_target. It is stashed
1355   // there because if we try and find the callee by normal means a
1356   // safepoint is possible and have trouble gc'ing the compiled args.
1357   RegisterMap reg_map(thread, false);
1358   frame stub_frame = thread->last_frame();
1359   assert(stub_frame.is_runtime_frame(), "sanity check");
1360   frame caller_frame = stub_frame.sender(&reg_map);
1361 
1362   if (caller_frame.is_interpreted_frame() ||
1363       caller_frame.is_entry_frame()) {
1364     Method* callee = thread->callee_target();
1365     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1366     thread->set_vm_result_2(callee);
1367     thread->set_callee_target(NULL);
1368     return callee->get_c2i_entry();
1369   }
1370 
1371   // Must be compiled to compiled path which is safe to stackwalk
1372   methodHandle callee_method;
1373   JRT_BLOCK
1374     // Force resolving of caller (if we called from compiled frame)
1375     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1376     thread->set_vm_result_2(callee_method());
1377   JRT_BLOCK_END
1378   // return compiled code entry point after potential safepoints
1379   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1380   return callee_method->verified_code_entry();
1381 JRT_END
1382 
1383 // Handle abstract method call
1384 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1385   return StubRoutines::throw_AbstractMethodError_entry();
1386 JRT_END
1387 
1388 
1389 // resolve a static call and patch code
1390 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1391   methodHandle callee_method;
1392   JRT_BLOCK
1393     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1394     thread->set_vm_result_2(callee_method());
1395   JRT_BLOCK_END
1396   // return compiled code entry point after potential safepoints
1397   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1398   return callee_method->verified_code_entry();
1399 JRT_END
1400 
1401 
1402 // resolve virtual call and update inline cache to monomorphic
1403 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1404   methodHandle callee_method;
1405   JRT_BLOCK
1406     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1407     thread->set_vm_result_2(callee_method());
1408   JRT_BLOCK_END
1409   // return compiled code entry point after potential safepoints
1410   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1411   return callee_method->verified_code_entry();
1412 JRT_END
1413 
1414 
1415 // Resolve a virtual call that can be statically bound (e.g., always
1416 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1417 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1418   methodHandle callee_method;
1419   JRT_BLOCK
1420     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1421     thread->set_vm_result_2(callee_method());
1422   JRT_BLOCK_END
1423   // return compiled code entry point after potential safepoints
1424   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1425   return callee_method->verified_code_entry();
1426 JRT_END
1427 
1428 
1429 
1430 
1431 
1432 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1433   ResourceMark rm(thread);
1434   CallInfo call_info;
1435   Bytecodes::Code bc;
1436 
1437   // receiver is NULL for static calls. An exception is thrown for NULL
1438   // receivers for non-static calls
1439   Handle receiver = find_callee_info(thread, bc, call_info,
1440                                      CHECK_(methodHandle()));
1441   // Compiler1 can produce virtual call sites that can actually be statically bound
1442   // If we fell thru to below we would think that the site was going megamorphic
1443   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1444   // we'd try and do a vtable dispatch however methods that can be statically bound
1445   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1446   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1447   // plain ic_miss) and the site will be converted to an optimized virtual call site
1448   // never to miss again. I don't believe C2 will produce code like this but if it
1449   // did this would still be the correct thing to do for it too, hence no ifdef.
1450   //
1451   if (call_info.resolved_method()->can_be_statically_bound()) {
1452     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1453     if (TraceCallFixup) {
1454       RegisterMap reg_map(thread, false);
1455       frame caller_frame = thread->last_frame().sender(&reg_map);
1456       ResourceMark rm(thread);
1457       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1458       callee_method->print_short_name(tty);
1459       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1460       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1461     }
1462     return callee_method;
1463   }
1464 
1465   methodHandle callee_method = call_info.selected_method();
1466 
1467   bool should_be_mono = false;
1468 
1469 #ifndef PRODUCT
1470   Atomic::inc(&_ic_miss_ctr);
1471 
1472   // Statistics & Tracing
1473   if (TraceCallFixup) {
1474     ResourceMark rm(thread);
1475     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1476     callee_method->print_short_name(tty);
1477     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1478   }
1479 
1480   if (ICMissHistogram) {
1481     MutexLocker m(VMStatistic_lock);
1482     RegisterMap reg_map(thread, false);
1483     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1484     // produce statistics under the lock
1485     trace_ic_miss(f.pc());
1486   }
1487 #endif
1488 
1489   // install an event collector so that when a vtable stub is created the
1490   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1491   // event can't be posted when the stub is created as locks are held
1492   // - instead the event will be deferred until the event collector goes
1493   // out of scope.
1494   JvmtiDynamicCodeEventCollector event_collector;
1495 
1496   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1497   { MutexLocker ml_patch (CompiledIC_lock);
1498     RegisterMap reg_map(thread, false);
1499     frame caller_frame = thread->last_frame().sender(&reg_map);
1500     CodeBlob* cb = caller_frame.cb();
1501     if (cb->is_nmethod()) {
1502       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1503       bool should_be_mono = false;
1504       if (inline_cache->is_optimized()) {
1505         if (TraceCallFixup) {
1506           ResourceMark rm(thread);
1507           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1508           callee_method->print_short_name(tty);
1509           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1510         }
1511         should_be_mono = true;
1512       } else if (inline_cache->is_icholder_call()) {
1513         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1514         if ( ic_oop != NULL) {
1515 
1516           if (receiver()->klass() == ic_oop->holder_klass()) {
1517             // This isn't a real miss. We must have seen that compiled code
1518             // is now available and we want the call site converted to a
1519             // monomorphic compiled call site.
1520             // We can't assert for callee_method->code() != NULL because it
1521             // could have been deoptimized in the meantime
1522             if (TraceCallFixup) {
1523               ResourceMark rm(thread);
1524               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1525               callee_method->print_short_name(tty);
1526               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1527             }
1528             should_be_mono = true;
1529           }
1530         }
1531       }
1532 
1533       if (should_be_mono) {
1534 
1535         // We have a path that was monomorphic but was going interpreted
1536         // and now we have (or had) a compiled entry. We correct the IC
1537         // by using a new icBuffer.
1538         CompiledICInfo info;
1539         KlassHandle receiver_klass(THREAD, receiver()->klass());
1540         inline_cache->compute_monomorphic_entry(callee_method,
1541                                                 receiver_klass,
1542                                                 inline_cache->is_optimized(),
1543                                                 false,
1544                                                 info, CHECK_(methodHandle()));
1545         inline_cache->set_to_monomorphic(info);
1546       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1547         // Potential change to megamorphic
1548         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1549         if (!successful) {
1550           inline_cache->set_to_clean();
1551         }
1552       } else {
1553         // Either clean or megamorphic
1554       }
1555     }
1556   } // Release CompiledIC_lock
1557 
1558   return callee_method;
1559 }
1560 
1561 //
1562 // Resets a call-site in compiled code so it will get resolved again.
1563 // This routines handles both virtual call sites, optimized virtual call
1564 // sites, and static call sites. Typically used to change a call sites
1565 // destination from compiled to interpreted.
1566 //
1567 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1568   ResourceMark rm(thread);
1569   RegisterMap reg_map(thread, false);
1570   frame stub_frame = thread->last_frame();
1571   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1572   frame caller = stub_frame.sender(&reg_map);
1573 
1574   // Do nothing if the frame isn't a live compiled frame.
1575   // nmethod could be deoptimized by the time we get here
1576   // so no update to the caller is needed.
1577 
1578   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1579 
1580     address pc = caller.pc();
1581 
1582     // Default call_addr is the location of the "basic" call.
1583     // Determine the address of the call we a reresolving. With
1584     // Inline Caches we will always find a recognizable call.
1585     // With Inline Caches disabled we may or may not find a
1586     // recognizable call. We will always find a call for static
1587     // calls and for optimized virtual calls. For vanilla virtual
1588     // calls it depends on the state of the UseInlineCaches switch.
1589     //
1590     // With Inline Caches disabled we can get here for a virtual call
1591     // for two reasons:
1592     //   1 - calling an abstract method. The vtable for abstract methods
1593     //       will run us thru handle_wrong_method and we will eventually
1594     //       end up in the interpreter to throw the ame.
1595     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1596     //       call and between the time we fetch the entry address and
1597     //       we jump to it the target gets deoptimized. Similar to 1
1598     //       we will wind up in the interprter (thru a c2i with c2).
1599     //
1600     address call_addr = NULL;
1601     {
1602       // Get call instruction under lock because another thread may be
1603       // busy patching it.
1604       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1605       // Location of call instruction
1606       if (NativeCall::is_call_before(pc)) {
1607         NativeCall *ncall = nativeCall_before(pc);
1608         call_addr = ncall->instruction_address();
1609       }
1610     }
1611 
1612     // Check for static or virtual call
1613     bool is_static_call = false;
1614     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1615     // Make sure nmethod doesn't get deoptimized and removed until
1616     // this is done with it.
1617     // CLEANUP - with lazy deopt shouldn't need this lock
1618     nmethodLocker nmlock(caller_nm);
1619 
1620     if (call_addr != NULL) {
1621       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1622       int ret = iter.next(); // Get item
1623       if (ret) {
1624         assert(iter.addr() == call_addr, "must find call");
1625         if (iter.type() == relocInfo::static_call_type) {
1626           is_static_call = true;
1627         } else {
1628           assert(iter.type() == relocInfo::virtual_call_type ||
1629                  iter.type() == relocInfo::opt_virtual_call_type
1630                 , "unexpected relocInfo. type");
1631         }
1632       } else {
1633         assert(!UseInlineCaches, "relocation info. must exist for this address");
1634       }
1635 
1636       // Cleaning the inline cache will force a new resolve. This is more robust
1637       // than directly setting it to the new destination, since resolving of calls
1638       // is always done through the same code path. (experience shows that it
1639       // leads to very hard to track down bugs, if an inline cache gets updated
1640       // to a wrong method). It should not be performance critical, since the
1641       // resolve is only done once.
1642 
1643       MutexLocker ml(CompiledIC_lock);
1644       if (is_static_call) {
1645         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1646         ssc->set_to_clean();
1647       } else {
1648         // compiled, dispatched call (which used to call an interpreted method)
1649         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1650         inline_cache->set_to_clean();
1651       }
1652     }
1653 
1654   }
1655 
1656   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1657 
1658 
1659 #ifndef PRODUCT
1660   Atomic::inc(&_wrong_method_ctr);
1661 
1662   if (TraceCallFixup) {
1663     ResourceMark rm(thread);
1664     tty->print("handle_wrong_method reresolving call to");
1665     callee_method->print_short_name(tty);
1666     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1667   }
1668 #endif
1669 
1670   return callee_method;
1671 }
1672 
1673 #ifdef ASSERT
1674 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1675                                                                 const BasicType* sig_bt,
1676                                                                 const VMRegPair* regs) {
1677   ResourceMark rm;
1678   const int total_args_passed = method->size_of_parameters();
1679   const VMRegPair*    regs_with_member_name = regs;
1680         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1681 
1682   const int member_arg_pos = total_args_passed - 1;
1683   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1684   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1685 
1686   const bool is_outgoing = method->is_method_handle_intrinsic();
1687   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1688 
1689   for (int i = 0; i < member_arg_pos; i++) {
1690     VMReg a =    regs_with_member_name[i].first();
1691     VMReg b = regs_without_member_name[i].first();
1692     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1693   }
1694   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1695 }
1696 #endif
1697 
1698 // ---------------------------------------------------------------------------
1699 // We are calling the interpreter via a c2i. Normally this would mean that
1700 // we were called by a compiled method. However we could have lost a race
1701 // where we went int -> i2c -> c2i and so the caller could in fact be
1702 // interpreted. If the caller is compiled we attempt to patch the caller
1703 // so he no longer calls into the interpreter.
1704 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1705   Method* moop(method);
1706 
1707   address entry_point = moop->from_compiled_entry();
1708 
1709   // It's possible that deoptimization can occur at a call site which hasn't
1710   // been resolved yet, in which case this function will be called from
1711   // an nmethod that has been patched for deopt and we can ignore the
1712   // request for a fixup.
1713   // Also it is possible that we lost a race in that from_compiled_entry
1714   // is now back to the i2c in that case we don't need to patch and if
1715   // we did we'd leap into space because the callsite needs to use
1716   // "to interpreter" stub in order to load up the Method*. Don't
1717   // ask me how I know this...
1718 
1719   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1720   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1721     return;
1722   }
1723 
1724   // The check above makes sure this is a nmethod.
1725   nmethod* nm = cb->as_nmethod_or_null();
1726   assert(nm, "must be");
1727 
1728   // Get the return PC for the passed caller PC.
1729   address return_pc = caller_pc + frame::pc_return_offset;
1730 
1731   // There is a benign race here. We could be attempting to patch to a compiled
1732   // entry point at the same time the callee is being deoptimized. If that is
1733   // the case then entry_point may in fact point to a c2i and we'd patch the
1734   // call site with the same old data. clear_code will set code() to NULL
1735   // at the end of it. If we happen to see that NULL then we can skip trying
1736   // to patch. If we hit the window where the callee has a c2i in the
1737   // from_compiled_entry and the NULL isn't present yet then we lose the race
1738   // and patch the code with the same old data. Asi es la vida.
1739 
1740   if (moop->code() == NULL) return;
1741 
1742   if (nm->is_in_use()) {
1743 
1744     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1745     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1746     if (NativeCall::is_call_before(return_pc)) {
1747       NativeCall *call = nativeCall_before(return_pc);
1748       //
1749       // bug 6281185. We might get here after resolving a call site to a vanilla
1750       // virtual call. Because the resolvee uses the verified entry it may then
1751       // see compiled code and attempt to patch the site by calling us. This would
1752       // then incorrectly convert the call site to optimized and its downhill from
1753       // there. If you're lucky you'll get the assert in the bugid, if not you've
1754       // just made a call site that could be megamorphic into a monomorphic site
1755       // for the rest of its life! Just another racing bug in the life of
1756       // fixup_callers_callsite ...
1757       //
1758       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1759       iter.next();
1760       assert(iter.has_current(), "must have a reloc at java call site");
1761       relocInfo::relocType typ = iter.reloc()->type();
1762       if ( typ != relocInfo::static_call_type &&
1763            typ != relocInfo::opt_virtual_call_type &&
1764            typ != relocInfo::static_stub_type) {
1765         return;
1766       }
1767       address destination = call->destination();
1768       if (destination != entry_point) {
1769         CodeBlob* callee = CodeCache::find_blob(destination);
1770         // callee == cb seems weird. It means calling interpreter thru stub.
1771         if (callee == cb || callee->is_adapter_blob()) {
1772           // static call or optimized virtual
1773           if (TraceCallFixup) {
1774             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1775             moop->print_short_name(tty);
1776             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1777           }
1778           call->set_destination_mt_safe(entry_point);
1779         } else {
1780           if (TraceCallFixup) {
1781             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1782             moop->print_short_name(tty);
1783             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1784           }
1785           // assert is too strong could also be resolve destinations.
1786           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1787         }
1788       } else {
1789           if (TraceCallFixup) {
1790             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1791             moop->print_short_name(tty);
1792             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1793           }
1794       }
1795     }
1796   }
1797 IRT_END
1798 
1799 
1800 // same as JVM_Arraycopy, but called directly from compiled code
1801 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1802                                                 oopDesc* dest, jint dest_pos,
1803                                                 jint length,
1804                                                 JavaThread* thread)) {
1805 #ifndef PRODUCT
1806   _slow_array_copy_ctr++;
1807 #endif
1808   // Check if we have null pointers
1809   if (src == NULL || dest == NULL) {
1810     THROW(vmSymbols::java_lang_NullPointerException());
1811   }
1812   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1813   // even though the copy_array API also performs dynamic checks to ensure
1814   // that src and dest are truly arrays (and are conformable).
1815   // The copy_array mechanism is awkward and could be removed, but
1816   // the compilers don't call this function except as a last resort,
1817   // so it probably doesn't matter.
1818   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1819                                         (arrayOopDesc*)dest, dest_pos,
1820                                         length, thread);
1821 }
1822 JRT_END
1823 
1824 char* SharedRuntime::generate_class_cast_message(
1825     JavaThread* thread, const char* objName) {
1826 
1827   // Get target class name from the checkcast instruction
1828   vframeStream vfst(thread, true);
1829   assert(!vfst.at_end(), "Java frame must exist");
1830   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1831   Klass* targetKlass = vfst.method()->constants()->klass_at(
1832     cc.index(), thread);
1833   return generate_class_cast_message(objName, targetKlass->external_name());
1834 }
1835 
1836 char* SharedRuntime::generate_class_cast_message(
1837     const char* objName, const char* targetKlassName, const char* desc) {
1838   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1839 
1840   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1841   if (NULL == message) {
1842     // Shouldn't happen, but don't cause even more problems if it does
1843     message = const_cast<char*>(objName);
1844   } else {
1845     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1846   }
1847   return message;
1848 }
1849 
1850 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1851   (void) JavaThread::current()->reguard_stack();
1852 JRT_END
1853 
1854 
1855 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1856 #ifndef PRODUCT
1857 int SharedRuntime::_monitor_enter_ctr=0;
1858 #endif
1859 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1860   oop obj(_obj);
1861 #ifndef PRODUCT
1862   _monitor_enter_ctr++;             // monitor enter slow
1863 #endif
1864   if (PrintBiasedLockingStatistics) {
1865     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1866   }
1867   Handle h_obj(THREAD, obj);
1868   if (UseBiasedLocking) {
1869     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1870     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1871   } else {
1872     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1873   }
1874   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1875 JRT_END
1876 
1877 #ifndef PRODUCT
1878 int SharedRuntime::_monitor_exit_ctr=0;
1879 #endif
1880 // Handles the uncommon cases of monitor unlocking in compiled code
1881 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1882    oop obj(_obj);
1883 #ifndef PRODUCT
1884   _monitor_exit_ctr++;              // monitor exit slow
1885 #endif
1886   Thread* THREAD = JavaThread::current();
1887   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1888   // testing was unable to ever fire the assert that guarded it so I have removed it.
1889   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1890 #undef MIGHT_HAVE_PENDING
1891 #ifdef MIGHT_HAVE_PENDING
1892   // Save and restore any pending_exception around the exception mark.
1893   // While the slow_exit must not throw an exception, we could come into
1894   // this routine with one set.
1895   oop pending_excep = NULL;
1896   const char* pending_file;
1897   int pending_line;
1898   if (HAS_PENDING_EXCEPTION) {
1899     pending_excep = PENDING_EXCEPTION;
1900     pending_file  = THREAD->exception_file();
1901     pending_line  = THREAD->exception_line();
1902     CLEAR_PENDING_EXCEPTION;
1903   }
1904 #endif /* MIGHT_HAVE_PENDING */
1905 
1906   {
1907     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1908     EXCEPTION_MARK;
1909     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1910   }
1911 
1912 #ifdef MIGHT_HAVE_PENDING
1913   if (pending_excep != NULL) {
1914     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1915   }
1916 #endif /* MIGHT_HAVE_PENDING */
1917 JRT_END
1918 
1919 #ifndef PRODUCT
1920 
1921 void SharedRuntime::print_statistics() {
1922   ttyLocker ttyl;
1923   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1924 
1925   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1926   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1927   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1928 
1929   SharedRuntime::print_ic_miss_histogram();
1930 
1931   if (CountRemovableExceptions) {
1932     if (_nof_removable_exceptions > 0) {
1933       Unimplemented(); // this counter is not yet incremented
1934       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1935     }
1936   }
1937 
1938   // Dump the JRT_ENTRY counters
1939   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1940   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1941   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1942   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1943   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1944   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1945   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1946 
1947   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1948   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1949   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1950   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1951   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1952 
1953   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1954   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1955   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1956   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1957   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1958   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1959   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1960   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1961   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1962   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1963   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1964   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1965   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1966   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1967   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1968   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1969 
1970   AdapterHandlerLibrary::print_statistics();
1971 
1972   if (xtty != NULL)  xtty->tail("statistics");
1973 }
1974 
1975 inline double percent(int x, int y) {
1976   return 100.0 * x / MAX2(y, 1);
1977 }
1978 
1979 class MethodArityHistogram {
1980  public:
1981   enum { MAX_ARITY = 256 };
1982  private:
1983   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1984   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1985   static int _max_arity;                      // max. arity seen
1986   static int _max_size;                       // max. arg size seen
1987 
1988   static void add_method_to_histogram(nmethod* nm) {
1989     Method* m = nm->method();
1990     ArgumentCount args(m->signature());
1991     int arity   = args.size() + (m->is_static() ? 0 : 1);
1992     int argsize = m->size_of_parameters();
1993     arity   = MIN2(arity, MAX_ARITY-1);
1994     argsize = MIN2(argsize, MAX_ARITY-1);
1995     int count = nm->method()->compiled_invocation_count();
1996     _arity_histogram[arity]  += count;
1997     _size_histogram[argsize] += count;
1998     _max_arity = MAX2(_max_arity, arity);
1999     _max_size  = MAX2(_max_size, argsize);
2000   }
2001 
2002   void print_histogram_helper(int n, int* histo, const char* name) {
2003     const int N = MIN2(5, n);
2004     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2005     double sum = 0;
2006     double weighted_sum = 0;
2007     int i;
2008     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2009     double rest = sum;
2010     double percent = sum / 100;
2011     for (i = 0; i <= N; i++) {
2012       rest -= histo[i];
2013       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2014     }
2015     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2016     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2017   }
2018 
2019   void print_histogram() {
2020     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2021     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2022     tty->print_cr("\nSame for parameter size (in words):");
2023     print_histogram_helper(_max_size, _size_histogram, "size");
2024     tty->cr();
2025   }
2026 
2027  public:
2028   MethodArityHistogram() {
2029     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2030     _max_arity = _max_size = 0;
2031     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2032     CodeCache::nmethods_do(add_method_to_histogram);
2033     print_histogram();
2034   }
2035 };
2036 
2037 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2038 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2039 int MethodArityHistogram::_max_arity;
2040 int MethodArityHistogram::_max_size;
2041 
2042 void SharedRuntime::print_call_statistics(int comp_total) {
2043   tty->print_cr("Calls from compiled code:");
2044   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2045   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2046   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2047   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2048   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2049   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2050   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2051   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2052   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2053   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2054   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2055   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2056   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2057   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2058   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2059   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2060   tty->cr();
2061   tty->print_cr("Note 1: counter updates are not MT-safe.");
2062   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2063   tty->print_cr("        %% in nested categories are relative to their category");
2064   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2065   tty->cr();
2066 
2067   MethodArityHistogram h;
2068 }
2069 #endif
2070 
2071 
2072 // A simple wrapper class around the calling convention information
2073 // that allows sharing of adapters for the same calling convention.
2074 class AdapterFingerPrint : public CHeapObj<mtCode> {
2075  private:
2076   enum {
2077     _basic_type_bits = 4,
2078     _basic_type_mask = right_n_bits(_basic_type_bits),
2079     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2080     _compact_int_count = 3
2081   };
2082   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2083   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2084 
2085   union {
2086     int  _compact[_compact_int_count];
2087     int* _fingerprint;
2088   } _value;
2089   int _length; // A negative length indicates the fingerprint is in the compact form,
2090                // Otherwise _value._fingerprint is the array.
2091 
2092   // Remap BasicTypes that are handled equivalently by the adapters.
2093   // These are correct for the current system but someday it might be
2094   // necessary to make this mapping platform dependent.
2095   static int adapter_encoding(BasicType in) {
2096     switch(in) {
2097       case T_BOOLEAN:
2098       case T_BYTE:
2099       case T_SHORT:
2100       case T_CHAR:
2101         // There are all promoted to T_INT in the calling convention
2102         return T_INT;
2103 
2104       case T_OBJECT:
2105       case T_ARRAY:
2106         // In other words, we assume that any register good enough for
2107         // an int or long is good enough for a managed pointer.
2108 #ifdef _LP64
2109         return T_LONG;
2110 #else
2111         return T_INT;
2112 #endif
2113 
2114       case T_INT:
2115       case T_LONG:
2116       case T_FLOAT:
2117       case T_DOUBLE:
2118       case T_VOID:
2119         return in;
2120 
2121       default:
2122         ShouldNotReachHere();
2123         return T_CONFLICT;
2124     }
2125   }
2126 
2127  public:
2128   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2129     // The fingerprint is based on the BasicType signature encoded
2130     // into an array of ints with eight entries per int.
2131     int* ptr;
2132     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2133     if (len <= _compact_int_count) {
2134       assert(_compact_int_count == 3, "else change next line");
2135       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2136       // Storing the signature encoded as signed chars hits about 98%
2137       // of the time.
2138       _length = -len;
2139       ptr = _value._compact;
2140     } else {
2141       _length = len;
2142       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2143       ptr = _value._fingerprint;
2144     }
2145 
2146     // Now pack the BasicTypes with 8 per int
2147     int sig_index = 0;
2148     for (int index = 0; index < len; index++) {
2149       int value = 0;
2150       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2151         int bt = ((sig_index < total_args_passed)
2152                   ? adapter_encoding(sig_bt[sig_index++])
2153                   : 0);
2154         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2155         value = (value << _basic_type_bits) | bt;
2156       }
2157       ptr[index] = value;
2158     }
2159   }
2160 
2161   ~AdapterFingerPrint() {
2162     if (_length > 0) {
2163       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2164     }
2165   }
2166 
2167   int value(int index) {
2168     if (_length < 0) {
2169       return _value._compact[index];
2170     }
2171     return _value._fingerprint[index];
2172   }
2173   int length() {
2174     if (_length < 0) return -_length;
2175     return _length;
2176   }
2177 
2178   bool is_compact() {
2179     return _length <= 0;
2180   }
2181 
2182   unsigned int compute_hash() {
2183     int hash = 0;
2184     for (int i = 0; i < length(); i++) {
2185       int v = value(i);
2186       hash = (hash << 8) ^ v ^ (hash >> 5);
2187     }
2188     return (unsigned int)hash;
2189   }
2190 
2191   const char* as_string() {
2192     stringStream st;
2193     st.print("0x");
2194     for (int i = 0; i < length(); i++) {
2195       st.print("%08x", value(i));
2196     }
2197     return st.as_string();
2198   }
2199 
2200   bool equals(AdapterFingerPrint* other) {
2201     if (other->_length != _length) {
2202       return false;
2203     }
2204     if (_length < 0) {
2205       assert(_compact_int_count == 3, "else change next line");
2206       return _value._compact[0] == other->_value._compact[0] &&
2207              _value._compact[1] == other->_value._compact[1] &&
2208              _value._compact[2] == other->_value._compact[2];
2209     } else {
2210       for (int i = 0; i < _length; i++) {
2211         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2212           return false;
2213         }
2214       }
2215     }
2216     return true;
2217   }
2218 };
2219 
2220 
2221 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2222 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2223   friend class AdapterHandlerTableIterator;
2224 
2225  private:
2226 
2227 #ifndef PRODUCT
2228   static int _lookups; // number of calls to lookup
2229   static int _buckets; // number of buckets checked
2230   static int _equals;  // number of buckets checked with matching hash
2231   static int _hits;    // number of successful lookups
2232   static int _compact; // number of equals calls with compact signature
2233 #endif
2234 
2235   AdapterHandlerEntry* bucket(int i) {
2236     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2237   }
2238 
2239  public:
2240   AdapterHandlerTable()
2241     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2242 
2243   // Create a new entry suitable for insertion in the table
2244   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2245     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2246     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2247     return entry;
2248   }
2249 
2250   // Insert an entry into the table
2251   void add(AdapterHandlerEntry* entry) {
2252     int index = hash_to_index(entry->hash());
2253     add_entry(index, entry);
2254   }
2255 
2256   void free_entry(AdapterHandlerEntry* entry) {
2257     entry->deallocate();
2258     BasicHashtable<mtCode>::free_entry(entry);
2259   }
2260 
2261   // Find a entry with the same fingerprint if it exists
2262   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2263     NOT_PRODUCT(_lookups++);
2264     AdapterFingerPrint fp(total_args_passed, sig_bt);
2265     unsigned int hash = fp.compute_hash();
2266     int index = hash_to_index(hash);
2267     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2268       NOT_PRODUCT(_buckets++);
2269       if (e->hash() == hash) {
2270         NOT_PRODUCT(_equals++);
2271         if (fp.equals(e->fingerprint())) {
2272 #ifndef PRODUCT
2273           if (fp.is_compact()) _compact++;
2274           _hits++;
2275 #endif
2276           return e;
2277         }
2278       }
2279     }
2280     return NULL;
2281   }
2282 
2283 #ifndef PRODUCT
2284   void print_statistics() {
2285     ResourceMark rm;
2286     int longest = 0;
2287     int empty = 0;
2288     int total = 0;
2289     int nonempty = 0;
2290     for (int index = 0; index < table_size(); index++) {
2291       int count = 0;
2292       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2293         count++;
2294       }
2295       if (count != 0) nonempty++;
2296       if (count == 0) empty++;
2297       if (count > longest) longest = count;
2298       total += count;
2299     }
2300     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2301                   empty, longest, total, total / (double)nonempty);
2302     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2303                   _lookups, _buckets, _equals, _hits, _compact);
2304   }
2305 #endif
2306 };
2307 
2308 
2309 #ifndef PRODUCT
2310 
2311 int AdapterHandlerTable::_lookups;
2312 int AdapterHandlerTable::_buckets;
2313 int AdapterHandlerTable::_equals;
2314 int AdapterHandlerTable::_hits;
2315 int AdapterHandlerTable::_compact;
2316 
2317 #endif
2318 
2319 class AdapterHandlerTableIterator : public StackObj {
2320  private:
2321   AdapterHandlerTable* _table;
2322   int _index;
2323   AdapterHandlerEntry* _current;
2324 
2325   void scan() {
2326     while (_index < _table->table_size()) {
2327       AdapterHandlerEntry* a = _table->bucket(_index);
2328       _index++;
2329       if (a != NULL) {
2330         _current = a;
2331         return;
2332       }
2333     }
2334   }
2335 
2336  public:
2337   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2338     scan();
2339   }
2340   bool has_next() {
2341     return _current != NULL;
2342   }
2343   AdapterHandlerEntry* next() {
2344     if (_current != NULL) {
2345       AdapterHandlerEntry* result = _current;
2346       _current = _current->next();
2347       if (_current == NULL) scan();
2348       return result;
2349     } else {
2350       return NULL;
2351     }
2352   }
2353 };
2354 
2355 
2356 // ---------------------------------------------------------------------------
2357 // Implementation of AdapterHandlerLibrary
2358 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2359 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2360 const int AdapterHandlerLibrary_size = 16*K;
2361 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2362 
2363 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2364   // Should be called only when AdapterHandlerLibrary_lock is active.
2365   if (_buffer == NULL) // Initialize lazily
2366       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2367   return _buffer;
2368 }
2369 
2370 void AdapterHandlerLibrary::initialize() {
2371   if (_adapters != NULL) return;
2372   _adapters = new AdapterHandlerTable();
2373 
2374   // Create a special handler for abstract methods.  Abstract methods
2375   // are never compiled so an i2c entry is somewhat meaningless, but
2376   // throw AbstractMethodError just in case.
2377   // Pass wrong_method_abstract for the c2i transitions to return
2378   // AbstractMethodError for invalid invocations.
2379   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2380   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2381                                                               StubRoutines::throw_AbstractMethodError_entry(),
2382                                                               wrong_method_abstract, wrong_method_abstract);
2383 }
2384 
2385 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2386                                                       address i2c_entry,
2387                                                       address c2i_entry,
2388                                                       address c2i_unverified_entry) {
2389   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2390 }
2391 
2392 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2393   // Use customized signature handler.  Need to lock around updates to
2394   // the AdapterHandlerTable (it is not safe for concurrent readers
2395   // and a single writer: this could be fixed if it becomes a
2396   // problem).
2397 
2398   // Get the address of the ic_miss handlers before we grab the
2399   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2400   // was caused by the initialization of the stubs happening
2401   // while we held the lock and then notifying jvmti while
2402   // holding it. This just forces the initialization to be a little
2403   // earlier.
2404   address ic_miss = SharedRuntime::get_ic_miss_stub();
2405   assert(ic_miss != NULL, "must have handler");
2406 
2407   ResourceMark rm;
2408 
2409   NOT_PRODUCT(int insts_size);
2410   AdapterBlob* new_adapter = NULL;
2411   AdapterHandlerEntry* entry = NULL;
2412   AdapterFingerPrint* fingerprint = NULL;
2413   {
2414     MutexLocker mu(AdapterHandlerLibrary_lock);
2415     // make sure data structure is initialized
2416     initialize();
2417 
2418     if (method->is_abstract()) {
2419       return _abstract_method_handler;
2420     }
2421 
2422     // Fill in the signature array, for the calling-convention call.
2423     int total_args_passed = method->size_of_parameters(); // All args on stack
2424 
2425     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2426     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2427     int i = 0;
2428     if (!method->is_static())  // Pass in receiver first
2429       sig_bt[i++] = T_OBJECT;
2430     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2431       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2432       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2433         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2434     }
2435     assert(i == total_args_passed, "");
2436 
2437     // Lookup method signature's fingerprint
2438     entry = _adapters->lookup(total_args_passed, sig_bt);
2439 
2440 #ifdef ASSERT
2441     AdapterHandlerEntry* shared_entry = NULL;
2442     // Start adapter sharing verification only after the VM is booted.
2443     if (VerifyAdapterSharing && (entry != NULL)) {
2444       shared_entry = entry;
2445       entry = NULL;
2446     }
2447 #endif
2448 
2449     if (entry != NULL) {
2450       return entry;
2451     }
2452 
2453     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2454     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2455 
2456     // Make a C heap allocated version of the fingerprint to store in the adapter
2457     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2458 
2459     // StubRoutines::code2() is initialized after this function can be called. As a result,
2460     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2461     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2462     // stub that ensure that an I2C stub is called from an interpreter frame.
2463     bool contains_all_checks = StubRoutines::code2() != NULL;
2464 
2465     // Create I2C & C2I handlers
2466     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2467     if (buf != NULL) {
2468       CodeBuffer buffer(buf);
2469       short buffer_locs[20];
2470       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2471                                              sizeof(buffer_locs)/sizeof(relocInfo));
2472 
2473       MacroAssembler _masm(&buffer);
2474       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2475                                                      total_args_passed,
2476                                                      comp_args_on_stack,
2477                                                      sig_bt,
2478                                                      regs,
2479                                                      fingerprint);
2480 #ifdef ASSERT
2481       if (VerifyAdapterSharing) {
2482         if (shared_entry != NULL) {
2483           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2484           // Release the one just created and return the original
2485           _adapters->free_entry(entry);
2486           return shared_entry;
2487         } else  {
2488           entry->save_code(buf->code_begin(), buffer.insts_size());
2489         }
2490       }
2491 #endif
2492 
2493       new_adapter = AdapterBlob::create(&buffer);
2494       NOT_PRODUCT(insts_size = buffer.insts_size());
2495     }
2496     if (new_adapter == NULL) {
2497       // CodeCache is full, disable compilation
2498       // Ought to log this but compile log is only per compile thread
2499       // and we're some non descript Java thread.
2500       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2501       CompileBroker::handle_full_code_cache();
2502       return NULL; // Out of CodeCache space
2503     }
2504     entry->relocate(new_adapter->content_begin());
2505 #ifndef PRODUCT
2506     // debugging suppport
2507     if (PrintAdapterHandlers || PrintStubCode) {
2508       ttyLocker ttyl;
2509       entry->print_adapter_on(tty);
2510       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2511                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2512                     method->signature()->as_C_string(), insts_size);
2513       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2514       if (Verbose || PrintStubCode) {
2515         address first_pc = entry->base_address();
2516         if (first_pc != NULL) {
2517           Disassembler::decode(first_pc, first_pc + insts_size);
2518           tty->cr();
2519         }
2520       }
2521     }
2522 #endif
2523     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2524     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2525     if (contains_all_checks || !VerifyAdapterCalls) {
2526       _adapters->add(entry);
2527     }
2528   }
2529   // Outside of the lock
2530   if (new_adapter != NULL) {
2531     char blob_id[256];
2532     jio_snprintf(blob_id,
2533                  sizeof(blob_id),
2534                  "%s(%s)@" PTR_FORMAT,
2535                  new_adapter->name(),
2536                  fingerprint->as_string(),
2537                  new_adapter->content_begin());
2538     Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
2539 
2540     if (JvmtiExport::should_post_dynamic_code_generated()) {
2541       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2542     }
2543   }
2544   return entry;
2545 }
2546 
2547 address AdapterHandlerEntry::base_address() {
2548   address base = _i2c_entry;
2549   if (base == NULL)  base = _c2i_entry;
2550   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2551   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2552   return base;
2553 }
2554 
2555 void AdapterHandlerEntry::relocate(address new_base) {
2556   address old_base = base_address();
2557   assert(old_base != NULL, "");
2558   ptrdiff_t delta = new_base - old_base;
2559   if (_i2c_entry != NULL)
2560     _i2c_entry += delta;
2561   if (_c2i_entry != NULL)
2562     _c2i_entry += delta;
2563   if (_c2i_unverified_entry != NULL)
2564     _c2i_unverified_entry += delta;
2565   assert(base_address() == new_base, "");
2566 }
2567 
2568 
2569 void AdapterHandlerEntry::deallocate() {
2570   delete _fingerprint;
2571 #ifdef ASSERT
2572   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2573 #endif
2574 }
2575 
2576 
2577 #ifdef ASSERT
2578 // Capture the code before relocation so that it can be compared
2579 // against other versions.  If the code is captured after relocation
2580 // then relative instructions won't be equivalent.
2581 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2582   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2583   _saved_code_length = length;
2584   memcpy(_saved_code, buffer, length);
2585 }
2586 
2587 
2588 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2589   if (length != _saved_code_length) {
2590     return false;
2591   }
2592 
2593   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2594 }
2595 #endif
2596 
2597 
2598 /**
2599  * Create a native wrapper for this native method.  The wrapper converts the
2600  * Java-compiled calling convention to the native convention, handles
2601  * arguments, and transitions to native.  On return from the native we transition
2602  * back to java blocking if a safepoint is in progress.
2603  */
2604 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2605   ResourceMark rm;
2606   nmethod* nm = NULL;
2607 
2608   assert(method->is_native(), "must be native");
2609   assert(method->is_method_handle_intrinsic() ||
2610          method->has_native_function(), "must have something valid to call!");
2611 
2612   {
2613     // Perform the work while holding the lock, but perform any printing outside the lock
2614     MutexLocker mu(AdapterHandlerLibrary_lock);
2615     // See if somebody beat us to it
2616     nm = method->code();
2617     if (nm != NULL) {
2618       return;
2619     }
2620 
2621     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2622     assert(compile_id > 0, "Must generate native wrapper");
2623 
2624 
2625     ResourceMark rm;
2626     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2627     if (buf != NULL) {
2628       CodeBuffer buffer(buf);
2629       double locs_buf[20];
2630       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2631       MacroAssembler _masm(&buffer);
2632 
2633       // Fill in the signature array, for the calling-convention call.
2634       const int total_args_passed = method->size_of_parameters();
2635 
2636       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2637       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2638       int i=0;
2639       if( !method->is_static() )  // Pass in receiver first
2640         sig_bt[i++] = T_OBJECT;
2641       SignatureStream ss(method->signature());
2642       for( ; !ss.at_return_type(); ss.next()) {
2643         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2644         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2645           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2646       }
2647       assert(i == total_args_passed, "");
2648       BasicType ret_type = ss.type();
2649 
2650       // Now get the compiled-Java layout as input (or output) arguments.
2651       // NOTE: Stubs for compiled entry points of method handle intrinsics
2652       // are just trampolines so the argument registers must be outgoing ones.
2653       const bool is_outgoing = method->is_method_handle_intrinsic();
2654       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2655 
2656       // Generate the compiled-to-native wrapper code
2657       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2658 
2659       if (nm != NULL) {
2660         method->set_code(method, nm);
2661       }
2662     }
2663   } // Unlock AdapterHandlerLibrary_lock
2664 
2665 
2666   // Install the generated code.
2667   if (nm != NULL) {
2668     if (PrintCompilation) {
2669       ttyLocker ttyl;
2670       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2671     }
2672     nm->post_compiled_method_load_event();
2673   } else {
2674     // CodeCache is full, disable compilation
2675     CompileBroker::handle_full_code_cache();
2676   }
2677 }
2678 
2679 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2680   assert(thread == JavaThread::current(), "must be");
2681   // The code is about to enter a JNI lazy critical native method and
2682   // _needs_gc is true, so if this thread is already in a critical
2683   // section then just return, otherwise this thread should block
2684   // until needs_gc has been cleared.
2685   if (thread->in_critical()) {
2686     return;
2687   }
2688   // Lock and unlock a critical section to give the system a chance to block
2689   GC_locker::lock_critical(thread);
2690   GC_locker::unlock_critical(thread);
2691 JRT_END
2692 
2693 #ifdef HAVE_DTRACE_H
2694 /**
2695  * Create a dtrace nmethod for this method.  The wrapper converts the
2696  * Java-compiled calling convention to the native convention, makes a dummy call
2697  * (actually nops for the size of the call instruction, which become a trap if
2698  * probe is enabled), and finally returns to the caller. Since this all looks like a
2699  * leaf, no thread transition is needed.
2700  */
2701 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2702   ResourceMark rm;
2703   nmethod* nm = NULL;
2704 
2705   if (PrintCompilation) {
2706     ttyLocker ttyl;
2707     tty->print("---   n  ");
2708     method->print_short_name(tty);
2709     if (method->is_static()) {
2710       tty->print(" (static)");
2711     }
2712     tty->cr();
2713   }
2714 
2715   {
2716     // perform the work while holding the lock, but perform any printing
2717     // outside the lock
2718     MutexLocker mu(AdapterHandlerLibrary_lock);
2719     // See if somebody beat us to it
2720     nm = method->code();
2721     if (nm) {
2722       return nm;
2723     }
2724 
2725     ResourceMark rm;
2726 
2727     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2728     if (buf != NULL) {
2729       CodeBuffer buffer(buf);
2730       // Need a few relocation entries
2731       double locs_buf[20];
2732       buffer.insts()->initialize_shared_locs(
2733         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2734       MacroAssembler _masm(&buffer);
2735 
2736       // Generate the compiled-to-native wrapper code
2737       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2738     }
2739   }
2740   return nm;
2741 }
2742 
2743 // the dtrace method needs to convert java lang string to utf8 string.
2744 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2745   typeArrayOop jlsValue  = java_lang_String::value(src);
2746   int          jlsOffset = java_lang_String::offset(src);
2747   int          jlsLen    = java_lang_String::length(src);
2748   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2749                                            jlsValue->char_at_addr(jlsOffset);
2750   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2751   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2752 }
2753 #endif // ndef HAVE_DTRACE_H
2754 
2755 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
2756   int argcnt = in_args_count;
2757   if (CCallingConventionRequiresIntsAsLongs) {
2758     for (int in = 0; in < in_args_count; in++) {
2759       BasicType bt = in_sig_bt[in];
2760       switch (bt) {
2761         case T_BOOLEAN:
2762         case T_CHAR:
2763         case T_BYTE:
2764         case T_SHORT:
2765         case T_INT:
2766           argcnt++;
2767           break;
2768         default:
2769           break;
2770       }
2771     }
2772   } else {
2773     assert(0, "This should not be needed on this platform");
2774   }
2775 
2776   return argcnt;
2777 }
2778 
2779 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
2780                                              BasicType*& in_sig_bt, VMRegPair*& in_regs) {
2781   if (CCallingConventionRequiresIntsAsLongs) {
2782     VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
2783     BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
2784 
2785     int argcnt = 0;
2786     for (int in = 0; in < in_args_count; in++, argcnt++) {
2787       BasicType bt  = in_sig_bt[in];
2788       VMRegPair reg = in_regs[in];
2789       switch (bt) {
2790         case T_BOOLEAN:
2791         case T_CHAR:
2792         case T_BYTE:
2793         case T_SHORT:
2794         case T_INT:
2795           // Convert (bt) to (T_LONG,bt).
2796           new_in_sig_bt[argcnt  ] = T_LONG;
2797           new_in_sig_bt[argcnt+1] = bt;
2798           assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
2799           new_in_regs[argcnt  ].set2(reg.first());
2800           new_in_regs[argcnt+1].set_bad();
2801           argcnt++;
2802           break;
2803         default:
2804           // No conversion needed.
2805           new_in_sig_bt[argcnt] = bt;
2806           new_in_regs[argcnt]   = reg;
2807           break;
2808       }
2809     }
2810     assert(argcnt == i2l_argcnt, "must match");
2811 
2812     in_regs = new_in_regs;
2813     in_sig_bt = new_in_sig_bt;
2814     in_args_count = i2l_argcnt;
2815   } else {
2816     assert(0, "This should not be needed on this platform");
2817   }
2818 }
2819 
2820 // -------------------------------------------------------------------------
2821 // Java-Java calling convention
2822 // (what you use when Java calls Java)
2823 
2824 //------------------------------name_for_receiver----------------------------------
2825 // For a given signature, return the VMReg for parameter 0.
2826 VMReg SharedRuntime::name_for_receiver() {
2827   VMRegPair regs;
2828   BasicType sig_bt = T_OBJECT;
2829   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2830   // Return argument 0 register.  In the LP64 build pointers
2831   // take 2 registers, but the VM wants only the 'main' name.
2832   return regs.first();
2833 }
2834 
2835 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2836   // This method is returning a data structure allocating as a
2837   // ResourceObject, so do not put any ResourceMarks in here.
2838   char *s = sig->as_C_string();
2839   int len = (int)strlen(s);
2840   s++; len--;                   // Skip opening paren
2841   char *t = s+len;
2842   while( *(--t) != ')' ) ;      // Find close paren
2843 
2844   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2845   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2846   int cnt = 0;
2847   if (has_receiver) {
2848     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2849   }
2850 
2851   while( s < t ) {
2852     switch( *s++ ) {            // Switch on signature character
2853     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2854     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2855     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2856     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2857     case 'I': sig_bt[cnt++] = T_INT;     break;
2858     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2859     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2860     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2861     case 'V': sig_bt[cnt++] = T_VOID;    break;
2862     case 'L':                   // Oop
2863       while( *s++ != ';'  ) ;   // Skip signature
2864       sig_bt[cnt++] = T_OBJECT;
2865       break;
2866     case '[': {                 // Array
2867       do {                      // Skip optional size
2868         while( *s >= '0' && *s <= '9' ) s++;
2869       } while( *s++ == '[' );   // Nested arrays?
2870       // Skip element type
2871       if( s[-1] == 'L' )
2872         while( *s++ != ';'  ) ; // Skip signature
2873       sig_bt[cnt++] = T_ARRAY;
2874       break;
2875     }
2876     default : ShouldNotReachHere();
2877     }
2878   }
2879 
2880   if (has_appendix) {
2881     sig_bt[cnt++] = T_OBJECT;
2882   }
2883 
2884   assert( cnt < 256, "grow table size" );
2885 
2886   int comp_args_on_stack;
2887   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2888 
2889   // the calling convention doesn't count out_preserve_stack_slots so
2890   // we must add that in to get "true" stack offsets.
2891 
2892   if (comp_args_on_stack) {
2893     for (int i = 0; i < cnt; i++) {
2894       VMReg reg1 = regs[i].first();
2895       if( reg1->is_stack()) {
2896         // Yuck
2897         reg1 = reg1->bias(out_preserve_stack_slots());
2898       }
2899       VMReg reg2 = regs[i].second();
2900       if( reg2->is_stack()) {
2901         // Yuck
2902         reg2 = reg2->bias(out_preserve_stack_slots());
2903       }
2904       regs[i].set_pair(reg2, reg1);
2905     }
2906   }
2907 
2908   // results
2909   *arg_size = cnt;
2910   return regs;
2911 }
2912 
2913 // OSR Migration Code
2914 //
2915 // This code is used convert interpreter frames into compiled frames.  It is
2916 // called from very start of a compiled OSR nmethod.  A temp array is
2917 // allocated to hold the interesting bits of the interpreter frame.  All
2918 // active locks are inflated to allow them to move.  The displaced headers and
2919 // active interpeter locals are copied into the temp buffer.  Then we return
2920 // back to the compiled code.  The compiled code then pops the current
2921 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2922 // copies the interpreter locals and displaced headers where it wants.
2923 // Finally it calls back to free the temp buffer.
2924 //
2925 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2926 
2927 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2928 
2929   //
2930   // This code is dependent on the memory layout of the interpreter local
2931   // array and the monitors. On all of our platforms the layout is identical
2932   // so this code is shared. If some platform lays the their arrays out
2933   // differently then this code could move to platform specific code or
2934   // the code here could be modified to copy items one at a time using
2935   // frame accessor methods and be platform independent.
2936 
2937   frame fr = thread->last_frame();
2938   assert( fr.is_interpreted_frame(), "" );
2939   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2940 
2941   // Figure out how many monitors are active.
2942   int active_monitor_count = 0;
2943   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2944        kptr < fr.interpreter_frame_monitor_begin();
2945        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2946     if( kptr->obj() != NULL ) active_monitor_count++;
2947   }
2948 
2949   // QQQ we could place number of active monitors in the array so that compiled code
2950   // could double check it.
2951 
2952   Method* moop = fr.interpreter_frame_method();
2953   int max_locals = moop->max_locals();
2954   // Allocate temp buffer, 1 word per local & 2 per active monitor
2955   int buf_size_words = max_locals + active_monitor_count*2;
2956   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2957 
2958   // Copy the locals.  Order is preserved so that loading of longs works.
2959   // Since there's no GC I can copy the oops blindly.
2960   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2961   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2962                        (HeapWord*)&buf[0],
2963                        max_locals);
2964 
2965   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2966   int i = max_locals;
2967   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2968        kptr2 < fr.interpreter_frame_monitor_begin();
2969        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2970     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2971       BasicLock *lock = kptr2->lock();
2972       // Inflate so the displaced header becomes position-independent
2973       if (lock->displaced_header()->is_unlocked())
2974         ObjectSynchronizer::inflate_helper(kptr2->obj());
2975       // Now the displaced header is free to move
2976       buf[i++] = (intptr_t)lock->displaced_header();
2977       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2978     }
2979   }
2980   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2981 
2982   return buf;
2983 JRT_END
2984 
2985 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2986   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2987 JRT_END
2988 
2989 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2990   AdapterHandlerTableIterator iter(_adapters);
2991   while (iter.has_next()) {
2992     AdapterHandlerEntry* a = iter.next();
2993     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2994   }
2995   return false;
2996 }
2997 
2998 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2999   AdapterHandlerTableIterator iter(_adapters);
3000   while (iter.has_next()) {
3001     AdapterHandlerEntry* a = iter.next();
3002     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3003       st->print("Adapter for signature: ");
3004       a->print_adapter_on(tty);
3005       return;
3006     }
3007   }
3008   assert(false, "Should have found handler");
3009 }
3010 
3011 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3012   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3013                (intptr_t) this, fingerprint()->as_string(),
3014                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
3015 
3016 }
3017 
3018 #ifndef PRODUCT
3019 
3020 void AdapterHandlerLibrary::print_statistics() {
3021   _adapters->print_statistics();
3022 }
3023 
3024 #endif /* PRODUCT */