1 /*
   2  * Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // output_c.cpp - Class CPP file output routines for architecture definition
  26 
  27 #include "adlc.hpp"
  28 
  29 // Utilities to characterize effect statements
  30 static bool is_def(int usedef) {
  31   switch(usedef) {
  32   case Component::DEF:
  33   case Component::USE_DEF: return true; break;
  34   }
  35   return false;
  36 }
  37 
  38 static bool is_use(int usedef) {
  39   switch(usedef) {
  40   case Component::USE:
  41   case Component::USE_DEF:
  42   case Component::USE_KILL: return true; break;
  43   }
  44   return false;
  45 }
  46 
  47 static bool is_kill(int usedef) {
  48   switch(usedef) {
  49   case Component::KILL:
  50   case Component::USE_KILL: return true; break;
  51   }
  52   return false;
  53 }
  54 
  55 // Define  an array containing the machine register names, strings.
  56 static void defineRegNames(FILE *fp, RegisterForm *registers) {
  57   if (registers) {
  58     fprintf(fp,"\n");
  59     fprintf(fp,"// An array of character pointers to machine register names.\n");
  60     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
  61 
  62     // Output the register name for each register in the allocation classes
  63     RegDef *reg_def = NULL;
  64     RegDef *next = NULL;
  65     registers->reset_RegDefs();
  66     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
  67       next = registers->iter_RegDefs();
  68       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  69       fprintf(fp,"  \"%s\"%s\n",
  70                  reg_def->_regname, comma );
  71     }
  72 
  73     // Finish defining enumeration
  74     fprintf(fp,"};\n");
  75 
  76     fprintf(fp,"\n");
  77     fprintf(fp,"// An array of character pointers to machine register names.\n");
  78     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
  79     reg_def = NULL;
  80     next = NULL;
  81     registers->reset_RegDefs();
  82     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
  83       next = registers->iter_RegDefs();
  84       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  85       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma );
  86     }
  87     // Finish defining array
  88     fprintf(fp,"\t};\n");
  89     fprintf(fp,"\n");
  90 
  91     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
  92 
  93   }
  94 }
  95 
  96 // Define an array containing the machine register encoding values
  97 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
  98   if (registers) {
  99     fprintf(fp,"\n");
 100     fprintf(fp,"// An array of the machine register encode values\n");
 101     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
 102 
 103     // Output the register encoding for each register in the allocation classes
 104     RegDef *reg_def = NULL;
 105     RegDef *next    = NULL;
 106     registers->reset_RegDefs();
 107     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
 108       next = registers->iter_RegDefs();
 109       const char* register_encode = reg_def->register_encode();
 110       const char *comma = (next != NULL) ? "," : " // no trailing comma";
 111       int encval;
 112       if (!ADLParser::is_int_token(register_encode, encval)) {
 113         fprintf(fp,"  %s%s  // %s\n",
 114                 register_encode, comma, reg_def->_regname );
 115       } else {
 116         // Output known constants in hex char format (backward compatibility).
 117         assert(encval < 256, "Exceeded supported width for register encoding");
 118         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n",
 119                 encval,          comma, reg_def->_regname );
 120       }
 121     }
 122     // Finish defining enumeration
 123     fprintf(fp,"};\n");
 124 
 125   } // Done defining array
 126 }
 127 
 128 // Output an enumeration of register class names
 129 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
 130   if (registers) {
 131     // Output an enumeration of register class names
 132     fprintf(fp,"\n");
 133     fprintf(fp,"// Enumeration of register class names\n");
 134     fprintf(fp, "enum machRegisterClass {\n");
 135     registers->_rclasses.reset();
 136     for( const char *class_name = NULL;
 137          (class_name = registers->_rclasses.iter()) != NULL; ) {
 138       fprintf(fp,"  %s,\n", toUpper( class_name ));
 139     }
 140     // Finish defining enumeration
 141     fprintf(fp, "  _last_Mach_Reg_Class\n");
 142     fprintf(fp, "};\n");
 143   }
 144 }
 145 
 146 // Declare an enumeration of user-defined register classes
 147 // and a list of register masks, one for each class.
 148 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
 149   const char  *rc_name;
 150 
 151   if( _register ) {
 152     // Build enumeration of user-defined register classes.
 153     defineRegClassEnum(fp_hpp, _register);
 154 
 155     // Generate a list of register masks, one for each class.
 156     fprintf(fp_hpp,"\n");
 157     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
 158     _register->_rclasses.reset();
 159     for( rc_name = NULL;
 160          (rc_name = _register->_rclasses.iter()) != NULL; ) {
 161       const char *prefix    = "";
 162       RegClass   *reg_class = _register->getRegClass(rc_name);
 163       assert( reg_class, "Using an undefined register class");
 164 
 165       int len = RegisterForm::RegMask_Size();
 166       fprintf(fp_hpp, "extern const RegMask %s%s_mask;\n", prefix, toUpper( rc_name ) );
 167 
 168       if( reg_class->_stack_or_reg ) {
 169         fprintf(fp_hpp, "extern const RegMask %sSTACK_OR_%s_mask;\n", prefix, toUpper( rc_name ) );
 170       }
 171     }
 172   }
 173 }
 174 
 175 // Generate an enumeration of user-defined register classes
 176 // and a list of register masks, one for each class.
 177 void ArchDesc::build_register_masks(FILE *fp_cpp) {
 178   const char  *rc_name;
 179 
 180   if( _register ) {
 181     // Generate a list of register masks, one for each class.
 182     fprintf(fp_cpp,"\n");
 183     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
 184     _register->_rclasses.reset();
 185     for( rc_name = NULL;
 186          (rc_name = _register->_rclasses.iter()) != NULL; ) {
 187       const char *prefix    = "";
 188       RegClass   *reg_class = _register->getRegClass(rc_name);
 189       assert( reg_class, "Using an undefined register class");
 190 
 191       int len = RegisterForm::RegMask_Size();
 192       fprintf(fp_cpp, "const RegMask %s%s_mask(", prefix, toUpper( rc_name ) );
 193       { int i;
 194         for( i = 0; i < len-1; i++ )
 195           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i,false));
 196         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i,false));
 197       }
 198 
 199       if( reg_class->_stack_or_reg ) {
 200         int i;
 201         fprintf(fp_cpp, "const RegMask %sSTACK_OR_%s_mask(", prefix, toUpper( rc_name ) );
 202         for( i = 0; i < len-1; i++ )
 203           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i,true));
 204         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i,true));
 205       }
 206     }
 207   }
 208 }
 209 
 210 // Compute an index for an array in the pipeline_reads_NNN arrays
 211 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
 212 {
 213   int templen = 1;
 214   int paramcount = 0;
 215   const char *paramname;
 216 
 217   if (pipeclass->_parameters.count() == 0)
 218     return -1;
 219 
 220   pipeclass->_parameters.reset();
 221   paramname = pipeclass->_parameters.iter();
 222   const PipeClassOperandForm *pipeopnd =
 223     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 224   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 225     pipeclass->_parameters.reset();
 226 
 227   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 228     const PipeClassOperandForm *tmppipeopnd =
 229         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 230 
 231     if (tmppipeopnd)
 232       templen += 10 + (int)strlen(tmppipeopnd->_stage);
 233     else
 234       templen += 19;
 235 
 236     paramcount++;
 237   }
 238 
 239   // See if the count is zero
 240   if (paramcount == 0) {
 241     return -1;
 242   }
 243 
 244   char *operand_stages = new char [templen];
 245   operand_stages[0] = 0;
 246   int i = 0;
 247   templen = 0;
 248 
 249   pipeclass->_parameters.reset();
 250   paramname = pipeclass->_parameters.iter();
 251   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 252   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 253     pipeclass->_parameters.reset();
 254 
 255   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 256     const PipeClassOperandForm *tmppipeopnd =
 257         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 258     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
 259       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
 260       (++i < paramcount ? ',' : ' ') );
 261   }
 262 
 263   // See if the same string is in the table
 264   int ndx = pipeline_reads.index(operand_stages);
 265 
 266   // No, add it to the table
 267   if (ndx < 0) {
 268     pipeline_reads.addName(operand_stages);
 269     ndx = pipeline_reads.index(operand_stages);
 270 
 271     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
 272       ndx+1, paramcount, operand_stages);
 273   }
 274   else
 275     delete [] operand_stages;
 276 
 277   return (ndx);
 278 }
 279 
 280 // Compute an index for an array in the pipeline_res_stages_NNN arrays
 281 static int pipeline_res_stages_initializer(
 282   FILE *fp_cpp,
 283   PipelineForm *pipeline,
 284   NameList &pipeline_res_stages,
 285   PipeClassForm *pipeclass)
 286 {
 287   const PipeClassResourceForm *piperesource;
 288   int * res_stages = new int [pipeline->_rescount];
 289   int i;
 290 
 291   for (i = 0; i < pipeline->_rescount; i++)
 292      res_stages[i] = 0;
 293 
 294   for (pipeclass->_resUsage.reset();
 295        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 296     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 297     for (i = 0; i < pipeline->_rescount; i++)
 298       if ((1 << i) & used_mask) {
 299         int stage = pipeline->_stages.index(piperesource->_stage);
 300         if (res_stages[i] < stage+1)
 301           res_stages[i] = stage+1;
 302       }
 303   }
 304 
 305   // Compute the length needed for the resource list
 306   int commentlen = 0;
 307   int max_stage = 0;
 308   for (i = 0; i < pipeline->_rescount; i++) {
 309     if (res_stages[i] == 0) {
 310       if (max_stage < 9)
 311         max_stage = 9;
 312     }
 313     else {
 314       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
 315       if (max_stage < stagelen)
 316         max_stage = stagelen;
 317     }
 318 
 319     commentlen += (int)strlen(pipeline->_reslist.name(i));
 320   }
 321 
 322   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
 323 
 324   // Allocate space for the resource list
 325   char * resource_stages = new char [templen];
 326 
 327   templen = 0;
 328   for (i = 0; i < pipeline->_rescount; i++) {
 329     const char * const resname =
 330       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
 331 
 332     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
 333       resname, max_stage - (int)strlen(resname) + 1,
 334       (i < pipeline->_rescount-1) ? "," : "",
 335       pipeline->_reslist.name(i));
 336   }
 337 
 338   // See if the same string is in the table
 339   int ndx = pipeline_res_stages.index(resource_stages);
 340 
 341   // No, add it to the table
 342   if (ndx < 0) {
 343     pipeline_res_stages.addName(resource_stages);
 344     ndx = pipeline_res_stages.index(resource_stages);
 345 
 346     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
 347       ndx+1, pipeline->_rescount, resource_stages);
 348   }
 349   else
 350     delete [] resource_stages;
 351 
 352   delete [] res_stages;
 353 
 354   return (ndx);
 355 }
 356 
 357 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
 358 static int pipeline_res_cycles_initializer(
 359   FILE *fp_cpp,
 360   PipelineForm *pipeline,
 361   NameList &pipeline_res_cycles,
 362   PipeClassForm *pipeclass)
 363 {
 364   const PipeClassResourceForm *piperesource;
 365   int * res_cycles = new int [pipeline->_rescount];
 366   int i;
 367 
 368   for (i = 0; i < pipeline->_rescount; i++)
 369      res_cycles[i] = 0;
 370 
 371   for (pipeclass->_resUsage.reset();
 372        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 373     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 374     for (i = 0; i < pipeline->_rescount; i++)
 375       if ((1 << i) & used_mask) {
 376         int cycles = piperesource->_cycles;
 377         if (res_cycles[i] < cycles)
 378           res_cycles[i] = cycles;
 379       }
 380   }
 381 
 382   // Pre-compute the string length
 383   int templen;
 384   int cyclelen = 0, commentlen = 0;
 385   int max_cycles = 0;
 386   char temp[32];
 387 
 388   for (i = 0; i < pipeline->_rescount; i++) {
 389     if (max_cycles < res_cycles[i])
 390       max_cycles = res_cycles[i];
 391     templen = sprintf(temp, "%d", res_cycles[i]);
 392     if (cyclelen < templen)
 393       cyclelen = templen;
 394     commentlen += (int)strlen(pipeline->_reslist.name(i));
 395   }
 396 
 397   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
 398 
 399   // Allocate space for the resource list
 400   char * resource_cycles = new char [templen];
 401 
 402   templen = 0;
 403 
 404   for (i = 0; i < pipeline->_rescount; i++) {
 405     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
 406       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
 407   }
 408 
 409   // See if the same string is in the table
 410   int ndx = pipeline_res_cycles.index(resource_cycles);
 411 
 412   // No, add it to the table
 413   if (ndx < 0) {
 414     pipeline_res_cycles.addName(resource_cycles);
 415     ndx = pipeline_res_cycles.index(resource_cycles);
 416 
 417     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
 418       ndx+1, pipeline->_rescount, resource_cycles);
 419   }
 420   else
 421     delete [] resource_cycles;
 422 
 423   delete [] res_cycles;
 424 
 425   return (ndx);
 426 }
 427 
 428 //typedef unsigned long long uint64_t;
 429 
 430 // Compute an index for an array in the pipeline_res_mask_NNN arrays
 431 static int pipeline_res_mask_initializer(
 432   FILE *fp_cpp,
 433   PipelineForm *pipeline,
 434   NameList &pipeline_res_mask,
 435   NameList &pipeline_res_args,
 436   PipeClassForm *pipeclass)
 437 {
 438   const PipeClassResourceForm *piperesource;
 439   const uint rescount      = pipeline->_rescount;
 440   const uint maxcycleused  = pipeline->_maxcycleused;
 441   const uint cyclemasksize = (maxcycleused + 31) >> 5;
 442 
 443   int i, j;
 444   int element_count = 0;
 445   uint *res_mask = new uint [cyclemasksize];
 446   uint resources_used             = 0;
 447   uint resources_used_exclusively = 0;
 448 
 449   for (pipeclass->_resUsage.reset();
 450        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; )
 451     element_count++;
 452 
 453   // Pre-compute the string length
 454   int templen;
 455   int commentlen = 0;
 456   int max_cycles = 0;
 457 
 458   int cyclelen = ((maxcycleused + 3) >> 2);
 459   int masklen = (rescount + 3) >> 2;
 460 
 461   int cycledigit = 0;
 462   for (i = maxcycleused; i > 0; i /= 10)
 463     cycledigit++;
 464 
 465   int maskdigit = 0;
 466   for (i = rescount; i > 0; i /= 10)
 467     maskdigit++;
 468 
 469   static const char * pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
 470   static const char * pipeline_use_element    = "Pipeline_Use_Element";
 471 
 472   templen = 1 +
 473     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
 474      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
 475 
 476   // Allocate space for the resource list
 477   char * resource_mask = new char [templen];
 478   char * last_comma = NULL;
 479 
 480   templen = 0;
 481 
 482   for (pipeclass->_resUsage.reset();
 483        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 484     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 485 
 486     if (!used_mask)
 487       fprintf(stderr, "*** used_mask is 0 ***\n");
 488 
 489     resources_used |= used_mask;
 490 
 491     uint lb, ub;
 492 
 493     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
 494     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
 495 
 496     if (lb == ub)
 497       resources_used_exclusively |= used_mask;
 498 
 499     int formatlen =
 500       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
 501         pipeline_use_element,
 502         masklen, used_mask,
 503         cycledigit, lb, cycledigit, ub,
 504         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
 505         pipeline_use_cycle_mask);
 506 
 507     templen += formatlen;
 508 
 509     memset(res_mask, 0, cyclemasksize * sizeof(uint));
 510 
 511     int cycles = piperesource->_cycles;
 512     uint stage          = pipeline->_stages.index(piperesource->_stage);
 513     uint upper_limit    = stage+cycles-1;
 514     uint lower_limit    = stage-1;
 515     uint upper_idx      = upper_limit >> 5;
 516     uint lower_idx      = lower_limit >> 5;
 517     uint upper_position = upper_limit & 0x1f;
 518     uint lower_position = lower_limit & 0x1f;
 519 
 520     uint mask = (((uint)1) << upper_position) - 1;
 521 
 522     while ( upper_idx > lower_idx ) {
 523       res_mask[upper_idx--] |= mask;
 524       mask = (uint)-1;
 525     }
 526 
 527     mask -= (((uint)1) << lower_position) - 1;
 528     res_mask[upper_idx] |= mask;
 529 
 530     for (j = cyclemasksize-1; j >= 0; j--) {
 531       formatlen =
 532         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
 533       templen += formatlen;
 534     }
 535 
 536     resource_mask[templen++] = ')';
 537     resource_mask[templen++] = ')';
 538     last_comma = &resource_mask[templen];
 539     resource_mask[templen++] = ',';
 540     resource_mask[templen++] = '\n';
 541   }
 542 
 543   resource_mask[templen] = 0;
 544   if (last_comma)
 545     last_comma[0] = ' ';
 546 
 547   // See if the same string is in the table
 548   int ndx = pipeline_res_mask.index(resource_mask);
 549 
 550   // No, add it to the table
 551   if (ndx < 0) {
 552     pipeline_res_mask.addName(resource_mask);
 553     ndx = pipeline_res_mask.index(resource_mask);
 554 
 555     if (strlen(resource_mask) > 0)
 556       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
 557         ndx+1, element_count, resource_mask);
 558 
 559     char * args = new char [9 + 2*masklen + maskdigit];
 560 
 561     sprintf(args, "0x%0*x, 0x%0*x, %*d",
 562       masklen, resources_used,
 563       masklen, resources_used_exclusively,
 564       maskdigit, element_count);
 565 
 566     pipeline_res_args.addName(args);
 567   }
 568   else
 569     delete [] resource_mask;
 570 
 571   delete [] res_mask;
 572 //delete [] res_masks;
 573 
 574   return (ndx);
 575 }
 576 
 577 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
 578   const char *classname;
 579   const char *resourcename;
 580   int resourcenamelen = 0;
 581   NameList pipeline_reads;
 582   NameList pipeline_res_stages;
 583   NameList pipeline_res_cycles;
 584   NameList pipeline_res_masks;
 585   NameList pipeline_res_args;
 586   const int default_latency = 1;
 587   const int non_operand_latency = 0;
 588   const int node_latency = 0;
 589 
 590   if (!_pipeline) {
 591     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
 592     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 593     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
 594     fprintf(fp_cpp, "}\n");
 595     return;
 596   }
 597 
 598   fprintf(fp_cpp, "\n");
 599   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
 600   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 601   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
 602   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
 603   fprintf(fp_cpp, "    \"undefined\"");
 604 
 605   for (int s = 0; s < _pipeline->_stagecnt; s++)
 606     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
 607 
 608   fprintf(fp_cpp, "\n  };\n\n");
 609   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
 610     _pipeline->_stagecnt);
 611   fprintf(fp_cpp, "}\n");
 612   fprintf(fp_cpp, "#endif\n\n");
 613 
 614   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
 615   fprintf(fp_cpp, "  // See if the functional units overlap\n");
 616 #if 0
 617   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 618   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 619   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
 620   fprintf(fp_cpp, "  }\n");
 621   fprintf(fp_cpp, "#endif\n\n");
 622 #endif
 623   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
 624   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
 625 #if 0
 626   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 627   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 628   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
 629   fprintf(fp_cpp, "  }\n");
 630   fprintf(fp_cpp, "#endif\n\n");
 631 #endif
 632   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
 633   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
 634   fprintf(fp_cpp, "    if (predUse->multiple())\n");
 635   fprintf(fp_cpp, "      continue;\n\n");
 636   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
 637   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
 638   fprintf(fp_cpp, "      if (currUse->multiple())\n");
 639   fprintf(fp_cpp, "        continue;\n\n");
 640   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
 641   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
 642   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
 643   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
 644   fprintf(fp_cpp, "          y <<= 1;\n");
 645   fprintf(fp_cpp, "      }\n");
 646   fprintf(fp_cpp, "    }\n");
 647   fprintf(fp_cpp, "  }\n\n");
 648   fprintf(fp_cpp, "  // There is the potential for overlap\n");
 649   fprintf(fp_cpp, "  return (start);\n");
 650   fprintf(fp_cpp, "}\n\n");
 651   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
 652   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
 653   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
 654   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
 655   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 656   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 657   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 658   fprintf(fp_cpp, "      uint min_delay = %d;\n",
 659     _pipeline->_maxcycleused+1);
 660   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 661   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 662   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 663   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
 664   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 665   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 666   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 667   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
 668   fprintf(fp_cpp, "            y <<= 1;\n");
 669   fprintf(fp_cpp, "        }\n");
 670   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
 671   fprintf(fp_cpp, "      }\n");
 672   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
 673   fprintf(fp_cpp, "    }\n");
 674   fprintf(fp_cpp, "    else {\n");
 675   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 676   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 677   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 678   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 679   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 680   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
 681   fprintf(fp_cpp, "            y <<= 1;\n");
 682   fprintf(fp_cpp, "        }\n");
 683   fprintf(fp_cpp, "      }\n");
 684   fprintf(fp_cpp, "    }\n");
 685   fprintf(fp_cpp, "  }\n\n");
 686   fprintf(fp_cpp, "  return (delay);\n");
 687   fprintf(fp_cpp, "}\n\n");
 688   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
 689   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 690   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 691   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 692   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 693   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 694   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 695   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
 696   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
 697   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
 698   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
 699   fprintf(fp_cpp, "          break;\n");
 700   fprintf(fp_cpp, "        }\n");
 701   fprintf(fp_cpp, "      }\n");
 702   fprintf(fp_cpp, "    }\n");
 703   fprintf(fp_cpp, "    else {\n");
 704   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 705   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 706   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
 707   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
 708   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
 709   fprintf(fp_cpp, "      }\n");
 710   fprintf(fp_cpp, "    }\n");
 711   fprintf(fp_cpp, "  }\n");
 712   fprintf(fp_cpp, "}\n\n");
 713 
 714   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
 715   fprintf(fp_cpp, "  int const default_latency = 1;\n");
 716   fprintf(fp_cpp, "\n");
 717 #if 0
 718   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 719   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 720   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
 721   fprintf(fp_cpp, "  }\n");
 722   fprintf(fp_cpp, "#endif\n\n");
 723 #endif
 724   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\")\n");
 725   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\")\n\n");
 726   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
 727   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
 728   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
 729   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
 730   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
 731 #if 0
 732   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 733   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 734   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
 735   fprintf(fp_cpp, "  }\n");
 736   fprintf(fp_cpp, "#endif\n\n");
 737 #endif
 738   fprintf(fp_cpp, "\n");
 739   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
 740   fprintf(fp_cpp, "    return (default_latency);\n");
 741   fprintf(fp_cpp, "\n");
 742   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
 743   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
 744 #if 0
 745   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 746   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 747   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
 748   fprintf(fp_cpp, "  }\n");
 749   fprintf(fp_cpp, "#endif\n\n");
 750 #endif
 751   fprintf(fp_cpp, "  return (delta);\n");
 752   fprintf(fp_cpp, "}\n\n");
 753 
 754   if (!_pipeline)
 755     /* Do Nothing */;
 756 
 757   else if (_pipeline->_maxcycleused <=
 758 #ifdef SPARC
 759     64
 760 #else
 761     32
 762 #endif
 763       ) {
 764     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 765     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
 766     fprintf(fp_cpp, "}\n\n");
 767     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 768     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
 769     fprintf(fp_cpp, "}\n\n");
 770   }
 771   else {
 772     uint l;
 773     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 774     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 775     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 776     for (l = 1; l <= masklen; l++)
 777       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
 778     fprintf(fp_cpp, ");\n");
 779     fprintf(fp_cpp, "}\n\n");
 780     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 781     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 782     for (l = 1; l <= masklen; l++)
 783       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
 784     fprintf(fp_cpp, ");\n");
 785     fprintf(fp_cpp, "}\n\n");
 786     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
 787     for (l = 1; l <= masklen; l++)
 788       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
 789     fprintf(fp_cpp, "\n}\n\n");
 790   }
 791 
 792   /* Get the length of all the resource names */
 793   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
 794        (resourcename = _pipeline->_reslist.iter()) != NULL;
 795        resourcenamelen += (int)strlen(resourcename));
 796 
 797   // Create the pipeline class description
 798 
 799   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 800   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 801 
 802   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
 803   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
 804     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
 805     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 806     for (int i2 = masklen-1; i2 >= 0; i2--)
 807       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
 808     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
 809   }
 810   fprintf(fp_cpp, "};\n\n");
 811 
 812   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
 813     _pipeline->_rescount);
 814 
 815   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
 816     fprintf(fp_cpp, "\n");
 817     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
 818     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
 819     int maxWriteStage = -1;
 820     int maxMoreInstrs = 0;
 821     int paramcount = 0;
 822     int i = 0;
 823     const char *paramname;
 824     int resource_count = (_pipeline->_rescount + 3) >> 2;
 825 
 826     // Scan the operands, looking for last output stage and number of inputs
 827     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
 828       const PipeClassOperandForm *pipeopnd =
 829           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 830       if (pipeopnd) {
 831         if (pipeopnd->_iswrite) {
 832            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
 833            int moreinsts = pipeopnd->_more_instrs;
 834           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
 835             maxWriteStage = stagenum;
 836             maxMoreInstrs = moreinsts;
 837           }
 838         }
 839       }
 840 
 841       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
 842         paramcount++;
 843     }
 844 
 845     // Create the list of stages for the operands that are read
 846     // Note that we will build a NameList to reduce the number of copies
 847 
 848     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
 849 
 850     int pipeline_res_stages_index = pipeline_res_stages_initializer(
 851       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
 852 
 853     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
 854       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
 855 
 856     int pipeline_res_mask_index = pipeline_res_mask_initializer(
 857       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
 858 
 859 #if 0
 860     // Process the Resources
 861     const PipeClassResourceForm *piperesource;
 862 
 863     unsigned resources_used = 0;
 864     unsigned exclusive_resources_used = 0;
 865     unsigned resource_groups = 0;
 866     for (pipeclass->_resUsage.reset();
 867          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 868       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 869       if (used_mask)
 870         resource_groups++;
 871       resources_used |= used_mask;
 872       if ((used_mask & (used_mask-1)) == 0)
 873         exclusive_resources_used |= used_mask;
 874     }
 875 
 876     if (resource_groups > 0) {
 877       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
 878         pipeclass->_num, resource_groups);
 879       for (pipeclass->_resUsage.reset(), i = 1;
 880            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
 881            i++ ) {
 882         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 883         if (used_mask) {
 884           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
 885         }
 886       }
 887       fprintf(fp_cpp, "};\n\n");
 888     }
 889 #endif
 890 
 891     // Create the pipeline class description
 892     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
 893       pipeclass->_num);
 894     if (maxWriteStage < 0)
 895       fprintf(fp_cpp, "(uint)stage_undefined");
 896     else if (maxMoreInstrs == 0)
 897       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
 898     else
 899       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
 900     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
 901       paramcount,
 902       pipeclass->hasFixedLatency() ? "true" : "false",
 903       pipeclass->fixedLatency(),
 904       pipeclass->InstructionCount(),
 905       pipeclass->hasBranchDelay() ? "true" : "false",
 906       pipeclass->hasMultipleBundles() ? "true" : "false",
 907       pipeclass->forceSerialization() ? "true" : "false",
 908       pipeclass->mayHaveNoCode() ? "true" : "false" );
 909     if (paramcount > 0) {
 910       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
 911         pipeline_reads_index+1);
 912     }
 913     else
 914       fprintf(fp_cpp, " NULL,");
 915     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
 916       pipeline_res_stages_index+1);
 917     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
 918       pipeline_res_cycles_index+1);
 919     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
 920       pipeline_res_args.name(pipeline_res_mask_index));
 921     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
 922       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
 923         pipeline_res_mask_index+1);
 924     else
 925       fprintf(fp_cpp, "NULL");
 926     fprintf(fp_cpp, "));\n");
 927   }
 928 
 929   // Generate the Node::latency method if _pipeline defined
 930   fprintf(fp_cpp, "\n");
 931   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
 932   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
 933   if (_pipeline) {
 934 #if 0
 935     fprintf(fp_cpp, "#ifndef PRODUCT\n");
 936     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
 937     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
 938     fprintf(fp_cpp, " }\n");
 939     fprintf(fp_cpp, "#endif\n");
 940 #endif
 941     fprintf(fp_cpp, "  uint j;\n");
 942     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
 943     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
 944     fprintf(fp_cpp, "  // verify input is not null\n");
 945     fprintf(fp_cpp, "  Node *pred = in(i);\n");
 946     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
 947       non_operand_latency);
 948     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
 949     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
 950     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
 951     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
 952     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
 953     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
 954     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
 955     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
 956       node_latency);
 957     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
 958     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
 959     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
 960       non_operand_latency);
 961     fprintf(fp_cpp, "  // determine which operand this is in\n");
 962     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
 963     fprintf(fp_cpp, "  int delta = %d;\n\n",
 964       non_operand_latency);
 965     fprintf(fp_cpp, "  uint k;\n");
 966     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
 967     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
 968     fprintf(fp_cpp, "    if (i < j)\n");
 969     fprintf(fp_cpp, "      break;\n");
 970     fprintf(fp_cpp, "  }\n");
 971     fprintf(fp_cpp, "  if (k < n)\n");
 972     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
 973     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
 974   }
 975   else {
 976     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 977     fprintf(fp_cpp, "  return %d;\n",
 978       non_operand_latency);
 979   }
 980   fprintf(fp_cpp, "}\n\n");
 981 
 982   // Output the list of nop nodes
 983   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
 984   const char *nop;
 985   int nopcnt = 0;
 986   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
 987 
 988   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
 989   int i = 0;
 990   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
 991     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
 992   }
 993   fprintf(fp_cpp, "};\n\n");
 994   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 995   fprintf(fp_cpp, "void Bundle::dump() const {\n");
 996   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
 997   fprintf(fp_cpp, "    \"\",\n");
 998   fprintf(fp_cpp, "    \"use nop delay\",\n");
 999   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
1000   fprintf(fp_cpp, "    \"use conditional delay\",\n");
1001   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
1002   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
1003   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
1004   fprintf(fp_cpp, "  };\n\n");
1005 
1006   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
1007   for (i = 0; i < _pipeline->_rescount; i++)
1008     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
1009   fprintf(fp_cpp, "};\n\n");
1010 
1011   // See if the same string is in the table
1012   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
1013   fprintf(fp_cpp, "  if (_flags) {\n");
1014   fprintf(fp_cpp, "    tty->print(\"%%s\", bundle_flags[_flags]);\n");
1015   fprintf(fp_cpp, "    needs_comma = true;\n");
1016   fprintf(fp_cpp, "  };\n");
1017   fprintf(fp_cpp, "  if (instr_count()) {\n");
1018   fprintf(fp_cpp, "    tty->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
1019   fprintf(fp_cpp, "    needs_comma = true;\n");
1020   fprintf(fp_cpp, "  };\n");
1021   fprintf(fp_cpp, "  uint r = resources_used();\n");
1022   fprintf(fp_cpp, "  if (r) {\n");
1023   fprintf(fp_cpp, "    tty->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
1024   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
1025   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
1026   fprintf(fp_cpp, "        tty->print(\" %%s\", resource_names[i]);\n");
1027   fprintf(fp_cpp, "    needs_comma = true;\n");
1028   fprintf(fp_cpp, "  };\n");
1029   fprintf(fp_cpp, "  tty->print(\"\\n\");\n");
1030   fprintf(fp_cpp, "}\n");
1031   fprintf(fp_cpp, "#endif\n");
1032 }
1033 
1034 // ---------------------------------------------------------------------------
1035 //------------------------------Utilities to build Instruction Classes--------
1036 // ---------------------------------------------------------------------------
1037 
1038 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1039   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1040           node, regMask);
1041 }
1042 
1043 // Scan the peepmatch and output a test for each instruction
1044 static void check_peepmatch_instruction_tree(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1045   int         parent        = -1;
1046   int         inst_position = 0;
1047   const char* inst_name     = NULL;
1048   int         input         = 0;
1049   fprintf(fp, "      // Check instruction sub-tree\n");
1050   pmatch->reset();
1051   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1052        inst_name != NULL;
1053        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1054     // If this is not a placeholder
1055     if( ! pmatch->is_placeholder() ) {
1056       // Define temporaries 'inst#', based on parent and parent's input index
1057       if( parent != -1 ) {                // root was initialized
1058         fprintf(fp, "  inst%d = inst%d->in(%d);\n",
1059                 inst_position, parent, input);
1060       }
1061 
1062       // When not the root
1063       // Test we have the correct instruction by comparing the rule
1064       if( parent != -1 ) {
1065         fprintf(fp, "  matches = matches &&  ( inst%d->rule() == %s_rule );",
1066                 inst_position, inst_name);
1067       }
1068     } else {
1069       // Check that user did not try to constrain a placeholder
1070       assert( ! pconstraint->constrains_instruction(inst_position),
1071               "fatal(): Can not constrain a placeholder instruction");
1072     }
1073   }
1074 }
1075 
1076 static void print_block_index(FILE *fp, int inst_position) {
1077   assert( inst_position >= 0, "Instruction number less than zero");
1078   fprintf(fp, "block_index");
1079   if( inst_position != 0 ) {
1080     fprintf(fp, " - %d", inst_position);
1081   }
1082 }
1083 
1084 // Scan the peepmatch and output a test for each instruction
1085 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1086   int         parent        = -1;
1087   int         inst_position = 0;
1088   const char* inst_name     = NULL;
1089   int         input         = 0;
1090   fprintf(fp, "  // Check instruction sub-tree\n");
1091   pmatch->reset();
1092   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1093        inst_name != NULL;
1094        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1095     // If this is not a placeholder
1096     if( ! pmatch->is_placeholder() ) {
1097       // Define temporaries 'inst#', based on parent and parent's input index
1098       if( parent != -1 ) {                // root was initialized
1099         fprintf(fp, "  // Identify previous instruction if inside this block\n");
1100         fprintf(fp, "  if( ");
1101         print_block_index(fp, inst_position);
1102         fprintf(fp, " > 0 ) {\n    Node *n = block->_nodes.at(");
1103         print_block_index(fp, inst_position);
1104         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
1105         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
1106       }
1107 
1108       // When not the root
1109       // Test we have the correct instruction by comparing the rule.
1110       if( parent != -1 ) {
1111         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
1112                 inst_position, inst_position, inst_name);
1113       }
1114     } else {
1115       // Check that user did not try to constrain a placeholder
1116       assert( ! pconstraint->constrains_instruction(inst_position),
1117               "fatal(): Can not constrain a placeholder instruction");
1118     }
1119   }
1120 }
1121 
1122 // Build mapping for register indices, num_edges to input
1123 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1124   int         parent        = -1;
1125   int         inst_position = 0;
1126   const char* inst_name     = NULL;
1127   int         input         = 0;
1128   fprintf(fp, "      // Build map to register info\n");
1129   pmatch->reset();
1130   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1131        inst_name != NULL;
1132        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1133     // If this is not a placeholder
1134     if( ! pmatch->is_placeholder() ) {
1135       // Define temporaries 'inst#', based on self's inst_position
1136       InstructForm *inst = globals[inst_name]->is_instruction();
1137       if( inst != NULL ) {
1138         char inst_prefix[]  = "instXXXX_";
1139         sprintf(inst_prefix, "inst%d_",   inst_position);
1140         char receiver[]     = "instXXXX->";
1141         sprintf(receiver,    "inst%d->", inst_position);
1142         inst->index_temps( fp, globals, inst_prefix, receiver );
1143       }
1144     }
1145   }
1146 }
1147 
1148 // Generate tests for the constraints
1149 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1150   fprintf(fp, "\n");
1151   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
1152 
1153   // Build mapping from num_edges to local variables
1154   build_instruction_index_mapping( fp, globals, pmatch );
1155 
1156   // Build constraint tests
1157   if( pconstraint != NULL ) {
1158     fprintf(fp, "      matches = matches &&");
1159     bool   first_constraint = true;
1160     while( pconstraint != NULL ) {
1161       // indentation and connecting '&&'
1162       const char *indentation = "      ";
1163       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
1164 
1165       // Only have '==' relation implemented
1166       if( strcmp(pconstraint->_relation,"==") != 0 ) {
1167         assert( false, "Unimplemented()" );
1168       }
1169 
1170       // LEFT
1171       int left_index       = pconstraint->_left_inst;
1172       const char *left_op  = pconstraint->_left_op;
1173       // Access info on the instructions whose operands are compared
1174       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1175       assert( inst_left, "Parser should guaranty this is an instruction");
1176       int left_op_base  = inst_left->oper_input_base(globals);
1177       // Access info on the operands being compared
1178       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
1179       if( left_op_index == -1 ) {
1180         left_op_index = inst_left->operand_position(left_op, Component::DEF);
1181         if( left_op_index == -1 ) {
1182           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1183         }
1184       }
1185       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
1186       ComponentList components_left = inst_left->_components;
1187       const char *left_comp_type = components_left.at(left_op_index)->_type;
1188       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1189       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1190 
1191 
1192       // RIGHT
1193       int right_op_index = -1;
1194       int right_index      = pconstraint->_right_inst;
1195       const char *right_op = pconstraint->_right_op;
1196       if( right_index != -1 ) { // Match operand
1197         // Access info on the instructions whose operands are compared
1198         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1199         assert( inst_right, "Parser should guaranty this is an instruction");
1200         int right_op_base = inst_right->oper_input_base(globals);
1201         // Access info on the operands being compared
1202         right_op_index = inst_right->operand_position(right_op, Component::USE);
1203         if( right_op_index == -1 ) {
1204           right_op_index = inst_right->operand_position(right_op, Component::DEF);
1205           if( right_op_index == -1 ) {
1206             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1207           }
1208         }
1209         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1210         ComponentList components_right = inst_right->_components;
1211         const char *right_comp_type = components_right.at(right_op_index)->_type;
1212         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1213         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1214         assert( right_interface_type == left_interface_type, "Both must be same interface");
1215 
1216       } else {                  // Else match register
1217         // assert( false, "should be a register" );
1218       }
1219 
1220       //
1221       // Check for equivalence
1222       //
1223       // fprintf(fp, "phase->eqv( ");
1224       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
1225       //         left_index,  left_op_base,  left_op_index,  left_op,
1226       //         right_index, right_op_base, right_op_index, right_op );
1227       // fprintf(fp, ")");
1228       //
1229       switch( left_interface_type ) {
1230       case Form::register_interface: {
1231         // Check that they are allocated to the same register
1232         // Need parameter for index position if not result operand
1233         char left_reg_index[] = ",instXXXX_idxXXXX";
1234         if( left_op_index != 0 ) {
1235           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1236           // Must have index into operands
1237           sprintf(left_reg_index,",inst%d_idx%d", left_index, left_op_index);
1238         } else {
1239           strcpy(left_reg_index, "");
1240         }
1241         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
1242                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
1243         fprintf(fp, " == ");
1244 
1245         if( right_index != -1 ) {
1246           char right_reg_index[18] = ",instXXXX_idxXXXX";
1247           if( right_op_index != 0 ) {
1248             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1249             // Must have index into operands
1250             sprintf(right_reg_index,",inst%d_idx%d", right_index, right_op_index);
1251           } else {
1252             strcpy(right_reg_index, "");
1253           }
1254           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1255                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1256         } else {
1257           fprintf(fp, "%s_enc", right_op );
1258         }
1259         fprintf(fp,")");
1260         break;
1261       }
1262       case Form::constant_interface: {
1263         // Compare the '->constant()' values
1264         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
1265                 left_index,  left_op_index,  left_index, left_op );
1266         fprintf(fp, " == ");
1267         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1268                 right_index, right_op, right_index, right_op_index );
1269         break;
1270       }
1271       case Form::memory_interface: {
1272         // Compare 'base', 'index', 'scale', and 'disp'
1273         // base
1274         fprintf(fp, "( \n");
1275         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
1276           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1277         fprintf(fp, " == ");
1278         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1279                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1280         // index
1281         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
1282                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1283         fprintf(fp, " == ");
1284         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1285                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1286         // scale
1287         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
1288                 left_index,  left_op_index,  left_index, left_op );
1289         fprintf(fp, " == ");
1290         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1291                 right_index, right_op, right_index, right_op_index );
1292         // disp
1293         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
1294                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1295         fprintf(fp, " == ");
1296         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1297                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1298         fprintf(fp, ") \n");
1299         break;
1300       }
1301       case Form::conditional_interface: {
1302         // Compare the condition code being tested
1303         assert( false, "Unimplemented()" );
1304         break;
1305       }
1306       default: {
1307         assert( false, "ShouldNotReachHere()" );
1308         break;
1309       }
1310       }
1311 
1312       // Advance to next constraint
1313       pconstraint = pconstraint->next();
1314       first_constraint = false;
1315     }
1316 
1317     fprintf(fp, ";\n");
1318   }
1319 }
1320 
1321 // // EXPERIMENTAL -- TEMPORARY code
1322 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1323 //   int op_index = instr->operand_position(op_name, Component::USE);
1324 //   if( op_index == -1 ) {
1325 //     op_index = instr->operand_position(op_name, Component::DEF);
1326 //     if( op_index == -1 ) {
1327 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
1328 //     }
1329 //   }
1330 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1331 //
1332 //   ComponentList components_right = instr->_components;
1333 //   char *right_comp_type = components_right.at(op_index)->_type;
1334 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1335 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
1336 //
1337 //   return;
1338 // }
1339 
1340 // Construct the new sub-tree
1341 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1342   fprintf(fp, "      // IF instructions and constraints matched\n");
1343   fprintf(fp, "      if( matches ) {\n");
1344   fprintf(fp, "        // generate the new sub-tree\n");
1345   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
1346   if( preplace != NULL ) {
1347     // Get the root of the new sub-tree
1348     const char *root_inst = NULL;
1349     preplace->next_instruction(root_inst);
1350     InstructForm *root_form = globals[root_inst]->is_instruction();
1351     assert( root_form != NULL, "Replacement instruction was not previously defined");
1352     fprintf(fp, "        %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
1353 
1354     int         inst_num;
1355     const char *op_name;
1356     int         opnds_index = 0;            // define result operand
1357     // Then install the use-operands for the new sub-tree
1358     // preplace->reset();             // reset breaks iteration
1359     for( preplace->next_operand( inst_num, op_name );
1360          op_name != NULL;
1361          preplace->next_operand( inst_num, op_name ) ) {
1362       InstructForm *inst_form;
1363       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1364       assert( inst_form, "Parser should guaranty this is an instruction");
1365       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1366       if( inst_op_num == NameList::Not_in_list )
1367         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1368       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1369       // find the name of the OperandForm from the local name
1370       const Form *form   = inst_form->_localNames[op_name];
1371       OperandForm  *op_form = form->is_operand();
1372       if( opnds_index == 0 ) {
1373         // Initial setup of new instruction
1374         fprintf(fp, "        // ----- Initial setup -----\n");
1375         //
1376         // Add control edge for this node
1377         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
1378         // Add unmatched edges from root of match tree
1379         int op_base = root_form->oper_input_base(globals);
1380         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1381           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
1382                                           inst_num, unmatched_edge);
1383         }
1384         // If new instruction captures bottom type
1385         if( root_form->captures_bottom_type() ) {
1386           // Get bottom type from instruction whose result we are replacing
1387           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
1388         }
1389         // Define result register and result operand
1390         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
1391         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
1392         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
1393         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num);
1394         fprintf(fp, "        // ----- Done with initial setup -----\n");
1395       } else {
1396         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1397           // Do not have ideal edges for constants after matching
1398           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
1399                   inst_op_num, inst_num, inst_op_num,
1400                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1401           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
1402                   inst_num, inst_op_num );
1403         } else {
1404           fprintf(fp, "        // no ideal edge for constants after matching\n");
1405         }
1406         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n",
1407                 opnds_index, inst_num, inst_op_num );
1408       }
1409       ++opnds_index;
1410     }
1411   }else {
1412     // Replacing subtree with empty-tree
1413     assert( false, "ShouldNotReachHere();");
1414   }
1415 
1416   // Return the new sub-tree
1417   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
1418   fprintf(fp, "        return root;  // return new root;\n");
1419   fprintf(fp, "      }\n");
1420 }
1421 
1422 
1423 // Define the Peephole method for an instruction node
1424 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1425   // Generate Peephole function header
1426   fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
1427   fprintf(fp, "  bool  matches = true;\n");
1428 
1429   // Identify the maximum instruction position,
1430   // generate temporaries that hold current instruction
1431   //
1432   //   MachNode  *inst0 = NULL;
1433   //   ...
1434   //   MachNode  *instMAX = NULL;
1435   //
1436   int max_position = 0;
1437   Peephole *peep;
1438   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1439     PeepMatch *pmatch = peep->match();
1440     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1441     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
1442   }
1443   for( int i = 0; i <= max_position; ++i ) {
1444     if( i == 0 ) {
1445       fprintf(fp, "  MachNode *inst0 = this;\n");
1446     } else {
1447       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
1448     }
1449   }
1450 
1451   // For each peephole rule in architecture description
1452   //   Construct a test for the desired instruction sub-tree
1453   //   then check the constraints
1454   //   If these match, Generate the new subtree
1455   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1456     int         peephole_number = peep->peephole_number();
1457     PeepMatch      *pmatch      = peep->match();
1458     PeepConstraint *pconstraint = peep->constraints();
1459     PeepReplace    *preplace    = peep->replacement();
1460 
1461     // Root of this peephole is the current MachNode
1462     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1463             "root of PeepMatch does not match instruction");
1464 
1465     // Make each peephole rule individually selectable
1466     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1467     fprintf(fp, "    matches = true;\n");
1468     // Scan the peepmatch and output a test for each instruction
1469     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1470 
1471     // Check constraints and build replacement inside scope
1472     fprintf(fp, "    // If instruction subtree matches\n");
1473     fprintf(fp, "    if( matches ) {\n");
1474 
1475     // Generate tests for the constraints
1476     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1477 
1478     // Construct the new sub-tree
1479     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1480 
1481     // End of scope for this peephole's constraints
1482     fprintf(fp, "    }\n");
1483     // Closing brace '}' to make each peephole rule individually selectable
1484     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
1485     fprintf(fp, "\n");
1486   }
1487 
1488   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
1489   fprintf(fp, "}\n");
1490   fprintf(fp, "\n");
1491 }
1492 
1493 // Define the Expand method for an instruction node
1494 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1495   unsigned      cnt  = 0;          // Count nodes we have expand into
1496   unsigned      i;
1497 
1498   // Generate Expand function header
1499   fprintf(fp,"MachNode *%sNode::Expand(State *state, Node_List &proj_list) {\n", node->_ident);
1500   fprintf(fp,"Compile* C = Compile::current();\n");
1501   // Generate expand code
1502   if( node->expands() ) {
1503     const char   *opid;
1504     int           new_pos, exp_pos;
1505     const char   *new_id   = NULL;
1506     const Form   *frm      = NULL;
1507     InstructForm *new_inst = NULL;
1508     OperandForm  *new_oper = NULL;
1509     unsigned      numo     = node->num_opnds() +
1510                                 node->_exprule->_newopers.count();
1511 
1512     // If necessary, generate any operands created in expand rule
1513     if (node->_exprule->_newopers.count()) {
1514       for(node->_exprule->_newopers.reset();
1515           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1516         frm = node->_localNames[new_id];
1517         assert(frm, "Invalid entry in new operands list of expand rule");
1518         new_oper = frm->is_operand();
1519         char *tmp = (char *)node->_exprule->_newopconst[new_id];
1520         if (tmp == NULL) {
1521           fprintf(fp,"  MachOper *op%d = new (C) %sOper();\n",
1522                   cnt, new_oper->_ident);
1523         }
1524         else {
1525           fprintf(fp,"  MachOper *op%d = new (C) %sOper(%s);\n",
1526                   cnt, new_oper->_ident, tmp);
1527         }
1528       }
1529     }
1530     cnt = 0;
1531     // Generate the temps to use for DAG building
1532     for(i = 0; i < numo; i++) {
1533       if (i < node->num_opnds()) {
1534         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
1535       }
1536       else {
1537         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
1538       }
1539     }
1540     // Build mapping from num_edges to local variables
1541     fprintf(fp,"  unsigned num0 = 0;\n");
1542     for( i = 1; i < node->num_opnds(); i++ ) {
1543       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1544     }
1545 
1546     // Build a mapping from operand index to input edges
1547     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1548 
1549     // The order in which inputs are added to a node is very
1550     // strange.  Store nodes get a memory input before Expand is
1551     // called and all other nodes get it afterwards so
1552     // oper_input_base is wrong during expansion.  This code adjusts
1553     // is so that expansion will work correctly.
1554     bool missing_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames) &&
1555                                node->is_ideal_store() == Form::none;
1556     if (missing_memory_edge) {
1557       fprintf(fp,"  idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
1558     }
1559 
1560     for( i = 0; i < node->num_opnds(); i++ ) {
1561       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1562               i+1,i,i);
1563     }
1564 
1565     // Declare variable to hold root of expansion
1566     fprintf(fp,"  MachNode *result = NULL;\n");
1567 
1568     // Iterate over the instructions 'node' expands into
1569     ExpandRule  *expand       = node->_exprule;
1570     NameAndList *expand_instr = NULL;
1571     for(expand->reset_instructions();
1572         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1573       new_id = expand_instr->name();
1574 
1575       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1576       if (expand_instruction->has_temps()) {
1577         globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
1578                              node->_ident, new_id);
1579       }
1580 
1581       // Build the node for the instruction
1582       fprintf(fp,"\n  %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
1583       // Add control edge for this node
1584       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
1585       // Build the operand for the value this node defines.
1586       Form *form = (Form*)_globalNames[new_id];
1587       assert( form, "'new_id' must be a defined form name");
1588       // Grab the InstructForm for the new instruction
1589       new_inst = form->is_instruction();
1590       assert( new_inst, "'new_id' must be an instruction name");
1591       if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
1592         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
1593         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
1594       }
1595 
1596       if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
1597         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
1598       }
1599 
1600       const char *resultOper = new_inst->reduce_result();
1601       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
1602               cnt, machOperEnum(resultOper));
1603 
1604       // get the formal operand NameList
1605       NameList *formal_lst = &new_inst->_parameters;
1606       formal_lst->reset();
1607 
1608       // Handle any memory operand
1609       int memory_operand = new_inst->memory_operand(_globalNames);
1610       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1611         int node_mem_op = node->memory_operand(_globalNames);
1612         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1613                 "expand rule member needs memory but top-level inst doesn't have any" );
1614         if (!missing_memory_edge) {
1615           // Copy memory edge
1616           fprintf(fp,"  n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1617         }
1618       }
1619 
1620       // Iterate over the new instruction's operands
1621       int prev_pos = -1;
1622       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1623         // Use 'parameter' at current position in list of new instruction's formals
1624         // instead of 'opid' when looking up info internal to new_inst
1625         const char *parameter = formal_lst->iter();
1626         // Check for an operand which is created in the expand rule
1627         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1628           new_pos = new_inst->operand_position(parameter,Component::USE);
1629           exp_pos += node->num_opnds();
1630           // If there is no use of the created operand, just skip it
1631           if (new_pos != -1) {
1632             //Copy the operand from the original made above
1633             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
1634                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
1635             // Check for who defines this operand & add edge if needed
1636             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
1637             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
1638           }
1639         }
1640         else {
1641           // Use operand name to get an index into instruction component list
1642           // ins = (InstructForm *) _globalNames[new_id];
1643           exp_pos = node->operand_position_format(opid);
1644           assert(exp_pos != -1, "Bad expand rule");
1645           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
1646             // For the add_req calls below to work correctly they need
1647             // to added in the same order that a match would add them.
1648             // This means that they would need to be in the order of
1649             // the components list instead of the formal parameters.
1650             // This is a sort of hidden invariant that previously
1651             // wasn't checked and could lead to incorrectly
1652             // constructed nodes.
1653             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
1654                        node->_ident, new_inst->_ident);
1655           }
1656           prev_pos = exp_pos;
1657 
1658           new_pos = new_inst->operand_position(parameter,Component::USE);
1659           if (new_pos != -1) {
1660             // Copy the operand from the ExpandNode to the new node
1661             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1662                     cnt, new_pos, exp_pos, opid);
1663             // For each operand add appropriate input edges by looking at tmp's
1664             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
1665             // Grab corresponding edges from ExpandNode and insert them here
1666             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1667             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1668             fprintf(fp,"    }\n");
1669             fprintf(fp,"  }\n");
1670             // This value is generated by one of the new instructions
1671             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1672           }
1673         }
1674 
1675         // Update the DAG tmp's for values defined by this instruction
1676         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1677         Effect *eform = (Effect *)new_inst->_effects[parameter];
1678         // If this operand is a definition in either an effects rule
1679         // or a match rule
1680         if((eform) && (is_def(eform->_use_def))) {
1681           // Update the temp associated with this operand
1682           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1683         }
1684         else if( new_def_pos != -1 ) {
1685           // Instruction defines a value but user did not declare it
1686           // in the 'effect' clause
1687           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1688         }
1689       } // done iterating over a new instruction's operands
1690 
1691       // Invoke Expand() for the newly created instruction.
1692       fprintf(fp,"  result = n%d->Expand( state, proj_list );\n", cnt);
1693       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1694     } // done iterating over new instructions
1695     fprintf(fp,"\n");
1696   } // done generating expand rule
1697 
1698   else if( node->_matrule != NULL ) {
1699     // Remove duplicated operands and inputs which use the same name.
1700     // Seach through match operands for the same name usage.
1701     uint cur_num_opnds = node->num_opnds();
1702     if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
1703       Component *comp = NULL;
1704       // Build mapping from num_edges to local variables
1705       fprintf(fp,"  unsigned num0 = 0;\n");
1706       for( i = 1; i < cur_num_opnds; i++ ) {
1707         fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1708       }
1709       // Build a mapping from operand index to input edges
1710       fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1711       for( i = 0; i < cur_num_opnds; i++ ) {
1712         fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1713                 i+1,i,i);
1714       }
1715 
1716       uint new_num_opnds = 1;
1717       node->_components.reset();
1718       // Skip first unique operands.
1719       for( i = 1; i < cur_num_opnds; i++ ) {
1720         comp = node->_components.iter();
1721         if( (int)i != node->unique_opnds_idx(i) ) {
1722           break;
1723         }
1724         new_num_opnds++;
1725       }
1726       // Replace not unique operands with next unique operands.
1727       for( ; i < cur_num_opnds; i++ ) {
1728         comp = node->_components.iter();
1729         int j = node->unique_opnds_idx(i);
1730         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1731         if( j != node->unique_opnds_idx(j) ) {
1732           fprintf(fp,"  set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1733                   new_num_opnds, i, comp->_name);
1734           // delete not unique edges here
1735           fprintf(fp,"  for(unsigned i = 0; i < num%d; i++) {\n", i);
1736           fprintf(fp,"    set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1737           fprintf(fp,"  }\n");
1738           fprintf(fp,"  num%d = num%d;\n", new_num_opnds, i);
1739           fprintf(fp,"  idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1740           new_num_opnds++;
1741         }
1742       }
1743       // delete the rest of edges
1744       fprintf(fp,"  for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1745       fprintf(fp,"    del_req(i);\n");
1746       fprintf(fp,"  }\n");
1747       fprintf(fp,"  _num_opnds = %d;\n", new_num_opnds);
1748     }
1749   }
1750 
1751 
1752   // Generate projections for instruction's additional DEFs and KILLs
1753   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1754     // Get string representing the MachNode that projections point at
1755     const char *machNode = "this";
1756     // Generate the projections
1757     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
1758 
1759     // Examine each component to see if it is a DEF or KILL
1760     node->_components.reset();
1761     // Skip the first component, if already handled as (SET dst (...))
1762     Component *comp = NULL;
1763     // For kills, the choice of projection numbers is arbitrary
1764     int proj_no = 1;
1765     bool declared_def  = false;
1766     bool declared_kill = false;
1767 
1768     while( (comp = node->_components.iter()) != NULL ) {
1769       // Lookup register class associated with operand type
1770       Form        *form = (Form*)_globalNames[comp->_type];
1771       assert( form, "component type must be a defined form");
1772       OperandForm *op   = form->is_operand();
1773 
1774       if (comp->is(Component::TEMP)) {
1775         fprintf(fp, "  // TEMP %s\n", comp->_name);
1776         if (!declared_def) {
1777           // Define the variable "def" to hold new MachProjNodes
1778           fprintf(fp, "  MachTempNode *def;\n");
1779           declared_def = true;
1780         }
1781         if (op && op->_interface && op->_interface->is_RegInterface()) {
1782           fprintf(fp,"  def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
1783                   machOperEnum(op->_ident));
1784           fprintf(fp,"  add_req(def);\n");
1785           int idx  = node->operand_position_format(comp->_name);
1786           fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
1787                   idx, machOperEnum(op->_ident));
1788         } else {
1789           assert(false, "can't have temps which aren't registers");
1790         }
1791       } else if (comp->isa(Component::KILL)) {
1792         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
1793 
1794         if (!declared_kill) {
1795           // Define the variable "kill" to hold new MachProjNodes
1796           fprintf(fp, "  MachProjNode *kill;\n");
1797           declared_kill = true;
1798         }
1799 
1800         assert( op, "Support additional KILLS for base operands");
1801         const char *regmask    = reg_mask(*op);
1802         const char *ideal_type = op->ideal_type(_globalNames, _register);
1803 
1804         if (!op->is_bound_register()) {
1805           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1806                      node->_ident, comp->_type, comp->_name);
1807         }
1808 
1809         fprintf(fp,"  kill = ");
1810         fprintf(fp,"new (C, 1) MachProjNode( %s, %d, (%s), Op_%s );\n",
1811                 machNode, proj_no++, regmask, ideal_type);
1812         fprintf(fp,"  proj_list.push(kill);\n");
1813       }
1814     }
1815   }
1816 
1817   fprintf(fp,"\n");
1818   if( node->expands() ) {
1819     fprintf(fp,"  return result;\n");
1820   } else {
1821     fprintf(fp,"  return this;\n");
1822   }
1823   fprintf(fp,"}\n");
1824   fprintf(fp,"\n");
1825 }
1826 
1827 
1828 //------------------------------Emit Routines----------------------------------
1829 // Special classes and routines for defining node emit routines which output
1830 // target specific instruction object encodings.
1831 // Define the ___Node::emit() routine
1832 //
1833 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1834 // (2)   // ...  encoding defined by user
1835 // (3)
1836 // (4) }
1837 //
1838 
1839 class DefineEmitState {
1840 private:
1841   enum reloc_format { RELOC_NONE        = -1,
1842                       RELOC_IMMEDIATE   =  0,
1843                       RELOC_DISP        =  1,
1844                       RELOC_CALL_DISP   =  2 };
1845   enum literal_status{ LITERAL_NOT_SEEN  = 0,
1846                        LITERAL_SEEN      = 1,
1847                        LITERAL_ACCESSED  = 2,
1848                        LITERAL_OUTPUT    = 3 };
1849   // Temporaries that describe current operand
1850   bool          _cleared;
1851   OpClassForm  *_opclass;
1852   OperandForm  *_operand;
1853   int           _operand_idx;
1854   const char   *_local_name;
1855   const char   *_operand_name;
1856   bool          _doing_disp;
1857   bool          _doing_constant;
1858   Form::DataType _constant_type;
1859   DefineEmitState::literal_status _constant_status;
1860   DefineEmitState::literal_status _reg_status;
1861   bool          _doing_emit8;
1862   bool          _doing_emit_d32;
1863   bool          _doing_emit_d16;
1864   bool          _doing_emit_hi;
1865   bool          _doing_emit_lo;
1866   bool          _may_reloc;
1867   bool          _must_reloc;
1868   reloc_format  _reloc_form;
1869   const char *  _reloc_type;
1870   bool          _processing_noninput;
1871 
1872   NameList      _strings_to_emit;
1873 
1874   // Stable state, set by constructor
1875   ArchDesc     &_AD;
1876   FILE         *_fp;
1877   EncClass     &_encoding;
1878   InsEncode    &_ins_encode;
1879   InstructForm &_inst;
1880 
1881 public:
1882   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1883                   InsEncode &ins_encode, InstructForm &inst)
1884     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1885       clear();
1886   }
1887 
1888   void clear() {
1889     _cleared       = true;
1890     _opclass       = NULL;
1891     _operand       = NULL;
1892     _operand_idx   = 0;
1893     _local_name    = "";
1894     _operand_name  = "";
1895     _doing_disp    = false;
1896     _doing_constant= false;
1897     _constant_type = Form::none;
1898     _constant_status = LITERAL_NOT_SEEN;
1899     _reg_status      = LITERAL_NOT_SEEN;
1900     _doing_emit8   = false;
1901     _doing_emit_d32= false;
1902     _doing_emit_d16= false;
1903     _doing_emit_hi = false;
1904     _doing_emit_lo = false;
1905     _may_reloc     = false;
1906     _must_reloc    = false;
1907     _reloc_form    = RELOC_NONE;
1908     _reloc_type    = AdlcVMDeps::none_reloc_type();
1909     _strings_to_emit.clear();
1910   }
1911 
1912   // Track necessary state when identifying a replacement variable
1913   void update_state(const char *rep_var) {
1914     // A replacement variable or one of its subfields
1915     // Obtain replacement variable from list
1916     if ( (*rep_var) != '$' ) {
1917       // A replacement variable, '$' prefix
1918       // check_rep_var( rep_var );
1919       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1920         // No state needed.
1921         assert( _opclass == NULL,
1922                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
1923       } else {
1924         // Lookup its position in parameter list
1925         int   param_no  = _encoding.rep_var_index(rep_var);
1926         if ( param_no == -1 ) {
1927           _AD.syntax_err( _encoding._linenum,
1928                           "Replacement variable %s not found in enc_class %s.\n",
1929                           rep_var, _encoding._name);
1930         }
1931 
1932         // Lookup the corresponding ins_encode parameter
1933         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1934         if (inst_rep_var == NULL) {
1935           _AD.syntax_err( _ins_encode._linenum,
1936                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
1937                           rep_var, _encoding._name, _inst._ident);
1938         }
1939 
1940         // Check if instruction's actual parameter is a local name in the instruction
1941         const Form  *local     = _inst._localNames[inst_rep_var];
1942         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
1943         // Note: assert removed to allow constant and symbolic parameters
1944         // assert( opc, "replacement variable was not found in local names");
1945         // Lookup the index position iff the replacement variable is a localName
1946         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1947 
1948         if ( idx != -1 ) {
1949           // This is a local in the instruction
1950           // Update local state info.
1951           _opclass        = opc;
1952           _operand_idx    = idx;
1953           _local_name     = rep_var;
1954           _operand_name   = inst_rep_var;
1955 
1956           // !!!!!
1957           // Do not support consecutive operands.
1958           assert( _operand == NULL, "Unimplemented()");
1959           _operand = opc->is_operand();
1960         }
1961         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
1962           // Instruction provided a constant expression
1963           // Check later that encoding specifies $$$constant to resolve as constant
1964           _constant_status   = LITERAL_SEEN;
1965         }
1966         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
1967           // Instruction provided an opcode: "primary", "secondary", "tertiary"
1968           // Check later that encoding specifies $$$constant to resolve as constant
1969           _constant_status   = LITERAL_SEEN;
1970         }
1971         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
1972           // Instruction provided a literal register name for this parameter
1973           // Check that encoding specifies $$$reg to resolve.as register.
1974           _reg_status        = LITERAL_SEEN;
1975         }
1976         else {
1977           // Check for unimplemented functionality before hard failure
1978           assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
1979           assert( false, "ShouldNotReachHere()");
1980         }
1981       } // done checking which operand this is.
1982     } else {
1983       //
1984       // A subfield variable, '$$' prefix
1985       // Check for fields that may require relocation information.
1986       // Then check that literal register parameters are accessed with 'reg' or 'constant'
1987       //
1988       if ( strcmp(rep_var,"$disp") == 0 ) {
1989         _doing_disp = true;
1990         assert( _opclass, "Must use operand or operand class before '$disp'");
1991         if( _operand == NULL ) {
1992           // Only have an operand class, generate run-time check for relocation
1993           _may_reloc    = true;
1994           _reloc_form   = RELOC_DISP;
1995           _reloc_type   = AdlcVMDeps::oop_reloc_type();
1996         } else {
1997           // Do precise check on operand: is it a ConP or not
1998           //
1999           // Check interface for value of displacement
2000           assert( ( _operand->_interface != NULL ),
2001                   "$disp can only follow memory interface operand");
2002           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
2003           assert( mem_interface != NULL,
2004                   "$disp can only follow memory interface operand");
2005           const char *disp = mem_interface->_disp;
2006 
2007           if( disp != NULL && (*disp == '$') ) {
2008             // MemInterface::disp contains a replacement variable,
2009             // Check if this matches a ConP
2010             //
2011             // Lookup replacement variable, in operand's component list
2012             const char *rep_var_name = disp + 1; // Skip '$'
2013             const Component *comp = _operand->_components.search(rep_var_name);
2014             assert( comp != NULL,"Replacement variable not found in components");
2015             const char      *type = comp->_type;
2016             // Lookup operand form for replacement variable's type
2017             const Form *form = _AD.globalNames()[type];
2018             assert( form != NULL, "Replacement variable's type not found");
2019             OperandForm *op = form->is_operand();
2020             assert( op, "Attempting to emit a non-register or non-constant");
2021             // Check if this is a constant
2022             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
2023               // Check which constant this name maps to: _c0, _c1, ..., _cn
2024               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
2025               // assert( idx != -1, "Constant component not found in operand");
2026               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2027               if ( dtype == Form::idealP ) {
2028                 _may_reloc    = true;
2029                 // No longer true that idealP is always an oop
2030                 _reloc_form   = RELOC_DISP;
2031                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
2032               }
2033             }
2034 
2035             else if( _operand->is_user_name_for_sReg() != Form::none ) {
2036               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2037               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2038               _may_reloc   = false;
2039             } else {
2040               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2041             }
2042           }
2043         } // finished with precise check of operand for relocation.
2044       } // finished with subfield variable
2045       else if ( strcmp(rep_var,"$constant") == 0 ) {
2046         _doing_constant = true;
2047         if ( _constant_status == LITERAL_NOT_SEEN ) {
2048           // Check operand for type of constant
2049           assert( _operand, "Must use operand before '$$constant'");
2050           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2051           _constant_type = dtype;
2052           if ( dtype == Form::idealP ) {
2053             _may_reloc    = true;
2054             // No longer true that idealP is always an oop
2055             // // _must_reloc   = true;
2056             _reloc_form   = RELOC_IMMEDIATE;
2057             _reloc_type   = AdlcVMDeps::oop_reloc_type();
2058           } else {
2059             // No relocation information needed
2060           }
2061         } else {
2062           // User-provided literals may not require relocation information !!!!!
2063           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2064         }
2065       }
2066       else if ( strcmp(rep_var,"$label") == 0 ) {
2067         // Calls containing labels require relocation
2068         if ( _inst.is_ideal_call() )  {
2069           _may_reloc    = true;
2070           // !!!!! !!!!!
2071           _reloc_type   = AdlcVMDeps::none_reloc_type();
2072         }
2073       }
2074 
2075       // literal register parameter must be accessed as a 'reg' field.
2076       if ( _reg_status != LITERAL_NOT_SEEN ) {
2077         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2078         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2079           _reg_status  = LITERAL_ACCESSED;
2080         } else {
2081           assert( false, "invalid access to literal register parameter");
2082         }
2083       }
2084       // literal constant parameters must be accessed as a 'constant' field
2085       if ( _constant_status != LITERAL_NOT_SEEN ) {
2086         assert( _constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2087         if( strcmp(rep_var,"$constant") == 0 ) {
2088           _constant_status  = LITERAL_ACCESSED;
2089         } else {
2090           assert( false, "invalid access to literal constant parameter");
2091         }
2092       }
2093     } // end replacement and/or subfield
2094 
2095   }
2096 
2097   void add_rep_var(const char *rep_var) {
2098     // Handle subfield and replacement variables.
2099     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2100       // Check for emit prefix, '$$emit32'
2101       assert( _cleared, "Can not nest $$$emit32");
2102       if ( strcmp(rep_var,"$$emit32") == 0 ) {
2103         _doing_emit_d32 = true;
2104       }
2105       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2106         _doing_emit_d16 = true;
2107       }
2108       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2109         _doing_emit_hi  = true;
2110       }
2111       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2112         _doing_emit_lo  = true;
2113       }
2114       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2115         _doing_emit8    = true;
2116       }
2117       else {
2118         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2119         assert( false, "fatal();");
2120       }
2121     }
2122     else {
2123       // Update state for replacement variables
2124       update_state( rep_var );
2125       _strings_to_emit.addName(rep_var);
2126     }
2127     _cleared  = false;
2128   }
2129 
2130   void emit_replacement() {
2131     // A replacement variable or one of its subfields
2132     // Obtain replacement variable from list
2133     // const char *ec_rep_var = encoding->_rep_vars.iter();
2134     const char *rep_var;
2135     _strings_to_emit.reset();
2136     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2137 
2138       if ( (*rep_var) == '$' ) {
2139         // A subfield variable, '$$' prefix
2140         emit_field( rep_var );
2141       } else {
2142         if (_strings_to_emit.peek() != NULL &&
2143             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
2144           fprintf(_fp, "Address::make_raw(");
2145 
2146           emit_rep_var( rep_var );
2147           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
2148 
2149           _reg_status = LITERAL_ACCESSED;
2150           emit_rep_var( rep_var );
2151           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
2152 
2153           _reg_status = LITERAL_ACCESSED;
2154           emit_rep_var( rep_var );
2155           fprintf(_fp,"->scale(), ");
2156 
2157           _reg_status = LITERAL_ACCESSED;
2158           emit_rep_var( rep_var );
2159           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2160           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2161             fprintf(_fp,"->disp(ra_,this,0), ");
2162           } else {
2163             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
2164           }
2165 
2166           _reg_status = LITERAL_ACCESSED;
2167           emit_rep_var( rep_var );
2168           fprintf(_fp,"->disp_is_oop())");
2169 
2170           // skip trailing $Address
2171           _strings_to_emit.iter();
2172         } else {
2173           // A replacement variable, '$' prefix
2174           const char* next = _strings_to_emit.peek();
2175           const char* next2 = _strings_to_emit.peek(2);
2176           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
2177               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
2178             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
2179             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
2180             fprintf(_fp, "as_Register(");
2181             // emit the operand reference
2182             emit_rep_var( rep_var );
2183             rep_var = _strings_to_emit.iter();
2184             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
2185             // handle base or index
2186             emit_field(rep_var);
2187             rep_var = _strings_to_emit.iter();
2188             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
2189             // close up the parens
2190             fprintf(_fp, ")");
2191           } else {
2192             emit_rep_var( rep_var );
2193           }
2194         }
2195       } // end replacement and/or subfield
2196     }
2197   }
2198 
2199   void emit_reloc_type(const char* type) {
2200     fprintf(_fp, "%s", type)
2201       ;
2202   }
2203 
2204 
2205   void gen_emit_x_reloc(const char *d32_lo_hi ) {
2206     fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_lo_hi );
2207     emit_replacement();             fprintf(_fp,", ");
2208     emit_reloc_type( _reloc_type ); fprintf(_fp,", ");
2209     fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2210   }
2211 
2212 
2213   void emit() {
2214     //
2215     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2216     //
2217     // Emit the function name when generating an emit function
2218     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2219       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2220       // In general, relocatable isn't known at compiler compile time.
2221       // Check results of prior scan
2222       if ( ! _may_reloc ) {
2223         // Definitely don't need relocation information
2224         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2225         emit_replacement(); fprintf(_fp, ")");
2226       }
2227       else if ( _must_reloc ) {
2228         // Must emit relocation information
2229         gen_emit_x_reloc( d32_hi_lo );
2230       }
2231       else {
2232         // Emit RUNTIME CHECK to see if value needs relocation info
2233         // If emitting a relocatable address, use 'emit_d32_reloc'
2234         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2235         assert( (_doing_disp || _doing_constant)
2236                 && !(_doing_disp && _doing_constant),
2237                 "Must be emitting either a displacement or a constant");
2238         fprintf(_fp,"\n");
2239         fprintf(_fp,"if ( opnd_array(%d)->%s_is_oop() ) {\n",
2240                 _operand_idx, disp_constant);
2241         fprintf(_fp,"  ");
2242         gen_emit_x_reloc( d32_hi_lo ); fprintf(_fp,"\n");
2243         fprintf(_fp,"} else {\n");
2244         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
2245         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2246       }
2247     }
2248     else if ( _doing_emit_d16 ) {
2249       // Relocation of 16-bit values is not supported
2250       fprintf(_fp,"emit_d16(cbuf, ");
2251       emit_replacement(); fprintf(_fp, ")");
2252       // No relocation done for 16-bit values
2253     }
2254     else if ( _doing_emit8 ) {
2255       // Relocation of 8-bit values is not supported
2256       fprintf(_fp,"emit_d8(cbuf, ");
2257       emit_replacement(); fprintf(_fp, ")");
2258       // No relocation done for 8-bit values
2259     }
2260     else {
2261       // Not an emit# command, just output the replacement string.
2262       emit_replacement();
2263     }
2264 
2265     // Get ready for next state collection.
2266     clear();
2267   }
2268 
2269 private:
2270 
2271   // recognizes names which represent MacroAssembler register types
2272   // and return the conversion function to build them from OptoReg
2273   const char* reg_conversion(const char* rep_var) {
2274     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
2275     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2276 #if defined(IA32) || defined(AMD64)
2277     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
2278 #endif
2279     return NULL;
2280   }
2281 
2282   void emit_field(const char *rep_var) {
2283     const char* reg_convert = reg_conversion(rep_var);
2284 
2285     // A subfield variable, '$$subfield'
2286     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2287       // $reg form or the $Register MacroAssembler type conversions
2288       assert( _operand_idx != -1,
2289               "Must use this subfield after operand");
2290       if( _reg_status == LITERAL_NOT_SEEN ) {
2291         if (_processing_noninput) {
2292           const Form  *local     = _inst._localNames[_operand_name];
2293           OperandForm *oper      = local->is_operand();
2294           const RegDef* first = oper->get_RegClass()->find_first_elem();
2295           if (reg_convert != NULL) {
2296             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2297           } else {
2298             fprintf(_fp, "%s_enc", first->_regname);
2299           }
2300         } else {
2301           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2302           // Add parameter for index position, if not result operand
2303           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2304           fprintf(_fp,")");
2305         }
2306       } else {
2307         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2308         // Register literal has already been sent to output file, nothing more needed
2309       }
2310     }
2311     else if ( strcmp(rep_var,"$base") == 0 ) {
2312       assert( _operand_idx != -1,
2313               "Must use this subfield after operand");
2314       assert( ! _may_reloc, "UnImplemented()");
2315       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2316     }
2317     else if ( strcmp(rep_var,"$index") == 0 ) {
2318       assert( _operand_idx != -1,
2319               "Must use this subfield after operand");
2320       assert( ! _may_reloc, "UnImplemented()");
2321       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2322     }
2323     else if ( strcmp(rep_var,"$scale") == 0 ) {
2324       assert( ! _may_reloc, "UnImplemented()");
2325       fprintf(_fp,"->scale()");
2326     }
2327     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2328       assert( ! _may_reloc, "UnImplemented()");
2329       fprintf(_fp,"->ccode()");
2330     }
2331     else if ( strcmp(rep_var,"$constant") == 0 ) {
2332       if( _constant_status == LITERAL_NOT_SEEN ) {
2333         if ( _constant_type == Form::idealD ) {
2334           fprintf(_fp,"->constantD()");
2335         } else if ( _constant_type == Form::idealF ) {
2336           fprintf(_fp,"->constantF()");
2337         } else if ( _constant_type == Form::idealL ) {
2338           fprintf(_fp,"->constantL()");
2339         } else {
2340           fprintf(_fp,"->constant()");
2341         }
2342       } else {
2343         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2344         // Cosntant literal has already been sent to output file, nothing more needed
2345       }
2346     }
2347     else if ( strcmp(rep_var,"$disp") == 0 ) {
2348       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2349       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2350         fprintf(_fp,"->disp(ra_,this,0)");
2351       } else {
2352         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2353       }
2354     }
2355     else if ( strcmp(rep_var,"$label") == 0 ) {
2356       fprintf(_fp,"->label()");
2357     }
2358     else if ( strcmp(rep_var,"$method") == 0 ) {
2359       fprintf(_fp,"->method()");
2360     }
2361     else {
2362       printf("emit_field: %s\n",rep_var);
2363       assert( false, "UnImplemented()");
2364     }
2365   }
2366 
2367 
2368   void emit_rep_var(const char *rep_var) {
2369     _processing_noninput = false;
2370     // A replacement variable, originally '$'
2371     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2372       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
2373         // Missing opcode
2374         _AD.syntax_err( _inst._linenum,
2375                         "Missing $%s opcode definition in %s, used by encoding %s\n",
2376                         rep_var, _inst._ident, _encoding._name);
2377       }
2378     }
2379     else {
2380       // Lookup its position in parameter list
2381       int   param_no  = _encoding.rep_var_index(rep_var);
2382       if ( param_no == -1 ) {
2383         _AD.syntax_err( _encoding._linenum,
2384                         "Replacement variable %s not found in enc_class %s.\n",
2385                         rep_var, _encoding._name);
2386       }
2387       // Lookup the corresponding ins_encode parameter
2388       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2389 
2390       // Check if instruction's actual parameter is a local name in the instruction
2391       const Form  *local     = _inst._localNames[inst_rep_var];
2392       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
2393       // Note: assert removed to allow constant and symbolic parameters
2394       // assert( opc, "replacement variable was not found in local names");
2395       // Lookup the index position iff the replacement variable is a localName
2396       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2397       if( idx != -1 ) {
2398         if (_inst.is_noninput_operand(idx)) {
2399           // This operand isn't a normal input so printing it is done
2400           // specially.
2401           _processing_noninput = true;
2402         } else {
2403           // Output the emit code for this operand
2404           fprintf(_fp,"opnd_array(%d)",idx);
2405         }
2406         assert( _operand == opc->is_operand(),
2407                 "Previous emit $operand does not match current");
2408       }
2409       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2410         // else check if it is a constant expression
2411         // Removed following assert to allow primitive C types as arguments to encodings
2412         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2413         fprintf(_fp,"(%s)", inst_rep_var);
2414         _constant_status = LITERAL_OUTPUT;
2415       }
2416       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2417         // else check if "primary", "secondary", "tertiary"
2418         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2419         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
2420           // Missing opcode
2421           _AD.syntax_err( _inst._linenum,
2422                           "Missing $%s opcode definition in %s\n",
2423                           rep_var, _inst._ident);
2424 
2425         }
2426         _constant_status = LITERAL_OUTPUT;
2427       }
2428       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2429         // Instruction provided a literal register name for this parameter
2430         // Check that encoding specifies $$$reg to resolve.as register.
2431         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2432         fprintf(_fp,"(%s_enc)", inst_rep_var);
2433         _reg_status = LITERAL_OUTPUT;
2434       }
2435       else {
2436         // Check for unimplemented functionality before hard failure
2437         assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2438         assert( false, "ShouldNotReachHere()");
2439       }
2440       // all done
2441     }
2442   }
2443 
2444 };  // end class DefineEmitState
2445 
2446 
2447 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2448 
2449   //(1)
2450   // Output instruction's emit prototype
2451   fprintf(fp,"uint  %sNode::size(PhaseRegAlloc *ra_) const {\n",
2452           inst._ident);
2453 
2454   fprintf(fp, " assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
2455 
2456   //(2)
2457   // Print the size
2458   fprintf(fp, " return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2459 
2460   // (3) and (4)
2461   fprintf(fp,"}\n");
2462 }
2463 
2464 void ArchDesc::defineEmit(FILE *fp, InstructForm &inst) {
2465   InsEncode *ins_encode = inst._insencode;
2466 
2467   // (1)
2468   // Output instruction's emit prototype
2469   fprintf(fp,"void  %sNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {\n",
2470           inst._ident);
2471 
2472   // If user did not define an encode section,
2473   // provide stub that does not generate any machine code.
2474   if( (_encode == NULL) || (ins_encode == NULL) ) {
2475     fprintf(fp, "  // User did not define an encode section.\n");
2476     fprintf(fp,"}\n");
2477     return;
2478   }
2479 
2480   // Save current instruction's starting address (helps with relocation).
2481   fprintf( fp, "    cbuf.set_inst_mark();\n");
2482 
2483   // // // idx0 is only needed for syntactic purposes and only by "storeSSI"
2484   // fprintf( fp, "    unsigned idx0  = 0;\n");
2485 
2486   // Output each operand's offset into the array of registers.
2487   inst.index_temps( fp, _globalNames );
2488 
2489   // Output this instruction's encodings
2490   const char *ec_name;
2491   bool        user_defined = false;
2492   ins_encode->reset();
2493   while ( (ec_name = ins_encode->encode_class_iter()) != NULL ) {
2494     fprintf(fp, "  {");
2495     // Output user-defined encoding
2496     user_defined           = true;
2497 
2498     const char *ec_code    = NULL;
2499     const char *ec_rep_var = NULL;
2500     EncClass   *encoding   = _encode->encClass(ec_name);
2501     if (encoding == NULL) {
2502       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2503       abort();
2504     }
2505 
2506     if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
2507       globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2508                            inst._ident, ins_encode->current_encoding_num_args(),
2509                            ec_name, encoding->num_args());
2510     }
2511 
2512     DefineEmitState  pending(fp, *this, *encoding, *ins_encode, inst );
2513     encoding->_code.reset();
2514     encoding->_rep_vars.reset();
2515     // Process list of user-defined strings,
2516     // and occurrences of replacement variables.
2517     // Replacement Vars are pushed into a list and then output
2518     while ( (ec_code = encoding->_code.iter()) != NULL ) {
2519       if ( ! encoding->_code.is_signal( ec_code ) ) {
2520         // Emit pending code
2521         pending.emit();
2522         pending.clear();
2523         // Emit this code section
2524         fprintf(fp,"%s", ec_code);
2525       } else {
2526         // A replacement variable or one of its subfields
2527         // Obtain replacement variable from list
2528         ec_rep_var  = encoding->_rep_vars.iter();
2529         pending.add_rep_var(ec_rep_var);
2530       }
2531     }
2532     // Emit pending code
2533     pending.emit();
2534     pending.clear();
2535     fprintf(fp, "}\n");
2536   } // end while instruction's encodings
2537 
2538   // Check if user stated which encoding to user
2539   if ( user_defined == false ) {
2540     fprintf(fp, "  // User did not define which encode class to use.\n");
2541   }
2542 
2543   // (3) and (4)
2544   fprintf(fp,"}\n");
2545 }
2546 
2547 // ---------------------------------------------------------------------------
2548 //--------Utilities to build MachOper and MachNode derived Classes------------
2549 // ---------------------------------------------------------------------------
2550 
2551 //------------------------------Utilities to build Operand Classes------------
2552 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2553   uint num_edges = oper.num_edges(globals);
2554   if( num_edges != 0 ) {
2555     // Method header
2556     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2557             oper._ident);
2558 
2559     // Assert that the index is in range.
2560     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
2561             num_edges);
2562 
2563     // Figure out if all RegMasks are the same.
2564     const char* first_reg_class = oper.in_reg_class(0, globals);
2565     bool all_same = true;
2566     assert(first_reg_class != NULL, "did not find register mask");
2567 
2568     for (uint index = 1; all_same && index < num_edges; index++) {
2569       const char* some_reg_class = oper.in_reg_class(index, globals);
2570       assert(some_reg_class != NULL, "did not find register mask");
2571       if (strcmp(first_reg_class, some_reg_class) != 0) {
2572         all_same = false;
2573       }
2574     }
2575 
2576     if (all_same) {
2577       // Return the sole RegMask.
2578       if (strcmp(first_reg_class, "stack_slots") == 0) {
2579         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
2580       } else {
2581         fprintf(fp,"  return &%s_mask;\n", toUpper(first_reg_class));
2582       }
2583     } else {
2584       // Build a switch statement to return the desired mask.
2585       fprintf(fp,"  switch (index) {\n");
2586 
2587       for (uint index = 0; index < num_edges; index++) {
2588         const char *reg_class = oper.in_reg_class(index, globals);
2589         assert(reg_class != NULL, "did not find register mask");
2590         if( !strcmp(reg_class, "stack_slots") ) {
2591           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2592         } else {
2593           fprintf(fp, "  case %d: return &%s_mask;\n", index, toUpper(reg_class));
2594         }
2595       }
2596       fprintf(fp,"  }\n");
2597       fprintf(fp,"  ShouldNotReachHere();\n");
2598       fprintf(fp,"  return NULL;\n");
2599     }
2600 
2601     // Method close
2602     fprintf(fp, "}\n\n");
2603   }
2604 }
2605 
2606 // generate code to create a clone for a class derived from MachOper
2607 //
2608 // (0)  MachOper  *MachOperXOper::clone(Compile* C) const {
2609 // (1)    return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
2610 // (2)  }
2611 //
2612 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2613   fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper._ident);
2614   // Check for constants that need to be copied over
2615   const int  num_consts    = oper.num_consts(globalNames);
2616   const bool is_ideal_bool = oper.is_ideal_bool();
2617   if( (num_consts > 0) ) {
2618     fprintf(fp,"  return  new (C) %sOper(", oper._ident);
2619     // generate parameters for constants
2620     int i = 0;
2621     fprintf(fp,"_c%d", i);
2622     for( i = 1; i < num_consts; ++i) {
2623       fprintf(fp,", _c%d", i);
2624     }
2625     // finish line (1)
2626     fprintf(fp,");\n");
2627   }
2628   else {
2629     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2630     fprintf(fp,"  return  new (C) %sOper();\n", oper._ident);
2631   }
2632   // finish method
2633   fprintf(fp,"}\n");
2634 }
2635 
2636 static void define_hash(FILE *fp, char *operand) {
2637   fprintf(fp,"uint %sOper::hash() const { return 5; }\n", operand);
2638 }
2639 
2640 static void define_cmp(FILE *fp, char *operand) {
2641   fprintf(fp,"uint %sOper::cmp( const MachOper &oper ) const { return opcode() == oper.opcode(); }\n", operand);
2642 }
2643 
2644 
2645 // Helper functions for bug 4796752, abstracted with minimal modification
2646 // from define_oper_interface()
2647 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2648   OperandForm *op = NULL;
2649   // Check for replacement variable
2650   if( *encoding == '$' ) {
2651     // Replacement variable
2652     const char *rep_var = encoding + 1;
2653     // Lookup replacement variable, rep_var, in operand's component list
2654     const Component *comp = oper._components.search(rep_var);
2655     assert( comp != NULL, "Replacement variable not found in components");
2656     // Lookup operand form for replacement variable's type
2657     const char      *type = comp->_type;
2658     Form            *form = (Form*)globals[type];
2659     assert( form != NULL, "Replacement variable's type not found");
2660     op = form->is_operand();
2661     assert( op, "Attempting to emit a non-register or non-constant");
2662   }
2663 
2664   return op;
2665 }
2666 
2667 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2668   int idx = -1;
2669   // Check for replacement variable
2670   if( *encoding == '$' ) {
2671     // Replacement variable
2672     const char *rep_var = encoding + 1;
2673     // Lookup replacement variable, rep_var, in operand's component list
2674     const Component *comp = oper._components.search(rep_var);
2675     assert( comp != NULL, "Replacement variable not found in components");
2676     // Lookup operand form for replacement variable's type
2677     const char      *type = comp->_type;
2678     Form            *form = (Form*)globals[type];
2679     assert( form != NULL, "Replacement variable's type not found");
2680     OperandForm *op = form->is_operand();
2681     assert( op, "Attempting to emit a non-register or non-constant");
2682     // Check that this is a constant and find constant's index:
2683     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2684       idx  = oper.constant_position(globals, comp);
2685     }
2686   }
2687 
2688   return idx;
2689 }
2690 
2691 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2692   bool is_regI = false;
2693 
2694   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2695   if( op != NULL ) {
2696     // Check that this is a register
2697     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2698       // Register
2699       const char* ideal  = op->ideal_type(globals);
2700       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2701     }
2702   }
2703 
2704   return is_regI;
2705 }
2706 
2707 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2708   bool is_conP = false;
2709 
2710   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2711   if( op != NULL ) {
2712     // Check that this is a constant pointer
2713     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2714       // Constant
2715       Form::DataType dtype = op->is_base_constant(globals);
2716       is_conP = (dtype == Form::idealP);
2717     }
2718   }
2719 
2720   return is_conP;
2721 }
2722 
2723 
2724 // Define a MachOper interface methods
2725 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2726                                      const char *name, const char *encoding) {
2727   bool emit_position = false;
2728   int position = -1;
2729 
2730   fprintf(fp,"  virtual int            %s", name);
2731   // Generate access method for base, index, scale, disp, ...
2732   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2733     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2734     emit_position = true;
2735   } else if ( (strcmp(name,"disp") == 0) ) {
2736     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2737   } else {
2738     fprintf(fp,"() const { ");
2739   }
2740 
2741   // Check for hexadecimal value OR replacement variable
2742   if( *encoding == '$' ) {
2743     // Replacement variable
2744     const char *rep_var = encoding + 1;
2745     fprintf(fp,"// Replacement variable: %s\n", encoding+1);
2746     // Lookup replacement variable, rep_var, in operand's component list
2747     const Component *comp = oper._components.search(rep_var);
2748     assert( comp != NULL, "Replacement variable not found in components");
2749     // Lookup operand form for replacement variable's type
2750     const char      *type = comp->_type;
2751     Form            *form = (Form*)globals[type];
2752     assert( form != NULL, "Replacement variable's type not found");
2753     OperandForm *op = form->is_operand();
2754     assert( op, "Attempting to emit a non-register or non-constant");
2755     // Check that this is a register or a constant and generate code:
2756     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2757       // Register
2758       int idx_offset = oper.register_position( globals, rep_var);
2759       position = idx_offset;
2760       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
2761       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
2762       fprintf(fp,"));\n");
2763     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
2764       // StackSlot for an sReg comes either from input node or from self, when idx==0
2765       fprintf(fp,"    if( idx != 0 ) {\n");
2766       fprintf(fp,"      // Access register number for input operand\n");
2767       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
2768       fprintf(fp,"    }\n");
2769       fprintf(fp,"    // Access register number from myself\n");
2770       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
2771     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2772       // Constant
2773       // Check which constant this name maps to: _c0, _c1, ..., _cn
2774       const int idx = oper.constant_position(globals, comp);
2775       assert( idx != -1, "Constant component not found in operand");
2776       // Output code for this constant, type dependent.
2777       fprintf(fp,"    return (int)" );
2778       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
2779       fprintf(fp,";\n");
2780     } else {
2781       assert( false, "Attempting to emit a non-register or non-constant");
2782     }
2783   }
2784   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
2785     // Hex value
2786     fprintf(fp,"return %s;", encoding);
2787   } else {
2788     assert( false, "Do not support octal or decimal encode constants");
2789   }
2790   fprintf(fp,"  }\n");
2791 
2792   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
2793     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
2794     MemInterface *mem_interface = oper._interface->is_MemInterface();
2795     const char *base = mem_interface->_base;
2796     const char *disp = mem_interface->_disp;
2797     if( emit_position && (strcmp(name,"base") == 0)
2798         && base != NULL && is_regI(base, oper, globals)
2799         && disp != NULL && is_conP(disp, oper, globals) ) {
2800       // Found a memory access using a constant pointer for a displacement
2801       // and a base register containing an integer offset.
2802       // In this case the base and disp are reversed with respect to what
2803       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
2804       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
2805       // to correctly compute the access type for alias analysis.
2806       //
2807       // See BugId 4796752, operand indOffset32X in i486.ad
2808       int idx = rep_var_to_constant_index(disp, oper, globals);
2809       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
2810     }
2811   }
2812 }
2813 
2814 //
2815 // Construct the method to copy _idx, inputs and operands to new node.
2816 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
2817   fprintf(fp_cpp, "\n");
2818   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
2819   fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
2820   if( !used ) {
2821     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
2822     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
2823     fprintf(fp_cpp, "}\n");
2824   } else {
2825     // New node must use same node index for access through allocator's tables
2826     fprintf(fp_cpp, "  // New node must use same node index\n");
2827     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
2828     // Copy machine-independent inputs
2829     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
2830     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
2831     fprintf(fp_cpp, "    node->add_req(in(j));\n");
2832     fprintf(fp_cpp, "  }\n");
2833     // Copy machine operands to new MachNode
2834     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
2835     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
2836     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
2837     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
2838     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
2839     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
2840     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone(C);\n");
2841     fprintf(fp_cpp, "  }\n");
2842     fprintf(fp_cpp, "}\n");
2843   }
2844   fprintf(fp_cpp, "\n");
2845 }
2846 
2847 //------------------------------defineClasses----------------------------------
2848 // Define members of MachNode and MachOper classes based on
2849 // operand and instruction lists
2850 void ArchDesc::defineClasses(FILE *fp) {
2851 
2852   // Define the contents of an array containing the machine register names
2853   defineRegNames(fp, _register);
2854   // Define an array containing the machine register encoding values
2855   defineRegEncodes(fp, _register);
2856   // Generate an enumeration of user-defined register classes
2857   // and a list of register masks, one for each class.
2858   // Only define the RegMask value objects in the expand file.
2859   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
2860   declare_register_masks(_HPP_file._fp);
2861   // build_register_masks(fp);
2862   build_register_masks(_CPP_EXPAND_file._fp);
2863   // Define the pipe_classes
2864   build_pipe_classes(_CPP_PIPELINE_file._fp);
2865 
2866   // Generate Machine Classes for each operand defined in AD file
2867   fprintf(fp,"\n");
2868   fprintf(fp,"\n");
2869   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
2870   // Iterate through all operands
2871   _operands.reset();
2872   OperandForm *oper;
2873   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
2874     // Ensure this is a machine-world instruction
2875     if ( oper->ideal_only() ) continue;
2876     // !!!!!
2877     // The declaration of labelOper is in machine-independent file: machnode
2878     if ( strcmp(oper->_ident,"label") == 0 ) {
2879       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
2880 
2881       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
2882       fprintf(fp,"  return  new (C) %sOper(_label, _block_num);\n", oper->_ident);
2883       fprintf(fp,"}\n");
2884 
2885       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
2886               oper->_ident, machOperEnum(oper->_ident));
2887       // // Currently all XXXOper::Hash() methods are identical (990820)
2888       // define_hash(fp, oper->_ident);
2889       // // Currently all XXXOper::Cmp() methods are identical (990820)
2890       // define_cmp(fp, oper->_ident);
2891       fprintf(fp,"\n");
2892 
2893       continue;
2894     }
2895 
2896     // The declaration of methodOper is in machine-independent file: machnode
2897     if ( strcmp(oper->_ident,"method") == 0 ) {
2898       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
2899 
2900       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
2901       fprintf(fp,"  return  new (C) %sOper(_method);\n", oper->_ident);
2902       fprintf(fp,"}\n");
2903 
2904       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
2905               oper->_ident, machOperEnum(oper->_ident));
2906       // // Currently all XXXOper::Hash() methods are identical (990820)
2907       // define_hash(fp, oper->_ident);
2908       // // Currently all XXXOper::Cmp() methods are identical (990820)
2909       // define_cmp(fp, oper->_ident);
2910       fprintf(fp,"\n");
2911 
2912       continue;
2913     }
2914 
2915     defineIn_RegMask(fp, _globalNames, *oper);
2916     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
2917     // // Currently all XXXOper::Hash() methods are identical (990820)
2918     // define_hash(fp, oper->_ident);
2919     // // Currently all XXXOper::Cmp() methods are identical (990820)
2920     // define_cmp(fp, oper->_ident);
2921 
2922     // side-call to generate output that used to be in the header file:
2923     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
2924     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
2925 
2926   }
2927 
2928 
2929   // Generate Machine Classes for each instruction defined in AD file
2930   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
2931   // Output the definitions for out_RegMask() // & kill_RegMask()
2932   _instructions.reset();
2933   InstructForm *instr;
2934   MachNodeForm *machnode;
2935   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
2936     // Ensure this is a machine-world instruction
2937     if ( instr->ideal_only() ) continue;
2938 
2939     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
2940   }
2941 
2942   bool used = false;
2943   // Output the definitions for expand rules & peephole rules
2944   _instructions.reset();
2945   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
2946     // Ensure this is a machine-world instruction
2947     if ( instr->ideal_only() ) continue;
2948     // If there are multiple defs/kills, or an explicit expand rule, build rule
2949     if( instr->expands() || instr->needs_projections() ||
2950         instr->has_temps() ||
2951         instr->_matrule != NULL &&
2952         instr->num_opnds() != instr->num_unique_opnds() )
2953       defineExpand(_CPP_EXPAND_file._fp, instr);
2954     // If there is an explicit peephole rule, build it
2955     if ( instr->peepholes() )
2956       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
2957 
2958     // Output code to convert to the cisc version, if applicable
2959     used |= instr->define_cisc_version(*this, fp);
2960 
2961     // Output code to convert to the short branch version, if applicable
2962     used |= instr->define_short_branch_methods(fp);
2963   }
2964 
2965   // Construct the method called by cisc_version() to copy inputs and operands.
2966   define_fill_new_machnode(used, fp);
2967 
2968   // Output the definitions for labels
2969   _instructions.reset();
2970   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
2971     // Ensure this is a machine-world instruction
2972     if ( instr->ideal_only() ) continue;
2973 
2974     // Access the fields for operand Label
2975     int label_position = instr->label_position();
2976     if( label_position != -1 ) {
2977       // Set the label
2978       fprintf(fp,"void %sNode::label_set( Label& label, uint block_num ) {\n", instr->_ident);
2979       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
2980               label_position );
2981       fprintf(fp,"  oper->_label     = &label;\n");
2982       fprintf(fp,"  oper->_block_num = block_num;\n");
2983       fprintf(fp,"}\n");
2984     }
2985   }
2986 
2987   // Output the definitions for methods
2988   _instructions.reset();
2989   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
2990     // Ensure this is a machine-world instruction
2991     if ( instr->ideal_only() ) continue;
2992 
2993     // Access the fields for operand Label
2994     int method_position = instr->method_position();
2995     if( method_position != -1 ) {
2996       // Access the method's address
2997       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
2998       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
2999               method_position );
3000       fprintf(fp,"}\n");
3001       fprintf(fp,"\n");
3002     }
3003   }
3004 
3005   // Define this instruction's number of relocation entries, base is '0'
3006   _instructions.reset();
3007   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3008     // Output the definition for number of relocation entries
3009     uint reloc_size = instr->reloc(_globalNames);
3010     if ( reloc_size != 0 ) {
3011       fprintf(fp,"int  %sNode::reloc()   const {\n", instr->_ident);
3012       fprintf(fp,  "  return  %d;\n", reloc_size );
3013       fprintf(fp,"}\n");
3014       fprintf(fp,"\n");
3015     }
3016   }
3017   fprintf(fp,"\n");
3018 
3019   // Output the definitions for code generation
3020   //
3021   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
3022   //   // ...  encoding defined by user
3023   //   return ptr;
3024   // }
3025   //
3026   _instructions.reset();
3027   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3028     // Ensure this is a machine-world instruction
3029     if ( instr->ideal_only() ) continue;
3030 
3031     if (instr->_insencode) defineEmit(fp, *instr);
3032     if (instr->_size)      defineSize(fp, *instr);
3033 
3034     // side-call to generate output that used to be in the header file:
3035     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
3036     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
3037   }
3038 
3039   // Output the definitions for alias analysis
3040   _instructions.reset();
3041   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3042     // Ensure this is a machine-world instruction
3043     if ( instr->ideal_only() ) continue;
3044 
3045     // Analyze machine instructions that either USE or DEF memory.
3046     int memory_operand = instr->memory_operand(_globalNames);
3047     // Some guys kill all of memory
3048     if ( instr->is_wide_memory_kill(_globalNames) ) {
3049       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
3050     }
3051 
3052     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
3053       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
3054         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
3055         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
3056       } else {
3057         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
3058   }
3059     }
3060   }
3061 
3062   // Get the length of the longest identifier
3063   int max_ident_len = 0;
3064   _instructions.reset();
3065 
3066   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3067     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3068       int ident_len = (int)strlen(instr->_ident);
3069       if( max_ident_len < ident_len )
3070         max_ident_len = ident_len;
3071     }
3072   }
3073 
3074   // Emit specifically for Node(s)
3075   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3076     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3077   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
3078     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3079   fprintf(_CPP_PIPELINE_file._fp, "\n");
3080 
3081   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3082     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
3083   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
3084     max_ident_len, "MachNode");
3085   fprintf(_CPP_PIPELINE_file._fp, "\n");
3086 
3087   // Output the definitions for machine node specific pipeline data
3088   _machnodes.reset();
3089 
3090   for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3091     fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3092       machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3093   }
3094 
3095   fprintf(_CPP_PIPELINE_file._fp, "\n");
3096 
3097   // Output the definitions for instruction pipeline static data references
3098   _instructions.reset();
3099 
3100   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3101     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3102       fprintf(_CPP_PIPELINE_file._fp, "\n");
3103       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3104         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3105       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3106         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3107     }
3108   }
3109 }
3110 
3111 
3112 // -------------------------------- maps ------------------------------------
3113 
3114 // Information needed to generate the ReduceOp mapping for the DFA
3115 class OutputReduceOp : public OutputMap {
3116 public:
3117   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3118     : OutputMap(hpp, cpp, globals, AD) {};
3119 
3120   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
3121   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
3122   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3123                        OutputMap::closing();
3124   }
3125   void map(OpClassForm &opc)  {
3126     const char *reduce = opc._ident;
3127     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3128     else          fprintf(_cpp, "  0");
3129   }
3130   void map(OperandForm &oper) {
3131     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
3132     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3133     // operand stackSlot does not have a match rule, but produces a stackSlot
3134     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3135     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3136     else          fprintf(_cpp, "  0");
3137   }
3138   void map(InstructForm &inst) {
3139     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3140     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3141     else          fprintf(_cpp, "  0");
3142   }
3143   void map(char         *reduce) {
3144     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3145     else          fprintf(_cpp, "  0");
3146   }
3147 };
3148 
3149 // Information needed to generate the LeftOp mapping for the DFA
3150 class OutputLeftOp : public OutputMap {
3151 public:
3152   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3153     : OutputMap(hpp, cpp, globals, AD) {};
3154 
3155   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
3156   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
3157   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3158                        OutputMap::closing();
3159   }
3160   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3161   void map(OperandForm &oper) {
3162     const char *reduce = oper.reduce_left(_globals);
3163     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3164     else          fprintf(_cpp, "  0");
3165   }
3166   void map(char        *name) {
3167     const char *reduce = _AD.reduceLeft(name);
3168     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3169     else          fprintf(_cpp, "  0");
3170   }
3171   void map(InstructForm &inst) {
3172     const char *reduce = inst.reduce_left(_globals);
3173     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3174     else          fprintf(_cpp, "  0");
3175   }
3176 };
3177 
3178 
3179 // Information needed to generate the RightOp mapping for the DFA
3180 class OutputRightOp : public OutputMap {
3181 public:
3182   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3183     : OutputMap(hpp, cpp, globals, AD) {};
3184 
3185   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
3186   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
3187   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3188                        OutputMap::closing();
3189   }
3190   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3191   void map(OperandForm &oper) {
3192     const char *reduce = oper.reduce_right(_globals);
3193     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3194     else          fprintf(_cpp, "  0");
3195   }
3196   void map(char        *name) {
3197     const char *reduce = _AD.reduceRight(name);
3198     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3199     else          fprintf(_cpp, "  0");
3200   }
3201   void map(InstructForm &inst) {
3202     const char *reduce = inst.reduce_right(_globals);
3203     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3204     else          fprintf(_cpp, "  0");
3205   }
3206 };
3207 
3208 
3209 // Information needed to generate the Rule names for the DFA
3210 class OutputRuleName : public OutputMap {
3211 public:
3212   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3213     : OutputMap(hpp, cpp, globals, AD) {};
3214 
3215   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
3216   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
3217   void closing()     { fprintf(_cpp, "  \"no trailing comma\"\n");
3218                        OutputMap::closing();
3219   }
3220   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
3221   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
3222   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
3223   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
3224 };
3225 
3226 
3227 // Information needed to generate the swallowed mapping for the DFA
3228 class OutputSwallowed : public OutputMap {
3229 public:
3230   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3231     : OutputMap(hpp, cpp, globals, AD) {};
3232 
3233   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
3234   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
3235   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3236                        OutputMap::closing();
3237   }
3238   void map(OperandForm &oper) { // Generate the entry for this opcode
3239     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3240     fprintf(_cpp, "  %s", swallowed);
3241   }
3242   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
3243   void map(char        *name) { fprintf(_cpp, "  false"); }
3244   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
3245 };
3246 
3247 
3248 // Information needed to generate the decision array for instruction chain rule
3249 class OutputInstChainRule : public OutputMap {
3250 public:
3251   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3252     : OutputMap(hpp, cpp, globals, AD) {};
3253 
3254   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
3255   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
3256   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3257                        OutputMap::closing();
3258   }
3259   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
3260   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
3261   void map(char        *name)  { fprintf(_cpp, "  false"); }
3262   void map(InstructForm &inst) { // Check for simple chain rule
3263     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3264     fprintf(_cpp, "  %s", chain);
3265   }
3266 };
3267 
3268 
3269 //---------------------------build_map------------------------------------
3270 // Build  mapping from enumeration for densely packed operands
3271 // TO result and child types.
3272 void ArchDesc::build_map(OutputMap &map) {
3273   FILE         *fp_hpp = map.decl_file();
3274   FILE         *fp_cpp = map.def_file();
3275   int           idx    = 0;
3276   OperandForm  *op;
3277   OpClassForm  *opc;
3278   InstructForm *inst;
3279 
3280   // Construct this mapping
3281   map.declaration();
3282   fprintf(fp_cpp,"\n");
3283   map.definition();
3284 
3285   // Output the mapping for operands
3286   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3287   _operands.reset();
3288   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3289     // Ensure this is a machine-world instruction
3290     if ( op->ideal_only() )  continue;
3291 
3292     // Generate the entry for this opcode
3293     map.map(*op);    fprintf(fp_cpp, ", // %d\n", idx);
3294     ++idx;
3295   };
3296   fprintf(fp_cpp, "  // last operand\n");
3297 
3298   // Place all user-defined operand classes into the mapping
3299   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3300   _opclass.reset();
3301   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3302     map.map(*opc);    fprintf(fp_cpp, ", // %d\n", idx);
3303     ++idx;
3304   };
3305   fprintf(fp_cpp, "  // last operand class\n");
3306 
3307   // Place all internally defined operands into the mapping
3308   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3309   _internalOpNames.reset();
3310   char *name = NULL;
3311   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3312     map.map(name);    fprintf(fp_cpp, ", // %d\n", idx);
3313     ++idx;
3314   };
3315   fprintf(fp_cpp, "  // last internally defined operand\n");
3316 
3317   // Place all user-defined instructions into the mapping
3318   if( map.do_instructions() ) {
3319     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3320     // Output all simple instruction chain rules first
3321     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3322     {
3323       _instructions.reset();
3324       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3325         // Ensure this is a machine-world instruction
3326         if ( inst->ideal_only() )  continue;
3327         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3328         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3329 
3330         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
3331         ++idx;
3332       };
3333       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3334       _instructions.reset();
3335       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3336         // Ensure this is a machine-world instruction
3337         if ( inst->ideal_only() )  continue;
3338         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3339         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3340 
3341         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
3342         ++idx;
3343       };
3344       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3345     }
3346     // Output all instructions that are NOT simple chain rules
3347     {
3348       _instructions.reset();
3349       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3350         // Ensure this is a machine-world instruction
3351         if ( inst->ideal_only() )  continue;
3352         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3353         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3354 
3355         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
3356         ++idx;
3357       };
3358       map.record_position(OutputMap::END_REMATERIALIZE, idx );
3359       _instructions.reset();
3360       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3361         // Ensure this is a machine-world instruction
3362         if ( inst->ideal_only() )  continue;
3363         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3364         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3365 
3366         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
3367         ++idx;
3368       };
3369     }
3370     fprintf(fp_cpp, "  // last instruction\n");
3371     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3372   }
3373   // Finish defining table
3374   map.closing();
3375 };
3376 
3377 
3378 // Helper function for buildReduceMaps
3379 char reg_save_policy(const char *calling_convention) {
3380   char callconv;
3381 
3382   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
3383   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3384   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3385   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
3386   else                                         callconv = 'Z';
3387 
3388   return callconv;
3389 }
3390 
3391 //---------------------------generate_assertion_checks-------------------
3392 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3393   fprintf(fp_cpp, "\n");
3394 
3395   fprintf(fp_cpp, "#ifndef PRODUCT\n");
3396   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3397   globalDefs().print_asserts(fp_cpp);
3398   fprintf(fp_cpp, "}\n");
3399   fprintf(fp_cpp, "#endif\n");
3400   fprintf(fp_cpp, "\n");
3401 }
3402 
3403 //---------------------------addSourceBlocks-----------------------------
3404 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3405   if (_source.count() > 0)
3406     _source.output(fp_cpp);
3407 
3408   generate_adlc_verification(fp_cpp);
3409 }
3410 //---------------------------addHeaderBlocks-----------------------------
3411 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3412   if (_header.count() > 0)
3413     _header.output(fp_hpp);
3414 }
3415 //-------------------------addPreHeaderBlocks----------------------------
3416 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3417   // Output #defines from definition block
3418   globalDefs().print_defines(fp_hpp);
3419 
3420   if (_pre_header.count() > 0)
3421     _pre_header.output(fp_hpp);
3422 }
3423 
3424 //---------------------------buildReduceMaps-----------------------------
3425 // Build  mapping from enumeration for densely packed operands
3426 // TO result and child types.
3427 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3428   RegDef       *rdef;
3429   RegDef       *next;
3430 
3431   // The emit bodies currently require functions defined in the source block.
3432 
3433   // Build external declarations for mappings
3434   fprintf(fp_hpp, "\n");
3435   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
3436   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
3437   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
3438   fprintf(fp_hpp, "\n");
3439 
3440   // Construct Save-Policy array
3441   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3442   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
3443   _register->reset_RegDefs();
3444   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3445     next              = _register->iter_RegDefs();
3446     char policy       = reg_save_policy(rdef->_callconv);
3447     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3448     fprintf(fp_cpp, "  '%c'%s\n", policy, comma);
3449   }
3450   fprintf(fp_cpp, "};\n\n");
3451 
3452   // Construct Native Save-Policy array
3453   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3454   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
3455   _register->reset_RegDefs();
3456   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3457     next        = _register->iter_RegDefs();
3458     char policy = reg_save_policy(rdef->_c_conv);
3459     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3460     fprintf(fp_cpp, "  '%c'%s\n", policy, comma);
3461   }
3462   fprintf(fp_cpp, "};\n\n");
3463 
3464   // Construct Register Save Type array
3465   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3466   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
3467   _register->reset_RegDefs();
3468   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3469     next = _register->iter_RegDefs();
3470     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3471     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
3472   }
3473   fprintf(fp_cpp, "};\n\n");
3474 
3475   // Construct the table for reduceOp
3476   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3477   build_map(output_reduce_op);
3478   // Construct the table for leftOp
3479   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3480   build_map(output_left_op);
3481   // Construct the table for rightOp
3482   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3483   build_map(output_right_op);
3484   // Construct the table of rule names
3485   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3486   build_map(output_rule_name);
3487   // Construct the boolean table for subsumed operands
3488   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3489   build_map(output_swallowed);
3490   // // // Preserve in case we decide to use this table instead of another
3491   //// Construct the boolean table for instruction chain rules
3492   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3493   //build_map(output_inst_chain);
3494 
3495 }
3496 
3497 
3498 //---------------------------buildMachOperGenerator---------------------------
3499 
3500 // Recurse through match tree, building path through corresponding state tree,
3501 // Until we reach the constant we are looking for.
3502 static void path_to_constant(FILE *fp, FormDict &globals,
3503                              MatchNode *mnode, uint idx) {
3504   if ( ! mnode) return;
3505 
3506   unsigned    position = 0;
3507   const char *result   = NULL;
3508   const char *name     = NULL;
3509   const char *optype   = NULL;
3510 
3511   // Base Case: access constant in ideal node linked to current state node
3512   // Each type of constant has its own access function
3513   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3514        && mnode->base_operand(position, globals, result, name, optype) ) {
3515     if (         strcmp(optype,"ConI") == 0 ) {
3516       fprintf(fp, "_leaf->get_int()");
3517     } else if ( (strcmp(optype,"ConP") == 0) ) {
3518       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3519     } else if ( (strcmp(optype,"ConN") == 0) ) {
3520       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
3521     } else if ( (strcmp(optype,"ConF") == 0) ) {
3522       fprintf(fp, "_leaf->getf()");
3523     } else if ( (strcmp(optype,"ConD") == 0) ) {
3524       fprintf(fp, "_leaf->getd()");
3525     } else if ( (strcmp(optype,"ConL") == 0) ) {
3526       fprintf(fp, "_leaf->get_long()");
3527     } else if ( (strcmp(optype,"Con")==0) ) {
3528       // !!!!! - Update if adding a machine-independent constant type
3529       fprintf(fp, "_leaf->get_int()");
3530       assert( false, "Unsupported constant type, pointer or indefinite");
3531     } else if ( (strcmp(optype,"Bool") == 0) ) {
3532       fprintf(fp, "_leaf->as_Bool()->_test._test");
3533     } else {
3534       assert( false, "Unsupported constant type");
3535     }
3536     return;
3537   }
3538 
3539   // If constant is in left child, build path and recurse
3540   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3541   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3542   if ( (mnode->_lChild) && (lConsts > idx) ) {
3543     fprintf(fp, "_kids[0]->");
3544     path_to_constant(fp, globals, mnode->_lChild, idx);
3545     return;
3546   }
3547   // If constant is in right child, build path and recurse
3548   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3549     idx = idx - lConsts;
3550     fprintf(fp, "_kids[1]->");
3551     path_to_constant(fp, globals, mnode->_rChild, idx);
3552     return;
3553   }
3554   assert( false, "ShouldNotReachHere()");
3555 }
3556 
3557 // Generate code that is executed when generating a specific Machine Operand
3558 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3559                             OperandForm &op) {
3560   const char *opName         = op._ident;
3561   const char *opEnumName     = AD.machOperEnum(opName);
3562   uint        num_consts     = op.num_consts(globalNames);
3563 
3564   // Generate the case statement for this opcode
3565   fprintf(fp, "  case %s:", opEnumName);
3566   fprintf(fp, "\n    return new (C) %sOper(", opName);
3567   // Access parameters for constructor from the stat object
3568   //
3569   // Build access to condition code value
3570   if ( (num_consts > 0) ) {
3571     uint i = 0;
3572     path_to_constant(fp, globalNames, op._matrule, i);
3573     for ( i = 1; i < num_consts; ++i ) {
3574       fprintf(fp, ", ");
3575       path_to_constant(fp, globalNames, op._matrule, i);
3576     }
3577   }
3578   fprintf(fp, " );\n");
3579 }
3580 
3581 
3582 // Build switch to invoke "new" MachNode or MachOper
3583 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3584   int idx = 0;
3585 
3586   // Build switch to invoke 'new' for a specific MachOper
3587   fprintf(fp_cpp, "\n");
3588   fprintf(fp_cpp, "\n");
3589   fprintf(fp_cpp,
3590           "//------------------------- MachOper Generator ---------------\n");
3591   fprintf(fp_cpp,
3592           "// A switch statement on the dense-packed user-defined type system\n"
3593           "// that invokes 'new' on the corresponding class constructor.\n");
3594   fprintf(fp_cpp, "\n");
3595   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3596   fprintf(fp_cpp, "(int opcode, Compile* C)");
3597   fprintf(fp_cpp, "{\n");
3598   fprintf(fp_cpp, "\n");
3599   fprintf(fp_cpp, "  switch(opcode) {\n");
3600 
3601   // Place all user-defined operands into the mapping
3602   _operands.reset();
3603   int  opIndex = 0;
3604   OperandForm *op;
3605   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
3606     // Ensure this is a machine-world instruction
3607     if ( op->ideal_only() )  continue;
3608 
3609     genMachOperCase(fp_cpp, _globalNames, *this, *op);
3610   };
3611 
3612   // Do not iterate over operand classes for the  operand generator!!!
3613 
3614   // Place all internal operands into the mapping
3615   _internalOpNames.reset();
3616   const char *iopn;
3617   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
3618     const char *opEnumName = machOperEnum(iopn);
3619     // Generate the case statement for this opcode
3620     fprintf(fp_cpp, "  case %s:", opEnumName);
3621     fprintf(fp_cpp, "    return NULL;\n");
3622   };
3623 
3624   // Generate the default case for switch(opcode)
3625   fprintf(fp_cpp, "  \n");
3626   fprintf(fp_cpp, "  default:\n");
3627   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3628   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3629   fprintf(fp_cpp, "    break;\n");
3630   fprintf(fp_cpp, "  }\n");
3631 
3632   // Generate the closing for method Matcher::MachOperGenerator
3633   fprintf(fp_cpp, "  return NULL;\n");
3634   fprintf(fp_cpp, "};\n");
3635 }
3636 
3637 
3638 //---------------------------buildMachNode-------------------------------------
3639 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
3640 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3641   const char *opType  = NULL;
3642   const char *opClass = inst->_ident;
3643 
3644   // Create the MachNode object
3645   fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
3646 
3647   if ( (inst->num_post_match_opnds() != 0) ) {
3648     // Instruction that contains operands which are not in match rule.
3649     //
3650     // Check if the first post-match component may be an interesting def
3651     bool           dont_care = false;
3652     ComponentList &comp_list = inst->_components;
3653     Component     *comp      = NULL;
3654     comp_list.reset();
3655     if ( comp_list.match_iter() != NULL )    dont_care = true;
3656 
3657     // Insert operands that are not in match-rule.
3658     // Only insert a DEF if the do_care flag is set
3659     comp_list.reset();
3660     while ( comp = comp_list.post_match_iter() ) {
3661       // Check if we don't care about DEFs or KILLs that are not USEs
3662       if ( dont_care && (! comp->isa(Component::USE)) ) {
3663         continue;
3664       }
3665       dont_care = true;
3666       // For each operand not in the match rule, call MachOperGenerator
3667       // with the enum for the opcode that needs to be built
3668       // and the node just built, the parent of the operand.
3669       ComponentList clist = inst->_components;
3670       int         index  = clist.operand_position(comp->_name, comp->_usedef);
3671       const char *opcode = machOperEnum(comp->_type);
3672       const char *parent = "node";
3673       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3674       fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
3675       }
3676   }
3677   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3678     // An instruction that chains from a constant!
3679     // In this case, we need to subsume the constant into the node
3680     // at operand position, oper_input_base().
3681     //
3682     // Fill in the constant
3683     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3684             inst->oper_input_base(_globalNames));
3685     // #####
3686     // Check for multiple constants and then fill them in.
3687     // Just like MachOperGenerator
3688     const char *opName = inst->_matrule->_rChild->_opType;
3689     fprintf(fp_cpp, "new (C) %sOper(", opName);
3690     // Grab operand form
3691     OperandForm *op = (_globalNames[opName])->is_operand();
3692     // Look up the number of constants
3693     uint num_consts = op->num_consts(_globalNames);
3694     if ( (num_consts > 0) ) {
3695       uint i = 0;
3696       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3697       for ( i = 1; i < num_consts; ++i ) {
3698         fprintf(fp_cpp, ", ");
3699         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3700       }
3701     }
3702     fprintf(fp_cpp, " );\n");
3703     // #####
3704   }
3705 
3706   // Fill in the bottom_type where requested
3707   if ( inst->captures_bottom_type() ) {
3708     fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3709   }
3710   if( inst->is_ideal_if() ) {
3711     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3712     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3713   }
3714   if( inst->is_ideal_fastlock() ) {
3715     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3716   }
3717 
3718 }
3719 
3720 //---------------------------declare_cisc_version------------------------------
3721 // Build CISC version of this instruction
3722 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3723   if( AD.can_cisc_spill() ) {
3724     InstructForm *inst_cisc = cisc_spill_alternate();
3725     if (inst_cisc != NULL) {
3726       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
3727       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset, Compile* C);\n");
3728       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
3729       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
3730     }
3731   }
3732 }
3733 
3734 //---------------------------define_cisc_version-------------------------------
3735 // Build CISC version of this instruction
3736 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
3737   InstructForm *inst_cisc = this->cisc_spill_alternate();
3738   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
3739     const char   *name      = inst_cisc->_ident;
3740     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
3741     OperandForm *cisc_oper = AD.cisc_spill_operand();
3742     assert( cisc_oper != NULL, "insanity check");
3743     const char *cisc_oper_name  = cisc_oper->_ident;
3744     assert( cisc_oper_name != NULL, "insanity check");
3745     //
3746     // Set the correct reg_mask_or_stack for the cisc operand
3747     fprintf(fp_cpp, "\n");
3748     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
3749     // Lookup the correct reg_mask_or_stack
3750     const char *reg_mask_name = cisc_reg_mask_name();
3751     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
3752     fprintf(fp_cpp, "}\n");
3753     //
3754     // Construct CISC version of this instruction
3755     fprintf(fp_cpp, "\n");
3756     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
3757     fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
3758     // Create the MachNode object
3759     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
3760     // Fill in the bottom_type where requested
3761     if ( this->captures_bottom_type() ) {
3762       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
3763     }
3764     fprintf(fp_cpp, "\n");
3765     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
3766     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
3767     // Construct operand to access [stack_pointer + offset]
3768     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
3769     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
3770     fprintf(fp_cpp, "\n");
3771 
3772     // Return result and exit scope
3773     fprintf(fp_cpp, "  return node;\n");
3774     fprintf(fp_cpp, "}\n");
3775     fprintf(fp_cpp, "\n");
3776     return true;
3777   }
3778   return false;
3779 }
3780 
3781 //---------------------------declare_short_branch_methods----------------------
3782 // Build prototypes for short branch methods
3783 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
3784   if (has_short_branch_form()) {
3785     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version(Compile* C);\n");
3786   }
3787 }
3788 
3789 //---------------------------define_short_branch_methods-----------------------
3790 // Build definitions for short branch methods
3791 bool InstructForm::define_short_branch_methods(FILE *fp_cpp) {
3792   if (has_short_branch_form()) {
3793     InstructForm *short_branch = short_branch_form();
3794     const char   *name         = short_branch->_ident;
3795 
3796     // Construct short_branch_version() method.
3797     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
3798     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
3799     // Create the MachNode object
3800     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
3801     if( is_ideal_if() ) {
3802       fprintf(fp_cpp, "  node->_prob = _prob;\n");
3803       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
3804     }
3805     // Fill in the bottom_type where requested
3806     if ( this->captures_bottom_type() ) {
3807       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
3808     }
3809 
3810     fprintf(fp_cpp, "\n");
3811     // Short branch version must use same node index for access
3812     // through allocator's tables
3813     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
3814     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
3815 
3816     // Return result and exit scope
3817     fprintf(fp_cpp, "  return node;\n");
3818     fprintf(fp_cpp, "}\n");
3819     fprintf(fp_cpp,"\n");
3820     return true;
3821   }
3822   return false;
3823 }
3824 
3825 
3826 //---------------------------buildMachNodeGenerator----------------------------
3827 // Build switch to invoke appropriate "new" MachNode for an opcode
3828 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
3829 
3830   // Build switch to invoke 'new' for a specific MachNode
3831   fprintf(fp_cpp, "\n");
3832   fprintf(fp_cpp, "\n");
3833   fprintf(fp_cpp,
3834           "//------------------------- MachNode Generator ---------------\n");
3835   fprintf(fp_cpp,
3836           "// A switch statement on the dense-packed user-defined type system\n"
3837           "// that invokes 'new' on the corresponding class constructor.\n");
3838   fprintf(fp_cpp, "\n");
3839   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
3840   fprintf(fp_cpp, "(int opcode, Compile* C)");
3841   fprintf(fp_cpp, "{\n");
3842   fprintf(fp_cpp, "  switch(opcode) {\n");
3843 
3844   // Provide constructor for all user-defined instructions
3845   _instructions.reset();
3846   int  opIndex = operandFormCount();
3847   InstructForm *inst;
3848   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3849     // Ensure that matrule is defined.
3850     if ( inst->_matrule == NULL ) continue;
3851 
3852     int         opcode  = opIndex++;
3853     const char *opClass = inst->_ident;
3854     char       *opType  = NULL;
3855 
3856     // Generate the case statement for this instruction
3857     fprintf(fp_cpp, "  case %s_rule:", opClass);
3858 
3859     // Start local scope
3860     fprintf(fp_cpp, "  {\n");
3861     // Generate code to construct the new MachNode
3862     buildMachNode(fp_cpp, inst, "     ");
3863     // Return result and exit scope
3864     fprintf(fp_cpp, "      return node;\n");
3865     fprintf(fp_cpp, "    }\n");
3866   }
3867 
3868   // Generate the default case for switch(opcode)
3869   fprintf(fp_cpp, "  \n");
3870   fprintf(fp_cpp, "  default:\n");
3871   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
3872   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3873   fprintf(fp_cpp, "    break;\n");
3874   fprintf(fp_cpp, "  };\n");
3875 
3876   // Generate the closing for method Matcher::MachNodeGenerator
3877   fprintf(fp_cpp, "  return NULL;\n");
3878   fprintf(fp_cpp, "}\n");
3879 }
3880 
3881 
3882 //---------------------------buildInstructMatchCheck--------------------------
3883 // Output the method to Matcher which checks whether or not a specific
3884 // instruction has a matching rule for the host architecture.
3885 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
3886   fprintf(fp_cpp, "\n\n");
3887   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
3888   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
3889   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
3890   fprintf(fp_cpp, "}\n\n");
3891 
3892   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
3893   int i;
3894   for (i = 0; i < _last_opcode - 1; i++) {
3895     fprintf(fp_cpp, "    %-5s,  // %s\n",
3896             _has_match_rule[i] ? "true" : "false",
3897             NodeClassNames[i]);
3898   }
3899   fprintf(fp_cpp, "    %-5s   // %s\n",
3900           _has_match_rule[i] ? "true" : "false",
3901           NodeClassNames[i]);
3902   fprintf(fp_cpp, "};\n");
3903 }
3904 
3905 //---------------------------buildFrameMethods---------------------------------
3906 // Output the methods to Matcher which specify frame behavior
3907 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
3908   fprintf(fp_cpp,"\n\n");
3909   // Stack Direction
3910   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
3911           _frame->_direction ? "true" : "false");
3912   // Sync Stack Slots
3913   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
3914           _frame->_sync_stack_slots);
3915   // Java Stack Alignment
3916   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
3917           _frame->_alignment);
3918   // Java Return Address Location
3919   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
3920   if (_frame->_return_addr_loc) {
3921     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
3922             _frame->_return_addr);
3923   }
3924   else {
3925     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
3926             _frame->_return_addr);
3927   }
3928   // Java Stack Slot Preservation
3929   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
3930   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
3931   // Top Of Stack Slot Preservation, for both Java and C
3932   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
3933   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
3934   // varargs C out slots killed
3935   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
3936   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
3937   // Java Argument Position
3938   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
3939   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
3940   fprintf(fp_cpp,"}\n\n");
3941   // Native Argument Position
3942   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
3943   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
3944   fprintf(fp_cpp,"}\n\n");
3945   // Java Return Value Location
3946   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
3947   fprintf(fp_cpp,"%s\n", _frame->_return_value);
3948   fprintf(fp_cpp,"}\n\n");
3949   // Native Return Value Location
3950   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
3951   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
3952   fprintf(fp_cpp,"}\n\n");
3953 
3954   // Inline Cache Register, mask definition, and encoding
3955   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
3956   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
3957           _frame->_inline_cache_reg);
3958   fprintf(fp_cpp,"const RegMask &Matcher::inline_cache_reg_mask() {");
3959   fprintf(fp_cpp," return INLINE_CACHE_REG_mask; }\n\n");
3960   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
3961   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
3962 
3963   // Interpreter's Method Oop Register, mask definition, and encoding
3964   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
3965   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
3966           _frame->_interpreter_method_oop_reg);
3967   fprintf(fp_cpp,"const RegMask &Matcher::interpreter_method_oop_reg_mask() {");
3968   fprintf(fp_cpp," return INTERPRETER_METHOD_OOP_REG_mask; }\n\n");
3969   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
3970   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
3971 
3972   // Interpreter's Frame Pointer Register, mask definition, and encoding
3973   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
3974   if (_frame->_interpreter_frame_pointer_reg == NULL)
3975     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
3976   else
3977     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
3978             _frame->_interpreter_frame_pointer_reg);
3979   fprintf(fp_cpp,"const RegMask &Matcher::interpreter_frame_pointer_reg_mask() {");
3980   if (_frame->_interpreter_frame_pointer_reg == NULL)
3981     fprintf(fp_cpp," static RegMask dummy; return dummy; }\n\n");
3982   else
3983     fprintf(fp_cpp," return INTERPRETER_FRAME_POINTER_REG_mask; }\n\n");
3984 
3985   // Frame Pointer definition
3986   /* CNC - I can not contemplate having a different frame pointer between
3987      Java and native code; makes my head hurt to think about it.
3988   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
3989   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
3990           _frame->_frame_pointer);
3991   */
3992   // (Native) Frame Pointer definition
3993   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
3994   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
3995           _frame->_frame_pointer);
3996 
3997   // Number of callee-save + always-save registers for calling convention
3998   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
3999   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
4000   RegDef *rdef;
4001   int nof_saved_registers = 0;
4002   _register->reset_RegDefs();
4003   while( (rdef = _register->iter_RegDefs()) != NULL ) {
4004     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
4005       ++nof_saved_registers;
4006   }
4007   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
4008   fprintf(fp_cpp, "};\n\n");
4009 }
4010 
4011 
4012 
4013 
4014 static int PrintAdlcCisc = 0;
4015 //---------------------------identify_cisc_spilling----------------------------
4016 // Get info for the CISC_oracle and MachNode::cisc_version()
4017 void ArchDesc::identify_cisc_spill_instructions() {
4018 
4019   // Find the user-defined operand for cisc-spilling
4020   if( _frame->_cisc_spilling_operand_name != NULL ) {
4021     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
4022     OperandForm *oper = form ? form->is_operand() : NULL;
4023     // Verify the user's suggestion
4024     if( oper != NULL ) {
4025       // Ensure that match field is defined.
4026       if ( oper->_matrule != NULL )  {
4027         MatchRule &mrule = *oper->_matrule;
4028         if( strcmp(mrule._opType,"AddP") == 0 ) {
4029           MatchNode *left = mrule._lChild;
4030           MatchNode *right= mrule._rChild;
4031           if( left != NULL && right != NULL ) {
4032             const Form *left_op  = _globalNames[left->_opType]->is_operand();
4033             const Form *right_op = _globalNames[right->_opType]->is_operand();
4034             if(  (left_op != NULL && right_op != NULL)
4035               && (left_op->interface_type(_globalNames) == Form::register_interface)
4036               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
4037               // Successfully verified operand
4038               set_cisc_spill_operand( oper );
4039               if( _cisc_spill_debug ) {
4040                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
4041              }
4042             }
4043           }
4044         }
4045       }
4046     }
4047   }
4048 
4049   if( cisc_spill_operand() != NULL ) {
4050     // N^2 comparison of instructions looking for a cisc-spilling version
4051     _instructions.reset();
4052     InstructForm *instr;
4053     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
4054       // Ensure that match field is defined.
4055       if ( instr->_matrule == NULL )  continue;
4056 
4057       MatchRule &mrule = *instr->_matrule;
4058       Predicate *pred  =  instr->build_predicate();
4059 
4060       // Grab the machine type of the operand
4061       const char *rootOp = instr->_ident;
4062       mrule._machType    = rootOp;
4063 
4064       // Find result type for match
4065       const char *result = instr->reduce_result();
4066 
4067       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
4068       bool  found_cisc_alternate = false;
4069       _instructions.reset2();
4070       InstructForm *instr2;
4071       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
4072         // Ensure that match field is defined.
4073         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
4074         if ( instr2->_matrule != NULL
4075             && (instr != instr2 )                // Skip self
4076             && (instr2->reduce_result() != NULL) // want same result
4077             && (strcmp(result, instr2->reduce_result()) == 0)) {
4078           MatchRule &mrule2 = *instr2->_matrule;
4079           Predicate *pred2  =  instr2->build_predicate();
4080           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
4081         }
4082       }
4083     }
4084   }
4085 }
4086 
4087 //---------------------------build_cisc_spilling-------------------------------
4088 // Get info for the CISC_oracle and MachNode::cisc_version()
4089 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
4090   // Output the table for cisc spilling
4091   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
4092   _instructions.reset();
4093   InstructForm *inst = NULL;
4094   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4095     // Ensure this is a machine-world instruction
4096     if ( inst->ideal_only() )  continue;
4097     const char *inst_name = inst->_ident;
4098     int   operand   = inst->cisc_spill_operand();
4099     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4100       InstructForm *inst2 = inst->cisc_spill_alternate();
4101       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4102     }
4103   }
4104   fprintf(fp_cpp, "\n\n");
4105 }
4106 
4107 //---------------------------identify_short_branches----------------------------
4108 // Get info for our short branch replacement oracle.
4109 void ArchDesc::identify_short_branches() {
4110   // Walk over all instructions, checking to see if they match a short
4111   // branching alternate.
4112   _instructions.reset();
4113   InstructForm *instr;
4114   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4115     // The instruction must have a match rule.
4116     if (instr->_matrule != NULL &&
4117         instr->is_short_branch()) {
4118 
4119       _instructions.reset2();
4120       InstructForm *instr2;
4121       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4122         instr2->check_branch_variant(*this, instr);
4123       }
4124     }
4125   }
4126 }
4127 
4128 
4129 //---------------------------identify_unique_operands---------------------------
4130 // Identify unique operands.
4131 void ArchDesc::identify_unique_operands() {
4132   // Walk over all instructions.
4133   _instructions.reset();
4134   InstructForm *instr;
4135   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4136     // Ensure this is a machine-world instruction
4137     if (!instr->ideal_only()) {
4138       instr->set_unique_opnds();
4139     }
4140   }
4141 }