1 //
   2 // Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20 // CA 95054 USA or visit www.sun.com if you need additional information or
  21 // have any questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg());
 197 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg()->next());
 198 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg());
 199 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg()->next());
 200 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg());
 201 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg()->next());
 202 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg());
 203 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg()->next());
 204 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg());
 205 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg()->next());
 206 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg());
 207 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg()->next());
 208 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg());
 209 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg()->next());
 210 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg());
 211 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg()->next());
 212 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg());
 213 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg()->next());
 214 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg());
 215 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg()->next());
 216 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg());
 217 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg()->next());
 218 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg());
 219 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg()->next());
 220 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg());
 221 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg()->next());
 222 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg());
 223 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg()->next());
 224 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg());
 225 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg()->next());
 226 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg());
 227 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 // Macros to extract hi & lo halves from a long pair.
 464 // G0 is not part of any long pair, so assert on that.
 465 // Prevents accidentally using G1 instead of G0.
 466 #define LONG_HI_REG(x) (x)
 467 #define LONG_LO_REG(x) (x)
 468 
 469 %}
 470 
 471 source %{
 472 #define __ _masm.
 473 
 474 // tertiary op of a LoadP or StoreP encoding
 475 #define REGP_OP true
 476 
 477 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 478 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 479 static Register reg_to_register_object(int register_encoding);
 480 
 481 // Used by the DFA in dfa_sparc.cpp.
 482 // Check for being able to use a V9 branch-on-register.  Requires a
 483 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 484 // extended.  Doesn't work following an integer ADD, for example, because of
 485 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 486 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 487 // replace them with zero, which could become sign-extension in a different OS
 488 // release.  There's no obvious reason why an interrupt will ever fill these
 489 // bits with non-zero junk (the registers are reloaded with standard LD
 490 // instructions which either zero-fill or sign-fill).
 491 bool can_branch_register( Node *bol, Node *cmp ) {
 492   if( !BranchOnRegister ) return false;
 493 #ifdef _LP64
 494   if( cmp->Opcode() == Op_CmpP )
 495     return true;  // No problems with pointer compares
 496 #endif
 497   if( cmp->Opcode() == Op_CmpL )
 498     return true;  // No problems with long compares
 499 
 500   if( !SparcV9RegsHiBitsZero ) return false;
 501   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 502       bol->as_Bool()->_test._test != BoolTest::eq )
 503      return false;
 504 
 505   // Check for comparing against a 'safe' value.  Any operation which
 506   // clears out the high word is safe.  Thus, loads and certain shifts
 507   // are safe, as are non-negative constants.  Any operation which
 508   // preserves zero bits in the high word is safe as long as each of its
 509   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 510   // inputs are safe.  At present, the only important case to recognize
 511   // seems to be loads.  Constants should fold away, and shifts &
 512   // logicals can use the 'cc' forms.
 513   Node *x = cmp->in(1);
 514   if( x->is_Load() ) return true;
 515   if( x->is_Phi() ) {
 516     for( uint i = 1; i < x->req(); i++ )
 517       if( !x->in(i)->is_Load() )
 518         return false;
 519     return true;
 520   }
 521   return false;
 522 }
 523 
 524 // ****************************************************************************
 525 
 526 // REQUIRED FUNCTIONALITY
 527 
 528 // !!!!! Special hack to get all type of calls to specify the byte offset
 529 //       from the start of the call to the point where the return address
 530 //       will point.
 531 //       The "return address" is the address of the call instruction, plus 8.
 532 
 533 int MachCallStaticJavaNode::ret_addr_offset() {
 534   return NativeCall::instruction_size;  // call; delay slot
 535 }
 536 
 537 int MachCallDynamicJavaNode::ret_addr_offset() {
 538   int vtable_index = this->_vtable_index;
 539   if (vtable_index < 0) {
 540     // must be invalid_vtable_index, not nonvirtual_vtable_index
 541     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 542     return (NativeMovConstReg::instruction_size +
 543            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 544   } else {
 545     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 546     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 547     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 548     int klass_load_size;
 549     if (UseCompressedOops) {
 550       assert(Universe::heap() != NULL, "java heap should be initialized");
 551       if (Universe::narrow_oop_base() == NULL)
 552         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 553       else
 554         klass_load_size = 3*BytesPerInstWord;
 555     } else {
 556       klass_load_size = 1*BytesPerInstWord;
 557     }
 558     if( Assembler::is_simm13(v_off) ) {
 559       return klass_load_size +
 560              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 561              NativeCall::instruction_size);  // call; delay slot
 562     } else {
 563       return klass_load_size +
 564              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 565              NativeCall::instruction_size);  // call; delay slot
 566     }
 567   }
 568 }
 569 
 570 int MachCallRuntimeNode::ret_addr_offset() {
 571 #ifdef _LP64
 572   return NativeFarCall::instruction_size;  // farcall; delay slot
 573 #else
 574   return NativeCall::instruction_size;  // call; delay slot
 575 #endif
 576 }
 577 
 578 // Indicate if the safepoint node needs the polling page as an input.
 579 // Since Sparc does not have absolute addressing, it does.
 580 bool SafePointNode::needs_polling_address_input() {
 581   return true;
 582 }
 583 
 584 // emit an interrupt that is caught by the debugger (for debugging compiler)
 585 void emit_break(CodeBuffer &cbuf) {
 586   MacroAssembler _masm(&cbuf);
 587   __ breakpoint_trap();
 588 }
 589 
 590 #ifndef PRODUCT
 591 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 592   st->print("TA");
 593 }
 594 #endif
 595 
 596 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 597   emit_break(cbuf);
 598 }
 599 
 600 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 601   return MachNode::size(ra_);
 602 }
 603 
 604 // Traceable jump
 605 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 606   MacroAssembler _masm(&cbuf);
 607   Register rdest = reg_to_register_object(jump_target);
 608   __ JMP(rdest, 0);
 609   __ delayed()->nop();
 610 }
 611 
 612 // Traceable jump and set exception pc
 613 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 614   MacroAssembler _masm(&cbuf);
 615   Register rdest = reg_to_register_object(jump_target);
 616   __ JMP(rdest, 0);
 617   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 618 }
 619 
 620 void emit_nop(CodeBuffer &cbuf) {
 621   MacroAssembler _masm(&cbuf);
 622   __ nop();
 623 }
 624 
 625 void emit_illtrap(CodeBuffer &cbuf) {
 626   MacroAssembler _masm(&cbuf);
 627   __ illtrap(0);
 628 }
 629 
 630 
 631 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 632   assert(n->rule() != loadUB_rule, "");
 633 
 634   intptr_t offset = 0;
 635   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 636   const Node* addr = n->get_base_and_disp(offset, adr_type);
 637   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 638   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 639   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 640   atype = atype->add_offset(offset);
 641   assert(disp32 == offset, "wrong disp32");
 642   return atype->_offset;
 643 }
 644 
 645 
 646 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 647   assert(n->rule() != loadUB_rule, "");
 648 
 649   intptr_t offset = 0;
 650   Node* addr = n->in(2);
 651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 652   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 653     Node* a = addr->in(2/*AddPNode::Address*/);
 654     Node* o = addr->in(3/*AddPNode::Offset*/);
 655     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 656     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 657     assert(atype->isa_oop_ptr(), "still an oop");
 658   }
 659   offset = atype->is_ptr()->_offset;
 660   if (offset != Type::OffsetBot)  offset += disp32;
 661   return offset;
 662 }
 663 
 664 // Standard Sparc opcode form2 field breakdown
 665 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 666   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 667   int op = (f30 << 30) |
 668            (f29 << 29) |
 669            (f25 << 25) |
 670            (f22 << 22) |
 671            (f20 << 20) |
 672            (f19 << 19) |
 673            (f0  <<  0);
 674   *((int*)(cbuf.code_end())) = op;
 675   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 676 }
 677 
 678 // Standard Sparc opcode form2 field breakdown
 679 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 680   f0 >>= 10;           // Drop 10 bits
 681   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 682   int op = (f30 << 30) |
 683            (f25 << 25) |
 684            (f22 << 22) |
 685            (f0  <<  0);
 686   *((int*)(cbuf.code_end())) = op;
 687   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 688 }
 689 
 690 // Standard Sparc opcode form3 field breakdown
 691 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 692   int op = (f30 << 30) |
 693            (f25 << 25) |
 694            (f19 << 19) |
 695            (f14 << 14) |
 696            (f5  <<  5) |
 697            (f0  <<  0);
 698   *((int*)(cbuf.code_end())) = op;
 699   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 700 }
 701 
 702 // Standard Sparc opcode form3 field breakdown
 703 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 704   simm13 &= (1<<13)-1; // Mask to 13 bits
 705   int op = (f30 << 30) |
 706            (f25 << 25) |
 707            (f19 << 19) |
 708            (f14 << 14) |
 709            (1   << 13) | // bit to indicate immediate-mode
 710            (simm13<<0);
 711   *((int*)(cbuf.code_end())) = op;
 712   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 713 }
 714 
 715 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 716   simm10 &= (1<<10)-1; // Mask to 10 bits
 717   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 718 }
 719 
 720 #ifdef ASSERT
 721 // Helper function for VerifyOops in emit_form3_mem_reg
 722 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 723   warning("VerifyOops encountered unexpected instruction:");
 724   n->dump(2);
 725   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 726 }
 727 #endif
 728 
 729 
 730 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 731                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 732 
 733 #ifdef ASSERT
 734   // The following code implements the +VerifyOops feature.
 735   // It verifies oop values which are loaded into or stored out of
 736   // the current method activation.  +VerifyOops complements techniques
 737   // like ScavengeALot, because it eagerly inspects oops in transit,
 738   // as they enter or leave the stack, as opposed to ScavengeALot,
 739   // which inspects oops "at rest", in the stack or heap, at safepoints.
 740   // For this reason, +VerifyOops can sometimes detect bugs very close
 741   // to their point of creation.  It can also serve as a cross-check
 742   // on the validity of oop maps, when used toegether with ScavengeALot.
 743 
 744   // It would be good to verify oops at other points, especially
 745   // when an oop is used as a base pointer for a load or store.
 746   // This is presently difficult, because it is hard to know when
 747   // a base address is biased or not.  (If we had such information,
 748   // it would be easy and useful to make a two-argument version of
 749   // verify_oop which unbiases the base, and performs verification.)
 750 
 751   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 752   bool is_verified_oop_base  = false;
 753   bool is_verified_oop_load  = false;
 754   bool is_verified_oop_store = false;
 755   int tmp_enc = -1;
 756   if (VerifyOops && src1_enc != R_SP_enc) {
 757     // classify the op, mainly for an assert check
 758     int st_op = 0, ld_op = 0;
 759     switch (primary) {
 760     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 761     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 762     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 763     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 764     case Assembler::std_op3:  st_op = Op_StoreL; break;
 765     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 766     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 767 
 768     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 769     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 770     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 771     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 772     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 773     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 774     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 775     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 776     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 777     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
 778     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 779 
 780     default: ShouldNotReachHere();
 781     }
 782     if (tertiary == REGP_OP) {
 783       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 784       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 785       else                          ShouldNotReachHere();
 786       if (st_op) {
 787         // a store
 788         // inputs are (0:control, 1:memory, 2:address, 3:value)
 789         Node* n2 = n->in(3);
 790         if (n2 != NULL) {
 791           const Type* t = n2->bottom_type();
 792           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 793         }
 794       } else {
 795         // a load
 796         const Type* t = n->bottom_type();
 797         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 798       }
 799     }
 800 
 801     if (ld_op) {
 802       // a Load
 803       // inputs are (0:control, 1:memory, 2:address)
 804       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 805           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
 806           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 807           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 808           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 809           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 810           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 811           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 812           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 813           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 814           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 815           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 816           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 817           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 818           !(n->rule() == loadUB_rule)) {
 819         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 820       }
 821     } else if (st_op) {
 822       // a Store
 823       // inputs are (0:control, 1:memory, 2:address, 3:value)
 824       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 825           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 826           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 827           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 828           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 829           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 830         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 831       }
 832     }
 833 
 834     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 835       Node* addr = n->in(2);
 836       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 837         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 838         if (atype != NULL) {
 839           intptr_t offset = get_offset_from_base(n, atype, disp32);
 840           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 841           if (offset != offset_2) {
 842             get_offset_from_base(n, atype, disp32);
 843             get_offset_from_base_2(n, atype, disp32);
 844           }
 845           assert(offset == offset_2, "different offsets");
 846           if (offset == disp32) {
 847             // we now know that src1 is a true oop pointer
 848             is_verified_oop_base = true;
 849             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 850               if( primary == Assembler::ldd_op3 ) {
 851                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 852               } else {
 853                 tmp_enc = dst_enc;
 854                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 855                 assert(src1_enc != dst_enc, "");
 856               }
 857             }
 858           }
 859           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 860                        || offset == oopDesc::mark_offset_in_bytes())) {
 861                       // loading the mark should not be allowed either, but
 862                       // we don't check this since it conflicts with InlineObjectHash
 863                       // usage of LoadINode to get the mark. We could keep the
 864                       // check if we create a new LoadMarkNode
 865             // but do not verify the object before its header is initialized
 866             ShouldNotReachHere();
 867           }
 868         }
 869       }
 870     }
 871   }
 872 #endif
 873 
 874   uint instr;
 875   instr = (Assembler::ldst_op << 30)
 876         | (dst_enc        << 25)
 877         | (primary        << 19)
 878         | (src1_enc       << 14);
 879 
 880   uint index = src2_enc;
 881   int disp = disp32;
 882 
 883   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 884     disp += STACK_BIAS;
 885 
 886   // We should have a compiler bailout here rather than a guarantee.
 887   // Better yet would be some mechanism to handle variable-size matches correctly.
 888   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 889 
 890   if( disp == 0 ) {
 891     // use reg-reg form
 892     // bit 13 is already zero
 893     instr |= index;
 894   } else {
 895     // use reg-imm form
 896     instr |= 0x00002000;          // set bit 13 to one
 897     instr |= disp & 0x1FFF;
 898   }
 899 
 900   uint *code = (uint*)cbuf.code_end();
 901   *code = instr;
 902   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 903 
 904 #ifdef ASSERT
 905   {
 906     MacroAssembler _masm(&cbuf);
 907     if (is_verified_oop_base) {
 908       __ verify_oop(reg_to_register_object(src1_enc));
 909     }
 910     if (is_verified_oop_store) {
 911       __ verify_oop(reg_to_register_object(dst_enc));
 912     }
 913     if (tmp_enc != -1) {
 914       __ mov(O7, reg_to_register_object(tmp_enc));
 915     }
 916     if (is_verified_oop_load) {
 917       __ verify_oop(reg_to_register_object(dst_enc));
 918     }
 919   }
 920 #endif
 921 }
 922 
 923 void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 924                         int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) {
 925 
 926   uint instr;
 927   instr = (Assembler::ldst_op << 30)
 928         | (dst_enc        << 25)
 929         | (primary        << 19)
 930         | (src1_enc       << 14);
 931 
 932   int disp = disp32;
 933   int index    = src2_enc;
 934 
 935   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 936     disp += STACK_BIAS;
 937 
 938   // We should have a compiler bailout here rather than a guarantee.
 939   // Better yet would be some mechanism to handle variable-size matches correctly.
 940   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 941 
 942   if( disp != 0 ) {
 943     // use reg-reg form
 944     // set src2=R_O7 contains offset
 945     index = R_O7_enc;
 946     emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp);
 947   }
 948   instr |= (asi << 5);
 949   instr |= index;
 950   uint *code = (uint*)cbuf.code_end();
 951   *code = instr;
 952   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 953 }
 954 
 955 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
 956   // The method which records debug information at every safepoint
 957   // expects the call to be the first instruction in the snippet as
 958   // it creates a PcDesc structure which tracks the offset of a call
 959   // from the start of the codeBlob. This offset is computed as
 960   // code_end() - code_begin() of the code which has been emitted
 961   // so far.
 962   // In this particular case we have skirted around the problem by
 963   // putting the "mov" instruction in the delay slot but the problem
 964   // may bite us again at some other point and a cleaner/generic
 965   // solution using relocations would be needed.
 966   MacroAssembler _masm(&cbuf);
 967   __ set_inst_mark();
 968 
 969   // We flush the current window just so that there is a valid stack copy
 970   // the fact that the current window becomes active again instantly is
 971   // not a problem there is nothing live in it.
 972 
 973 #ifdef ASSERT
 974   int startpos = __ offset();
 975 #endif /* ASSERT */
 976 
 977 #ifdef _LP64
 978   // Calls to the runtime or native may not be reachable from compiled code,
 979   // so we generate the far call sequence on 64 bit sparc.
 980   // This code sequence is relocatable to any address, even on LP64.
 981   if ( force_far_call ) {
 982     __ relocate(rtype);
 983     AddressLiteral dest(entry_point);
 984     __ jumpl_to(dest, O7, O7);
 985   }
 986   else
 987 #endif
 988   {
 989      __ call((address)entry_point, rtype);
 990   }
 991 
 992   if (preserve_g2)   __ delayed()->mov(G2, L7);
 993   else __ delayed()->nop();
 994 
 995   if (preserve_g2)   __ mov(L7, G2);
 996 
 997 #ifdef ASSERT
 998   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 999 #ifdef _LP64
1000     // Trash argument dump slots.
1001     __ set(0xb0b8ac0db0b8ac0d, G1);
1002     __ mov(G1, G5);
1003     __ stx(G1, SP, STACK_BIAS + 0x80);
1004     __ stx(G1, SP, STACK_BIAS + 0x88);
1005     __ stx(G1, SP, STACK_BIAS + 0x90);
1006     __ stx(G1, SP, STACK_BIAS + 0x98);
1007     __ stx(G1, SP, STACK_BIAS + 0xA0);
1008     __ stx(G1, SP, STACK_BIAS + 0xA8);
1009 #else // _LP64
1010     // this is also a native call, so smash the first 7 stack locations,
1011     // and the various registers
1012 
1013     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1014     // while [SP+0x44..0x58] are the argument dump slots.
1015     __ set((intptr_t)0xbaadf00d, G1);
1016     __ mov(G1, G5);
1017     __ sllx(G1, 32, G1);
1018     __ or3(G1, G5, G1);
1019     __ mov(G1, G5);
1020     __ stx(G1, SP, 0x40);
1021     __ stx(G1, SP, 0x48);
1022     __ stx(G1, SP, 0x50);
1023     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1024 #endif // _LP64
1025   }
1026 #endif /*ASSERT*/
1027 }
1028 
1029 //=============================================================================
1030 // REQUIRED FUNCTIONALITY for encoding
1031 void emit_lo(CodeBuffer &cbuf, int val) {  }
1032 void emit_hi(CodeBuffer &cbuf, int val) {  }
1033 
1034 
1035 //=============================================================================
1036 
1037 #ifndef PRODUCT
1038 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1039   Compile* C = ra_->C;
1040 
1041   for (int i = 0; i < OptoPrologueNops; i++) {
1042     st->print_cr("NOP"); st->print("\t");
1043   }
1044 
1045   if( VerifyThread ) {
1046     st->print_cr("Verify_Thread"); st->print("\t");
1047   }
1048 
1049   size_t framesize = C->frame_slots() << LogBytesPerInt;
1050 
1051   // Calls to C2R adapters often do not accept exceptional returns.
1052   // We require that their callers must bang for them.  But be careful, because
1053   // some VM calls (such as call site linkage) can use several kilobytes of
1054   // stack.  But the stack safety zone should account for that.
1055   // See bugs 4446381, 4468289, 4497237.
1056   if (C->need_stack_bang(framesize)) {
1057     st->print_cr("! stack bang"); st->print("\t");
1058   }
1059 
1060   if (Assembler::is_simm13(-framesize)) {
1061     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1062   } else {
1063     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1064     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1065     st->print   ("SAVE   R_SP,R_G3,R_SP");
1066   }
1067 
1068 }
1069 #endif
1070 
1071 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1072   Compile* C = ra_->C;
1073   MacroAssembler _masm(&cbuf);
1074 
1075   for (int i = 0; i < OptoPrologueNops; i++) {
1076     __ nop();
1077   }
1078 
1079   __ verify_thread();
1080 
1081   size_t framesize = C->frame_slots() << LogBytesPerInt;
1082   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1083   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1084 
1085   // Calls to C2R adapters often do not accept exceptional returns.
1086   // We require that their callers must bang for them.  But be careful, because
1087   // some VM calls (such as call site linkage) can use several kilobytes of
1088   // stack.  But the stack safety zone should account for that.
1089   // See bugs 4446381, 4468289, 4497237.
1090   if (C->need_stack_bang(framesize)) {
1091     __ generate_stack_overflow_check(framesize);
1092   }
1093 
1094   if (Assembler::is_simm13(-framesize)) {
1095     __ save(SP, -framesize, SP);
1096   } else {
1097     __ sethi(-framesize & ~0x3ff, G3);
1098     __ add(G3, -framesize & 0x3ff, G3);
1099     __ save(SP, G3, SP);
1100   }
1101   C->set_frame_complete( __ offset() );
1102 }
1103 
1104 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1105   return MachNode::size(ra_);
1106 }
1107 
1108 int MachPrologNode::reloc() const {
1109   return 10; // a large enough number
1110 }
1111 
1112 //=============================================================================
1113 #ifndef PRODUCT
1114 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1115   Compile* C = ra_->C;
1116 
1117   if( do_polling() && ra_->C->is_method_compilation() ) {
1118     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1119 #ifdef _LP64
1120     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1121 #else
1122     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1123 #endif
1124   }
1125 
1126   if( do_polling() )
1127     st->print("RET\n\t");
1128 
1129   st->print("RESTORE");
1130 }
1131 #endif
1132 
1133 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1134   MacroAssembler _masm(&cbuf);
1135   Compile* C = ra_->C;
1136 
1137   __ verify_thread();
1138 
1139   // If this does safepoint polling, then do it here
1140   if( do_polling() && ra_->C->is_method_compilation() ) {
1141     AddressLiteral polling_page(os::get_polling_page());
1142     __ sethi(polling_page, L0);
1143     __ relocate(relocInfo::poll_return_type);
1144     __ ld_ptr( L0, 0, G0 );
1145   }
1146 
1147   // If this is a return, then stuff the restore in the delay slot
1148   if( do_polling() ) {
1149     __ ret();
1150     __ delayed()->restore();
1151   } else {
1152     __ restore();
1153   }
1154 }
1155 
1156 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1157   return MachNode::size(ra_);
1158 }
1159 
1160 int MachEpilogNode::reloc() const {
1161   return 16; // a large enough number
1162 }
1163 
1164 const Pipeline * MachEpilogNode::pipeline() const {
1165   return MachNode::pipeline_class();
1166 }
1167 
1168 int MachEpilogNode::safepoint_offset() const {
1169   assert( do_polling(), "no return for this epilog node");
1170   return MacroAssembler::size_of_sethi(os::get_polling_page());
1171 }
1172 
1173 //=============================================================================
1174 
1175 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1176 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1177 static enum RC rc_class( OptoReg::Name reg ) {
1178   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1179   if (OptoReg::is_stack(reg)) return rc_stack;
1180   VMReg r = OptoReg::as_VMReg(reg);
1181   if (r->is_Register()) return rc_int;
1182   assert(r->is_FloatRegister(), "must be");
1183   return rc_float;
1184 }
1185 
1186 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1187   if( cbuf ) {
1188     // Better yet would be some mechanism to handle variable-size matches correctly
1189     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1190       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1191     } else {
1192       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1193     }
1194   }
1195 #ifndef PRODUCT
1196   else if( !do_size ) {
1197     if( size != 0 ) st->print("\n\t");
1198     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1199     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1200   }
1201 #endif
1202   return size+4;
1203 }
1204 
1205 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1206   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1207 #ifndef PRODUCT
1208   else if( !do_size ) {
1209     if( size != 0 ) st->print("\n\t");
1210     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1211   }
1212 #endif
1213   return size+4;
1214 }
1215 
1216 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1217                                         PhaseRegAlloc *ra_,
1218                                         bool do_size,
1219                                         outputStream* st ) const {
1220   // Get registers to move
1221   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1222   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1223   OptoReg::Name dst_second = ra_->get_reg_second(this );
1224   OptoReg::Name dst_first = ra_->get_reg_first(this );
1225 
1226   enum RC src_second_rc = rc_class(src_second);
1227   enum RC src_first_rc = rc_class(src_first);
1228   enum RC dst_second_rc = rc_class(dst_second);
1229   enum RC dst_first_rc = rc_class(dst_first);
1230 
1231   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1232 
1233   // Generate spill code!
1234   int size = 0;
1235 
1236   if( src_first == dst_first && src_second == dst_second )
1237     return size;            // Self copy, no move
1238 
1239   // --------------------------------------
1240   // Check for mem-mem move.  Load into unused float registers and fall into
1241   // the float-store case.
1242   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1243     int offset = ra_->reg2offset(src_first);
1244     // Further check for aligned-adjacent pair, so we can use a double load
1245     if( (src_first&1)==0 && src_first+1 == src_second ) {
1246       src_second    = OptoReg::Name(R_F31_num);
1247       src_second_rc = rc_float;
1248       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1249     } else {
1250       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1251     }
1252     src_first    = OptoReg::Name(R_F30_num);
1253     src_first_rc = rc_float;
1254   }
1255 
1256   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1257     int offset = ra_->reg2offset(src_second);
1258     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1259     src_second    = OptoReg::Name(R_F31_num);
1260     src_second_rc = rc_float;
1261   }
1262 
1263   // --------------------------------------
1264   // Check for float->int copy; requires a trip through memory
1265   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
1266     int offset = frame::register_save_words*wordSize;
1267     if( cbuf ) {
1268       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1269       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1270       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1271       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1272     }
1273 #ifndef PRODUCT
1274     else if( !do_size ) {
1275       if( size != 0 ) st->print("\n\t");
1276       st->print(  "SUB    R_SP,16,R_SP\n");
1277       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1278       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1279       st->print("\tADD    R_SP,16,R_SP\n");
1280     }
1281 #endif
1282     size += 16;
1283   }
1284 
1285   // --------------------------------------
1286   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1287   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1288   // hardware does the flop for me.  Doubles are always aligned, so no problem
1289   // there.  Misaligned sources only come from native-long-returns (handled
1290   // special below).
1291 #ifndef _LP64
1292   if( src_first_rc == rc_int &&     // source is already big-endian
1293       src_second_rc != rc_bad &&    // 64-bit move
1294       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1295     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1296     // Do the big-endian flop.
1297     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1298     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1299   }
1300 #endif
1301 
1302   // --------------------------------------
1303   // Check for integer reg-reg copy
1304   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1305 #ifndef _LP64
1306     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1307       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1308       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1309       //       operand contains the least significant word of the 64-bit value and vice versa.
1310       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1311       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1312       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1313       if( cbuf ) {
1314         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1315         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1316         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1317 #ifndef PRODUCT
1318       } else if( !do_size ) {
1319         if( size != 0 ) st->print("\n\t");
1320         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1321         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1322         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1323 #endif
1324       }
1325       return size+12;
1326     }
1327     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1328       // returning a long value in I0/I1
1329       // a SpillCopy must be able to target a return instruction's reg_class
1330       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1331       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1332       //       operand contains the least significant word of the 64-bit value and vice versa.
1333       OptoReg::Name tdest = dst_first;
1334 
1335       if (src_first == dst_first) {
1336         tdest = OptoReg::Name(R_O7_num);
1337         size += 4;
1338       }
1339 
1340       if( cbuf ) {
1341         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1342         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1343         // ShrL_reg_imm6
1344         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1345         // ShrR_reg_imm6  src, 0, dst
1346         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1347         if (tdest != dst_first) {
1348           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1349         }
1350       }
1351 #ifndef PRODUCT
1352       else if( !do_size ) {
1353         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1354         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1355         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1356         if (tdest != dst_first) {
1357           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1358         }
1359       }
1360 #endif // PRODUCT
1361       return size+8;
1362     }
1363 #endif // !_LP64
1364     // Else normal reg-reg copy
1365     assert( src_second != dst_first, "smashed second before evacuating it" );
1366     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1367     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1368     // This moves an aligned adjacent pair.
1369     // See if we are done.
1370     if( src_first+1 == src_second && dst_first+1 == dst_second )
1371       return size;
1372   }
1373 
1374   // Check for integer store
1375   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1376     int offset = ra_->reg2offset(dst_first);
1377     // Further check for aligned-adjacent pair, so we can use a double store
1378     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1379       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1380     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1381   }
1382 
1383   // Check for integer load
1384   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1385     int offset = ra_->reg2offset(src_first);
1386     // Further check for aligned-adjacent pair, so we can use a double load
1387     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1388       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1389     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1390   }
1391 
1392   // Check for float reg-reg copy
1393   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1394     // Further check for aligned-adjacent pair, so we can use a double move
1395     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1396       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1397     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1398   }
1399 
1400   // Check for float store
1401   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1402     int offset = ra_->reg2offset(dst_first);
1403     // Further check for aligned-adjacent pair, so we can use a double store
1404     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1405       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1406     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1407   }
1408 
1409   // Check for float load
1410   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1411     int offset = ra_->reg2offset(src_first);
1412     // Further check for aligned-adjacent pair, so we can use a double load
1413     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1414       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1415     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1416   }
1417 
1418   // --------------------------------------------------------------------
1419   // Check for hi bits still needing moving.  Only happens for misaligned
1420   // arguments to native calls.
1421   if( src_second == dst_second )
1422     return size;               // Self copy; no move
1423   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1424 
1425 #ifndef _LP64
1426   // In the LP64 build, all registers can be moved as aligned/adjacent
1427   // pairs, so there's never any need to move the high bits separately.
1428   // The 32-bit builds have to deal with the 32-bit ABI which can force
1429   // all sorts of silly alignment problems.
1430 
1431   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1432   // 32-bits of a 64-bit register, but are needed in low bits of another
1433   // register (else it's a hi-bits-to-hi-bits copy which should have
1434   // happened already as part of a 64-bit move)
1435   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1436     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1437     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1438     // Shift src_second down to dst_second's low bits.
1439     if( cbuf ) {
1440       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1441 #ifndef PRODUCT
1442     } else if( !do_size ) {
1443       if( size != 0 ) st->print("\n\t");
1444       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1445 #endif
1446     }
1447     return size+4;
1448   }
1449 
1450   // Check for high word integer store.  Must down-shift the hi bits
1451   // into a temp register, then fall into the case of storing int bits.
1452   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1453     // Shift src_second down to dst_second's low bits.
1454     if( cbuf ) {
1455       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1456 #ifndef PRODUCT
1457     } else if( !do_size ) {
1458       if( size != 0 ) st->print("\n\t");
1459       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1460 #endif
1461     }
1462     size+=4;
1463     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1464   }
1465 
1466   // Check for high word integer load
1467   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1468     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1469 
1470   // Check for high word integer store
1471   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1472     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1473 
1474   // Check for high word float store
1475   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1476     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1477 
1478 #endif // !_LP64
1479 
1480   Unimplemented();
1481 }
1482 
1483 #ifndef PRODUCT
1484 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1485   implementation( NULL, ra_, false, st );
1486 }
1487 #endif
1488 
1489 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1490   implementation( &cbuf, ra_, false, NULL );
1491 }
1492 
1493 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1494   return implementation( NULL, ra_, true, NULL );
1495 }
1496 
1497 //=============================================================================
1498 #ifndef PRODUCT
1499 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1500   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1501 }
1502 #endif
1503 
1504 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1505   MacroAssembler _masm(&cbuf);
1506   for(int i = 0; i < _count; i += 1) {
1507     __ nop();
1508   }
1509 }
1510 
1511 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1512   return 4 * _count;
1513 }
1514 
1515 
1516 //=============================================================================
1517 #ifndef PRODUCT
1518 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1519   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1520   int reg = ra_->get_reg_first(this);
1521   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1522 }
1523 #endif
1524 
1525 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1526   MacroAssembler _masm(&cbuf);
1527   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1528   int reg = ra_->get_encode(this);
1529 
1530   if (Assembler::is_simm13(offset)) {
1531      __ add(SP, offset, reg_to_register_object(reg));
1532   } else {
1533      __ set(offset, O7);
1534      __ add(SP, O7, reg_to_register_object(reg));
1535   }
1536 }
1537 
1538 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1539   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1540   assert(ra_ == ra_->C->regalloc(), "sanity");
1541   return ra_->C->scratch_emit_size(this);
1542 }
1543 
1544 //=============================================================================
1545 
1546 // emit call stub, compiled java to interpretor
1547 void emit_java_to_interp(CodeBuffer &cbuf ) {
1548 
1549   // Stub is fixed up when the corresponding call is converted from calling
1550   // compiled code to calling interpreted code.
1551   // set (empty), G5
1552   // jmp -1
1553 
1554   address mark = cbuf.inst_mark();  // get mark within main instrs section
1555 
1556   MacroAssembler _masm(&cbuf);
1557 
1558   address base =
1559   __ start_a_stub(Compile::MAX_stubs_size);
1560   if (base == NULL)  return;  // CodeBuffer::expand failed
1561 
1562   // static stub relocation stores the instruction address of the call
1563   __ relocate(static_stub_Relocation::spec(mark));
1564 
1565   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1566 
1567   __ set_inst_mark();
1568   AddressLiteral addrlit(-1);
1569   __ JUMP(addrlit, G3, 0);
1570 
1571   __ delayed()->nop();
1572 
1573   // Update current stubs pointer and restore code_end.
1574   __ end_a_stub();
1575 }
1576 
1577 // size of call stub, compiled java to interpretor
1578 uint size_java_to_interp() {
1579   // This doesn't need to be accurate but it must be larger or equal to
1580   // the real size of the stub.
1581   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1582           NativeJump::instruction_size + // sethi; jmp; nop
1583           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1584 }
1585 // relocation entries for call stub, compiled java to interpretor
1586 uint reloc_java_to_interp() {
1587   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1588 }
1589 
1590 
1591 //=============================================================================
1592 #ifndef PRODUCT
1593 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1594   st->print_cr("\nUEP:");
1595 #ifdef    _LP64
1596   if (UseCompressedOops) {
1597     assert(Universe::heap() != NULL, "java heap should be initialized");
1598     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1599     st->print_cr("\tSLL    R_G5,3,R_G5");
1600     if (Universe::narrow_oop_base() != NULL)
1601       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1602   } else {
1603     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1604   }
1605   st->print_cr("\tCMP    R_G5,R_G3" );
1606   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1607 #else  // _LP64
1608   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1609   st->print_cr("\tCMP    R_G5,R_G3" );
1610   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1611 #endif // _LP64
1612 }
1613 #endif
1614 
1615 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1616   MacroAssembler _masm(&cbuf);
1617   Label L;
1618   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1619   Register temp_reg   = G3;
1620   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1621 
1622   // Load klass from receiver
1623   __ load_klass(O0, temp_reg);
1624   // Compare against expected klass
1625   __ cmp(temp_reg, G5_ic_reg);
1626   // Branch to miss code, checks xcc or icc depending
1627   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1628 }
1629 
1630 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1631   return MachNode::size(ra_);
1632 }
1633 
1634 
1635 //=============================================================================
1636 
1637 uint size_exception_handler() {
1638   if (TraceJumps) {
1639     return (400); // just a guess
1640   }
1641   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1642 }
1643 
1644 uint size_deopt_handler() {
1645   if (TraceJumps) {
1646     return (400); // just a guess
1647   }
1648   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1649 }
1650 
1651 // Emit exception handler code.
1652 int emit_exception_handler(CodeBuffer& cbuf) {
1653   Register temp_reg = G3;
1654   AddressLiteral exception_blob(OptoRuntime::exception_blob()->instructions_begin());
1655   MacroAssembler _masm(&cbuf);
1656 
1657   address base =
1658   __ start_a_stub(size_exception_handler());
1659   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1660 
1661   int offset = __ offset();
1662 
1663   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1664   __ delayed()->nop();
1665 
1666   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1667 
1668   __ end_a_stub();
1669 
1670   return offset;
1671 }
1672 
1673 int emit_deopt_handler(CodeBuffer& cbuf) {
1674   // Can't use any of the current frame's registers as we may have deopted
1675   // at a poll and everything (including G3) can be live.
1676   Register temp_reg = L0;
1677   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1678   MacroAssembler _masm(&cbuf);
1679 
1680   address base =
1681   __ start_a_stub(size_deopt_handler());
1682   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1683 
1684   int offset = __ offset();
1685   __ save_frame(0);
1686   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1687   __ delayed()->restore();
1688 
1689   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1690 
1691   __ end_a_stub();
1692   return offset;
1693 
1694 }
1695 
1696 // Given a register encoding, produce a Integer Register object
1697 static Register reg_to_register_object(int register_encoding) {
1698   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1699   return as_Register(register_encoding);
1700 }
1701 
1702 // Given a register encoding, produce a single-precision Float Register object
1703 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1704   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1705   return as_SingleFloatRegister(register_encoding);
1706 }
1707 
1708 // Given a register encoding, produce a double-precision Float Register object
1709 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1710   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1711   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1712   return as_DoubleFloatRegister(register_encoding);
1713 }
1714 
1715 const bool Matcher::match_rule_supported(int opcode) {
1716   if (!has_match_rule(opcode))
1717     return false;
1718 
1719   switch (opcode) {
1720   case Op_CountLeadingZerosI:
1721   case Op_CountLeadingZerosL:
1722   case Op_CountTrailingZerosI:
1723   case Op_CountTrailingZerosL:
1724     if (!UsePopCountInstruction)
1725       return false;
1726     break;
1727   }
1728 
1729   return true;  // Per default match rules are supported.
1730 }
1731 
1732 int Matcher::regnum_to_fpu_offset(int regnum) {
1733   return regnum - 32; // The FP registers are in the second chunk
1734 }
1735 
1736 #ifdef ASSERT
1737 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1738 #endif
1739 
1740 // Vector width in bytes
1741 const uint Matcher::vector_width_in_bytes(void) {
1742   return 8;
1743 }
1744 
1745 // Vector ideal reg
1746 const uint Matcher::vector_ideal_reg(void) {
1747   return Op_RegD;
1748 }
1749 
1750 // USII supports fxtof through the whole range of number, USIII doesn't
1751 const bool Matcher::convL2FSupported(void) {
1752   return VM_Version::has_fast_fxtof();
1753 }
1754 
1755 // Is this branch offset short enough that a short branch can be used?
1756 //
1757 // NOTE: If the platform does not provide any short branch variants, then
1758 //       this method should return false for offset 0.
1759 bool Matcher::is_short_branch_offset(int rule, int offset) {
1760   return false;
1761 }
1762 
1763 const bool Matcher::isSimpleConstant64(jlong value) {
1764   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1765   // Depends on optimizations in MacroAssembler::setx.
1766   int hi = (int)(value >> 32);
1767   int lo = (int)(value & ~0);
1768   return (hi == 0) || (hi == -1) || (lo == 0);
1769 }
1770 
1771 // No scaling for the parameter the ClearArray node.
1772 const bool Matcher::init_array_count_is_in_bytes = true;
1773 
1774 // Threshold size for cleararray.
1775 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1776 
1777 // Should the Matcher clone shifts on addressing modes, expecting them to
1778 // be subsumed into complex addressing expressions or compute them into
1779 // registers?  True for Intel but false for most RISCs
1780 const bool Matcher::clone_shift_expressions = false;
1781 
1782 // Is it better to copy float constants, or load them directly from memory?
1783 // Intel can load a float constant from a direct address, requiring no
1784 // extra registers.  Most RISCs will have to materialize an address into a
1785 // register first, so they would do better to copy the constant from stack.
1786 const bool Matcher::rematerialize_float_constants = false;
1787 
1788 // If CPU can load and store mis-aligned doubles directly then no fixup is
1789 // needed.  Else we split the double into 2 integer pieces and move it
1790 // piece-by-piece.  Only happens when passing doubles into C code as the
1791 // Java calling convention forces doubles to be aligned.
1792 #ifdef _LP64
1793 const bool Matcher::misaligned_doubles_ok = true;
1794 #else
1795 const bool Matcher::misaligned_doubles_ok = false;
1796 #endif
1797 
1798 // No-op on SPARC.
1799 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1800 }
1801 
1802 // Advertise here if the CPU requires explicit rounding operations
1803 // to implement the UseStrictFP mode.
1804 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1805 
1806 // Do floats take an entire double register or just half?
1807 const bool Matcher::float_in_double = false;
1808 
1809 // Do ints take an entire long register or just half?
1810 // Note that we if-def off of _LP64.
1811 // The relevant question is how the int is callee-saved.  In _LP64
1812 // the whole long is written but de-opt'ing will have to extract
1813 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1814 #ifdef _LP64
1815 const bool Matcher::int_in_long = true;
1816 #else
1817 const bool Matcher::int_in_long = false;
1818 #endif
1819 
1820 // Return whether or not this register is ever used as an argument.  This
1821 // function is used on startup to build the trampoline stubs in generateOptoStub.
1822 // Registers not mentioned will be killed by the VM call in the trampoline, and
1823 // arguments in those registers not be available to the callee.
1824 bool Matcher::can_be_java_arg( int reg ) {
1825   // Standard sparc 6 args in registers
1826   if( reg == R_I0_num ||
1827       reg == R_I1_num ||
1828       reg == R_I2_num ||
1829       reg == R_I3_num ||
1830       reg == R_I4_num ||
1831       reg == R_I5_num ) return true;
1832 #ifdef _LP64
1833   // 64-bit builds can pass 64-bit pointers and longs in
1834   // the high I registers
1835   if( reg == R_I0H_num ||
1836       reg == R_I1H_num ||
1837       reg == R_I2H_num ||
1838       reg == R_I3H_num ||
1839       reg == R_I4H_num ||
1840       reg == R_I5H_num ) return true;
1841 
1842   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1843     return true;
1844   }
1845 
1846 #else
1847   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1848   // Longs cannot be passed in O regs, because O regs become I regs
1849   // after a 'save' and I regs get their high bits chopped off on
1850   // interrupt.
1851   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1852   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1853 #endif
1854   // A few float args in registers
1855   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1856 
1857   return false;
1858 }
1859 
1860 bool Matcher::is_spillable_arg( int reg ) {
1861   return can_be_java_arg(reg);
1862 }
1863 
1864 // Register for DIVI projection of divmodI
1865 RegMask Matcher::divI_proj_mask() {
1866   ShouldNotReachHere();
1867   return RegMask();
1868 }
1869 
1870 // Register for MODI projection of divmodI
1871 RegMask Matcher::modI_proj_mask() {
1872   ShouldNotReachHere();
1873   return RegMask();
1874 }
1875 
1876 // Register for DIVL projection of divmodL
1877 RegMask Matcher::divL_proj_mask() {
1878   ShouldNotReachHere();
1879   return RegMask();
1880 }
1881 
1882 // Register for MODL projection of divmodL
1883 RegMask Matcher::modL_proj_mask() {
1884   ShouldNotReachHere();
1885   return RegMask();
1886 }
1887 
1888 %}
1889 
1890 
1891 // The intptr_t operand types, defined by textual substitution.
1892 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1893 #ifdef _LP64
1894 #define immX     immL
1895 #define immX13   immL13
1896 #define immX13m7 immL13m7
1897 #define iRegX    iRegL
1898 #define g1RegX   g1RegL
1899 #else
1900 #define immX     immI
1901 #define immX13   immI13
1902 #define immX13m7 immI13m7
1903 #define iRegX    iRegI
1904 #define g1RegX   g1RegI
1905 #endif
1906 
1907 //----------ENCODING BLOCK-----------------------------------------------------
1908 // This block specifies the encoding classes used by the compiler to output
1909 // byte streams.  Encoding classes are parameterized macros used by
1910 // Machine Instruction Nodes in order to generate the bit encoding of the
1911 // instruction.  Operands specify their base encoding interface with the
1912 // interface keyword.  There are currently supported four interfaces,
1913 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1914 // operand to generate a function which returns its register number when
1915 // queried.   CONST_INTER causes an operand to generate a function which
1916 // returns the value of the constant when queried.  MEMORY_INTER causes an
1917 // operand to generate four functions which return the Base Register, the
1918 // Index Register, the Scale Value, and the Offset Value of the operand when
1919 // queried.  COND_INTER causes an operand to generate six functions which
1920 // return the encoding code (ie - encoding bits for the instruction)
1921 // associated with each basic boolean condition for a conditional instruction.
1922 //
1923 // Instructions specify two basic values for encoding.  Again, a function
1924 // is available to check if the constant displacement is an oop. They use the
1925 // ins_encode keyword to specify their encoding classes (which must be
1926 // a sequence of enc_class names, and their parameters, specified in
1927 // the encoding block), and they use the
1928 // opcode keyword to specify, in order, their primary, secondary, and
1929 // tertiary opcode.  Only the opcode sections which a particular instruction
1930 // needs for encoding need to be specified.
1931 encode %{
1932   enc_class enc_untested %{
1933 #ifdef ASSERT
1934     MacroAssembler _masm(&cbuf);
1935     __ untested("encoding");
1936 #endif
1937   %}
1938 
1939   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
1940     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
1941                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1942   %}
1943 
1944   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
1945     emit_form3_mem_reg(cbuf, this, $primary, -1,
1946                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1947   %}
1948 
1949   enc_class form3_mem_reg_little( memory mem, iRegI dst) %{
1950     emit_form3_mem_reg_asi(cbuf, this, $primary, -1,
1951                      $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE);
1952   %}
1953 
1954   enc_class form3_mem_prefetch_read( memory mem ) %{
1955     emit_form3_mem_reg(cbuf, this, $primary, -1,
1956                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
1957   %}
1958 
1959   enc_class form3_mem_prefetch_write( memory mem ) %{
1960     emit_form3_mem_reg(cbuf, this, $primary, -1,
1961                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
1962   %}
1963 
1964   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
1965     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1966     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1967     guarantee($mem$$index == R_G0_enc, "double index?");
1968     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
1969     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
1970     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
1971     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
1972   %}
1973 
1974   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
1975     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1976     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1977     guarantee($mem$$index == R_G0_enc, "double index?");
1978     // Load long with 2 instructions
1979     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
1980     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
1981   %}
1982 
1983   //%%% form3_mem_plus_4_reg is a hack--get rid of it
1984   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
1985     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
1986     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
1987   %}
1988 
1989   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
1990     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1991     if( $rs2$$reg != $rd$$reg )
1992       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
1993   %}
1994 
1995   // Target lo half of long
1996   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
1997     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1998     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
1999       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2000   %}
2001 
2002   // Source lo half of long
2003   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2004     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2005     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2006       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2007   %}
2008 
2009   // Target hi half of long
2010   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2011     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2012   %}
2013 
2014   // Source lo half of long, and leave it sign extended.
2015   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2016     // Sign extend low half
2017     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2018   %}
2019 
2020   // Source hi half of long, and leave it sign extended.
2021   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2022     // Shift high half to low half
2023     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2024   %}
2025 
2026   // Source hi half of long
2027   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2028     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2029     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2030       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2031   %}
2032 
2033   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2034     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2035   %}
2036 
2037   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2038     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2039     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2040   %}
2041 
2042   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2043     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2044     // clear if nothing else is happening
2045     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2046     // blt,a,pn done
2047     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2048     // mov dst,-1 in delay slot
2049     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2050   %}
2051 
2052   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2053     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2054   %}
2055 
2056   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2057     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2058   %}
2059 
2060   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2061     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2062   %}
2063 
2064   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2065     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2066   %}
2067 
2068   enc_class move_return_pc_to_o1() %{
2069     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2070   %}
2071 
2072 #ifdef _LP64
2073   /* %%% merge with enc_to_bool */
2074   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2075     MacroAssembler _masm(&cbuf);
2076 
2077     Register   src_reg = reg_to_register_object($src$$reg);
2078     Register   dst_reg = reg_to_register_object($dst$$reg);
2079     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2080   %}
2081 #endif
2082 
2083   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2084     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2085     MacroAssembler _masm(&cbuf);
2086 
2087     Register   p_reg = reg_to_register_object($p$$reg);
2088     Register   q_reg = reg_to_register_object($q$$reg);
2089     Register   y_reg = reg_to_register_object($y$$reg);
2090     Register tmp_reg = reg_to_register_object($tmp$$reg);
2091 
2092     __ subcc( p_reg, q_reg,   p_reg );
2093     __ add  ( p_reg, y_reg, tmp_reg );
2094     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2095   %}
2096 
2097   enc_class form_d2i_helper(regD src, regF dst) %{
2098     // fcmp %fcc0,$src,$src
2099     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2100     // branch %fcc0 not-nan, predict taken
2101     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2102     // fdtoi $src,$dst
2103     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2104     // fitos $dst,$dst (if nan)
2105     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2106     // clear $dst (if nan)
2107     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2108     // carry on here...
2109   %}
2110 
2111   enc_class form_d2l_helper(regD src, regD dst) %{
2112     // fcmp %fcc0,$src,$src  check for NAN
2113     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2114     // branch %fcc0 not-nan, predict taken
2115     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2116     // fdtox $src,$dst   convert in delay slot
2117     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2118     // fxtod $dst,$dst  (if nan)
2119     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2120     // clear $dst (if nan)
2121     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2122     // carry on here...
2123   %}
2124 
2125   enc_class form_f2i_helper(regF src, regF dst) %{
2126     // fcmps %fcc0,$src,$src
2127     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2128     // branch %fcc0 not-nan, predict taken
2129     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2130     // fstoi $src,$dst
2131     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2132     // fitos $dst,$dst (if nan)
2133     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2134     // clear $dst (if nan)
2135     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2136     // carry on here...
2137   %}
2138 
2139   enc_class form_f2l_helper(regF src, regD dst) %{
2140     // fcmps %fcc0,$src,$src
2141     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2142     // branch %fcc0 not-nan, predict taken
2143     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2144     // fstox $src,$dst
2145     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2146     // fxtod $dst,$dst (if nan)
2147     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2148     // clear $dst (if nan)
2149     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2150     // carry on here...
2151   %}
2152 
2153   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2154   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2155   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2156   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2157 
2158   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2159 
2160   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2161   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2162 
2163   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2164     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2165   %}
2166 
2167   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2168     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2169   %}
2170 
2171   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2172     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2173   %}
2174 
2175   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2176     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2177   %}
2178 
2179   enc_class form3_convI2F(regF rs2, regF rd) %{
2180     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2181   %}
2182 
2183   // Encloding class for traceable jumps
2184   enc_class form_jmpl(g3RegP dest) %{
2185     emit_jmpl(cbuf, $dest$$reg);
2186   %}
2187 
2188   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2189     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2190   %}
2191 
2192   enc_class form2_nop() %{
2193     emit_nop(cbuf);
2194   %}
2195 
2196   enc_class form2_illtrap() %{
2197     emit_illtrap(cbuf);
2198   %}
2199 
2200 
2201   // Compare longs and convert into -1, 0, 1.
2202   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2203     // CMP $src1,$src2
2204     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2205     // blt,a,pn done
2206     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2207     // mov dst,-1 in delay slot
2208     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2209     // bgt,a,pn done
2210     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2211     // mov dst,1 in delay slot
2212     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2213     // CLR    $dst
2214     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2215   %}
2216 
2217   enc_class enc_PartialSubtypeCheck() %{
2218     MacroAssembler _masm(&cbuf);
2219     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2220     __ delayed()->nop();
2221   %}
2222 
2223   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
2224     MacroAssembler _masm(&cbuf);
2225     Label &L = *($labl$$label);
2226     Assembler::Predict predict_taken =
2227       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2228 
2229     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
2230     __ delayed()->nop();
2231   %}
2232 
2233   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
2234     MacroAssembler _masm(&cbuf);
2235     Label &L = *($labl$$label);
2236     Assembler::Predict predict_taken =
2237       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2238 
2239     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
2240     __ delayed()->nop();
2241   %}
2242 
2243   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
2244     MacroAssembler _masm(&cbuf);
2245     Label &L = *($labl$$label);
2246     Assembler::Predict predict_taken =
2247       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2248 
2249     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
2250     __ delayed()->nop();
2251   %}
2252 
2253   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
2254     MacroAssembler _masm(&cbuf);
2255     Label &L = *($labl$$label);
2256     Assembler::Predict predict_taken =
2257       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2258 
2259     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
2260     __ delayed()->nop();
2261   %}
2262 
2263   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
2264     MacroAssembler _masm(&cbuf);
2265 
2266     Register switch_reg       = as_Register($switch_val$$reg);
2267     Register table_reg        = O7;
2268 
2269     address table_base = __ address_table_constant(_index2label);
2270     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
2271 
2272     // Move table address into a register.
2273     __ set(table_base, table_reg, rspec);
2274 
2275     // Jump to base address + switch value
2276     __ ld_ptr(table_reg, switch_reg, table_reg);
2277     __ jmp(table_reg, G0);
2278     __ delayed()->nop();
2279 
2280   %}
2281 
2282   enc_class enc_ba( Label labl ) %{
2283     MacroAssembler _masm(&cbuf);
2284     Label &L = *($labl$$label);
2285     __ ba(false, L);
2286     __ delayed()->nop();
2287   %}
2288 
2289   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
2290     MacroAssembler _masm(&cbuf);
2291     Label &L = *$labl$$label;
2292     Assembler::Predict predict_taken =
2293       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2294 
2295     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
2296     __ delayed()->nop();
2297   %}
2298 
2299   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2300     int op = (Assembler::arith_op << 30) |
2301              ($dst$$reg << 25) |
2302              (Assembler::movcc_op3 << 19) |
2303              (1 << 18) |                    // cc2 bit for 'icc'
2304              ($cmp$$cmpcode << 14) |
2305              (0 << 13) |                    // select register move
2306              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2307              ($src$$reg << 0);
2308     *((int*)(cbuf.code_end())) = op;
2309     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2310   %}
2311 
2312   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2313     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2314     int op = (Assembler::arith_op << 30) |
2315              ($dst$$reg << 25) |
2316              (Assembler::movcc_op3 << 19) |
2317              (1 << 18) |                    // cc2 bit for 'icc'
2318              ($cmp$$cmpcode << 14) |
2319              (1 << 13) |                    // select immediate move
2320              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2321              (simm11 << 0);
2322     *((int*)(cbuf.code_end())) = op;
2323     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2324   %}
2325 
2326   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2327     int op = (Assembler::arith_op << 30) |
2328              ($dst$$reg << 25) |
2329              (Assembler::movcc_op3 << 19) |
2330              (0 << 18) |                    // cc2 bit for 'fccX'
2331              ($cmp$$cmpcode << 14) |
2332              (0 << 13) |                    // select register move
2333              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2334              ($src$$reg << 0);
2335     *((int*)(cbuf.code_end())) = op;
2336     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2337   %}
2338 
2339   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2340     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2341     int op = (Assembler::arith_op << 30) |
2342              ($dst$$reg << 25) |
2343              (Assembler::movcc_op3 << 19) |
2344              (0 << 18) |                    // cc2 bit for 'fccX'
2345              ($cmp$$cmpcode << 14) |
2346              (1 << 13) |                    // select immediate move
2347              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2348              (simm11 << 0);
2349     *((int*)(cbuf.code_end())) = op;
2350     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2351   %}
2352 
2353   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2354     int op = (Assembler::arith_op << 30) |
2355              ($dst$$reg << 25) |
2356              (Assembler::fpop2_op3 << 19) |
2357              (0 << 18) |
2358              ($cmp$$cmpcode << 14) |
2359              (1 << 13) |                    // select register move
2360              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2361              ($primary << 5) |              // select single, double or quad
2362              ($src$$reg << 0);
2363     *((int*)(cbuf.code_end())) = op;
2364     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2365   %}
2366 
2367   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2368     int op = (Assembler::arith_op << 30) |
2369              ($dst$$reg << 25) |
2370              (Assembler::fpop2_op3 << 19) |
2371              (0 << 18) |
2372              ($cmp$$cmpcode << 14) |
2373              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2374              ($primary << 5) |              // select single, double or quad
2375              ($src$$reg << 0);
2376     *((int*)(cbuf.code_end())) = op;
2377     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2378   %}
2379 
2380   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2381   // the condition comes from opcode-field instead of an argument.
2382   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2383     int op = (Assembler::arith_op << 30) |
2384              ($dst$$reg << 25) |
2385              (Assembler::movcc_op3 << 19) |
2386              (1 << 18) |                    // cc2 bit for 'icc'
2387              ($primary << 14) |
2388              (0 << 13) |                    // select register move
2389              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2390              ($src$$reg << 0);
2391     *((int*)(cbuf.code_end())) = op;
2392     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2393   %}
2394 
2395   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2396     int op = (Assembler::arith_op << 30) |
2397              ($dst$$reg << 25) |
2398              (Assembler::movcc_op3 << 19) |
2399              (6 << 16) |                    // cc2 bit for 'xcc'
2400              ($primary << 14) |
2401              (0 << 13) |                    // select register move
2402              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2403              ($src$$reg << 0);
2404     *((int*)(cbuf.code_end())) = op;
2405     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2406   %}
2407 
2408   // Utility encoding for loading a 64 bit Pointer into a register
2409   // The 64 bit pointer is stored in the generated code stream
2410   enc_class SetPtr( immP src, iRegP rd ) %{
2411     Register dest = reg_to_register_object($rd$$reg);
2412     MacroAssembler _masm(&cbuf);
2413     // [RGV] This next line should be generated from ADLC
2414     if ( _opnds[1]->constant_is_oop() ) {
2415       intptr_t val = $src$$constant;
2416       __ set_oop_constant((jobject)val, dest);
2417     } else {          // non-oop pointers, e.g. card mark base, heap top
2418       __ set($src$$constant, dest);
2419     }
2420   %}
2421 
2422   enc_class Set13( immI13 src, iRegI rd ) %{
2423     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2424   %}
2425 
2426   enc_class SetHi22( immI src, iRegI rd ) %{
2427     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2428   %}
2429 
2430   enc_class Set32( immI src, iRegI rd ) %{
2431     MacroAssembler _masm(&cbuf);
2432     __ set($src$$constant, reg_to_register_object($rd$$reg));
2433   %}
2434 
2435   enc_class SetNull( iRegI rd ) %{
2436     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
2437   %}
2438 
2439   enc_class call_epilog %{
2440     if( VerifyStackAtCalls ) {
2441       MacroAssembler _masm(&cbuf);
2442       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2443       Register temp_reg = G3;
2444       __ add(SP, framesize, temp_reg);
2445       __ cmp(temp_reg, FP);
2446       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2447     }
2448   %}
2449 
2450   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2451   // to G1 so the register allocator will not have to deal with the misaligned register
2452   // pair.
2453   enc_class adjust_long_from_native_call %{
2454 #ifndef _LP64
2455     if (returns_long()) {
2456       //    sllx  O0,32,O0
2457       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2458       //    srl   O1,0,O1
2459       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2460       //    or    O0,O1,G1
2461       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2462     }
2463 #endif
2464   %}
2465 
2466   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2467     // CALL directly to the runtime
2468     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2469     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2470                     /*preserve_g2=*/true, /*force far call*/true);
2471   %}
2472 
2473   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2474     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2475     // who we intended to call.
2476     if ( !_method ) {
2477       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2478     } else if (_optimized_virtual) {
2479       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2480     } else {
2481       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2482     }
2483     if( _method ) {  // Emit stub for static call
2484       emit_java_to_interp(cbuf);
2485     }
2486   %}
2487 
2488   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2489     MacroAssembler _masm(&cbuf);
2490     __ set_inst_mark();
2491     int vtable_index = this->_vtable_index;
2492     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2493     if (vtable_index < 0) {
2494       // must be invalid_vtable_index, not nonvirtual_vtable_index
2495       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2496       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2497       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2498       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2499       // !!!!!
2500       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2501       // emit_call_dynamic_prologue( cbuf );
2502       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2503 
2504       address  virtual_call_oop_addr = __ inst_mark();
2505       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2506       // who we intended to call.
2507       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2508       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2509     } else {
2510       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2511       // Just go thru the vtable
2512       // get receiver klass (receiver already checked for non-null)
2513       // If we end up going thru a c2i adapter interpreter expects method in G5
2514       int off = __ offset();
2515       __ load_klass(O0, G3_scratch);
2516       int klass_load_size;
2517       if (UseCompressedOops) {
2518         assert(Universe::heap() != NULL, "java heap should be initialized");
2519         if (Universe::narrow_oop_base() == NULL)
2520           klass_load_size = 2*BytesPerInstWord;
2521         else
2522           klass_load_size = 3*BytesPerInstWord;
2523       } else {
2524         klass_load_size = 1*BytesPerInstWord;
2525       }
2526       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2527       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2528       if( __ is_simm13(v_off) ) {
2529         __ ld_ptr(G3, v_off, G5_method);
2530       } else {
2531         // Generate 2 instructions
2532         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2533         __ or3(G5_method, v_off & 0x3ff, G5_method);
2534         // ld_ptr, set_hi, set
2535         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2536                "Unexpected instruction size(s)");
2537         __ ld_ptr(G3, G5_method, G5_method);
2538       }
2539       // NOTE: for vtable dispatches, the vtable entry will never be null.
2540       // However it may very well end up in handle_wrong_method if the
2541       // method is abstract for the particular class.
2542       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2543       // jump to target (either compiled code or c2iadapter)
2544       __ jmpl(G3_scratch, G0, O7);
2545       __ delayed()->nop();
2546     }
2547   %}
2548 
2549   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2550     MacroAssembler _masm(&cbuf);
2551 
2552     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2553     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2554                               // we might be calling a C2I adapter which needs it.
2555 
2556     assert(temp_reg != G5_ic_reg, "conflicting registers");
2557     // Load nmethod
2558     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2559 
2560     // CALL to compiled java, indirect the contents of G3
2561     __ set_inst_mark();
2562     __ callr(temp_reg, G0);
2563     __ delayed()->nop();
2564   %}
2565 
2566 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2567     MacroAssembler _masm(&cbuf);
2568     Register Rdividend = reg_to_register_object($src1$$reg);
2569     Register Rdivisor = reg_to_register_object($src2$$reg);
2570     Register Rresult = reg_to_register_object($dst$$reg);
2571 
2572     __ sra(Rdivisor, 0, Rdivisor);
2573     __ sra(Rdividend, 0, Rdividend);
2574     __ sdivx(Rdividend, Rdivisor, Rresult);
2575 %}
2576 
2577 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2578     MacroAssembler _masm(&cbuf);
2579 
2580     Register Rdividend = reg_to_register_object($src1$$reg);
2581     int divisor = $imm$$constant;
2582     Register Rresult = reg_to_register_object($dst$$reg);
2583 
2584     __ sra(Rdividend, 0, Rdividend);
2585     __ sdivx(Rdividend, divisor, Rresult);
2586 %}
2587 
2588 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2589     MacroAssembler _masm(&cbuf);
2590     Register Rsrc1 = reg_to_register_object($src1$$reg);
2591     Register Rsrc2 = reg_to_register_object($src2$$reg);
2592     Register Rdst  = reg_to_register_object($dst$$reg);
2593 
2594     __ sra( Rsrc1, 0, Rsrc1 );
2595     __ sra( Rsrc2, 0, Rsrc2 );
2596     __ mulx( Rsrc1, Rsrc2, Rdst );
2597     __ srlx( Rdst, 32, Rdst );
2598 %}
2599 
2600 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2601     MacroAssembler _masm(&cbuf);
2602     Register Rdividend = reg_to_register_object($src1$$reg);
2603     Register Rdivisor = reg_to_register_object($src2$$reg);
2604     Register Rresult = reg_to_register_object($dst$$reg);
2605     Register Rscratch = reg_to_register_object($scratch$$reg);
2606 
2607     assert(Rdividend != Rscratch, "");
2608     assert(Rdivisor  != Rscratch, "");
2609 
2610     __ sra(Rdividend, 0, Rdividend);
2611     __ sra(Rdivisor, 0, Rdivisor);
2612     __ sdivx(Rdividend, Rdivisor, Rscratch);
2613     __ mulx(Rscratch, Rdivisor, Rscratch);
2614     __ sub(Rdividend, Rscratch, Rresult);
2615 %}
2616 
2617 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2618     MacroAssembler _masm(&cbuf);
2619 
2620     Register Rdividend = reg_to_register_object($src1$$reg);
2621     int divisor = $imm$$constant;
2622     Register Rresult = reg_to_register_object($dst$$reg);
2623     Register Rscratch = reg_to_register_object($scratch$$reg);
2624 
2625     assert(Rdividend != Rscratch, "");
2626 
2627     __ sra(Rdividend, 0, Rdividend);
2628     __ sdivx(Rdividend, divisor, Rscratch);
2629     __ mulx(Rscratch, divisor, Rscratch);
2630     __ sub(Rdividend, Rscratch, Rresult);
2631 %}
2632 
2633 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2634     MacroAssembler _masm(&cbuf);
2635 
2636     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2637     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2638 
2639     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2640 %}
2641 
2642 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2643     MacroAssembler _masm(&cbuf);
2644 
2645     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2646     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2647 
2648     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2649 %}
2650 
2651 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2652     MacroAssembler _masm(&cbuf);
2653 
2654     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2655     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2656 
2657     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2658 %}
2659 
2660 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2661     MacroAssembler _masm(&cbuf);
2662 
2663     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2664     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2665 
2666     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2667 %}
2668 
2669 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2670     MacroAssembler _masm(&cbuf);
2671 
2672     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2673     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2674 
2675     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2676 %}
2677 
2678 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2679     MacroAssembler _masm(&cbuf);
2680 
2681     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2682     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2683 
2684     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2685 %}
2686 
2687 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2688     MacroAssembler _masm(&cbuf);
2689 
2690     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2691     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2692 
2693     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2694 %}
2695 
2696 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2697     MacroAssembler _masm(&cbuf);
2698 
2699     Register Roop  = reg_to_register_object($oop$$reg);
2700     Register Rbox  = reg_to_register_object($box$$reg);
2701     Register Rscratch = reg_to_register_object($scratch$$reg);
2702     Register Rmark =    reg_to_register_object($scratch2$$reg);
2703 
2704     assert(Roop  != Rscratch, "");
2705     assert(Roop  != Rmark, "");
2706     assert(Rbox  != Rscratch, "");
2707     assert(Rbox  != Rmark, "");
2708 
2709     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2710 %}
2711 
2712 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2713     MacroAssembler _masm(&cbuf);
2714 
2715     Register Roop  = reg_to_register_object($oop$$reg);
2716     Register Rbox  = reg_to_register_object($box$$reg);
2717     Register Rscratch = reg_to_register_object($scratch$$reg);
2718     Register Rmark =    reg_to_register_object($scratch2$$reg);
2719 
2720     assert(Roop  != Rscratch, "");
2721     assert(Roop  != Rmark, "");
2722     assert(Rbox  != Rscratch, "");
2723     assert(Rbox  != Rmark, "");
2724 
2725     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2726   %}
2727 
2728   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2729     MacroAssembler _masm(&cbuf);
2730     Register Rmem = reg_to_register_object($mem$$reg);
2731     Register Rold = reg_to_register_object($old$$reg);
2732     Register Rnew = reg_to_register_object($new$$reg);
2733 
2734     // casx_under_lock picks 1 of 3 encodings:
2735     // For 32-bit pointers you get a 32-bit CAS
2736     // For 64-bit pointers you get a 64-bit CASX
2737     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2738     __ cmp( Rold, Rnew );
2739   %}
2740 
2741   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2742     Register Rmem = reg_to_register_object($mem$$reg);
2743     Register Rold = reg_to_register_object($old$$reg);
2744     Register Rnew = reg_to_register_object($new$$reg);
2745 
2746     MacroAssembler _masm(&cbuf);
2747     __ mov(Rnew, O7);
2748     __ casx(Rmem, Rold, O7);
2749     __ cmp( Rold, O7 );
2750   %}
2751 
2752   // raw int cas, used for compareAndSwap
2753   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2754     Register Rmem = reg_to_register_object($mem$$reg);
2755     Register Rold = reg_to_register_object($old$$reg);
2756     Register Rnew = reg_to_register_object($new$$reg);
2757 
2758     MacroAssembler _masm(&cbuf);
2759     __ mov(Rnew, O7);
2760     __ cas(Rmem, Rold, O7);
2761     __ cmp( Rold, O7 );
2762   %}
2763 
2764   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2765     Register Rres = reg_to_register_object($res$$reg);
2766 
2767     MacroAssembler _masm(&cbuf);
2768     __ mov(1, Rres);
2769     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2770   %}
2771 
2772   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2773     Register Rres = reg_to_register_object($res$$reg);
2774 
2775     MacroAssembler _masm(&cbuf);
2776     __ mov(1, Rres);
2777     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2778   %}
2779 
2780   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2781     MacroAssembler _masm(&cbuf);
2782     Register Rdst = reg_to_register_object($dst$$reg);
2783     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2784                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2785     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2786                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2787 
2788     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2789     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2790   %}
2791 
2792   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
2793     MacroAssembler _masm(&cbuf);
2794     Register dest = reg_to_register_object($dst$$reg);
2795     Register temp = reg_to_register_object($tmp$$reg);
2796     __ set64( $src$$constant, dest, temp );
2797   %}
2798 
2799   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
2800     // Load a constant replicated "count" times with width "width"
2801     int bit_width = $width$$constant * 8;
2802     jlong elt_val = $src$$constant;
2803     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
2804     jlong val = elt_val;
2805     for (int i = 0; i < $count$$constant - 1; i++) {
2806         val <<= bit_width;
2807         val |= elt_val;
2808     }
2809     jdouble dval = *(jdouble*)&val; // coerce to double type
2810     MacroAssembler _masm(&cbuf);
2811     address double_address = __ double_constant(dval);
2812     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
2813     AddressLiteral addrlit(double_address, rspec);
2814 
2815     __ sethi(addrlit, $tmp$$Register);
2816     // XXX This is a quick fix for 6833573.
2817     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
2818     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
2819   %}
2820 
2821   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2822   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2823     MacroAssembler _masm(&cbuf);
2824     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
2825     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
2826     Register    base_pointer_arg = reg_to_register_object($base$$reg);
2827 
2828     Label loop;
2829     __ mov(nof_bytes_arg, nof_bytes_tmp);
2830 
2831     // Loop and clear, walking backwards through the array.
2832     // nof_bytes_tmp (if >0) is always the number of bytes to zero
2833     __ bind(loop);
2834     __ deccc(nof_bytes_tmp, 8);
2835     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2836     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2837     // %%%% this mini-loop must not cross a cache boundary!
2838   %}
2839 
2840 
2841   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
2842     Label Ldone, Lloop;
2843     MacroAssembler _masm(&cbuf);
2844 
2845     Register   str1_reg = reg_to_register_object($str1$$reg);
2846     Register   str2_reg = reg_to_register_object($str2$$reg);
2847     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
2848     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
2849     Register result_reg = reg_to_register_object($result$$reg);
2850 
2851     // Get the first character position in both strings
2852     //         [8] char array, [12] offset, [16] count
2853     int  value_offset = java_lang_String:: value_offset_in_bytes();
2854     int offset_offset = java_lang_String::offset_offset_in_bytes();
2855     int  count_offset = java_lang_String:: count_offset_in_bytes();
2856 
2857     // load str1 (jchar*) base address into tmp1_reg
2858     __ load_heap_oop(str1_reg, value_offset, tmp1_reg);
2859     __ ld(str1_reg, offset_offset, result_reg);
2860     __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
2861     __   ld(str1_reg, count_offset, str1_reg); // hoisted
2862     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2863     __   load_heap_oop(str2_reg, value_offset, tmp2_reg); // hoisted
2864     __ add(result_reg, tmp1_reg, tmp1_reg);
2865 
2866     // load str2 (jchar*) base address into tmp2_reg
2867     // __ ld_ptr(str2_reg, value_offset, tmp2_reg); // hoisted
2868     __ ld(str2_reg, offset_offset, result_reg);
2869     __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
2870     __   ld(str2_reg, count_offset, str2_reg); // hoisted
2871     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2872     __   subcc(str1_reg, str2_reg, O7); // hoisted
2873     __ add(result_reg, tmp2_reg, tmp2_reg);
2874 
2875     // Compute the minimum of the string lengths(str1_reg) and the
2876     // difference of the string lengths (stack)
2877 
2878     // discard string base pointers, after loading up the lengths
2879     // __ ld(str1_reg, count_offset, str1_reg); // hoisted
2880     // __ ld(str2_reg, count_offset, str2_reg); // hoisted
2881 
2882     // See if the lengths are different, and calculate min in str1_reg.
2883     // Stash diff in O7 in case we need it for a tie-breaker.
2884     Label Lskip;
2885     // __ subcc(str1_reg, str2_reg, O7); // hoisted
2886     __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
2887     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2888     // str2 is shorter, so use its count:
2889     __ delayed()->sll(str2_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
2890     __ bind(Lskip);
2891 
2892     // reallocate str1_reg, str2_reg, result_reg
2893     // Note:  limit_reg holds the string length pre-scaled by 2
2894     Register limit_reg =   str1_reg;
2895     Register  chr2_reg =   str2_reg;
2896     Register  chr1_reg = result_reg;
2897     // tmp{12} are the base pointers
2898 
2899     // Is the minimum length zero?
2900     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2901     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2902     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2903 
2904     // Load first characters
2905     __ lduh(tmp1_reg, 0, chr1_reg);
2906     __ lduh(tmp2_reg, 0, chr2_reg);
2907 
2908     // Compare first characters
2909     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2910     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2911     assert(chr1_reg == result_reg, "result must be pre-placed");
2912     __ delayed()->nop();
2913 
2914     {
2915       // Check after comparing first character to see if strings are equivalent
2916       Label LSkip2;
2917       // Check if the strings start at same location
2918       __ cmp(tmp1_reg, tmp2_reg);
2919       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2920       __ delayed()->nop();
2921 
2922       // Check if the length difference is zero (in O7)
2923       __ cmp(G0, O7);
2924       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2925       __ delayed()->mov(G0, result_reg);  // result is zero
2926 
2927       // Strings might not be equal
2928       __ bind(LSkip2);
2929     }
2930 
2931     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2932     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2933     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2934 
2935     // Shift tmp1_reg and tmp2_reg to the end of the arrays, negate limit
2936     __ add(tmp1_reg, limit_reg, tmp1_reg);
2937     __ add(tmp2_reg, limit_reg, tmp2_reg);
2938     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2939 
2940     // Compare the rest of the characters
2941     __ lduh(tmp1_reg, limit_reg, chr1_reg);
2942     __ bind(Lloop);
2943     // __ lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
2944     __ lduh(tmp2_reg, limit_reg, chr2_reg);
2945     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2946     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2947     assert(chr1_reg == result_reg, "result must be pre-placed");
2948     __ delayed()->inccc(limit_reg, sizeof(jchar));
2949     // annul LDUH if branch is not taken to prevent access past end of string
2950     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2951     __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
2952 
2953     // If strings are equal up to min length, return the length difference.
2954     __ mov(O7, result_reg);
2955 
2956     // Otherwise, return the difference between the first mismatched chars.
2957     __ bind(Ldone);
2958   %}
2959 
2960 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
2961     Label Lword, Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2962     MacroAssembler _masm(&cbuf);
2963 
2964     Register   str1_reg = reg_to_register_object($str1$$reg);
2965     Register   str2_reg = reg_to_register_object($str2$$reg);
2966     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
2967     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
2968     Register result_reg = reg_to_register_object($result$$reg);
2969 
2970     // Get the first character position in both strings
2971     //         [8] char array, [12] offset, [16] count
2972     int  value_offset = java_lang_String:: value_offset_in_bytes();
2973     int offset_offset = java_lang_String::offset_offset_in_bytes();
2974     int  count_offset = java_lang_String:: count_offset_in_bytes();
2975 
2976     // load str1 (jchar*) base address into tmp1_reg
2977     __ load_heap_oop(Address(str1_reg, value_offset), tmp1_reg);
2978     __ ld(Address(str1_reg, offset_offset), result_reg);
2979     __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
2980     __    ld(Address(str1_reg, count_offset), str1_reg); // hoisted
2981     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2982     __    load_heap_oop(Address(str2_reg, value_offset), tmp2_reg); // hoisted
2983     __ add(result_reg, tmp1_reg, tmp1_reg);
2984 
2985     // load str2 (jchar*) base address into tmp2_reg
2986     // __ ld_ptr(Address(str2_reg, value_offset), tmp2_reg); // hoisted
2987     __ ld(Address(str2_reg, offset_offset), result_reg);
2988     __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
2989     __    ld(Address(str2_reg, count_offset), str2_reg); // hoisted
2990     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2991     __   cmp(str1_reg, str2_reg); // hoisted
2992     __ add(result_reg, tmp2_reg, tmp2_reg);
2993 
2994     __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg);
2995     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
2996     __ delayed()->mov(G0, result_reg);    // not equal
2997 
2998     __ br_zero(Assembler::equal, true, Assembler::pn, str1_reg, Ldone);
2999     __ delayed()->add(G0, 1, result_reg); //equals
3000 
3001     __ cmp(tmp1_reg, tmp2_reg); //same string ?
3002     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3003     __ delayed()->add(G0, 1, result_reg);
3004 
3005     //rename registers
3006     Register limit_reg =   str1_reg;
3007     Register  chr2_reg =   str2_reg;
3008     Register  chr1_reg = result_reg;
3009     // tmp{12} are the base pointers
3010 
3011     //check for alignment and position the pointers to the ends
3012     __ or3(tmp1_reg, tmp2_reg, chr1_reg);
3013     __ andcc(chr1_reg, 0x3, chr1_reg); // notZero means at least one not 4-byte aligned
3014     __ br(Assembler::notZero, false, Assembler::pn, Lchar);
3015     __ delayed()->nop();
3016 
3017     __ bind(Lword);
3018     __ and3(limit_reg, 0x2, O7); //remember the remainder (either 0 or 2)
3019     __ andn(limit_reg, 0x3, limit_reg);
3020     __ br_zero(Assembler::zero, false, Assembler::pn, limit_reg, Lpost_word);
3021     __ delayed()->nop();
3022 
3023     __ add(tmp1_reg, limit_reg, tmp1_reg);
3024     __ add(tmp2_reg, limit_reg, tmp2_reg);
3025     __ neg(limit_reg);
3026 
3027     __ lduw(tmp1_reg, limit_reg, chr1_reg);
3028     __ bind(Lword_loop);
3029     __ lduw(tmp2_reg, limit_reg, chr2_reg);
3030     __ cmp(chr1_reg, chr2_reg);
3031     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3032     __ delayed()->mov(G0, result_reg);
3033     __ inccc(limit_reg, 2*sizeof(jchar));
3034     // annul LDUW if branch i  s not taken to prevent access past end of string
3035     __ br(Assembler::notZero, true, Assembler::pt, Lword_loop); //annul on taken
3036     __ delayed()->lduw(tmp1_reg, limit_reg, chr1_reg); // hoisted
3037 
3038     __ bind(Lpost_word);
3039     __ br_zero(Assembler::zero, true, Assembler::pt, O7, Ldone);
3040     __ delayed()->add(G0, 1, result_reg);
3041 
3042     __ lduh(tmp1_reg, 0, chr1_reg);
3043     __ lduh(tmp2_reg, 0, chr2_reg);
3044     __ cmp (chr1_reg, chr2_reg);
3045     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3046     __ delayed()->mov(G0, result_reg);
3047     __ ba(false,Ldone);
3048     __ delayed()->add(G0, 1, result_reg);
3049 
3050     __ bind(Lchar);
3051     __ add(tmp1_reg, limit_reg, tmp1_reg);
3052     __ add(tmp2_reg, limit_reg, tmp2_reg);
3053     __ neg(limit_reg); //negate count
3054 
3055     __ lduh(tmp1_reg, limit_reg, chr1_reg);
3056     __ bind(Lchar_loop);
3057     __ lduh(tmp2_reg, limit_reg, chr2_reg);
3058     __ cmp(chr1_reg, chr2_reg);
3059     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3060     __ delayed()->mov(G0, result_reg); //not equal
3061     __ inccc(limit_reg, sizeof(jchar));
3062     // annul LDUH if branch is not taken to prevent access past end of string
3063     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop); //annul on taken
3064     __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
3065 
3066     __ add(G0, 1, result_reg);  //equal
3067 
3068     __ bind(Ldone);
3069   %}
3070 
3071 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
3072     Label Lvector, Ldone, Lloop;
3073     MacroAssembler _masm(&cbuf);
3074 
3075     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3076     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3077     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3078     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
3079     Register result_reg = reg_to_register_object($result$$reg);
3080 
3081     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3082     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3083 
3084     // return true if the same array
3085     __ cmp(ary1_reg, ary2_reg);
3086     __ br(Assembler::equal, true, Assembler::pn, Ldone);
3087     __ delayed()->add(G0, 1, result_reg); // equal
3088 
3089     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3090     __ delayed()->mov(G0, result_reg);    // not equal
3091 
3092     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3093     __ delayed()->mov(G0, result_reg);    // not equal
3094 
3095     //load the lengths of arrays
3096     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3097     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3098 
3099     // return false if the two arrays are not equal length
3100     __ cmp(tmp1_reg, tmp2_reg);
3101     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3102     __ delayed()->mov(G0, result_reg);     // not equal
3103 
3104     __ br_zero(Assembler::zero, true, Assembler::pn, tmp1_reg, Ldone);
3105     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3106 
3107     // load array addresses
3108     __ add(ary1_reg, base_offset, ary1_reg);
3109     __ add(ary2_reg, base_offset, ary2_reg);
3110 
3111     // renaming registers
3112     Register chr1_reg  =  tmp2_reg;   // for characters in ary1
3113     Register chr2_reg  =  result_reg; // for characters in ary2
3114     Register limit_reg =  tmp1_reg;   // length
3115 
3116     // set byte count
3117     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3118     __ andcc(limit_reg, 0x2, chr1_reg); //trailing character ?
3119     __ br(Assembler::zero, false, Assembler::pt, Lvector);
3120     __ delayed()->nop();
3121 
3122     //compare the trailing char
3123     __ sub(limit_reg, sizeof(jchar), limit_reg);
3124     __ lduh(ary1_reg, limit_reg, chr1_reg);
3125     __ lduh(ary2_reg, limit_reg, chr2_reg);
3126     __ cmp(chr1_reg, chr2_reg);
3127     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3128     __ delayed()->mov(G0, result_reg);     // not equal
3129 
3130     // only one char ?
3131     __ br_zero(Assembler::zero, true, Assembler::pn, limit_reg, Ldone);
3132     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3133 
3134     __ bind(Lvector);
3135     // Shift ary1_reg and ary2_reg to the end of the arrays, negate limit
3136     __ add(ary1_reg, limit_reg, ary1_reg);
3137     __ add(ary2_reg, limit_reg, ary2_reg);
3138     __ neg(limit_reg, limit_reg);
3139 
3140     __ lduw(ary1_reg, limit_reg, chr1_reg);
3141     __ bind(Lloop);
3142     __ lduw(ary2_reg, limit_reg, chr2_reg);
3143     __ cmp(chr1_reg, chr2_reg);
3144     __ br(Assembler::notEqual, false, Assembler::pt, Ldone);
3145     __ delayed()->mov(G0, result_reg);     // not equal
3146     __ inccc(limit_reg, 2*sizeof(jchar));
3147     // annul LDUW if branch is not taken to prevent access past end of string
3148     __ br(Assembler::notZero, true, Assembler::pt, Lloop); //annul on taken
3149     __ delayed()->lduw(ary1_reg, limit_reg, chr1_reg); // hoisted
3150 
3151     __ add(G0, 1, result_reg); // equals
3152 
3153     __ bind(Ldone);
3154   %}
3155 
3156   enc_class enc_rethrow() %{
3157     cbuf.set_inst_mark();
3158     Register temp_reg = G3;
3159     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3160     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3161     MacroAssembler _masm(&cbuf);
3162 #ifdef ASSERT
3163     __ save_frame(0);
3164     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3165     __ sethi(last_rethrow_addrlit, L1);
3166     Address addr(L1, last_rethrow_addrlit.low10());
3167     __ get_pc(L2);
3168     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3169     __ st_ptr(L2, addr);
3170     __ restore();
3171 #endif
3172     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3173     __ delayed()->nop();
3174   %}
3175 
3176   enc_class emit_mem_nop() %{
3177     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3178     unsigned int *code = (unsigned int*)cbuf.code_end();
3179     *code = (unsigned int)0xc0839040;
3180     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3181   %}
3182 
3183   enc_class emit_fadd_nop() %{
3184     // Generates the instruction FMOVS f31,f31
3185     unsigned int *code = (unsigned int*)cbuf.code_end();
3186     *code = (unsigned int)0xbfa0003f;
3187     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3188   %}
3189 
3190   enc_class emit_br_nop() %{
3191     // Generates the instruction BPN,PN .
3192     unsigned int *code = (unsigned int*)cbuf.code_end();
3193     *code = (unsigned int)0x00400000;
3194     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3195   %}
3196 
3197   enc_class enc_membar_acquire %{
3198     MacroAssembler _masm(&cbuf);
3199     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3200   %}
3201 
3202   enc_class enc_membar_release %{
3203     MacroAssembler _masm(&cbuf);
3204     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3205   %}
3206 
3207   enc_class enc_membar_volatile %{
3208     MacroAssembler _masm(&cbuf);
3209     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3210   %}
3211 
3212   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3213     MacroAssembler _masm(&cbuf);
3214     Register src_reg = reg_to_register_object($src$$reg);
3215     Register dst_reg = reg_to_register_object($dst$$reg);
3216     __ sllx(src_reg, 56, dst_reg);
3217     __ srlx(dst_reg,  8, O7);
3218     __ or3 (dst_reg, O7, dst_reg);
3219     __ srlx(dst_reg, 16, O7);
3220     __ or3 (dst_reg, O7, dst_reg);
3221     __ srlx(dst_reg, 32, O7);
3222     __ or3 (dst_reg, O7, dst_reg);
3223   %}
3224 
3225   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3226     MacroAssembler _masm(&cbuf);
3227     Register src_reg = reg_to_register_object($src$$reg);
3228     Register dst_reg = reg_to_register_object($dst$$reg);
3229     __ sll(src_reg, 24, dst_reg);
3230     __ srl(dst_reg,  8, O7);
3231     __ or3(dst_reg, O7, dst_reg);
3232     __ srl(dst_reg, 16, O7);
3233     __ or3(dst_reg, O7, dst_reg);
3234   %}
3235 
3236   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3237     MacroAssembler _masm(&cbuf);
3238     Register src_reg = reg_to_register_object($src$$reg);
3239     Register dst_reg = reg_to_register_object($dst$$reg);
3240     __ sllx(src_reg, 48, dst_reg);
3241     __ srlx(dst_reg, 16, O7);
3242     __ or3 (dst_reg, O7, dst_reg);
3243     __ srlx(dst_reg, 32, O7);
3244     __ or3 (dst_reg, O7, dst_reg);
3245   %}
3246 
3247   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3248     MacroAssembler _masm(&cbuf);
3249     Register src_reg = reg_to_register_object($src$$reg);
3250     Register dst_reg = reg_to_register_object($dst$$reg);
3251     __ sllx(src_reg, 32, dst_reg);
3252     __ srlx(dst_reg, 32, O7);
3253     __ or3 (dst_reg, O7, dst_reg);
3254   %}
3255 
3256 %}
3257 
3258 //----------FRAME--------------------------------------------------------------
3259 // Definition of frame structure and management information.
3260 //
3261 //  S T A C K   L A Y O U T    Allocators stack-slot number
3262 //                             |   (to get allocators register number
3263 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3264 //  r   CALLER     |        |
3265 //  o     |        +--------+      pad to even-align allocators stack-slot
3266 //  w     V        |  pad0  |        numbers; owned by CALLER
3267 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3268 //  h     ^        |   in   |  5
3269 //        |        |  args  |  4   Holes in incoming args owned by SELF
3270 //  |     |        |        |  3
3271 //  |     |        +--------+
3272 //  V     |        | old out|      Empty on Intel, window on Sparc
3273 //        |    old |preserve|      Must be even aligned.
3274 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3275 //        |        |   in   |  3   area for Intel ret address
3276 //     Owned by    |preserve|      Empty on Sparc.
3277 //       SELF      +--------+
3278 //        |        |  pad2  |  2   pad to align old SP
3279 //        |        +--------+  1
3280 //        |        | locks  |  0
3281 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3282 //        |        |  pad1  | 11   pad to align new SP
3283 //        |        +--------+
3284 //        |        |        | 10
3285 //        |        | spills |  9   spills
3286 //        V        |        |  8   (pad0 slot for callee)
3287 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3288 //        ^        |  out   |  7
3289 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3290 //     Owned by    +--------+
3291 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3292 //        |    new |preserve|      Must be even-aligned.
3293 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3294 //        |        |        |
3295 //
3296 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3297 //         known from SELF's arguments and the Java calling convention.
3298 //         Region 6-7 is determined per call site.
3299 // Note 2: If the calling convention leaves holes in the incoming argument
3300 //         area, those holes are owned by SELF.  Holes in the outgoing area
3301 //         are owned by the CALLEE.  Holes should not be nessecary in the
3302 //         incoming area, as the Java calling convention is completely under
3303 //         the control of the AD file.  Doubles can be sorted and packed to
3304 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3305 //         varargs C calling conventions.
3306 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3307 //         even aligned with pad0 as needed.
3308 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3309 //         region 6-11 is even aligned; it may be padded out more so that
3310 //         the region from SP to FP meets the minimum stack alignment.
3311 
3312 frame %{
3313   // What direction does stack grow in (assumed to be same for native & Java)
3314   stack_direction(TOWARDS_LOW);
3315 
3316   // These two registers define part of the calling convention
3317   // between compiled code and the interpreter.
3318   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3319   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3320 
3321   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3322   cisc_spilling_operand_name(indOffset);
3323 
3324   // Number of stack slots consumed by a Monitor enter
3325 #ifdef _LP64
3326   sync_stack_slots(2);
3327 #else
3328   sync_stack_slots(1);
3329 #endif
3330 
3331   // Compiled code's Frame Pointer
3332   frame_pointer(R_SP);
3333 
3334   // Stack alignment requirement
3335   stack_alignment(StackAlignmentInBytes);
3336   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3337   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3338 
3339   // Number of stack slots between incoming argument block and the start of
3340   // a new frame.  The PROLOG must add this many slots to the stack.  The
3341   // EPILOG must remove this many slots.
3342   in_preserve_stack_slots(0);
3343 
3344   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3345   // for calls to C.  Supports the var-args backing area for register parms.
3346   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3347 #ifdef _LP64
3348   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3349   varargs_C_out_slots_killed(12);
3350 #else
3351   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3352   varargs_C_out_slots_killed( 7);
3353 #endif
3354 
3355   // The after-PROLOG location of the return address.  Location of
3356   // return address specifies a type (REG or STACK) and a number
3357   // representing the register number (i.e. - use a register name) or
3358   // stack slot.
3359   return_addr(REG R_I7);          // Ret Addr is in register I7
3360 
3361   // Body of function which returns an OptoRegs array locating
3362   // arguments either in registers or in stack slots for calling
3363   // java
3364   calling_convention %{
3365     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3366 
3367   %}
3368 
3369   // Body of function which returns an OptoRegs array locating
3370   // arguments either in registers or in stack slots for callin
3371   // C.
3372   c_calling_convention %{
3373     // This is obviously always outgoing
3374     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3375   %}
3376 
3377   // Location of native (C/C++) and interpreter return values.  This is specified to
3378   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3379   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3380   // to and from the register pairs is done by the appropriate call and epilog
3381   // opcodes.  This simplifies the register allocator.
3382   c_return_value %{
3383     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3384 #ifdef     _LP64
3385     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3386     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3387     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3388     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3389 #else  // !_LP64
3390     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3391     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3392     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3393     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3394 #endif
3395     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3396                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3397   %}
3398 
3399   // Location of compiled Java return values.  Same as C
3400   return_value %{
3401     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3402 #ifdef     _LP64
3403     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3404     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3405     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3406     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3407 #else  // !_LP64
3408     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3409     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3410     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3411     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3412 #endif
3413     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3414                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3415   %}
3416 
3417 %}
3418 
3419 
3420 //----------ATTRIBUTES---------------------------------------------------------
3421 //----------Operand Attributes-------------------------------------------------
3422 op_attrib op_cost(1);          // Required cost attribute
3423 
3424 //----------Instruction Attributes---------------------------------------------
3425 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3426 ins_attrib ins_size(32);       // Required size attribute (in bits)
3427 ins_attrib ins_pc_relative(0); // Required PC Relative flag
3428 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3429                                 // non-matching short branch variant of some
3430                                                             // long branch?
3431 
3432 //----------OPERANDS-----------------------------------------------------------
3433 // Operand definitions must precede instruction definitions for correct parsing
3434 // in the ADLC because operands constitute user defined types which are used in
3435 // instruction definitions.
3436 
3437 //----------Simple Operands----------------------------------------------------
3438 // Immediate Operands
3439 // Integer Immediate: 32-bit
3440 operand immI() %{
3441   match(ConI);
3442 
3443   op_cost(0);
3444   // formats are generated automatically for constants and base registers
3445   format %{ %}
3446   interface(CONST_INTER);
3447 %}
3448 
3449 // Integer Immediate: 13-bit
3450 operand immI13() %{
3451   predicate(Assembler::is_simm13(n->get_int()));
3452   match(ConI);
3453   op_cost(0);
3454 
3455   format %{ %}
3456   interface(CONST_INTER);
3457 %}
3458 
3459 // Integer Immediate: 13-bit minus 7
3460 operand immI13m7() %{
3461   predicate(Assembler::is_simm13(n->get_int() + 7));
3462   match(ConI);
3463   op_cost(0);
3464 
3465   format %{ %}
3466   interface(CONST_INTER);
3467 %}
3468 
3469 // Unsigned (positive) Integer Immediate: 13-bit
3470 operand immU13() %{
3471   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3472   match(ConI);
3473   op_cost(0);
3474 
3475   format %{ %}
3476   interface(CONST_INTER);
3477 %}
3478 
3479 // Integer Immediate: 6-bit
3480 operand immU6() %{
3481   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3482   match(ConI);
3483   op_cost(0);
3484   format %{ %}
3485   interface(CONST_INTER);
3486 %}
3487 
3488 // Integer Immediate: 11-bit
3489 operand immI11() %{
3490   predicate(Assembler::is_simm(n->get_int(),11));
3491   match(ConI);
3492   op_cost(0);
3493   format %{ %}
3494   interface(CONST_INTER);
3495 %}
3496 
3497 // Integer Immediate: 0-bit
3498 operand immI0() %{
3499   predicate(n->get_int() == 0);
3500   match(ConI);
3501   op_cost(0);
3502 
3503   format %{ %}
3504   interface(CONST_INTER);
3505 %}
3506 
3507 // Integer Immediate: the value 10
3508 operand immI10() %{
3509   predicate(n->get_int() == 10);
3510   match(ConI);
3511   op_cost(0);
3512 
3513   format %{ %}
3514   interface(CONST_INTER);
3515 %}
3516 
3517 // Integer Immediate: the values 0-31
3518 operand immU5() %{
3519   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3520   match(ConI);
3521   op_cost(0);
3522 
3523   format %{ %}
3524   interface(CONST_INTER);
3525 %}
3526 
3527 // Integer Immediate: the values 1-31
3528 operand immI_1_31() %{
3529   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3530   match(ConI);
3531   op_cost(0);
3532 
3533   format %{ %}
3534   interface(CONST_INTER);
3535 %}
3536 
3537 // Integer Immediate: the values 32-63
3538 operand immI_32_63() %{
3539   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3540   match(ConI);
3541   op_cost(0);
3542 
3543   format %{ %}
3544   interface(CONST_INTER);
3545 %}
3546 
3547 // Immediates for special shifts (sign extend)
3548 
3549 // Integer Immediate: the value 16
3550 operand immI_16() %{
3551   predicate(n->get_int() == 16);
3552   match(ConI);
3553   op_cost(0);
3554 
3555   format %{ %}
3556   interface(CONST_INTER);
3557 %}
3558 
3559 // Integer Immediate: the value 24
3560 operand immI_24() %{
3561   predicate(n->get_int() == 24);
3562   match(ConI);
3563   op_cost(0);
3564 
3565   format %{ %}
3566   interface(CONST_INTER);
3567 %}
3568 
3569 // Integer Immediate: the value 255
3570 operand immI_255() %{
3571   predicate( n->get_int() == 255 );
3572   match(ConI);
3573   op_cost(0);
3574 
3575   format %{ %}
3576   interface(CONST_INTER);
3577 %}
3578 
3579 // Integer Immediate: the value 65535
3580 operand immI_65535() %{
3581   predicate(n->get_int() == 65535);
3582   match(ConI);
3583   op_cost(0);
3584 
3585   format %{ %}
3586   interface(CONST_INTER);
3587 %}
3588 
3589 // Long Immediate: the value FF
3590 operand immL_FF() %{
3591   predicate( n->get_long() == 0xFFL );
3592   match(ConL);
3593   op_cost(0);
3594 
3595   format %{ %}
3596   interface(CONST_INTER);
3597 %}
3598 
3599 // Long Immediate: the value FFFF
3600 operand immL_FFFF() %{
3601   predicate( n->get_long() == 0xFFFFL );
3602   match(ConL);
3603   op_cost(0);
3604 
3605   format %{ %}
3606   interface(CONST_INTER);
3607 %}
3608 
3609 // Pointer Immediate: 32 or 64-bit
3610 operand immP() %{
3611   match(ConP);
3612 
3613   op_cost(5);
3614   // formats are generated automatically for constants and base registers
3615   format %{ %}
3616   interface(CONST_INTER);
3617 %}
3618 
3619 operand immP13() %{
3620   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3621   match(ConP);
3622   op_cost(0);
3623 
3624   format %{ %}
3625   interface(CONST_INTER);
3626 %}
3627 
3628 operand immP0() %{
3629   predicate(n->get_ptr() == 0);
3630   match(ConP);
3631   op_cost(0);
3632 
3633   format %{ %}
3634   interface(CONST_INTER);
3635 %}
3636 
3637 operand immP_poll() %{
3638   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3639   match(ConP);
3640 
3641   // formats are generated automatically for constants and base registers
3642   format %{ %}
3643   interface(CONST_INTER);
3644 %}
3645 
3646 // Pointer Immediate
3647 operand immN()
3648 %{
3649   match(ConN);
3650 
3651   op_cost(10);
3652   format %{ %}
3653   interface(CONST_INTER);
3654 %}
3655 
3656 // NULL Pointer Immediate
3657 operand immN0()
3658 %{
3659   predicate(n->get_narrowcon() == 0);
3660   match(ConN);
3661 
3662   op_cost(0);
3663   format %{ %}
3664   interface(CONST_INTER);
3665 %}
3666 
3667 operand immL() %{
3668   match(ConL);
3669   op_cost(40);
3670   // formats are generated automatically for constants and base registers
3671   format %{ %}
3672   interface(CONST_INTER);
3673 %}
3674 
3675 operand immL0() %{
3676   predicate(n->get_long() == 0L);
3677   match(ConL);
3678   op_cost(0);
3679   // formats are generated automatically for constants and base registers
3680   format %{ %}
3681   interface(CONST_INTER);
3682 %}
3683 
3684 // Long Immediate: 13-bit
3685 operand immL13() %{
3686   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3687   match(ConL);
3688   op_cost(0);
3689 
3690   format %{ %}
3691   interface(CONST_INTER);
3692 %}
3693 
3694 // Long Immediate: 13-bit minus 7
3695 operand immL13m7() %{
3696   predicate((-4096L < (n->get_long() + 7L)) && ((n->get_long() + 7L) <= 4095L));
3697   match(ConL);
3698   op_cost(0);
3699 
3700   format %{ %}
3701   interface(CONST_INTER);
3702 %}
3703 
3704 // Long Immediate: low 32-bit mask
3705 operand immL_32bits() %{
3706   predicate(n->get_long() == 0xFFFFFFFFL);
3707   match(ConL);
3708   op_cost(0);
3709 
3710   format %{ %}
3711   interface(CONST_INTER);
3712 %}
3713 
3714 // Double Immediate
3715 operand immD() %{
3716   match(ConD);
3717 
3718   op_cost(40);
3719   format %{ %}
3720   interface(CONST_INTER);
3721 %}
3722 
3723 operand immD0() %{
3724 #ifdef _LP64
3725   // on 64-bit architectures this comparision is faster
3726   predicate(jlong_cast(n->getd()) == 0);
3727 #else
3728   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3729 #endif
3730   match(ConD);
3731 
3732   op_cost(0);
3733   format %{ %}
3734   interface(CONST_INTER);
3735 %}
3736 
3737 // Float Immediate
3738 operand immF() %{
3739   match(ConF);
3740 
3741   op_cost(20);
3742   format %{ %}
3743   interface(CONST_INTER);
3744 %}
3745 
3746 // Float Immediate: 0
3747 operand immF0() %{
3748   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3749   match(ConF);
3750 
3751   op_cost(0);
3752   format %{ %}
3753   interface(CONST_INTER);
3754 %}
3755 
3756 // Integer Register Operands
3757 // Integer Register
3758 operand iRegI() %{
3759   constraint(ALLOC_IN_RC(int_reg));
3760   match(RegI);
3761 
3762   match(notemp_iRegI);
3763   match(g1RegI);
3764   match(o0RegI);
3765   match(iRegIsafe);
3766 
3767   format %{ %}
3768   interface(REG_INTER);
3769 %}
3770 
3771 operand notemp_iRegI() %{
3772   constraint(ALLOC_IN_RC(notemp_int_reg));
3773   match(RegI);
3774 
3775   match(o0RegI);
3776 
3777   format %{ %}
3778   interface(REG_INTER);
3779 %}
3780 
3781 operand o0RegI() %{
3782   constraint(ALLOC_IN_RC(o0_regI));
3783   match(iRegI);
3784 
3785   format %{ %}
3786   interface(REG_INTER);
3787 %}
3788 
3789 // Pointer Register
3790 operand iRegP() %{
3791   constraint(ALLOC_IN_RC(ptr_reg));
3792   match(RegP);
3793 
3794   match(lock_ptr_RegP);
3795   match(g1RegP);
3796   match(g2RegP);
3797   match(g3RegP);
3798   match(g4RegP);
3799   match(i0RegP);
3800   match(o0RegP);
3801   match(o1RegP);
3802   match(l7RegP);
3803 
3804   format %{ %}
3805   interface(REG_INTER);
3806 %}
3807 
3808 operand sp_ptr_RegP() %{
3809   constraint(ALLOC_IN_RC(sp_ptr_reg));
3810   match(RegP);
3811   match(iRegP);
3812 
3813   format %{ %}
3814   interface(REG_INTER);
3815 %}
3816 
3817 operand lock_ptr_RegP() %{
3818   constraint(ALLOC_IN_RC(lock_ptr_reg));
3819   match(RegP);
3820   match(i0RegP);
3821   match(o0RegP);
3822   match(o1RegP);
3823   match(l7RegP);
3824 
3825   format %{ %}
3826   interface(REG_INTER);
3827 %}
3828 
3829 operand g1RegP() %{
3830   constraint(ALLOC_IN_RC(g1_regP));
3831   match(iRegP);
3832 
3833   format %{ %}
3834   interface(REG_INTER);
3835 %}
3836 
3837 operand g2RegP() %{
3838   constraint(ALLOC_IN_RC(g2_regP));
3839   match(iRegP);
3840 
3841   format %{ %}
3842   interface(REG_INTER);
3843 %}
3844 
3845 operand g3RegP() %{
3846   constraint(ALLOC_IN_RC(g3_regP));
3847   match(iRegP);
3848 
3849   format %{ %}
3850   interface(REG_INTER);
3851 %}
3852 
3853 operand g1RegI() %{
3854   constraint(ALLOC_IN_RC(g1_regI));
3855   match(iRegI);
3856 
3857   format %{ %}
3858   interface(REG_INTER);
3859 %}
3860 
3861 operand g3RegI() %{
3862   constraint(ALLOC_IN_RC(g3_regI));
3863   match(iRegI);
3864 
3865   format %{ %}
3866   interface(REG_INTER);
3867 %}
3868 
3869 operand g4RegI() %{
3870   constraint(ALLOC_IN_RC(g4_regI));
3871   match(iRegI);
3872 
3873   format %{ %}
3874   interface(REG_INTER);
3875 %}
3876 
3877 operand g4RegP() %{
3878   constraint(ALLOC_IN_RC(g4_regP));
3879   match(iRegP);
3880 
3881   format %{ %}
3882   interface(REG_INTER);
3883 %}
3884 
3885 operand i0RegP() %{
3886   constraint(ALLOC_IN_RC(i0_regP));
3887   match(iRegP);
3888 
3889   format %{ %}
3890   interface(REG_INTER);
3891 %}
3892 
3893 operand o0RegP() %{
3894   constraint(ALLOC_IN_RC(o0_regP));
3895   match(iRegP);
3896 
3897   format %{ %}
3898   interface(REG_INTER);
3899 %}
3900 
3901 operand o1RegP() %{
3902   constraint(ALLOC_IN_RC(o1_regP));
3903   match(iRegP);
3904 
3905   format %{ %}
3906   interface(REG_INTER);
3907 %}
3908 
3909 operand o2RegP() %{
3910   constraint(ALLOC_IN_RC(o2_regP));
3911   match(iRegP);
3912 
3913   format %{ %}
3914   interface(REG_INTER);
3915 %}
3916 
3917 operand o7RegP() %{
3918   constraint(ALLOC_IN_RC(o7_regP));
3919   match(iRegP);
3920 
3921   format %{ %}
3922   interface(REG_INTER);
3923 %}
3924 
3925 operand l7RegP() %{
3926   constraint(ALLOC_IN_RC(l7_regP));
3927   match(iRegP);
3928 
3929   format %{ %}
3930   interface(REG_INTER);
3931 %}
3932 
3933 operand o7RegI() %{
3934   constraint(ALLOC_IN_RC(o7_regI));
3935   match(iRegI);
3936 
3937   format %{ %}
3938   interface(REG_INTER);
3939 %}
3940 
3941 operand iRegN() %{
3942   constraint(ALLOC_IN_RC(int_reg));
3943   match(RegN);
3944 
3945   format %{ %}
3946   interface(REG_INTER);
3947 %}
3948 
3949 // Long Register
3950 operand iRegL() %{
3951   constraint(ALLOC_IN_RC(long_reg));
3952   match(RegL);
3953 
3954   format %{ %}
3955   interface(REG_INTER);
3956 %}
3957 
3958 operand o2RegL() %{
3959   constraint(ALLOC_IN_RC(o2_regL));
3960   match(iRegL);
3961 
3962   format %{ %}
3963   interface(REG_INTER);
3964 %}
3965 
3966 operand o7RegL() %{
3967   constraint(ALLOC_IN_RC(o7_regL));
3968   match(iRegL);
3969 
3970   format %{ %}
3971   interface(REG_INTER);
3972 %}
3973 
3974 operand g1RegL() %{
3975   constraint(ALLOC_IN_RC(g1_regL));
3976   match(iRegL);
3977 
3978   format %{ %}
3979   interface(REG_INTER);
3980 %}
3981 
3982 operand g3RegL() %{
3983   constraint(ALLOC_IN_RC(g3_regL));
3984   match(iRegL);
3985 
3986   format %{ %}
3987   interface(REG_INTER);
3988 %}
3989 
3990 // Int Register safe
3991 // This is 64bit safe
3992 operand iRegIsafe() %{
3993   constraint(ALLOC_IN_RC(long_reg));
3994 
3995   match(iRegI);
3996 
3997   format %{ %}
3998   interface(REG_INTER);
3999 %}
4000 
4001 // Condition Code Flag Register
4002 operand flagsReg() %{
4003   constraint(ALLOC_IN_RC(int_flags));
4004   match(RegFlags);
4005 
4006   format %{ "ccr" %} // both ICC and XCC
4007   interface(REG_INTER);
4008 %}
4009 
4010 // Condition Code Register, unsigned comparisons.
4011 operand flagsRegU() %{
4012   constraint(ALLOC_IN_RC(int_flags));
4013   match(RegFlags);
4014 
4015   format %{ "icc_U" %}
4016   interface(REG_INTER);
4017 %}
4018 
4019 // Condition Code Register, pointer comparisons.
4020 operand flagsRegP() %{
4021   constraint(ALLOC_IN_RC(int_flags));
4022   match(RegFlags);
4023 
4024 #ifdef _LP64
4025   format %{ "xcc_P" %}
4026 #else
4027   format %{ "icc_P" %}
4028 #endif
4029   interface(REG_INTER);
4030 %}
4031 
4032 // Condition Code Register, long comparisons.
4033 operand flagsRegL() %{
4034   constraint(ALLOC_IN_RC(int_flags));
4035   match(RegFlags);
4036 
4037   format %{ "xcc_L" %}
4038   interface(REG_INTER);
4039 %}
4040 
4041 // Condition Code Register, floating comparisons, unordered same as "less".
4042 operand flagsRegF() %{
4043   constraint(ALLOC_IN_RC(float_flags));
4044   match(RegFlags);
4045   match(flagsRegF0);
4046 
4047   format %{ %}
4048   interface(REG_INTER);
4049 %}
4050 
4051 operand flagsRegF0() %{
4052   constraint(ALLOC_IN_RC(float_flag0));
4053   match(RegFlags);
4054 
4055   format %{ %}
4056   interface(REG_INTER);
4057 %}
4058 
4059 
4060 // Condition Code Flag Register used by long compare
4061 operand flagsReg_long_LTGE() %{
4062   constraint(ALLOC_IN_RC(int_flags));
4063   match(RegFlags);
4064   format %{ "icc_LTGE" %}
4065   interface(REG_INTER);
4066 %}
4067 operand flagsReg_long_EQNE() %{
4068   constraint(ALLOC_IN_RC(int_flags));
4069   match(RegFlags);
4070   format %{ "icc_EQNE" %}
4071   interface(REG_INTER);
4072 %}
4073 operand flagsReg_long_LEGT() %{
4074   constraint(ALLOC_IN_RC(int_flags));
4075   match(RegFlags);
4076   format %{ "icc_LEGT" %}
4077   interface(REG_INTER);
4078 %}
4079 
4080 
4081 operand regD() %{
4082   constraint(ALLOC_IN_RC(dflt_reg));
4083   match(RegD);
4084 
4085   match(regD_low);
4086 
4087   format %{ %}
4088   interface(REG_INTER);
4089 %}
4090 
4091 operand regF() %{
4092   constraint(ALLOC_IN_RC(sflt_reg));
4093   match(RegF);
4094 
4095   format %{ %}
4096   interface(REG_INTER);
4097 %}
4098 
4099 operand regD_low() %{
4100   constraint(ALLOC_IN_RC(dflt_low_reg));
4101   match(regD);
4102 
4103   format %{ %}
4104   interface(REG_INTER);
4105 %}
4106 
4107 // Special Registers
4108 
4109 // Method Register
4110 operand inline_cache_regP(iRegP reg) %{
4111   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4112   match(reg);
4113   format %{ %}
4114   interface(REG_INTER);
4115 %}
4116 
4117 operand interpreter_method_oop_regP(iRegP reg) %{
4118   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4119   match(reg);
4120   format %{ %}
4121   interface(REG_INTER);
4122 %}
4123 
4124 
4125 //----------Complex Operands---------------------------------------------------
4126 // Indirect Memory Reference
4127 operand indirect(sp_ptr_RegP reg) %{
4128   constraint(ALLOC_IN_RC(sp_ptr_reg));
4129   match(reg);
4130 
4131   op_cost(100);
4132   format %{ "[$reg]" %}
4133   interface(MEMORY_INTER) %{
4134     base($reg);
4135     index(0x0);
4136     scale(0x0);
4137     disp(0x0);
4138   %}
4139 %}
4140 
4141 // Indirect with simm13 Offset
4142 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4143   constraint(ALLOC_IN_RC(sp_ptr_reg));
4144   match(AddP reg offset);
4145 
4146   op_cost(100);
4147   format %{ "[$reg + $offset]" %}
4148   interface(MEMORY_INTER) %{
4149     base($reg);
4150     index(0x0);
4151     scale(0x0);
4152     disp($offset);
4153   %}
4154 %}
4155 
4156 // Indirect with simm13 Offset minus 7
4157 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4158   constraint(ALLOC_IN_RC(sp_ptr_reg));
4159   match(AddP reg offset);
4160 
4161   op_cost(100);
4162   format %{ "[$reg + $offset]" %}
4163   interface(MEMORY_INTER) %{
4164     base($reg);
4165     index(0x0);
4166     scale(0x0);
4167     disp($offset);
4168   %}
4169 %}
4170 
4171 // Note:  Intel has a swapped version also, like this:
4172 //operand indOffsetX(iRegI reg, immP offset) %{
4173 //  constraint(ALLOC_IN_RC(int_reg));
4174 //  match(AddP offset reg);
4175 //
4176 //  op_cost(100);
4177 //  format %{ "[$reg + $offset]" %}
4178 //  interface(MEMORY_INTER) %{
4179 //    base($reg);
4180 //    index(0x0);
4181 //    scale(0x0);
4182 //    disp($offset);
4183 //  %}
4184 //%}
4185 //// However, it doesn't make sense for SPARC, since
4186 // we have no particularly good way to embed oops in
4187 // single instructions.
4188 
4189 // Indirect with Register Index
4190 operand indIndex(iRegP addr, iRegX index) %{
4191   constraint(ALLOC_IN_RC(ptr_reg));
4192   match(AddP addr index);
4193 
4194   op_cost(100);
4195   format %{ "[$addr + $index]" %}
4196   interface(MEMORY_INTER) %{
4197     base($addr);
4198     index($index);
4199     scale(0x0);
4200     disp(0x0);
4201   %}
4202 %}
4203 
4204 //----------Special Memory Operands--------------------------------------------
4205 // Stack Slot Operand - This operand is used for loading and storing temporary
4206 //                      values on the stack where a match requires a value to
4207 //                      flow through memory.
4208 operand stackSlotI(sRegI reg) %{
4209   constraint(ALLOC_IN_RC(stack_slots));
4210   op_cost(100);
4211   //match(RegI);
4212   format %{ "[$reg]" %}
4213   interface(MEMORY_INTER) %{
4214     base(0xE);   // R_SP
4215     index(0x0);
4216     scale(0x0);
4217     disp($reg);  // Stack Offset
4218   %}
4219 %}
4220 
4221 operand stackSlotP(sRegP reg) %{
4222   constraint(ALLOC_IN_RC(stack_slots));
4223   op_cost(100);
4224   //match(RegP);
4225   format %{ "[$reg]" %}
4226   interface(MEMORY_INTER) %{
4227     base(0xE);   // R_SP
4228     index(0x0);
4229     scale(0x0);
4230     disp($reg);  // Stack Offset
4231   %}
4232 %}
4233 
4234 operand stackSlotF(sRegF reg) %{
4235   constraint(ALLOC_IN_RC(stack_slots));
4236   op_cost(100);
4237   //match(RegF);
4238   format %{ "[$reg]" %}
4239   interface(MEMORY_INTER) %{
4240     base(0xE);   // R_SP
4241     index(0x0);
4242     scale(0x0);
4243     disp($reg);  // Stack Offset
4244   %}
4245 %}
4246 operand stackSlotD(sRegD reg) %{
4247   constraint(ALLOC_IN_RC(stack_slots));
4248   op_cost(100);
4249   //match(RegD);
4250   format %{ "[$reg]" %}
4251   interface(MEMORY_INTER) %{
4252     base(0xE);   // R_SP
4253     index(0x0);
4254     scale(0x0);
4255     disp($reg);  // Stack Offset
4256   %}
4257 %}
4258 operand stackSlotL(sRegL reg) %{
4259   constraint(ALLOC_IN_RC(stack_slots));
4260   op_cost(100);
4261   //match(RegL);
4262   format %{ "[$reg]" %}
4263   interface(MEMORY_INTER) %{
4264     base(0xE);   // R_SP
4265     index(0x0);
4266     scale(0x0);
4267     disp($reg);  // Stack Offset
4268   %}
4269 %}
4270 
4271 // Operands for expressing Control Flow
4272 // NOTE:  Label is a predefined operand which should not be redefined in
4273 //        the AD file.  It is generically handled within the ADLC.
4274 
4275 //----------Conditional Branch Operands----------------------------------------
4276 // Comparison Op  - This is the operation of the comparison, and is limited to
4277 //                  the following set of codes:
4278 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4279 //
4280 // Other attributes of the comparison, such as unsignedness, are specified
4281 // by the comparison instruction that sets a condition code flags register.
4282 // That result is represented by a flags operand whose subtype is appropriate
4283 // to the unsignedness (etc.) of the comparison.
4284 //
4285 // Later, the instruction which matches both the Comparison Op (a Bool) and
4286 // the flags (produced by the Cmp) specifies the coding of the comparison op
4287 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4288 
4289 operand cmpOp() %{
4290   match(Bool);
4291 
4292   format %{ "" %}
4293   interface(COND_INTER) %{
4294     equal(0x1);
4295     not_equal(0x9);
4296     less(0x3);
4297     greater_equal(0xB);
4298     less_equal(0x2);
4299     greater(0xA);
4300   %}
4301 %}
4302 
4303 // Comparison Op, unsigned
4304 operand cmpOpU() %{
4305   match(Bool);
4306 
4307   format %{ "u" %}
4308   interface(COND_INTER) %{
4309     equal(0x1);
4310     not_equal(0x9);
4311     less(0x5);
4312     greater_equal(0xD);
4313     less_equal(0x4);
4314     greater(0xC);
4315   %}
4316 %}
4317 
4318 // Comparison Op, pointer (same as unsigned)
4319 operand cmpOpP() %{
4320   match(Bool);
4321 
4322   format %{ "p" %}
4323   interface(COND_INTER) %{
4324     equal(0x1);
4325     not_equal(0x9);
4326     less(0x5);
4327     greater_equal(0xD);
4328     less_equal(0x4);
4329     greater(0xC);
4330   %}
4331 %}
4332 
4333 // Comparison Op, branch-register encoding
4334 operand cmpOp_reg() %{
4335   match(Bool);
4336 
4337   format %{ "" %}
4338   interface(COND_INTER) %{
4339     equal        (0x1);
4340     not_equal    (0x5);
4341     less         (0x3);
4342     greater_equal(0x7);
4343     less_equal   (0x2);
4344     greater      (0x6);
4345   %}
4346 %}
4347 
4348 // Comparison Code, floating, unordered same as less
4349 operand cmpOpF() %{
4350   match(Bool);
4351 
4352   format %{ "fl" %}
4353   interface(COND_INTER) %{
4354     equal(0x9);
4355     not_equal(0x1);
4356     less(0x3);
4357     greater_equal(0xB);
4358     less_equal(0xE);
4359     greater(0x6);
4360   %}
4361 %}
4362 
4363 // Used by long compare
4364 operand cmpOp_commute() %{
4365   match(Bool);
4366 
4367   format %{ "" %}
4368   interface(COND_INTER) %{
4369     equal(0x1);
4370     not_equal(0x9);
4371     less(0xA);
4372     greater_equal(0x2);
4373     less_equal(0xB);
4374     greater(0x3);
4375   %}
4376 %}
4377 
4378 //----------OPERAND CLASSES----------------------------------------------------
4379 // Operand Classes are groups of operands that are used to simplify
4380 // instruction definitions by not requiring the AD writer to specify separate
4381 // instructions for every form of operand when the instruction accepts
4382 // multiple operand types with the same basic encoding and format.  The classic
4383 // case of this is memory operands.
4384 // Indirect is not included since its use is limited to Compare & Swap
4385 opclass memory( indirect, indOffset13, indIndex );
4386 
4387 //----------PIPELINE-----------------------------------------------------------
4388 pipeline %{
4389 
4390 //----------ATTRIBUTES---------------------------------------------------------
4391 attributes %{
4392   fixed_size_instructions;           // Fixed size instructions
4393   branch_has_delay_slot;             // Branch has delay slot following
4394   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4395   instruction_unit_size = 4;         // An instruction is 4 bytes long
4396   instruction_fetch_unit_size = 16;  // The processor fetches one line
4397   instruction_fetch_units = 1;       // of 16 bytes
4398 
4399   // List of nop instructions
4400   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4401 %}
4402 
4403 //----------RESOURCES----------------------------------------------------------
4404 // Resources are the functional units available to the machine
4405 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4406 
4407 //----------PIPELINE DESCRIPTION-----------------------------------------------
4408 // Pipeline Description specifies the stages in the machine's pipeline
4409 
4410 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4411 
4412 //----------PIPELINE CLASSES---------------------------------------------------
4413 // Pipeline Classes describe the stages in which input and output are
4414 // referenced by the hardware pipeline.
4415 
4416 // Integer ALU reg-reg operation
4417 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4418     single_instruction;
4419     dst   : E(write);
4420     src1  : R(read);
4421     src2  : R(read);
4422     IALU  : R;
4423 %}
4424 
4425 // Integer ALU reg-reg long operation
4426 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4427     instruction_count(2);
4428     dst   : E(write);
4429     src1  : R(read);
4430     src2  : R(read);
4431     IALU  : R;
4432     IALU  : R;
4433 %}
4434 
4435 // Integer ALU reg-reg long dependent operation
4436 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4437     instruction_count(1); multiple_bundles;
4438     dst   : E(write);
4439     src1  : R(read);
4440     src2  : R(read);
4441     cr    : E(write);
4442     IALU  : R(2);
4443 %}
4444 
4445 // Integer ALU reg-imm operaion
4446 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4447     single_instruction;
4448     dst   : E(write);
4449     src1  : R(read);
4450     IALU  : R;
4451 %}
4452 
4453 // Integer ALU reg-reg operation with condition code
4454 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4455     single_instruction;
4456     dst   : E(write);
4457     cr    : E(write);
4458     src1  : R(read);
4459     src2  : R(read);
4460     IALU  : R;
4461 %}
4462 
4463 // Integer ALU reg-imm operation with condition code
4464 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4465     single_instruction;
4466     dst   : E(write);
4467     cr    : E(write);
4468     src1  : R(read);
4469     IALU  : R;
4470 %}
4471 
4472 // Integer ALU zero-reg operation
4473 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4474     single_instruction;
4475     dst   : E(write);
4476     src2  : R(read);
4477     IALU  : R;
4478 %}
4479 
4480 // Integer ALU zero-reg operation with condition code only
4481 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4482     single_instruction;
4483     cr    : E(write);
4484     src   : R(read);
4485     IALU  : R;
4486 %}
4487 
4488 // Integer ALU reg-reg operation with condition code only
4489 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4490     single_instruction;
4491     cr    : E(write);
4492     src1  : R(read);
4493     src2  : R(read);
4494     IALU  : R;
4495 %}
4496 
4497 // Integer ALU reg-imm operation with condition code only
4498 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4499     single_instruction;
4500     cr    : E(write);
4501     src1  : R(read);
4502     IALU  : R;
4503 %}
4504 
4505 // Integer ALU reg-reg-zero operation with condition code only
4506 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4507     single_instruction;
4508     cr    : E(write);
4509     src1  : R(read);
4510     src2  : R(read);
4511     IALU  : R;
4512 %}
4513 
4514 // Integer ALU reg-imm-zero operation with condition code only
4515 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4516     single_instruction;
4517     cr    : E(write);
4518     src1  : R(read);
4519     IALU  : R;
4520 %}
4521 
4522 // Integer ALU reg-reg operation with condition code, src1 modified
4523 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4524     single_instruction;
4525     cr    : E(write);
4526     src1  : E(write);
4527     src1  : R(read);
4528     src2  : R(read);
4529     IALU  : R;
4530 %}
4531 
4532 // Integer ALU reg-imm operation with condition code, src1 modified
4533 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4534     single_instruction;
4535     cr    : E(write);
4536     src1  : E(write);
4537     src1  : R(read);
4538     IALU  : R;
4539 %}
4540 
4541 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4542     multiple_bundles;
4543     dst   : E(write)+4;
4544     cr    : E(write);
4545     src1  : R(read);
4546     src2  : R(read);
4547     IALU  : R(3);
4548     BR    : R(2);
4549 %}
4550 
4551 // Integer ALU operation
4552 pipe_class ialu_none(iRegI dst) %{
4553     single_instruction;
4554     dst   : E(write);
4555     IALU  : R;
4556 %}
4557 
4558 // Integer ALU reg operation
4559 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4560     single_instruction; may_have_no_code;
4561     dst   : E(write);
4562     src   : R(read);
4563     IALU  : R;
4564 %}
4565 
4566 // Integer ALU reg conditional operation
4567 // This instruction has a 1 cycle stall, and cannot execute
4568 // in the same cycle as the instruction setting the condition
4569 // code. We kludge this by pretending to read the condition code
4570 // 1 cycle earlier, and by marking the functional units as busy
4571 // for 2 cycles with the result available 1 cycle later than
4572 // is really the case.
4573 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4574     single_instruction;
4575     op2_out : C(write);
4576     op1     : R(read);
4577     cr      : R(read);       // This is really E, with a 1 cycle stall
4578     BR      : R(2);
4579     MS      : R(2);
4580 %}
4581 
4582 #ifdef _LP64
4583 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4584     instruction_count(1); multiple_bundles;
4585     dst     : C(write)+1;
4586     src     : R(read)+1;
4587     IALU    : R(1);
4588     BR      : E(2);
4589     MS      : E(2);
4590 %}
4591 #endif
4592 
4593 // Integer ALU reg operation
4594 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4595     single_instruction; may_have_no_code;
4596     dst   : E(write);
4597     src   : R(read);
4598     IALU  : R;
4599 %}
4600 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4601     single_instruction; may_have_no_code;
4602     dst   : E(write);
4603     src   : R(read);
4604     IALU  : R;
4605 %}
4606 
4607 // Two integer ALU reg operations
4608 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4609     instruction_count(2);
4610     dst   : E(write);
4611     src   : R(read);
4612     A0    : R;
4613     A1    : R;
4614 %}
4615 
4616 // Two integer ALU reg operations
4617 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4618     instruction_count(2); may_have_no_code;
4619     dst   : E(write);
4620     src   : R(read);
4621     A0    : R;
4622     A1    : R;
4623 %}
4624 
4625 // Integer ALU imm operation
4626 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4627     single_instruction;
4628     dst   : E(write);
4629     IALU  : R;
4630 %}
4631 
4632 // Integer ALU reg-reg with carry operation
4633 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4634     single_instruction;
4635     dst   : E(write);
4636     src1  : R(read);
4637     src2  : R(read);
4638     IALU  : R;
4639 %}
4640 
4641 // Integer ALU cc operation
4642 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4643     single_instruction;
4644     dst   : E(write);
4645     cc    : R(read);
4646     IALU  : R;
4647 %}
4648 
4649 // Integer ALU cc / second IALU operation
4650 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4651     instruction_count(1); multiple_bundles;
4652     dst   : E(write)+1;
4653     src   : R(read);
4654     IALU  : R;
4655 %}
4656 
4657 // Integer ALU cc / second IALU operation
4658 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4659     instruction_count(1); multiple_bundles;
4660     dst   : E(write)+1;
4661     p     : R(read);
4662     q     : R(read);
4663     IALU  : R;
4664 %}
4665 
4666 // Integer ALU hi-lo-reg operation
4667 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4668     instruction_count(1); multiple_bundles;
4669     dst   : E(write)+1;
4670     IALU  : R(2);
4671 %}
4672 
4673 // Float ALU hi-lo-reg operation (with temp)
4674 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4675     instruction_count(1); multiple_bundles;
4676     dst   : E(write)+1;
4677     IALU  : R(2);
4678 %}
4679 
4680 // Long Constant
4681 pipe_class loadConL( iRegL dst, immL src ) %{
4682     instruction_count(2); multiple_bundles;
4683     dst   : E(write)+1;
4684     IALU  : R(2);
4685     IALU  : R(2);
4686 %}
4687 
4688 // Pointer Constant
4689 pipe_class loadConP( iRegP dst, immP src ) %{
4690     instruction_count(0); multiple_bundles;
4691     fixed_latency(6);
4692 %}
4693 
4694 // Polling Address
4695 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4696 #ifdef _LP64
4697     instruction_count(0); multiple_bundles;
4698     fixed_latency(6);
4699 #else
4700     dst   : E(write);
4701     IALU  : R;
4702 #endif
4703 %}
4704 
4705 // Long Constant small
4706 pipe_class loadConLlo( iRegL dst, immL src ) %{
4707     instruction_count(2);
4708     dst   : E(write);
4709     IALU  : R;
4710     IALU  : R;
4711 %}
4712 
4713 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4714 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4715     instruction_count(1); multiple_bundles;
4716     src   : R(read);
4717     dst   : M(write)+1;
4718     IALU  : R;
4719     MS    : E;
4720 %}
4721 
4722 // Integer ALU nop operation
4723 pipe_class ialu_nop() %{
4724     single_instruction;
4725     IALU  : R;
4726 %}
4727 
4728 // Integer ALU nop operation
4729 pipe_class ialu_nop_A0() %{
4730     single_instruction;
4731     A0    : R;
4732 %}
4733 
4734 // Integer ALU nop operation
4735 pipe_class ialu_nop_A1() %{
4736     single_instruction;
4737     A1    : R;
4738 %}
4739 
4740 // Integer Multiply reg-reg operation
4741 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4742     single_instruction;
4743     dst   : E(write);
4744     src1  : R(read);
4745     src2  : R(read);
4746     MS    : R(5);
4747 %}
4748 
4749 // Integer Multiply reg-imm operation
4750 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4751     single_instruction;
4752     dst   : E(write);
4753     src1  : R(read);
4754     MS    : R(5);
4755 %}
4756 
4757 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4758     single_instruction;
4759     dst   : E(write)+4;
4760     src1  : R(read);
4761     src2  : R(read);
4762     MS    : R(6);
4763 %}
4764 
4765 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4766     single_instruction;
4767     dst   : E(write)+4;
4768     src1  : R(read);
4769     MS    : R(6);
4770 %}
4771 
4772 // Integer Divide reg-reg
4773 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4774     instruction_count(1); multiple_bundles;
4775     dst   : E(write);
4776     temp  : E(write);
4777     src1  : R(read);
4778     src2  : R(read);
4779     temp  : R(read);
4780     MS    : R(38);
4781 %}
4782 
4783 // Integer Divide reg-imm
4784 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4785     instruction_count(1); multiple_bundles;
4786     dst   : E(write);
4787     temp  : E(write);
4788     src1  : R(read);
4789     temp  : R(read);
4790     MS    : R(38);
4791 %}
4792 
4793 // Long Divide
4794 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4795     dst  : E(write)+71;
4796     src1 : R(read);
4797     src2 : R(read)+1;
4798     MS   : R(70);
4799 %}
4800 
4801 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4802     dst  : E(write)+71;
4803     src1 : R(read);
4804     MS   : R(70);
4805 %}
4806 
4807 // Floating Point Add Float
4808 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4809     single_instruction;
4810     dst   : X(write);
4811     src1  : E(read);
4812     src2  : E(read);
4813     FA    : R;
4814 %}
4815 
4816 // Floating Point Add Double
4817 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4818     single_instruction;
4819     dst   : X(write);
4820     src1  : E(read);
4821     src2  : E(read);
4822     FA    : R;
4823 %}
4824 
4825 // Floating Point Conditional Move based on integer flags
4826 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4827     single_instruction;
4828     dst   : X(write);
4829     src   : E(read);
4830     cr    : R(read);
4831     FA    : R(2);
4832     BR    : R(2);
4833 %}
4834 
4835 // Floating Point Conditional Move based on integer flags
4836 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4837     single_instruction;
4838     dst   : X(write);
4839     src   : E(read);
4840     cr    : R(read);
4841     FA    : R(2);
4842     BR    : R(2);
4843 %}
4844 
4845 // Floating Point Multiply Float
4846 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4847     single_instruction;
4848     dst   : X(write);
4849     src1  : E(read);
4850     src2  : E(read);
4851     FM    : R;
4852 %}
4853 
4854 // Floating Point Multiply Double
4855 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4856     single_instruction;
4857     dst   : X(write);
4858     src1  : E(read);
4859     src2  : E(read);
4860     FM    : R;
4861 %}
4862 
4863 // Floating Point Divide Float
4864 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4865     single_instruction;
4866     dst   : X(write);
4867     src1  : E(read);
4868     src2  : E(read);
4869     FM    : R;
4870     FDIV  : C(14);
4871 %}
4872 
4873 // Floating Point Divide Double
4874 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4875     single_instruction;
4876     dst   : X(write);
4877     src1  : E(read);
4878     src2  : E(read);
4879     FM    : R;
4880     FDIV  : C(17);
4881 %}
4882 
4883 // Floating Point Move/Negate/Abs Float
4884 pipe_class faddF_reg(regF dst, regF src) %{
4885     single_instruction;
4886     dst   : W(write);
4887     src   : E(read);
4888     FA    : R(1);
4889 %}
4890 
4891 // Floating Point Move/Negate/Abs Double
4892 pipe_class faddD_reg(regD dst, regD src) %{
4893     single_instruction;
4894     dst   : W(write);
4895     src   : E(read);
4896     FA    : R;
4897 %}
4898 
4899 // Floating Point Convert F->D
4900 pipe_class fcvtF2D(regD dst, regF src) %{
4901     single_instruction;
4902     dst   : X(write);
4903     src   : E(read);
4904     FA    : R;
4905 %}
4906 
4907 // Floating Point Convert I->D
4908 pipe_class fcvtI2D(regD dst, regF src) %{
4909     single_instruction;
4910     dst   : X(write);
4911     src   : E(read);
4912     FA    : R;
4913 %}
4914 
4915 // Floating Point Convert LHi->D
4916 pipe_class fcvtLHi2D(regD dst, regD src) %{
4917     single_instruction;
4918     dst   : X(write);
4919     src   : E(read);
4920     FA    : R;
4921 %}
4922 
4923 // Floating Point Convert L->D
4924 pipe_class fcvtL2D(regD dst, regF src) %{
4925     single_instruction;
4926     dst   : X(write);
4927     src   : E(read);
4928     FA    : R;
4929 %}
4930 
4931 // Floating Point Convert L->F
4932 pipe_class fcvtL2F(regD dst, regF src) %{
4933     single_instruction;
4934     dst   : X(write);
4935     src   : E(read);
4936     FA    : R;
4937 %}
4938 
4939 // Floating Point Convert D->F
4940 pipe_class fcvtD2F(regD dst, regF src) %{
4941     single_instruction;
4942     dst   : X(write);
4943     src   : E(read);
4944     FA    : R;
4945 %}
4946 
4947 // Floating Point Convert I->L
4948 pipe_class fcvtI2L(regD dst, regF src) %{
4949     single_instruction;
4950     dst   : X(write);
4951     src   : E(read);
4952     FA    : R;
4953 %}
4954 
4955 // Floating Point Convert D->F
4956 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4957     instruction_count(1); multiple_bundles;
4958     dst   : X(write)+6;
4959     src   : E(read);
4960     FA    : R;
4961 %}
4962 
4963 // Floating Point Convert D->L
4964 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4965     instruction_count(1); multiple_bundles;
4966     dst   : X(write)+6;
4967     src   : E(read);
4968     FA    : R;
4969 %}
4970 
4971 // Floating Point Convert F->I
4972 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4973     instruction_count(1); multiple_bundles;
4974     dst   : X(write)+6;
4975     src   : E(read);
4976     FA    : R;
4977 %}
4978 
4979 // Floating Point Convert F->L
4980 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4981     instruction_count(1); multiple_bundles;
4982     dst   : X(write)+6;
4983     src   : E(read);
4984     FA    : R;
4985 %}
4986 
4987 // Floating Point Convert I->F
4988 pipe_class fcvtI2F(regF dst, regF src) %{
4989     single_instruction;
4990     dst   : X(write);
4991     src   : E(read);
4992     FA    : R;
4993 %}
4994 
4995 // Floating Point Compare
4996 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4997     single_instruction;
4998     cr    : X(write);
4999     src1  : E(read);
5000     src2  : E(read);
5001     FA    : R;
5002 %}
5003 
5004 // Floating Point Compare
5005 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
5006     single_instruction;
5007     cr    : X(write);
5008     src1  : E(read);
5009     src2  : E(read);
5010     FA    : R;
5011 %}
5012 
5013 // Floating Add Nop
5014 pipe_class fadd_nop() %{
5015     single_instruction;
5016     FA  : R;
5017 %}
5018 
5019 // Integer Store to Memory
5020 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5021     single_instruction;
5022     mem   : R(read);
5023     src   : C(read);
5024     MS    : R;
5025 %}
5026 
5027 // Integer Store to Memory
5028 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5029     single_instruction;
5030     mem   : R(read);
5031     src   : C(read);
5032     MS    : R;
5033 %}
5034 
5035 // Integer Store Zero to Memory
5036 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5037     single_instruction;
5038     mem   : R(read);
5039     MS    : R;
5040 %}
5041 
5042 // Special Stack Slot Store
5043 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5044     single_instruction;
5045     stkSlot : R(read);
5046     src     : C(read);
5047     MS      : R;
5048 %}
5049 
5050 // Special Stack Slot Store
5051 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5052     instruction_count(2); multiple_bundles;
5053     stkSlot : R(read);
5054     src     : C(read);
5055     MS      : R(2);
5056 %}
5057 
5058 // Float Store
5059 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5060     single_instruction;
5061     mem : R(read);
5062     src : C(read);
5063     MS  : R;
5064 %}
5065 
5066 // Float Store
5067 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5068     single_instruction;
5069     mem : R(read);
5070     MS  : R;
5071 %}
5072 
5073 // Double Store
5074 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5075     instruction_count(1);
5076     mem : R(read);
5077     src : C(read);
5078     MS  : R;
5079 %}
5080 
5081 // Double Store
5082 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5083     single_instruction;
5084     mem : R(read);
5085     MS  : R;
5086 %}
5087 
5088 // Special Stack Slot Float Store
5089 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5090     single_instruction;
5091     stkSlot : R(read);
5092     src     : C(read);
5093     MS      : R;
5094 %}
5095 
5096 // Special Stack Slot Double Store
5097 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5098     single_instruction;
5099     stkSlot : R(read);
5100     src     : C(read);
5101     MS      : R;
5102 %}
5103 
5104 // Integer Load (when sign bit propagation not needed)
5105 pipe_class iload_mem(iRegI dst, memory mem) %{
5106     single_instruction;
5107     mem : R(read);
5108     dst : C(write);
5109     MS  : R;
5110 %}
5111 
5112 // Integer Load from stack operand
5113 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5114     single_instruction;
5115     mem : R(read);
5116     dst : C(write);
5117     MS  : R;
5118 %}
5119 
5120 // Integer Load (when sign bit propagation or masking is needed)
5121 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5122     single_instruction;
5123     mem : R(read);
5124     dst : M(write);
5125     MS  : R;
5126 %}
5127 
5128 // Float Load
5129 pipe_class floadF_mem(regF dst, memory mem) %{
5130     single_instruction;
5131     mem : R(read);
5132     dst : M(write);
5133     MS  : R;
5134 %}
5135 
5136 // Float Load
5137 pipe_class floadD_mem(regD dst, memory mem) %{
5138     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5139     mem : R(read);
5140     dst : M(write);
5141     MS  : R;
5142 %}
5143 
5144 // Float Load
5145 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5146     single_instruction;
5147     stkSlot : R(read);
5148     dst : M(write);
5149     MS  : R;
5150 %}
5151 
5152 // Float Load
5153 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5154     single_instruction;
5155     stkSlot : R(read);
5156     dst : M(write);
5157     MS  : R;
5158 %}
5159 
5160 // Memory Nop
5161 pipe_class mem_nop() %{
5162     single_instruction;
5163     MS  : R;
5164 %}
5165 
5166 pipe_class sethi(iRegP dst, immI src) %{
5167     single_instruction;
5168     dst  : E(write);
5169     IALU : R;
5170 %}
5171 
5172 pipe_class loadPollP(iRegP poll) %{
5173     single_instruction;
5174     poll : R(read);
5175     MS   : R;
5176 %}
5177 
5178 pipe_class br(Universe br, label labl) %{
5179     single_instruction_with_delay_slot;
5180     BR  : R;
5181 %}
5182 
5183 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5184     single_instruction_with_delay_slot;
5185     cr    : E(read);
5186     BR    : R;
5187 %}
5188 
5189 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5190     single_instruction_with_delay_slot;
5191     op1 : E(read);
5192     BR  : R;
5193     MS  : R;
5194 %}
5195 
5196 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5197     single_instruction_with_delay_slot;
5198     cr    : E(read);
5199     BR    : R;
5200 %}
5201 
5202 pipe_class br_nop() %{
5203     single_instruction;
5204     BR  : R;
5205 %}
5206 
5207 pipe_class simple_call(method meth) %{
5208     instruction_count(2); multiple_bundles; force_serialization;
5209     fixed_latency(100);
5210     BR  : R(1);
5211     MS  : R(1);
5212     A0  : R(1);
5213 %}
5214 
5215 pipe_class compiled_call(method meth) %{
5216     instruction_count(1); multiple_bundles; force_serialization;
5217     fixed_latency(100);
5218     MS  : R(1);
5219 %}
5220 
5221 pipe_class call(method meth) %{
5222     instruction_count(0); multiple_bundles; force_serialization;
5223     fixed_latency(100);
5224 %}
5225 
5226 pipe_class tail_call(Universe ignore, label labl) %{
5227     single_instruction; has_delay_slot;
5228     fixed_latency(100);
5229     BR  : R(1);
5230     MS  : R(1);
5231 %}
5232 
5233 pipe_class ret(Universe ignore) %{
5234     single_instruction; has_delay_slot;
5235     BR  : R(1);
5236     MS  : R(1);
5237 %}
5238 
5239 pipe_class ret_poll(g3RegP poll) %{
5240     instruction_count(3); has_delay_slot;
5241     poll : E(read);
5242     MS   : R;
5243 %}
5244 
5245 // The real do-nothing guy
5246 pipe_class empty( ) %{
5247     instruction_count(0);
5248 %}
5249 
5250 pipe_class long_memory_op() %{
5251     instruction_count(0); multiple_bundles; force_serialization;
5252     fixed_latency(25);
5253     MS  : R(1);
5254 %}
5255 
5256 // Check-cast
5257 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5258     array : R(read);
5259     match  : R(read);
5260     IALU   : R(2);
5261     BR     : R(2);
5262     MS     : R;
5263 %}
5264 
5265 // Convert FPU flags into +1,0,-1
5266 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5267     src1  : E(read);
5268     src2  : E(read);
5269     dst   : E(write);
5270     FA    : R;
5271     MS    : R(2);
5272     BR    : R(2);
5273 %}
5274 
5275 // Compare for p < q, and conditionally add y
5276 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5277     p     : E(read);
5278     q     : E(read);
5279     y     : E(read);
5280     IALU  : R(3)
5281 %}
5282 
5283 // Perform a compare, then move conditionally in a branch delay slot.
5284 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5285     src2   : E(read);
5286     srcdst : E(read);
5287     IALU   : R;
5288     BR     : R;
5289 %}
5290 
5291 // Define the class for the Nop node
5292 define %{
5293    MachNop = ialu_nop;
5294 %}
5295 
5296 %}
5297 
5298 //----------INSTRUCTIONS-------------------------------------------------------
5299 
5300 //------------Special Stack Slot instructions - no match rules-----------------
5301 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5302   // No match rule to avoid chain rule match.
5303   effect(DEF dst, USE src);
5304   ins_cost(MEMORY_REF_COST);
5305   size(4);
5306   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5307   opcode(Assembler::ldf_op3);
5308   ins_encode(simple_form3_mem_reg(src, dst));
5309   ins_pipe(floadF_stk);
5310 %}
5311 
5312 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5313   // No match rule to avoid chain rule match.
5314   effect(DEF dst, USE src);
5315   ins_cost(MEMORY_REF_COST);
5316   size(4);
5317   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5318   opcode(Assembler::lddf_op3);
5319   ins_encode(simple_form3_mem_reg(src, dst));
5320   ins_pipe(floadD_stk);
5321 %}
5322 
5323 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5324   // No match rule to avoid chain rule match.
5325   effect(DEF dst, USE src);
5326   ins_cost(MEMORY_REF_COST);
5327   size(4);
5328   format %{ "STF    $src,$dst\t! regF to stkI" %}
5329   opcode(Assembler::stf_op3);
5330   ins_encode(simple_form3_mem_reg(dst, src));
5331   ins_pipe(fstoreF_stk_reg);
5332 %}
5333 
5334 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5335   // No match rule to avoid chain rule match.
5336   effect(DEF dst, USE src);
5337   ins_cost(MEMORY_REF_COST);
5338   size(4);
5339   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5340   opcode(Assembler::stdf_op3);
5341   ins_encode(simple_form3_mem_reg(dst, src));
5342   ins_pipe(fstoreD_stk_reg);
5343 %}
5344 
5345 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5346   effect(DEF dst, USE src);
5347   ins_cost(MEMORY_REF_COST*2);
5348   size(8);
5349   format %{ "STW    $src,$dst.hi\t! long\n\t"
5350             "STW    R_G0,$dst.lo" %}
5351   opcode(Assembler::stw_op3);
5352   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5353   ins_pipe(lstoreI_stk_reg);
5354 %}
5355 
5356 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5357   // No match rule to avoid chain rule match.
5358   effect(DEF dst, USE src);
5359   ins_cost(MEMORY_REF_COST);
5360   size(4);
5361   format %{ "STX    $src,$dst\t! regL to stkD" %}
5362   opcode(Assembler::stx_op3);
5363   ins_encode(simple_form3_mem_reg( dst, src ) );
5364   ins_pipe(istore_stk_reg);
5365 %}
5366 
5367 //---------- Chain stack slots between similar types --------
5368 
5369 // Load integer from stack slot
5370 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5371   match(Set dst src);
5372   ins_cost(MEMORY_REF_COST);
5373 
5374   size(4);
5375   format %{ "LDUW   $src,$dst\t!stk" %}
5376   opcode(Assembler::lduw_op3);
5377   ins_encode(simple_form3_mem_reg( src, dst ) );
5378   ins_pipe(iload_mem);
5379 %}
5380 
5381 // Store integer to stack slot
5382 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5383   match(Set dst src);
5384   ins_cost(MEMORY_REF_COST);
5385 
5386   size(4);
5387   format %{ "STW    $src,$dst\t!stk" %}
5388   opcode(Assembler::stw_op3);
5389   ins_encode(simple_form3_mem_reg( dst, src ) );
5390   ins_pipe(istore_mem_reg);
5391 %}
5392 
5393 // Load long from stack slot
5394 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5395   match(Set dst src);
5396 
5397   ins_cost(MEMORY_REF_COST);
5398   size(4);
5399   format %{ "LDX    $src,$dst\t! long" %}
5400   opcode(Assembler::ldx_op3);
5401   ins_encode(simple_form3_mem_reg( src, dst ) );
5402   ins_pipe(iload_mem);
5403 %}
5404 
5405 // Store long to stack slot
5406 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5407   match(Set dst src);
5408 
5409   ins_cost(MEMORY_REF_COST);
5410   size(4);
5411   format %{ "STX    $src,$dst\t! long" %}
5412   opcode(Assembler::stx_op3);
5413   ins_encode(simple_form3_mem_reg( dst, src ) );
5414   ins_pipe(istore_mem_reg);
5415 %}
5416 
5417 #ifdef _LP64
5418 // Load pointer from stack slot, 64-bit encoding
5419 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5420   match(Set dst src);
5421   ins_cost(MEMORY_REF_COST);
5422   size(4);
5423   format %{ "LDX    $src,$dst\t!ptr" %}
5424   opcode(Assembler::ldx_op3);
5425   ins_encode(simple_form3_mem_reg( src, dst ) );
5426   ins_pipe(iload_mem);
5427 %}
5428 
5429 // Store pointer to stack slot
5430 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5431   match(Set dst src);
5432   ins_cost(MEMORY_REF_COST);
5433   size(4);
5434   format %{ "STX    $src,$dst\t!ptr" %}
5435   opcode(Assembler::stx_op3);
5436   ins_encode(simple_form3_mem_reg( dst, src ) );
5437   ins_pipe(istore_mem_reg);
5438 %}
5439 #else // _LP64
5440 // Load pointer from stack slot, 32-bit encoding
5441 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5442   match(Set dst src);
5443   ins_cost(MEMORY_REF_COST);
5444   format %{ "LDUW   $src,$dst\t!ptr" %}
5445   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5446   ins_encode(simple_form3_mem_reg( src, dst ) );
5447   ins_pipe(iload_mem);
5448 %}
5449 
5450 // Store pointer to stack slot
5451 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5452   match(Set dst src);
5453   ins_cost(MEMORY_REF_COST);
5454   format %{ "STW    $src,$dst\t!ptr" %}
5455   opcode(Assembler::stw_op3, Assembler::ldst_op);
5456   ins_encode(simple_form3_mem_reg( dst, src ) );
5457   ins_pipe(istore_mem_reg);
5458 %}
5459 #endif // _LP64
5460 
5461 //------------Special Nop instructions for bundling - no match rules-----------
5462 // Nop using the A0 functional unit
5463 instruct Nop_A0() %{
5464   ins_cost(0);
5465 
5466   format %{ "NOP    ! Alu Pipeline" %}
5467   opcode(Assembler::or_op3, Assembler::arith_op);
5468   ins_encode( form2_nop() );
5469   ins_pipe(ialu_nop_A0);
5470 %}
5471 
5472 // Nop using the A1 functional unit
5473 instruct Nop_A1( ) %{
5474   ins_cost(0);
5475 
5476   format %{ "NOP    ! Alu Pipeline" %}
5477   opcode(Assembler::or_op3, Assembler::arith_op);
5478   ins_encode( form2_nop() );
5479   ins_pipe(ialu_nop_A1);
5480 %}
5481 
5482 // Nop using the memory functional unit
5483 instruct Nop_MS( ) %{
5484   ins_cost(0);
5485 
5486   format %{ "NOP    ! Memory Pipeline" %}
5487   ins_encode( emit_mem_nop );
5488   ins_pipe(mem_nop);
5489 %}
5490 
5491 // Nop using the floating add functional unit
5492 instruct Nop_FA( ) %{
5493   ins_cost(0);
5494 
5495   format %{ "NOP    ! Floating Add Pipeline" %}
5496   ins_encode( emit_fadd_nop );
5497   ins_pipe(fadd_nop);
5498 %}
5499 
5500 // Nop using the branch functional unit
5501 instruct Nop_BR( ) %{
5502   ins_cost(0);
5503 
5504   format %{ "NOP    ! Branch Pipeline" %}
5505   ins_encode( emit_br_nop );
5506   ins_pipe(br_nop);
5507 %}
5508 
5509 //----------Load/Store/Move Instructions---------------------------------------
5510 //----------Load Instructions--------------------------------------------------
5511 // Load Byte (8bit signed)
5512 instruct loadB(iRegI dst, memory mem) %{
5513   match(Set dst (LoadB mem));
5514   ins_cost(MEMORY_REF_COST);
5515 
5516   size(4);
5517   format %{ "LDSB   $mem,$dst\t! byte" %}
5518   ins_encode %{
5519     __ ldsb($mem$$Address, $dst$$Register);
5520   %}
5521   ins_pipe(iload_mask_mem);
5522 %}
5523 
5524 // Load Byte (8bit signed) into a Long Register
5525 instruct loadB2L(iRegL dst, memory mem) %{
5526   match(Set dst (ConvI2L (LoadB mem)));
5527   ins_cost(MEMORY_REF_COST);
5528 
5529   size(4);
5530   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5531   ins_encode %{
5532     __ ldsb($mem$$Address, $dst$$Register);
5533   %}
5534   ins_pipe(iload_mask_mem);
5535 %}
5536 
5537 // Load Unsigned Byte (8bit UNsigned) into an int reg
5538 instruct loadUB(iRegI dst, memory mem) %{
5539   match(Set dst (LoadUB mem));
5540   ins_cost(MEMORY_REF_COST);
5541 
5542   size(4);
5543   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5544   ins_encode %{
5545     __ ldub($mem$$Address, $dst$$Register);
5546   %}
5547   ins_pipe(iload_mask_mem);
5548 %}
5549 
5550 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5551 instruct loadUB2L(iRegL dst, memory mem) %{
5552   match(Set dst (ConvI2L (LoadUB mem)));
5553   ins_cost(MEMORY_REF_COST);
5554 
5555   size(4);
5556   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5557   ins_encode %{
5558     __ ldub($mem$$Address, $dst$$Register);
5559   %}
5560   ins_pipe(iload_mask_mem);
5561 %}
5562 
5563 // Load Short (16bit signed)
5564 instruct loadS(iRegI dst, memory mem) %{
5565   match(Set dst (LoadS mem));
5566   ins_cost(MEMORY_REF_COST);
5567 
5568   size(4);
5569   format %{ "LDSH   $mem,$dst\t! short" %}
5570   ins_encode %{
5571     __ ldsh($mem$$Address, $dst$$Register);
5572   %}
5573   ins_pipe(iload_mask_mem);
5574 %}
5575 
5576 // Load Short (16 bit signed) to Byte (8 bit signed)
5577 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5578   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5579   ins_cost(MEMORY_REF_COST);
5580 
5581   size(4);
5582 
5583   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5584   ins_encode %{
5585     __ ldsb($mem$$Address, $dst$$Register, 1);
5586   %}
5587   ins_pipe(iload_mask_mem);
5588 %}
5589 
5590 // Load Short (16bit signed) into a Long Register
5591 instruct loadS2L(iRegL dst, memory mem) %{
5592   match(Set dst (ConvI2L (LoadS mem)));
5593   ins_cost(MEMORY_REF_COST);
5594 
5595   size(4);
5596   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5597   ins_encode %{
5598     __ ldsh($mem$$Address, $dst$$Register);
5599   %}
5600   ins_pipe(iload_mask_mem);
5601 %}
5602 
5603 // Load Unsigned Short/Char (16bit UNsigned)
5604 instruct loadUS(iRegI dst, memory mem) %{
5605   match(Set dst (LoadUS mem));
5606   ins_cost(MEMORY_REF_COST);
5607 
5608   size(4);
5609   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5610   ins_encode %{
5611     __ lduh($mem$$Address, $dst$$Register);
5612   %}
5613   ins_pipe(iload_mask_mem);
5614 %}
5615 
5616 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5617 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5618   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5619   ins_cost(MEMORY_REF_COST);
5620 
5621   size(4);
5622   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5623   ins_encode %{
5624     __ ldsb($mem$$Address, $dst$$Register, 1);
5625   %}
5626   ins_pipe(iload_mask_mem);
5627 %}
5628 
5629 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5630 instruct loadUS2L(iRegL dst, memory mem) %{
5631   match(Set dst (ConvI2L (LoadUS mem)));
5632   ins_cost(MEMORY_REF_COST);
5633 
5634   size(4);
5635   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5636   ins_encode %{
5637     __ lduh($mem$$Address, $dst$$Register);
5638   %}
5639   ins_pipe(iload_mask_mem);
5640 %}
5641 
5642 // Load Integer
5643 instruct loadI(iRegI dst, memory mem) %{
5644   match(Set dst (LoadI mem));
5645   ins_cost(MEMORY_REF_COST);
5646 
5647   size(4);
5648   format %{ "LDUW   $mem,$dst\t! int" %}
5649   ins_encode %{
5650     __ lduw($mem$$Address, $dst$$Register);
5651   %}
5652   ins_pipe(iload_mem);
5653 %}
5654 
5655 // Load Integer to Byte (8 bit signed)
5656 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5657   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5658   ins_cost(MEMORY_REF_COST);
5659 
5660   size(4);
5661 
5662   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5663   ins_encode %{
5664     __ ldsb($mem$$Address, $dst$$Register, 3);
5665   %}
5666   ins_pipe(iload_mask_mem);
5667 %}
5668 
5669 // Load Integer to Unsigned Byte (8 bit UNsigned)
5670 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5671   match(Set dst (AndI (LoadI mem) mask));
5672   ins_cost(MEMORY_REF_COST);
5673 
5674   size(4);
5675 
5676   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5677   ins_encode %{
5678     __ ldub($mem$$Address, $dst$$Register, 3);
5679   %}
5680   ins_pipe(iload_mask_mem);
5681 %}
5682 
5683 // Load Integer to Short (16 bit signed)
5684 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5685   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5686   ins_cost(MEMORY_REF_COST);
5687 
5688   size(4);
5689 
5690   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5691   ins_encode %{
5692     __ ldsh($mem$$Address, $dst$$Register, 2);
5693   %}
5694   ins_pipe(iload_mask_mem);
5695 %}
5696 
5697 // Load Integer to Unsigned Short (16 bit UNsigned)
5698 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5699   match(Set dst (AndI (LoadI mem) mask));
5700   ins_cost(MEMORY_REF_COST);
5701 
5702   size(4);
5703 
5704   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5705   ins_encode %{
5706     __ lduh($mem$$Address, $dst$$Register, 2);
5707   %}
5708   ins_pipe(iload_mask_mem);
5709 %}
5710 
5711 // Load Integer into a Long Register
5712 instruct loadI2L(iRegL dst, memory mem) %{
5713   match(Set dst (ConvI2L (LoadI mem)));
5714   ins_cost(MEMORY_REF_COST);
5715 
5716   size(4);
5717   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5718   ins_encode %{
5719     __ ldsw($mem$$Address, $dst$$Register);
5720   %}
5721   ins_pipe(iload_mem);
5722 %}
5723 
5724 // Load Unsigned Integer into a Long Register
5725 instruct loadUI2L(iRegL dst, memory mem) %{
5726   match(Set dst (LoadUI2L mem));
5727   ins_cost(MEMORY_REF_COST);
5728 
5729   size(4);
5730   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5731   ins_encode %{
5732     __ lduw($mem$$Address, $dst$$Register);
5733   %}
5734   ins_pipe(iload_mem);
5735 %}
5736 
5737 // Load Long - aligned
5738 instruct loadL(iRegL dst, memory mem ) %{
5739   match(Set dst (LoadL mem));
5740   ins_cost(MEMORY_REF_COST);
5741 
5742   size(4);
5743   format %{ "LDX    $mem,$dst\t! long" %}
5744   ins_encode %{
5745     __ ldx($mem$$Address, $dst$$Register);
5746   %}
5747   ins_pipe(iload_mem);
5748 %}
5749 
5750 // Load Long - UNaligned
5751 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5752   match(Set dst (LoadL_unaligned mem));
5753   effect(KILL tmp);
5754   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5755   size(16);
5756   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5757           "\tLDUW   $mem  ,$dst\n"
5758           "\tSLLX   #32, $dst, $dst\n"
5759           "\tOR     $dst, R_O7, $dst" %}
5760   opcode(Assembler::lduw_op3);
5761   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5762   ins_pipe(iload_mem);
5763 %}
5764 
5765 // Load Aligned Packed Byte into a Double Register
5766 instruct loadA8B(regD dst, memory mem) %{
5767   match(Set dst (Load8B mem));
5768   ins_cost(MEMORY_REF_COST);
5769   size(4);
5770   format %{ "LDDF   $mem,$dst\t! packed8B" %}
5771   opcode(Assembler::lddf_op3);
5772   ins_encode(simple_form3_mem_reg( mem, dst ) );
5773   ins_pipe(floadD_mem);
5774 %}
5775 
5776 // Load Aligned Packed Char into a Double Register
5777 instruct loadA4C(regD dst, memory mem) %{
5778   match(Set dst (Load4C mem));
5779   ins_cost(MEMORY_REF_COST);
5780   size(4);
5781   format %{ "LDDF   $mem,$dst\t! packed4C" %}
5782   opcode(Assembler::lddf_op3);
5783   ins_encode(simple_form3_mem_reg( mem, dst ) );
5784   ins_pipe(floadD_mem);
5785 %}
5786 
5787 // Load Aligned Packed Short into a Double Register
5788 instruct loadA4S(regD dst, memory mem) %{
5789   match(Set dst (Load4S mem));
5790   ins_cost(MEMORY_REF_COST);
5791   size(4);
5792   format %{ "LDDF   $mem,$dst\t! packed4S" %}
5793   opcode(Assembler::lddf_op3);
5794   ins_encode(simple_form3_mem_reg( mem, dst ) );
5795   ins_pipe(floadD_mem);
5796 %}
5797 
5798 // Load Aligned Packed Int into a Double Register
5799 instruct loadA2I(regD dst, memory mem) %{
5800   match(Set dst (Load2I mem));
5801   ins_cost(MEMORY_REF_COST);
5802   size(4);
5803   format %{ "LDDF   $mem,$dst\t! packed2I" %}
5804   opcode(Assembler::lddf_op3);
5805   ins_encode(simple_form3_mem_reg( mem, dst ) );
5806   ins_pipe(floadD_mem);
5807 %}
5808 
5809 // Load Range
5810 instruct loadRange(iRegI dst, memory mem) %{
5811   match(Set dst (LoadRange mem));
5812   ins_cost(MEMORY_REF_COST);
5813 
5814   size(4);
5815   format %{ "LDUW   $mem,$dst\t! range" %}
5816   opcode(Assembler::lduw_op3);
5817   ins_encode(simple_form3_mem_reg( mem, dst ) );
5818   ins_pipe(iload_mem);
5819 %}
5820 
5821 // Load Integer into %f register (for fitos/fitod)
5822 instruct loadI_freg(regF dst, memory mem) %{
5823   match(Set dst (LoadI mem));
5824   ins_cost(MEMORY_REF_COST);
5825   size(4);
5826 
5827   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5828   opcode(Assembler::ldf_op3);
5829   ins_encode(simple_form3_mem_reg( mem, dst ) );
5830   ins_pipe(floadF_mem);
5831 %}
5832 
5833 // Load Pointer
5834 instruct loadP(iRegP dst, memory mem) %{
5835   match(Set dst (LoadP mem));
5836   ins_cost(MEMORY_REF_COST);
5837   size(4);
5838 
5839 #ifndef _LP64
5840   format %{ "LDUW   $mem,$dst\t! ptr" %}
5841   ins_encode %{
5842     __ lduw($mem$$Address, $dst$$Register);
5843   %}
5844 #else
5845   format %{ "LDX    $mem,$dst\t! ptr" %}
5846   ins_encode %{
5847     __ ldx($mem$$Address, $dst$$Register);
5848   %}
5849 #endif
5850   ins_pipe(iload_mem);
5851 %}
5852 
5853 // Load Compressed Pointer
5854 instruct loadN(iRegN dst, memory mem) %{
5855   match(Set dst (LoadN mem));
5856   ins_cost(MEMORY_REF_COST);
5857   size(4);
5858 
5859   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5860   ins_encode %{
5861     __ lduw($mem$$Address, $dst$$Register);
5862   %}
5863   ins_pipe(iload_mem);
5864 %}
5865 
5866 // Load Klass Pointer
5867 instruct loadKlass(iRegP dst, memory mem) %{
5868   match(Set dst (LoadKlass mem));
5869   ins_cost(MEMORY_REF_COST);
5870   size(4);
5871 
5872 #ifndef _LP64
5873   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5874   ins_encode %{
5875     __ lduw($mem$$Address, $dst$$Register);
5876   %}
5877 #else
5878   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5879   ins_encode %{
5880     __ ldx($mem$$Address, $dst$$Register);
5881   %}
5882 #endif
5883   ins_pipe(iload_mem);
5884 %}
5885 
5886 // Load narrow Klass Pointer
5887 instruct loadNKlass(iRegN dst, memory mem) %{
5888   match(Set dst (LoadNKlass mem));
5889   ins_cost(MEMORY_REF_COST);
5890   size(4);
5891 
5892   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5893   ins_encode %{
5894     __ lduw($mem$$Address, $dst$$Register);
5895   %}
5896   ins_pipe(iload_mem);
5897 %}
5898 
5899 // Load Double
5900 instruct loadD(regD dst, memory mem) %{
5901   match(Set dst (LoadD mem));
5902   ins_cost(MEMORY_REF_COST);
5903 
5904   size(4);
5905   format %{ "LDDF   $mem,$dst" %}
5906   opcode(Assembler::lddf_op3);
5907   ins_encode(simple_form3_mem_reg( mem, dst ) );
5908   ins_pipe(floadD_mem);
5909 %}
5910 
5911 // Load Double - UNaligned
5912 instruct loadD_unaligned(regD_low dst, memory mem ) %{
5913   match(Set dst (LoadD_unaligned mem));
5914   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5915   size(8);
5916   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5917           "\tLDF    $mem+4,$dst.lo\t!" %}
5918   opcode(Assembler::ldf_op3);
5919   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5920   ins_pipe(iload_mem);
5921 %}
5922 
5923 // Load Float
5924 instruct loadF(regF dst, memory mem) %{
5925   match(Set dst (LoadF mem));
5926   ins_cost(MEMORY_REF_COST);
5927 
5928   size(4);
5929   format %{ "LDF    $mem,$dst" %}
5930   opcode(Assembler::ldf_op3);
5931   ins_encode(simple_form3_mem_reg( mem, dst ) );
5932   ins_pipe(floadF_mem);
5933 %}
5934 
5935 // Load Constant
5936 instruct loadConI( iRegI dst, immI src ) %{
5937   match(Set dst src);
5938   ins_cost(DEFAULT_COST * 3/2);
5939   format %{ "SET    $src,$dst" %}
5940   ins_encode( Set32(src, dst) );
5941   ins_pipe(ialu_hi_lo_reg);
5942 %}
5943 
5944 instruct loadConI13( iRegI dst, immI13 src ) %{
5945   match(Set dst src);
5946 
5947   size(4);
5948   format %{ "MOV    $src,$dst" %}
5949   ins_encode( Set13( src, dst ) );
5950   ins_pipe(ialu_imm);
5951 %}
5952 
5953 instruct loadConP(iRegP dst, immP src) %{
5954   match(Set dst src);
5955   ins_cost(DEFAULT_COST * 3/2);
5956   format %{ "SET    $src,$dst\t!ptr" %}
5957   // This rule does not use "expand" unlike loadConI because then
5958   // the result type is not known to be an Oop.  An ADLC
5959   // enhancement will be needed to make that work - not worth it!
5960 
5961   ins_encode( SetPtr( src, dst ) );
5962   ins_pipe(loadConP);
5963 
5964 %}
5965 
5966 instruct loadConP0(iRegP dst, immP0 src) %{
5967   match(Set dst src);
5968 
5969   size(4);
5970   format %{ "CLR    $dst\t!ptr" %}
5971   ins_encode( SetNull( dst ) );
5972   ins_pipe(ialu_imm);
5973 %}
5974 
5975 instruct loadConP_poll(iRegP dst, immP_poll src) %{
5976   match(Set dst src);
5977   ins_cost(DEFAULT_COST);
5978   format %{ "SET    $src,$dst\t!ptr" %}
5979   ins_encode %{
5980     AddressLiteral polling_page(os::get_polling_page());
5981     __ sethi(polling_page, reg_to_register_object($dst$$reg));
5982   %}
5983   ins_pipe(loadConP_poll);
5984 %}
5985 
5986 instruct loadConN0(iRegN dst, immN0 src) %{
5987   match(Set dst src);
5988 
5989   size(4);
5990   format %{ "CLR    $dst\t! compressed NULL ptr" %}
5991   ins_encode( SetNull( dst ) );
5992   ins_pipe(ialu_imm);
5993 %}
5994 
5995 instruct loadConN(iRegN dst, immN src) %{
5996   match(Set dst src);
5997   ins_cost(DEFAULT_COST * 3/2);
5998   format %{ "SET    $src,$dst\t! compressed ptr" %}
5999   ins_encode %{
6000     Register dst = $dst$$Register;
6001     __ set_narrow_oop((jobject)$src$$constant, dst);
6002   %}
6003   ins_pipe(ialu_hi_lo_reg);
6004 %}
6005 
6006 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
6007   // %%% maybe this should work like loadConD
6008   match(Set dst src);
6009   effect(KILL tmp);
6010   ins_cost(DEFAULT_COST * 4);
6011   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
6012   ins_encode( LdImmL(src, dst, tmp) );
6013   ins_pipe(loadConL);
6014 %}
6015 
6016 instruct loadConL0( iRegL dst, immL0 src ) %{
6017   match(Set dst src);
6018   ins_cost(DEFAULT_COST);
6019   size(4);
6020   format %{ "CLR    $dst\t! long" %}
6021   ins_encode( Set13( src, dst ) );
6022   ins_pipe(ialu_imm);
6023 %}
6024 
6025 instruct loadConL13( iRegL dst, immL13 src ) %{
6026   match(Set dst src);
6027   ins_cost(DEFAULT_COST * 2);
6028 
6029   size(4);
6030   format %{ "MOV    $src,$dst\t! long" %}
6031   ins_encode( Set13( src, dst ) );
6032   ins_pipe(ialu_imm);
6033 %}
6034 
6035 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
6036   match(Set dst src);
6037   effect(KILL tmp);
6038 
6039 #ifdef _LP64
6040   size(8*4);
6041 #else
6042   size(2*4);
6043 #endif
6044 
6045   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
6046             "LDF    [$tmp+lo(&$src)],$dst" %}
6047   ins_encode %{
6048     address float_address = __ float_constant($src$$constant);
6049     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
6050     AddressLiteral addrlit(float_address, rspec);
6051 
6052     __ sethi(addrlit, $tmp$$Register);
6053     __ ldf(FloatRegisterImpl::S, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
6054   %}
6055   ins_pipe(loadConFD);
6056 %}
6057 
6058 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
6059   match(Set dst src);
6060   effect(KILL tmp);
6061 
6062 #ifdef _LP64
6063   size(8*4);
6064 #else
6065   size(2*4);
6066 #endif
6067 
6068   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
6069             "LDDF   [$tmp+lo(&$src)],$dst" %}
6070   ins_encode %{
6071     address double_address = __ double_constant($src$$constant);
6072     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
6073     AddressLiteral addrlit(double_address, rspec);
6074 
6075     __ sethi(addrlit, $tmp$$Register);
6076     // XXX This is a quick fix for 6833573.
6077     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
6078     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
6079   %}
6080   ins_pipe(loadConFD);
6081 %}
6082 
6083 // Prefetch instructions.
6084 // Must be safe to execute with invalid address (cannot fault).
6085 
6086 instruct prefetchr( memory mem ) %{
6087   match( PrefetchRead mem );
6088   ins_cost(MEMORY_REF_COST);
6089 
6090   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6091   opcode(Assembler::prefetch_op3);
6092   ins_encode( form3_mem_prefetch_read( mem ) );
6093   ins_pipe(iload_mem);
6094 %}
6095 
6096 instruct prefetchw( memory mem ) %{
6097   match( PrefetchWrite mem );
6098   ins_cost(MEMORY_REF_COST);
6099 
6100   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6101   opcode(Assembler::prefetch_op3);
6102   ins_encode( form3_mem_prefetch_write( mem ) );
6103   ins_pipe(iload_mem);
6104 %}
6105 
6106 
6107 //----------Store Instructions-------------------------------------------------
6108 // Store Byte
6109 instruct storeB(memory mem, iRegI src) %{
6110   match(Set mem (StoreB mem src));
6111   ins_cost(MEMORY_REF_COST);
6112 
6113   size(4);
6114   format %{ "STB    $src,$mem\t! byte" %}
6115   opcode(Assembler::stb_op3);
6116   ins_encode(simple_form3_mem_reg( mem, src ) );
6117   ins_pipe(istore_mem_reg);
6118 %}
6119 
6120 instruct storeB0(memory mem, immI0 src) %{
6121   match(Set mem (StoreB mem src));
6122   ins_cost(MEMORY_REF_COST);
6123 
6124   size(4);
6125   format %{ "STB    $src,$mem\t! byte" %}
6126   opcode(Assembler::stb_op3);
6127   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6128   ins_pipe(istore_mem_zero);
6129 %}
6130 
6131 instruct storeCM0(memory mem, immI0 src) %{
6132   match(Set mem (StoreCM mem src));
6133   ins_cost(MEMORY_REF_COST);
6134 
6135   size(4);
6136   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6137   opcode(Assembler::stb_op3);
6138   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6139   ins_pipe(istore_mem_zero);
6140 %}
6141 
6142 // Store Char/Short
6143 instruct storeC(memory mem, iRegI src) %{
6144   match(Set mem (StoreC mem src));
6145   ins_cost(MEMORY_REF_COST);
6146 
6147   size(4);
6148   format %{ "STH    $src,$mem\t! short" %}
6149   opcode(Assembler::sth_op3);
6150   ins_encode(simple_form3_mem_reg( mem, src ) );
6151   ins_pipe(istore_mem_reg);
6152 %}
6153 
6154 instruct storeC0(memory mem, immI0 src) %{
6155   match(Set mem (StoreC mem src));
6156   ins_cost(MEMORY_REF_COST);
6157 
6158   size(4);
6159   format %{ "STH    $src,$mem\t! short" %}
6160   opcode(Assembler::sth_op3);
6161   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6162   ins_pipe(istore_mem_zero);
6163 %}
6164 
6165 // Store Integer
6166 instruct storeI(memory mem, iRegI src) %{
6167   match(Set mem (StoreI mem src));
6168   ins_cost(MEMORY_REF_COST);
6169 
6170   size(4);
6171   format %{ "STW    $src,$mem" %}
6172   opcode(Assembler::stw_op3);
6173   ins_encode(simple_form3_mem_reg( mem, src ) );
6174   ins_pipe(istore_mem_reg);
6175 %}
6176 
6177 // Store Long
6178 instruct storeL(memory mem, iRegL src) %{
6179   match(Set mem (StoreL mem src));
6180   ins_cost(MEMORY_REF_COST);
6181   size(4);
6182   format %{ "STX    $src,$mem\t! long" %}
6183   opcode(Assembler::stx_op3);
6184   ins_encode(simple_form3_mem_reg( mem, src ) );
6185   ins_pipe(istore_mem_reg);
6186 %}
6187 
6188 instruct storeI0(memory mem, immI0 src) %{
6189   match(Set mem (StoreI mem src));
6190   ins_cost(MEMORY_REF_COST);
6191 
6192   size(4);
6193   format %{ "STW    $src,$mem" %}
6194   opcode(Assembler::stw_op3);
6195   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6196   ins_pipe(istore_mem_zero);
6197 %}
6198 
6199 instruct storeL0(memory mem, immL0 src) %{
6200   match(Set mem (StoreL mem src));
6201   ins_cost(MEMORY_REF_COST);
6202 
6203   size(4);
6204   format %{ "STX    $src,$mem" %}
6205   opcode(Assembler::stx_op3);
6206   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6207   ins_pipe(istore_mem_zero);
6208 %}
6209 
6210 // Store Integer from float register (used after fstoi)
6211 instruct storeI_Freg(memory mem, regF src) %{
6212   match(Set mem (StoreI mem src));
6213   ins_cost(MEMORY_REF_COST);
6214 
6215   size(4);
6216   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6217   opcode(Assembler::stf_op3);
6218   ins_encode(simple_form3_mem_reg( mem, src ) );
6219   ins_pipe(fstoreF_mem_reg);
6220 %}
6221 
6222 // Store Pointer
6223 instruct storeP(memory dst, sp_ptr_RegP src) %{
6224   match(Set dst (StoreP dst src));
6225   ins_cost(MEMORY_REF_COST);
6226   size(4);
6227 
6228 #ifndef _LP64
6229   format %{ "STW    $src,$dst\t! ptr" %}
6230   opcode(Assembler::stw_op3, 0, REGP_OP);
6231 #else
6232   format %{ "STX    $src,$dst\t! ptr" %}
6233   opcode(Assembler::stx_op3, 0, REGP_OP);
6234 #endif
6235   ins_encode( form3_mem_reg( dst, src ) );
6236   ins_pipe(istore_mem_spORreg);
6237 %}
6238 
6239 instruct storeP0(memory dst, immP0 src) %{
6240   match(Set dst (StoreP dst src));
6241   ins_cost(MEMORY_REF_COST);
6242   size(4);
6243 
6244 #ifndef _LP64
6245   format %{ "STW    $src,$dst\t! ptr" %}
6246   opcode(Assembler::stw_op3, 0, REGP_OP);
6247 #else
6248   format %{ "STX    $src,$dst\t! ptr" %}
6249   opcode(Assembler::stx_op3, 0, REGP_OP);
6250 #endif
6251   ins_encode( form3_mem_reg( dst, R_G0 ) );
6252   ins_pipe(istore_mem_zero);
6253 %}
6254 
6255 // Store Compressed Pointer
6256 instruct storeN(memory dst, iRegN src) %{
6257    match(Set dst (StoreN dst src));
6258    ins_cost(MEMORY_REF_COST);
6259    size(4);
6260 
6261    format %{ "STW    $src,$dst\t! compressed ptr" %}
6262    ins_encode %{
6263      Register base = as_Register($dst$$base);
6264      Register index = as_Register($dst$$index);
6265      Register src = $src$$Register;
6266      if (index != G0) {
6267        __ stw(src, base, index);
6268      } else {
6269        __ stw(src, base, $dst$$disp);
6270      }
6271    %}
6272    ins_pipe(istore_mem_spORreg);
6273 %}
6274 
6275 instruct storeN0(memory dst, immN0 src) %{
6276    match(Set dst (StoreN dst src));
6277    ins_cost(MEMORY_REF_COST);
6278    size(4);
6279 
6280    format %{ "STW    $src,$dst\t! compressed ptr" %}
6281    ins_encode %{
6282      Register base = as_Register($dst$$base);
6283      Register index = as_Register($dst$$index);
6284      if (index != G0) {
6285        __ stw(0, base, index);
6286      } else {
6287        __ stw(0, base, $dst$$disp);
6288      }
6289    %}
6290    ins_pipe(istore_mem_zero);
6291 %}
6292 
6293 // Store Double
6294 instruct storeD( memory mem, regD src) %{
6295   match(Set mem (StoreD mem src));
6296   ins_cost(MEMORY_REF_COST);
6297 
6298   size(4);
6299   format %{ "STDF   $src,$mem" %}
6300   opcode(Assembler::stdf_op3);
6301   ins_encode(simple_form3_mem_reg( mem, src ) );
6302   ins_pipe(fstoreD_mem_reg);
6303 %}
6304 
6305 instruct storeD0( memory mem, immD0 src) %{
6306   match(Set mem (StoreD mem src));
6307   ins_cost(MEMORY_REF_COST);
6308 
6309   size(4);
6310   format %{ "STX    $src,$mem" %}
6311   opcode(Assembler::stx_op3);
6312   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6313   ins_pipe(fstoreD_mem_zero);
6314 %}
6315 
6316 // Store Float
6317 instruct storeF( memory mem, regF src) %{
6318   match(Set mem (StoreF mem src));
6319   ins_cost(MEMORY_REF_COST);
6320 
6321   size(4);
6322   format %{ "STF    $src,$mem" %}
6323   opcode(Assembler::stf_op3);
6324   ins_encode(simple_form3_mem_reg( mem, src ) );
6325   ins_pipe(fstoreF_mem_reg);
6326 %}
6327 
6328 instruct storeF0( memory mem, immF0 src) %{
6329   match(Set mem (StoreF mem src));
6330   ins_cost(MEMORY_REF_COST);
6331 
6332   size(4);
6333   format %{ "STW    $src,$mem\t! storeF0" %}
6334   opcode(Assembler::stw_op3);
6335   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6336   ins_pipe(fstoreF_mem_zero);
6337 %}
6338 
6339 // Store Aligned Packed Bytes in Double register to memory
6340 instruct storeA8B(memory mem, regD src) %{
6341   match(Set mem (Store8B mem src));
6342   ins_cost(MEMORY_REF_COST);
6343   size(4);
6344   format %{ "STDF   $src,$mem\t! packed8B" %}
6345   opcode(Assembler::stdf_op3);
6346   ins_encode(simple_form3_mem_reg( mem, src ) );
6347   ins_pipe(fstoreD_mem_reg);
6348 %}
6349 
6350 // Convert oop pointer into compressed form
6351 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6352   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6353   match(Set dst (EncodeP src));
6354   format %{ "encode_heap_oop $src, $dst" %}
6355   ins_encode %{
6356     __ encode_heap_oop($src$$Register, $dst$$Register);
6357   %}
6358   ins_pipe(ialu_reg);
6359 %}
6360 
6361 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6362   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6363   match(Set dst (EncodeP src));
6364   format %{ "encode_heap_oop_not_null $src, $dst" %}
6365   ins_encode %{
6366     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6367   %}
6368   ins_pipe(ialu_reg);
6369 %}
6370 
6371 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6372   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6373             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6374   match(Set dst (DecodeN src));
6375   format %{ "decode_heap_oop $src, $dst" %}
6376   ins_encode %{
6377     __ decode_heap_oop($src$$Register, $dst$$Register);
6378   %}
6379   ins_pipe(ialu_reg);
6380 %}
6381 
6382 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6383   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6384             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6385   match(Set dst (DecodeN src));
6386   format %{ "decode_heap_oop_not_null $src, $dst" %}
6387   ins_encode %{
6388     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6389   %}
6390   ins_pipe(ialu_reg);
6391 %}
6392 
6393 
6394 // Store Zero into Aligned Packed Bytes
6395 instruct storeA8B0(memory mem, immI0 zero) %{
6396   match(Set mem (Store8B mem zero));
6397   ins_cost(MEMORY_REF_COST);
6398   size(4);
6399   format %{ "STX    $zero,$mem\t! packed8B" %}
6400   opcode(Assembler::stx_op3);
6401   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6402   ins_pipe(fstoreD_mem_zero);
6403 %}
6404 
6405 // Store Aligned Packed Chars/Shorts in Double register to memory
6406 instruct storeA4C(memory mem, regD src) %{
6407   match(Set mem (Store4C mem src));
6408   ins_cost(MEMORY_REF_COST);
6409   size(4);
6410   format %{ "STDF   $src,$mem\t! packed4C" %}
6411   opcode(Assembler::stdf_op3);
6412   ins_encode(simple_form3_mem_reg( mem, src ) );
6413   ins_pipe(fstoreD_mem_reg);
6414 %}
6415 
6416 // Store Zero into Aligned Packed Chars/Shorts
6417 instruct storeA4C0(memory mem, immI0 zero) %{
6418   match(Set mem (Store4C mem (Replicate4C zero)));
6419   ins_cost(MEMORY_REF_COST);
6420   size(4);
6421   format %{ "STX    $zero,$mem\t! packed4C" %}
6422   opcode(Assembler::stx_op3);
6423   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6424   ins_pipe(fstoreD_mem_zero);
6425 %}
6426 
6427 // Store Aligned Packed Ints in Double register to memory
6428 instruct storeA2I(memory mem, regD src) %{
6429   match(Set mem (Store2I mem src));
6430   ins_cost(MEMORY_REF_COST);
6431   size(4);
6432   format %{ "STDF   $src,$mem\t! packed2I" %}
6433   opcode(Assembler::stdf_op3);
6434   ins_encode(simple_form3_mem_reg( mem, src ) );
6435   ins_pipe(fstoreD_mem_reg);
6436 %}
6437 
6438 // Store Zero into Aligned Packed Ints
6439 instruct storeA2I0(memory mem, immI0 zero) %{
6440   match(Set mem (Store2I mem zero));
6441   ins_cost(MEMORY_REF_COST);
6442   size(4);
6443   format %{ "STX    $zero,$mem\t! packed2I" %}
6444   opcode(Assembler::stx_op3);
6445   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6446   ins_pipe(fstoreD_mem_zero);
6447 %}
6448 
6449 
6450 //----------MemBar Instructions-----------------------------------------------
6451 // Memory barrier flavors
6452 
6453 instruct membar_acquire() %{
6454   match(MemBarAcquire);
6455   ins_cost(4*MEMORY_REF_COST);
6456 
6457   size(0);
6458   format %{ "MEMBAR-acquire" %}
6459   ins_encode( enc_membar_acquire );
6460   ins_pipe(long_memory_op);
6461 %}
6462 
6463 instruct membar_acquire_lock() %{
6464   match(MemBarAcquire);
6465   predicate(Matcher::prior_fast_lock(n));
6466   ins_cost(0);
6467 
6468   size(0);
6469   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6470   ins_encode( );
6471   ins_pipe(empty);
6472 %}
6473 
6474 instruct membar_release() %{
6475   match(MemBarRelease);
6476   ins_cost(4*MEMORY_REF_COST);
6477 
6478   size(0);
6479   format %{ "MEMBAR-release" %}
6480   ins_encode( enc_membar_release );
6481   ins_pipe(long_memory_op);
6482 %}
6483 
6484 instruct membar_release_lock() %{
6485   match(MemBarRelease);
6486   predicate(Matcher::post_fast_unlock(n));
6487   ins_cost(0);
6488 
6489   size(0);
6490   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6491   ins_encode( );
6492   ins_pipe(empty);
6493 %}
6494 
6495 instruct membar_volatile() %{
6496   match(MemBarVolatile);
6497   ins_cost(4*MEMORY_REF_COST);
6498 
6499   size(4);
6500   format %{ "MEMBAR-volatile" %}
6501   ins_encode( enc_membar_volatile );
6502   ins_pipe(long_memory_op);
6503 %}
6504 
6505 instruct unnecessary_membar_volatile() %{
6506   match(MemBarVolatile);
6507   predicate(Matcher::post_store_load_barrier(n));
6508   ins_cost(0);
6509 
6510   size(0);
6511   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6512   ins_encode( );
6513   ins_pipe(empty);
6514 %}
6515 
6516 //----------Register Move Instructions-----------------------------------------
6517 instruct roundDouble_nop(regD dst) %{
6518   match(Set dst (RoundDouble dst));
6519   ins_cost(0);
6520   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6521   ins_encode( );
6522   ins_pipe(empty);
6523 %}
6524 
6525 
6526 instruct roundFloat_nop(regF dst) %{
6527   match(Set dst (RoundFloat dst));
6528   ins_cost(0);
6529   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6530   ins_encode( );
6531   ins_pipe(empty);
6532 %}
6533 
6534 
6535 // Cast Index to Pointer for unsafe natives
6536 instruct castX2P(iRegX src, iRegP dst) %{
6537   match(Set dst (CastX2P src));
6538 
6539   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6540   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6541   ins_pipe(ialu_reg);
6542 %}
6543 
6544 // Cast Pointer to Index for unsafe natives
6545 instruct castP2X(iRegP src, iRegX dst) %{
6546   match(Set dst (CastP2X src));
6547 
6548   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6549   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6550   ins_pipe(ialu_reg);
6551 %}
6552 
6553 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6554   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6555   match(Set stkSlot src);   // chain rule
6556   ins_cost(MEMORY_REF_COST);
6557   format %{ "STDF   $src,$stkSlot\t!stk" %}
6558   opcode(Assembler::stdf_op3);
6559   ins_encode(simple_form3_mem_reg(stkSlot, src));
6560   ins_pipe(fstoreD_stk_reg);
6561 %}
6562 
6563 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6564   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6565   match(Set dst stkSlot);   // chain rule
6566   ins_cost(MEMORY_REF_COST);
6567   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6568   opcode(Assembler::lddf_op3);
6569   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6570   ins_pipe(floadD_stk);
6571 %}
6572 
6573 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6574   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6575   match(Set stkSlot src);   // chain rule
6576   ins_cost(MEMORY_REF_COST);
6577   format %{ "STF   $src,$stkSlot\t!stk" %}
6578   opcode(Assembler::stf_op3);
6579   ins_encode(simple_form3_mem_reg(stkSlot, src));
6580   ins_pipe(fstoreF_stk_reg);
6581 %}
6582 
6583 //----------Conditional Move---------------------------------------------------
6584 // Conditional move
6585 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6586   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6587   ins_cost(150);
6588   format %{ "MOV$cmp $pcc,$src,$dst" %}
6589   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6590   ins_pipe(ialu_reg);
6591 %}
6592 
6593 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6594   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6595   ins_cost(140);
6596   format %{ "MOV$cmp $pcc,$src,$dst" %}
6597   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6598   ins_pipe(ialu_imm);
6599 %}
6600 
6601 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6602   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6603   ins_cost(150);
6604   size(4);
6605   format %{ "MOV$cmp  $icc,$src,$dst" %}
6606   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6607   ins_pipe(ialu_reg);
6608 %}
6609 
6610 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6611   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6612   ins_cost(140);
6613   size(4);
6614   format %{ "MOV$cmp  $icc,$src,$dst" %}
6615   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6616   ins_pipe(ialu_imm);
6617 %}
6618 
6619 instruct cmovII_U_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6620   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6621   ins_cost(150);
6622   size(4);
6623   format %{ "MOV$cmp  $icc,$src,$dst" %}
6624   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6625   ins_pipe(ialu_reg);
6626 %}
6627 
6628 instruct cmovII_U_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6629   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6630   ins_cost(140);
6631   size(4);
6632   format %{ "MOV$cmp  $icc,$src,$dst" %}
6633   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6634   ins_pipe(ialu_imm);
6635 %}
6636 
6637 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6638   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6639   ins_cost(150);
6640   size(4);
6641   format %{ "MOV$cmp $fcc,$src,$dst" %}
6642   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6643   ins_pipe(ialu_reg);
6644 %}
6645 
6646 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6647   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6648   ins_cost(140);
6649   size(4);
6650   format %{ "MOV$cmp $fcc,$src,$dst" %}
6651   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6652   ins_pipe(ialu_imm);
6653 %}
6654 
6655 // Conditional move for RegN. Only cmov(reg,reg).
6656 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6657   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6658   ins_cost(150);
6659   format %{ "MOV$cmp $pcc,$src,$dst" %}
6660   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6661   ins_pipe(ialu_reg);
6662 %}
6663 
6664 // This instruction also works with CmpN so we don't need cmovNN_reg.
6665 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6666   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6667   ins_cost(150);
6668   size(4);
6669   format %{ "MOV$cmp  $icc,$src,$dst" %}
6670   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6671   ins_pipe(ialu_reg);
6672 %}
6673 
6674 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6675   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6676   ins_cost(150);
6677   size(4);
6678   format %{ "MOV$cmp $fcc,$src,$dst" %}
6679   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6680   ins_pipe(ialu_reg);
6681 %}
6682 
6683 // Conditional move
6684 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6685   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6686   ins_cost(150);
6687   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6688   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6689   ins_pipe(ialu_reg);
6690 %}
6691 
6692 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6693   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6694   ins_cost(140);
6695   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6696   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6697   ins_pipe(ialu_imm);
6698 %}
6699 
6700 // This instruction also works with CmpN so we don't need cmovPN_reg.
6701 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6702   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6703   ins_cost(150);
6704 
6705   size(4);
6706   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6707   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6708   ins_pipe(ialu_reg);
6709 %}
6710 
6711 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6712   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6713   ins_cost(140);
6714 
6715   size(4);
6716   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6717   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6718   ins_pipe(ialu_imm);
6719 %}
6720 
6721 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6722   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6723   ins_cost(150);
6724   size(4);
6725   format %{ "MOV$cmp $fcc,$src,$dst" %}
6726   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6727   ins_pipe(ialu_imm);
6728 %}
6729 
6730 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6731   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6732   ins_cost(140);
6733   size(4);
6734   format %{ "MOV$cmp $fcc,$src,$dst" %}
6735   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6736   ins_pipe(ialu_imm);
6737 %}
6738 
6739 // Conditional move
6740 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6741   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6742   ins_cost(150);
6743   opcode(0x101);
6744   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6745   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6746   ins_pipe(int_conditional_float_move);
6747 %}
6748 
6749 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6750   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6751   ins_cost(150);
6752 
6753   size(4);
6754   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6755   opcode(0x101);
6756   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6757   ins_pipe(int_conditional_float_move);
6758 %}
6759 
6760 // Conditional move,
6761 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6762   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6763   ins_cost(150);
6764   size(4);
6765   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6766   opcode(0x1);
6767   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6768   ins_pipe(int_conditional_double_move);
6769 %}
6770 
6771 // Conditional move
6772 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6773   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6774   ins_cost(150);
6775   size(4);
6776   opcode(0x102);
6777   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6778   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6779   ins_pipe(int_conditional_double_move);
6780 %}
6781 
6782 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6783   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6784   ins_cost(150);
6785 
6786   size(4);
6787   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6788   opcode(0x102);
6789   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6790   ins_pipe(int_conditional_double_move);
6791 %}
6792 
6793 // Conditional move,
6794 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6795   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6796   ins_cost(150);
6797   size(4);
6798   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6799   opcode(0x2);
6800   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6801   ins_pipe(int_conditional_double_move);
6802 %}
6803 
6804 // Conditional move
6805 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6806   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6807   ins_cost(150);
6808   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6809   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6810   ins_pipe(ialu_reg);
6811 %}
6812 
6813 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6814   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6815   ins_cost(140);
6816   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6817   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6818   ins_pipe(ialu_imm);
6819 %}
6820 
6821 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6822   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6823   ins_cost(150);
6824 
6825   size(4);
6826   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6827   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6828   ins_pipe(ialu_reg);
6829 %}
6830 
6831 
6832 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6833   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6834   ins_cost(150);
6835 
6836   size(4);
6837   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
6838   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6839   ins_pipe(ialu_reg);
6840 %}
6841 
6842 
6843 
6844 //----------OS and Locking Instructions----------------------------------------
6845 
6846 // This name is KNOWN by the ADLC and cannot be changed.
6847 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6848 // for this guy.
6849 instruct tlsLoadP(g2RegP dst) %{
6850   match(Set dst (ThreadLocal));
6851 
6852   size(0);
6853   ins_cost(0);
6854   format %{ "# TLS is in G2" %}
6855   ins_encode( /*empty encoding*/ );
6856   ins_pipe(ialu_none);
6857 %}
6858 
6859 instruct checkCastPP( iRegP dst ) %{
6860   match(Set dst (CheckCastPP dst));
6861 
6862   size(0);
6863   format %{ "# checkcastPP of $dst" %}
6864   ins_encode( /*empty encoding*/ );
6865   ins_pipe(empty);
6866 %}
6867 
6868 
6869 instruct castPP( iRegP dst ) %{
6870   match(Set dst (CastPP dst));
6871   format %{ "# castPP of $dst" %}
6872   ins_encode( /*empty encoding*/ );
6873   ins_pipe(empty);
6874 %}
6875 
6876 instruct castII( iRegI dst ) %{
6877   match(Set dst (CastII dst));
6878   format %{ "# castII of $dst" %}
6879   ins_encode( /*empty encoding*/ );
6880   ins_cost(0);
6881   ins_pipe(empty);
6882 %}
6883 
6884 //----------Arithmetic Instructions--------------------------------------------
6885 // Addition Instructions
6886 // Register Addition
6887 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6888   match(Set dst (AddI src1 src2));
6889 
6890   size(4);
6891   format %{ "ADD    $src1,$src2,$dst" %}
6892   ins_encode %{
6893     __ add($src1$$Register, $src2$$Register, $dst$$Register);
6894   %}
6895   ins_pipe(ialu_reg_reg);
6896 %}
6897 
6898 // Immediate Addition
6899 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6900   match(Set dst (AddI src1 src2));
6901 
6902   size(4);
6903   format %{ "ADD    $src1,$src2,$dst" %}
6904   opcode(Assembler::add_op3, Assembler::arith_op);
6905   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6906   ins_pipe(ialu_reg_imm);
6907 %}
6908 
6909 // Pointer Register Addition
6910 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
6911   match(Set dst (AddP src1 src2));
6912 
6913   size(4);
6914   format %{ "ADD    $src1,$src2,$dst" %}
6915   opcode(Assembler::add_op3, Assembler::arith_op);
6916   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6917   ins_pipe(ialu_reg_reg);
6918 %}
6919 
6920 // Pointer Immediate Addition
6921 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
6922   match(Set dst (AddP src1 src2));
6923 
6924   size(4);
6925   format %{ "ADD    $src1,$src2,$dst" %}
6926   opcode(Assembler::add_op3, Assembler::arith_op);
6927   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6928   ins_pipe(ialu_reg_imm);
6929 %}
6930 
6931 // Long Addition
6932 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6933   match(Set dst (AddL src1 src2));
6934 
6935   size(4);
6936   format %{ "ADD    $src1,$src2,$dst\t! long" %}
6937   opcode(Assembler::add_op3, Assembler::arith_op);
6938   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6939   ins_pipe(ialu_reg_reg);
6940 %}
6941 
6942 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
6943   match(Set dst (AddL src1 con));
6944 
6945   size(4);
6946   format %{ "ADD    $src1,$con,$dst" %}
6947   opcode(Assembler::add_op3, Assembler::arith_op);
6948   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
6949   ins_pipe(ialu_reg_imm);
6950 %}
6951 
6952 //----------Conditional_store--------------------------------------------------
6953 // Conditional-store of the updated heap-top.
6954 // Used during allocation of the shared heap.
6955 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
6956 
6957 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
6958 instruct loadPLocked(iRegP dst, memory mem) %{
6959   match(Set dst (LoadPLocked mem));
6960   ins_cost(MEMORY_REF_COST);
6961 
6962 #ifndef _LP64
6963   size(4);
6964   format %{ "LDUW   $mem,$dst\t! ptr" %}
6965   opcode(Assembler::lduw_op3, 0, REGP_OP);
6966 #else
6967   format %{ "LDX    $mem,$dst\t! ptr" %}
6968   opcode(Assembler::ldx_op3, 0, REGP_OP);
6969 #endif
6970   ins_encode( form3_mem_reg( mem, dst ) );
6971   ins_pipe(iload_mem);
6972 %}
6973 
6974 // LoadL-locked.  Same as a regular long load when used with a compare-swap
6975 instruct loadLLocked(iRegL dst, memory mem) %{
6976   match(Set dst (LoadLLocked mem));
6977   ins_cost(MEMORY_REF_COST);
6978   size(4);
6979   format %{ "LDX    $mem,$dst\t! long" %}
6980   opcode(Assembler::ldx_op3);
6981   ins_encode(simple_form3_mem_reg( mem, dst ) );
6982   ins_pipe(iload_mem);
6983 %}
6984 
6985 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
6986   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
6987   effect( KILL newval );
6988   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
6989             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
6990   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
6991   ins_pipe( long_memory_op );
6992 %}
6993 
6994 // Conditional-store of an int value.
6995 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
6996   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
6997   effect( KILL newval );
6998   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
6999             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7000   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7001   ins_pipe( long_memory_op );
7002 %}
7003 
7004 // Conditional-store of a long value.
7005 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7006   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7007   effect( KILL newval );
7008   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7009             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7010   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7011   ins_pipe( long_memory_op );
7012 %}
7013 
7014 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7015 
7016 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7017   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7018   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7019   format %{
7020             "MOV    $newval,O7\n\t"
7021             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7022             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7023             "MOV    1,$res\n\t"
7024             "MOVne  xcc,R_G0,$res"
7025   %}
7026   ins_encode( enc_casx(mem_ptr, oldval, newval),
7027               enc_lflags_ne_to_boolean(res) );
7028   ins_pipe( long_memory_op );
7029 %}
7030 
7031 
7032 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7033   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7034   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7035   format %{
7036             "MOV    $newval,O7\n\t"
7037             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7038             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7039             "MOV    1,$res\n\t"
7040             "MOVne  icc,R_G0,$res"
7041   %}
7042   ins_encode( enc_casi(mem_ptr, oldval, newval),
7043               enc_iflags_ne_to_boolean(res) );
7044   ins_pipe( long_memory_op );
7045 %}
7046 
7047 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7048   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7049   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7050   format %{
7051             "MOV    $newval,O7\n\t"
7052             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7053             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7054             "MOV    1,$res\n\t"
7055             "MOVne  xcc,R_G0,$res"
7056   %}
7057 #ifdef _LP64
7058   ins_encode( enc_casx(mem_ptr, oldval, newval),
7059               enc_lflags_ne_to_boolean(res) );
7060 #else
7061   ins_encode( enc_casi(mem_ptr, oldval, newval),
7062               enc_iflags_ne_to_boolean(res) );
7063 #endif
7064   ins_pipe( long_memory_op );
7065 %}
7066 
7067 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7068   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7069   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7070   format %{
7071             "MOV    $newval,O7\n\t"
7072             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7073             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7074             "MOV    1,$res\n\t"
7075             "MOVne  icc,R_G0,$res"
7076   %}
7077   ins_encode( enc_casi(mem_ptr, oldval, newval),
7078               enc_iflags_ne_to_boolean(res) );
7079   ins_pipe( long_memory_op );
7080 %}
7081 
7082 //---------------------
7083 // Subtraction Instructions
7084 // Register Subtraction
7085 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7086   match(Set dst (SubI src1 src2));
7087 
7088   size(4);
7089   format %{ "SUB    $src1,$src2,$dst" %}
7090   opcode(Assembler::sub_op3, Assembler::arith_op);
7091   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7092   ins_pipe(ialu_reg_reg);
7093 %}
7094 
7095 // Immediate Subtraction
7096 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7097   match(Set dst (SubI src1 src2));
7098 
7099   size(4);
7100   format %{ "SUB    $src1,$src2,$dst" %}
7101   opcode(Assembler::sub_op3, Assembler::arith_op);
7102   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7103   ins_pipe(ialu_reg_imm);
7104 %}
7105 
7106 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7107   match(Set dst (SubI zero src2));
7108 
7109   size(4);
7110   format %{ "NEG    $src2,$dst" %}
7111   opcode(Assembler::sub_op3, Assembler::arith_op);
7112   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7113   ins_pipe(ialu_zero_reg);
7114 %}
7115 
7116 // Long subtraction
7117 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7118   match(Set dst (SubL src1 src2));
7119 
7120   size(4);
7121   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7122   opcode(Assembler::sub_op3, Assembler::arith_op);
7123   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7124   ins_pipe(ialu_reg_reg);
7125 %}
7126 
7127 // Immediate Subtraction
7128 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7129   match(Set dst (SubL src1 con));
7130 
7131   size(4);
7132   format %{ "SUB    $src1,$con,$dst\t! long" %}
7133   opcode(Assembler::sub_op3, Assembler::arith_op);
7134   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7135   ins_pipe(ialu_reg_imm);
7136 %}
7137 
7138 // Long negation
7139 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7140   match(Set dst (SubL zero src2));
7141 
7142   size(4);
7143   format %{ "NEG    $src2,$dst\t! long" %}
7144   opcode(Assembler::sub_op3, Assembler::arith_op);
7145   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7146   ins_pipe(ialu_zero_reg);
7147 %}
7148 
7149 // Multiplication Instructions
7150 // Integer Multiplication
7151 // Register Multiplication
7152 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7153   match(Set dst (MulI src1 src2));
7154 
7155   size(4);
7156   format %{ "MULX   $src1,$src2,$dst" %}
7157   opcode(Assembler::mulx_op3, Assembler::arith_op);
7158   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7159   ins_pipe(imul_reg_reg);
7160 %}
7161 
7162 // Immediate Multiplication
7163 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7164   match(Set dst (MulI src1 src2));
7165 
7166   size(4);
7167   format %{ "MULX   $src1,$src2,$dst" %}
7168   opcode(Assembler::mulx_op3, Assembler::arith_op);
7169   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7170   ins_pipe(imul_reg_imm);
7171 %}
7172 
7173 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7174   match(Set dst (MulL src1 src2));
7175   ins_cost(DEFAULT_COST * 5);
7176   size(4);
7177   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7178   opcode(Assembler::mulx_op3, Assembler::arith_op);
7179   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7180   ins_pipe(mulL_reg_reg);
7181 %}
7182 
7183 // Immediate Multiplication
7184 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7185   match(Set dst (MulL src1 src2));
7186   ins_cost(DEFAULT_COST * 5);
7187   size(4);
7188   format %{ "MULX   $src1,$src2,$dst" %}
7189   opcode(Assembler::mulx_op3, Assembler::arith_op);
7190   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7191   ins_pipe(mulL_reg_imm);
7192 %}
7193 
7194 // Integer Division
7195 // Register Division
7196 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7197   match(Set dst (DivI src1 src2));
7198   ins_cost((2+71)*DEFAULT_COST);
7199 
7200   format %{ "SRA     $src2,0,$src2\n\t"
7201             "SRA     $src1,0,$src1\n\t"
7202             "SDIVX   $src1,$src2,$dst" %}
7203   ins_encode( idiv_reg( src1, src2, dst ) );
7204   ins_pipe(sdiv_reg_reg);
7205 %}
7206 
7207 // Immediate Division
7208 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7209   match(Set dst (DivI src1 src2));
7210   ins_cost((2+71)*DEFAULT_COST);
7211 
7212   format %{ "SRA     $src1,0,$src1\n\t"
7213             "SDIVX   $src1,$src2,$dst" %}
7214   ins_encode( idiv_imm( src1, src2, dst ) );
7215   ins_pipe(sdiv_reg_imm);
7216 %}
7217 
7218 //----------Div-By-10-Expansion------------------------------------------------
7219 // Extract hi bits of a 32x32->64 bit multiply.
7220 // Expand rule only, not matched
7221 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7222   effect( DEF dst, USE src1, USE src2 );
7223   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7224             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7225   ins_encode( enc_mul_hi(dst,src1,src2));
7226   ins_pipe(sdiv_reg_reg);
7227 %}
7228 
7229 // Magic constant, reciprocal of 10
7230 instruct loadConI_x66666667(iRegIsafe dst) %{
7231   effect( DEF dst );
7232 
7233   size(8);
7234   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7235   ins_encode( Set32(0x66666667, dst) );
7236   ins_pipe(ialu_hi_lo_reg);
7237 %}
7238 
7239 // Register Shift Right Arithmetic Long by 32-63
7240 instruct sra_31( iRegI dst, iRegI src ) %{
7241   effect( DEF dst, USE src );
7242   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7243   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7244   ins_pipe(ialu_reg_reg);
7245 %}
7246 
7247 // Arithmetic Shift Right by 8-bit immediate
7248 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7249   effect( DEF dst, USE src );
7250   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7251   opcode(Assembler::sra_op3, Assembler::arith_op);
7252   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7253   ins_pipe(ialu_reg_imm);
7254 %}
7255 
7256 // Integer DIV with 10
7257 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7258   match(Set dst (DivI src div));
7259   ins_cost((6+6)*DEFAULT_COST);
7260   expand %{
7261     iRegIsafe tmp1;               // Killed temps;
7262     iRegIsafe tmp2;               // Killed temps;
7263     iRegI tmp3;                   // Killed temps;
7264     iRegI tmp4;                   // Killed temps;
7265     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7266     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7267     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7268     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7269     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7270   %}
7271 %}
7272 
7273 // Register Long Division
7274 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7275   match(Set dst (DivL src1 src2));
7276   ins_cost(DEFAULT_COST*71);
7277   size(4);
7278   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7279   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7280   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7281   ins_pipe(divL_reg_reg);
7282 %}
7283 
7284 // Register Long Division
7285 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7286   match(Set dst (DivL src1 src2));
7287   ins_cost(DEFAULT_COST*71);
7288   size(4);
7289   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7290   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7291   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7292   ins_pipe(divL_reg_imm);
7293 %}
7294 
7295 // Integer Remainder
7296 // Register Remainder
7297 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7298   match(Set dst (ModI src1 src2));
7299   effect( KILL ccr, KILL temp);
7300 
7301   format %{ "SREM   $src1,$src2,$dst" %}
7302   ins_encode( irem_reg(src1, src2, dst, temp) );
7303   ins_pipe(sdiv_reg_reg);
7304 %}
7305 
7306 // Immediate Remainder
7307 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7308   match(Set dst (ModI src1 src2));
7309   effect( KILL ccr, KILL temp);
7310 
7311   format %{ "SREM   $src1,$src2,$dst" %}
7312   ins_encode( irem_imm(src1, src2, dst, temp) );
7313   ins_pipe(sdiv_reg_imm);
7314 %}
7315 
7316 // Register Long Remainder
7317 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7318   effect(DEF dst, USE src1, USE src2);
7319   size(4);
7320   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7321   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7322   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7323   ins_pipe(divL_reg_reg);
7324 %}
7325 
7326 // Register Long Division
7327 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7328   effect(DEF dst, USE src1, USE src2);
7329   size(4);
7330   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7331   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7332   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7333   ins_pipe(divL_reg_imm);
7334 %}
7335 
7336 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7337   effect(DEF dst, USE src1, USE src2);
7338   size(4);
7339   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7340   opcode(Assembler::mulx_op3, Assembler::arith_op);
7341   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7342   ins_pipe(mulL_reg_reg);
7343 %}
7344 
7345 // Immediate Multiplication
7346 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7347   effect(DEF dst, USE src1, USE src2);
7348   size(4);
7349   format %{ "MULX   $src1,$src2,$dst" %}
7350   opcode(Assembler::mulx_op3, Assembler::arith_op);
7351   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7352   ins_pipe(mulL_reg_imm);
7353 %}
7354 
7355 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7356   effect(DEF dst, USE src1, USE src2);
7357   size(4);
7358   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7359   opcode(Assembler::sub_op3, Assembler::arith_op);
7360   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7361   ins_pipe(ialu_reg_reg);
7362 %}
7363 
7364 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7365   effect(DEF dst, USE src1, USE src2);
7366   size(4);
7367   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7368   opcode(Assembler::sub_op3, Assembler::arith_op);
7369   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7370   ins_pipe(ialu_reg_reg);
7371 %}
7372 
7373 // Register Long Remainder
7374 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7375   match(Set dst (ModL src1 src2));
7376   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7377   expand %{
7378     iRegL tmp1;
7379     iRegL tmp2;
7380     divL_reg_reg_1(tmp1, src1, src2);
7381     mulL_reg_reg_1(tmp2, tmp1, src2);
7382     subL_reg_reg_1(dst,  src1, tmp2);
7383   %}
7384 %}
7385 
7386 // Register Long Remainder
7387 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7388   match(Set dst (ModL src1 src2));
7389   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7390   expand %{
7391     iRegL tmp1;
7392     iRegL tmp2;
7393     divL_reg_imm13_1(tmp1, src1, src2);
7394     mulL_reg_imm13_1(tmp2, tmp1, src2);
7395     subL_reg_reg_2  (dst,  src1, tmp2);
7396   %}
7397 %}
7398 
7399 // Integer Shift Instructions
7400 // Register Shift Left
7401 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7402   match(Set dst (LShiftI src1 src2));
7403 
7404   size(4);
7405   format %{ "SLL    $src1,$src2,$dst" %}
7406   opcode(Assembler::sll_op3, Assembler::arith_op);
7407   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7408   ins_pipe(ialu_reg_reg);
7409 %}
7410 
7411 // Register Shift Left Immediate
7412 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7413   match(Set dst (LShiftI src1 src2));
7414 
7415   size(4);
7416   format %{ "SLL    $src1,$src2,$dst" %}
7417   opcode(Assembler::sll_op3, Assembler::arith_op);
7418   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7419   ins_pipe(ialu_reg_imm);
7420 %}
7421 
7422 // Register Shift Left
7423 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7424   match(Set dst (LShiftL src1 src2));
7425 
7426   size(4);
7427   format %{ "SLLX   $src1,$src2,$dst" %}
7428   opcode(Assembler::sllx_op3, Assembler::arith_op);
7429   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7430   ins_pipe(ialu_reg_reg);
7431 %}
7432 
7433 // Register Shift Left Immediate
7434 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7435   match(Set dst (LShiftL src1 src2));
7436 
7437   size(4);
7438   format %{ "SLLX   $src1,$src2,$dst" %}
7439   opcode(Assembler::sllx_op3, Assembler::arith_op);
7440   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7441   ins_pipe(ialu_reg_imm);
7442 %}
7443 
7444 // Register Arithmetic Shift Right
7445 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7446   match(Set dst (RShiftI src1 src2));
7447   size(4);
7448   format %{ "SRA    $src1,$src2,$dst" %}
7449   opcode(Assembler::sra_op3, Assembler::arith_op);
7450   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7451   ins_pipe(ialu_reg_reg);
7452 %}
7453 
7454 // Register Arithmetic Shift Right Immediate
7455 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7456   match(Set dst (RShiftI src1 src2));
7457 
7458   size(4);
7459   format %{ "SRA    $src1,$src2,$dst" %}
7460   opcode(Assembler::sra_op3, Assembler::arith_op);
7461   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7462   ins_pipe(ialu_reg_imm);
7463 %}
7464 
7465 // Register Shift Right Arithmatic Long
7466 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7467   match(Set dst (RShiftL src1 src2));
7468 
7469   size(4);
7470   format %{ "SRAX   $src1,$src2,$dst" %}
7471   opcode(Assembler::srax_op3, Assembler::arith_op);
7472   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7473   ins_pipe(ialu_reg_reg);
7474 %}
7475 
7476 // Register Shift Left Immediate
7477 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7478   match(Set dst (RShiftL src1 src2));
7479 
7480   size(4);
7481   format %{ "SRAX   $src1,$src2,$dst" %}
7482   opcode(Assembler::srax_op3, Assembler::arith_op);
7483   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7484   ins_pipe(ialu_reg_imm);
7485 %}
7486 
7487 // Register Shift Right
7488 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7489   match(Set dst (URShiftI src1 src2));
7490 
7491   size(4);
7492   format %{ "SRL    $src1,$src2,$dst" %}
7493   opcode(Assembler::srl_op3, Assembler::arith_op);
7494   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7495   ins_pipe(ialu_reg_reg);
7496 %}
7497 
7498 // Register Shift Right Immediate
7499 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7500   match(Set dst (URShiftI src1 src2));
7501 
7502   size(4);
7503   format %{ "SRL    $src1,$src2,$dst" %}
7504   opcode(Assembler::srl_op3, Assembler::arith_op);
7505   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7506   ins_pipe(ialu_reg_imm);
7507 %}
7508 
7509 // Register Shift Right
7510 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7511   match(Set dst (URShiftL src1 src2));
7512 
7513   size(4);
7514   format %{ "SRLX   $src1,$src2,$dst" %}
7515   opcode(Assembler::srlx_op3, Assembler::arith_op);
7516   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7517   ins_pipe(ialu_reg_reg);
7518 %}
7519 
7520 // Register Shift Right Immediate
7521 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7522   match(Set dst (URShiftL src1 src2));
7523 
7524   size(4);
7525   format %{ "SRLX   $src1,$src2,$dst" %}
7526   opcode(Assembler::srlx_op3, Assembler::arith_op);
7527   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7528   ins_pipe(ialu_reg_imm);
7529 %}
7530 
7531 // Register Shift Right Immediate with a CastP2X
7532 #ifdef _LP64
7533 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7534   match(Set dst (URShiftL (CastP2X src1) src2));
7535   size(4);
7536   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7537   opcode(Assembler::srlx_op3, Assembler::arith_op);
7538   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7539   ins_pipe(ialu_reg_imm);
7540 %}
7541 #else
7542 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7543   match(Set dst (URShiftI (CastP2X src1) src2));
7544   size(4);
7545   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7546   opcode(Assembler::srl_op3, Assembler::arith_op);
7547   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7548   ins_pipe(ialu_reg_imm);
7549 %}
7550 #endif
7551 
7552 
7553 //----------Floating Point Arithmetic Instructions-----------------------------
7554 
7555 //  Add float single precision
7556 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7557   match(Set dst (AddF src1 src2));
7558 
7559   size(4);
7560   format %{ "FADDS  $src1,$src2,$dst" %}
7561   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7562   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7563   ins_pipe(faddF_reg_reg);
7564 %}
7565 
7566 //  Add float double precision
7567 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7568   match(Set dst (AddD src1 src2));
7569 
7570   size(4);
7571   format %{ "FADDD  $src1,$src2,$dst" %}
7572   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7573   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7574   ins_pipe(faddD_reg_reg);
7575 %}
7576 
7577 //  Sub float single precision
7578 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7579   match(Set dst (SubF src1 src2));
7580 
7581   size(4);
7582   format %{ "FSUBS  $src1,$src2,$dst" %}
7583   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7584   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7585   ins_pipe(faddF_reg_reg);
7586 %}
7587 
7588 //  Sub float double precision
7589 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7590   match(Set dst (SubD src1 src2));
7591 
7592   size(4);
7593   format %{ "FSUBD  $src1,$src2,$dst" %}
7594   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7595   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7596   ins_pipe(faddD_reg_reg);
7597 %}
7598 
7599 //  Mul float single precision
7600 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7601   match(Set dst (MulF src1 src2));
7602 
7603   size(4);
7604   format %{ "FMULS  $src1,$src2,$dst" %}
7605   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7606   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7607   ins_pipe(fmulF_reg_reg);
7608 %}
7609 
7610 //  Mul float double precision
7611 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7612   match(Set dst (MulD src1 src2));
7613 
7614   size(4);
7615   format %{ "FMULD  $src1,$src2,$dst" %}
7616   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7617   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7618   ins_pipe(fmulD_reg_reg);
7619 %}
7620 
7621 //  Div float single precision
7622 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7623   match(Set dst (DivF src1 src2));
7624 
7625   size(4);
7626   format %{ "FDIVS  $src1,$src2,$dst" %}
7627   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7628   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7629   ins_pipe(fdivF_reg_reg);
7630 %}
7631 
7632 //  Div float double precision
7633 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7634   match(Set dst (DivD src1 src2));
7635 
7636   size(4);
7637   format %{ "FDIVD  $src1,$src2,$dst" %}
7638   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7639   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7640   ins_pipe(fdivD_reg_reg);
7641 %}
7642 
7643 //  Absolute float double precision
7644 instruct absD_reg(regD dst, regD src) %{
7645   match(Set dst (AbsD src));
7646 
7647   format %{ "FABSd  $src,$dst" %}
7648   ins_encode(fabsd(dst, src));
7649   ins_pipe(faddD_reg);
7650 %}
7651 
7652 //  Absolute float single precision
7653 instruct absF_reg(regF dst, regF src) %{
7654   match(Set dst (AbsF src));
7655 
7656   format %{ "FABSs  $src,$dst" %}
7657   ins_encode(fabss(dst, src));
7658   ins_pipe(faddF_reg);
7659 %}
7660 
7661 instruct negF_reg(regF dst, regF src) %{
7662   match(Set dst (NegF src));
7663 
7664   size(4);
7665   format %{ "FNEGs  $src,$dst" %}
7666   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7667   ins_encode(form3_opf_rs2F_rdF(src, dst));
7668   ins_pipe(faddF_reg);
7669 %}
7670 
7671 instruct negD_reg(regD dst, regD src) %{
7672   match(Set dst (NegD src));
7673 
7674   format %{ "FNEGd  $src,$dst" %}
7675   ins_encode(fnegd(dst, src));
7676   ins_pipe(faddD_reg);
7677 %}
7678 
7679 //  Sqrt float double precision
7680 instruct sqrtF_reg_reg(regF dst, regF src) %{
7681   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7682 
7683   size(4);
7684   format %{ "FSQRTS $src,$dst" %}
7685   ins_encode(fsqrts(dst, src));
7686   ins_pipe(fdivF_reg_reg);
7687 %}
7688 
7689 //  Sqrt float double precision
7690 instruct sqrtD_reg_reg(regD dst, regD src) %{
7691   match(Set dst (SqrtD src));
7692 
7693   size(4);
7694   format %{ "FSQRTD $src,$dst" %}
7695   ins_encode(fsqrtd(dst, src));
7696   ins_pipe(fdivD_reg_reg);
7697 %}
7698 
7699 //----------Logical Instructions-----------------------------------------------
7700 // And Instructions
7701 // Register And
7702 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7703   match(Set dst (AndI src1 src2));
7704 
7705   size(4);
7706   format %{ "AND    $src1,$src2,$dst" %}
7707   opcode(Assembler::and_op3, Assembler::arith_op);
7708   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7709   ins_pipe(ialu_reg_reg);
7710 %}
7711 
7712 // Immediate And
7713 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7714   match(Set dst (AndI src1 src2));
7715 
7716   size(4);
7717   format %{ "AND    $src1,$src2,$dst" %}
7718   opcode(Assembler::and_op3, Assembler::arith_op);
7719   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7720   ins_pipe(ialu_reg_imm);
7721 %}
7722 
7723 // Register And Long
7724 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7725   match(Set dst (AndL src1 src2));
7726 
7727   ins_cost(DEFAULT_COST);
7728   size(4);
7729   format %{ "AND    $src1,$src2,$dst\t! long" %}
7730   opcode(Assembler::and_op3, Assembler::arith_op);
7731   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7732   ins_pipe(ialu_reg_reg);
7733 %}
7734 
7735 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7736   match(Set dst (AndL src1 con));
7737 
7738   ins_cost(DEFAULT_COST);
7739   size(4);
7740   format %{ "AND    $src1,$con,$dst\t! long" %}
7741   opcode(Assembler::and_op3, Assembler::arith_op);
7742   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7743   ins_pipe(ialu_reg_imm);
7744 %}
7745 
7746 // Or Instructions
7747 // Register Or
7748 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7749   match(Set dst (OrI src1 src2));
7750 
7751   size(4);
7752   format %{ "OR     $src1,$src2,$dst" %}
7753   opcode(Assembler::or_op3, Assembler::arith_op);
7754   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7755   ins_pipe(ialu_reg_reg);
7756 %}
7757 
7758 // Immediate Or
7759 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7760   match(Set dst (OrI src1 src2));
7761 
7762   size(4);
7763   format %{ "OR     $src1,$src2,$dst" %}
7764   opcode(Assembler::or_op3, Assembler::arith_op);
7765   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7766   ins_pipe(ialu_reg_imm);
7767 %}
7768 
7769 // Register Or Long
7770 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7771   match(Set dst (OrL src1 src2));
7772 
7773   ins_cost(DEFAULT_COST);
7774   size(4);
7775   format %{ "OR     $src1,$src2,$dst\t! long" %}
7776   opcode(Assembler::or_op3, Assembler::arith_op);
7777   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7778   ins_pipe(ialu_reg_reg);
7779 %}
7780 
7781 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7782   match(Set dst (OrL src1 con));
7783   ins_cost(DEFAULT_COST*2);
7784 
7785   ins_cost(DEFAULT_COST);
7786   size(4);
7787   format %{ "OR     $src1,$con,$dst\t! long" %}
7788   opcode(Assembler::or_op3, Assembler::arith_op);
7789   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7790   ins_pipe(ialu_reg_imm);
7791 %}
7792 
7793 #ifndef _LP64
7794 
7795 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
7796 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
7797   match(Set dst (OrI src1 (CastP2X src2)));
7798 
7799   size(4);
7800   format %{ "OR     $src1,$src2,$dst" %}
7801   opcode(Assembler::or_op3, Assembler::arith_op);
7802   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7803   ins_pipe(ialu_reg_reg);
7804 %}
7805 
7806 #else
7807 
7808 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
7809   match(Set dst (OrL src1 (CastP2X src2)));
7810 
7811   ins_cost(DEFAULT_COST);
7812   size(4);
7813   format %{ "OR     $src1,$src2,$dst\t! long" %}
7814   opcode(Assembler::or_op3, Assembler::arith_op);
7815   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7816   ins_pipe(ialu_reg_reg);
7817 %}
7818 
7819 #endif
7820 
7821 // Xor Instructions
7822 // Register Xor
7823 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7824   match(Set dst (XorI src1 src2));
7825 
7826   size(4);
7827   format %{ "XOR    $src1,$src2,$dst" %}
7828   opcode(Assembler::xor_op3, Assembler::arith_op);
7829   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7830   ins_pipe(ialu_reg_reg);
7831 %}
7832 
7833 // Immediate Xor
7834 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7835   match(Set dst (XorI src1 src2));
7836 
7837   size(4);
7838   format %{ "XOR    $src1,$src2,$dst" %}
7839   opcode(Assembler::xor_op3, Assembler::arith_op);
7840   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7841   ins_pipe(ialu_reg_imm);
7842 %}
7843 
7844 // Register Xor Long
7845 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7846   match(Set dst (XorL src1 src2));
7847 
7848   ins_cost(DEFAULT_COST);
7849   size(4);
7850   format %{ "XOR    $src1,$src2,$dst\t! long" %}
7851   opcode(Assembler::xor_op3, Assembler::arith_op);
7852   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7853   ins_pipe(ialu_reg_reg);
7854 %}
7855 
7856 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7857   match(Set dst (XorL src1 con));
7858 
7859   ins_cost(DEFAULT_COST);
7860   size(4);
7861   format %{ "XOR    $src1,$con,$dst\t! long" %}
7862   opcode(Assembler::xor_op3, Assembler::arith_op);
7863   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7864   ins_pipe(ialu_reg_imm);
7865 %}
7866 
7867 //----------Convert to Boolean-------------------------------------------------
7868 // Nice hack for 32-bit tests but doesn't work for
7869 // 64-bit pointers.
7870 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
7871   match(Set dst (Conv2B src));
7872   effect( KILL ccr );
7873   ins_cost(DEFAULT_COST*2);
7874   format %{ "CMP    R_G0,$src\n\t"
7875             "ADDX   R_G0,0,$dst" %}
7876   ins_encode( enc_to_bool( src, dst ) );
7877   ins_pipe(ialu_reg_ialu);
7878 %}
7879 
7880 #ifndef _LP64
7881 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
7882   match(Set dst (Conv2B src));
7883   effect( KILL ccr );
7884   ins_cost(DEFAULT_COST*2);
7885   format %{ "CMP    R_G0,$src\n\t"
7886             "ADDX   R_G0,0,$dst" %}
7887   ins_encode( enc_to_bool( src, dst ) );
7888   ins_pipe(ialu_reg_ialu);
7889 %}
7890 #else
7891 instruct convP2B( iRegI dst, iRegP src ) %{
7892   match(Set dst (Conv2B src));
7893   ins_cost(DEFAULT_COST*2);
7894   format %{ "MOV    $src,$dst\n\t"
7895             "MOVRNZ $src,1,$dst" %}
7896   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
7897   ins_pipe(ialu_clr_and_mover);
7898 %}
7899 #endif
7900 
7901 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
7902   match(Set dst (CmpLTMask p q));
7903   effect( KILL ccr );
7904   ins_cost(DEFAULT_COST*4);
7905   format %{ "CMP    $p,$q\n\t"
7906             "MOV    #0,$dst\n\t"
7907             "BLT,a  .+8\n\t"
7908             "MOV    #-1,$dst" %}
7909   ins_encode( enc_ltmask(p,q,dst) );
7910   ins_pipe(ialu_reg_reg_ialu);
7911 %}
7912 
7913 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7914   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
7915   effect(KILL ccr, TEMP tmp);
7916   ins_cost(DEFAULT_COST*3);
7917 
7918   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
7919             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
7920             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7921   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
7922   ins_pipe( cadd_cmpltmask );
7923 %}
7924 
7925 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7926   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
7927   effect( KILL ccr, TEMP tmp);
7928   ins_cost(DEFAULT_COST*3);
7929 
7930   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
7931             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
7932             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7933   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
7934   ins_pipe( cadd_cmpltmask );
7935 %}
7936 
7937 //----------Arithmetic Conversion Instructions---------------------------------
7938 // The conversions operations are all Alpha sorted.  Please keep it that way!
7939 
7940 instruct convD2F_reg(regF dst, regD src) %{
7941   match(Set dst (ConvD2F src));
7942   size(4);
7943   format %{ "FDTOS  $src,$dst" %}
7944   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
7945   ins_encode(form3_opf_rs2D_rdF(src, dst));
7946   ins_pipe(fcvtD2F);
7947 %}
7948 
7949 
7950 // Convert a double to an int in a float register.
7951 // If the double is a NAN, stuff a zero in instead.
7952 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
7953   effect(DEF dst, USE src, KILL fcc0);
7954   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
7955             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7956             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
7957             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
7958             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
7959       "skip:" %}
7960   ins_encode(form_d2i_helper(src,dst));
7961   ins_pipe(fcvtD2I);
7962 %}
7963 
7964 instruct convD2I_reg(stackSlotI dst, regD src) %{
7965   match(Set dst (ConvD2I src));
7966   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7967   expand %{
7968     regF tmp;
7969     convD2I_helper(tmp, src);
7970     regF_to_stkI(dst, tmp);
7971   %}
7972 %}
7973 
7974 // Convert a double to a long in a double register.
7975 // If the double is a NAN, stuff a zero in instead.
7976 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
7977   effect(DEF dst, USE src, KILL fcc0);
7978   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
7979             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7980             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
7981             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
7982             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
7983       "skip:" %}
7984   ins_encode(form_d2l_helper(src,dst));
7985   ins_pipe(fcvtD2L);
7986 %}
7987 
7988 
7989 // Double to Long conversion
7990 instruct convD2L_reg(stackSlotL dst, regD src) %{
7991   match(Set dst (ConvD2L src));
7992   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7993   expand %{
7994     regD tmp;
7995     convD2L_helper(tmp, src);
7996     regD_to_stkL(dst, tmp);
7997   %}
7998 %}
7999 
8000 
8001 instruct convF2D_reg(regD dst, regF src) %{
8002   match(Set dst (ConvF2D src));
8003   format %{ "FSTOD  $src,$dst" %}
8004   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8005   ins_encode(form3_opf_rs2F_rdD(src, dst));
8006   ins_pipe(fcvtF2D);
8007 %}
8008 
8009 
8010 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8011   effect(DEF dst, USE src, KILL fcc0);
8012   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8013             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8014             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8015             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8016             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8017       "skip:" %}
8018   ins_encode(form_f2i_helper(src,dst));
8019   ins_pipe(fcvtF2I);
8020 %}
8021 
8022 instruct convF2I_reg(stackSlotI dst, regF src) %{
8023   match(Set dst (ConvF2I src));
8024   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8025   expand %{
8026     regF tmp;
8027     convF2I_helper(tmp, src);
8028     regF_to_stkI(dst, tmp);
8029   %}
8030 %}
8031 
8032 
8033 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8034   effect(DEF dst, USE src, KILL fcc0);
8035   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8036             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8037             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8038             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8039             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8040       "skip:" %}
8041   ins_encode(form_f2l_helper(src,dst));
8042   ins_pipe(fcvtF2L);
8043 %}
8044 
8045 // Float to Long conversion
8046 instruct convF2L_reg(stackSlotL dst, regF src) %{
8047   match(Set dst (ConvF2L src));
8048   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8049   expand %{
8050     regD tmp;
8051     convF2L_helper(tmp, src);
8052     regD_to_stkL(dst, tmp);
8053   %}
8054 %}
8055 
8056 
8057 instruct convI2D_helper(regD dst, regF tmp) %{
8058   effect(USE tmp, DEF dst);
8059   format %{ "FITOD  $tmp,$dst" %}
8060   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8061   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8062   ins_pipe(fcvtI2D);
8063 %}
8064 
8065 instruct convI2D_reg(stackSlotI src, regD dst) %{
8066   match(Set dst (ConvI2D src));
8067   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8068   expand %{
8069     regF tmp;
8070     stkI_to_regF( tmp, src);
8071     convI2D_helper( dst, tmp);
8072   %}
8073 %}
8074 
8075 instruct convI2D_mem( regD_low dst, memory mem ) %{
8076   match(Set dst (ConvI2D (LoadI mem)));
8077   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8078   size(8);
8079   format %{ "LDF    $mem,$dst\n\t"
8080             "FITOD  $dst,$dst" %}
8081   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8082   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8083   ins_pipe(floadF_mem);
8084 %}
8085 
8086 
8087 instruct convI2F_helper(regF dst, regF tmp) %{
8088   effect(DEF dst, USE tmp);
8089   format %{ "FITOS  $tmp,$dst" %}
8090   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8091   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8092   ins_pipe(fcvtI2F);
8093 %}
8094 
8095 instruct convI2F_reg( regF dst, stackSlotI src ) %{
8096   match(Set dst (ConvI2F src));
8097   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8098   expand %{
8099     regF tmp;
8100     stkI_to_regF(tmp,src);
8101     convI2F_helper(dst, tmp);
8102   %}
8103 %}
8104 
8105 instruct convI2F_mem( regF dst, memory mem ) %{
8106   match(Set dst (ConvI2F (LoadI mem)));
8107   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8108   size(8);
8109   format %{ "LDF    $mem,$dst\n\t"
8110             "FITOS  $dst,$dst" %}
8111   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8112   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8113   ins_pipe(floadF_mem);
8114 %}
8115 
8116 
8117 instruct convI2L_reg(iRegL dst, iRegI src) %{
8118   match(Set dst (ConvI2L src));
8119   size(4);
8120   format %{ "SRA    $src,0,$dst\t! int->long" %}
8121   opcode(Assembler::sra_op3, Assembler::arith_op);
8122   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8123   ins_pipe(ialu_reg_reg);
8124 %}
8125 
8126 // Zero-extend convert int to long
8127 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8128   match(Set dst (AndL (ConvI2L src) mask) );
8129   size(4);
8130   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8131   opcode(Assembler::srl_op3, Assembler::arith_op);
8132   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8133   ins_pipe(ialu_reg_reg);
8134 %}
8135 
8136 // Zero-extend long
8137 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8138   match(Set dst (AndL src mask) );
8139   size(4);
8140   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8141   opcode(Assembler::srl_op3, Assembler::arith_op);
8142   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8143   ins_pipe(ialu_reg_reg);
8144 %}
8145 
8146 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8147   match(Set dst (MoveF2I src));
8148   effect(DEF dst, USE src);
8149   ins_cost(MEMORY_REF_COST);
8150 
8151   size(4);
8152   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8153   opcode(Assembler::lduw_op3);
8154   ins_encode(simple_form3_mem_reg( src, dst ) );
8155   ins_pipe(iload_mem);
8156 %}
8157 
8158 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8159   match(Set dst (MoveI2F src));
8160   effect(DEF dst, USE src);
8161   ins_cost(MEMORY_REF_COST);
8162 
8163   size(4);
8164   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8165   opcode(Assembler::ldf_op3);
8166   ins_encode(simple_form3_mem_reg(src, dst));
8167   ins_pipe(floadF_stk);
8168 %}
8169 
8170 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8171   match(Set dst (MoveD2L src));
8172   effect(DEF dst, USE src);
8173   ins_cost(MEMORY_REF_COST);
8174 
8175   size(4);
8176   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8177   opcode(Assembler::ldx_op3);
8178   ins_encode(simple_form3_mem_reg( src, dst ) );
8179   ins_pipe(iload_mem);
8180 %}
8181 
8182 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8183   match(Set dst (MoveL2D src));
8184   effect(DEF dst, USE src);
8185   ins_cost(MEMORY_REF_COST);
8186 
8187   size(4);
8188   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8189   opcode(Assembler::lddf_op3);
8190   ins_encode(simple_form3_mem_reg(src, dst));
8191   ins_pipe(floadD_stk);
8192 %}
8193 
8194 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8195   match(Set dst (MoveF2I src));
8196   effect(DEF dst, USE src);
8197   ins_cost(MEMORY_REF_COST);
8198 
8199   size(4);
8200   format %{ "STF   $src,$dst\t!MoveF2I" %}
8201   opcode(Assembler::stf_op3);
8202   ins_encode(simple_form3_mem_reg(dst, src));
8203   ins_pipe(fstoreF_stk_reg);
8204 %}
8205 
8206 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8207   match(Set dst (MoveI2F src));
8208   effect(DEF dst, USE src);
8209   ins_cost(MEMORY_REF_COST);
8210 
8211   size(4);
8212   format %{ "STW    $src,$dst\t!MoveI2F" %}
8213   opcode(Assembler::stw_op3);
8214   ins_encode(simple_form3_mem_reg( dst, src ) );
8215   ins_pipe(istore_mem_reg);
8216 %}
8217 
8218 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8219   match(Set dst (MoveD2L src));
8220   effect(DEF dst, USE src);
8221   ins_cost(MEMORY_REF_COST);
8222 
8223   size(4);
8224   format %{ "STDF   $src,$dst\t!MoveD2L" %}
8225   opcode(Assembler::stdf_op3);
8226   ins_encode(simple_form3_mem_reg(dst, src));
8227   ins_pipe(fstoreD_stk_reg);
8228 %}
8229 
8230 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8231   match(Set dst (MoveL2D src));
8232   effect(DEF dst, USE src);
8233   ins_cost(MEMORY_REF_COST);
8234 
8235   size(4);
8236   format %{ "STX    $src,$dst\t!MoveL2D" %}
8237   opcode(Assembler::stx_op3);
8238   ins_encode(simple_form3_mem_reg( dst, src ) );
8239   ins_pipe(istore_mem_reg);
8240 %}
8241 
8242 
8243 //-----------
8244 // Long to Double conversion using V8 opcodes.
8245 // Still useful because cheetah traps and becomes
8246 // amazingly slow for some common numbers.
8247 
8248 // Magic constant, 0x43300000
8249 instruct loadConI_x43300000(iRegI dst) %{
8250   effect(DEF dst);
8251   size(4);
8252   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8253   ins_encode(SetHi22(0x43300000, dst));
8254   ins_pipe(ialu_none);
8255 %}
8256 
8257 // Magic constant, 0x41f00000
8258 instruct loadConI_x41f00000(iRegI dst) %{
8259   effect(DEF dst);
8260   size(4);
8261   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8262   ins_encode(SetHi22(0x41f00000, dst));
8263   ins_pipe(ialu_none);
8264 %}
8265 
8266 // Construct a double from two float halves
8267 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8268   effect(DEF dst, USE src1, USE src2);
8269   size(8);
8270   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8271             "FMOVS  $src2.lo,$dst.lo" %}
8272   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8273   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8274   ins_pipe(faddD_reg_reg);
8275 %}
8276 
8277 // Convert integer in high half of a double register (in the lower half of
8278 // the double register file) to double
8279 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8280   effect(DEF dst, USE src);
8281   size(4);
8282   format %{ "FITOD  $src,$dst" %}
8283   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8284   ins_encode(form3_opf_rs2D_rdD(src, dst));
8285   ins_pipe(fcvtLHi2D);
8286 %}
8287 
8288 // Add float double precision
8289 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8290   effect(DEF dst, USE src1, USE src2);
8291   size(4);
8292   format %{ "FADDD  $src1,$src2,$dst" %}
8293   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8294   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8295   ins_pipe(faddD_reg_reg);
8296 %}
8297 
8298 // Sub float double precision
8299 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8300   effect(DEF dst, USE src1, USE src2);
8301   size(4);
8302   format %{ "FSUBD  $src1,$src2,$dst" %}
8303   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8304   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8305   ins_pipe(faddD_reg_reg);
8306 %}
8307 
8308 // Mul float double precision
8309 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8310   effect(DEF dst, USE src1, USE src2);
8311   size(4);
8312   format %{ "FMULD  $src1,$src2,$dst" %}
8313   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8314   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8315   ins_pipe(fmulD_reg_reg);
8316 %}
8317 
8318 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8319   match(Set dst (ConvL2D src));
8320   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8321 
8322   expand %{
8323     regD_low   tmpsrc;
8324     iRegI      ix43300000;
8325     iRegI      ix41f00000;
8326     stackSlotL lx43300000;
8327     stackSlotL lx41f00000;
8328     regD_low   dx43300000;
8329     regD       dx41f00000;
8330     regD       tmp1;
8331     regD_low   tmp2;
8332     regD       tmp3;
8333     regD       tmp4;
8334 
8335     stkL_to_regD(tmpsrc, src);
8336 
8337     loadConI_x43300000(ix43300000);
8338     loadConI_x41f00000(ix41f00000);
8339     regI_to_stkLHi(lx43300000, ix43300000);
8340     regI_to_stkLHi(lx41f00000, ix41f00000);
8341     stkL_to_regD(dx43300000, lx43300000);
8342     stkL_to_regD(dx41f00000, lx41f00000);
8343 
8344     convI2D_regDHi_regD(tmp1, tmpsrc);
8345     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8346     subD_regD_regD(tmp3, tmp2, dx43300000);
8347     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8348     addD_regD_regD(dst, tmp3, tmp4);
8349   %}
8350 %}
8351 
8352 // Long to Double conversion using fast fxtof
8353 instruct convL2D_helper(regD dst, regD tmp) %{
8354   effect(DEF dst, USE tmp);
8355   size(4);
8356   format %{ "FXTOD  $tmp,$dst" %}
8357   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8358   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8359   ins_pipe(fcvtL2D);
8360 %}
8361 
8362 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
8363   predicate(VM_Version::has_fast_fxtof());
8364   match(Set dst (ConvL2D src));
8365   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8366   expand %{
8367     regD tmp;
8368     stkL_to_regD(tmp, src);
8369     convL2D_helper(dst, tmp);
8370   %}
8371 %}
8372 
8373 //-----------
8374 // Long to Float conversion using V8 opcodes.
8375 // Still useful because cheetah traps and becomes
8376 // amazingly slow for some common numbers.
8377 
8378 // Long to Float conversion using fast fxtof
8379 instruct convL2F_helper(regF dst, regD tmp) %{
8380   effect(DEF dst, USE tmp);
8381   size(4);
8382   format %{ "FXTOS  $tmp,$dst" %}
8383   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8384   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8385   ins_pipe(fcvtL2F);
8386 %}
8387 
8388 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
8389   match(Set dst (ConvL2F src));
8390   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8391   expand %{
8392     regD tmp;
8393     stkL_to_regD(tmp, src);
8394     convL2F_helper(dst, tmp);
8395   %}
8396 %}
8397 //-----------
8398 
8399 instruct convL2I_reg(iRegI dst, iRegL src) %{
8400   match(Set dst (ConvL2I src));
8401 #ifndef _LP64
8402   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8403   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8404   ins_pipe(ialu_move_reg_I_to_L);
8405 #else
8406   size(4);
8407   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8408   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8409   ins_pipe(ialu_reg);
8410 #endif
8411 %}
8412 
8413 // Register Shift Right Immediate
8414 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8415   match(Set dst (ConvL2I (RShiftL src cnt)));
8416 
8417   size(4);
8418   format %{ "SRAX   $src,$cnt,$dst" %}
8419   opcode(Assembler::srax_op3, Assembler::arith_op);
8420   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8421   ins_pipe(ialu_reg_imm);
8422 %}
8423 
8424 // Replicate scalar to packed byte values in Double register
8425 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8426   effect(DEF dst, USE src);
8427   format %{ "SLLX  $src,56,$dst\n\t"
8428             "SRLX  $dst, 8,O7\n\t"
8429             "OR    $dst,O7,$dst\n\t"
8430             "SRLX  $dst,16,O7\n\t"
8431             "OR    $dst,O7,$dst\n\t"
8432             "SRLX  $dst,32,O7\n\t"
8433             "OR    $dst,O7,$dst\t! replicate8B" %}
8434   ins_encode( enc_repl8b(src, dst));
8435   ins_pipe(ialu_reg);
8436 %}
8437 
8438 // Replicate scalar to packed byte values in Double register
8439 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8440   match(Set dst (Replicate8B src));
8441   expand %{
8442     iRegL tmp;
8443     Repl8B_reg_helper(tmp, src);
8444     regL_to_stkD(dst, tmp);
8445   %}
8446 %}
8447 
8448 // Replicate scalar constant to packed byte values in Double register
8449 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
8450   match(Set dst (Replicate8B src));
8451 #ifdef _LP64
8452   size(36);
8453 #else
8454   size(8);
8455 #endif
8456   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
8457             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
8458   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
8459   ins_pipe(loadConFD);
8460 %}
8461 
8462 // Replicate scalar to packed char values into stack slot
8463 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8464   effect(DEF dst, USE src);
8465   format %{ "SLLX  $src,48,$dst\n\t"
8466             "SRLX  $dst,16,O7\n\t"
8467             "OR    $dst,O7,$dst\n\t"
8468             "SRLX  $dst,32,O7\n\t"
8469             "OR    $dst,O7,$dst\t! replicate4C" %}
8470   ins_encode( enc_repl4s(src, dst) );
8471   ins_pipe(ialu_reg);
8472 %}
8473 
8474 // Replicate scalar to packed char values into stack slot
8475 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8476   match(Set dst (Replicate4C src));
8477   expand %{
8478     iRegL tmp;
8479     Repl4C_reg_helper(tmp, src);
8480     regL_to_stkD(dst, tmp);
8481   %}
8482 %}
8483 
8484 // Replicate scalar constant to packed char values in Double register
8485 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
8486   match(Set dst (Replicate4C src));
8487 #ifdef _LP64
8488   size(36);
8489 #else
8490   size(8);
8491 #endif
8492   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
8493             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8494   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8495   ins_pipe(loadConFD);
8496 %}
8497 
8498 // Replicate scalar to packed short values into stack slot
8499 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8500   effect(DEF dst, USE src);
8501   format %{ "SLLX  $src,48,$dst\n\t"
8502             "SRLX  $dst,16,O7\n\t"
8503             "OR    $dst,O7,$dst\n\t"
8504             "SRLX  $dst,32,O7\n\t"
8505             "OR    $dst,O7,$dst\t! replicate4S" %}
8506   ins_encode( enc_repl4s(src, dst) );
8507   ins_pipe(ialu_reg);
8508 %}
8509 
8510 // Replicate scalar to packed short values into stack slot
8511 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8512   match(Set dst (Replicate4S src));
8513   expand %{
8514     iRegL tmp;
8515     Repl4S_reg_helper(tmp, src);
8516     regL_to_stkD(dst, tmp);
8517   %}
8518 %}
8519 
8520 // Replicate scalar constant to packed short values in Double register
8521 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
8522   match(Set dst (Replicate4S src));
8523 #ifdef _LP64
8524   size(36);
8525 #else
8526   size(8);
8527 #endif
8528   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
8529             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8530   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8531   ins_pipe(loadConFD);
8532 %}
8533 
8534 // Replicate scalar to packed int values in Double register
8535 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
8536   effect(DEF dst, USE src);
8537   format %{ "SLLX  $src,32,$dst\n\t"
8538             "SRLX  $dst,32,O7\n\t"
8539             "OR    $dst,O7,$dst\t! replicate2I" %}
8540   ins_encode( enc_repl2i(src, dst));
8541   ins_pipe(ialu_reg);
8542 %}
8543 
8544 // Replicate scalar to packed int values in Double register
8545 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
8546   match(Set dst (Replicate2I src));
8547   expand %{
8548     iRegL tmp;
8549     Repl2I_reg_helper(tmp, src);
8550     regL_to_stkD(dst, tmp);
8551   %}
8552 %}
8553 
8554 // Replicate scalar zero constant to packed int values in Double register
8555 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
8556   match(Set dst (Replicate2I src));
8557 #ifdef _LP64
8558   size(36);
8559 #else
8560   size(8);
8561 #endif
8562   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
8563             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
8564   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
8565   ins_pipe(loadConFD);
8566 %}
8567 
8568 //----------Control Flow Instructions------------------------------------------
8569 // Compare Instructions
8570 // Compare Integers
8571 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8572   match(Set icc (CmpI op1 op2));
8573   effect( DEF icc, USE op1, USE op2 );
8574 
8575   size(4);
8576   format %{ "CMP    $op1,$op2" %}
8577   opcode(Assembler::subcc_op3, Assembler::arith_op);
8578   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8579   ins_pipe(ialu_cconly_reg_reg);
8580 %}
8581 
8582 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8583   match(Set icc (CmpU op1 op2));
8584 
8585   size(4);
8586   format %{ "CMP    $op1,$op2\t! unsigned" %}
8587   opcode(Assembler::subcc_op3, Assembler::arith_op);
8588   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8589   ins_pipe(ialu_cconly_reg_reg);
8590 %}
8591 
8592 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8593   match(Set icc (CmpI op1 op2));
8594   effect( DEF icc, USE op1 );
8595 
8596   size(4);
8597   format %{ "CMP    $op1,$op2" %}
8598   opcode(Assembler::subcc_op3, Assembler::arith_op);
8599   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8600   ins_pipe(ialu_cconly_reg_imm);
8601 %}
8602 
8603 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8604   match(Set icc (CmpI (AndI op1 op2) zero));
8605 
8606   size(4);
8607   format %{ "BTST   $op2,$op1" %}
8608   opcode(Assembler::andcc_op3, Assembler::arith_op);
8609   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8610   ins_pipe(ialu_cconly_reg_reg_zero);
8611 %}
8612 
8613 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8614   match(Set icc (CmpI (AndI op1 op2) zero));
8615 
8616   size(4);
8617   format %{ "BTST   $op2,$op1" %}
8618   opcode(Assembler::andcc_op3, Assembler::arith_op);
8619   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8620   ins_pipe(ialu_cconly_reg_imm_zero);
8621 %}
8622 
8623 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8624   match(Set xcc (CmpL op1 op2));
8625   effect( DEF xcc, USE op1, USE op2 );
8626 
8627   size(4);
8628   format %{ "CMP    $op1,$op2\t\t! long" %}
8629   opcode(Assembler::subcc_op3, Assembler::arith_op);
8630   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8631   ins_pipe(ialu_cconly_reg_reg);
8632 %}
8633 
8634 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8635   match(Set xcc (CmpL op1 con));
8636   effect( DEF xcc, USE op1, USE con );
8637 
8638   size(4);
8639   format %{ "CMP    $op1,$con\t\t! long" %}
8640   opcode(Assembler::subcc_op3, Assembler::arith_op);
8641   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8642   ins_pipe(ialu_cconly_reg_reg);
8643 %}
8644 
8645 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8646   match(Set xcc (CmpL (AndL op1 op2) zero));
8647   effect( DEF xcc, USE op1, USE op2 );
8648 
8649   size(4);
8650   format %{ "BTST   $op1,$op2\t\t! long" %}
8651   opcode(Assembler::andcc_op3, Assembler::arith_op);
8652   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8653   ins_pipe(ialu_cconly_reg_reg);
8654 %}
8655 
8656 // useful for checking the alignment of a pointer:
8657 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8658   match(Set xcc (CmpL (AndL op1 con) zero));
8659   effect( DEF xcc, USE op1, USE con );
8660 
8661   size(4);
8662   format %{ "BTST   $op1,$con\t\t! long" %}
8663   opcode(Assembler::andcc_op3, Assembler::arith_op);
8664   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8665   ins_pipe(ialu_cconly_reg_reg);
8666 %}
8667 
8668 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8669   match(Set icc (CmpU op1 op2));
8670 
8671   size(4);
8672   format %{ "CMP    $op1,$op2\t! unsigned" %}
8673   opcode(Assembler::subcc_op3, Assembler::arith_op);
8674   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8675   ins_pipe(ialu_cconly_reg_imm);
8676 %}
8677 
8678 // Compare Pointers
8679 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8680   match(Set pcc (CmpP op1 op2));
8681 
8682   size(4);
8683   format %{ "CMP    $op1,$op2\t! ptr" %}
8684   opcode(Assembler::subcc_op3, Assembler::arith_op);
8685   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8686   ins_pipe(ialu_cconly_reg_reg);
8687 %}
8688 
8689 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8690   match(Set pcc (CmpP op1 op2));
8691 
8692   size(4);
8693   format %{ "CMP    $op1,$op2\t! ptr" %}
8694   opcode(Assembler::subcc_op3, Assembler::arith_op);
8695   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8696   ins_pipe(ialu_cconly_reg_imm);
8697 %}
8698 
8699 // Compare Narrow oops
8700 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8701   match(Set icc (CmpN op1 op2));
8702 
8703   size(4);
8704   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8705   opcode(Assembler::subcc_op3, Assembler::arith_op);
8706   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8707   ins_pipe(ialu_cconly_reg_reg);
8708 %}
8709 
8710 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8711   match(Set icc (CmpN op1 op2));
8712 
8713   size(4);
8714   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8715   opcode(Assembler::subcc_op3, Assembler::arith_op);
8716   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8717   ins_pipe(ialu_cconly_reg_imm);
8718 %}
8719 
8720 //----------Max and Min--------------------------------------------------------
8721 // Min Instructions
8722 // Conditional move for min
8723 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8724   effect( USE_DEF op2, USE op1, USE icc );
8725 
8726   size(4);
8727   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8728   opcode(Assembler::less);
8729   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8730   ins_pipe(ialu_reg_flags);
8731 %}
8732 
8733 // Min Register with Register.
8734 instruct minI_eReg(iRegI op1, iRegI op2) %{
8735   match(Set op2 (MinI op1 op2));
8736   ins_cost(DEFAULT_COST*2);
8737   expand %{
8738     flagsReg icc;
8739     compI_iReg(icc,op1,op2);
8740     cmovI_reg_lt(op2,op1,icc);
8741   %}
8742 %}
8743 
8744 // Max Instructions
8745 // Conditional move for max
8746 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8747   effect( USE_DEF op2, USE op1, USE icc );
8748   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8749   opcode(Assembler::greater);
8750   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8751   ins_pipe(ialu_reg_flags);
8752 %}
8753 
8754 // Max Register with Register
8755 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8756   match(Set op2 (MaxI op1 op2));
8757   ins_cost(DEFAULT_COST*2);
8758   expand %{
8759     flagsReg icc;
8760     compI_iReg(icc,op1,op2);
8761     cmovI_reg_gt(op2,op1,icc);
8762   %}
8763 %}
8764 
8765 
8766 //----------Float Compares----------------------------------------------------
8767 // Compare floating, generate condition code
8768 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8769   match(Set fcc (CmpF src1 src2));
8770 
8771   size(4);
8772   format %{ "FCMPs  $fcc,$src1,$src2" %}
8773   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8774   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8775   ins_pipe(faddF_fcc_reg_reg_zero);
8776 %}
8777 
8778 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8779   match(Set fcc (CmpD src1 src2));
8780 
8781   size(4);
8782   format %{ "FCMPd  $fcc,$src1,$src2" %}
8783   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8784   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8785   ins_pipe(faddD_fcc_reg_reg_zero);
8786 %}
8787 
8788 
8789 // Compare floating, generate -1,0,1
8790 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8791   match(Set dst (CmpF3 src1 src2));
8792   effect(KILL fcc0);
8793   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8794   format %{ "fcmpl  $dst,$src1,$src2" %}
8795   // Primary = float
8796   opcode( true );
8797   ins_encode( floating_cmp( dst, src1, src2 ) );
8798   ins_pipe( floating_cmp );
8799 %}
8800 
8801 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8802   match(Set dst (CmpD3 src1 src2));
8803   effect(KILL fcc0);
8804   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8805   format %{ "dcmpl  $dst,$src1,$src2" %}
8806   // Primary = double (not float)
8807   opcode( false );
8808   ins_encode( floating_cmp( dst, src1, src2 ) );
8809   ins_pipe( floating_cmp );
8810 %}
8811 
8812 //----------Branches---------------------------------------------------------
8813 // Jump
8814 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8815 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8816   match(Jump switch_val);
8817 
8818   ins_cost(350);
8819 
8820   format %{  "SETHI  [hi(table_base)],O7\n\t"
8821              "ADD    O7, lo(table_base), O7\n\t"
8822              "LD     [O7+$switch_val], O7\n\t"
8823              "JUMP   O7"
8824          %}
8825   ins_encode( jump_enc( switch_val, table) );
8826   ins_pc_relative(1);
8827   ins_pipe(ialu_reg_reg);
8828 %}
8829 
8830 // Direct Branch.  Use V8 version with longer range.
8831 instruct branch(label labl) %{
8832   match(Goto);
8833   effect(USE labl);
8834 
8835   size(8);
8836   ins_cost(BRANCH_COST);
8837   format %{ "BA     $labl" %}
8838   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
8839   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
8840   ins_encode( enc_ba( labl ) );
8841   ins_pc_relative(1);
8842   ins_pipe(br);
8843 %}
8844 
8845 // Conditional Direct Branch
8846 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
8847   match(If cmp icc);
8848   effect(USE labl);
8849 
8850   size(8);
8851   ins_cost(BRANCH_COST);
8852   format %{ "BP$cmp   $icc,$labl" %}
8853   // Prim = bits 24-22, Secnd = bits 31-30
8854   ins_encode( enc_bp( labl, cmp, icc ) );
8855   ins_pc_relative(1);
8856   ins_pipe(br_cc);
8857 %}
8858 
8859 // Branch-on-register tests all 64 bits.  We assume that values
8860 // in 64-bit registers always remains zero or sign extended
8861 // unless our code munges the high bits.  Interrupts can chop
8862 // the high order bits to zero or sign at any time.
8863 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
8864   match(If cmp (CmpI op1 zero));
8865   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8866   effect(USE labl);
8867 
8868   size(8);
8869   ins_cost(BRANCH_COST);
8870   format %{ "BR$cmp   $op1,$labl" %}
8871   ins_encode( enc_bpr( labl, cmp, op1 ) );
8872   ins_pc_relative(1);
8873   ins_pipe(br_reg);
8874 %}
8875 
8876 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
8877   match(If cmp (CmpP op1 null));
8878   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8879   effect(USE labl);
8880 
8881   size(8);
8882   ins_cost(BRANCH_COST);
8883   format %{ "BR$cmp   $op1,$labl" %}
8884   ins_encode( enc_bpr( labl, cmp, op1 ) );
8885   ins_pc_relative(1);
8886   ins_pipe(br_reg);
8887 %}
8888 
8889 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
8890   match(If cmp (CmpL op1 zero));
8891   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8892   effect(USE labl);
8893 
8894   size(8);
8895   ins_cost(BRANCH_COST);
8896   format %{ "BR$cmp   $op1,$labl" %}
8897   ins_encode( enc_bpr( labl, cmp, op1 ) );
8898   ins_pc_relative(1);
8899   ins_pipe(br_reg);
8900 %}
8901 
8902 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
8903   match(If cmp icc);
8904   effect(USE labl);
8905 
8906   format %{ "BP$cmp  $icc,$labl" %}
8907   // Prim = bits 24-22, Secnd = bits 31-30
8908   ins_encode( enc_bp( labl, cmp, icc ) );
8909   ins_pc_relative(1);
8910   ins_pipe(br_cc);
8911 %}
8912 
8913 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
8914   match(If cmp pcc);
8915   effect(USE labl);
8916 
8917   size(8);
8918   ins_cost(BRANCH_COST);
8919   format %{ "BP$cmp  $pcc,$labl" %}
8920   // Prim = bits 24-22, Secnd = bits 31-30
8921   ins_encode( enc_bpx( labl, cmp, pcc ) );
8922   ins_pc_relative(1);
8923   ins_pipe(br_cc);
8924 %}
8925 
8926 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
8927   match(If cmp fcc);
8928   effect(USE labl);
8929 
8930   size(8);
8931   ins_cost(BRANCH_COST);
8932   format %{ "FBP$cmp $fcc,$labl" %}
8933   // Prim = bits 24-22, Secnd = bits 31-30
8934   ins_encode( enc_fbp( labl, cmp, fcc ) );
8935   ins_pc_relative(1);
8936   ins_pipe(br_fcc);
8937 %}
8938 
8939 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
8940   match(CountedLoopEnd cmp icc);
8941   effect(USE labl);
8942 
8943   size(8);
8944   ins_cost(BRANCH_COST);
8945   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
8946   // Prim = bits 24-22, Secnd = bits 31-30
8947   ins_encode( enc_bp( labl, cmp, icc ) );
8948   ins_pc_relative(1);
8949   ins_pipe(br_cc);
8950 %}
8951 
8952 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
8953   match(CountedLoopEnd cmp icc);
8954   effect(USE labl);
8955 
8956   size(8);
8957   ins_cost(BRANCH_COST);
8958   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
8959   // Prim = bits 24-22, Secnd = bits 31-30
8960   ins_encode( enc_bp( labl, cmp, icc ) );
8961   ins_pc_relative(1);
8962   ins_pipe(br_cc);
8963 %}
8964 
8965 // ============================================================================
8966 // Long Compare
8967 //
8968 // Currently we hold longs in 2 registers.  Comparing such values efficiently
8969 // is tricky.  The flavor of compare used depends on whether we are testing
8970 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
8971 // The GE test is the negated LT test.  The LE test can be had by commuting
8972 // the operands (yielding a GE test) and then negating; negate again for the
8973 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
8974 // NE test is negated from that.
8975 
8976 // Due to a shortcoming in the ADLC, it mixes up expressions like:
8977 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
8978 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
8979 // are collapsed internally in the ADLC's dfa-gen code.  The match for
8980 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
8981 // foo match ends up with the wrong leaf.  One fix is to not match both
8982 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
8983 // both forms beat the trinary form of long-compare and both are very useful
8984 // on Intel which has so few registers.
8985 
8986 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
8987   match(If cmp xcc);
8988   effect(USE labl);
8989 
8990   size(8);
8991   ins_cost(BRANCH_COST);
8992   format %{ "BP$cmp   $xcc,$labl" %}
8993   // Prim = bits 24-22, Secnd = bits 31-30
8994   ins_encode( enc_bpl( labl, cmp, xcc ) );
8995   ins_pc_relative(1);
8996   ins_pipe(br_cc);
8997 %}
8998 
8999 // Manifest a CmpL3 result in an integer register.  Very painful.
9000 // This is the test to avoid.
9001 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9002   match(Set dst (CmpL3 src1 src2) );
9003   effect( KILL ccr );
9004   ins_cost(6*DEFAULT_COST);
9005   size(24);
9006   format %{ "CMP    $src1,$src2\t\t! long\n"
9007           "\tBLT,a,pn done\n"
9008           "\tMOV    -1,$dst\t! delay slot\n"
9009           "\tBGT,a,pn done\n"
9010           "\tMOV    1,$dst\t! delay slot\n"
9011           "\tCLR    $dst\n"
9012     "done:"     %}
9013   ins_encode( cmpl_flag(src1,src2,dst) );
9014   ins_pipe(cmpL_reg);
9015 %}
9016 
9017 // Conditional move
9018 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9019   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9020   ins_cost(150);
9021   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9022   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9023   ins_pipe(ialu_reg);
9024 %}
9025 
9026 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9027   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9028   ins_cost(140);
9029   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9030   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9031   ins_pipe(ialu_imm);
9032 %}
9033 
9034 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9035   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9036   ins_cost(150);
9037   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9038   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9039   ins_pipe(ialu_reg);
9040 %}
9041 
9042 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9043   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9044   ins_cost(140);
9045   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9046   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9047   ins_pipe(ialu_imm);
9048 %}
9049 
9050 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9051   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9052   ins_cost(150);
9053   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9054   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9055   ins_pipe(ialu_reg);
9056 %}
9057 
9058 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9059   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9060   ins_cost(150);
9061   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9062   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9063   ins_pipe(ialu_reg);
9064 %}
9065 
9066 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9067   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9068   ins_cost(140);
9069   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9070   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9071   ins_pipe(ialu_imm);
9072 %}
9073 
9074 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9075   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9076   ins_cost(150);
9077   opcode(0x101);
9078   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9079   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9080   ins_pipe(int_conditional_float_move);
9081 %}
9082 
9083 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9084   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9085   ins_cost(150);
9086   opcode(0x102);
9087   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9088   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9089   ins_pipe(int_conditional_float_move);
9090 %}
9091 
9092 // ============================================================================
9093 // Safepoint Instruction
9094 instruct safePoint_poll(iRegP poll) %{
9095   match(SafePoint poll);
9096   effect(USE poll);
9097 
9098   size(4);
9099 #ifdef _LP64
9100   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9101 #else
9102   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9103 #endif
9104   ins_encode %{
9105     __ relocate(relocInfo::poll_type);
9106     __ ld_ptr($poll$$Register, 0, G0);
9107   %}
9108   ins_pipe(loadPollP);
9109 %}
9110 
9111 // ============================================================================
9112 // Call Instructions
9113 // Call Java Static Instruction
9114 instruct CallStaticJavaDirect( method meth ) %{
9115   match(CallStaticJava);
9116   effect(USE meth);
9117 
9118   size(8);
9119   ins_cost(CALL_COST);
9120   format %{ "CALL,static  ; NOP ==> " %}
9121   ins_encode( Java_Static_Call( meth ), call_epilog );
9122   ins_pc_relative(1);
9123   ins_pipe(simple_call);
9124 %}
9125 
9126 // Call Java Dynamic Instruction
9127 instruct CallDynamicJavaDirect( method meth ) %{
9128   match(CallDynamicJava);
9129   effect(USE meth);
9130 
9131   ins_cost(CALL_COST);
9132   format %{ "SET    (empty),R_G5\n\t"
9133             "CALL,dynamic  ; NOP ==> " %}
9134   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9135   ins_pc_relative(1);
9136   ins_pipe(call);
9137 %}
9138 
9139 // Call Runtime Instruction
9140 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9141   match(CallRuntime);
9142   effect(USE meth, KILL l7);
9143   ins_cost(CALL_COST);
9144   format %{ "CALL,runtime" %}
9145   ins_encode( Java_To_Runtime( meth ),
9146               call_epilog, adjust_long_from_native_call );
9147   ins_pc_relative(1);
9148   ins_pipe(simple_call);
9149 %}
9150 
9151 // Call runtime without safepoint - same as CallRuntime
9152 instruct CallLeafDirect(method meth, l7RegP l7) %{
9153   match(CallLeaf);
9154   effect(USE meth, KILL l7);
9155   ins_cost(CALL_COST);
9156   format %{ "CALL,runtime leaf" %}
9157   ins_encode( Java_To_Runtime( meth ),
9158               call_epilog,
9159               adjust_long_from_native_call );
9160   ins_pc_relative(1);
9161   ins_pipe(simple_call);
9162 %}
9163 
9164 // Call runtime without safepoint - same as CallLeaf
9165 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9166   match(CallLeafNoFP);
9167   effect(USE meth, KILL l7);
9168   ins_cost(CALL_COST);
9169   format %{ "CALL,runtime leaf nofp" %}
9170   ins_encode( Java_To_Runtime( meth ),
9171               call_epilog,
9172               adjust_long_from_native_call );
9173   ins_pc_relative(1);
9174   ins_pipe(simple_call);
9175 %}
9176 
9177 // Tail Call; Jump from runtime stub to Java code.
9178 // Also known as an 'interprocedural jump'.
9179 // Target of jump will eventually return to caller.
9180 // TailJump below removes the return address.
9181 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9182   match(TailCall jump_target method_oop );
9183 
9184   ins_cost(CALL_COST);
9185   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9186   ins_encode(form_jmpl(jump_target));
9187   ins_pipe(tail_call);
9188 %}
9189 
9190 
9191 // Return Instruction
9192 instruct Ret() %{
9193   match(Return);
9194 
9195   // The epilogue node did the ret already.
9196   size(0);
9197   format %{ "! return" %}
9198   ins_encode();
9199   ins_pipe(empty);
9200 %}
9201 
9202 
9203 // Tail Jump; remove the return address; jump to target.
9204 // TailCall above leaves the return address around.
9205 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9206 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9207 // "restore" before this instruction (in Epilogue), we need to materialize it
9208 // in %i0.
9209 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9210   match( TailJump jump_target ex_oop );
9211   ins_cost(CALL_COST);
9212   format %{ "! discard R_O7\n\t"
9213             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9214   ins_encode(form_jmpl_set_exception_pc(jump_target));
9215   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9216   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9217   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9218   ins_pipe(tail_call);
9219 %}
9220 
9221 // Create exception oop: created by stack-crawling runtime code.
9222 // Created exception is now available to this handler, and is setup
9223 // just prior to jumping to this handler.  No code emitted.
9224 instruct CreateException( o0RegP ex_oop )
9225 %{
9226   match(Set ex_oop (CreateEx));
9227   ins_cost(0);
9228 
9229   size(0);
9230   // use the following format syntax
9231   format %{ "! exception oop is in R_O0; no code emitted" %}
9232   ins_encode();
9233   ins_pipe(empty);
9234 %}
9235 
9236 
9237 // Rethrow exception:
9238 // The exception oop will come in the first argument position.
9239 // Then JUMP (not call) to the rethrow stub code.
9240 instruct RethrowException()
9241 %{
9242   match(Rethrow);
9243   ins_cost(CALL_COST);
9244 
9245   // use the following format syntax
9246   format %{ "Jmp    rethrow_stub" %}
9247   ins_encode(enc_rethrow);
9248   ins_pipe(tail_call);
9249 %}
9250 
9251 
9252 // Die now
9253 instruct ShouldNotReachHere( )
9254 %{
9255   match(Halt);
9256   ins_cost(CALL_COST);
9257 
9258   size(4);
9259   // Use the following format syntax
9260   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9261   ins_encode( form2_illtrap() );
9262   ins_pipe(tail_call);
9263 %}
9264 
9265 // ============================================================================
9266 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9267 // array for an instance of the superklass.  Set a hidden internal cache on a
9268 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9269 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9270 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9271   match(Set index (PartialSubtypeCheck sub super));
9272   effect( KILL pcc, KILL o7 );
9273   ins_cost(DEFAULT_COST*10);
9274   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9275   ins_encode( enc_PartialSubtypeCheck() );
9276   ins_pipe(partial_subtype_check_pipe);
9277 %}
9278 
9279 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9280   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9281   effect( KILL idx, KILL o7 );
9282   ins_cost(DEFAULT_COST*10);
9283   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9284   ins_encode( enc_PartialSubtypeCheck() );
9285   ins_pipe(partial_subtype_check_pipe);
9286 %}
9287 
9288 
9289 // ============================================================================
9290 // inlined locking and unlocking
9291 
9292 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9293   match(Set pcc (FastLock object box));
9294 
9295   effect(KILL scratch, TEMP scratch2);
9296   ins_cost(100);
9297 
9298   size(4*112);       // conservative overestimation ...
9299   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9300   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9301   ins_pipe(long_memory_op);
9302 %}
9303 
9304 
9305 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9306   match(Set pcc (FastUnlock object box));
9307   effect(KILL scratch, TEMP scratch2);
9308   ins_cost(100);
9309 
9310   size(4*120);       // conservative overestimation ...
9311   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9312   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9313   ins_pipe(long_memory_op);
9314 %}
9315 
9316 // Count and Base registers are fixed because the allocator cannot
9317 // kill unknown registers.  The encodings are generic.
9318 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9319   match(Set dummy (ClearArray cnt base));
9320   effect(TEMP temp, KILL ccr);
9321   ins_cost(300);
9322   format %{ "MOV    $cnt,$temp\n"
9323     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9324     "        BRge   loop\t\t! Clearing loop\n"
9325     "        STX    G0,[$base+$temp]\t! delay slot" %}
9326   ins_encode( enc_Clear_Array(cnt, base, temp) );
9327   ins_pipe(long_memory_op);
9328 %}
9329 
9330 instruct string_compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
9331                         o7RegI tmp3, flagsReg ccr) %{
9332   match(Set result (StrComp str1 str2));
9333   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr, KILL tmp3);
9334   ins_cost(300);
9335   format %{ "String Compare $str1,$str2 -> $result" %}
9336   ins_encode( enc_String_Compare(str1, str2, tmp1, tmp2, result) );
9337   ins_pipe(long_memory_op);
9338 %}
9339 
9340 instruct string_equals(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
9341                        o7RegI tmp3, flagsReg ccr) %{
9342   match(Set result (StrEquals str1 str2));
9343   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr, KILL tmp3);
9344   ins_cost(300);
9345   format %{ "String Equals $str1,$str2 -> $result" %}
9346   ins_encode( enc_String_Equals(str1, str2, tmp1, tmp2, result) );
9347   ins_pipe(long_memory_op);
9348 %}
9349 
9350 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
9351                         flagsReg ccr) %{
9352   match(Set result (AryEq ary1 ary2));
9353   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
9354   ins_cost(300);
9355   format %{ "Array Equals $ary1,$ary2 -> $result" %}
9356   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, tmp2, result));
9357   ins_pipe(long_memory_op);
9358 %}
9359 
9360 
9361 //---------- Zeros Count Instructions ------------------------------------------
9362 
9363 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
9364   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9365   match(Set dst (CountLeadingZerosI src));
9366   effect(TEMP dst, TEMP tmp, KILL cr);
9367 
9368   // x |= (x >> 1);
9369   // x |= (x >> 2);
9370   // x |= (x >> 4);
9371   // x |= (x >> 8);
9372   // x |= (x >> 16);
9373   // return (WORDBITS - popc(x));
9374   format %{ "SRL     $src,1,$dst\t! count leading zeros (int)\n\t"
9375             "OR      $src,$tmp,$dst\n\t"
9376             "SRL     $dst,2,$tmp\n\t"
9377             "OR      $dst,$tmp,$dst\n\t"
9378             "SRL     $dst,4,$tmp\n\t"
9379             "OR      $dst,$tmp,$dst\n\t"
9380             "SRL     $dst,8,$tmp\n\t"
9381             "OR      $dst,$tmp,$dst\n\t"
9382             "SRL     $dst,16,$tmp\n\t"
9383             "OR      $dst,$tmp,$dst\n\t"
9384             "POPC    $dst,$dst\n\t"
9385             "MOV     32,$tmp\n\t"
9386             "SUB     $tmp,$dst,$dst" %}
9387   ins_encode %{
9388     Register Rdst = $dst$$Register;
9389     Register Rsrc = $src$$Register;
9390     Register Rtmp = $tmp$$Register;
9391     __ srl(Rsrc, 1, Rtmp);
9392     __ or3(Rsrc, Rtmp, Rdst);
9393     __ srl(Rdst, 2, Rtmp);
9394     __ or3(Rdst, Rtmp, Rdst);
9395     __ srl(Rdst, 4, Rtmp);
9396     __ or3(Rdst, Rtmp, Rdst);
9397     __ srl(Rdst, 8, Rtmp);
9398     __ or3(Rdst, Rtmp, Rdst);
9399     __ srl(Rdst, 16, Rtmp);
9400     __ or3(Rdst, Rtmp, Rdst);
9401     __ popc(Rdst, Rdst);
9402     __ mov(BitsPerInt, Rtmp);
9403     __ sub(Rtmp, Rdst, Rdst);
9404   %}
9405   ins_pipe(ialu_reg);
9406 %}
9407 
9408 instruct countLeadingZerosL(iRegI dst, iRegL src, iRegL tmp, flagsReg cr) %{
9409   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9410   match(Set dst (CountLeadingZerosL src));
9411   effect(TEMP dst, TEMP tmp, KILL cr);
9412 
9413   // x |= (x >> 1);
9414   // x |= (x >> 2);
9415   // x |= (x >> 4);
9416   // x |= (x >> 8);
9417   // x |= (x >> 16);
9418   // x |= (x >> 32);
9419   // return (WORDBITS - popc(x));
9420   format %{ "SRLX    $src,1,$dst\t! count leading zeros (long)\n\t"
9421             "OR      $src,$tmp,$dst\n\t"
9422             "SRLX    $dst,2,$tmp\n\t"
9423             "OR      $dst,$tmp,$dst\n\t"
9424             "SRLX    $dst,4,$tmp\n\t"
9425             "OR      $dst,$tmp,$dst\n\t"
9426             "SRLX    $dst,8,$tmp\n\t"
9427             "OR      $dst,$tmp,$dst\n\t"
9428             "SRLX    $dst,16,$tmp\n\t"
9429             "OR      $dst,$tmp,$dst\n\t"
9430             "SRLX    $dst,32,$tmp\n\t"
9431             "OR      $dst,$tmp,$dst\n\t"
9432             "POPC    $dst,$dst\n\t"
9433             "MOV     64,$tmp\n\t"
9434             "SUB     $tmp,$dst,$dst" %}
9435   ins_encode %{
9436     Register Rdst = $dst$$Register;
9437     Register Rsrc = $src$$Register;
9438     Register Rtmp = $tmp$$Register;
9439     __ srlx(Rsrc, 1, Rtmp);
9440     __ or3(Rsrc, Rtmp, Rdst);
9441     __ srlx(Rdst, 2, Rtmp);
9442     __ or3(Rdst, Rtmp, Rdst);
9443     __ srlx(Rdst, 4, Rtmp);
9444     __ or3(Rdst, Rtmp, Rdst);
9445     __ srlx(Rdst, 8, Rtmp);
9446     __ or3(Rdst, Rtmp, Rdst);
9447     __ srlx(Rdst, 16, Rtmp);
9448     __ or3(Rdst, Rtmp, Rdst);
9449     __ srlx(Rdst, 32, Rtmp);
9450     __ or3(Rdst, Rtmp, Rdst);
9451     __ popc(Rdst, Rdst);
9452     __ mov(BitsPerLong, Rtmp);
9453     __ sub(Rtmp, Rdst, Rdst);
9454   %}
9455   ins_pipe(ialu_reg);
9456 %}
9457 
9458 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
9459   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9460   match(Set dst (CountTrailingZerosI src));
9461   effect(TEMP dst, KILL cr);
9462 
9463   // return popc(~x & (x - 1));
9464   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
9465             "ANDN    $dst,$src,$dst\n\t"
9466             "SRL     $dst,R_G0,$dst\n\t"
9467             "POPC    $dst,$dst" %}
9468   ins_encode %{
9469     Register Rdst = $dst$$Register;
9470     Register Rsrc = $src$$Register;
9471     __ sub(Rsrc, 1, Rdst);
9472     __ andn(Rdst, Rsrc, Rdst);
9473     __ srl(Rdst, G0, Rdst);
9474     __ popc(Rdst, Rdst);
9475   %}
9476   ins_pipe(ialu_reg);
9477 %}
9478 
9479 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
9480   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9481   match(Set dst (CountTrailingZerosL src));
9482   effect(TEMP dst, KILL cr);
9483 
9484   // return popc(~x & (x - 1));
9485   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
9486             "ANDN    $dst,$src,$dst\n\t"
9487             "POPC    $dst,$dst" %}
9488   ins_encode %{
9489     Register Rdst = $dst$$Register;
9490     Register Rsrc = $src$$Register;
9491     __ sub(Rsrc, 1, Rdst);
9492     __ andn(Rdst, Rsrc, Rdst);
9493     __ popc(Rdst, Rdst);
9494   %}
9495   ins_pipe(ialu_reg);
9496 %}
9497 
9498 
9499 //---------- Population Count Instructions -------------------------------------
9500 
9501 instruct popCountI(iRegI dst, iRegI src) %{
9502   predicate(UsePopCountInstruction);
9503   match(Set dst (PopCountI src));
9504 
9505   format %{ "POPC   $src, $dst" %}
9506   ins_encode %{
9507     __ popc($src$$Register, $dst$$Register);
9508   %}
9509   ins_pipe(ialu_reg);
9510 %}
9511 
9512 // Note: Long.bitCount(long) returns an int.
9513 instruct popCountL(iRegI dst, iRegL src) %{
9514   predicate(UsePopCountInstruction);
9515   match(Set dst (PopCountL src));
9516 
9517   format %{ "POPC   $src, $dst" %}
9518   ins_encode %{
9519     __ popc($src$$Register, $dst$$Register);
9520   %}
9521   ins_pipe(ialu_reg);
9522 %}
9523 
9524 
9525 // ============================================================================
9526 //------------Bytes reverse--------------------------------------------------
9527 
9528 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
9529   match(Set dst (ReverseBytesI src));
9530   effect(DEF dst, USE src);
9531 
9532   // Op cost is artificially doubled to make sure that load or store
9533   // instructions are preferred over this one which requires a spill
9534   // onto a stack slot.
9535   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9536   size(8);
9537   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9538   opcode(Assembler::lduwa_op3);
9539   ins_encode( form3_mem_reg_little(src, dst) );
9540   ins_pipe( iload_mem );
9541 %}
9542 
9543 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
9544   match(Set dst (ReverseBytesL src));
9545   effect(DEF dst, USE src);
9546 
9547   // Op cost is artificially doubled to make sure that load or store
9548   // instructions are preferred over this one which requires a spill
9549   // onto a stack slot.
9550   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9551   size(8);
9552   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9553 
9554   opcode(Assembler::ldxa_op3);
9555   ins_encode( form3_mem_reg_little(src, dst) );
9556   ins_pipe( iload_mem );
9557 %}
9558 
9559 // Load Integer reversed byte order
9560 instruct loadI_reversed(iRegI dst, memory src) %{
9561   match(Set dst (ReverseBytesI (LoadI src)));
9562 
9563   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9564   size(8);
9565   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9566 
9567   opcode(Assembler::lduwa_op3);
9568   ins_encode( form3_mem_reg_little( src, dst) );
9569   ins_pipe(iload_mem);
9570 %}
9571 
9572 // Load Long - aligned and reversed
9573 instruct loadL_reversed(iRegL dst, memory src) %{
9574   match(Set dst (ReverseBytesL (LoadL src)));
9575 
9576   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9577   size(8);
9578   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9579 
9580   opcode(Assembler::ldxa_op3);
9581   ins_encode( form3_mem_reg_little( src, dst ) );
9582   ins_pipe(iload_mem);
9583 %}
9584 
9585 // Store Integer reversed byte order
9586 instruct storeI_reversed(memory dst, iRegI src) %{
9587   match(Set dst (StoreI dst (ReverseBytesI src)));
9588 
9589   ins_cost(MEMORY_REF_COST);
9590   size(8);
9591   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
9592 
9593   opcode(Assembler::stwa_op3);
9594   ins_encode( form3_mem_reg_little( dst, src) );
9595   ins_pipe(istore_mem_reg);
9596 %}
9597 
9598 // Store Long reversed byte order
9599 instruct storeL_reversed(memory dst, iRegL src) %{
9600   match(Set dst (StoreL dst (ReverseBytesL src)));
9601 
9602   ins_cost(MEMORY_REF_COST);
9603   size(8);
9604   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
9605 
9606   opcode(Assembler::stxa_op3);
9607   ins_encode( form3_mem_reg_little( dst, src) );
9608   ins_pipe(istore_mem_reg);
9609 %}
9610 
9611 //----------PEEPHOLE RULES-----------------------------------------------------
9612 // These must follow all instruction definitions as they use the names
9613 // defined in the instructions definitions.
9614 //
9615 // peepmatch ( root_instr_name [preceding_instruction]* );
9616 //
9617 // peepconstraint %{
9618 // (instruction_number.operand_name relational_op instruction_number.operand_name
9619 //  [, ...] );
9620 // // instruction numbers are zero-based using left to right order in peepmatch
9621 //
9622 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
9623 // // provide an instruction_number.operand_name for each operand that appears
9624 // // in the replacement instruction's match rule
9625 //
9626 // ---------VM FLAGS---------------------------------------------------------
9627 //
9628 // All peephole optimizations can be turned off using -XX:-OptoPeephole
9629 //
9630 // Each peephole rule is given an identifying number starting with zero and
9631 // increasing by one in the order seen by the parser.  An individual peephole
9632 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
9633 // on the command-line.
9634 //
9635 // ---------CURRENT LIMITATIONS----------------------------------------------
9636 //
9637 // Only match adjacent instructions in same basic block
9638 // Only equality constraints
9639 // Only constraints between operands, not (0.dest_reg == EAX_enc)
9640 // Only one replacement instruction
9641 //
9642 // ---------EXAMPLE----------------------------------------------------------
9643 //
9644 // // pertinent parts of existing instructions in architecture description
9645 // instruct movI(eRegI dst, eRegI src) %{
9646 //   match(Set dst (CopyI src));
9647 // %}
9648 //
9649 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
9650 //   match(Set dst (AddI dst src));
9651 //   effect(KILL cr);
9652 // %}
9653 //
9654 // // Change (inc mov) to lea
9655 // peephole %{
9656 //   // increment preceeded by register-register move
9657 //   peepmatch ( incI_eReg movI );
9658 //   // require that the destination register of the increment
9659 //   // match the destination register of the move
9660 //   peepconstraint ( 0.dst == 1.dst );
9661 //   // construct a replacement instruction that sets
9662 //   // the destination to ( move's source register + one )
9663 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
9664 // %}
9665 //
9666 
9667 // // Change load of spilled value to only a spill
9668 // instruct storeI(memory mem, eRegI src) %{
9669 //   match(Set mem (StoreI mem src));
9670 // %}
9671 //
9672 // instruct loadI(eRegI dst, memory mem) %{
9673 //   match(Set dst (LoadI mem));
9674 // %}
9675 //
9676 // peephole %{
9677 //   peepmatch ( loadI storeI );
9678 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
9679 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
9680 // %}
9681 
9682 //----------SMARTSPILL RULES---------------------------------------------------
9683 // These must follow all instruction definitions as they use the names
9684 // defined in the instructions definitions.
9685 //
9686 // SPARC will probably not have any of these rules due to RISC instruction set.
9687 
9688 //----------PIPELINE-----------------------------------------------------------
9689 // Rules which define the behavior of the target architectures pipeline.