1 /*
   2  * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 /**
  29  * Port of the "Freely Distributable Math Library", version 5.3, from
  30  * C to Java.
  31  *
  32  * <p>The C version of fdlibm relied on the idiom of pointer aliasing
  33  * a 64-bit double floating-point value as a two-element array of
  34  * 32-bit integers and reading and writing the two halves of the
  35  * double independently. This coding pattern was problematic to C
  36  * optimizers and not directly expressible in Java. Therefore, rather
  37  * than a memory level overlay, if portions of a double need to be
  38  * operated on as integer values, the standard library methods for
  39  * bitwise floating-point to integer conversion,
  40  * Double.longBitsToDouble and Double.doubleToRawLongBits, are directly
  41  * or indirectly used.
  42  *
  43  * <p>The C version of fdlibm also took some pains to signal the
  44  * correct IEEE 754 exceptional conditions divide by zero, invalid,
  45  * overflow and underflow. For example, overflow would be signaled by
  46  * {@code huge * huge} where {@code huge} was a large constant that
  47  * would overflow when squared. Since IEEE floating-point exceptional
  48  * handling is not supported natively in the JVM, such coding patterns
  49  * have been omitted from this port. For example, rather than {@code
  50  * return huge * huge}, this port will use {@code return INFINITY}.
  51  *
  52  * <p>Various comparison and arithmetic operations in fdlibm could be
  53  * done either based on the integer view of a value or directly on the
  54  * floating-point representation. Which idiom is faster may depend on
  55  * platform specific factors. However, for code clarity if no other
  56  * reason, this port will favor expressing the semantics of those
  57  * operations in terms of floating-point operations when convenient to
  58  * do so.
  59  */
  60 class FdLibm {
  61     // Constants used by multiple algorithms
  62     private static final double INFINITY = Double.POSITIVE_INFINITY;
  63 
  64     private FdLibm() {
  65         throw new UnsupportedOperationException("No FdLibm instances for you.");
  66     }
  67 
  68     /**
  69      * Return the low-order 32 bits of the double argument as an int.
  70      */
  71     private static int __LO(double x) {
  72         long transducer = Double.doubleToRawLongBits(x);
  73         return (int)transducer;
  74     }
  75 
  76     /**
  77      * Return a double with its low-order bits of the second argument
  78      * and the high-order bits of the first argument..
  79      */
  80     private static double __LO(double x, int low) {
  81         long transX = Double.doubleToRawLongBits(x);
  82         return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) |
  83                                        (low    & 0x0000_0000_FFFF_FFFFL));
  84     }
  85 
  86     /**
  87      * Return the high-order 32 bits of the double argument as an int.
  88      */
  89     private static int __HI(double x) {
  90         long transducer = Double.doubleToRawLongBits(x);
  91         return (int)(transducer >> 32);
  92     }
  93 
  94     /**
  95      * Return a double with its high-order bits of the second argument
  96      * and the low-order bits of the first argument..
  97      */
  98     private static double __HI(double x, int high) {
  99         long transX = Double.doubleToRawLongBits(x);
 100         return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) |
 101                                        ( ((long)high)) << 32 );
 102     }
 103 
 104     /**
 105      * cbrt(x)
 106      * Return cube root of x
 107      */
 108     public static class Cbrt {
 109         // unsigned
 110         private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */
 111         private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
 112 
 113         private static final double C =  0x1.15f15f15f15f1p-1; //   19/35   ~= 5.42857142857142815906e-01
 114         private static final double D = -0x1.691de2532c834p-1; // -864/1225 ~= 7.05306122448979611050e-01
 115         private static final double E =  0x1.6a0ea0ea0ea0fp0;  //   99/70   ~= 1.41428571428571436819e+00
 116         private static final double F =  0x1.9b6db6db6db6ep0;  //   45/28   ~= 1.60714285714285720630e+00
 117         private static final double G =  0x1.6db6db6db6db7p-2; //    5/14   ~= 3.57142857142857150787e-01
 118 
 119         private Cbrt() {
 120             throw new UnsupportedOperationException();
 121         }
 122 
 123         public static strictfp double compute(double x) {
 124             double  t = 0.0;
 125             double sign;
 126 
 127             if (x == 0.0 || !Double.isFinite(x))
 128                 return x; // Handles signed zeros properly
 129 
 130             sign = (x < 0.0) ? -1.0:  1.0;
 131 
 132             x = Math.abs(x);   // x <- |x|
 133 
 134             // Rough cbrt to 5 bits
 135             if (x < 0x1.0p-1022) {     // subnormal number
 136                 t = 0x1.0p54;          // set t= 2**54
 137                 t *= x;
 138                 t = __HI(t, __HI(t)/3 + B2);
 139             } else {
 140                 int hx = __HI(x);           // high word of x
 141                 t = __HI(t, hx/3 + B1);
 142             }
 143 
 144             // New cbrt to 23 bits, may be implemented in single precision
 145             double  r, s, w;
 146             r = t * t/x;
 147             s = C + r*t;
 148             t *= G + F/(s + E + D/s);
 149 
 150             // Chopped to 20 bits and make it larger than cbrt(x)
 151             t = __LO(t, 0);
 152             t = __HI(t, __HI(t) + 0x00000001);
 153 
 154             // One step newton iteration to 53 bits with error less than 0.667 ulps
 155             s = t * t;          // t*t is exact
 156             r = x / s;
 157             w = t + t;
 158             r = (r - t)/(w + r);  // r-s is exact
 159             t = t + t*r;
 160 
 161             // Restore the original sign bit
 162             return sign * t;
 163         }
 164     }
 165 
 166     /**
 167      * hypot(x,y)
 168      *
 169      * Method :
 170      *      If (assume round-to-nearest) z = x*x + y*y
 171      *      has error less than sqrt(2)/2 ulp, than
 172      *      sqrt(z) has error less than 1 ulp (exercise).
 173      *
 174      *      So, compute sqrt(x*x + y*y) with some care as
 175      *      follows to get the error below 1 ulp:
 176      *
 177      *      Assume x > y > 0;
 178      *      (if possible, set rounding to round-to-nearest)
 179      *      1. if x > 2y  use
 180      *              x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y
 181      *      where x1 = x with lower 32 bits cleared, x2 = x - x1; else
 182      *      2. if x <= 2y use
 183      *              t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y))
 184      *      where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1,
 185      *      y1= y with lower 32 bits chopped, y2 = y - y1.
 186      *
 187      *      NOTE: scaling may be necessary if some argument is too
 188      *            large or too tiny
 189      *
 190      * Special cases:
 191      *      hypot(x,y) is INF if x or y is +INF or -INF; else
 192      *      hypot(x,y) is NAN if x or y is NAN.
 193      *
 194      * Accuracy:
 195      *      hypot(x,y) returns sqrt(x^2 + y^2) with error less
 196      *      than 1 ulp (unit in the last place)
 197      */
 198     public static class Hypot {
 199         public static final double TWO_MINUS_600 = 0x1.0p-600;
 200         public static final double TWO_PLUS_600  = 0x1.0p+600;
 201 
 202         private Hypot() {
 203             throw new UnsupportedOperationException();
 204         }
 205 
 206         public static strictfp double compute(double x, double y) {
 207             double a = Math.abs(x);
 208             double b = Math.abs(y);
 209 
 210             if (!Double.isFinite(a) || !Double.isFinite(b)) {
 211                 if (a == INFINITY || b == INFINITY)
 212                     return INFINITY;
 213                 else
 214                     return a + b; // Propagate NaN significand bits
 215             }
 216 
 217             if (b > a) {
 218                 double tmp = a;
 219                 a = b;
 220                 b = tmp;
 221             }
 222             assert a >= b;
 223 
 224             // Doing bitwise conversion after screening for NaN allows
 225             // the code to not worry about the possibility of
 226             // "negative" NaN values.
 227 
 228             // Note: the ha and hb variables are the high-order
 229             // 32-bits of a and b stored as integer values. The ha and
 230             // hb values are used first for a rough magnitude
 231             // comparison of a and b and second for simulating higher
 232             // precision by allowing a and b, respectively, to be
 233             // decomposed into non-overlapping portions. Both of these
 234             // uses could be eliminated. The magnitude comparison
 235             // could be eliminated by extracting and comparing the
 236             // exponents of a and b or just be performing a
 237             // floating-point divide.  Splitting a floating-point
 238             // number into non-overlapping portions can be
 239             // accomplished by judicious use of multiplies and
 240             // additions. For details see T. J. Dekker, A Floating
 241             // Point Technique for Extending the Available Precision ,
 242             // Numerische Mathematik, vol. 18, 1971, pp.224-242 and
 243             // subsequent work.
 244 
 245             int ha = __HI(a);        // high word of a
 246             int hb = __HI(b);        // high word of b
 247 
 248             if ((ha - hb) > 0x3c00000) {
 249                 return a + b;  // x / y > 2**60
 250             }
 251 
 252             int k = 0;
 253             if (a > 0x1.00000_ffff_ffffp500) {   // a > ~2**500
 254                 // scale a and b by 2**-600
 255                 ha -= 0x25800000;
 256                 hb -= 0x25800000;
 257                 a = a * TWO_MINUS_600;
 258                 b = b * TWO_MINUS_600;
 259                 k += 600;
 260             }
 261             double t1, t2;
 262             if (b < 0x1.0p-500) {   // b < 2**-500
 263                 if (b < Double.MIN_NORMAL) {      // subnormal b or 0 */
 264                     if (b == 0.0)
 265                         return a;
 266                     t1 = 0x1.0p1022;   // t1 = 2^1022
 267                     b *= t1;
 268                     a *= t1;
 269                     k -= 1022;
 270                 } else {            // scale a and b by 2^600
 271                     ha += 0x25800000;       // a *= 2^600
 272                     hb += 0x25800000;       // b *= 2^600
 273                     a = a * TWO_PLUS_600;
 274                     b = b * TWO_PLUS_600;
 275                     k -= 600;
 276                 }
 277             }
 278             // medium size a and b
 279             double w = a - b;
 280             if (w > b) {
 281                 t1 = 0;
 282                 t1 = __HI(t1, ha);
 283                 t2 = a - t1;
 284                 w  = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));
 285             } else {
 286                 double y1, y2;
 287                 a  = a + a;
 288                 y1 = 0;
 289                 y1 = __HI(y1, hb);
 290                 y2 = b - y1;
 291                 t1 = 0;
 292                 t1 = __HI(t1, ha + 0x00100000);
 293                 t2 = a - t1;
 294                 w  = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));
 295             }
 296             if (k != 0) {
 297                 return Math.powerOfTwoD(k) * w;
 298             } else
 299                 return w;
 300         }
 301     }
 302 
 303     /**
 304      * Compute x**y
 305      *                    n
 306      * Method:  Let x =  2   * (1+f)
 307      *      1. Compute and return log2(x) in two pieces:
 308      *              log2(x) = w1 + w2,
 309      *         where w1 has 53 - 24 = 29 bit trailing zeros.
 310      *      2. Perform y*log2(x) = n+y' by simulating multi-precision
 311      *         arithmetic, where |y'| <= 0.5.
 312      *      3. Return x**y = 2**n*exp(y'*log2)
 313      *
 314      * Special cases:
 315      *      1.  (anything) ** 0  is 1
 316      *      2.  (anything) ** 1  is itself
 317      *      3.  (anything) ** NAN is NAN
 318      *      4.  NAN ** (anything except 0) is NAN
 319      *      5.  +-(|x| > 1) **  +INF is +INF
 320      *      6.  +-(|x| > 1) **  -INF is +0
 321      *      7.  +-(|x| < 1) **  +INF is +0
 322      *      8.  +-(|x| < 1) **  -INF is +INF
 323      *      9.  +-1         ** +-INF is NAN
 324      *      10. +0 ** (+anything except 0, NAN)               is +0
 325      *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
 326      *      12. +0 ** (-anything except 0, NAN)               is +INF
 327      *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
 328      *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
 329      *      15. +INF ** (+anything except 0,NAN) is +INF
 330      *      16. +INF ** (-anything except 0,NAN) is +0
 331      *      17. -INF ** (anything)  = -0 ** (-anything)
 332      *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
 333      *      19. (-anything except 0 and inf) ** (non-integer) is NAN
 334      *
 335      * Accuracy:
 336      *      pow(x,y) returns x**y nearly rounded. In particular
 337      *                      pow(integer,integer)
 338      *      always returns the correct integer provided it is
 339      *      representable.
 340      */
 341     public static class Pow {
 342         private Pow() {
 343             throw new UnsupportedOperationException();
 344         }
 345 
 346         public static strictfp double compute(final double x, final double y) {
 347             double z;
 348             double r, s, t, u, v, w;
 349             int i, j, k, n;
 350 
 351             // y == zero: x**0 = 1
 352             if (y == 0.0)
 353                 return 1.0;
 354 
 355             // +/-NaN return x + y to propagate NaN significands
 356             if (Double.isNaN(x) || Double.isNaN(y))
 357                 return x + y;
 358 
 359             final double y_abs = Math.abs(y);
 360             double x_abs   = Math.abs(x);
 361             // Special values of y
 362             if (y == 2.0) {
 363                 return x * x;
 364             } else if (y == 0.5) {
 365                 if (x >= -Double.MAX_VALUE) // Handle x == -infinity later
 366                     return Math.sqrt(x + 0.0); // Add 0.0 to properly handle x == -0.0
 367             } else if (y_abs == 1.0) {        // y is  +/-1
 368                 return (y == 1.0) ? x : 1.0 / x;
 369             } else if (y_abs == INFINITY) {       // y is +/-infinity
 370                 if (x_abs == 1.0)
 371                     return  y - y;         // inf**+/-1 is NaN
 372                 else if (x_abs > 1.0) // (|x| > 1)**+/-inf = inf, 0
 373                     return (y >= 0) ? y : 0.0;
 374                 else                       // (|x| < 1)**-/+inf = inf, 0
 375                     return (y < 0) ? -y : 0.0;
 376             }
 377 
 378             final int hx = __HI(x);
 379             int ix = hx & 0x7fffffff;
 380 
 381             /*
 382              * When x < 0, determine if y is an odd integer:
 383              * y_is_int = 0       ... y is not an integer
 384              * y_is_int = 1       ... y is an odd int
 385              * y_is_int = 2       ... y is an even int
 386              */
 387             int y_is_int  = 0;
 388             if (hx < 0) {
 389                 if (y_abs >= 0x1.0p53)   // |y| >= 2^53 = 9.007199254740992E15
 390                     y_is_int = 2; // y is an even integer since ulp(2^53) = 2.0
 391                 else if (y_abs >= 1.0) { // |y| >= 1.0
 392                     long y_abs_as_long = (long) y_abs;
 393                     if ( ((double) y_abs_as_long) == y_abs) {
 394                         y_is_int = 2 -  (int)(y_abs_as_long & 0x1L);
 395                     }
 396                 }
 397             }
 398 
 399             // Special value of x
 400             if (x_abs == 0.0 ||
 401                 x_abs == INFINITY ||
 402                 x_abs == 1.0) {
 403                 z = x_abs;                 // x is +/-0, +/-inf, +/-1
 404                 if (y < 0.0)
 405                     z = 1.0/z;     // z = (1/|x|)
 406                 if (hx < 0) {
 407                     if (((ix - 0x3ff00000) | y_is_int) == 0) {
 408                         z = (z-z)/(z-z); // (-1)**non-int is NaN
 409                     } else if (y_is_int == 1)
 410                         z = -1.0 * z;             // (x < 0)**odd = -(|x|**odd)
 411                 }
 412                 return z;
 413             }
 414 
 415             n = (hx >> 31) + 1;
 416 
 417             // (x < 0)**(non-int) is NaN
 418             if ((n | y_is_int) == 0)
 419                 return (x-x)/(x-x);
 420 
 421             s = 1.0; // s (sign of result -ve**odd) = -1 else = 1
 422             if ( (n | (y_is_int - 1)) == 0)
 423                 s = -1.0; // (-ve)**(odd int)
 424 
 425             double p_h, p_l, t1, t2;
 426             // |y| is huge
 427             if (y_abs > 0x1.00000_ffff_ffffp31) { // if |y| > ~2**31
 428                 final double INV_LN2   =  0x1.7154_7652_b82fep0;   //  1.44269504088896338700e+00 = 1/ln2
 429                 final double INV_LN2_H =  0x1.715476p0;            //  1.44269502162933349609e+00 = 24 bits of 1/ln2
 430                 final double INV_LN2_L =  0x1.4ae0_bf85_ddf44p-26; //  1.92596299112661746887e-08 = 1/ln2 tail
 431 
 432                 // Over/underflow if x is not close to one
 433                 if (x_abs < 0x1.fffff_0000_0000p-1) // |x| < ~0.9999995231628418
 434                     return (y < 0.0) ? s * INFINITY : s * 0.0;
 435                 if (x_abs > 0x1.00000_ffff_ffffp0)         // |x| > ~1.0
 436                     return (y > 0.0) ? s * INFINITY : s * 0.0;
 437                 /*
 438                  * now |1-x| is tiny <= 2**-20, sufficient to compute
 439                  * log(x) by x - x^2/2 + x^3/3 - x^4/4
 440                  */
 441                 t = x_abs - 1.0;        // t has 20 trailing zeros
 442                 w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
 443                 u = INV_LN2_H * t;      // INV_LN2_H has 21 sig. bits
 444                 v =  t * INV_LN2_L - w * INV_LN2;
 445                 t1 = u + v;
 446                 t1 =__LO(t1, 0);
 447                 t2 = v - (t1 - u);
 448             } else {
 449                 final double CP      =  0x1.ec70_9dc3_a03fdp-1;  //  9.61796693925975554329e-01 = 2/(3ln2)
 450                 final double CP_H    =  0x1.ec709ep-1;           //  9.61796700954437255859e-01 = (float)cp
 451                 final double CP_L    = -0x1.e2fe_0145_b01f5p-28; // -7.02846165095275826516e-09 = tail of CP_H
 452 
 453                 double z_h, z_l, ss, s2, s_h, s_l, t_h, t_l;
 454                 n = 0;
 455                 // Take care of subnormal numbers
 456                 if (ix < 0x00100000) {
 457                     x_abs *= 0x1.0p53; // 2^53 = 9007199254740992.0
 458                     n -= 53;
 459                     ix = __HI(x_abs);
 460                 }
 461                 n  += ((ix) >> 20) - 0x3ff;
 462                 j  = ix & 0x000fffff;
 463                 // Determine interval
 464                 ix = j | 0x3ff00000;          // Normalize ix
 465                 if (j <= 0x3988E)
 466                     k = 0;         // |x| <sqrt(3/2)
 467                 else if (j < 0xBB67A)
 468                     k = 1;         // |x| <sqrt(3)
 469                 else {
 470                     k = 0;
 471                     n += 1;
 472                     ix -= 0x00100000;
 473                 }
 474                 x_abs = __HI(x_abs, ix);
 475 
 476                 // Compute ss = s_h + s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5)
 477 
 478                 final double[] BP    = {1.0,
 479                                        1.5};
 480                 final double[] DP_H  = {0.0,
 481                                         0x1.2b80_34p-1};        // 5.84962487220764160156e-01
 482                 final double[] DP_L  = {0.0,
 483                                         0x1.cfde_b43c_fd006p-27};// 1.35003920212974897128e-08
 484 
 485                 // Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
 486                 final double L1      =  0x1.3333_3333_33303p-1;  //  5.99999999999994648725e-01
 487                 final double L2      =  0x1.b6db_6db6_fabffp-2;  //  4.28571428578550184252e-01
 488                 final double L3      =  0x1.5555_5518_f264dp-2;  //  3.33333329818377432918e-01
 489                 final double L4      =  0x1.1746_0a91_d4101p-2;  //  2.72728123808534006489e-01
 490                 final double L5      =  0x1.d864_a93c_9db65p-3;  //  2.30660745775561754067e-01
 491                 final double L6      =  0x1.a7e2_84a4_54eefp-3;  //  2.06975017800338417784e-01
 492                 u = x_abs - BP[k];               // BP[0]=1.0, BP[1]=1.5
 493                 v = 1.0 / (x_abs + BP[k]);
 494                 ss = u * v;
 495                 s_h = ss;
 496                 s_h = __LO(s_h, 0);
 497                 // t_h=x_abs + BP[k] High
 498                 t_h = 0.0;
 499                 t_h = __HI(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18) );
 500                 t_l = x_abs - (t_h - BP[k]);
 501                 s_l = v * ((u - s_h * t_h) - s_h * t_l);
 502                 // Compute log(x_abs)
 503                 s2 = ss * ss;
 504                 r = s2 * s2* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
 505                 r += s_l * (s_h + ss);
 506                 s2  = s_h * s_h;
 507                 t_h = 3.0 + s2 + r;
 508                 t_h = __LO(t_h, 0);
 509                 t_l = r - ((t_h - 3.0) - s2);
 510                 // u+v = ss*(1+...)
 511                 u = s_h * t_h;
 512                 v = s_l * t_h + t_l * ss;
 513                 // 2/(3log2)*(ss + ...)
 514                 p_h = u + v;
 515                 p_h = __LO(p_h, 0);
 516                 p_l = v - (p_h - u);
 517                 z_h = CP_H * p_h;             // CP_H + CP_L = 2/(3*log2)
 518                 z_l = CP_L * p_h + p_l * CP + DP_L[k];
 519                 // log2(x_abs) = (ss + ..)*2/(3*log2) = n + DP_H + z_h + z_l
 520                 t = (double)n;
 521                 t1 = (((z_h + z_l) + DP_H[k]) + t);
 522                 t1 = __LO(t1, 0);
 523                 t2 = z_l - (((t1 - t) - DP_H[k]) - z_h);
 524             }
 525 
 526             // Split up y into (y1 + y2) and compute (y1 + y2) * (t1 + t2)
 527             double y1  = y;
 528             y1 = __LO(y1, 0);
 529             p_l = (y - y1) * t1 + y * t2;
 530             p_h = y1 * t1;
 531             z = p_l + p_h;
 532             j = __HI(z);
 533             i = __LO(z);
 534             if (j >= 0x40900000) {                           // z >= 1024
 535                 if (((j - 0x40900000) | i)!=0)               // if z > 1024
 536                     return s * INFINITY;                     // Overflow
 537                 else {
 538                     final double OVT     =  8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp))
 539                     if (p_l + OVT > z - p_h)
 540                         return s * INFINITY;   // Overflow
 541                 }
 542             } else if ((j & 0x7fffffff) >= 0x4090cc00 ) {        // z <= -1075
 543                 if (((j - 0xc090cc00) | i)!=0)           // z < -1075
 544                     return s * 0.0;           // Underflow
 545                 else {
 546                     if (p_l <= z - p_h)
 547                         return s * 0.0;      // Underflow
 548                 }
 549             }
 550             /*
 551              * Compute 2**(p_h+p_l)
 552              */
 553             // Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
 554             final double P1      =  0x1.5555_5555_5553ep-3;  //  1.66666666666666019037e-01
 555             final double P2      = -0x1.6c16_c16b_ebd93p-9;  // -2.77777777770155933842e-03
 556             final double P3      =  0x1.1566_aaf2_5de2cp-14; //  6.61375632143793436117e-05
 557             final double P4      = -0x1.bbd4_1c5d_26bf1p-20; // -1.65339022054652515390e-06
 558             final double P5      =  0x1.6376_972b_ea4d0p-25; //  4.13813679705723846039e-08
 559             final double LG2     =  0x1.62e4_2fef_a39efp-1;  //  6.93147180559945286227e-01
 560             final double LG2_H   =  0x1.62e43p-1;            //  6.93147182464599609375e-01
 561             final double LG2_L   = -0x1.05c6_10ca_86c39p-29; // -1.90465429995776804525e-09
 562             i = j & 0x7fffffff;
 563             k = (i >> 20) - 0x3ff;
 564             n = 0;
 565             if (i > 0x3fe00000) {              // if |z| > 0.5, set n = [z + 0.5]
 566                 n = j + (0x00100000 >> (k + 1));
 567                 k = ((n & 0x7fffffff) >> 20) - 0x3ff;     // new k for n
 568                 t = 0.0;
 569                 t = __HI(t, (n & ~(0x000fffff >> k)) );
 570                 n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
 571                 if (j < 0)
 572                     n = -n;
 573                 p_h -= t;
 574             }
 575             t = p_l + p_h;
 576             t = __LO(t, 0);
 577             u = t * LG2_H;
 578             v = (p_l - (t - p_h)) * LG2 + t * LG2_L;
 579             z = u + v;
 580             w = v - (z - u);
 581             t  = z * z;
 582             t1  = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
 583             r  = (z * t1)/(t1 - 2.0) - (w + z * w);
 584             z  = 1.0 - (r - z);
 585             j  = __HI(z);
 586             j += (n << 20);
 587             if ((j >> 20) <= 0)
 588                 z = Math.scalb(z, n); // subnormal output
 589             else {
 590                 int z_hi = __HI(z);
 591                 z_hi += (n << 20);
 592                 z = __HI(z, z_hi);
 593             }
 594             return s * z;
 595         }
 596     }
 597 
 598     /**
 599      * Returns the exponential of x.
 600      *
 601      * Method
 602      *   1. Argument reduction:
 603      *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
 604      *      Given x, find r and integer k such that
 605      *
 606      *               x = k*ln2 + r,  |r| <= 0.5*ln2.
 607      *
 608      *      Here r will be represented as r = hi-lo for better
 609      *      accuracy.
 610      *
 611      *   2. Approximation of exp(r) by a special rational function on
 612      *      the interval [0,0.34658]:
 613      *      Write
 614      *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
 615      *      We use a special Reme algorithm on [0,0.34658] to generate
 616      *      a polynomial of degree 5 to approximate R. The maximum error
 617      *      of this polynomial approximation is bounded by 2**-59. In
 618      *      other words,
 619      *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
 620      *      (where z=r*r, and the values of P1 to P5 are listed below)
 621      *      and
 622      *          |                  5          |     -59
 623      *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
 624      *          |                             |
 625      *      The computation of exp(r) thus becomes
 626      *                             2*r
 627      *              exp(r) = 1 + -------
 628      *                            R - r
 629      *                                 r*R1(r)
 630      *                     = 1 + r + ----------- (for better accuracy)
 631      *                                2 - R1(r)
 632      *      where
 633      *                               2       4             10
 634      *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
 635      *
 636      *   3. Scale back to obtain exp(x):
 637      *      From step 1, we have
 638      *         exp(x) = 2^k * exp(r)
 639      *
 640      * Special cases:
 641      *      exp(INF) is INF, exp(NaN) is NaN;
 642      *      exp(-INF) is 0, and
 643      *      for finite argument, only exp(0)=1 is exact.
 644      *
 645      * Accuracy:
 646      *      according to an error analysis, the error is always less than
 647      *      1 ulp (unit in the last place).
 648      *
 649      * Misc. info.
 650      *      For IEEE double
 651      *          if x >  7.09782712893383973096e+02 then exp(x) overflow
 652      *          if x < -7.45133219101941108420e+02 then exp(x) underflow
 653      *
 654      * Constants:
 655      * The hexadecimal values are the intended ones for the following
 656      * constants. The decimal values may be used, provided that the
 657      * compiler will convert from decimal to binary accurately enough
 658      * to produce the hexadecimal values shown.
 659      */
 660     static class Exp {
 661         private static final double one     = 1.0;
 662         private static final double[] half = {0.5, -0.5,};
 663         private static final double huge    = 1.0e+300;
 664         private static final double twom1000=     0x1.0p-1000;             //  9.33263618503218878990e-302 = 2^-1000
 665         private static final double o_threshold=  0x1.62e42fefa39efp9;     //  7.09782712893383973096e+02
 666         private static final double u_threshold= -0x1.74910d52d3051p9;     // -7.45133219101941108420e+02;
 667         private static final double[] ln2HI   ={  0x1.62e42feep-1,         //  6.93147180369123816490e-01
 668                                                  -0x1.62e42feep-1};        // -6.93147180369123816490e-01
 669         private static final double[] ln2LO   ={  0x1.a39ef35793c76p-33,   //  1.90821492927058770002e-10
 670                                                  -0x1.a39ef35793c76p-33};  // -1.90821492927058770002e-10
 671         private static final double invln2 =      0x1.71547652b82fep0;     //  1.44269504088896338700e+00
 672 
 673         private static final double P1   =  0x1.555555555553ep-3;  //  1.66666666666666019037e-01
 674         private static final double P2   = -0x1.6c16c16bebd93p-9;  // -2.77777777770155933842e-03
 675         private static final double P3   =  0x1.1566aaf25de2cp-14; //  6.61375632143793436117e-05
 676         private static final double P4   = -0x1.bbd41c5d26bf1p-20; // -1.65339022054652515390e-06
 677         private static final double P5   =  0x1.6376972bea4d0p-25; //  4.13813679705723846039e-08
 678 
 679         private Exp() {
 680             throw new UnsupportedOperationException();
 681         }
 682 
 683         // should be able to forgo strictfp due to controlled over/underflow
 684         public static strictfp double compute(double x) {
 685             double y;
 686             double hi = 0.0;
 687             double lo = 0.0;
 688             double c;
 689             double t;
 690             int k = 0;
 691             int xsb;
 692             /*unsigned*/ int hx;
 693 
 694             hx  = __HI(x);  /* high word of x */
 695             xsb = (hx >> 31) & 1;               /* sign bit of x */
 696             hx &= 0x7fffffff;               /* high word of |x| */
 697 
 698             /* filter out non-finite argument */
 699             if (hx >= 0x40862E42) {                  /* if |x| >= 709.78... */
 700                 if (hx >= 0x7ff00000) {
 701                     if (((hx & 0xfffff) | __LO(x)) != 0)
 702                         return x + x;                /* NaN */
 703                     else
 704                         return (xsb == 0) ? x : 0.0;    /* exp(+-inf) = {inf, 0} */
 705                 }
 706                 if (x > o_threshold)
 707                     return huge * huge; /* overflow */
 708                 if (x < u_threshold) // unsigned compare needed here?
 709                     return twom1000 * twom1000; /* underflow */
 710             }
 711 
 712             /* argument reduction */
 713             if (hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
 714                 if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
 715                     hi = x - ln2HI[xsb];
 716                     lo=ln2LO[xsb];
 717                     k = 1 - xsb - xsb;
 718                 } else {
 719                     k  = (int)(invln2 * x + half[xsb]);
 720                     t  = k;
 721                     hi = x - t*ln2HI[0];    /* t*ln2HI is exact here */
 722                     lo = t*ln2LO[0];
 723                 }
 724                 x  = hi - lo;
 725             } else if (hx < 0x3e300000)  {     /* when |x|<2**-28 */
 726                 if (huge + x > one)
 727                     return one + x; /* trigger inexact */
 728             } else {
 729                 k = 0;
 730             }
 731 
 732             /* x is now in primary range */
 733             t  = x * x;
 734             c  = x - t*(P1 + t*(P2 + t*(P3 + t*(P4 + t*P5))));
 735             if (k == 0)
 736                 return one - ((x*c)/(c - 2.0) - x);
 737             else
 738                 y = one - ((lo - (x*c)/(2.0 - c)) - hi);
 739 
 740             if(k >= -1021) {
 741                 y = __HI(y, __HI(y) + (k << 20)); /* add k to y's exponent */
 742                 return y;
 743             } else {
 744                 y = __HI(y, __HI(y) + ((k + 1000) << 20)); /* add k to y's exponent */
 745                 return y * twom1000;
 746             }
 747         }
 748     }
 749 }