1 /*
   2  * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.misc.JavaLangInvokeAccess;
  29 import jdk.internal.misc.SharedSecrets;
  30 import jdk.internal.org.objectweb.asm.AnnotationVisitor;
  31 import jdk.internal.org.objectweb.asm.ClassWriter;
  32 import jdk.internal.org.objectweb.asm.MethodVisitor;
  33 import jdk.internal.reflect.CallerSensitive;
  34 import jdk.internal.reflect.Reflection;
  35 import jdk.internal.vm.annotation.ForceInline;
  36 import jdk.internal.vm.annotation.Stable;
  37 import sun.invoke.empty.Empty;
  38 import sun.invoke.util.ValueConversions;
  39 import sun.invoke.util.VerifyType;
  40 import sun.invoke.util.Wrapper;
  41 
  42 import java.lang.reflect.Array;
  43 import java.util.Arrays;
  44 import java.util.Collections;
  45 import java.util.Iterator;
  46 import java.util.List;
  47 import java.util.Map;
  48 import java.util.function.Function;
  49 import java.util.stream.Stream;
  50 
  51 import static java.lang.invoke.LambdaForm.*;
  52 import static java.lang.invoke.MethodHandleStatics.*;
  53 import static java.lang.invoke.MethodHandles.Lookup.IMPL_LOOKUP;
  54 import static jdk.internal.org.objectweb.asm.Opcodes.*;
  55 
  56 /**
  57  * Trusted implementation code for MethodHandle.
  58  * @author jrose
  59  */
  60 /*non-public*/ abstract class MethodHandleImpl {
  61 
  62     /// Factory methods to create method handles:
  63 
  64     static MethodHandle makeArrayElementAccessor(Class<?> arrayClass, ArrayAccess access) {
  65         if (arrayClass == Object[].class) {
  66             return ArrayAccess.objectAccessor(access);
  67         }
  68         if (!arrayClass.isArray())
  69             throw newIllegalArgumentException("not an array: "+arrayClass);
  70         MethodHandle[] cache = ArrayAccessor.TYPED_ACCESSORS.get(arrayClass);
  71         int cacheIndex = ArrayAccess.cacheIndex(access);
  72         MethodHandle mh = cache[cacheIndex];
  73         if (mh != null)  return mh;
  74         mh = ArrayAccessor.getAccessor(arrayClass, access);
  75         MethodType correctType = ArrayAccessor.correctType(arrayClass, access);
  76         if (mh.type() != correctType) {
  77             assert(mh.type().parameterType(0) == Object[].class);
  78             /* if access == SET */ assert(access != ArrayAccess.SET || mh.type().parameterType(2) == Object.class);
  79             /* if access == GET */ assert(access != ArrayAccess.GET ||
  80                     (mh.type().returnType() == Object.class &&
  81                      correctType.parameterType(0).getComponentType() == correctType.returnType()));
  82             // safe to view non-strictly, because element type follows from array type
  83             mh = mh.viewAsType(correctType, false);
  84         }
  85         mh = makeIntrinsic(mh, ArrayAccess.intrinsic(access));
  86         // Atomically update accessor cache.
  87         synchronized(cache) {
  88             if (cache[cacheIndex] == null) {
  89                 cache[cacheIndex] = mh;
  90             } else {
  91                 // Throw away newly constructed accessor and use cached version.
  92                 mh = cache[cacheIndex];
  93             }
  94         }
  95         return mh;
  96     }
  97 
  98     enum ArrayAccess {
  99         GET, SET, LENGTH;
 100 
 101         // As ArrayAccess and ArrayAccessor have a circular dependency, the ArrayAccess properties cannot be stored in
 102         // final fields.
 103 
 104         static String opName(ArrayAccess a) {
 105             switch (a) {
 106                 case GET: return "getElement";
 107                 case SET: return "setElement";
 108                 case LENGTH: return "length";
 109             }
 110             throw unmatchedArrayAccess(a);
 111         }
 112 
 113         static MethodHandle objectAccessor(ArrayAccess a) {
 114             switch (a) {
 115                 case GET: return ArrayAccessor.OBJECT_ARRAY_GETTER;
 116                 case SET: return ArrayAccessor.OBJECT_ARRAY_SETTER;
 117                 case LENGTH: return ArrayAccessor.OBJECT_ARRAY_LENGTH;
 118             }
 119             throw unmatchedArrayAccess(a);
 120         }
 121 
 122         static int cacheIndex(ArrayAccess a) {
 123             switch (a) {
 124                 case GET: return ArrayAccessor.GETTER_INDEX;
 125                 case SET: return ArrayAccessor.SETTER_INDEX;
 126                 case LENGTH: return ArrayAccessor.LENGTH_INDEX;
 127             }
 128             throw unmatchedArrayAccess(a);
 129         }
 130 
 131         static Intrinsic intrinsic(ArrayAccess a) {
 132             switch (a) {
 133                 case GET: return Intrinsic.ARRAY_LOAD;
 134                 case SET: return Intrinsic.ARRAY_STORE;
 135                 case LENGTH: return Intrinsic.ARRAY_LENGTH;
 136             }
 137             throw unmatchedArrayAccess(a);
 138         }
 139     }
 140 
 141     static InternalError unmatchedArrayAccess(ArrayAccess a) {
 142         return newInternalError("should not reach here (unmatched ArrayAccess: " + a + ")");
 143     }
 144 
 145     static final class ArrayAccessor {
 146         /// Support for array element and length access
 147         static final int GETTER_INDEX = 0, SETTER_INDEX = 1, LENGTH_INDEX = 2, INDEX_LIMIT = 3;
 148         static final ClassValue<MethodHandle[]> TYPED_ACCESSORS
 149                 = new ClassValue<MethodHandle[]>() {
 150                     @Override
 151                     protected MethodHandle[] computeValue(Class<?> type) {
 152                         return new MethodHandle[INDEX_LIMIT];
 153                     }
 154                 };
 155         static final MethodHandle OBJECT_ARRAY_GETTER, OBJECT_ARRAY_SETTER, OBJECT_ARRAY_LENGTH;
 156         static {
 157             MethodHandle[] cache = TYPED_ACCESSORS.get(Object[].class);
 158             cache[GETTER_INDEX] = OBJECT_ARRAY_GETTER = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.GET),    Intrinsic.ARRAY_LOAD);
 159             cache[SETTER_INDEX] = OBJECT_ARRAY_SETTER = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.SET),    Intrinsic.ARRAY_STORE);
 160             cache[LENGTH_INDEX] = OBJECT_ARRAY_LENGTH = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.LENGTH), Intrinsic.ARRAY_LENGTH);
 161 
 162             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_GETTER.internalMemberName()));
 163             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_SETTER.internalMemberName()));
 164             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_LENGTH.internalMemberName()));
 165         }
 166 
 167         static int     getElementI(int[]     a, int i)            { return              a[i]; }
 168         static long    getElementJ(long[]    a, int i)            { return              a[i]; }
 169         static float   getElementF(float[]   a, int i)            { return              a[i]; }
 170         static double  getElementD(double[]  a, int i)            { return              a[i]; }
 171         static boolean getElementZ(boolean[] a, int i)            { return              a[i]; }
 172         static byte    getElementB(byte[]    a, int i)            { return              a[i]; }
 173         static short   getElementS(short[]   a, int i)            { return              a[i]; }
 174         static char    getElementC(char[]    a, int i)            { return              a[i]; }
 175         static Object  getElementL(Object[]  a, int i)            { return              a[i]; }
 176 
 177         static void    setElementI(int[]     a, int i, int     x) {              a[i] = x; }
 178         static void    setElementJ(long[]    a, int i, long    x) {              a[i] = x; }
 179         static void    setElementF(float[]   a, int i, float   x) {              a[i] = x; }
 180         static void    setElementD(double[]  a, int i, double  x) {              a[i] = x; }
 181         static void    setElementZ(boolean[] a, int i, boolean x) {              a[i] = x; }
 182         static void    setElementB(byte[]    a, int i, byte    x) {              a[i] = x; }
 183         static void    setElementS(short[]   a, int i, short   x) {              a[i] = x; }
 184         static void    setElementC(char[]    a, int i, char    x) {              a[i] = x; }
 185         static void    setElementL(Object[]  a, int i, Object  x) {              a[i] = x; }
 186 
 187         static int     lengthI(int[]     a)                       { return a.length; }
 188         static int     lengthJ(long[]    a)                       { return a.length; }
 189         static int     lengthF(float[]   a)                       { return a.length; }
 190         static int     lengthD(double[]  a)                       { return a.length; }
 191         static int     lengthZ(boolean[] a)                       { return a.length; }
 192         static int     lengthB(byte[]    a)                       { return a.length; }
 193         static int     lengthS(short[]   a)                       { return a.length; }
 194         static int     lengthC(char[]    a)                       { return a.length; }
 195         static int     lengthL(Object[]  a)                       { return a.length; }
 196 
 197         static String name(Class<?> arrayClass, ArrayAccess access) {
 198             Class<?> elemClass = arrayClass.getComponentType();
 199             if (elemClass == null)  throw newIllegalArgumentException("not an array", arrayClass);
 200             return ArrayAccess.opName(access) + Wrapper.basicTypeChar(elemClass);
 201         }
 202         static MethodType type(Class<?> arrayClass, ArrayAccess access) {
 203             Class<?> elemClass = arrayClass.getComponentType();
 204             Class<?> arrayArgClass = arrayClass;
 205             if (!elemClass.isPrimitive()) {
 206                 arrayArgClass = Object[].class;
 207                 elemClass = Object.class;
 208             }
 209             switch (access) {
 210                 case GET:    return MethodType.methodType(elemClass,  arrayArgClass, int.class);
 211                 case SET:    return MethodType.methodType(void.class, arrayArgClass, int.class, elemClass);
 212                 case LENGTH: return MethodType.methodType(int.class,  arrayArgClass);
 213             }
 214             throw unmatchedArrayAccess(access);
 215         }
 216         static MethodType correctType(Class<?> arrayClass, ArrayAccess access) {
 217             Class<?> elemClass = arrayClass.getComponentType();
 218             switch (access) {
 219                 case GET:    return MethodType.methodType(elemClass,  arrayClass, int.class);
 220                 case SET:    return MethodType.methodType(void.class, arrayClass, int.class, elemClass);
 221                 case LENGTH: return MethodType.methodType(int.class,  arrayClass);
 222             }
 223             throw unmatchedArrayAccess(access);
 224         }
 225         static MethodHandle getAccessor(Class<?> arrayClass, ArrayAccess access) {
 226             String     name = name(arrayClass, access);
 227             MethodType type = type(arrayClass, access);
 228             try {
 229                 return IMPL_LOOKUP.findStatic(ArrayAccessor.class, name, type);
 230             } catch (ReflectiveOperationException ex) {
 231                 throw uncaughtException(ex);
 232             }
 233         }
 234     }
 235 
 236     /**
 237      * Create a JVM-level adapter method handle to conform the given method
 238      * handle to the similar newType, using only pairwise argument conversions.
 239      * For each argument, convert incoming argument to the exact type needed.
 240      * The argument conversions allowed are casting, boxing and unboxing,
 241      * integral widening or narrowing, and floating point widening or narrowing.
 242      * @param srcType required call type
 243      * @param target original method handle
 244      * @param strict if true, only asType conversions are allowed; if false, explicitCastArguments conversions allowed
 245      * @param monobox if true, unboxing conversions are assumed to be exactly typed (Integer to int only, not long or double)
 246      * @return an adapter to the original handle with the desired new type,
 247      *          or the original target if the types are already identical
 248      *          or null if the adaptation cannot be made
 249      */
 250     static MethodHandle makePairwiseConvert(MethodHandle target, MethodType srcType,
 251                                             boolean strict, boolean monobox) {
 252         MethodType dstType = target.type();
 253         if (srcType == dstType)
 254             return target;
 255         return makePairwiseConvertByEditor(target, srcType, strict, monobox);
 256     }
 257 
 258     private static int countNonNull(Object[] array) {
 259         int count = 0;
 260         for (Object x : array) {
 261             if (x != null)  ++count;
 262         }
 263         return count;
 264     }
 265 
 266     static MethodHandle makePairwiseConvertByEditor(MethodHandle target, MethodType srcType,
 267                                                     boolean strict, boolean monobox) {
 268         Object[] convSpecs = computeValueConversions(srcType, target.type(), strict, monobox);
 269         int convCount = countNonNull(convSpecs);
 270         if (convCount == 0)
 271             return target.viewAsType(srcType, strict);
 272         MethodType basicSrcType = srcType.basicType();
 273         MethodType midType = target.type().basicType();
 274         BoundMethodHandle mh = target.rebind();
 275         // FIXME: Reduce number of bindings when there is more than one Class conversion.
 276         // FIXME: Reduce number of bindings when there are repeated conversions.
 277         for (int i = 0; i < convSpecs.length-1; i++) {
 278             Object convSpec = convSpecs[i];
 279             if (convSpec == null)  continue;
 280             MethodHandle fn;
 281             if (convSpec instanceof Class) {
 282                 fn = getConstantHandle(MH_cast).bindTo(convSpec);
 283             } else {
 284                 fn = (MethodHandle) convSpec;
 285             }
 286             Class<?> newType = basicSrcType.parameterType(i);
 287             if (--convCount == 0)
 288                 midType = srcType;
 289             else
 290                 midType = midType.changeParameterType(i, newType);
 291             LambdaForm form2 = mh.editor().filterArgumentForm(1+i, BasicType.basicType(newType));
 292             mh = mh.copyWithExtendL(midType, form2, fn);
 293             mh = mh.rebind();
 294         }
 295         Object convSpec = convSpecs[convSpecs.length-1];
 296         if (convSpec != null) {
 297             MethodHandle fn;
 298             if (convSpec instanceof Class) {
 299                 if (convSpec == void.class)
 300                     fn = null;
 301                 else
 302                     fn = getConstantHandle(MH_cast).bindTo(convSpec);
 303             } else {
 304                 fn = (MethodHandle) convSpec;
 305             }
 306             Class<?> newType = basicSrcType.returnType();
 307             assert(--convCount == 0);
 308             midType = srcType;
 309             if (fn != null) {
 310                 mh = mh.rebind();  // rebind if too complex
 311                 LambdaForm form2 = mh.editor().filterReturnForm(BasicType.basicType(newType), false);
 312                 mh = mh.copyWithExtendL(midType, form2, fn);
 313             } else {
 314                 LambdaForm form2 = mh.editor().filterReturnForm(BasicType.basicType(newType), true);
 315                 mh = mh.copyWith(midType, form2);
 316             }
 317         }
 318         assert(convCount == 0);
 319         assert(mh.type().equals(srcType));
 320         return mh;
 321     }
 322 
 323     static MethodHandle makePairwiseConvertIndirect(MethodHandle target, MethodType srcType,
 324                                                     boolean strict, boolean monobox) {
 325         assert(target.type().parameterCount() == srcType.parameterCount());
 326         // Calculate extra arguments (temporaries) required in the names array.
 327         Object[] convSpecs = computeValueConversions(srcType, target.type(), strict, monobox);
 328         final int INARG_COUNT = srcType.parameterCount();
 329         int convCount = countNonNull(convSpecs);
 330         boolean retConv = (convSpecs[INARG_COUNT] != null);
 331         boolean retVoid = srcType.returnType() == void.class;
 332         if (retConv && retVoid) {
 333             convCount -= 1;
 334             retConv = false;
 335         }
 336 
 337         final int IN_MH         = 0;
 338         final int INARG_BASE    = 1;
 339         final int INARG_LIMIT   = INARG_BASE + INARG_COUNT;
 340         final int NAME_LIMIT    = INARG_LIMIT + convCount + 1;
 341         final int RETURN_CONV   = (!retConv ? -1         : NAME_LIMIT - 1);
 342         final int OUT_CALL      = (!retConv ? NAME_LIMIT : RETURN_CONV) - 1;
 343         final int RESULT        = (retVoid ? -1 : NAME_LIMIT - 1);
 344 
 345         // Now build a LambdaForm.
 346         MethodType lambdaType = srcType.basicType().invokerType();
 347         Name[] names = arguments(NAME_LIMIT - INARG_LIMIT, lambdaType);
 348 
 349         // Collect the arguments to the outgoing call, maybe with conversions:
 350         final int OUTARG_BASE = 0;  // target MH is Name.function, name Name.arguments[0]
 351         Object[] outArgs = new Object[OUTARG_BASE + INARG_COUNT];
 352 
 353         int nameCursor = INARG_LIMIT;
 354         for (int i = 0; i < INARG_COUNT; i++) {
 355             Object convSpec = convSpecs[i];
 356             if (convSpec == null) {
 357                 // do nothing: difference is trivial
 358                 outArgs[OUTARG_BASE + i] = names[INARG_BASE + i];
 359                 continue;
 360             }
 361 
 362             Name conv;
 363             if (convSpec instanceof Class) {
 364                 Class<?> convClass = (Class<?>) convSpec;
 365                 conv = new Name(getConstantHandle(MH_cast), convClass, names[INARG_BASE + i]);
 366             } else {
 367                 MethodHandle fn = (MethodHandle) convSpec;
 368                 conv = new Name(fn, names[INARG_BASE + i]);
 369             }
 370             assert(names[nameCursor] == null);
 371             names[nameCursor++] = conv;
 372             assert(outArgs[OUTARG_BASE + i] == null);
 373             outArgs[OUTARG_BASE + i] = conv;
 374         }
 375 
 376         // Build argument array for the call.
 377         assert(nameCursor == OUT_CALL);
 378         names[OUT_CALL] = new Name(target, outArgs);
 379 
 380         Object convSpec = convSpecs[INARG_COUNT];
 381         if (!retConv) {
 382             assert(OUT_CALL == names.length-1);
 383         } else {
 384             Name conv;
 385             if (convSpec == void.class) {
 386                 conv = new Name(LambdaForm.constantZero(BasicType.basicType(srcType.returnType())));
 387             } else if (convSpec instanceof Class) {
 388                 Class<?> convClass = (Class<?>) convSpec;
 389                 conv = new Name(getConstantHandle(MH_cast), convClass, names[OUT_CALL]);
 390             } else {
 391                 MethodHandle fn = (MethodHandle) convSpec;
 392                 if (fn.type().parameterCount() == 0)
 393                     conv = new Name(fn);  // don't pass retval to void conversion
 394                 else
 395                     conv = new Name(fn, names[OUT_CALL]);
 396             }
 397             assert(names[RETURN_CONV] == null);
 398             names[RETURN_CONV] = conv;
 399             assert(RETURN_CONV == names.length-1);
 400         }
 401 
 402         LambdaForm form = new LambdaForm(lambdaType.parameterCount(), names, RESULT, Kind.CONVERT);
 403         return SimpleMethodHandle.make(srcType, form);
 404     }
 405 
 406     static Object[] computeValueConversions(MethodType srcType, MethodType dstType,
 407                                             boolean strict, boolean monobox) {
 408         final int INARG_COUNT = srcType.parameterCount();
 409         Object[] convSpecs = new Object[INARG_COUNT+1];
 410         for (int i = 0; i <= INARG_COUNT; i++) {
 411             boolean isRet = (i == INARG_COUNT);
 412             Class<?> src = isRet ? dstType.returnType() : srcType.parameterType(i);
 413             Class<?> dst = isRet ? srcType.returnType() : dstType.parameterType(i);
 414             if (!VerifyType.isNullConversion(src, dst, /*keepInterfaces=*/ strict)) {
 415                 convSpecs[i] = valueConversion(src, dst, strict, monobox);
 416             }
 417         }
 418         return convSpecs;
 419     }
 420     static MethodHandle makePairwiseConvert(MethodHandle target, MethodType srcType,
 421                                             boolean strict) {
 422         return makePairwiseConvert(target, srcType, strict, /*monobox=*/ false);
 423     }
 424 
 425     /**
 426      * Find a conversion function from the given source to the given destination.
 427      * This conversion function will be used as a LF NamedFunction.
 428      * Return a Class object if a simple cast is needed.
 429      * Return void.class if void is involved.
 430      */
 431     static Object valueConversion(Class<?> src, Class<?> dst, boolean strict, boolean monobox) {
 432         assert(!VerifyType.isNullConversion(src, dst, /*keepInterfaces=*/ strict));  // caller responsibility
 433         if (dst == void.class)
 434             return dst;
 435         MethodHandle fn;
 436         if (src.isPrimitive()) {
 437             if (src == void.class) {
 438                 return void.class;  // caller must recognize this specially
 439             } else if (dst.isPrimitive()) {
 440                 // Examples: int->byte, byte->int, boolean->int (!strict)
 441                 fn = ValueConversions.convertPrimitive(src, dst);
 442             } else {
 443                 // Examples: int->Integer, boolean->Object, float->Number
 444                 Wrapper wsrc = Wrapper.forPrimitiveType(src);
 445                 fn = ValueConversions.boxExact(wsrc);
 446                 assert(fn.type().parameterType(0) == wsrc.primitiveType());
 447                 assert(fn.type().returnType() == wsrc.wrapperType());
 448                 if (!VerifyType.isNullConversion(wsrc.wrapperType(), dst, strict)) {
 449                     // Corner case, such as int->Long, which will probably fail.
 450                     MethodType mt = MethodType.methodType(dst, src);
 451                     if (strict)
 452                         fn = fn.asType(mt);
 453                     else
 454                         fn = MethodHandleImpl.makePairwiseConvert(fn, mt, /*strict=*/ false);
 455                 }
 456             }
 457         } else if (dst.isPrimitive()) {
 458             Wrapper wdst = Wrapper.forPrimitiveType(dst);
 459             if (monobox || src == wdst.wrapperType()) {
 460                 // Use a strongly-typed unboxer, if possible.
 461                 fn = ValueConversions.unboxExact(wdst, strict);
 462             } else {
 463                 // Examples:  Object->int, Number->int, Comparable->int, Byte->int
 464                 // must include additional conversions
 465                 // src must be examined at runtime, to detect Byte, Character, etc.
 466                 fn = (strict
 467                         ? ValueConversions.unboxWiden(wdst)
 468                         : ValueConversions.unboxCast(wdst));
 469             }
 470         } else {
 471             // Simple reference conversion.
 472             // Note:  Do not check for a class hierarchy relation
 473             // between src and dst.  In all cases a 'null' argument
 474             // will pass the cast conversion.
 475             return dst;
 476         }
 477         assert(fn.type().parameterCount() <= 1) : "pc"+Arrays.asList(src.getSimpleName(), dst.getSimpleName(), fn);
 478         return fn;
 479     }
 480 
 481     static MethodHandle makeVarargsCollector(MethodHandle target, Class<?> arrayType) {
 482         MethodType type = target.type();
 483         int last = type.parameterCount() - 1;
 484         if (type.parameterType(last) != arrayType)
 485             target = target.asType(type.changeParameterType(last, arrayType));
 486         target = target.asFixedArity();  // make sure this attribute is turned off
 487         return new AsVarargsCollector(target, arrayType);
 488     }
 489 
 490     private static final class AsVarargsCollector extends DelegatingMethodHandle {
 491         private final MethodHandle target;
 492         private final Class<?> arrayType;
 493         private @Stable MethodHandle asCollectorCache;
 494 
 495         AsVarargsCollector(MethodHandle target, Class<?> arrayType) {
 496             this(target.type(), target, arrayType);
 497         }
 498         AsVarargsCollector(MethodType type, MethodHandle target, Class<?> arrayType) {
 499             super(type, target);
 500             this.target = target;
 501             this.arrayType = arrayType;
 502         }
 503 
 504         @Override
 505         public boolean isVarargsCollector() {
 506             return true;
 507         }
 508 
 509         @Override
 510         protected MethodHandle getTarget() {
 511             return target;
 512         }
 513 
 514         @Override
 515         public MethodHandle asFixedArity() {
 516             return target;
 517         }
 518 
 519         @Override
 520         MethodHandle setVarargs(MemberName member) {
 521             if (member.isVarargs())  return this;
 522             return asFixedArity();
 523         }
 524 
 525         @Override
 526         public MethodHandle withVarargs(boolean makeVarargs) {
 527             if (makeVarargs)  return this;
 528             return asFixedArity();
 529         }
 530 
 531         @Override
 532         public MethodHandle asTypeUncached(MethodType newType) {
 533             MethodType type = this.type();
 534             int collectArg = type.parameterCount() - 1;
 535             int newArity = newType.parameterCount();
 536             if (newArity == collectArg+1 &&
 537                 type.parameterType(collectArg).isAssignableFrom(newType.parameterType(collectArg))) {
 538                 // if arity and trailing parameter are compatible, do normal thing
 539                 return asTypeCache = asFixedArity().asType(newType);
 540             }
 541             // check cache
 542             MethodHandle acc = asCollectorCache;
 543             if (acc != null && acc.type().parameterCount() == newArity)
 544                 return asTypeCache = acc.asType(newType);
 545             // build and cache a collector
 546             int arrayLength = newArity - collectArg;
 547             MethodHandle collector;
 548             try {
 549                 collector = asFixedArity().asCollector(arrayType, arrayLength);
 550                 assert(collector.type().parameterCount() == newArity) : "newArity="+newArity+" but collector="+collector;
 551             } catch (IllegalArgumentException ex) {
 552                 throw new WrongMethodTypeException("cannot build collector", ex);
 553             }
 554             asCollectorCache = collector;
 555             return asTypeCache = collector.asType(newType);
 556         }
 557 
 558         @Override
 559         boolean viewAsTypeChecks(MethodType newType, boolean strict) {
 560             super.viewAsTypeChecks(newType, true);
 561             if (strict) return true;
 562             // extra assertion for non-strict checks:
 563             assert (type().lastParameterType().getComponentType()
 564                     .isAssignableFrom(
 565                             newType.lastParameterType().getComponentType()))
 566                     : Arrays.asList(this, newType);
 567             return true;
 568         }
 569 
 570         @Override
 571         public Object invokeWithArguments(Object... arguments) throws Throwable {
 572             MethodType type = this.type();
 573             int argc;
 574             final int MAX_SAFE = 127;  // 127 longs require 254 slots, which is safe to spread
 575             if (arguments == null
 576                     || (argc = arguments.length) <= MAX_SAFE
 577                     || argc < type.parameterCount()) {
 578                 return super.invokeWithArguments(arguments);
 579             }
 580 
 581             // a jumbo invocation requires more explicit reboxing of the trailing arguments
 582             int uncollected = type.parameterCount() - 1;
 583             Class<?> elemType = arrayType.getComponentType();
 584             int collected = argc - uncollected;
 585             Object collArgs = (elemType == Object.class)
 586                 ? new Object[collected] : Array.newInstance(elemType, collected);
 587             if (!elemType.isPrimitive()) {
 588                 // simple cast:  just do some casting
 589                 try {
 590                     System.arraycopy(arguments, uncollected, collArgs, 0, collected);
 591                 } catch (ArrayStoreException ex) {
 592                     return super.invokeWithArguments(arguments);
 593                 }
 594             } else {
 595                 // corner case of flat array requires reflection (or specialized copy loop)
 596                 MethodHandle arraySetter = MethodHandles.arrayElementSetter(arrayType);
 597                 try {
 598                     for (int i = 0; i < collected; i++) {
 599                         arraySetter.invoke(collArgs, i, arguments[uncollected + i]);
 600                     }
 601                 } catch (WrongMethodTypeException|ClassCastException ex) {
 602                     return super.invokeWithArguments(arguments);
 603                 }
 604             }
 605 
 606             // chop the jumbo list down to size and call in non-varargs mode
 607             Object[] newArgs = new Object[uncollected + 1];
 608             System.arraycopy(arguments, 0, newArgs, 0, uncollected);
 609             newArgs[uncollected] = collArgs;
 610             return asFixedArity().invokeWithArguments(newArgs);
 611         }
 612     }
 613 
 614     /** Factory method:  Spread selected argument. */
 615     static MethodHandle makeSpreadArguments(MethodHandle target,
 616                                             Class<?> spreadArgType, int spreadArgPos, int spreadArgCount) {
 617         MethodType targetType = target.type();
 618 
 619         for (int i = 0; i < spreadArgCount; i++) {
 620             Class<?> arg = VerifyType.spreadArgElementType(spreadArgType, i);
 621             if (arg == null)  arg = Object.class;
 622             targetType = targetType.changeParameterType(spreadArgPos + i, arg);
 623         }
 624         target = target.asType(targetType);
 625 
 626         MethodType srcType = targetType
 627                 .replaceParameterTypes(spreadArgPos, spreadArgPos + spreadArgCount, spreadArgType);
 628         // Now build a LambdaForm.
 629         MethodType lambdaType = srcType.invokerType();
 630         Name[] names = arguments(spreadArgCount + 2, lambdaType);
 631         int nameCursor = lambdaType.parameterCount();
 632         int[] indexes = new int[targetType.parameterCount()];
 633 
 634         for (int i = 0, argIndex = 1; i < targetType.parameterCount() + 1; i++, argIndex++) {
 635             Class<?> src = lambdaType.parameterType(i);
 636             if (i == spreadArgPos) {
 637                 // Spread the array.
 638                 MethodHandle aload = MethodHandles.arrayElementGetter(spreadArgType);
 639                 Name array = names[argIndex];
 640                 names[nameCursor++] = new Name(getFunction(NF_checkSpreadArgument), array, spreadArgCount);
 641                 for (int j = 0; j < spreadArgCount; i++, j++) {
 642                     indexes[i] = nameCursor;
 643                     names[nameCursor++] = new Name(new NamedFunction(aload, Intrinsic.ARRAY_LOAD), array, j);
 644                 }
 645             } else if (i < indexes.length) {
 646                 indexes[i] = argIndex;
 647             }
 648         }
 649         assert(nameCursor == names.length-1);  // leave room for the final call
 650 
 651         // Build argument array for the call.
 652         Name[] targetArgs = new Name[targetType.parameterCount()];
 653         for (int i = 0; i < targetType.parameterCount(); i++) {
 654             int idx = indexes[i];
 655             targetArgs[i] = names[idx];
 656         }
 657         names[names.length - 1] = new Name(target, (Object[]) targetArgs);
 658 
 659         LambdaForm form = new LambdaForm(lambdaType.parameterCount(), names, Kind.SPREAD);
 660         return SimpleMethodHandle.make(srcType, form);
 661     }
 662 
 663     static void checkSpreadArgument(Object av, int n) {
 664         if (av == null && n == 0) {
 665             return;
 666         } else if (av == null) {
 667             throw new NullPointerException("null array reference");
 668         } else if (av instanceof Object[]) {
 669             int len = ((Object[])av).length;
 670             if (len == n)  return;
 671         } else {
 672             int len = java.lang.reflect.Array.getLength(av);
 673             if (len == n)  return;
 674         }
 675         // fall through to error:
 676         throw newIllegalArgumentException("array is not of length "+n);
 677     }
 678 
 679     /** Factory method:  Collect or filter selected argument(s). */
 680     static MethodHandle makeCollectArguments(MethodHandle target,
 681                 MethodHandle collector, int collectArgPos, boolean retainOriginalArgs) {
 682         MethodType targetType = target.type();          // (a..., c, [b...])=>r
 683         MethodType collectorType = collector.type();    // (b...)=>c
 684         int collectArgCount = collectorType.parameterCount();
 685         Class<?> collectValType = collectorType.returnType();
 686         int collectValCount = (collectValType == void.class ? 0 : 1);
 687         MethodType srcType = targetType                 // (a..., [b...])=>r
 688                 .dropParameterTypes(collectArgPos, collectArgPos+collectValCount);
 689         if (!retainOriginalArgs) {                      // (a..., b...)=>r
 690             srcType = srcType.insertParameterTypes(collectArgPos, collectorType.parameterArray());
 691         }
 692         // in  arglist: [0: ...keep1 | cpos: collect...  | cpos+cacount: keep2... ]
 693         // out arglist: [0: ...keep1 | cpos: collectVal? | cpos+cvcount: keep2... ]
 694         // out(retain): [0: ...keep1 | cpos: cV? coll... | cpos+cvc+cac: keep2... ]
 695 
 696         // Now build a LambdaForm.
 697         MethodType lambdaType = srcType.invokerType();
 698         Name[] names = arguments(2, lambdaType);
 699         final int collectNamePos = names.length - 2;
 700         final int targetNamePos  = names.length - 1;
 701 
 702         Name[] collectorArgs = Arrays.copyOfRange(names, 1 + collectArgPos, 1 + collectArgPos + collectArgCount);
 703         names[collectNamePos] = new Name(collector, (Object[]) collectorArgs);
 704 
 705         // Build argument array for the target.
 706         // Incoming LF args to copy are: [ (mh) headArgs collectArgs tailArgs ].
 707         // Output argument array is [ headArgs (collectVal)? (collectArgs)? tailArgs ].
 708         Name[] targetArgs = new Name[targetType.parameterCount()];
 709         int inputArgPos  = 1;  // incoming LF args to copy to target
 710         int targetArgPos = 0;  // fill pointer for targetArgs
 711         int chunk = collectArgPos;  // |headArgs|
 712         System.arraycopy(names, inputArgPos, targetArgs, targetArgPos, chunk);
 713         inputArgPos  += chunk;
 714         targetArgPos += chunk;
 715         if (collectValType != void.class) {
 716             targetArgs[targetArgPos++] = names[collectNamePos];
 717         }
 718         chunk = collectArgCount;
 719         if (retainOriginalArgs) {
 720             System.arraycopy(names, inputArgPos, targetArgs, targetArgPos, chunk);
 721             targetArgPos += chunk;   // optionally pass on the collected chunk
 722         }
 723         inputArgPos += chunk;
 724         chunk = targetArgs.length - targetArgPos;  // all the rest
 725         System.arraycopy(names, inputArgPos, targetArgs, targetArgPos, chunk);
 726         assert(inputArgPos + chunk == collectNamePos);  // use of rest of input args also
 727         names[targetNamePos] = new Name(target, (Object[]) targetArgs);
 728 
 729         LambdaForm form = new LambdaForm(lambdaType.parameterCount(), names, Kind.COLLECT);
 730         return SimpleMethodHandle.make(srcType, form);
 731     }
 732 
 733     @LambdaForm.Hidden
 734     static
 735     MethodHandle selectAlternative(boolean testResult, MethodHandle target, MethodHandle fallback) {
 736         if (testResult) {
 737             return target;
 738         } else {
 739             return fallback;
 740         }
 741     }
 742 
 743     // Intrinsified by C2. Counters are used during parsing to calculate branch frequencies.
 744     @LambdaForm.Hidden
 745     @jdk.internal.HotSpotIntrinsicCandidate
 746     static
 747     boolean profileBoolean(boolean result, int[] counters) {
 748         // Profile is int[2] where [0] and [1] correspond to false and true occurrences respectively.
 749         int idx = result ? 1 : 0;
 750         try {
 751             counters[idx] = Math.addExact(counters[idx], 1);
 752         } catch (ArithmeticException e) {
 753             // Avoid continuous overflow by halving the problematic count.
 754             counters[idx] = counters[idx] / 2;
 755         }
 756         return result;
 757     }
 758 
 759     // Intrinsified by C2. Returns true if obj is a compile-time constant.
 760     @LambdaForm.Hidden
 761     @jdk.internal.HotSpotIntrinsicCandidate
 762     static
 763     boolean isCompileConstant(Object obj) {
 764         return false;
 765     }
 766 
 767     static
 768     MethodHandle makeGuardWithTest(MethodHandle test,
 769                                    MethodHandle target,
 770                                    MethodHandle fallback) {
 771         MethodType type = target.type();
 772         assert(test.type().equals(type.changeReturnType(boolean.class)) && fallback.type().equals(type));
 773         MethodType basicType = type.basicType();
 774         LambdaForm form = makeGuardWithTestForm(basicType);
 775         BoundMethodHandle mh;
 776         try {
 777             if (PROFILE_GWT) {
 778                 int[] counts = new int[2];
 779                 mh = (BoundMethodHandle)
 780                         BoundMethodHandle.speciesData_LLLL().factory().invokeBasic(type, form,
 781                                 (Object) test, (Object) profile(target), (Object) profile(fallback), counts);
 782             } else {
 783                 mh = (BoundMethodHandle)
 784                         BoundMethodHandle.speciesData_LLL().factory().invokeBasic(type, form,
 785                                 (Object) test, (Object) profile(target), (Object) profile(fallback));
 786             }
 787         } catch (Throwable ex) {
 788             throw uncaughtException(ex);
 789         }
 790         assert(mh.type() == type);
 791         return mh;
 792     }
 793 
 794 
 795     static
 796     MethodHandle profile(MethodHandle target) {
 797         if (DONT_INLINE_THRESHOLD >= 0) {
 798             return makeBlockInliningWrapper(target);
 799         } else {
 800             return target;
 801         }
 802     }
 803 
 804     /**
 805      * Block inlining during JIT-compilation of a target method handle if it hasn't been invoked enough times.
 806      * Corresponding LambdaForm has @DontInline when compiled into bytecode.
 807      */
 808     static
 809     MethodHandle makeBlockInliningWrapper(MethodHandle target) {
 810         LambdaForm lform;
 811         if (DONT_INLINE_THRESHOLD > 0) {
 812             lform = Makers.PRODUCE_BLOCK_INLINING_FORM.apply(target);
 813         } else {
 814             lform = Makers.PRODUCE_REINVOKER_FORM.apply(target);
 815         }
 816         return new CountingWrapper(target, lform,
 817                 Makers.PRODUCE_BLOCK_INLINING_FORM, Makers.PRODUCE_REINVOKER_FORM,
 818                                    DONT_INLINE_THRESHOLD);
 819     }
 820 
 821     private final static class Makers {
 822         /** Constructs reinvoker lambda form which block inlining during JIT-compilation for a particular method handle */
 823         static final Function<MethodHandle, LambdaForm> PRODUCE_BLOCK_INLINING_FORM = new Function<MethodHandle, LambdaForm>() {
 824             @Override
 825             public LambdaForm apply(MethodHandle target) {
 826                 return DelegatingMethodHandle.makeReinvokerForm(target,
 827                                    MethodTypeForm.LF_DELEGATE_BLOCK_INLINING, CountingWrapper.class, false,
 828                                    DelegatingMethodHandle.NF_getTarget, CountingWrapper.NF_maybeStopCounting);
 829             }
 830         };
 831 
 832         /** Constructs simple reinvoker lambda form for a particular method handle */
 833         static final Function<MethodHandle, LambdaForm> PRODUCE_REINVOKER_FORM = new Function<MethodHandle, LambdaForm>() {
 834             @Override
 835             public LambdaForm apply(MethodHandle target) {
 836                 return DelegatingMethodHandle.makeReinvokerForm(target,
 837                         MethodTypeForm.LF_DELEGATE, DelegatingMethodHandle.class, DelegatingMethodHandle.NF_getTarget);
 838             }
 839         };
 840 
 841         /** Maker of type-polymorphic varargs */
 842         static final ClassValue<MethodHandle[]> TYPED_COLLECTORS = new ClassValue<MethodHandle[]>() {
 843             @Override
 844             protected MethodHandle[] computeValue(Class<?> type) {
 845                 return new MethodHandle[MAX_JVM_ARITY + 1];
 846             }
 847         };
 848     }
 849 
 850     /**
 851      * Counting method handle. It has 2 states: counting and non-counting.
 852      * It is in counting state for the first n invocations and then transitions to non-counting state.
 853      * Behavior in counting and non-counting states is determined by lambda forms produced by
 854      * countingFormProducer & nonCountingFormProducer respectively.
 855      */
 856     static class CountingWrapper extends DelegatingMethodHandle {
 857         private final MethodHandle target;
 858         private int count;
 859         private Function<MethodHandle, LambdaForm> countingFormProducer;
 860         private Function<MethodHandle, LambdaForm> nonCountingFormProducer;
 861         private volatile boolean isCounting;
 862 
 863         private CountingWrapper(MethodHandle target, LambdaForm lform,
 864                                 Function<MethodHandle, LambdaForm> countingFromProducer,
 865                                 Function<MethodHandle, LambdaForm> nonCountingFormProducer,
 866                                 int count) {
 867             super(target.type(), lform);
 868             this.target = target;
 869             this.count = count;
 870             this.countingFormProducer = countingFromProducer;
 871             this.nonCountingFormProducer = nonCountingFormProducer;
 872             this.isCounting = (count > 0);
 873         }
 874 
 875         @Hidden
 876         @Override
 877         protected MethodHandle getTarget() {
 878             return target;
 879         }
 880 
 881         @Override
 882         public MethodHandle asTypeUncached(MethodType newType) {
 883             MethodHandle newTarget = target.asType(newType);
 884             MethodHandle wrapper;
 885             if (isCounting) {
 886                 LambdaForm lform;
 887                 lform = countingFormProducer.apply(newTarget);
 888                 wrapper = new CountingWrapper(newTarget, lform, countingFormProducer, nonCountingFormProducer, DONT_INLINE_THRESHOLD);
 889             } else {
 890                 wrapper = newTarget; // no need for a counting wrapper anymore
 891             }
 892             return (asTypeCache = wrapper);
 893         }
 894 
 895         // Customize target if counting happens for too long.
 896         private int invocations = CUSTOMIZE_THRESHOLD;
 897         private void maybeCustomizeTarget() {
 898             int c = invocations;
 899             if (c >= 0) {
 900                 if (c == 1) {
 901                     target.customize();
 902                 }
 903                 invocations = c - 1;
 904             }
 905         }
 906 
 907         boolean countDown() {
 908             int c = count;
 909             maybeCustomizeTarget();
 910             if (c <= 1) {
 911                 // Try to limit number of updates. MethodHandle.updateForm() doesn't guarantee LF update visibility.
 912                 if (isCounting) {
 913                     isCounting = false;
 914                     return true;
 915                 } else {
 916                     return false;
 917                 }
 918             } else {
 919                 count = c - 1;
 920                 return false;
 921             }
 922         }
 923 
 924         @Hidden
 925         static void maybeStopCounting(Object o1) {
 926              CountingWrapper wrapper = (CountingWrapper) o1;
 927              if (wrapper.countDown()) {
 928                  // Reached invocation threshold. Replace counting behavior with a non-counting one.
 929                  LambdaForm lform = wrapper.nonCountingFormProducer.apply(wrapper.target);
 930                  lform.compileToBytecode(); // speed up warmup by avoiding LF interpretation again after transition
 931                  wrapper.updateForm(lform);
 932              }
 933         }
 934 
 935         static final NamedFunction NF_maybeStopCounting;
 936         static {
 937             Class<?> THIS_CLASS = CountingWrapper.class;
 938             try {
 939                 NF_maybeStopCounting = new NamedFunction(THIS_CLASS.getDeclaredMethod("maybeStopCounting", Object.class));
 940             } catch (ReflectiveOperationException ex) {
 941                 throw newInternalError(ex);
 942             }
 943         }
 944     }
 945 
 946     static
 947     LambdaForm makeGuardWithTestForm(MethodType basicType) {
 948         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_GWT);
 949         if (lform != null)  return lform;
 950         final int THIS_MH      = 0;  // the BMH_LLL
 951         final int ARG_BASE     = 1;  // start of incoming arguments
 952         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
 953         int nameCursor = ARG_LIMIT;
 954         final int GET_TEST     = nameCursor++;
 955         final int GET_TARGET   = nameCursor++;
 956         final int GET_FALLBACK = nameCursor++;
 957         final int GET_COUNTERS = PROFILE_GWT ? nameCursor++ : -1;
 958         final int CALL_TEST    = nameCursor++;
 959         final int PROFILE      = (GET_COUNTERS != -1) ? nameCursor++ : -1;
 960         final int TEST         = nameCursor-1; // previous statement: either PROFILE or CALL_TEST
 961         final int SELECT_ALT   = nameCursor++;
 962         final int CALL_TARGET  = nameCursor++;
 963         assert(CALL_TARGET == SELECT_ALT+1);  // must be true to trigger IBG.emitSelectAlternative
 964 
 965         MethodType lambdaType = basicType.invokerType();
 966         Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
 967 
 968         BoundMethodHandle.SpeciesData data =
 969                 (GET_COUNTERS != -1) ? BoundMethodHandle.speciesData_LLLL()
 970                                      : BoundMethodHandle.speciesData_LLL();
 971         names[THIS_MH] = names[THIS_MH].withConstraint(data);
 972         names[GET_TEST]     = new Name(data.getterFunction(0), names[THIS_MH]);
 973         names[GET_TARGET]   = new Name(data.getterFunction(1), names[THIS_MH]);
 974         names[GET_FALLBACK] = new Name(data.getterFunction(2), names[THIS_MH]);
 975         if (GET_COUNTERS != -1) {
 976             names[GET_COUNTERS] = new Name(data.getterFunction(3), names[THIS_MH]);
 977         }
 978         Object[] invokeArgs = Arrays.copyOfRange(names, 0, ARG_LIMIT, Object[].class);
 979 
 980         // call test
 981         MethodType testType = basicType.changeReturnType(boolean.class).basicType();
 982         invokeArgs[0] = names[GET_TEST];
 983         names[CALL_TEST] = new Name(testType, invokeArgs);
 984 
 985         // profile branch
 986         if (PROFILE != -1) {
 987             names[PROFILE] = new Name(getFunction(NF_profileBoolean), names[CALL_TEST], names[GET_COUNTERS]);
 988         }
 989         // call selectAlternative
 990         names[SELECT_ALT] = new Name(new NamedFunction(getConstantHandle(MH_selectAlternative), Intrinsic.SELECT_ALTERNATIVE), names[TEST], names[GET_TARGET], names[GET_FALLBACK]);
 991 
 992         // call target or fallback
 993         invokeArgs[0] = names[SELECT_ALT];
 994         names[CALL_TARGET] = new Name(basicType, invokeArgs);
 995 
 996         lform = new LambdaForm(lambdaType.parameterCount(), names, /*forceInline=*/true, Kind.GUARD);
 997 
 998         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_GWT, lform);
 999     }
1000 
1001     /**
1002      * The LambdaForm shape for catchException combinator is the following:
1003      * <blockquote><pre>{@code
1004      *  guardWithCatch=Lambda(a0:L,a1:L,a2:L)=>{
1005      *    t3:L=BoundMethodHandle$Species_LLLLL.argL0(a0:L);
1006      *    t4:L=BoundMethodHandle$Species_LLLLL.argL1(a0:L);
1007      *    t5:L=BoundMethodHandle$Species_LLLLL.argL2(a0:L);
1008      *    t6:L=BoundMethodHandle$Species_LLLLL.argL3(a0:L);
1009      *    t7:L=BoundMethodHandle$Species_LLLLL.argL4(a0:L);
1010      *    t8:L=MethodHandle.invokeBasic(t6:L,a1:L,a2:L);
1011      *    t9:L=MethodHandleImpl.guardWithCatch(t3:L,t4:L,t5:L,t8:L);
1012      *   t10:I=MethodHandle.invokeBasic(t7:L,t9:L);t10:I}
1013      * }</pre></blockquote>
1014      *
1015      * argL0 and argL2 are target and catcher method handles. argL1 is exception class.
1016      * argL3 and argL4 are auxiliary method handles: argL3 boxes arguments and wraps them into Object[]
1017      * (ValueConversions.array()) and argL4 unboxes result if necessary (ValueConversions.unbox()).
1018      *
1019      * Having t8 and t10 passed outside and not hardcoded into a lambda form allows to share lambda forms
1020      * among catchException combinators with the same basic type.
1021      */
1022     private static LambdaForm makeGuardWithCatchForm(MethodType basicType) {
1023         MethodType lambdaType = basicType.invokerType();
1024 
1025         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_GWC);
1026         if (lform != null) {
1027             return lform;
1028         }
1029         final int THIS_MH      = 0;  // the BMH_LLLLL
1030         final int ARG_BASE     = 1;  // start of incoming arguments
1031         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
1032 
1033         int nameCursor = ARG_LIMIT;
1034         final int GET_TARGET       = nameCursor++;
1035         final int GET_CLASS        = nameCursor++;
1036         final int GET_CATCHER      = nameCursor++;
1037         final int GET_COLLECT_ARGS = nameCursor++;
1038         final int GET_UNBOX_RESULT = nameCursor++;
1039         final int BOXED_ARGS       = nameCursor++;
1040         final int TRY_CATCH        = nameCursor++;
1041         final int UNBOX_RESULT     = nameCursor++;
1042 
1043         Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
1044 
1045         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLLL();
1046         names[THIS_MH]          = names[THIS_MH].withConstraint(data);
1047         names[GET_TARGET]       = new Name(data.getterFunction(0), names[THIS_MH]);
1048         names[GET_CLASS]        = new Name(data.getterFunction(1), names[THIS_MH]);
1049         names[GET_CATCHER]      = new Name(data.getterFunction(2), names[THIS_MH]);
1050         names[GET_COLLECT_ARGS] = new Name(data.getterFunction(3), names[THIS_MH]);
1051         names[GET_UNBOX_RESULT] = new Name(data.getterFunction(4), names[THIS_MH]);
1052 
1053         // FIXME: rework argument boxing/result unboxing logic for LF interpretation
1054 
1055         // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
1056         MethodType collectArgsType = basicType.changeReturnType(Object.class);
1057         MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
1058         Object[] args = new Object[invokeBasic.type().parameterCount()];
1059         args[0] = names[GET_COLLECT_ARGS];
1060         System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT-ARG_BASE);
1061         names[BOXED_ARGS] = new Name(new NamedFunction(invokeBasic, Intrinsic.GUARD_WITH_CATCH), args);
1062 
1063         // t_{i+1}:L=MethodHandleImpl.guardWithCatch(target:L,exType:L,catcher:L,t_{i}:L);
1064         Object[] gwcArgs = new Object[] {names[GET_TARGET], names[GET_CLASS], names[GET_CATCHER], names[BOXED_ARGS]};
1065         names[TRY_CATCH] = new Name(getFunction(NF_guardWithCatch), gwcArgs);
1066 
1067         // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
1068         MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
1069         Object[] unboxArgs  = new Object[] {names[GET_UNBOX_RESULT], names[TRY_CATCH]};
1070         names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
1071 
1072         lform = new LambdaForm(lambdaType.parameterCount(), names, Kind.GUARD_WITH_CATCH);
1073 
1074         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_GWC, lform);
1075     }
1076 
1077     static
1078     MethodHandle makeGuardWithCatch(MethodHandle target,
1079                                     Class<? extends Throwable> exType,
1080                                     MethodHandle catcher) {
1081         MethodType type = target.type();
1082         LambdaForm form = makeGuardWithCatchForm(type.basicType());
1083 
1084         // Prepare auxiliary method handles used during LambdaForm interpretation.
1085         // Box arguments and wrap them into Object[]: ValueConversions.array().
1086         MethodType varargsType = type.changeReturnType(Object[].class);
1087         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
1088         MethodHandle unboxResult = unboxResultHandle(type.returnType());
1089 
1090         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLLL();
1091         BoundMethodHandle mh;
1092         try {
1093             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) target, (Object) exType,
1094                     (Object) catcher, (Object) collectArgs, (Object) unboxResult);
1095         } catch (Throwable ex) {
1096             throw uncaughtException(ex);
1097         }
1098         assert(mh.type() == type);
1099         return mh;
1100     }
1101 
1102     /**
1103      * Intrinsified during LambdaForm compilation
1104      * (see {@link InvokerBytecodeGenerator#emitGuardWithCatch emitGuardWithCatch}).
1105      */
1106     @LambdaForm.Hidden
1107     static Object guardWithCatch(MethodHandle target, Class<? extends Throwable> exType, MethodHandle catcher,
1108                                  Object... av) throws Throwable {
1109         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
1110         try {
1111             return target.asFixedArity().invokeWithArguments(av);
1112         } catch (Throwable t) {
1113             if (!exType.isInstance(t)) throw t;
1114             return catcher.asFixedArity().invokeWithArguments(prepend(av, t));
1115         }
1116     }
1117 
1118     /** Prepend elements to an array. */
1119     @LambdaForm.Hidden
1120     private static Object[] prepend(Object[] array, Object... elems) {
1121         int nArray = array.length;
1122         int nElems = elems.length;
1123         Object[] newArray = new Object[nArray + nElems];
1124         System.arraycopy(elems, 0, newArray, 0, nElems);
1125         System.arraycopy(array, 0, newArray, nElems, nArray);
1126         return newArray;
1127     }
1128 
1129     static
1130     MethodHandle throwException(MethodType type) {
1131         assert(Throwable.class.isAssignableFrom(type.parameterType(0)));
1132         int arity = type.parameterCount();
1133         if (arity > 1) {
1134             MethodHandle mh = throwException(type.dropParameterTypes(1, arity));
1135             mh = MethodHandles.dropArguments(mh, 1, Arrays.copyOfRange(type.parameterArray(), 1, arity));
1136             return mh;
1137         }
1138         return makePairwiseConvert(getFunction(NF_throwException).resolvedHandle(), type, false, true);
1139     }
1140 
1141     static <T extends Throwable> Empty throwException(T t) throws T { throw t; }
1142 
1143     static MethodHandle[] FAKE_METHOD_HANDLE_INVOKE = new MethodHandle[2];
1144     static MethodHandle fakeMethodHandleInvoke(MemberName method) {
1145         int idx;
1146         assert(method.isMethodHandleInvoke());
1147         switch (method.getName()) {
1148         case "invoke":       idx = 0; break;
1149         case "invokeExact":  idx = 1; break;
1150         default:             throw new InternalError(method.getName());
1151         }
1152         MethodHandle mh = FAKE_METHOD_HANDLE_INVOKE[idx];
1153         if (mh != null)  return mh;
1154         MethodType type = MethodType.methodType(Object.class, UnsupportedOperationException.class,
1155                                                 MethodHandle.class, Object[].class);
1156         mh = throwException(type);
1157         mh = mh.bindTo(new UnsupportedOperationException("cannot reflectively invoke MethodHandle"));
1158         if (!method.getInvocationType().equals(mh.type()))
1159             throw new InternalError(method.toString());
1160         mh = mh.withInternalMemberName(method, false);
1161         mh = mh.withVarargs(true);
1162         assert(method.isVarargs());
1163         FAKE_METHOD_HANDLE_INVOKE[idx] = mh;
1164         return mh;
1165     }
1166     static MethodHandle fakeVarHandleInvoke(MemberName method) {
1167         // TODO caching, is it necessary?
1168         MethodType type = MethodType.methodType(method.getReturnType(), UnsupportedOperationException.class,
1169                                                 VarHandle.class, Object[].class);
1170         MethodHandle mh = throwException(type);
1171         mh = mh.bindTo(new UnsupportedOperationException("cannot reflectively invoke VarHandle"));
1172         if (!method.getInvocationType().equals(mh.type()))
1173             throw new InternalError(method.toString());
1174         mh = mh.withInternalMemberName(method, false);
1175         mh = mh.asVarargsCollector(Object[].class);
1176         assert(method.isVarargs());
1177         return mh;
1178     }
1179 
1180     /**
1181      * Create an alias for the method handle which, when called,
1182      * appears to be called from the same class loader and protection domain
1183      * as hostClass.
1184      * This is an expensive no-op unless the method which is called
1185      * is sensitive to its caller.  A small number of system methods
1186      * are in this category, including Class.forName and Method.invoke.
1187      */
1188     static
1189     MethodHandle bindCaller(MethodHandle mh, Class<?> hostClass) {
1190         return BindCaller.bindCaller(mh, hostClass);
1191     }
1192 
1193     // Put the whole mess into its own nested class.
1194     // That way we can lazily load the code and set up the constants.
1195     private static class BindCaller {
1196         private static MethodType INVOKER_MT = MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1197 
1198         static
1199         MethodHandle bindCaller(MethodHandle mh, Class<?> hostClass) {
1200             // Code in the boot layer should now be careful while creating method handles or
1201             // functional interface instances created from method references to @CallerSensitive  methods,
1202             // it needs to be ensured the handles or interface instances are kept safe and are not passed
1203             // from the boot layer to untrusted code.
1204             if (hostClass == null
1205                 ||    (hostClass.isArray() ||
1206                        hostClass.isPrimitive() ||
1207                        hostClass.getName().startsWith("java.lang.invoke."))) {
1208                 throw new InternalError();  // does not happen, and should not anyway
1209             }
1210             // For simplicity, convert mh to a varargs-like method.
1211             MethodHandle vamh = prepareForInvoker(mh);
1212             // Cache the result of makeInjectedInvoker once per argument class.
1213             MethodHandle bccInvoker = CV_makeInjectedInvoker.get(hostClass);
1214             return restoreToType(bccInvoker.bindTo(vamh), mh, hostClass);
1215         }
1216 
1217         private static MethodHandle makeInjectedInvoker(Class<?> hostClass) {
1218             try {
1219                 Class<?> invokerClass = UNSAFE.defineAnonymousClass(hostClass, INJECTED_INVOKER_TEMPLATE, null);
1220                 assert checkInjectedInvoker(hostClass, invokerClass);
1221                 return IMPL_LOOKUP.findStatic(invokerClass, "invoke_V", INVOKER_MT);
1222             } catch (ReflectiveOperationException ex) {
1223                 throw uncaughtException(ex);
1224             }
1225         }
1226 
1227         private static ClassValue<MethodHandle> CV_makeInjectedInvoker = new ClassValue<MethodHandle>() {
1228             @Override protected MethodHandle computeValue(Class<?> hostClass) {
1229                 return makeInjectedInvoker(hostClass);
1230             }
1231         };
1232 
1233         // Adapt mh so that it can be called directly from an injected invoker:
1234         private static MethodHandle prepareForInvoker(MethodHandle mh) {
1235             mh = mh.asFixedArity();
1236             MethodType mt = mh.type();
1237             int arity = mt.parameterCount();
1238             MethodHandle vamh = mh.asType(mt.generic());
1239             vamh.internalForm().compileToBytecode();  // eliminate LFI stack frames
1240             vamh = vamh.asSpreader(Object[].class, arity);
1241             vamh.internalForm().compileToBytecode();  // eliminate LFI stack frames
1242             return vamh;
1243         }
1244 
1245         // Undo the adapter effect of prepareForInvoker:
1246         private static MethodHandle restoreToType(MethodHandle vamh,
1247                                                   MethodHandle original,
1248                                                   Class<?> hostClass) {
1249             MethodType type = original.type();
1250             MethodHandle mh = vamh.asCollector(Object[].class, type.parameterCount());
1251             MemberName member = original.internalMemberName();
1252             mh = mh.asType(type);
1253             mh = new WrappedMember(mh, type, member, original.isInvokeSpecial(), hostClass);
1254             return mh;
1255         }
1256 
1257         private static boolean checkInjectedInvoker(Class<?> hostClass, Class<?> invokerClass) {
1258             assert (hostClass.getClassLoader() == invokerClass.getClassLoader()) : hostClass.getName()+" (CL)";
1259             try {
1260                 assert (hostClass.getProtectionDomain() == invokerClass.getProtectionDomain()) : hostClass.getName()+" (PD)";
1261             } catch (SecurityException ex) {
1262                 // Self-check was blocked by security manager. This is OK.
1263             }
1264             try {
1265                 // Test the invoker to ensure that it really injects into the right place.
1266                 MethodHandle invoker = IMPL_LOOKUP.findStatic(invokerClass, "invoke_V", INVOKER_MT);
1267                 MethodHandle vamh = prepareForInvoker(MH_checkCallerClass);
1268                 return (boolean)invoker.invoke(vamh, new Object[]{ invokerClass });
1269             } catch (Throwable ex) {
1270                 throw new InternalError(ex);
1271             }
1272         }
1273 
1274         private static final MethodHandle MH_checkCallerClass;
1275         static {
1276             final Class<?> THIS_CLASS = BindCaller.class;
1277             assert(checkCallerClass(THIS_CLASS));
1278             try {
1279                 MH_checkCallerClass = IMPL_LOOKUP
1280                     .findStatic(THIS_CLASS, "checkCallerClass",
1281                                 MethodType.methodType(boolean.class, Class.class));
1282                 assert((boolean) MH_checkCallerClass.invokeExact(THIS_CLASS));
1283             } catch (Throwable ex) {
1284                 throw new InternalError(ex);
1285             }
1286         }
1287 
1288         @CallerSensitive
1289         @ForceInline // to ensure Reflection.getCallerClass optimization
1290         private static boolean checkCallerClass(Class<?> expected) {
1291             // This method is called via MH_checkCallerClass and so it's correct to ask for the immediate caller here.
1292             Class<?> actual = Reflection.getCallerClass();
1293             if (actual != expected)
1294                 throw new InternalError("found " + actual.getName() + ", expected " + expected.getName());
1295             return true;
1296         }
1297 
1298         private static final byte[] INJECTED_INVOKER_TEMPLATE = generateInvokerTemplate();
1299 
1300         /** Produces byte code for a class that is used as an injected invoker. */
1301         private static byte[] generateInvokerTemplate() {
1302             ClassWriter cw = new ClassWriter(0);
1303 
1304             // private static class InjectedInvoker {
1305             //     @Hidden
1306             //     static Object invoke_V(MethodHandle vamh, Object[] args) throws Throwable {
1307             //        return vamh.invokeExact(args);
1308             //     }
1309             // }
1310             cw.visit(52, ACC_PRIVATE | ACC_SUPER, "InjectedInvoker", null, "java/lang/Object", null);
1311 
1312             MethodVisitor mv = cw.visitMethod(ACC_STATIC, "invoke_V",
1313                           "(Ljava/lang/invoke/MethodHandle;[Ljava/lang/Object;)Ljava/lang/Object;",
1314                           null, null);
1315 
1316             // Suppress invoker method in stack traces.
1317             AnnotationVisitor av0 = mv.visitAnnotation("Ljava/lang/invoke/LambdaForm$Hidden;", true);
1318             av0.visitEnd();
1319 
1320             mv.visitCode();
1321             mv.visitVarInsn(ALOAD, 0);
1322             mv.visitVarInsn(ALOAD, 1);
1323             mv.visitMethodInsn(INVOKEVIRTUAL, "java/lang/invoke/MethodHandle", "invokeExact",
1324                                "([Ljava/lang/Object;)Ljava/lang/Object;", false);
1325             mv.visitInsn(ARETURN);
1326             mv.visitMaxs(2, 2);
1327             mv.visitEnd();
1328 
1329             cw.visitEnd();
1330             return cw.toByteArray();
1331         }
1332     }
1333 
1334     /** This subclass allows a wrapped method handle to be re-associated with an arbitrary member name. */
1335     private static final class WrappedMember extends DelegatingMethodHandle {
1336         private final MethodHandle target;
1337         private final MemberName member;
1338         private final Class<?> callerClass;
1339         private final boolean isInvokeSpecial;
1340 
1341         private WrappedMember(MethodHandle target, MethodType type,
1342                               MemberName member, boolean isInvokeSpecial,
1343                               Class<?> callerClass) {
1344             super(type, target);
1345             this.target = target;
1346             this.member = member;
1347             this.callerClass = callerClass;
1348             this.isInvokeSpecial = isInvokeSpecial;
1349         }
1350 
1351         @Override
1352         MemberName internalMemberName() {
1353             return member;
1354         }
1355         @Override
1356         Class<?> internalCallerClass() {
1357             return callerClass;
1358         }
1359         @Override
1360         boolean isInvokeSpecial() {
1361             return isInvokeSpecial;
1362         }
1363         @Override
1364         protected MethodHandle getTarget() {
1365             return target;
1366         }
1367         @Override
1368         public MethodHandle asTypeUncached(MethodType newType) {
1369             // This MH is an alias for target, except for the MemberName
1370             // Drop the MemberName if there is any conversion.
1371             return asTypeCache = target.asType(newType);
1372         }
1373     }
1374 
1375     static MethodHandle makeWrappedMember(MethodHandle target, MemberName member, boolean isInvokeSpecial) {
1376         if (member.equals(target.internalMemberName()) && isInvokeSpecial == target.isInvokeSpecial())
1377             return target;
1378         return new WrappedMember(target, target.type(), member, isInvokeSpecial, null);
1379     }
1380 
1381     /** Intrinsic IDs */
1382     /*non-public*/
1383     enum Intrinsic {
1384         SELECT_ALTERNATIVE,
1385         GUARD_WITH_CATCH,
1386         TRY_FINALLY,
1387         LOOP,
1388         NEW_ARRAY,
1389         ARRAY_LOAD,
1390         ARRAY_STORE,
1391         ARRAY_LENGTH,
1392         IDENTITY,
1393         ZERO,
1394         NONE // no intrinsic associated
1395     }
1396 
1397     /** Mark arbitrary method handle as intrinsic.
1398      * InvokerBytecodeGenerator uses this info to produce more efficient bytecode shape. */
1399     static final class IntrinsicMethodHandle extends DelegatingMethodHandle {
1400         private final MethodHandle target;
1401         private final Intrinsic intrinsicName;
1402 
1403         IntrinsicMethodHandle(MethodHandle target, Intrinsic intrinsicName) {
1404             super(target.type(), target);
1405             this.target = target;
1406             this.intrinsicName = intrinsicName;
1407         }
1408 
1409         @Override
1410         protected MethodHandle getTarget() {
1411             return target;
1412         }
1413 
1414         @Override
1415         Intrinsic intrinsicName() {
1416             return intrinsicName;
1417         }
1418 
1419         @Override
1420         public MethodHandle asTypeUncached(MethodType newType) {
1421             // This MH is an alias for target, except for the intrinsic name
1422             // Drop the name if there is any conversion.
1423             return asTypeCache = target.asType(newType);
1424         }
1425 
1426         @Override
1427         String internalProperties() {
1428             return super.internalProperties() +
1429                     "\n& Intrinsic="+intrinsicName;
1430         }
1431 
1432         @Override
1433         public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
1434             if (intrinsicName == Intrinsic.IDENTITY) {
1435                 MethodType resultType = type().asCollectorType(arrayType, type().parameterCount() - 1, arrayLength);
1436                 MethodHandle newArray = MethodHandleImpl.varargsArray(arrayType, arrayLength);
1437                 return newArray.asType(resultType);
1438             }
1439             return super.asCollector(arrayType, arrayLength);
1440         }
1441     }
1442 
1443     static MethodHandle makeIntrinsic(MethodHandle target, Intrinsic intrinsicName) {
1444         if (intrinsicName == target.intrinsicName())
1445             return target;
1446         return new IntrinsicMethodHandle(target, intrinsicName);
1447     }
1448 
1449     static MethodHandle makeIntrinsic(MethodType type, LambdaForm form, Intrinsic intrinsicName) {
1450         return new IntrinsicMethodHandle(SimpleMethodHandle.make(type, form), intrinsicName);
1451     }
1452 
1453     /// Collection of multiple arguments.
1454 
1455     private static MethodHandle findCollector(String name, int nargs, Class<?> rtype, Class<?>... ptypes) {
1456         MethodType type = MethodType.genericMethodType(nargs)
1457                 .changeReturnType(rtype)
1458                 .insertParameterTypes(0, ptypes);
1459         try {
1460             return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, name, type);
1461         } catch (ReflectiveOperationException ex) {
1462             return null;
1463         }
1464     }
1465 
1466     private static final Object[] NO_ARGS_ARRAY = {};
1467     private static Object[] makeArray(Object... args) { return args; }
1468     private static Object[] array() { return NO_ARGS_ARRAY; }
1469     private static Object[] array(Object a0)
1470                 { return makeArray(a0); }
1471     private static Object[] array(Object a0, Object a1)
1472                 { return makeArray(a0, a1); }
1473     private static Object[] array(Object a0, Object a1, Object a2)
1474                 { return makeArray(a0, a1, a2); }
1475     private static Object[] array(Object a0, Object a1, Object a2, Object a3)
1476                 { return makeArray(a0, a1, a2, a3); }
1477     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1478                                   Object a4)
1479                 { return makeArray(a0, a1, a2, a3, a4); }
1480     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1481                                   Object a4, Object a5)
1482                 { return makeArray(a0, a1, a2, a3, a4, a5); }
1483     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1484                                   Object a4, Object a5, Object a6)
1485                 { return makeArray(a0, a1, a2, a3, a4, a5, a6); }
1486     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1487                                   Object a4, Object a5, Object a6, Object a7)
1488                 { return makeArray(a0, a1, a2, a3, a4, a5, a6, a7); }
1489     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1490                                   Object a4, Object a5, Object a6, Object a7,
1491                                   Object a8)
1492                 { return makeArray(a0, a1, a2, a3, a4, a5, a6, a7, a8); }
1493     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1494                                   Object a4, Object a5, Object a6, Object a7,
1495                                   Object a8, Object a9)
1496                 { return makeArray(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9); }
1497 
1498     private static final int ARRAYS_COUNT = 11;
1499     private static final @Stable MethodHandle[] ARRAYS = new MethodHandle[MAX_ARITY + 1];
1500 
1501     // filling versions of the above:
1502     // using Integer len instead of int len and no varargs to avoid bootstrapping problems
1503     private static Object[] fillNewArray(Integer len, Object[] /*not ...*/ args) {
1504         Object[] a = new Object[len];
1505         fillWithArguments(a, 0, args);
1506         return a;
1507     }
1508     private static Object[] fillNewTypedArray(Object[] example, Integer len, Object[] /*not ...*/ args) {
1509         Object[] a = Arrays.copyOf(example, len);
1510         assert(a.getClass() != Object[].class);
1511         fillWithArguments(a, 0, args);
1512         return a;
1513     }
1514     private static void fillWithArguments(Object[] a, int pos, Object... args) {
1515         System.arraycopy(args, 0, a, pos, args.length);
1516     }
1517     // using Integer pos instead of int pos to avoid bootstrapping problems
1518     private static Object[] fillArray(Integer pos, Object[] a, Object a0)
1519                 { fillWithArguments(a, pos, a0); return a; }
1520     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1)
1521                 { fillWithArguments(a, pos, a0, a1); return a; }
1522     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2)
1523                 { fillWithArguments(a, pos, a0, a1, a2); return a; }
1524     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3)
1525                 { fillWithArguments(a, pos, a0, a1, a2, a3); return a; }
1526     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1527                                   Object a4)
1528                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4); return a; }
1529     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1530                                   Object a4, Object a5)
1531                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4, a5); return a; }
1532     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1533                                   Object a4, Object a5, Object a6)
1534                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4, a5, a6); return a; }
1535     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1536                                   Object a4, Object a5, Object a6, Object a7)
1537                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4, a5, a6, a7); return a; }
1538     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1539                                   Object a4, Object a5, Object a6, Object a7,
1540                                   Object a8)
1541                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4, a5, a6, a7, a8); return a; }
1542     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1543                                   Object a4, Object a5, Object a6, Object a7,
1544                                   Object a8, Object a9)
1545                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9); return a; }
1546 
1547     private static final int FILL_ARRAYS_COUNT = 11; // current number of fillArray methods
1548     private static final @Stable MethodHandle[] FILL_ARRAYS = new MethodHandle[FILL_ARRAYS_COUNT];
1549 
1550     private static MethodHandle getFillArray(int count) {
1551         assert (count > 0 && count < FILL_ARRAYS_COUNT);
1552         MethodHandle mh = FILL_ARRAYS[count];
1553         if (mh != null) {
1554             return mh;
1555         }
1556         mh = findCollector("fillArray", count, Object[].class, Integer.class, Object[].class);
1557         FILL_ARRAYS[count] = mh;
1558         return mh;
1559     }
1560 
1561     private static Object copyAsPrimitiveArray(Wrapper w, Object... boxes) {
1562         Object a = w.makeArray(boxes.length);
1563         w.copyArrayUnboxing(boxes, 0, a, 0, boxes.length);
1564         return a;
1565     }
1566 
1567     /** Return a method handle that takes the indicated number of Object
1568      *  arguments and returns an Object array of them, as if for varargs.
1569      */
1570     static MethodHandle varargsArray(int nargs) {
1571         MethodHandle mh = ARRAYS[nargs];
1572         if (mh != null) {
1573             return mh;
1574         }
1575         if (nargs < ARRAYS_COUNT) {
1576             mh = findCollector("array", nargs, Object[].class);
1577         } else {
1578             mh = buildVarargsArray(getConstantHandle(MH_fillNewArray),
1579                     getConstantHandle(MH_arrayIdentity), nargs);
1580         }
1581         assert(assertCorrectArity(mh, nargs));
1582         mh = makeIntrinsic(mh, Intrinsic.NEW_ARRAY);
1583         return ARRAYS[nargs] = mh;
1584     }
1585 
1586     private static boolean assertCorrectArity(MethodHandle mh, int arity) {
1587         assert(mh.type().parameterCount() == arity) : "arity != "+arity+": "+mh;
1588         return true;
1589     }
1590 
1591     // Array identity function (used as getConstantHandle(MH_arrayIdentity)).
1592     static <T> T[] identity(T[] x) {
1593         return x;
1594     }
1595 
1596     private static MethodHandle buildVarargsArray(MethodHandle newArray, MethodHandle finisher, int nargs) {
1597         // Build up the result mh as a sequence of fills like this:
1598         //   finisher(fill(fill(newArrayWA(23,x1..x10),10,x11..x20),20,x21..x23))
1599         // The various fill(_,10*I,___*[J]) are reusable.
1600         int leftLen = Math.min(nargs, LEFT_ARGS);  // absorb some arguments immediately
1601         int rightLen = nargs - leftLen;
1602         MethodHandle leftCollector = newArray.bindTo(nargs);
1603         leftCollector = leftCollector.asCollector(Object[].class, leftLen);
1604         MethodHandle mh = finisher;
1605         if (rightLen > 0) {
1606             MethodHandle rightFiller = fillToRight(LEFT_ARGS + rightLen);
1607             if (mh.equals(getConstantHandle(MH_arrayIdentity)))
1608                 mh = rightFiller;
1609             else
1610                 mh = MethodHandles.collectArguments(mh, 0, rightFiller);
1611         }
1612         if (mh.equals(getConstantHandle(MH_arrayIdentity)))
1613             mh = leftCollector;
1614         else
1615             mh = MethodHandles.collectArguments(mh, 0, leftCollector);
1616         return mh;
1617     }
1618 
1619     private static final int LEFT_ARGS = FILL_ARRAYS_COUNT - 1;
1620     private static final @Stable MethodHandle[] FILL_ARRAY_TO_RIGHT = new MethodHandle[MAX_ARITY + 1];
1621     /** fill_array_to_right(N).invoke(a, argL..arg[N-1])
1622      *  fills a[L]..a[N-1] with corresponding arguments,
1623      *  and then returns a.  The value L is a global constant (LEFT_ARGS).
1624      */
1625     private static MethodHandle fillToRight(int nargs) {
1626         MethodHandle filler = FILL_ARRAY_TO_RIGHT[nargs];
1627         if (filler != null)  return filler;
1628         filler = buildFiller(nargs);
1629         assert(assertCorrectArity(filler, nargs - LEFT_ARGS + 1));
1630         return FILL_ARRAY_TO_RIGHT[nargs] = filler;
1631     }
1632     private static MethodHandle buildFiller(int nargs) {
1633         if (nargs <= LEFT_ARGS)
1634             return getConstantHandle(MH_arrayIdentity);  // no args to fill; return the array unchanged
1635         // we need room for both mh and a in mh.invoke(a, arg*[nargs])
1636         final int CHUNK = LEFT_ARGS;
1637         int rightLen = nargs % CHUNK;
1638         int midLen = nargs - rightLen;
1639         if (rightLen == 0) {
1640             midLen = nargs - (rightLen = CHUNK);
1641             if (FILL_ARRAY_TO_RIGHT[midLen] == null) {
1642                 // build some precursors from left to right
1643                 for (int j = LEFT_ARGS % CHUNK; j < midLen; j += CHUNK)
1644                     if (j > LEFT_ARGS)  fillToRight(j);
1645             }
1646         }
1647         if (midLen < LEFT_ARGS) rightLen = nargs - (midLen = LEFT_ARGS);
1648         assert(rightLen > 0);
1649         MethodHandle midFill = fillToRight(midLen);  // recursive fill
1650         MethodHandle rightFill = getFillArray(rightLen).bindTo(midLen);  // [midLen..nargs-1]
1651         assert(midFill.type().parameterCount()   == 1 + midLen - LEFT_ARGS);
1652         assert(rightFill.type().parameterCount() == 1 + rightLen);
1653 
1654         // Combine the two fills:
1655         //   right(mid(a, x10..x19), x20..x23)
1656         // The final product will look like this:
1657         //   right(mid(newArrayLeft(24, x0..x9), x10..x19), x20..x23)
1658         if (midLen == LEFT_ARGS)
1659             return rightFill;
1660         else
1661             return MethodHandles.collectArguments(rightFill, 0, midFill);
1662     }
1663 
1664     static final int MAX_JVM_ARITY = 255;  // limit imposed by the JVM
1665 
1666     /** Return a method handle that takes the indicated number of
1667      *  typed arguments and returns an array of them.
1668      *  The type argument is the array type.
1669      */
1670     static MethodHandle varargsArray(Class<?> arrayType, int nargs) {
1671         Class<?> elemType = arrayType.getComponentType();
1672         if (elemType == null)  throw new IllegalArgumentException("not an array: "+arrayType);
1673         // FIXME: Need more special casing and caching here.
1674         if (nargs >= MAX_JVM_ARITY/2 - 1) {
1675             int slots = nargs;
1676             final int MAX_ARRAY_SLOTS = MAX_JVM_ARITY - 1;  // 1 for receiver MH
1677             if (slots <= MAX_ARRAY_SLOTS && elemType.isPrimitive())
1678                 slots *= Wrapper.forPrimitiveType(elemType).stackSlots();
1679             if (slots > MAX_ARRAY_SLOTS)
1680                 throw new IllegalArgumentException("too many arguments: "+arrayType.getSimpleName()+", length "+nargs);
1681         }
1682         if (elemType == Object.class)
1683             return varargsArray(nargs);
1684         // other cases:  primitive arrays, subtypes of Object[]
1685         MethodHandle cache[] = Makers.TYPED_COLLECTORS.get(elemType);
1686         MethodHandle mh = nargs < cache.length ? cache[nargs] : null;
1687         if (mh != null)  return mh;
1688         if (nargs == 0) {
1689             Object example = java.lang.reflect.Array.newInstance(arrayType.getComponentType(), 0);
1690             mh = MethodHandles.constant(arrayType, example);
1691         } else if (elemType.isPrimitive()) {
1692             MethodHandle builder = getConstantHandle(MH_fillNewArray);
1693             MethodHandle producer = buildArrayProducer(arrayType);
1694             mh = buildVarargsArray(builder, producer, nargs);
1695         } else {
1696             Class<? extends Object[]> objArrayType = arrayType.asSubclass(Object[].class);
1697             Object[] example = Arrays.copyOf(NO_ARGS_ARRAY, 0, objArrayType);
1698             MethodHandle builder = getConstantHandle(MH_fillNewTypedArray).bindTo(example);
1699             MethodHandle producer = getConstantHandle(MH_arrayIdentity); // must be weakly typed
1700             mh = buildVarargsArray(builder, producer, nargs);
1701         }
1702         mh = mh.asType(MethodType.methodType(arrayType, Collections.<Class<?>>nCopies(nargs, elemType)));
1703         mh = makeIntrinsic(mh, Intrinsic.NEW_ARRAY);
1704         assert(assertCorrectArity(mh, nargs));
1705         if (nargs < cache.length)
1706             cache[nargs] = mh;
1707         return mh;
1708     }
1709 
1710     private static MethodHandle buildArrayProducer(Class<?> arrayType) {
1711         Class<?> elemType = arrayType.getComponentType();
1712         assert(elemType.isPrimitive());
1713         return getConstantHandle(MH_copyAsPrimitiveArray).bindTo(Wrapper.forPrimitiveType(elemType));
1714     }
1715 
1716     /*non-public*/ static void assertSame(Object mh1, Object mh2) {
1717         if (mh1 != mh2) {
1718             String msg = String.format("mh1 != mh2: mh1 = %s (form: %s); mh2 = %s (form: %s)",
1719                     mh1, ((MethodHandle)mh1).form,
1720                     mh2, ((MethodHandle)mh2).form);
1721             throw newInternalError(msg);
1722         }
1723     }
1724 
1725     // Local constant functions:
1726 
1727     /* non-public */
1728     static final byte NF_checkSpreadArgument = 0,
1729             NF_guardWithCatch = 1,
1730             NF_throwException = 2,
1731             NF_tryFinally = 3,
1732             NF_loop = 4,
1733             NF_profileBoolean = 5,
1734             NF_LIMIT = 6;
1735 
1736     private static final @Stable NamedFunction[] NFS = new NamedFunction[NF_LIMIT];
1737 
1738     static NamedFunction getFunction(byte func) {
1739         NamedFunction nf = NFS[func];
1740         if (nf != null) {
1741             return nf;
1742         }
1743         return NFS[func] = createFunction(func);
1744     }
1745 
1746     private static NamedFunction createFunction(byte func) {
1747         try {
1748             switch (func) {
1749                 case NF_checkSpreadArgument:
1750                     return new NamedFunction(MethodHandleImpl.class
1751                             .getDeclaredMethod("checkSpreadArgument", Object.class, int.class));
1752                 case NF_guardWithCatch:
1753                     return new NamedFunction(MethodHandleImpl.class
1754                             .getDeclaredMethod("guardWithCatch", MethodHandle.class, Class.class,
1755                                     MethodHandle.class, Object[].class));
1756                 case NF_tryFinally:
1757                     return new NamedFunction(MethodHandleImpl.class
1758                             .getDeclaredMethod("tryFinally", MethodHandle.class, MethodHandle.class, Object[].class));
1759                 case NF_loop:
1760                     return new NamedFunction(MethodHandleImpl.class
1761                             .getDeclaredMethod("loop", BasicType[].class, LoopClauses.class, Object[].class));
1762                 case NF_throwException:
1763                     return new NamedFunction(MethodHandleImpl.class
1764                             .getDeclaredMethod("throwException", Throwable.class));
1765                 case NF_profileBoolean:
1766                     return new NamedFunction(MethodHandleImpl.class
1767                             .getDeclaredMethod("profileBoolean", boolean.class, int[].class));
1768                 default:
1769                     throw new InternalError("Undefined function: " + func);
1770             }
1771         } catch (ReflectiveOperationException ex) {
1772             throw newInternalError(ex);
1773         }
1774     }
1775 
1776     static {
1777         SharedSecrets.setJavaLangInvokeAccess(new JavaLangInvokeAccess() {
1778             @Override
1779             public Object newMemberName() {
1780                 return new MemberName();
1781             }
1782 
1783             @Override
1784             public String getName(Object mname) {
1785                 MemberName memberName = (MemberName)mname;
1786                 return memberName.getName();
1787             }
1788             @Override
1789             public Class<?> getDeclaringClass(Object mname) {
1790                 MemberName memberName = (MemberName)mname;
1791                 return memberName.getDeclaringClass();
1792             }
1793 
1794             @Override
1795             public MethodType getMethodType(Object mname) {
1796                 MemberName memberName = (MemberName)mname;
1797                 return memberName.getMethodType();
1798             }
1799 
1800             @Override
1801             public String getMethodDescriptor(Object mname) {
1802                 MemberName memberName = (MemberName)mname;
1803                 return memberName.getMethodDescriptor();
1804             }
1805 
1806             @Override
1807             public boolean isNative(Object mname) {
1808                 MemberName memberName = (MemberName)mname;
1809                 return memberName.isNative();
1810             }
1811 
1812             @Override
1813             public byte[] generateDirectMethodHandleHolderClassBytes(
1814                     String className, MethodType[] methodTypes, int[] types) {
1815                 return GenerateJLIClassesHelper
1816                         .generateDirectMethodHandleHolderClassBytes(
1817                                 className, methodTypes, types);
1818             }
1819 
1820             @Override
1821             public byte[] generateDelegatingMethodHandleHolderClassBytes(
1822                     String className, MethodType[] methodTypes) {
1823                 return GenerateJLIClassesHelper
1824                         .generateDelegatingMethodHandleHolderClassBytes(
1825                                 className, methodTypes);
1826             }
1827 
1828             @Override
1829             public Map.Entry<String, byte[]> generateConcreteBMHClassBytes(
1830                     final String types) {
1831                 return GenerateJLIClassesHelper
1832                         .generateConcreteBMHClassBytes(types);
1833             }
1834 
1835             @Override
1836             public byte[] generateBasicFormsClassBytes(final String className) {
1837                 return GenerateJLIClassesHelper
1838                         .generateBasicFormsClassBytes(className);
1839             }
1840 
1841             @Override
1842             public byte[] generateInvokersHolderClassBytes(final String className,
1843                     MethodType[] invokerMethodTypes,
1844                     MethodType[] callSiteMethodTypes) {
1845                 return GenerateJLIClassesHelper
1846                         .generateInvokersHolderClassBytes(className,
1847                                 invokerMethodTypes, callSiteMethodTypes);
1848             }
1849 
1850         });
1851     }
1852 
1853     /** Result unboxing: ValueConversions.unbox() OR ValueConversions.identity() OR ValueConversions.ignore(). */
1854     private static MethodHandle unboxResultHandle(Class<?> returnType) {
1855         if (returnType.isPrimitive()) {
1856             if (returnType == void.class) {
1857                 return ValueConversions.ignore();
1858             } else {
1859                 Wrapper w = Wrapper.forPrimitiveType(returnType);
1860                 return ValueConversions.unboxExact(w);
1861             }
1862         } else {
1863             return MethodHandles.identity(Object.class);
1864         }
1865     }
1866 
1867     /**
1868      * Assembles a loop method handle from the given handles and type information.
1869      *
1870      * @param tloop the return type of the loop.
1871      * @param targs types of the arguments to be passed to the loop.
1872      * @param init sanitized array of initializers for loop-local variables.
1873      * @param step sanitited array of loop bodies.
1874      * @param pred sanitized array of predicates.
1875      * @param fini sanitized array of loop finalizers.
1876      *
1877      * @return a handle that, when invoked, will execute the loop.
1878      */
1879     static MethodHandle makeLoop(Class<?> tloop, List<Class<?>> targs, List<MethodHandle> init, List<MethodHandle> step,
1880                                  List<MethodHandle> pred, List<MethodHandle> fini) {
1881         MethodType type = MethodType.methodType(tloop, targs);
1882         BasicType[] initClauseTypes =
1883                 init.stream().map(h -> h.type().returnType()).map(BasicType::basicType).toArray(BasicType[]::new);
1884         LambdaForm form = makeLoopForm(type.basicType(), initClauseTypes);
1885 
1886         // Prepare auxiliary method handles used during LambdaForm interpretation.
1887         // Box arguments and wrap them into Object[]: ValueConversions.array().
1888         MethodType varargsType = type.changeReturnType(Object[].class);
1889         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
1890         MethodHandle unboxResult = unboxResultHandle(tloop);
1891 
1892         LoopClauses clauseData =
1893                 new LoopClauses(new MethodHandle[][]{toArray(init), toArray(step), toArray(pred), toArray(fini)});
1894         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLL();
1895         BoundMethodHandle mh;
1896         try {
1897             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) clauseData,
1898                     (Object) collectArgs, (Object) unboxResult);
1899         } catch (Throwable ex) {
1900             throw uncaughtException(ex);
1901         }
1902         assert(mh.type() == type);
1903         return mh;
1904     }
1905 
1906     private static MethodHandle[] toArray(List<MethodHandle> l) {
1907         return l.toArray(new MethodHandle[0]);
1908     }
1909 
1910     /**
1911      * Loops introduce some complexity as they can have additional local state. Hence, LambdaForms for loops are
1912      * generated from a template. The LambdaForm template shape for the loop combinator is as follows (assuming one
1913      * reference parameter passed in {@code a1}, and a reference return type, with the return value represented by
1914      * {@code t12}):
1915      * <blockquote><pre>{@code
1916      *  loop=Lambda(a0:L,a1:L)=>{
1917      *    t2:L=BoundMethodHandle$Species_L3.argL0(a0:L);    // LoopClauses holding init, step, pred, fini handles
1918      *    t3:L=BoundMethodHandle$Species_L3.argL1(a0:L);    // helper handle to box the arguments into an Object[]
1919      *    t4:L=BoundMethodHandle$Species_L3.argL2(a0:L);    // helper handle to unbox the result
1920      *    t5:L=MethodHandle.invokeBasic(t3:L,a1:L);         // box the arguments into an Object[]
1921      *    t6:L=MethodHandleImpl.loop(null,t2:L,t3:L);       // call the loop executor
1922      *    t7:L=MethodHandle.invokeBasic(t4:L,t6:L);t7:L}    // unbox the result; return the result
1923      * }</pre></blockquote>
1924      * <p>
1925      * {@code argL0} is a LoopClauses instance holding, in a 2-dimensional array, the init, step, pred, and fini method
1926      * handles. {@code argL1} and {@code argL2} are auxiliary method handles: {@code argL1} boxes arguments and wraps
1927      * them into {@code Object[]} ({@code ValueConversions.array()}), and {@code argL2} unboxes the result if necessary
1928      * ({@code ValueConversions.unbox()}).
1929      * <p>
1930      * Having {@code t3} and {@code t4} passed in via a BMH and not hardcoded in the lambda form allows to share lambda
1931      * forms among loop combinators with the same basic type.
1932      * <p>
1933      * The above template is instantiated by using the {@link LambdaFormEditor} to replace the {@code null} argument to
1934      * the {@code loop} invocation with the {@code BasicType} array describing the loop clause types. This argument is
1935      * ignored in the loop invoker, but will be extracted and used in {@linkplain InvokerBytecodeGenerator#emitLoop(int)
1936      * bytecode generation}.
1937      */
1938     private static LambdaForm makeLoopForm(MethodType basicType, BasicType[] localVarTypes) {
1939         MethodType lambdaType = basicType.invokerType();
1940 
1941         final int THIS_MH = 0;  // the BMH_LLL
1942         final int ARG_BASE = 1; // start of incoming arguments
1943         final int ARG_LIMIT = ARG_BASE + basicType.parameterCount();
1944 
1945         int nameCursor = ARG_LIMIT;
1946         final int GET_CLAUSE_DATA = nameCursor++;
1947         final int GET_COLLECT_ARGS = nameCursor++;
1948         final int GET_UNBOX_RESULT = nameCursor++;
1949         final int BOXED_ARGS = nameCursor++;
1950         final int LOOP = nameCursor++;
1951         final int UNBOX_RESULT = nameCursor++;
1952 
1953         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_LOOP);
1954         if (lform == null) {
1955             Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
1956 
1957             BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLL();
1958             names[THIS_MH] = names[THIS_MH].withConstraint(data);
1959             names[GET_CLAUSE_DATA] = new Name(data.getterFunction(0), names[THIS_MH]);
1960             names[GET_COLLECT_ARGS] = new Name(data.getterFunction(1), names[THIS_MH]);
1961             names[GET_UNBOX_RESULT] = new Name(data.getterFunction(2), names[THIS_MH]);
1962 
1963             // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
1964             MethodType collectArgsType = basicType.changeReturnType(Object.class);
1965             MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
1966             Object[] args = new Object[invokeBasic.type().parameterCount()];
1967             args[0] = names[GET_COLLECT_ARGS];
1968             System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT - ARG_BASE);
1969             names[BOXED_ARGS] = new Name(new NamedFunction(invokeBasic, Intrinsic.LOOP), args);
1970 
1971             // t_{i+1}:L=MethodHandleImpl.loop(localTypes:L,clauses:L,t_{i}:L);
1972             Object[] lArgs =
1973                     new Object[]{null, // placeholder for BasicType[] localTypes - will be added by LambdaFormEditor
1974                             names[GET_CLAUSE_DATA], names[BOXED_ARGS]};
1975             names[LOOP] = new Name(getFunction(NF_loop), lArgs);
1976 
1977             // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
1978             MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
1979             Object[] unboxArgs = new Object[]{names[GET_UNBOX_RESULT], names[LOOP]};
1980             names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
1981 
1982             lform = basicType.form().setCachedLambdaForm(MethodTypeForm.LF_LOOP,
1983                     new LambdaForm(lambdaType.parameterCount(), names, Kind.LOOP));
1984         }
1985 
1986         // BOXED_ARGS is the index into the names array where the loop idiom starts
1987         return lform.editor().noteLoopLocalTypesForm(BOXED_ARGS, localVarTypes);
1988     }
1989 
1990     static class LoopClauses {
1991         @Stable final MethodHandle[][] clauses;
1992         LoopClauses(MethodHandle[][] clauses) {
1993             assert clauses.length == 4;
1994             this.clauses = clauses;
1995         }
1996         @Override
1997         public String toString() {
1998             StringBuffer sb = new StringBuffer("LoopClauses -- ");
1999             for (int i = 0; i < 4; ++i) {
2000                 if (i > 0) {
2001                     sb.append("       ");
2002                 }
2003                 sb.append('<').append(i).append(">: ");
2004                 MethodHandle[] hs = clauses[i];
2005                 for (int j = 0; j < hs.length; ++j) {
2006                     if (j > 0) {
2007                         sb.append("          ");
2008                     }
2009                     sb.append('*').append(j).append(": ").append(hs[j]).append('\n');
2010                 }
2011             }
2012             sb.append(" --\n");
2013             return sb.toString();
2014         }
2015     }
2016 
2017     /**
2018      * Intrinsified during LambdaForm compilation
2019      * (see {@link InvokerBytecodeGenerator#emitLoop(int)}).
2020      */
2021     @LambdaForm.Hidden
2022     static Object loop(BasicType[] localTypes, LoopClauses clauseData, Object... av) throws Throwable {
2023         final MethodHandle[] init = clauseData.clauses[0];
2024         final MethodHandle[] step = clauseData.clauses[1];
2025         final MethodHandle[] pred = clauseData.clauses[2];
2026         final MethodHandle[] fini = clauseData.clauses[3];
2027         int varSize = (int) Stream.of(init).filter(h -> h.type().returnType() != void.class).count();
2028         int nArgs = init[0].type().parameterCount();
2029         Object[] varsAndArgs = new Object[varSize + nArgs];
2030         for (int i = 0, v = 0; i < init.length; ++i) {
2031             MethodHandle ih = init[i];
2032             if (ih.type().returnType() == void.class) {
2033                 ih.invokeWithArguments(av);
2034             } else {
2035                 varsAndArgs[v++] = ih.invokeWithArguments(av);
2036             }
2037         }
2038         System.arraycopy(av, 0, varsAndArgs, varSize, nArgs);
2039         final int nSteps = step.length;
2040         for (; ; ) {
2041             for (int i = 0, v = 0; i < nSteps; ++i) {
2042                 MethodHandle p = pred[i];
2043                 MethodHandle s = step[i];
2044                 MethodHandle f = fini[i];
2045                 if (s.type().returnType() == void.class) {
2046                     s.invokeWithArguments(varsAndArgs);
2047                 } else {
2048                     varsAndArgs[v++] = s.invokeWithArguments(varsAndArgs);
2049                 }
2050                 if (!(boolean) p.invokeWithArguments(varsAndArgs)) {
2051                     return f.invokeWithArguments(varsAndArgs);
2052                 }
2053             }
2054         }
2055     }
2056 
2057     /**
2058      * This method is bound as the predicate in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle,
2059      * MethodHandle) counting loops}.
2060      *
2061      * @param limit the upper bound of the parameter, statically bound at loop creation time.
2062      * @param counter the counter parameter, passed in during loop execution.
2063      *
2064      * @return whether the counter has reached the limit.
2065      */
2066     static boolean countedLoopPredicate(int limit, int counter) {
2067         return counter < limit;
2068     }
2069 
2070     /**
2071      * This method is bound as the step function in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle,
2072      * MethodHandle) counting loops} to increment the counter.
2073      *
2074      * @param limit the upper bound of the loop counter (ignored).
2075      * @param counter the loop counter.
2076      *
2077      * @return the loop counter incremented by 1.
2078      */
2079     static int countedLoopStep(int limit, int counter) {
2080         return counter + 1;
2081     }
2082 
2083     /**
2084      * This is bound to initialize the loop-local iterator in {@linkplain MethodHandles#iteratedLoop iterating loops}.
2085      *
2086      * @param it the {@link Iterable} over which the loop iterates.
2087      *
2088      * @return an {@link Iterator} over the argument's elements.
2089      */
2090     static Iterator<?> initIterator(Iterable<?> it) {
2091         return it.iterator();
2092     }
2093 
2094     /**
2095      * This method is bound as the predicate in {@linkplain MethodHandles#iteratedLoop iterating loops}.
2096      *
2097      * @param it the iterator to be checked.
2098      *
2099      * @return {@code true} iff there are more elements to iterate over.
2100      */
2101     static boolean iteratePredicate(Iterator<?> it) {
2102         return it.hasNext();
2103     }
2104 
2105     /**
2106      * This method is bound as the step for retrieving the current value from the iterator in {@linkplain
2107      * MethodHandles#iteratedLoop iterating loops}.
2108      *
2109      * @param it the iterator.
2110      *
2111      * @return the next element from the iterator.
2112      */
2113     static Object iterateNext(Iterator<?> it) {
2114         return it.next();
2115     }
2116 
2117     /**
2118      * Makes a {@code try-finally} handle that conforms to the type constraints.
2119      *
2120      * @param target the target to execute in a {@code try-finally} block.
2121      * @param cleanup the cleanup to execute in the {@code finally} block.
2122      * @param rtype the result type of the entire construct.
2123      * @param argTypes the types of the arguments.
2124      *
2125      * @return a handle on the constructed {@code try-finally} block.
2126      */
2127     static MethodHandle makeTryFinally(MethodHandle target, MethodHandle cleanup, Class<?> rtype, List<Class<?>> argTypes) {
2128         MethodType type = MethodType.methodType(rtype, argTypes);
2129         LambdaForm form = makeTryFinallyForm(type.basicType());
2130 
2131         // Prepare auxiliary method handles used during LambdaForm interpretation.
2132         // Box arguments and wrap them into Object[]: ValueConversions.array().
2133         MethodType varargsType = type.changeReturnType(Object[].class);
2134         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
2135         MethodHandle unboxResult = unboxResultHandle(rtype);
2136 
2137         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL();
2138         BoundMethodHandle mh;
2139         try {
2140             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) target, (Object) cleanup,
2141                     (Object) collectArgs, (Object) unboxResult);
2142         } catch (Throwable ex) {
2143             throw uncaughtException(ex);
2144         }
2145         assert(mh.type() == type);
2146         return mh;
2147     }
2148 
2149     /**
2150      * The LambdaForm shape for the tryFinally combinator is as follows (assuming one reference parameter passed in
2151      * {@code a1}, and a reference return type, with the return value represented by {@code t8}):
2152      * <blockquote><pre>{@code
2153      *  tryFinally=Lambda(a0:L,a1:L)=>{
2154      *    t2:L=BoundMethodHandle$Species_LLLL.argL0(a0:L);  // target method handle
2155      *    t3:L=BoundMethodHandle$Species_LLLL.argL1(a0:L);  // cleanup method handle
2156      *    t4:L=BoundMethodHandle$Species_LLLL.argL2(a0:L);  // helper handle to box the arguments into an Object[]
2157      *    t5:L=BoundMethodHandle$Species_LLLL.argL3(a0:L);  // helper handle to unbox the result
2158      *    t6:L=MethodHandle.invokeBasic(t4:L,a1:L);         // box the arguments into an Object[]
2159      *    t7:L=MethodHandleImpl.tryFinally(t2:L,t3:L,t6:L); // call the tryFinally executor
2160      *    t8:L=MethodHandle.invokeBasic(t5:L,t7:L);t8:L}    // unbox the result; return the result
2161      * }</pre></blockquote>
2162      * <p>
2163      * {@code argL0} and {@code argL1} are the target and cleanup method handles.
2164      * {@code argL2} and {@code argL3} are auxiliary method handles: {@code argL2} boxes arguments and wraps them into
2165      * {@code Object[]} ({@code ValueConversions.array()}), and {@code argL3} unboxes the result if necessary
2166      * ({@code ValueConversions.unbox()}).
2167      * <p>
2168      * Having {@code t4} and {@code t5} passed in via a BMH and not hardcoded in the lambda form allows to share lambda
2169      * forms among tryFinally combinators with the same basic type.
2170      */
2171     private static LambdaForm makeTryFinallyForm(MethodType basicType) {
2172         MethodType lambdaType = basicType.invokerType();
2173 
2174         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_TF);
2175         if (lform != null) {
2176             return lform;
2177         }
2178         final int THIS_MH      = 0;  // the BMH_LLLL
2179         final int ARG_BASE     = 1;  // start of incoming arguments
2180         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
2181 
2182         int nameCursor = ARG_LIMIT;
2183         final int GET_TARGET       = nameCursor++;
2184         final int GET_CLEANUP      = nameCursor++;
2185         final int GET_COLLECT_ARGS = nameCursor++;
2186         final int GET_UNBOX_RESULT = nameCursor++;
2187         final int BOXED_ARGS       = nameCursor++;
2188         final int TRY_FINALLY      = nameCursor++;
2189         final int UNBOX_RESULT     = nameCursor++;
2190 
2191         Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
2192 
2193         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL();
2194         names[THIS_MH]          = names[THIS_MH].withConstraint(data);
2195         names[GET_TARGET]       = new Name(data.getterFunction(0), names[THIS_MH]);
2196         names[GET_CLEANUP]      = new Name(data.getterFunction(1), names[THIS_MH]);
2197         names[GET_COLLECT_ARGS] = new Name(data.getterFunction(2), names[THIS_MH]);
2198         names[GET_UNBOX_RESULT] = new Name(data.getterFunction(3), names[THIS_MH]);
2199 
2200         // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
2201         MethodType collectArgsType = basicType.changeReturnType(Object.class);
2202         MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
2203         Object[] args = new Object[invokeBasic.type().parameterCount()];
2204         args[0] = names[GET_COLLECT_ARGS];
2205         System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT-ARG_BASE);
2206         names[BOXED_ARGS] = new Name(new NamedFunction(invokeBasic, Intrinsic.TRY_FINALLY), args);
2207 
2208         // t_{i+1}:L=MethodHandleImpl.tryFinally(target:L,exType:L,catcher:L,t_{i}:L);
2209         Object[] tfArgs = new Object[] {names[GET_TARGET], names[GET_CLEANUP], names[BOXED_ARGS]};
2210         names[TRY_FINALLY] = new Name(getFunction(NF_tryFinally), tfArgs);
2211 
2212         // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
2213         MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
2214         Object[] unboxArgs  = new Object[] {names[GET_UNBOX_RESULT], names[TRY_FINALLY]};
2215         names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
2216 
2217         lform = new LambdaForm(lambdaType.parameterCount(), names, Kind.TRY_FINALLY);
2218 
2219         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_TF, lform);
2220     }
2221 
2222     /**
2223      * Intrinsified during LambdaForm compilation
2224      * (see {@link InvokerBytecodeGenerator#emitTryFinally emitTryFinally}).
2225      */
2226     @LambdaForm.Hidden
2227     static Object tryFinally(MethodHandle target, MethodHandle cleanup, Object... av) throws Throwable {
2228         Throwable t = null;
2229         Object r = null;
2230         try {
2231             r = target.invokeWithArguments(av);
2232         } catch (Throwable thrown) {
2233             t = thrown;
2234             throw t;
2235         } finally {
2236             Object[] args = target.type().returnType() == void.class ? prepend(av, t) : prepend(av, t, r);
2237             r = cleanup.invokeWithArguments(args);
2238         }
2239         return r;
2240     }
2241 
2242     // Indexes into constant method handles:
2243     static final int
2244             MH_cast                  =  0,
2245             MH_selectAlternative     =  1,
2246             MH_copyAsPrimitiveArray  =  2,
2247             MH_fillNewTypedArray     =  3,
2248             MH_fillNewArray          =  4,
2249             MH_arrayIdentity         =  5,
2250             MH_countedLoopPred       =  6,
2251             MH_countedLoopStep       =  7,
2252             MH_initIterator          =  8,
2253             MH_iteratePred           =  9,
2254             MH_iterateNext           = 10,
2255             MH_Array_newInstance     = 11,
2256             MH_LIMIT                 = 12;
2257 
2258     static MethodHandle getConstantHandle(int idx) {
2259         MethodHandle handle = HANDLES[idx];
2260         if (handle != null) {
2261             return handle;
2262         }
2263         return setCachedHandle(idx, makeConstantHandle(idx));
2264     }
2265 
2266     private static synchronized MethodHandle setCachedHandle(int idx, final MethodHandle method) {
2267         // Simulate a CAS, to avoid racy duplication of results.
2268         MethodHandle prev = HANDLES[idx];
2269         if (prev != null) {
2270             return prev;
2271         }
2272         HANDLES[idx] = method;
2273         return method;
2274     }
2275 
2276     // Local constant method handles:
2277     private static final @Stable MethodHandle[] HANDLES = new MethodHandle[MH_LIMIT];
2278 
2279     private static MethodHandle makeConstantHandle(int idx) {
2280         try {
2281             switch (idx) {
2282                 case MH_cast:
2283                     return IMPL_LOOKUP.findVirtual(Class.class, "cast",
2284                             MethodType.methodType(Object.class, Object.class));
2285                 case MH_copyAsPrimitiveArray:
2286                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "copyAsPrimitiveArray",
2287                             MethodType.methodType(Object.class, Wrapper.class, Object[].class));
2288                 case MH_arrayIdentity:
2289                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "identity",
2290                             MethodType.methodType(Object[].class, Object[].class));
2291                 case MH_fillNewArray:
2292                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "fillNewArray",
2293                             MethodType.methodType(Object[].class, Integer.class, Object[].class));
2294                 case MH_fillNewTypedArray:
2295                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "fillNewTypedArray",
2296                             MethodType.methodType(Object[].class, Object[].class, Integer.class, Object[].class));
2297                 case MH_selectAlternative:
2298                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "selectAlternative",
2299                             MethodType.methodType(MethodHandle.class, boolean.class, MethodHandle.class, MethodHandle.class));
2300                 case MH_countedLoopPred:
2301                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopPredicate",
2302                             MethodType.methodType(boolean.class, int.class, int.class));
2303                 case MH_countedLoopStep:
2304                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopStep",
2305                             MethodType.methodType(int.class, int.class, int.class));
2306                 case MH_initIterator:
2307                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "initIterator",
2308                             MethodType.methodType(Iterator.class, Iterable.class));
2309                 case MH_iteratePred:
2310                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iteratePredicate",
2311                             MethodType.methodType(boolean.class, Iterator.class));
2312                 case MH_iterateNext:
2313                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iterateNext",
2314                             MethodType.methodType(Object.class, Iterator.class));
2315                 case MH_Array_newInstance:
2316                     return IMPL_LOOKUP.findStatic(Array.class, "newInstance",
2317                             MethodType.methodType(Object.class, Class.class, int.class));
2318             }
2319         } catch (ReflectiveOperationException ex) {
2320             throw newInternalError(ex);
2321         }
2322         throw newInternalError("Unknown function index: " + idx);
2323     }
2324 }