1 /*
   2  * Copyright (c) 2006, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.awt;
  27 
  28 import java.awt.MultipleGradientPaint.CycleMethod;
  29 import java.awt.MultipleGradientPaint.ColorSpaceType;
  30 import java.awt.color.ColorSpace;
  31 import java.awt.geom.AffineTransform;
  32 import java.awt.geom.NoninvertibleTransformException;
  33 import java.awt.geom.Rectangle2D;
  34 import java.awt.image.ColorModel;
  35 import java.awt.image.DataBuffer;
  36 import java.awt.image.DataBufferInt;
  37 import java.awt.image.DirectColorModel;
  38 import java.awt.image.Raster;
  39 import java.awt.image.SinglePixelPackedSampleModel;
  40 import java.awt.image.WritableRaster;
  41 import java.lang.ref.SoftReference;
  42 import java.lang.ref.WeakReference;
  43 import java.util.Arrays;
  44 
  45 /**
  46  * This is the superclass for all PaintContexts which use a multiple color
  47  * gradient to fill in their raster.  It provides the actual color
  48  * interpolation functionality.  Subclasses only have to deal with using
  49  * the gradient to fill pixels in a raster.
  50  *
  51  * @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans
  52  */
  53 abstract class MultipleGradientPaintContext implements PaintContext {
  54 
  55     /**
  56      * The PaintContext's ColorModel.  This is ARGB if colors are not all
  57      * opaque, otherwise it is RGB.
  58      */
  59     protected ColorModel model;
  60 
  61     /** Color model used if gradient colors are all opaque. */
  62     private static ColorModel xrgbmodel =
  63         new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff);
  64 
  65     /** The cached ColorModel. */
  66     protected static ColorModel cachedModel;
  67 
  68     /** The cached raster, which is reusable among instances. */
  69     protected static WeakReference<Raster> cached;
  70 
  71     /** Raster is reused whenever possible. */
  72     protected Raster saved;
  73 
  74     /** The method to use when painting out of the gradient bounds. */
  75     protected CycleMethod cycleMethod;
  76 
  77     /** The ColorSpace in which to perform the interpolation */
  78     protected ColorSpaceType colorSpace;
  79 
  80     /** Elements of the inverse transform matrix. */
  81     protected float a00, a01, a10, a11, a02, a12;
  82 
  83     /**
  84      * This boolean specifies whether we are in simple lookup mode, where an
  85      * input value between 0 and 1 may be used to directly index into a single
  86      * array of gradient colors.  If this boolean value is false, then we have
  87      * to use a 2-step process where we have to determine which gradient array
  88      * we fall into, then determine the index into that array.
  89      */
  90     protected boolean isSimpleLookup;
  91 
  92     /**
  93      * Size of gradients array for scaling the 0-1 index when looking up
  94      * colors the fast way.
  95      */
  96     protected int fastGradientArraySize;
  97 
  98     /**
  99      * Array which contains the interpolated color values for each interval,
 100      * used by calculateSingleArrayGradient().  It is protected for possible
 101      * direct access by subclasses.
 102      */
 103     protected int[] gradient;
 104 
 105     /**
 106      * Array of gradient arrays, one array for each interval.  Used by
 107      * calculateMultipleArrayGradient().
 108      */
 109     private int[][] gradients;
 110 
 111     /** Normalized intervals array. */
 112     private float[] normalizedIntervals;
 113 
 114     /** Fractions array. */
 115     private float[] fractions;
 116 
 117     /** Used to determine if gradient colors are all opaque. */
 118     private int transparencyTest;
 119 
 120     /** Color space conversion lookup tables. */
 121     private static final int[] SRGBtoLinearRGB = new int[256];
 122     private static final int[] LinearRGBtoSRGB = new int[256];
 123 
 124     static {
 125         // build the tables
 126         for (int k = 0; k < 256; k++) {
 127             SRGBtoLinearRGB[k] = convertSRGBtoLinearRGB(k);
 128             LinearRGBtoSRGB[k] = convertLinearRGBtoSRGB(k);
 129         }
 130     }
 131 
 132     /**
 133      * Constant number of max colors between any 2 arbitrary colors.
 134      * Used for creating and indexing gradients arrays.
 135      */
 136     protected static final int GRADIENT_SIZE = 256;
 137     protected static final int GRADIENT_SIZE_INDEX = GRADIENT_SIZE -1;
 138 
 139     /**
 140      * Maximum length of the fast single-array.  If the estimated array size
 141      * is greater than this, switch over to the slow lookup method.
 142      * No particular reason for choosing this number, but it seems to provide
 143      * satisfactory performance for the common case (fast lookup).
 144      */
 145     private static final int MAX_GRADIENT_ARRAY_SIZE = 5000;
 146 
 147     /**
 148      * Constructor for MultipleGradientPaintContext superclass.
 149      */
 150     protected MultipleGradientPaintContext(MultipleGradientPaint mgp,
 151                                            ColorModel cm,
 152                                            Rectangle deviceBounds,
 153                                            Rectangle2D userBounds,
 154                                            AffineTransform t,
 155                                            RenderingHints hints,
 156                                            float[] fractions,
 157                                            Color[] colors,
 158                                            CycleMethod cycleMethod,
 159                                            ColorSpaceType colorSpace)
 160     {
 161         if (deviceBounds == null) {
 162             throw new NullPointerException("Device bounds cannot be null");
 163         }
 164 
 165         if (userBounds == null) {
 166             throw new NullPointerException("User bounds cannot be null");
 167         }
 168 
 169         if (t == null) {
 170             throw new NullPointerException("Transform cannot be null");
 171         }
 172 
 173         if (hints == null) {
 174             throw new NullPointerException("RenderingHints cannot be null");
 175         }
 176 
 177         // The inverse transform is needed to go from device to user space.
 178         // Get all the components of the inverse transform matrix.
 179         AffineTransform tInv;
 180         try {
 181             // the following assumes that the caller has copied the incoming
 182             // transform and is not concerned about it being modified
 183             t.invert();
 184             tInv = t;
 185         } catch (NoninvertibleTransformException e) {
 186             // just use identity transform in this case; better to show
 187             // (incorrect) results than to throw an exception and/or no-op
 188             tInv = new AffineTransform();
 189         }
 190         double[] m = new double[6];
 191         tInv.getMatrix(m);
 192         a00 = (float)m[0];
 193         a10 = (float)m[1];
 194         a01 = (float)m[2];
 195         a11 = (float)m[3];
 196         a02 = (float)m[4];
 197         a12 = (float)m[5];
 198 
 199         // copy some flags
 200         this.cycleMethod = cycleMethod;
 201         this.colorSpace = colorSpace;
 202 
 203         // we can avoid copying this array since we do not modify its values
 204         this.fractions = fractions;
 205 
 206         // note that only one of these values can ever be non-null (we either
 207         // store the fast gradient array or the slow one, but never both
 208         // at the same time)
 209         int[] gradient =
 210             (mgp.gradient != null) ? mgp.gradient.get() : null;
 211         int[][] gradients =
 212             (mgp.gradients != null) ? mgp.gradients.get() : null;
 213 
 214         if (gradient == null && gradients == null) {
 215             // we need to (re)create the appropriate values
 216             calculateLookupData(colors);
 217 
 218             // now cache the calculated values in the
 219             // MultipleGradientPaint instance for future use
 220             mgp.model               = this.model;
 221             mgp.normalizedIntervals = this.normalizedIntervals;
 222             mgp.isSimpleLookup      = this.isSimpleLookup;
 223             if (isSimpleLookup) {
 224                 // only cache the fast array
 225                 mgp.fastGradientArraySize = this.fastGradientArraySize;
 226                 mgp.gradient = new SoftReference<int[]>(this.gradient);
 227             } else {
 228                 // only cache the slow array
 229                 mgp.gradients = new SoftReference<int[][]>(this.gradients);
 230             }
 231         } else {
 232             // use the values cached in the MultipleGradientPaint instance
 233             this.model                 = mgp.model;
 234             this.normalizedIntervals   = mgp.normalizedIntervals;
 235             this.isSimpleLookup        = mgp.isSimpleLookup;
 236             this.gradient              = gradient;
 237             this.fastGradientArraySize = mgp.fastGradientArraySize;
 238             this.gradients             = gradients;
 239         }
 240     }
 241 
 242     /**
 243      * This function is the meat of this class.  It calculates an array of
 244      * gradient colors based on an array of fractions and color values at
 245      * those fractions.
 246      */
 247     private void calculateLookupData(Color[] colors) {
 248         Color[] normalizedColors;
 249         if (colorSpace == ColorSpaceType.LINEAR_RGB) {
 250             // create a new colors array
 251             normalizedColors = new Color[colors.length];
 252             // convert the colors using the lookup table
 253             for (int i = 0; i < colors.length; i++) {
 254                 int argb = colors[i].getRGB();
 255                 int a = argb >>> 24;
 256                 int r = SRGBtoLinearRGB[(argb >> 16) & 0xff];
 257                 int g = SRGBtoLinearRGB[(argb >>  8) & 0xff];
 258                 int b = SRGBtoLinearRGB[(argb      ) & 0xff];
 259                 normalizedColors[i] = new Color(r, g, b, a);
 260             }
 261         } else {
 262             // we can just use this array by reference since we do not
 263             // modify its values in the case of SRGB
 264             normalizedColors = colors;
 265         }
 266 
 267         // this will store the intervals (distances) between gradient stops
 268         normalizedIntervals = new float[fractions.length-1];
 269 
 270         // convert from fractions into intervals
 271         for (int i = 0; i < normalizedIntervals.length; i++) {
 272             // interval distance is equal to the difference in positions
 273             normalizedIntervals[i] = this.fractions[i+1] - this.fractions[i];
 274         }
 275 
 276         // initialize to be fully opaque for ANDing with colors
 277         transparencyTest = 0xff000000;
 278 
 279         // array of interpolation arrays
 280         gradients = new int[normalizedIntervals.length][];
 281 
 282         // find smallest interval
 283         float Imin = 1;
 284         for (int i = 0; i < normalizedIntervals.length; i++) {
 285             Imin = (Imin > normalizedIntervals[i]) ?
 286                 normalizedIntervals[i] : Imin;
 287         }
 288 
 289         // Estimate the size of the entire gradients array.
 290         // This is to prevent a tiny interval from causing the size of array
 291         // to explode.  If the estimated size is too large, break to using
 292         // separate arrays for each interval, and using an indexing scheme at
 293         // look-up time.
 294         int estimatedSize = 0;
 295         for (int i = 0; i < normalizedIntervals.length; i++) {
 296             estimatedSize += (normalizedIntervals[i]/Imin) * GRADIENT_SIZE;
 297         }
 298 
 299         if (estimatedSize > MAX_GRADIENT_ARRAY_SIZE) {
 300             // slow method
 301             calculateMultipleArrayGradient(normalizedColors);
 302         } else {
 303             // fast method
 304             calculateSingleArrayGradient(normalizedColors, Imin);
 305         }
 306 
 307         // use the most "economical" model
 308         if ((transparencyTest >>> 24) == 0xff) {
 309             model = xrgbmodel;
 310         } else {
 311             model = ColorModel.getRGBdefault();
 312         }
 313     }
 314 
 315     /**
 316      * FAST LOOKUP METHOD
 317      *
 318      * This method calculates the gradient color values and places them in a
 319      * single int array, gradient[].  It does this by allocating space for
 320      * each interval based on its size relative to the smallest interval in
 321      * the array.  The smallest interval is allocated 255 interpolated values
 322      * (the maximum number of unique in-between colors in a 24 bit color
 323      * system), and all other intervals are allocated
 324      * size = (255 * the ratio of their size to the smallest interval).
 325      *
 326      * This scheme expedites a speedy retrieval because the colors are
 327      * distributed along the array according to their user-specified
 328      * distribution.  All that is needed is a relative index from 0 to 1.
 329      *
 330      * The only problem with this method is that the possibility exists for
 331      * the array size to balloon in the case where there is a
 332      * disproportionately small gradient interval.  In this case the other
 333      * intervals will be allocated huge space, but much of that data is
 334      * redundant.  We thus need to use the space conserving scheme below.
 335      *
 336      * @param Imin the size of the smallest interval
 337      */
 338     private void calculateSingleArrayGradient(Color[] colors, float Imin) {
 339         // set the flag so we know later it is a simple (fast) lookup
 340         isSimpleLookup = true;
 341 
 342         // 2 colors to interpolate
 343         int rgb1, rgb2;
 344 
 345         //the eventual size of the single array
 346         int gradientsTot = 1;
 347 
 348         // for every interval (transition between 2 colors)
 349         for (int i = 0; i < gradients.length; i++) {
 350             // create an array whose size is based on the ratio to the
 351             // smallest interval
 352             int nGradients = (int)((normalizedIntervals[i]/Imin)*255f);
 353             gradientsTot += nGradients;
 354             gradients[i] = new int[nGradients];
 355 
 356             // the 2 colors (keyframes) to interpolate between
 357             rgb1 = colors[i].getRGB();
 358             rgb2 = colors[i+1].getRGB();
 359 
 360             // fill this array with the colors in between rgb1 and rgb2
 361             interpolate(rgb1, rgb2, gradients[i]);
 362 
 363             // if the colors are opaque, transparency should still
 364             // be 0xff000000
 365             transparencyTest &= rgb1;
 366             transparencyTest &= rgb2;
 367         }
 368 
 369         // put all gradients in a single array
 370         gradient = new int[gradientsTot];
 371         int curOffset = 0;
 372         for (int i = 0; i < gradients.length; i++){
 373             System.arraycopy(gradients[i], 0, gradient,
 374                              curOffset, gradients[i].length);
 375             curOffset += gradients[i].length;
 376         }
 377         gradient[gradient.length-1] = colors[colors.length-1].getRGB();
 378 
 379         // if interpolation occurred in Linear RGB space, convert the
 380         // gradients back to sRGB using the lookup table
 381         if (colorSpace == ColorSpaceType.LINEAR_RGB) {
 382             for (int i = 0; i < gradient.length; i++) {
 383                 gradient[i] = convertEntireColorLinearRGBtoSRGB(gradient[i]);
 384             }
 385         }
 386 
 387         fastGradientArraySize = gradient.length - 1;
 388     }
 389 
 390     /**
 391      * SLOW LOOKUP METHOD
 392      *
 393      * This method calculates the gradient color values for each interval and
 394      * places each into its own 255 size array.  The arrays are stored in
 395      * gradients[][].  (255 is used because this is the maximum number of
 396      * unique colors between 2 arbitrary colors in a 24 bit color system.)
 397      *
 398      * This method uses the minimum amount of space (only 255 * number of
 399      * intervals), but it aggravates the lookup procedure, because now we
 400      * have to find out which interval to select, then calculate the index
 401      * within that interval.  This causes a significant performance hit,
 402      * because it requires this calculation be done for every point in
 403      * the rendering loop.
 404      *
 405      * For those of you who are interested, this is a classic example of the
 406      * time-space tradeoff.
 407      */
 408     private void calculateMultipleArrayGradient(Color[] colors) {
 409         // set the flag so we know later it is a non-simple lookup
 410         isSimpleLookup = false;
 411 
 412         // 2 colors to interpolate
 413         int rgb1, rgb2;
 414 
 415         // for every interval (transition between 2 colors)
 416         for (int i = 0; i < gradients.length; i++){
 417             // create an array of the maximum theoretical size for
 418             // each interval
 419             gradients[i] = new int[GRADIENT_SIZE];
 420 
 421             // get the 2 colors
 422             rgb1 = colors[i].getRGB();
 423             rgb2 = colors[i+1].getRGB();
 424 
 425             // fill this array with the colors in between rgb1 and rgb2
 426             interpolate(rgb1, rgb2, gradients[i]);
 427 
 428             // if the colors are opaque, transparency should still
 429             // be 0xff000000
 430             transparencyTest &= rgb1;
 431             transparencyTest &= rgb2;
 432         }
 433 
 434         // if interpolation occurred in Linear RGB space, convert the
 435         // gradients back to SRGB using the lookup table
 436         if (colorSpace == ColorSpaceType.LINEAR_RGB) {
 437             for (int j = 0; j < gradients.length; j++) {
 438                 for (int i = 0; i < gradients[j].length; i++) {
 439                     gradients[j][i] =
 440                         convertEntireColorLinearRGBtoSRGB(gradients[j][i]);
 441                 }
 442             }
 443         }
 444     }
 445 
 446     /**
 447      * Yet another helper function.  This one linearly interpolates between
 448      * 2 colors, filling up the output array.
 449      *
 450      * @param rgb1 the start color
 451      * @param rgb2 the end color
 452      * @param output the output array of colors; must not be null
 453      */
 454     private void interpolate(int rgb1, int rgb2, int[] output) {
 455         // color components
 456         int a1, r1, g1, b1, da, dr, dg, db;
 457 
 458         // step between interpolated values
 459         float stepSize = 1.0f / output.length;
 460 
 461         // extract color components from packed integer
 462         a1 = (rgb1 >> 24) & 0xff;
 463         r1 = (rgb1 >> 16) & 0xff;
 464         g1 = (rgb1 >>  8) & 0xff;
 465         b1 = (rgb1      ) & 0xff;
 466 
 467         // calculate the total change in alpha, red, green, blue
 468         da = ((rgb2 >> 24) & 0xff) - a1;
 469         dr = ((rgb2 >> 16) & 0xff) - r1;
 470         dg = ((rgb2 >>  8) & 0xff) - g1;
 471         db = ((rgb2      ) & 0xff) - b1;
 472 
 473         // for each step in the interval calculate the in-between color by
 474         // multiplying the normalized current position by the total color
 475         // change (0.5 is added to prevent truncation round-off error)
 476         for (int i = 0; i < output.length; i++) {
 477             output[i] =
 478                 (((int) ((a1 + i * da * stepSize) + 0.5) << 24)) |
 479                 (((int) ((r1 + i * dr * stepSize) + 0.5) << 16)) |
 480                 (((int) ((g1 + i * dg * stepSize) + 0.5) <<  8)) |
 481                 (((int) ((b1 + i * db * stepSize) + 0.5)      ));
 482         }
 483     }
 484 
 485     /**
 486      * Yet another helper function.  This one extracts the color components
 487      * of an integer RGB triple, converts them from LinearRGB to SRGB, then
 488      * recompacts them into an int.
 489      */
 490     private int convertEntireColorLinearRGBtoSRGB(int rgb) {
 491         // color components
 492         int a1, r1, g1, b1;
 493 
 494         // extract red, green, blue components
 495         a1 = (rgb >> 24) & 0xff;
 496         r1 = (rgb >> 16) & 0xff;
 497         g1 = (rgb >>  8) & 0xff;
 498         b1 = (rgb      ) & 0xff;
 499 
 500         // use the lookup table
 501         r1 = LinearRGBtoSRGB[r1];
 502         g1 = LinearRGBtoSRGB[g1];
 503         b1 = LinearRGBtoSRGB[b1];
 504 
 505         // re-compact the components
 506         return ((a1 << 24) |
 507                 (r1 << 16) |
 508                 (g1 <<  8) |
 509                 (b1      ));
 510     }
 511 
 512     /**
 513      * Helper function to index into the gradients array.  This is necessary
 514      * because each interval has an array of colors with uniform size 255.
 515      * However, the color intervals are not necessarily of uniform length, so
 516      * a conversion is required.
 517      *
 518      * @param position the unmanipulated position, which will be mapped
 519      *                 into the range 0 to 1
 520      * @return integer color to display
 521      */
 522     protected final int indexIntoGradientsArrays(float position) {
 523         // first, manipulate position value depending on the cycle method
 524         if (cycleMethod == CycleMethod.NO_CYCLE) {
 525             if (position > 1) {
 526                 // upper bound is 1
 527                 position = 1;
 528             } else if (position < 0) {
 529                 // lower bound is 0
 530                 position = 0;
 531             }
 532         } else if (cycleMethod == CycleMethod.REPEAT) {
 533             // get the fractional part
 534             // (modulo behavior discards integer component)
 535             position = position - (int)position;
 536 
 537             //position should now be between -1 and 1
 538             if (position < 0) {
 539                 // force it to be in the range 0-1
 540                 position = position + 1;
 541             }
 542         } else { // cycleMethod == CycleMethod.REFLECT
 543             if (position < 0) {
 544                 // take absolute value
 545                 position = -position;
 546             }
 547 
 548             // get the integer part
 549             int part = (int)position;
 550 
 551             // get the fractional part
 552             position = position - part;
 553 
 554             if ((part & 1) == 1) {
 555                 // integer part is odd, get reflected color instead
 556                 position = 1 - position;
 557             }
 558         }
 559 
 560         // now, get the color based on this 0-1 position...
 561 
 562         if (isSimpleLookup) {
 563             // easy to compute: just scale index by array size
 564             return gradient[(int)(position * fastGradientArraySize)];
 565         } else {
 566             // more complicated computation, to save space
 567 
 568             // for all the gradient interval arrays
 569             for (int i = 0; i < gradients.length; i++) {
 570                 if (position < fractions[i+1]) {
 571                     // this is the array we want
 572                     float delta = position - fractions[i];
 573 
 574                     // this is the interval we want
 575                     int index = (int)((delta / normalizedIntervals[i])
 576                                       * (GRADIENT_SIZE_INDEX));
 577 
 578                     return gradients[i][index];
 579                 }
 580             }
 581         }
 582 
 583         return gradients[gradients.length - 1][GRADIENT_SIZE_INDEX];
 584     }
 585 
 586     /**
 587      * Helper function to convert a color component in sRGB space to linear
 588      * RGB space.  Used to build a static lookup table.
 589      */
 590     private static int convertSRGBtoLinearRGB(int color) {
 591         float input, output;
 592 
 593         input = color / 255.0f;
 594         if (input <= 0.04045f) {
 595             output = input / 12.92f;
 596         } else {
 597             output = (float)Math.pow((input + 0.055) / 1.055, 2.4);
 598         }
 599 
 600         return Math.round(output * 255.0f);
 601     }
 602 
 603     /**
 604      * Helper function to convert a color component in linear RGB space to
 605      * SRGB space.  Used to build a static lookup table.
 606      */
 607     private static int convertLinearRGBtoSRGB(int color) {
 608         float input, output;
 609 
 610         input = color/255.0f;
 611         if (input <= 0.0031308) {
 612             output = input * 12.92f;
 613         } else {
 614             output = (1.055f *
 615                 ((float) Math.pow(input, (1.0 / 2.4)))) - 0.055f;
 616         }
 617 
 618         return Math.round(output * 255.0f);
 619     }
 620 
 621     /**
 622      * {@inheritDoc}
 623      */
 624     public final Raster getRaster(int x, int y, int w, int h) {
 625         // If working raster is big enough, reuse it. Otherwise,
 626         // build a large enough new one.
 627         Raster raster = saved;
 628         if (raster == null ||
 629             raster.getWidth() < w || raster.getHeight() < h)
 630         {
 631             raster = getCachedRaster(model, w, h);
 632             saved = raster;
 633         }
 634 
 635         // Access raster internal int array. Because we use a DirectColorModel,
 636         // we know the DataBuffer is of type DataBufferInt and the SampleModel
 637         // is SinglePixelPackedSampleModel.
 638         // Adjust for initial offset in DataBuffer and also for the scanline
 639         // stride.
 640         // These calls make the DataBuffer non-acceleratable, but the
 641         // Raster is never Stable long enough to accelerate anyway...
 642         DataBufferInt rasterDB = (DataBufferInt)raster.getDataBuffer();
 643         int[] pixels = rasterDB.getData(0);
 644         int off = rasterDB.getOffset();
 645         int scanlineStride = ((SinglePixelPackedSampleModel)
 646                               raster.getSampleModel()).getScanlineStride();
 647         int adjust = scanlineStride - w;
 648 
 649         fillRaster(pixels, off, adjust, x, y, w, h); // delegate to subclass
 650 
 651         return raster;
 652     }
 653 
 654     protected abstract void fillRaster(int[] pixels, int off, int adjust,
 655                                        int x, int y, int w, int h);
 656 
 657 
 658     /**
 659      * Took this cacheRaster code from GradientPaint. It appears to recycle
 660      * rasters for use by any other instance, as long as they are sufficiently
 661      * large.
 662      */
 663     private static synchronized Raster getCachedRaster(ColorModel cm,
 664                                                        int w, int h)
 665     {
 666         if (cm == cachedModel) {
 667             if (cached != null) {
 668                 Raster ras = cached.get();
 669                 if (ras != null &&
 670                     ras.getWidth() >= w &&
 671                     ras.getHeight() >= h)
 672                 {
 673                     cached = null;
 674                     return ras;
 675                 }
 676             }
 677         }
 678         return cm.createCompatibleWritableRaster(w, h);
 679     }
 680 
 681     /**
 682      * Took this cacheRaster code from GradientPaint. It appears to recycle
 683      * rasters for use by any other instance, as long as they are sufficiently
 684      * large.
 685      */
 686     private static synchronized void putCachedRaster(ColorModel cm,
 687                                                      Raster ras)
 688     {
 689         if (cached != null) {
 690             Raster cras = cached.get();
 691             if (cras != null) {
 692                 int cw = cras.getWidth();
 693                 int ch = cras.getHeight();
 694                 int iw = ras.getWidth();
 695                 int ih = ras.getHeight();
 696                 if (cw >= iw && ch >= ih) {
 697                     return;
 698                 }
 699                 if (cw * ch >= iw * ih) {
 700                     return;
 701                 }
 702             }
 703         }
 704         cachedModel = cm;
 705         cached = new WeakReference<Raster>(ras);
 706     }
 707 
 708     /**
 709      * {@inheritDoc}
 710      */
 711     public final void dispose() {
 712         if (saved != null) {
 713             putCachedRaster(model, saved);
 714             saved = null;
 715         }
 716     }
 717 
 718     /**
 719      * {@inheritDoc}
 720      */
 721     public final ColorModel getColorModel() {
 722         return model;
 723     }
 724 }