1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/templateTable.hpp"
  29 #include "memory/universe.inline.hpp"
  30 #include "oops/methodDataOop.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "prims/methodHandles.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/stubRoutines.hpp"
  36 #include "runtime/synchronizer.hpp"
  37 
  38 #ifndef CC_INTERP
  39 #define __ _masm->
  40 
  41 //----------------------------------------------------------------------------------------------------
  42 // Platform-dependent initialization
  43 
  44 void TemplateTable::pd_initialize() {
  45   // No i486 specific initialization
  46 }
  47 
  48 //----------------------------------------------------------------------------------------------------
  49 // Address computation
  50 
  51 // local variables
  52 static inline Address iaddress(int n)            {
  53   return Address(rdi, Interpreter::local_offset_in_bytes(n));
  54 }
  55 
  56 static inline Address laddress(int n)            { return iaddress(n + 1); }
  57 static inline Address haddress(int n)            { return iaddress(n + 0); }
  58 static inline Address faddress(int n)            { return iaddress(n); }
  59 static inline Address daddress(int n)            { return laddress(n); }
  60 static inline Address aaddress(int n)            { return iaddress(n); }
  61 
  62 static inline Address iaddress(Register r)       {
  63   return Address(rdi, r, Interpreter::stackElementScale());
  64 }
  65 static inline Address laddress(Register r)       {
  66   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
  67 }
  68 static inline Address haddress(Register r)       {
  69   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
  70 }
  71 
  72 static inline Address faddress(Register r)       { return iaddress(r); }
  73 static inline Address daddress(Register r)       { return laddress(r); }
  74 static inline Address aaddress(Register r)       { return iaddress(r); }
  75 
  76 // expression stack
  77 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
  78 // data beyond the rsp which is potentially unsafe in an MT environment;
  79 // an interrupt may overwrite that data.)
  80 static inline Address at_rsp   () {
  81   return Address(rsp, 0);
  82 }
  83 
  84 // At top of Java expression stack which may be different than rsp().  It
  85 // isn't for category 1 objects.
  86 static inline Address at_tos   () {
  87   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
  88   return tos;
  89 }
  90 
  91 static inline Address at_tos_p1() {
  92   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
  93 }
  94 
  95 static inline Address at_tos_p2() {
  96   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
  97 }
  98 
  99 // Condition conversion
 100 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 101   switch (cc) {
 102     case TemplateTable::equal        : return Assembler::notEqual;
 103     case TemplateTable::not_equal    : return Assembler::equal;
 104     case TemplateTable::less         : return Assembler::greaterEqual;
 105     case TemplateTable::less_equal   : return Assembler::greater;
 106     case TemplateTable::greater      : return Assembler::lessEqual;
 107     case TemplateTable::greater_equal: return Assembler::less;
 108   }
 109   ShouldNotReachHere();
 110   return Assembler::zero;
 111 }
 112 
 113 
 114 //----------------------------------------------------------------------------------------------------
 115 // Miscelaneous helper routines
 116 
 117 // Store an oop (or NULL) at the address described by obj.
 118 // If val == noreg this means store a NULL
 119 
 120 static void do_oop_store(InterpreterMacroAssembler* _masm,
 121                          Address obj,
 122                          Register val,
 123                          BarrierSet::Name barrier,
 124                          bool precise) {
 125   assert(val == noreg || val == rax, "parameter is just for looks");
 126   switch (barrier) {
 127 #ifndef SERIALGC
 128     case BarrierSet::G1SATBCT:
 129     case BarrierSet::G1SATBCTLogging:
 130       {
 131         // flatten object address if needed
 132         // We do it regardless of precise because we need the registers
 133         if (obj.index() == noreg && obj.disp() == 0) {
 134           if (obj.base() != rdx) {
 135             __ movl(rdx, obj.base());
 136           }
 137         } else {
 138           __ leal(rdx, obj);
 139         }
 140         __ get_thread(rcx);
 141         __ save_bcp();
 142         __ g1_write_barrier_pre(rdx, rcx, rsi, rbx, val != noreg);
 143 
 144         // Do the actual store
 145         // noreg means NULL
 146         if (val == noreg) {
 147           __ movptr(Address(rdx, 0), NULL_WORD);
 148           // No post barrier for NULL
 149         } else {
 150           __ movl(Address(rdx, 0), val);
 151           __ g1_write_barrier_post(rdx, rax, rcx, rbx, rsi);
 152         }
 153         __ restore_bcp();
 154 
 155       }
 156       break;
 157 #endif // SERIALGC
 158     case BarrierSet::CardTableModRef:
 159     case BarrierSet::CardTableExtension:
 160       {
 161         if (val == noreg) {
 162           __ movptr(obj, NULL_WORD);
 163         } else {
 164           __ movl(obj, val);
 165           // flatten object address if needed
 166           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 167             __ store_check(obj.base());
 168           } else {
 169             __ leal(rdx, obj);
 170             __ store_check(rdx);
 171           }
 172         }
 173       }
 174       break;
 175     case BarrierSet::ModRef:
 176     case BarrierSet::Other:
 177       if (val == noreg) {
 178         __ movptr(obj, NULL_WORD);
 179       } else {
 180         __ movl(obj, val);
 181       }
 182       break;
 183     default      :
 184       ShouldNotReachHere();
 185 
 186   }
 187 }
 188 
 189 Address TemplateTable::at_bcp(int offset) {
 190   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 191   return Address(rsi, offset);
 192 }
 193 
 194 
 195 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
 196                                    Register scratch,
 197                                    bool load_bc_into_scratch/*=true*/) {
 198 
 199   if (!RewriteBytecodes) return;
 200   // the pair bytecodes have already done the load.
 201   if (load_bc_into_scratch) {
 202     __ movl(bc, bytecode);
 203   }
 204   Label patch_done;
 205   if (JvmtiExport::can_post_breakpoint()) {
 206     Label fast_patch;
 207     // if a breakpoint is present we can't rewrite the stream directly
 208     __ movzbl(scratch, at_bcp(0));
 209     __ cmpl(scratch, Bytecodes::_breakpoint);
 210     __ jcc(Assembler::notEqual, fast_patch);
 211     __ get_method(scratch);
 212     // Let breakpoint table handling rewrite to quicker bytecode
 213     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, rsi, bc);
 214 #ifndef ASSERT
 215     __ jmpb(patch_done);
 216 #else
 217     __ jmp(patch_done);
 218 #endif
 219     __ bind(fast_patch);
 220   }
 221 #ifdef ASSERT
 222   Label okay;
 223   __ load_unsigned_byte(scratch, at_bcp(0));
 224   __ cmpl(scratch, (int)Bytecodes::java_code(bytecode));
 225   __ jccb(Assembler::equal, okay);
 226   __ cmpl(scratch, bc);
 227   __ jcc(Assembler::equal, okay);
 228   __ stop("patching the wrong bytecode");
 229   __ bind(okay);
 230 #endif
 231   // patch bytecode
 232   __ movb(at_bcp(0), bc);
 233   __ bind(patch_done);
 234 }
 235 
 236 //----------------------------------------------------------------------------------------------------
 237 // Individual instructions
 238 
 239 void TemplateTable::nop() {
 240   transition(vtos, vtos);
 241   // nothing to do
 242 }
 243 
 244 void TemplateTable::shouldnotreachhere() {
 245   transition(vtos, vtos);
 246   __ stop("shouldnotreachhere bytecode");
 247 }
 248 
 249 
 250 
 251 void TemplateTable::aconst_null() {
 252   transition(vtos, atos);
 253   __ xorptr(rax, rax);
 254 }
 255 
 256 
 257 void TemplateTable::iconst(int value) {
 258   transition(vtos, itos);
 259   if (value == 0) {
 260     __ xorptr(rax, rax);
 261   } else {
 262     __ movptr(rax, value);
 263   }
 264 }
 265 
 266 
 267 void TemplateTable::lconst(int value) {
 268   transition(vtos, ltos);
 269   if (value == 0) {
 270     __ xorptr(rax, rax);
 271   } else {
 272     __ movptr(rax, value);
 273   }
 274   assert(value >= 0, "check this code");
 275   __ xorptr(rdx, rdx);
 276 }
 277 
 278 
 279 void TemplateTable::fconst(int value) {
 280   transition(vtos, ftos);
 281          if (value == 0) { __ fldz();
 282   } else if (value == 1) { __ fld1();
 283   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
 284   } else                 { ShouldNotReachHere();
 285   }
 286 }
 287 
 288 
 289 void TemplateTable::dconst(int value) {
 290   transition(vtos, dtos);
 291          if (value == 0) { __ fldz();
 292   } else if (value == 1) { __ fld1();
 293   } else                 { ShouldNotReachHere();
 294   }
 295 }
 296 
 297 
 298 void TemplateTable::bipush() {
 299   transition(vtos, itos);
 300   __ load_signed_byte(rax, at_bcp(1));
 301 }
 302 
 303 
 304 void TemplateTable::sipush() {
 305   transition(vtos, itos);
 306   __ load_unsigned_short(rax, at_bcp(1));
 307   __ bswapl(rax);
 308   __ sarl(rax, 16);
 309 }
 310 
 311 void TemplateTable::ldc(bool wide) {
 312   transition(vtos, vtos);
 313   Label call_ldc, notFloat, notClass, Done;
 314 
 315   if (wide) {
 316     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 317   } else {
 318     __ load_unsigned_byte(rbx, at_bcp(1));
 319   }
 320   __ get_cpool_and_tags(rcx, rax);
 321   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 322   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 323 
 324   // get type
 325   __ xorptr(rdx, rdx);
 326   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 327 
 328   // unresolved string - get the resolved string
 329   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
 330   __ jccb(Assembler::equal, call_ldc);
 331 
 332   // unresolved class - get the resolved class
 333   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 334   __ jccb(Assembler::equal, call_ldc);
 335 
 336   // unresolved class in error (resolution failed) - call into runtime
 337   // so that the same error from first resolution attempt is thrown.
 338   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 339   __ jccb(Assembler::equal, call_ldc);
 340 
 341   // resolved class - need to call vm to get java mirror of the class
 342   __ cmpl(rdx, JVM_CONSTANT_Class);
 343   __ jcc(Assembler::notEqual, notClass);
 344 
 345   __ bind(call_ldc);
 346   __ movl(rcx, wide);
 347   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
 348   __ push(atos);
 349   __ jmp(Done);
 350 
 351   __ bind(notClass);
 352   __ cmpl(rdx, JVM_CONSTANT_Float);
 353   __ jccb(Assembler::notEqual, notFloat);
 354   // ftos
 355   __ fld_s(    Address(rcx, rbx, Address::times_ptr, base_offset));
 356   __ push(ftos);
 357   __ jmp(Done);
 358 
 359   __ bind(notFloat);
 360 #ifdef ASSERT
 361   { Label L;
 362     __ cmpl(rdx, JVM_CONSTANT_Integer);
 363     __ jcc(Assembler::equal, L);
 364     __ cmpl(rdx, JVM_CONSTANT_String);
 365     __ jcc(Assembler::equal, L);
 366     __ stop("unexpected tag type in ldc");
 367     __ bind(L);
 368   }
 369 #endif
 370   Label isOop;
 371   // atos and itos
 372   // String is only oop type we will see here
 373   __ cmpl(rdx, JVM_CONSTANT_String);
 374   __ jccb(Assembler::equal, isOop);
 375   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
 376   __ push(itos);
 377   __ jmp(Done);
 378   __ bind(isOop);
 379   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
 380   __ push(atos);
 381 
 382   if (VerifyOops) {
 383     __ verify_oop(rax);
 384   }
 385   __ bind(Done);
 386 }
 387 
 388 // Fast path for caching oop constants.
 389 // %%% We should use this to handle Class and String constants also.
 390 // %%% It will simplify the ldc/primitive path considerably.
 391 void TemplateTable::fast_aldc(bool wide) {
 392   transition(vtos, atos);
 393 
 394   if (!EnableInvokeDynamic) {
 395     // We should not encounter this bytecode if !EnableInvokeDynamic.
 396     // The verifier will stop it.  However, if we get past the verifier,
 397     // this will stop the thread in a reasonable way, without crashing the JVM.
 398     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 399                      InterpreterRuntime::throw_IncompatibleClassChangeError));
 400     // the call_VM checks for exception, so we should never return here.
 401     __ should_not_reach_here();
 402     return;
 403   }
 404 
 405   const Register cache = rcx;
 406   const Register index = rdx;
 407 
 408   resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
 409   if (VerifyOops) {
 410     __ verify_oop(rax);
 411   }
 412 
 413   Label L_done, L_throw_exception;
 414   const Register con_klass_temp = rcx;  // same as Rcache
 415   __ movptr(con_klass_temp, Address(rax, oopDesc::klass_offset_in_bytes()));
 416   __ cmpptr(con_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
 417   __ jcc(Assembler::notEqual, L_done);
 418   __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
 419   __ jcc(Assembler::notEqual, L_throw_exception);
 420   __ xorptr(rax, rax);
 421   __ jmp(L_done);
 422 
 423   // Load the exception from the system-array which wraps it:
 424   __ bind(L_throw_exception);
 425   __ movptr(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 426   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
 427 
 428   __ bind(L_done);
 429 }
 430 
 431 void TemplateTable::ldc2_w() {
 432   transition(vtos, vtos);
 433   Label Long, Done;
 434   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 435 
 436   __ get_cpool_and_tags(rcx, rax);
 437   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 438   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 439 
 440   // get type
 441   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
 442   __ jccb(Assembler::notEqual, Long);
 443   // dtos
 444   __ fld_d(    Address(rcx, rbx, Address::times_ptr, base_offset));
 445   __ push(dtos);
 446   __ jmpb(Done);
 447 
 448   __ bind(Long);
 449   // ltos
 450   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
 451   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
 452 
 453   __ push(ltos);
 454 
 455   __ bind(Done);
 456 }
 457 
 458 
 459 void TemplateTable::locals_index(Register reg, int offset) {
 460   __ load_unsigned_byte(reg, at_bcp(offset));
 461   __ negptr(reg);
 462 }
 463 
 464 
 465 void TemplateTable::iload() {
 466   transition(vtos, itos);
 467   if (RewriteFrequentPairs) {
 468     Label rewrite, done;
 469 
 470     // get next byte
 471     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 472     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 473     // last two iloads in a pair.  Comparing against fast_iload means that
 474     // the next bytecode is neither an iload or a caload, and therefore
 475     // an iload pair.
 476     __ cmpl(rbx, Bytecodes::_iload);
 477     __ jcc(Assembler::equal, done);
 478 
 479     __ cmpl(rbx, Bytecodes::_fast_iload);
 480     __ movl(rcx, Bytecodes::_fast_iload2);
 481     __ jccb(Assembler::equal, rewrite);
 482 
 483     // if _caload, rewrite to fast_icaload
 484     __ cmpl(rbx, Bytecodes::_caload);
 485     __ movl(rcx, Bytecodes::_fast_icaload);
 486     __ jccb(Assembler::equal, rewrite);
 487 
 488     // rewrite so iload doesn't check again.
 489     __ movl(rcx, Bytecodes::_fast_iload);
 490 
 491     // rewrite
 492     // rcx: fast bytecode
 493     __ bind(rewrite);
 494     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
 495     __ bind(done);
 496   }
 497 
 498   // Get the local value into tos
 499   locals_index(rbx);
 500   __ movl(rax, iaddress(rbx));
 501 }
 502 
 503 
 504 void TemplateTable::fast_iload2() {
 505   transition(vtos, itos);
 506   locals_index(rbx);
 507   __ movl(rax, iaddress(rbx));
 508   __ push(itos);
 509   locals_index(rbx, 3);
 510   __ movl(rax, iaddress(rbx));
 511 }
 512 
 513 void TemplateTable::fast_iload() {
 514   transition(vtos, itos);
 515   locals_index(rbx);
 516   __ movl(rax, iaddress(rbx));
 517 }
 518 
 519 
 520 void TemplateTable::lload() {
 521   transition(vtos, ltos);
 522   locals_index(rbx);
 523   __ movptr(rax, laddress(rbx));
 524   NOT_LP64(__ movl(rdx, haddress(rbx)));
 525 }
 526 
 527 
 528 void TemplateTable::fload() {
 529   transition(vtos, ftos);
 530   locals_index(rbx);
 531   __ fld_s(faddress(rbx));
 532 }
 533 
 534 
 535 void TemplateTable::dload() {
 536   transition(vtos, dtos);
 537   locals_index(rbx);
 538   __ fld_d(daddress(rbx));
 539 }
 540 
 541 
 542 void TemplateTable::aload() {
 543   transition(vtos, atos);
 544   locals_index(rbx);
 545   __ movptr(rax, aaddress(rbx));
 546 }
 547 
 548 
 549 void TemplateTable::locals_index_wide(Register reg) {
 550   __ movl(reg, at_bcp(2));
 551   __ bswapl(reg);
 552   __ shrl(reg, 16);
 553   __ negptr(reg);
 554 }
 555 
 556 
 557 void TemplateTable::wide_iload() {
 558   transition(vtos, itos);
 559   locals_index_wide(rbx);
 560   __ movl(rax, iaddress(rbx));
 561 }
 562 
 563 
 564 void TemplateTable::wide_lload() {
 565   transition(vtos, ltos);
 566   locals_index_wide(rbx);
 567   __ movptr(rax, laddress(rbx));
 568   NOT_LP64(__ movl(rdx, haddress(rbx)));
 569 }
 570 
 571 
 572 void TemplateTable::wide_fload() {
 573   transition(vtos, ftos);
 574   locals_index_wide(rbx);
 575   __ fld_s(faddress(rbx));
 576 }
 577 
 578 
 579 void TemplateTable::wide_dload() {
 580   transition(vtos, dtos);
 581   locals_index_wide(rbx);
 582   __ fld_d(daddress(rbx));
 583 }
 584 
 585 
 586 void TemplateTable::wide_aload() {
 587   transition(vtos, atos);
 588   locals_index_wide(rbx);
 589   __ movptr(rax, aaddress(rbx));
 590 }
 591 
 592 void TemplateTable::index_check(Register array, Register index) {
 593   // Pop ptr into array
 594   __ pop_ptr(array);
 595   index_check_without_pop(array, index);
 596 }
 597 
 598 void TemplateTable::index_check_without_pop(Register array, Register index) {
 599   // destroys rbx,
 600   // check array
 601   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 602   LP64_ONLY(__ movslq(index, index));
 603   // check index
 604   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 605   if (index != rbx) {
 606     // ??? convention: move aberrant index into rbx, for exception message
 607     assert(rbx != array, "different registers");
 608     __ mov(rbx, index);
 609   }
 610   __ jump_cc(Assembler::aboveEqual,
 611              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 612 }
 613 
 614 
 615 void TemplateTable::iaload() {
 616   transition(itos, itos);
 617   // rdx: array
 618   index_check(rdx, rax);  // kills rbx,
 619   // rax,: index
 620   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
 621 }
 622 
 623 
 624 void TemplateTable::laload() {
 625   transition(itos, ltos);
 626   // rax,: index
 627   // rdx: array
 628   index_check(rdx, rax);
 629   __ mov(rbx, rax);
 630   // rbx,: index
 631   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
 632   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
 633 }
 634 
 635 
 636 void TemplateTable::faload() {
 637   transition(itos, ftos);
 638   // rdx: array
 639   index_check(rdx, rax);  // kills rbx,
 640   // rax,: index
 641   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 642 }
 643 
 644 
 645 void TemplateTable::daload() {
 646   transition(itos, dtos);
 647   // rdx: array
 648   index_check(rdx, rax);  // kills rbx,
 649   // rax,: index
 650   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 651 }
 652 
 653 
 654 void TemplateTable::aaload() {
 655   transition(itos, atos);
 656   // rdx: array
 657   index_check(rdx, rax);  // kills rbx,
 658   // rax,: index
 659   __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 660 }
 661 
 662 
 663 void TemplateTable::baload() {
 664   transition(itos, itos);
 665   // rdx: array
 666   index_check(rdx, rax);  // kills rbx,
 667   // rax,: index
 668   // can do better code for P5 - fix this at some point
 669   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 670   __ mov(rax, rbx);
 671 }
 672 
 673 
 674 void TemplateTable::caload() {
 675   transition(itos, itos);
 676   // rdx: array
 677   index_check(rdx, rax);  // kills rbx,
 678   // rax,: index
 679   // can do better code for P5 - may want to improve this at some point
 680   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 681   __ mov(rax, rbx);
 682 }
 683 
 684 // iload followed by caload frequent pair
 685 void TemplateTable::fast_icaload() {
 686   transition(vtos, itos);
 687   // load index out of locals
 688   locals_index(rbx);
 689   __ movl(rax, iaddress(rbx));
 690 
 691   // rdx: array
 692   index_check(rdx, rax);
 693   // rax,: index
 694   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 695   __ mov(rax, rbx);
 696 }
 697 
 698 void TemplateTable::saload() {
 699   transition(itos, itos);
 700   // rdx: array
 701   index_check(rdx, rax);  // kills rbx,
 702   // rax,: index
 703   // can do better code for P5 - may want to improve this at some point
 704   __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 705   __ mov(rax, rbx);
 706 }
 707 
 708 
 709 void TemplateTable::iload(int n) {
 710   transition(vtos, itos);
 711   __ movl(rax, iaddress(n));
 712 }
 713 
 714 
 715 void TemplateTable::lload(int n) {
 716   transition(vtos, ltos);
 717   __ movptr(rax, laddress(n));
 718   NOT_LP64(__ movptr(rdx, haddress(n)));
 719 }
 720 
 721 
 722 void TemplateTable::fload(int n) {
 723   transition(vtos, ftos);
 724   __ fld_s(faddress(n));
 725 }
 726 
 727 
 728 void TemplateTable::dload(int n) {
 729   transition(vtos, dtos);
 730   __ fld_d(daddress(n));
 731 }
 732 
 733 
 734 void TemplateTable::aload(int n) {
 735   transition(vtos, atos);
 736   __ movptr(rax, aaddress(n));
 737 }
 738 
 739 
 740 void TemplateTable::aload_0() {
 741   transition(vtos, atos);
 742   // According to bytecode histograms, the pairs:
 743   //
 744   // _aload_0, _fast_igetfield
 745   // _aload_0, _fast_agetfield
 746   // _aload_0, _fast_fgetfield
 747   //
 748   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
 749   // bytecode checks if the next bytecode is either _fast_igetfield,
 750   // _fast_agetfield or _fast_fgetfield and then rewrites the
 751   // current bytecode into a pair bytecode; otherwise it rewrites the current
 752   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
 753   //
 754   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
 755   //       otherwise we may miss an opportunity for a pair.
 756   //
 757   // Also rewrite frequent pairs
 758   //   aload_0, aload_1
 759   //   aload_0, iload_1
 760   // These bytecodes with a small amount of code are most profitable to rewrite
 761   if (RewriteFrequentPairs) {
 762     Label rewrite, done;
 763     // get next byte
 764     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 765 
 766     // do actual aload_0
 767     aload(0);
 768 
 769     // if _getfield then wait with rewrite
 770     __ cmpl(rbx, Bytecodes::_getfield);
 771     __ jcc(Assembler::equal, done);
 772 
 773     // if _igetfield then reqrite to _fast_iaccess_0
 774     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 775     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 776     __ movl(rcx, Bytecodes::_fast_iaccess_0);
 777     __ jccb(Assembler::equal, rewrite);
 778 
 779     // if _agetfield then reqrite to _fast_aaccess_0
 780     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 781     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 782     __ movl(rcx, Bytecodes::_fast_aaccess_0);
 783     __ jccb(Assembler::equal, rewrite);
 784 
 785     // if _fgetfield then reqrite to _fast_faccess_0
 786     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 787     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 788     __ movl(rcx, Bytecodes::_fast_faccess_0);
 789     __ jccb(Assembler::equal, rewrite);
 790 
 791     // else rewrite to _fast_aload0
 792     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
 793     __ movl(rcx, Bytecodes::_fast_aload_0);
 794 
 795     // rewrite
 796     // rcx: fast bytecode
 797     __ bind(rewrite);
 798     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
 799 
 800     __ bind(done);
 801   } else {
 802     aload(0);
 803   }
 804 }
 805 
 806 void TemplateTable::istore() {
 807   transition(itos, vtos);
 808   locals_index(rbx);
 809   __ movl(iaddress(rbx), rax);
 810 }
 811 
 812 
 813 void TemplateTable::lstore() {
 814   transition(ltos, vtos);
 815   locals_index(rbx);
 816   __ movptr(laddress(rbx), rax);
 817   NOT_LP64(__ movptr(haddress(rbx), rdx));
 818 }
 819 
 820 
 821 void TemplateTable::fstore() {
 822   transition(ftos, vtos);
 823   locals_index(rbx);
 824   __ fstp_s(faddress(rbx));
 825 }
 826 
 827 
 828 void TemplateTable::dstore() {
 829   transition(dtos, vtos);
 830   locals_index(rbx);
 831   __ fstp_d(daddress(rbx));
 832 }
 833 
 834 
 835 void TemplateTable::astore() {
 836   transition(vtos, vtos);
 837   __ pop_ptr(rax);
 838   locals_index(rbx);
 839   __ movptr(aaddress(rbx), rax);
 840 }
 841 
 842 
 843 void TemplateTable::wide_istore() {
 844   transition(vtos, vtos);
 845   __ pop_i(rax);
 846   locals_index_wide(rbx);
 847   __ movl(iaddress(rbx), rax);
 848 }
 849 
 850 
 851 void TemplateTable::wide_lstore() {
 852   transition(vtos, vtos);
 853   __ pop_l(rax, rdx);
 854   locals_index_wide(rbx);
 855   __ movptr(laddress(rbx), rax);
 856   NOT_LP64(__ movl(haddress(rbx), rdx));
 857 }
 858 
 859 
 860 void TemplateTable::wide_fstore() {
 861   wide_istore();
 862 }
 863 
 864 
 865 void TemplateTable::wide_dstore() {
 866   wide_lstore();
 867 }
 868 
 869 
 870 void TemplateTable::wide_astore() {
 871   transition(vtos, vtos);
 872   __ pop_ptr(rax);
 873   locals_index_wide(rbx);
 874   __ movptr(aaddress(rbx), rax);
 875 }
 876 
 877 
 878 void TemplateTable::iastore() {
 879   transition(itos, vtos);
 880   __ pop_i(rbx);
 881   // rax,: value
 882   // rdx: array
 883   index_check(rdx, rbx);  // prefer index in rbx,
 884   // rbx,: index
 885   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
 886 }
 887 
 888 
 889 void TemplateTable::lastore() {
 890   transition(ltos, vtos);
 891   __ pop_i(rbx);
 892   // rax,: low(value)
 893   // rcx: array
 894   // rdx: high(value)
 895   index_check(rcx, rbx);  // prefer index in rbx,
 896   // rbx,: index
 897   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
 898   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
 899 }
 900 
 901 
 902 void TemplateTable::fastore() {
 903   transition(ftos, vtos);
 904   __ pop_i(rbx);
 905   // rdx: array
 906   // st0: value
 907   index_check(rdx, rbx);  // prefer index in rbx,
 908   // rbx,: index
 909   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 910 }
 911 
 912 
 913 void TemplateTable::dastore() {
 914   transition(dtos, vtos);
 915   __ pop_i(rbx);
 916   // rdx: array
 917   // st0: value
 918   index_check(rdx, rbx);  // prefer index in rbx,
 919   // rbx,: index
 920   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 921 }
 922 
 923 
 924 void TemplateTable::aastore() {
 925   Label is_null, ok_is_subtype, done;
 926   transition(vtos, vtos);
 927   // stack: ..., array, index, value
 928   __ movptr(rax, at_tos());     // Value
 929   __ movl(rcx, at_tos_p1());  // Index
 930   __ movptr(rdx, at_tos_p2());  // Array
 931 
 932   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 933   index_check_without_pop(rdx, rcx);      // kills rbx,
 934   // do array store check - check for NULL value first
 935   __ testptr(rax, rax);
 936   __ jcc(Assembler::zero, is_null);
 937 
 938   // Move subklass into EBX
 939   __ movptr(rbx, Address(rax, oopDesc::klass_offset_in_bytes()));
 940   // Move superklass into EAX
 941   __ movptr(rax, Address(rdx, oopDesc::klass_offset_in_bytes()));
 942   __ movptr(rax, Address(rax, sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes()));
 943   // Compress array+index*wordSize+12 into a single register.  Frees ECX.
 944   __ lea(rdx, element_address);
 945 
 946   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
 947   // Superklass in EAX.  Subklass in EBX.
 948   __ gen_subtype_check( rbx, ok_is_subtype );
 949 
 950   // Come here on failure
 951   // object is at TOS
 952   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
 953 
 954   // Come here on success
 955   __ bind(ok_is_subtype);
 956 
 957   // Get the value to store
 958   __ movptr(rax, at_rsp());
 959   // and store it with appropriate barrier
 960   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
 961 
 962   __ jmp(done);
 963 
 964   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
 965   __ bind(is_null);
 966   __ profile_null_seen(rbx);
 967 
 968   // Store NULL, (noreg means NULL to do_oop_store)
 969   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
 970 
 971   // Pop stack arguments
 972   __ bind(done);
 973   __ addptr(rsp, 3 * Interpreter::stackElementSize);
 974 }
 975 
 976 
 977 void TemplateTable::bastore() {
 978   transition(itos, vtos);
 979   __ pop_i(rbx);
 980   // rax,: value
 981   // rdx: array
 982   index_check(rdx, rbx);  // prefer index in rbx,
 983   // rbx,: index
 984   __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
 985 }
 986 
 987 
 988 void TemplateTable::castore() {
 989   transition(itos, vtos);
 990   __ pop_i(rbx);
 991   // rax,: value
 992   // rdx: array
 993   index_check(rdx, rbx);  // prefer index in rbx,
 994   // rbx,: index
 995   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
 996 }
 997 
 998 
 999 void TemplateTable::sastore() {
1000   castore();
1001 }
1002 
1003 
1004 void TemplateTable::istore(int n) {
1005   transition(itos, vtos);
1006   __ movl(iaddress(n), rax);
1007 }
1008 
1009 
1010 void TemplateTable::lstore(int n) {
1011   transition(ltos, vtos);
1012   __ movptr(laddress(n), rax);
1013   NOT_LP64(__ movptr(haddress(n), rdx));
1014 }
1015 
1016 
1017 void TemplateTable::fstore(int n) {
1018   transition(ftos, vtos);
1019   __ fstp_s(faddress(n));
1020 }
1021 
1022 
1023 void TemplateTable::dstore(int n) {
1024   transition(dtos, vtos);
1025   __ fstp_d(daddress(n));
1026 }
1027 
1028 
1029 void TemplateTable::astore(int n) {
1030   transition(vtos, vtos);
1031   __ pop_ptr(rax);
1032   __ movptr(aaddress(n), rax);
1033 }
1034 
1035 
1036 void TemplateTable::pop() {
1037   transition(vtos, vtos);
1038   __ addptr(rsp, Interpreter::stackElementSize);
1039 }
1040 
1041 
1042 void TemplateTable::pop2() {
1043   transition(vtos, vtos);
1044   __ addptr(rsp, 2*Interpreter::stackElementSize);
1045 }
1046 
1047 
1048 void TemplateTable::dup() {
1049   transition(vtos, vtos);
1050   // stack: ..., a
1051   __ load_ptr(0, rax);
1052   __ push_ptr(rax);
1053   // stack: ..., a, a
1054 }
1055 
1056 
1057 void TemplateTable::dup_x1() {
1058   transition(vtos, vtos);
1059   // stack: ..., a, b
1060   __ load_ptr( 0, rax);  // load b
1061   __ load_ptr( 1, rcx);  // load a
1062   __ store_ptr(1, rax);  // store b
1063   __ store_ptr(0, rcx);  // store a
1064   __ push_ptr(rax);      // push b
1065   // stack: ..., b, a, b
1066 }
1067 
1068 
1069 void TemplateTable::dup_x2() {
1070   transition(vtos, vtos);
1071   // stack: ..., a, b, c
1072   __ load_ptr( 0, rax);  // load c
1073   __ load_ptr( 2, rcx);  // load a
1074   __ store_ptr(2, rax);  // store c in a
1075   __ push_ptr(rax);      // push c
1076   // stack: ..., c, b, c, c
1077   __ load_ptr( 2, rax);  // load b
1078   __ store_ptr(2, rcx);  // store a in b
1079   // stack: ..., c, a, c, c
1080   __ store_ptr(1, rax);  // store b in c
1081   // stack: ..., c, a, b, c
1082 }
1083 
1084 
1085 void TemplateTable::dup2() {
1086   transition(vtos, vtos);
1087   // stack: ..., a, b
1088   __ load_ptr(1, rax);  // load a
1089   __ push_ptr(rax);     // push a
1090   __ load_ptr(1, rax);  // load b
1091   __ push_ptr(rax);     // push b
1092   // stack: ..., a, b, a, b
1093 }
1094 
1095 
1096 void TemplateTable::dup2_x1() {
1097   transition(vtos, vtos);
1098   // stack: ..., a, b, c
1099   __ load_ptr( 0, rcx);  // load c
1100   __ load_ptr( 1, rax);  // load b
1101   __ push_ptr(rax);      // push b
1102   __ push_ptr(rcx);      // push c
1103   // stack: ..., a, b, c, b, c
1104   __ store_ptr(3, rcx);  // store c in b
1105   // stack: ..., a, c, c, b, c
1106   __ load_ptr( 4, rcx);  // load a
1107   __ store_ptr(2, rcx);  // store a in 2nd c
1108   // stack: ..., a, c, a, b, c
1109   __ store_ptr(4, rax);  // store b in a
1110   // stack: ..., b, c, a, b, c
1111   // stack: ..., b, c, a, b, c
1112 }
1113 
1114 
1115 void TemplateTable::dup2_x2() {
1116   transition(vtos, vtos);
1117   // stack: ..., a, b, c, d
1118   __ load_ptr( 0, rcx);  // load d
1119   __ load_ptr( 1, rax);  // load c
1120   __ push_ptr(rax);      // push c
1121   __ push_ptr(rcx);      // push d
1122   // stack: ..., a, b, c, d, c, d
1123   __ load_ptr( 4, rax);  // load b
1124   __ store_ptr(2, rax);  // store b in d
1125   __ store_ptr(4, rcx);  // store d in b
1126   // stack: ..., a, d, c, b, c, d
1127   __ load_ptr( 5, rcx);  // load a
1128   __ load_ptr( 3, rax);  // load c
1129   __ store_ptr(3, rcx);  // store a in c
1130   __ store_ptr(5, rax);  // store c in a
1131   // stack: ..., c, d, a, b, c, d
1132   // stack: ..., c, d, a, b, c, d
1133 }
1134 
1135 
1136 void TemplateTable::swap() {
1137   transition(vtos, vtos);
1138   // stack: ..., a, b
1139   __ load_ptr( 1, rcx);  // load a
1140   __ load_ptr( 0, rax);  // load b
1141   __ store_ptr(0, rcx);  // store a in b
1142   __ store_ptr(1, rax);  // store b in a
1143   // stack: ..., b, a
1144 }
1145 
1146 
1147 void TemplateTable::iop2(Operation op) {
1148   transition(itos, itos);
1149   switch (op) {
1150     case add  :                   __ pop_i(rdx); __ addl (rax, rdx); break;
1151     case sub  : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1152     case mul  :                   __ pop_i(rdx); __ imull(rax, rdx); break;
1153     case _and :                   __ pop_i(rdx); __ andl (rax, rdx); break;
1154     case _or  :                   __ pop_i(rdx); __ orl  (rax, rdx); break;
1155     case _xor :                   __ pop_i(rdx); __ xorl (rax, rdx); break;
1156     case shl  : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
1157     case shr  : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
1158     case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
1159     default   : ShouldNotReachHere();
1160   }
1161 }
1162 
1163 
1164 void TemplateTable::lop2(Operation op) {
1165   transition(ltos, ltos);
1166   __ pop_l(rbx, rcx);
1167   switch (op) {
1168     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
1169     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
1170                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
1171     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
1172     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
1173     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
1174     default   : ShouldNotReachHere();
1175   }
1176 }
1177 
1178 
1179 void TemplateTable::idiv() {
1180   transition(itos, itos);
1181   __ mov(rcx, rax);
1182   __ pop_i(rax);
1183   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
1184   //       they are not equal, one could do a normal division (no correction
1185   //       needed), which may speed up this implementation for the common case.
1186   //       (see also JVM spec., p.243 & p.271)
1187   __ corrected_idivl(rcx);
1188 }
1189 
1190 
1191 void TemplateTable::irem() {
1192   transition(itos, itos);
1193   __ mov(rcx, rax);
1194   __ pop_i(rax);
1195   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
1196   //       they are not equal, one could do a normal division (no correction
1197   //       needed), which may speed up this implementation for the common case.
1198   //       (see also JVM spec., p.243 & p.271)
1199   __ corrected_idivl(rcx);
1200   __ mov(rax, rdx);
1201 }
1202 
1203 
1204 void TemplateTable::lmul() {
1205   transition(ltos, ltos);
1206   __ pop_l(rbx, rcx);
1207   __ push(rcx); __ push(rbx);
1208   __ push(rdx); __ push(rax);
1209   __ lmul(2 * wordSize, 0);
1210   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1211 }
1212 
1213 
1214 void TemplateTable::ldiv() {
1215   transition(ltos, ltos);
1216   __ pop_l(rbx, rcx);
1217   __ push(rcx); __ push(rbx);
1218   __ push(rdx); __ push(rax);
1219   // check if y = 0
1220   __ orl(rax, rdx);
1221   __ jump_cc(Assembler::zero,
1222              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1223   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1224   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1225 }
1226 
1227 
1228 void TemplateTable::lrem() {
1229   transition(ltos, ltos);
1230   __ pop_l(rbx, rcx);
1231   __ push(rcx); __ push(rbx);
1232   __ push(rdx); __ push(rax);
1233   // check if y = 0
1234   __ orl(rax, rdx);
1235   __ jump_cc(Assembler::zero,
1236              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1237   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1238   __ addptr(rsp, 4 * wordSize);
1239 }
1240 
1241 
1242 void TemplateTable::lshl() {
1243   transition(itos, ltos);
1244   __ movl(rcx, rax);                             // get shift count
1245   __ pop_l(rax, rdx);                            // get shift value
1246   __ lshl(rdx, rax);
1247 }
1248 
1249 
1250 void TemplateTable::lshr() {
1251   transition(itos, ltos);
1252   __ mov(rcx, rax);                              // get shift count
1253   __ pop_l(rax, rdx);                            // get shift value
1254   __ lshr(rdx, rax, true);
1255 }
1256 
1257 
1258 void TemplateTable::lushr() {
1259   transition(itos, ltos);
1260   __ mov(rcx, rax);                              // get shift count
1261   __ pop_l(rax, rdx);                            // get shift value
1262   __ lshr(rdx, rax);
1263 }
1264 
1265 
1266 void TemplateTable::fop2(Operation op) {
1267   transition(ftos, ftos);
1268   switch (op) {
1269     case add: __ fadd_s (at_rsp());                break;
1270     case sub: __ fsubr_s(at_rsp());                break;
1271     case mul: __ fmul_s (at_rsp());                break;
1272     case div: __ fdivr_s(at_rsp());                break;
1273     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
1274     default : ShouldNotReachHere();
1275   }
1276   __ f2ieee();
1277   __ pop(rax);  // pop float thing off
1278 }
1279 
1280 
1281 void TemplateTable::dop2(Operation op) {
1282   transition(dtos, dtos);
1283 
1284   switch (op) {
1285     case add: __ fadd_d (at_rsp());                break;
1286     case sub: __ fsubr_d(at_rsp());                break;
1287     case mul: {
1288       Label L_strict;
1289       Label L_join;
1290       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
1291       __ get_method(rcx);
1292       __ movl(rcx, access_flags);
1293       __ testl(rcx, JVM_ACC_STRICT);
1294       __ jccb(Assembler::notZero, L_strict);
1295       __ fmul_d (at_rsp());
1296       __ jmpb(L_join);
1297       __ bind(L_strict);
1298       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1299       __ fmulp();
1300       __ fmul_d (at_rsp());
1301       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1302       __ fmulp();
1303       __ bind(L_join);
1304       break;
1305     }
1306     case div: {
1307       Label L_strict;
1308       Label L_join;
1309       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
1310       __ get_method(rcx);
1311       __ movl(rcx, access_flags);
1312       __ testl(rcx, JVM_ACC_STRICT);
1313       __ jccb(Assembler::notZero, L_strict);
1314       __ fdivr_d(at_rsp());
1315       __ jmp(L_join);
1316       __ bind(L_strict);
1317       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1318       __ fmul_d (at_rsp());
1319       __ fdivrp();
1320       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1321       __ fmulp();
1322       __ bind(L_join);
1323       break;
1324     }
1325     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
1326     default : ShouldNotReachHere();
1327   }
1328   __ d2ieee();
1329   // Pop double precision number from rsp.
1330   __ pop(rax);
1331   __ pop(rdx);
1332 }
1333 
1334 
1335 void TemplateTable::ineg() {
1336   transition(itos, itos);
1337   __ negl(rax);
1338 }
1339 
1340 
1341 void TemplateTable::lneg() {
1342   transition(ltos, ltos);
1343   __ lneg(rdx, rax);
1344 }
1345 
1346 
1347 void TemplateTable::fneg() {
1348   transition(ftos, ftos);
1349   __ fchs();
1350 }
1351 
1352 
1353 void TemplateTable::dneg() {
1354   transition(dtos, dtos);
1355   __ fchs();
1356 }
1357 
1358 
1359 void TemplateTable::iinc() {
1360   transition(vtos, vtos);
1361   __ load_signed_byte(rdx, at_bcp(2));           // get constant
1362   locals_index(rbx);
1363   __ addl(iaddress(rbx), rdx);
1364 }
1365 
1366 
1367 void TemplateTable::wide_iinc() {
1368   transition(vtos, vtos);
1369   __ movl(rdx, at_bcp(4));                       // get constant
1370   locals_index_wide(rbx);
1371   __ bswapl(rdx);                                 // swap bytes & sign-extend constant
1372   __ sarl(rdx, 16);
1373   __ addl(iaddress(rbx), rdx);
1374   // Note: should probably use only one movl to get both
1375   //       the index and the constant -> fix this
1376 }
1377 
1378 
1379 void TemplateTable::convert() {
1380   // Checking
1381 #ifdef ASSERT
1382   { TosState tos_in  = ilgl;
1383     TosState tos_out = ilgl;
1384     switch (bytecode()) {
1385       case Bytecodes::_i2l: // fall through
1386       case Bytecodes::_i2f: // fall through
1387       case Bytecodes::_i2d: // fall through
1388       case Bytecodes::_i2b: // fall through
1389       case Bytecodes::_i2c: // fall through
1390       case Bytecodes::_i2s: tos_in = itos; break;
1391       case Bytecodes::_l2i: // fall through
1392       case Bytecodes::_l2f: // fall through
1393       case Bytecodes::_l2d: tos_in = ltos; break;
1394       case Bytecodes::_f2i: // fall through
1395       case Bytecodes::_f2l: // fall through
1396       case Bytecodes::_f2d: tos_in = ftos; break;
1397       case Bytecodes::_d2i: // fall through
1398       case Bytecodes::_d2l: // fall through
1399       case Bytecodes::_d2f: tos_in = dtos; break;
1400       default             : ShouldNotReachHere();
1401     }
1402     switch (bytecode()) {
1403       case Bytecodes::_l2i: // fall through
1404       case Bytecodes::_f2i: // fall through
1405       case Bytecodes::_d2i: // fall through
1406       case Bytecodes::_i2b: // fall through
1407       case Bytecodes::_i2c: // fall through
1408       case Bytecodes::_i2s: tos_out = itos; break;
1409       case Bytecodes::_i2l: // fall through
1410       case Bytecodes::_f2l: // fall through
1411       case Bytecodes::_d2l: tos_out = ltos; break;
1412       case Bytecodes::_i2f: // fall through
1413       case Bytecodes::_l2f: // fall through
1414       case Bytecodes::_d2f: tos_out = ftos; break;
1415       case Bytecodes::_i2d: // fall through
1416       case Bytecodes::_l2d: // fall through
1417       case Bytecodes::_f2d: tos_out = dtos; break;
1418       default             : ShouldNotReachHere();
1419     }
1420     transition(tos_in, tos_out);
1421   }
1422 #endif // ASSERT
1423 
1424   // Conversion
1425   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
1426   switch (bytecode()) {
1427     case Bytecodes::_i2l:
1428       __ extend_sign(rdx, rax);
1429       break;
1430     case Bytecodes::_i2f:
1431       __ push(rax);          // store int on tos
1432       __ fild_s(at_rsp());   // load int to ST0
1433       __ f2ieee();           // truncate to float size
1434       __ pop(rcx);           // adjust rsp
1435       break;
1436     case Bytecodes::_i2d:
1437       __ push(rax);          // add one slot for d2ieee()
1438       __ push(rax);          // store int on tos
1439       __ fild_s(at_rsp());   // load int to ST0
1440       __ d2ieee();           // truncate to double size
1441       __ pop(rcx);           // adjust rsp
1442       __ pop(rcx);
1443       break;
1444     case Bytecodes::_i2b:
1445       __ shll(rax, 24);      // truncate upper 24 bits
1446       __ sarl(rax, 24);      // and sign-extend byte
1447       LP64_ONLY(__ movsbl(rax, rax));
1448       break;
1449     case Bytecodes::_i2c:
1450       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
1451       LP64_ONLY(__ movzwl(rax, rax));
1452       break;
1453     case Bytecodes::_i2s:
1454       __ shll(rax, 16);      // truncate upper 16 bits
1455       __ sarl(rax, 16);      // and sign-extend short
1456       LP64_ONLY(__ movswl(rax, rax));
1457       break;
1458     case Bytecodes::_l2i:
1459       /* nothing to do */
1460       break;
1461     case Bytecodes::_l2f:
1462       __ push(rdx);          // store long on tos
1463       __ push(rax);
1464       __ fild_d(at_rsp());   // load long to ST0
1465       __ f2ieee();           // truncate to float size
1466       __ pop(rcx);           // adjust rsp
1467       __ pop(rcx);
1468       break;
1469     case Bytecodes::_l2d:
1470       __ push(rdx);          // store long on tos
1471       __ push(rax);
1472       __ fild_d(at_rsp());   // load long to ST0
1473       __ d2ieee();           // truncate to double size
1474       __ pop(rcx);           // adjust rsp
1475       __ pop(rcx);
1476       break;
1477     case Bytecodes::_f2i:
1478       __ push(rcx);          // reserve space for argument
1479       __ fstp_s(at_rsp());   // pass float argument on stack
1480       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1481       break;
1482     case Bytecodes::_f2l:
1483       __ push(rcx);          // reserve space for argument
1484       __ fstp_s(at_rsp());   // pass float argument on stack
1485       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1486       break;
1487     case Bytecodes::_f2d:
1488       /* nothing to do */
1489       break;
1490     case Bytecodes::_d2i:
1491       __ push(rcx);          // reserve space for argument
1492       __ push(rcx);
1493       __ fstp_d(at_rsp());   // pass double argument on stack
1494       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
1495       break;
1496     case Bytecodes::_d2l:
1497       __ push(rcx);          // reserve space for argument
1498       __ push(rcx);
1499       __ fstp_d(at_rsp());   // pass double argument on stack
1500       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
1501       break;
1502     case Bytecodes::_d2f:
1503       __ push(rcx);          // reserve space for f2ieee()
1504       __ f2ieee();           // truncate to float size
1505       __ pop(rcx);           // adjust rsp
1506       break;
1507     default             :
1508       ShouldNotReachHere();
1509   }
1510 }
1511 
1512 
1513 void TemplateTable::lcmp() {
1514   transition(ltos, itos);
1515   // y = rdx:rax
1516   __ pop_l(rbx, rcx);             // get x = rcx:rbx
1517   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
1518   __ mov(rax, rcx);
1519 }
1520 
1521 
1522 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1523   if (is_float) {
1524     __ fld_s(at_rsp());
1525   } else {
1526     __ fld_d(at_rsp());
1527     __ pop(rdx);
1528   }
1529   __ pop(rcx);
1530   __ fcmp2int(rax, unordered_result < 0);
1531 }
1532 
1533 
1534 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1535   __ get_method(rcx);           // ECX holds method
1536   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
1537 
1538   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset();
1539   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset();
1540   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
1541 
1542   // Load up EDX with the branch displacement
1543   __ movl(rdx, at_bcp(1));
1544   __ bswapl(rdx);
1545   if (!is_wide) __ sarl(rdx, 16);
1546   LP64_ONLY(__ movslq(rdx, rdx));
1547 
1548 
1549   // Handle all the JSR stuff here, then exit.
1550   // It's much shorter and cleaner than intermingling with the
1551   // non-JSR normal-branch stuff occurring below.
1552   if (is_jsr) {
1553     // Pre-load the next target bytecode into EBX
1554     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
1555 
1556     // compute return address as bci in rax,
1557     __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(constMethodOopDesc::codes_offset())));
1558     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
1559     // Adjust the bcp in RSI by the displacement in EDX
1560     __ addptr(rsi, rdx);
1561     // Push return address
1562     __ push_i(rax);
1563     // jsr returns vtos
1564     __ dispatch_only_noverify(vtos);
1565     return;
1566   }
1567 
1568   // Normal (non-jsr) branch handling
1569 
1570   // Adjust the bcp in RSI by the displacement in EDX
1571   __ addptr(rsi, rdx);
1572 
1573   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
1574   Label backedge_counter_overflow;
1575   Label profile_method;
1576   Label dispatch;
1577   if (UseLoopCounter) {
1578     // increment backedge counter for backward branches
1579     // rax,: MDO
1580     // rbx,: MDO bumped taken-count
1581     // rcx: method
1582     // rdx: target offset
1583     // rsi: target bcp
1584     // rdi: locals pointer
1585     __ testl(rdx, rdx);             // check if forward or backward branch
1586     __ jcc(Assembler::positive, dispatch); // count only if backward branch
1587 
1588     if (TieredCompilation) {
1589       Label no_mdo;
1590       int increment = InvocationCounter::count_increment;
1591       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1592       if (ProfileInterpreter) {
1593         // Are we profiling?
1594         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
1595         __ testptr(rbx, rbx);
1596         __ jccb(Assembler::zero, no_mdo);
1597         // Increment the MDO backedge counter
1598         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
1599                                                 in_bytes(InvocationCounter::counter_offset()));
1600         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1601                                    rax, false, Assembler::zero, &backedge_counter_overflow);
1602         __ jmp(dispatch);
1603       }
1604       __ bind(no_mdo);
1605       // Increment backedge counter in methodOop
1606       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
1607                                  rax, false, Assembler::zero, &backedge_counter_overflow);
1608     } else {
1609       // increment counter
1610       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
1611       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
1612       __ movl(Address(rcx, be_offset), rax);        // store counter
1613 
1614       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
1615       __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
1616       __ addl(rax, Address(rcx, be_offset));        // add both counters
1617 
1618       if (ProfileInterpreter) {
1619         // Test to see if we should create a method data oop
1620         __ cmp32(rax,
1621                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1622         __ jcc(Assembler::less, dispatch);
1623 
1624         // if no method data exists, go to profile method
1625         __ test_method_data_pointer(rax, profile_method);
1626 
1627         if (UseOnStackReplacement) {
1628           // check for overflow against rbx, which is the MDO taken count
1629           __ cmp32(rbx,
1630                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1631           __ jcc(Assembler::below, dispatch);
1632 
1633           // When ProfileInterpreter is on, the backedge_count comes from the
1634           // methodDataOop, which value does not get reset on the call to
1635           // frequency_counter_overflow().  To avoid excessive calls to the overflow
1636           // routine while the method is being compiled, add a second test to make
1637           // sure the overflow function is called only once every overflow_frequency.
1638           const int overflow_frequency = 1024;
1639           __ andptr(rbx, overflow_frequency-1);
1640           __ jcc(Assembler::zero, backedge_counter_overflow);
1641         }
1642       } else {
1643         if (UseOnStackReplacement) {
1644           // check for overflow against rax, which is the sum of the counters
1645           __ cmp32(rax,
1646                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1647           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1648 
1649         }
1650       }
1651     }
1652     __ bind(dispatch);
1653   }
1654 
1655   // Pre-load the next target bytecode into EBX
1656   __ load_unsigned_byte(rbx, Address(rsi, 0));
1657 
1658   // continue with the bytecode @ target
1659   // rax,: return bci for jsr's, unused otherwise
1660   // rbx,: target bytecode
1661   // rsi: target bcp
1662   __ dispatch_only(vtos);
1663 
1664   if (UseLoopCounter) {
1665     if (ProfileInterpreter) {
1666       // Out-of-line code to allocate method data oop.
1667       __ bind(profile_method);
1668       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1669       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
1670       __ set_method_data_pointer_for_bcp();
1671       __ jmp(dispatch);
1672     }
1673 
1674     if (UseOnStackReplacement) {
1675 
1676       // invocation counter overflow
1677       __ bind(backedge_counter_overflow);
1678       __ negptr(rdx);
1679       __ addptr(rdx, rsi);        // branch bcp
1680       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
1681       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
1682 
1683       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
1684       // rbx,: target bytecode
1685       // rdx: scratch
1686       // rdi: locals pointer
1687       // rsi: bcp
1688       __ testptr(rax, rax);                      // test result
1689       __ jcc(Assembler::zero, dispatch);         // no osr if null
1690       // nmethod may have been invalidated (VM may block upon call_VM return)
1691       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
1692       __ cmpl(rcx, InvalidOSREntryBci);
1693       __ jcc(Assembler::equal, dispatch);
1694 
1695       // We have the address of an on stack replacement routine in rax,
1696       // We need to prepare to execute the OSR method. First we must
1697       // migrate the locals and monitors off of the stack.
1698 
1699       __ mov(rbx, rax);                             // save the nmethod
1700 
1701       const Register thread = rcx;
1702       __ get_thread(thread);
1703       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1704       // rax, is OSR buffer, move it to expected parameter location
1705       __ mov(rcx, rax);
1706 
1707       // pop the interpreter frame
1708       __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1709       __ leave();                                // remove frame anchor
1710       __ pop(rdi);                               // get return address
1711       __ mov(rsp, rdx);                          // set sp to sender sp
1712 
1713       // Align stack pointer for compiled code (note that caller is
1714       // responsible for undoing this fixup by remembering the old SP
1715       // in an rbp,-relative location)
1716       __ andptr(rsp, -(StackAlignmentInBytes));
1717 
1718       // push the (possibly adjusted) return address
1719       __ push(rdi);
1720 
1721       // and begin the OSR nmethod
1722       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
1723     }
1724   }
1725 }
1726 
1727 
1728 void TemplateTable::if_0cmp(Condition cc) {
1729   transition(itos, vtos);
1730   // assume branch is more often taken than not (loops use backward branches)
1731   Label not_taken;
1732   __ testl(rax, rax);
1733   __ jcc(j_not(cc), not_taken);
1734   branch(false, false);
1735   __ bind(not_taken);
1736   __ profile_not_taken_branch(rax);
1737 }
1738 
1739 
1740 void TemplateTable::if_icmp(Condition cc) {
1741   transition(itos, vtos);
1742   // assume branch is more often taken than not (loops use backward branches)
1743   Label not_taken;
1744   __ pop_i(rdx);
1745   __ cmpl(rdx, rax);
1746   __ jcc(j_not(cc), not_taken);
1747   branch(false, false);
1748   __ bind(not_taken);
1749   __ profile_not_taken_branch(rax);
1750 }
1751 
1752 
1753 void TemplateTable::if_nullcmp(Condition cc) {
1754   transition(atos, vtos);
1755   // assume branch is more often taken than not (loops use backward branches)
1756   Label not_taken;
1757   __ testptr(rax, rax);
1758   __ jcc(j_not(cc), not_taken);
1759   branch(false, false);
1760   __ bind(not_taken);
1761   __ profile_not_taken_branch(rax);
1762 }
1763 
1764 
1765 void TemplateTable::if_acmp(Condition cc) {
1766   transition(atos, vtos);
1767   // assume branch is more often taken than not (loops use backward branches)
1768   Label not_taken;
1769   __ pop_ptr(rdx);
1770   __ cmpptr(rdx, rax);
1771   __ jcc(j_not(cc), not_taken);
1772   branch(false, false);
1773   __ bind(not_taken);
1774   __ profile_not_taken_branch(rax);
1775 }
1776 
1777 
1778 void TemplateTable::ret() {
1779   transition(vtos, vtos);
1780   locals_index(rbx);
1781   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
1782   __ profile_ret(rbx, rcx);
1783   __ get_method(rax);
1784   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
1785   __ lea(rsi, Address(rsi, rbx, Address::times_1,
1786                       constMethodOopDesc::codes_offset()));
1787   __ dispatch_next(vtos);
1788 }
1789 
1790 
1791 void TemplateTable::wide_ret() {
1792   transition(vtos, vtos);
1793   locals_index_wide(rbx);
1794   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
1795   __ profile_ret(rbx, rcx);
1796   __ get_method(rax);
1797   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
1798   __ lea(rsi, Address(rsi, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
1799   __ dispatch_next(vtos);
1800 }
1801 
1802 
1803 void TemplateTable::tableswitch() {
1804   Label default_case, continue_execution;
1805   transition(itos, vtos);
1806   // align rsi
1807   __ lea(rbx, at_bcp(wordSize));
1808   __ andptr(rbx, -wordSize);
1809   // load lo & hi
1810   __ movl(rcx, Address(rbx, 1 * wordSize));
1811   __ movl(rdx, Address(rbx, 2 * wordSize));
1812   __ bswapl(rcx);
1813   __ bswapl(rdx);
1814   // check against lo & hi
1815   __ cmpl(rax, rcx);
1816   __ jccb(Assembler::less, default_case);
1817   __ cmpl(rax, rdx);
1818   __ jccb(Assembler::greater, default_case);
1819   // lookup dispatch offset
1820   __ subl(rax, rcx);
1821   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1822   __ profile_switch_case(rax, rbx, rcx);
1823   // continue execution
1824   __ bind(continue_execution);
1825   __ bswapl(rdx);
1826   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
1827   __ addptr(rsi, rdx);
1828   __ dispatch_only(vtos);
1829   // handle default
1830   __ bind(default_case);
1831   __ profile_switch_default(rax);
1832   __ movl(rdx, Address(rbx, 0));
1833   __ jmp(continue_execution);
1834 }
1835 
1836 
1837 void TemplateTable::lookupswitch() {
1838   transition(itos, itos);
1839   __ stop("lookupswitch bytecode should have been rewritten");
1840 }
1841 
1842 
1843 void TemplateTable::fast_linearswitch() {
1844   transition(itos, vtos);
1845   Label loop_entry, loop, found, continue_execution;
1846   // bswapl rax, so we can avoid bswapping the table entries
1847   __ bswapl(rax);
1848   // align rsi
1849   __ lea(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
1850   __ andptr(rbx, -wordSize);
1851   // set counter
1852   __ movl(rcx, Address(rbx, wordSize));
1853   __ bswapl(rcx);
1854   __ jmpb(loop_entry);
1855   // table search
1856   __ bind(loop);
1857   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
1858   __ jccb(Assembler::equal, found);
1859   __ bind(loop_entry);
1860   __ decrementl(rcx);
1861   __ jcc(Assembler::greaterEqual, loop);
1862   // default case
1863   __ profile_switch_default(rax);
1864   __ movl(rdx, Address(rbx, 0));
1865   __ jmpb(continue_execution);
1866   // entry found -> get offset
1867   __ bind(found);
1868   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
1869   __ profile_switch_case(rcx, rax, rbx);
1870   // continue execution
1871   __ bind(continue_execution);
1872   __ bswapl(rdx);
1873   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
1874   __ addptr(rsi, rdx);
1875   __ dispatch_only(vtos);
1876 }
1877 
1878 
1879 void TemplateTable::fast_binaryswitch() {
1880   transition(itos, vtos);
1881   // Implementation using the following core algorithm:
1882   //
1883   // int binary_search(int key, LookupswitchPair* array, int n) {
1884   //   // Binary search according to "Methodik des Programmierens" by
1885   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1886   //   int i = 0;
1887   //   int j = n;
1888   //   while (i+1 < j) {
1889   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1890   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1891   //     // where a stands for the array and assuming that the (inexisting)
1892   //     // element a[n] is infinitely big.
1893   //     int h = (i + j) >> 1;
1894   //     // i < h < j
1895   //     if (key < array[h].fast_match()) {
1896   //       j = h;
1897   //     } else {
1898   //       i = h;
1899   //     }
1900   //   }
1901   //   // R: a[i] <= key < a[i+1] or Q
1902   //   // (i.e., if key is within array, i is the correct index)
1903   //   return i;
1904   // }
1905 
1906   // register allocation
1907   const Register key   = rax;                    // already set (tosca)
1908   const Register array = rbx;
1909   const Register i     = rcx;
1910   const Register j     = rdx;
1911   const Register h     = rdi;                    // needs to be restored
1912   const Register temp  = rsi;
1913   // setup array
1914   __ save_bcp();
1915 
1916   __ lea(array, at_bcp(3*wordSize));             // btw: should be able to get rid of this instruction (change offsets below)
1917   __ andptr(array, -wordSize);
1918   // initialize i & j
1919   __ xorl(i, i);                                 // i = 0;
1920   __ movl(j, Address(array, -wordSize));         // j = length(array);
1921   // Convert j into native byteordering
1922   __ bswapl(j);
1923   // and start
1924   Label entry;
1925   __ jmp(entry);
1926 
1927   // binary search loop
1928   { Label loop;
1929     __ bind(loop);
1930     // int h = (i + j) >> 1;
1931     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
1932     __ sarl(h, 1);                               // h = (i + j) >> 1;
1933     // if (key < array[h].fast_match()) {
1934     //   j = h;
1935     // } else {
1936     //   i = h;
1937     // }
1938     // Convert array[h].match to native byte-ordering before compare
1939     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
1940     __ bswapl(temp);
1941     __ cmpl(key, temp);
1942     if (VM_Version::supports_cmov()) {
1943       __ cmovl(Assembler::less        , j, h);   // j = h if (key <  array[h].fast_match())
1944       __ cmovl(Assembler::greaterEqual, i, h);   // i = h if (key >= array[h].fast_match())
1945     } else {
1946       Label set_i, end_of_if;
1947       __ jccb(Assembler::greaterEqual, set_i);     // {
1948       __ mov(j, h);                                //   j = h;
1949       __ jmp(end_of_if);                           // }
1950       __ bind(set_i);                              // else {
1951       __ mov(i, h);                                //   i = h;
1952       __ bind(end_of_if);                          // }
1953     }
1954     // while (i+1 < j)
1955     __ bind(entry);
1956     __ leal(h, Address(i, 1));                   // i+1
1957     __ cmpl(h, j);                               // i+1 < j
1958     __ jcc(Assembler::less, loop);
1959   }
1960 
1961   // end of binary search, result index is i (must check again!)
1962   Label default_case;
1963   // Convert array[i].match to native byte-ordering before compare
1964   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
1965   __ bswapl(temp);
1966   __ cmpl(key, temp);
1967   __ jcc(Assembler::notEqual, default_case);
1968 
1969   // entry found -> j = offset
1970   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
1971   __ profile_switch_case(i, key, array);
1972   __ bswapl(j);
1973   LP64_ONLY(__ movslq(j, j));
1974   __ restore_bcp();
1975   __ restore_locals();                           // restore rdi
1976   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
1977 
1978   __ addptr(rsi, j);
1979   __ dispatch_only(vtos);
1980 
1981   // default case -> j = default offset
1982   __ bind(default_case);
1983   __ profile_switch_default(i);
1984   __ movl(j, Address(array, -2*wordSize));
1985   __ bswapl(j);
1986   LP64_ONLY(__ movslq(j, j));
1987   __ restore_bcp();
1988   __ restore_locals();                           // restore rdi
1989   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
1990   __ addptr(rsi, j);
1991   __ dispatch_only(vtos);
1992 }
1993 
1994 
1995 void TemplateTable::_return(TosState state) {
1996   transition(state, state);
1997   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
1998 
1999   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2000     assert(state == vtos, "only valid state");
2001     __ movptr(rax, aaddress(0));
2002     __ movptr(rdi, Address(rax, oopDesc::klass_offset_in_bytes()));
2003     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
2004     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2005     Label skip_register_finalizer;
2006     __ jcc(Assembler::zero, skip_register_finalizer);
2007 
2008     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
2009 
2010     __ bind(skip_register_finalizer);
2011   }
2012 
2013   __ remove_activation(state, rsi);
2014   __ jmp(rsi);
2015 }
2016 
2017 
2018 // ----------------------------------------------------------------------------
2019 // Volatile variables demand their effects be made known to all CPU's in
2020 // order.  Store buffers on most chips allow reads & writes to reorder; the
2021 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2022 // memory barrier (i.e., it's not sufficient that the interpreter does not
2023 // reorder volatile references, the hardware also must not reorder them).
2024 //
2025 // According to the new Java Memory Model (JMM):
2026 // (1) All volatiles are serialized wrt to each other.
2027 // ALSO reads & writes act as aquire & release, so:
2028 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2029 // the read float up to before the read.  It's OK for non-volatile memory refs
2030 // that happen before the volatile read to float down below it.
2031 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2032 // that happen BEFORE the write float down to after the write.  It's OK for
2033 // non-volatile memory refs that happen after the volatile write to float up
2034 // before it.
2035 //
2036 // We only put in barriers around volatile refs (they are expensive), not
2037 // _between_ memory refs (that would require us to track the flavor of the
2038 // previous memory refs).  Requirements (2) and (3) require some barriers
2039 // before volatile stores and after volatile loads.  These nearly cover
2040 // requirement (1) but miss the volatile-store-volatile-load case.  This final
2041 // case is placed after volatile-stores although it could just as well go
2042 // before volatile-loads.
2043 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2044   // Helper function to insert a is-volatile test and memory barrier
2045   if( !os::is_MP() ) return;    // Not needed on single CPU
2046   __ membar(order_constraint);
2047 }
2048 
2049 void TemplateTable::resolve_cache_and_index(int byte_no,
2050                                             Register result,
2051                                             Register Rcache,
2052                                             Register index,
2053                                             size_t index_size) {
2054   Register temp = rbx;
2055 
2056   assert_different_registers(result, Rcache, index, temp);
2057 
2058   Label resolved;
2059   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2060   if (byte_no == f1_oop) {
2061     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2062     // This kind of CP cache entry does not need to match the flags byte, because
2063     // there is a 1-1 relation between bytecode type and CP entry type.
2064     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
2065     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
2066     __ testptr(result, result);
2067     __ jcc(Assembler::notEqual, resolved);
2068   } else {
2069     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2070     assert(result == noreg, "");  //else change code for setting result
2071     const int shift_count = (1 + byte_no)*BitsPerByte;
2072     __ movl(temp, Address(Rcache, index, Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
2073     __ shrl(temp, shift_count);
2074     // have we resolved this bytecode?
2075     __ andl(temp, 0xFF);
2076     __ cmpl(temp, (int)bytecode());
2077     __ jcc(Assembler::equal, resolved);
2078   }
2079 
2080   // resolve first time through
2081   address entry;
2082   switch (bytecode()) {
2083     case Bytecodes::_getstatic      : // fall through
2084     case Bytecodes::_putstatic      : // fall through
2085     case Bytecodes::_getfield       : // fall through
2086     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2087     case Bytecodes::_invokevirtual  : // fall through
2088     case Bytecodes::_invokespecial  : // fall through
2089     case Bytecodes::_invokestatic   : // fall through
2090     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
2091     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
2092     case Bytecodes::_fast_aldc      : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
2093     case Bytecodes::_fast_aldc_w    : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
2094     default                         : ShouldNotReachHere();                                 break;
2095   }
2096   __ movl(temp, (int)bytecode());
2097   __ call_VM(noreg, entry, temp);
2098   // Update registers with resolved info
2099   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2100   if (result != noreg)
2101     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
2102   __ bind(resolved);
2103 }
2104 
2105 
2106 // The cache and index registers must be set before call
2107 void TemplateTable::load_field_cp_cache_entry(Register obj,
2108                                               Register cache,
2109                                               Register index,
2110                                               Register off,
2111                                               Register flags,
2112                                               bool is_static = false) {
2113   assert_different_registers(cache, index, flags, off);
2114 
2115   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2116   // Field offset
2117   __ movptr(off, Address(cache, index, Address::times_ptr,
2118                          in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
2119   // Flags
2120   __ movl(flags, Address(cache, index, Address::times_ptr,
2121            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
2122 
2123   // klass     overwrite register
2124   if (is_static) {
2125     __ movptr(obj, Address(cache, index, Address::times_ptr,
2126                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
2127   }
2128 }
2129 
2130 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2131                                                Register method,
2132                                                Register itable_index,
2133                                                Register flags,
2134                                                bool is_invokevirtual,
2135                                                bool is_invokevfinal /*unused*/,
2136                                                bool is_invokedynamic) {
2137   // setup registers
2138   const Register cache = rcx;
2139   const Register index = rdx;
2140   assert_different_registers(method, flags);
2141   assert_different_registers(method, cache, index);
2142   assert_different_registers(itable_index, flags);
2143   assert_different_registers(itable_index, cache, index);
2144   // determine constant pool cache field offsets
2145   const int method_offset = in_bytes(
2146     constantPoolCacheOopDesc::base_offset() +
2147       (is_invokevirtual
2148        ? ConstantPoolCacheEntry::f2_offset()
2149        : ConstantPoolCacheEntry::f1_offset()
2150       )
2151     );
2152   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2153                                     ConstantPoolCacheEntry::flags_offset());
2154   // access constant pool cache fields
2155   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2156                                     ConstantPoolCacheEntry::f2_offset());
2157 
2158   if (byte_no == f1_oop) {
2159     // Resolved f1_oop goes directly into 'method' register.
2160     assert(is_invokedynamic, "");
2161     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
2162   } else {
2163     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2164     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2165   }
2166   if (itable_index != noreg) {
2167     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2168   }
2169   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2170 }
2171 
2172 
2173 // The registers cache and index expected to be set before call.
2174 // Correct values of the cache and index registers are preserved.
2175 void TemplateTable::jvmti_post_field_access(Register cache,
2176                                             Register index,
2177                                             bool is_static,
2178                                             bool has_tos) {
2179   if (JvmtiExport::can_post_field_access()) {
2180     // Check to see if a field access watch has been set before we take
2181     // the time to call into the VM.
2182     Label L1;
2183     assert_different_registers(cache, index, rax);
2184     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2185     __ testl(rax,rax);
2186     __ jcc(Assembler::zero, L1);
2187 
2188     // cache entry pointer
2189     __ addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
2190     __ shll(index, LogBytesPerWord);
2191     __ addptr(cache, index);
2192     if (is_static) {
2193       __ xorptr(rax, rax);      // NULL object reference
2194     } else {
2195       __ pop(atos);         // Get the object
2196       __ verify_oop(rax);
2197       __ push(atos);        // Restore stack state
2198     }
2199     // rax,:   object pointer or NULL
2200     // cache: cache entry pointer
2201     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2202                rax, cache);
2203     __ get_cache_and_index_at_bcp(cache, index, 1);
2204     __ bind(L1);
2205   }
2206 }
2207 
2208 void TemplateTable::pop_and_check_object(Register r) {
2209   __ pop_ptr(r);
2210   __ null_check(r);  // for field access must check obj.
2211   __ verify_oop(r);
2212 }
2213 
2214 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2215   transition(vtos, vtos);
2216 
2217   const Register cache = rcx;
2218   const Register index = rdx;
2219   const Register obj   = rcx;
2220   const Register off   = rbx;
2221   const Register flags = rax;
2222 
2223   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2224   jvmti_post_field_access(cache, index, is_static, false);
2225   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2226 
2227   if (!is_static) pop_and_check_object(obj);
2228 
2229   const Address lo(obj, off, Address::times_1, 0*wordSize);
2230   const Address hi(obj, off, Address::times_1, 1*wordSize);
2231 
2232   Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2233 
2234   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2235   assert(btos == 0, "change code, btos != 0");
2236   // btos
2237   __ andptr(flags, 0x0f);
2238   __ jcc(Assembler::notZero, notByte);
2239 
2240   __ load_signed_byte(rax, lo );
2241   __ push(btos);
2242   // Rewrite bytecode to be faster
2243   if (!is_static) {
2244     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
2245   }
2246   __ jmp(Done);
2247 
2248   __ bind(notByte);
2249   // itos
2250   __ cmpl(flags, itos );
2251   __ jcc(Assembler::notEqual, notInt);
2252 
2253   __ movl(rax, lo );
2254   __ push(itos);
2255   // Rewrite bytecode to be faster
2256   if (!is_static) {
2257     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
2258   }
2259   __ jmp(Done);
2260 
2261   __ bind(notInt);
2262   // atos
2263   __ cmpl(flags, atos );
2264   __ jcc(Assembler::notEqual, notObj);
2265 
2266   __ movl(rax, lo );
2267   __ push(atos);
2268   if (!is_static) {
2269     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
2270   }
2271   __ jmp(Done);
2272 
2273   __ bind(notObj);
2274   // ctos
2275   __ cmpl(flags, ctos );
2276   __ jcc(Assembler::notEqual, notChar);
2277 
2278   __ load_unsigned_short(rax, lo );
2279   __ push(ctos);
2280   if (!is_static) {
2281     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
2282   }
2283   __ jmp(Done);
2284 
2285   __ bind(notChar);
2286   // stos
2287   __ cmpl(flags, stos );
2288   __ jcc(Assembler::notEqual, notShort);
2289 
2290   __ load_signed_short(rax, lo );
2291   __ push(stos);
2292   if (!is_static) {
2293     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
2294   }
2295   __ jmp(Done);
2296 
2297   __ bind(notShort);
2298   // ltos
2299   __ cmpl(flags, ltos );
2300   __ jcc(Assembler::notEqual, notLong);
2301 
2302   // Generate code as if volatile.  There just aren't enough registers to
2303   // save that information and this code is faster than the test.
2304   __ fild_d(lo);                // Must load atomically
2305   __ subptr(rsp,2*wordSize);    // Make space for store
2306   __ fistp_d(Address(rsp,0));
2307   __ pop(rax);
2308   __ pop(rdx);
2309 
2310   __ push(ltos);
2311   // Don't rewrite to _fast_lgetfield for potential volatile case.
2312   __ jmp(Done);
2313 
2314   __ bind(notLong);
2315   // ftos
2316   __ cmpl(flags, ftos );
2317   __ jcc(Assembler::notEqual, notFloat);
2318 
2319   __ fld_s(lo);
2320   __ push(ftos);
2321   if (!is_static) {
2322     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
2323   }
2324   __ jmp(Done);
2325 
2326   __ bind(notFloat);
2327   // dtos
2328   __ cmpl(flags, dtos );
2329   __ jcc(Assembler::notEqual, notDouble);
2330 
2331   __ fld_d(lo);
2332   __ push(dtos);
2333   if (!is_static) {
2334     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
2335   }
2336   __ jmpb(Done);
2337 
2338   __ bind(notDouble);
2339 
2340   __ stop("Bad state");
2341 
2342   __ bind(Done);
2343   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2344   // volatile_barrier( );
2345 }
2346 
2347 
2348 void TemplateTable::getfield(int byte_no) {
2349   getfield_or_static(byte_no, false);
2350 }
2351 
2352 
2353 void TemplateTable::getstatic(int byte_no) {
2354   getfield_or_static(byte_no, true);
2355 }
2356 
2357 // The registers cache and index expected to be set before call.
2358 // The function may destroy various registers, just not the cache and index registers.
2359 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2360 
2361   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2362 
2363   if (JvmtiExport::can_post_field_modification()) {
2364     // Check to see if a field modification watch has been set before we take
2365     // the time to call into the VM.
2366     Label L1;
2367     assert_different_registers(cache, index, rax);
2368     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2369     __ testl(rax, rax);
2370     __ jcc(Assembler::zero, L1);
2371 
2372     // The cache and index registers have been already set.
2373     // This allows to eliminate this call but the cache and index
2374     // registers have to be correspondingly used after this line.
2375     __ get_cache_and_index_at_bcp(rax, rdx, 1);
2376 
2377     if (is_static) {
2378       // Life is simple.  Null out the object pointer.
2379       __ xorptr(rbx, rbx);
2380     } else {
2381       // Life is harder. The stack holds the value on top, followed by the object.
2382       // We don't know the size of the value, though; it could be one or two words
2383       // depending on its type. As a result, we must find the type to determine where
2384       // the object is.
2385       Label two_word, valsize_known;
2386       __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
2387                                    ConstantPoolCacheEntry::flags_offset())));
2388       __ mov(rbx, rsp);
2389       __ shrl(rcx, ConstantPoolCacheEntry::tosBits);
2390       // Make sure we don't need to mask rcx for tosBits after the above shift
2391       ConstantPoolCacheEntry::verify_tosBits();
2392       __ cmpl(rcx, ltos);
2393       __ jccb(Assembler::equal, two_word);
2394       __ cmpl(rcx, dtos);
2395       __ jccb(Assembler::equal, two_word);
2396       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
2397       __ jmpb(valsize_known);
2398 
2399       __ bind(two_word);
2400       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
2401 
2402       __ bind(valsize_known);
2403       // setup object pointer
2404       __ movptr(rbx, Address(rbx, 0));
2405     }
2406     // cache entry pointer
2407     __ addptr(rax, in_bytes(cp_base_offset));
2408     __ shll(rdx, LogBytesPerWord);
2409     __ addptr(rax, rdx);
2410     // object (tos)
2411     __ mov(rcx, rsp);
2412     // rbx,: object pointer set up above (NULL if static)
2413     // rax,: cache entry pointer
2414     // rcx: jvalue object on the stack
2415     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2416                rbx, rax, rcx);
2417     __ get_cache_and_index_at_bcp(cache, index, 1);
2418     __ bind(L1);
2419   }
2420 }
2421 
2422 
2423 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2424   transition(vtos, vtos);
2425 
2426   const Register cache = rcx;
2427   const Register index = rdx;
2428   const Register obj   = rcx;
2429   const Register off   = rbx;
2430   const Register flags = rax;
2431 
2432   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2433   jvmti_post_field_mod(cache, index, is_static);
2434   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2435 
2436   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2437   // volatile_barrier( );
2438 
2439   Label notVolatile, Done;
2440   __ movl(rdx, flags);
2441   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2442   __ andl(rdx, 0x1);
2443 
2444   // field addresses
2445   const Address lo(obj, off, Address::times_1, 0*wordSize);
2446   const Address hi(obj, off, Address::times_1, 1*wordSize);
2447 
2448   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2449 
2450   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2451   assert(btos == 0, "change code, btos != 0");
2452   // btos
2453   __ andl(flags, 0x0f);
2454   __ jcc(Assembler::notZero, notByte);
2455 
2456   __ pop(btos);
2457   if (!is_static) pop_and_check_object(obj);
2458   __ movb(lo, rax );
2459   if (!is_static) {
2460     patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx);
2461   }
2462   __ jmp(Done);
2463 
2464   __ bind(notByte);
2465   // itos
2466   __ cmpl(flags, itos );
2467   __ jcc(Assembler::notEqual, notInt);
2468 
2469   __ pop(itos);
2470   if (!is_static) pop_and_check_object(obj);
2471 
2472   __ movl(lo, rax );
2473   if (!is_static) {
2474     patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx);
2475   }
2476   __ jmp(Done);
2477 
2478   __ bind(notInt);
2479   // atos
2480   __ cmpl(flags, atos );
2481   __ jcc(Assembler::notEqual, notObj);
2482 
2483   __ pop(atos);
2484   if (!is_static) pop_and_check_object(obj);
2485 
2486   do_oop_store(_masm, lo, rax, _bs->kind(), false);
2487 
2488   if (!is_static) {
2489     patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx);
2490   }
2491 
2492   __ jmp(Done);
2493 
2494   __ bind(notObj);
2495   // ctos
2496   __ cmpl(flags, ctos );
2497   __ jcc(Assembler::notEqual, notChar);
2498 
2499   __ pop(ctos);
2500   if (!is_static) pop_and_check_object(obj);
2501   __ movw(lo, rax );
2502   if (!is_static) {
2503     patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx);
2504   }
2505   __ jmp(Done);
2506 
2507   __ bind(notChar);
2508   // stos
2509   __ cmpl(flags, stos );
2510   __ jcc(Assembler::notEqual, notShort);
2511 
2512   __ pop(stos);
2513   if (!is_static) pop_and_check_object(obj);
2514   __ movw(lo, rax );
2515   if (!is_static) {
2516     patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx);
2517   }
2518   __ jmp(Done);
2519 
2520   __ bind(notShort);
2521   // ltos
2522   __ cmpl(flags, ltos );
2523   __ jcc(Assembler::notEqual, notLong);
2524 
2525   Label notVolatileLong;
2526   __ testl(rdx, rdx);
2527   __ jcc(Assembler::zero, notVolatileLong);
2528 
2529   __ pop(ltos);  // overwrites rdx, do this after testing volatile.
2530   if (!is_static) pop_and_check_object(obj);
2531 
2532   // Replace with real volatile test
2533   __ push(rdx);
2534   __ push(rax);                 // Must update atomically with FIST
2535   __ fild_d(Address(rsp,0));    // So load into FPU register
2536   __ fistp_d(lo);               // and put into memory atomically
2537   __ addptr(rsp, 2*wordSize);
2538   // volatile_barrier();
2539   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2540                                                Assembler::StoreStore));
2541   // Don't rewrite volatile version
2542   __ jmp(notVolatile);
2543 
2544   __ bind(notVolatileLong);
2545 
2546   __ pop(ltos);  // overwrites rdx
2547   if (!is_static) pop_and_check_object(obj);
2548   NOT_LP64(__ movptr(hi, rdx));
2549   __ movptr(lo, rax);
2550   if (!is_static) {
2551     patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx);
2552   }
2553   __ jmp(notVolatile);
2554 
2555   __ bind(notLong);
2556   // ftos
2557   __ cmpl(flags, ftos );
2558   __ jcc(Assembler::notEqual, notFloat);
2559 
2560   __ pop(ftos);
2561   if (!is_static) pop_and_check_object(obj);
2562   __ fstp_s(lo);
2563   if (!is_static) {
2564     patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx);
2565   }
2566   __ jmp(Done);
2567 
2568   __ bind(notFloat);
2569   // dtos
2570   __ cmpl(flags, dtos );
2571   __ jcc(Assembler::notEqual, notDouble);
2572 
2573   __ pop(dtos);
2574   if (!is_static) pop_and_check_object(obj);
2575   __ fstp_d(lo);
2576   if (!is_static) {
2577     patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx);
2578   }
2579   __ jmp(Done);
2580 
2581   __ bind(notDouble);
2582 
2583   __ stop("Bad state");
2584 
2585   __ bind(Done);
2586 
2587   // Check for volatile store
2588   __ testl(rdx, rdx);
2589   __ jcc(Assembler::zero, notVolatile);
2590   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2591                                                Assembler::StoreStore));
2592   __ bind(notVolatile);
2593 }
2594 
2595 
2596 void TemplateTable::putfield(int byte_no) {
2597   putfield_or_static(byte_no, false);
2598 }
2599 
2600 
2601 void TemplateTable::putstatic(int byte_no) {
2602   putfield_or_static(byte_no, true);
2603 }
2604 
2605 void TemplateTable::jvmti_post_fast_field_mod() {
2606   if (JvmtiExport::can_post_field_modification()) {
2607     // Check to see if a field modification watch has been set before we take
2608     // the time to call into the VM.
2609     Label L2;
2610     __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2611     __ testl(rcx,rcx);
2612     __ jcc(Assembler::zero, L2);
2613     __ pop_ptr(rbx);               // copy the object pointer from tos
2614     __ verify_oop(rbx);
2615     __ push_ptr(rbx);              // put the object pointer back on tos
2616     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
2617     __ mov(rcx, rsp);
2618     __ push_ptr(rbx);                 // save object pointer so we can steal rbx,
2619     __ xorptr(rbx, rbx);
2620     const Address lo_value(rcx, rbx, Address::times_1, 0*wordSize);
2621     const Address hi_value(rcx, rbx, Address::times_1, 1*wordSize);
2622     switch (bytecode()) {          // load values into the jvalue object
2623     case Bytecodes::_fast_bputfield: __ movb(lo_value, rax); break;
2624     case Bytecodes::_fast_sputfield: __ movw(lo_value, rax); break;
2625     case Bytecodes::_fast_cputfield: __ movw(lo_value, rax); break;
2626     case Bytecodes::_fast_iputfield: __ movl(lo_value, rax);                         break;
2627     case Bytecodes::_fast_lputfield:
2628       NOT_LP64(__ movptr(hi_value, rdx));
2629       __ movptr(lo_value, rax);
2630       break;
2631 
2632     // need to call fld_s() after fstp_s() to restore the value for below
2633     case Bytecodes::_fast_fputfield: __ fstp_s(lo_value); __ fld_s(lo_value);        break;
2634 
2635     // need to call fld_d() after fstp_d() to restore the value for below
2636     case Bytecodes::_fast_dputfield: __ fstp_d(lo_value); __ fld_d(lo_value);        break;
2637 
2638     // since rcx is not an object we don't call store_check() here
2639     case Bytecodes::_fast_aputfield: __ movptr(lo_value, rax);                       break;
2640 
2641     default:  ShouldNotReachHere();
2642     }
2643     __ pop_ptr(rbx);  // restore copy of object pointer
2644 
2645     // Save rax, and sometimes rdx because call_VM() will clobber them,
2646     // then use them for JVM/DI purposes
2647     __ push(rax);
2648     if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
2649     // access constant pool cache entry
2650     __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
2651     __ verify_oop(rbx);
2652     // rbx,: object pointer copied above
2653     // rax,: cache entry pointer
2654     // rcx: jvalue object on the stack
2655     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
2656     if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);  // restore high value
2657     __ pop(rax);     // restore lower value
2658     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
2659     __ bind(L2);
2660   }
2661 }
2662 
2663 void TemplateTable::fast_storefield(TosState state) {
2664   transition(state, vtos);
2665 
2666   ByteSize base = constantPoolCacheOopDesc::base_offset();
2667 
2668   jvmti_post_fast_field_mod();
2669 
2670   // access constant pool cache
2671   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2672 
2673   // test for volatile with rdx but rdx is tos register for lputfield.
2674   if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
2675   __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
2676                        ConstantPoolCacheEntry::flags_offset())));
2677 
2678   // replace index with field offset from cache entry
2679   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2680 
2681   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2682   // volatile_barrier( );
2683 
2684   Label notVolatile, Done;
2685   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2686   __ andl(rdx, 0x1);
2687   // Check for volatile store
2688   __ testl(rdx, rdx);
2689   __ jcc(Assembler::zero, notVolatile);
2690 
2691   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
2692 
2693   // Get object from stack
2694   pop_and_check_object(rcx);
2695 
2696   // field addresses
2697   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
2698   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
2699 
2700   // access field
2701   switch (bytecode()) {
2702     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
2703     case Bytecodes::_fast_sputfield: // fall through
2704     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
2705     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
2706     case Bytecodes::_fast_lputfield:
2707       NOT_LP64(__ movptr(hi, rdx));
2708       __ movptr(lo, rax);
2709       break;
2710     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
2711     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
2712     case Bytecodes::_fast_aputfield: {
2713       do_oop_store(_masm, lo, rax, _bs->kind(), false);
2714       break;
2715     }
2716     default:
2717       ShouldNotReachHere();
2718   }
2719 
2720   Label done;
2721   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2722                                                Assembler::StoreStore));
2723   // Barriers are so large that short branch doesn't reach!
2724   __ jmp(done);
2725 
2726   // Same code as above, but don't need rdx to test for volatile.
2727   __ bind(notVolatile);
2728 
2729   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
2730 
2731   // Get object from stack
2732   pop_and_check_object(rcx);
2733 
2734   // access field
2735   switch (bytecode()) {
2736     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
2737     case Bytecodes::_fast_sputfield: // fall through
2738     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
2739     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
2740     case Bytecodes::_fast_lputfield:
2741       NOT_LP64(__ movptr(hi, rdx));
2742       __ movptr(lo, rax);
2743       break;
2744     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
2745     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
2746     case Bytecodes::_fast_aputfield: {
2747       do_oop_store(_masm, lo, rax, _bs->kind(), false);
2748       break;
2749     }
2750     default:
2751       ShouldNotReachHere();
2752   }
2753   __ bind(done);
2754 }
2755 
2756 
2757 void TemplateTable::fast_accessfield(TosState state) {
2758   transition(atos, state);
2759 
2760   // do the JVMTI work here to avoid disturbing the register state below
2761   if (JvmtiExport::can_post_field_access()) {
2762     // Check to see if a field access watch has been set before we take
2763     // the time to call into the VM.
2764     Label L1;
2765     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2766     __ testl(rcx,rcx);
2767     __ jcc(Assembler::zero, L1);
2768     // access constant pool cache entry
2769     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
2770     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
2771     __ verify_oop(rax);
2772     // rax,: object pointer copied above
2773     // rcx: cache entry pointer
2774     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
2775     __ pop_ptr(rax);   // restore object pointer
2776     __ bind(L1);
2777   }
2778 
2779   // access constant pool cache
2780   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2781   // replace index with field offset from cache entry
2782   __ movptr(rbx, Address(rcx,
2783                          rbx,
2784                          Address::times_ptr,
2785                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
2786 
2787 
2788   // rax,: object
2789   __ verify_oop(rax);
2790   __ null_check(rax);
2791   // field addresses
2792   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
2793   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
2794 
2795   // access field
2796   switch (bytecode()) {
2797     case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo );                 break;
2798     case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo );      break;
2799     case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo );    break;
2800     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
2801     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
2802     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
2803     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
2804     case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
2805     default:
2806       ShouldNotReachHere();
2807   }
2808 
2809   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
2810   // volatile_barrier( );
2811 }
2812 
2813 void TemplateTable::fast_xaccess(TosState state) {
2814   transition(vtos, state);
2815   // get receiver
2816   __ movptr(rax, aaddress(0));
2817   // access constant pool cache
2818   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2819   __ movptr(rbx, Address(rcx,
2820                          rdx,
2821                          Address::times_ptr,
2822                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
2823   // make sure exception is reported in correct bcp range (getfield is next instruction)
2824   __ increment(rsi);
2825   __ null_check(rax);
2826   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
2827   if (state == itos) {
2828     __ movl(rax, lo);
2829   } else if (state == atos) {
2830     __ movptr(rax, lo);
2831     __ verify_oop(rax);
2832   } else if (state == ftos) {
2833     __ fld_s(lo);
2834   } else {
2835     ShouldNotReachHere();
2836   }
2837   __ decrement(rsi);
2838 }
2839 
2840 
2841 
2842 //----------------------------------------------------------------------------------------------------
2843 // Calls
2844 
2845 void TemplateTable::count_calls(Register method, Register temp) {
2846   // implemented elsewhere
2847   ShouldNotReachHere();
2848 }
2849 
2850 
2851 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
2852   // determine flags
2853   Bytecodes::Code code = bytecode();
2854   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2855   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2856   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2857   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2858   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
2859   const bool receiver_null_check = is_invokespecial;
2860   const bool save_flags = is_invokeinterface || is_invokevirtual;
2861   // setup registers & access constant pool cache
2862   const Register recv   = rcx;
2863   const Register flags  = rdx;
2864   assert_different_registers(method, index, recv, flags);
2865 
2866   // save 'interpreter return address'
2867   __ save_bcp();
2868 
2869   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2870 
2871   // load receiver if needed (note: no return address pushed yet)
2872   if (load_receiver) {
2873     assert(!is_invokedynamic, "");
2874     __ movl(recv, flags);
2875     __ andl(recv, 0xFF);
2876     // recv count is 0 based?
2877     Address recv_addr(rsp, recv, Interpreter::stackElementScale(), -Interpreter::expr_offset_in_bytes(1));
2878     __ movptr(recv, recv_addr);
2879     __ verify_oop(recv);
2880   }
2881 
2882   // do null check if needed
2883   if (receiver_null_check) {
2884     __ null_check(recv);
2885   }
2886 
2887   if (save_flags) {
2888     __ mov(rsi, flags);
2889   }
2890 
2891   // compute return type
2892   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2893   // Make sure we don't need to mask flags for tosBits after the above shift
2894   ConstantPoolCacheEntry::verify_tosBits();
2895   // load return address
2896   {
2897     address table_addr;
2898     if (is_invokeinterface || is_invokedynamic)
2899       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
2900     else
2901       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
2902     ExternalAddress table(table_addr);
2903     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
2904   }
2905 
2906   // push return address
2907   __ push(flags);
2908 
2909   // Restore flag value from the constant pool cache, and restore rsi
2910   // for later null checks.  rsi is the bytecode pointer
2911   if (save_flags) {
2912     __ mov(flags, rsi);
2913     __ restore_bcp();
2914   }
2915 }
2916 
2917 
2918 void TemplateTable::invokevirtual_helper(Register index, Register recv,
2919                         Register flags) {
2920 
2921   // Uses temporary registers rax, rdx
2922   assert_different_registers(index, recv, rax, rdx);
2923 
2924   // Test for an invoke of a final method
2925   Label notFinal;
2926   __ movl(rax, flags);
2927   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
2928   __ jcc(Assembler::zero, notFinal);
2929 
2930   Register method = index;  // method must be rbx,
2931   assert(method == rbx, "methodOop must be rbx, for interpreter calling convention");
2932 
2933   // do the call - the index is actually the method to call
2934   __ verify_oop(method);
2935 
2936   // It's final, need a null check here!
2937   __ null_check(recv);
2938 
2939   // profile this call
2940   __ profile_final_call(rax);
2941 
2942   __ jump_from_interpreted(method, rax);
2943 
2944   __ bind(notFinal);
2945 
2946   // get receiver klass
2947   __ null_check(recv, oopDesc::klass_offset_in_bytes());
2948   // Keep recv in rcx for callee expects it there
2949   __ movptr(rax, Address(recv, oopDesc::klass_offset_in_bytes()));
2950   __ verify_oop(rax);
2951 
2952   // profile this call
2953   __ profile_virtual_call(rax, rdi, rdx);
2954 
2955   // get target methodOop & entry point
2956   const int base = instanceKlass::vtable_start_offset() * wordSize;
2957   assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
2958   __ movptr(method, Address(rax, index, Address::times_ptr, base + vtableEntry::method_offset_in_bytes()));
2959   __ jump_from_interpreted(method, rdx);
2960 }
2961 
2962 
2963 void TemplateTable::invokevirtual(int byte_no) {
2964   transition(vtos, vtos);
2965   assert(byte_no == f2_byte, "use this argument");
2966   prepare_invoke(rbx, noreg, byte_no);
2967 
2968   // rbx,: index
2969   // rcx: receiver
2970   // rdx: flags
2971 
2972   invokevirtual_helper(rbx, rcx, rdx);
2973 }
2974 
2975 
2976 void TemplateTable::invokespecial(int byte_no) {
2977   transition(vtos, vtos);
2978   assert(byte_no == f1_byte, "use this argument");
2979   prepare_invoke(rbx, noreg, byte_no);
2980   // do the call
2981   __ verify_oop(rbx);
2982   __ profile_call(rax);
2983   __ jump_from_interpreted(rbx, rax);
2984 }
2985 
2986 
2987 void TemplateTable::invokestatic(int byte_no) {
2988   transition(vtos, vtos);
2989   assert(byte_no == f1_byte, "use this argument");
2990   prepare_invoke(rbx, noreg, byte_no);
2991   // do the call
2992   __ verify_oop(rbx);
2993   __ profile_call(rax);
2994   __ jump_from_interpreted(rbx, rax);
2995 }
2996 
2997 
2998 void TemplateTable::fast_invokevfinal(int byte_no) {
2999   transition(vtos, vtos);
3000   assert(byte_no == f2_byte, "use this argument");
3001   __ stop("fast_invokevfinal not used on x86");
3002 }
3003 
3004 
3005 void TemplateTable::invokeinterface(int byte_no) {
3006   transition(vtos, vtos);
3007   assert(byte_no == f1_byte, "use this argument");
3008   prepare_invoke(rax, rbx, byte_no);
3009 
3010   // rax,: Interface
3011   // rbx,: index
3012   // rcx: receiver
3013   // rdx: flags
3014 
3015   // Special case of invokeinterface called for virtual method of
3016   // java.lang.Object.  See cpCacheOop.cpp for details.
3017   // This code isn't produced by javac, but could be produced by
3018   // another compliant java compiler.
3019   Label notMethod;
3020   __ movl(rdi, rdx);
3021   __ andl(rdi, (1 << ConstantPoolCacheEntry::methodInterface));
3022   __ jcc(Assembler::zero, notMethod);
3023 
3024   invokevirtual_helper(rbx, rcx, rdx);
3025   __ bind(notMethod);
3026 
3027   // Get receiver klass into rdx - also a null check
3028   __ restore_locals();  // restore rdi
3029   __ movptr(rdx, Address(rcx, oopDesc::klass_offset_in_bytes()));
3030   __ verify_oop(rdx);
3031 
3032   // profile this call
3033   __ profile_virtual_call(rdx, rsi, rdi);
3034 
3035   Label no_such_interface, no_such_method;
3036 
3037   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3038                              rdx, rax, rbx,
3039                              // outputs: method, scan temp. reg
3040                              rbx, rsi,
3041                              no_such_interface);
3042 
3043   // rbx,: methodOop to call
3044   // rcx: receiver
3045   // Check for abstract method error
3046   // Note: This should be done more efficiently via a throw_abstract_method_error
3047   //       interpreter entry point and a conditional jump to it in case of a null
3048   //       method.
3049   __ testptr(rbx, rbx);
3050   __ jcc(Assembler::zero, no_such_method);
3051 
3052   // do the call
3053   // rcx: receiver
3054   // rbx,: methodOop
3055   __ jump_from_interpreted(rbx, rdx);
3056   __ should_not_reach_here();
3057 
3058   // exception handling code follows...
3059   // note: must restore interpreter registers to canonical
3060   //       state for exception handling to work correctly!
3061 
3062   __ bind(no_such_method);
3063   // throw exception
3064   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3065   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
3066   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3067   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3068   // the call_VM checks for exception, so we should never return here.
3069   __ should_not_reach_here();
3070 
3071   __ bind(no_such_interface);
3072   // throw exception
3073   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3074   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
3075   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3076   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3077                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3078   // the call_VM checks for exception, so we should never return here.
3079   __ should_not_reach_here();
3080 }
3081 
3082 void TemplateTable::invokedynamic(int byte_no) {
3083   transition(vtos, vtos);
3084 
3085   if (!EnableInvokeDynamic) {
3086     // We should not encounter this bytecode if !EnableInvokeDynamic.
3087     // The verifier will stop it.  However, if we get past the verifier,
3088     // this will stop the thread in a reasonable way, without crashing the JVM.
3089     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3090                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3091     // the call_VM checks for exception, so we should never return here.
3092     __ should_not_reach_here();
3093     return;
3094   }
3095 
3096   assert(byte_no == f1_oop, "use this argument");
3097   prepare_invoke(rax, rbx, byte_no);
3098 
3099   // rax: CallSite object (f1)
3100   // rbx: unused (f2)
3101   // rcx: receiver address
3102   // rdx: flags (unused)
3103 
3104   Register rax_callsite      = rax;
3105   Register rcx_method_handle = rcx;
3106 
3107   if (ProfileInterpreter) {
3108     // %%% should make a type profile for any invokedynamic that takes a ref argument
3109     // profile this call
3110     __ profile_call(rsi);
3111   }
3112 
3113   __ movptr(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rcx)));
3114   __ null_check(rcx_method_handle);
3115   __ prepare_to_jump_from_interpreted();
3116   __ jump_to_method_handle_entry(rcx_method_handle, rdx);
3117 }
3118 
3119 //----------------------------------------------------------------------------------------------------
3120 // Allocation
3121 
3122 void TemplateTable::_new() {
3123   transition(vtos, atos);
3124   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3125   Label slow_case;
3126   Label slow_case_no_pop;
3127   Label done;
3128   Label initialize_header;
3129   Label initialize_object;  // including clearing the fields
3130   Label allocate_shared;
3131 
3132   __ get_cpool_and_tags(rcx, rax);
3133 
3134   // Make sure the class we're about to instantiate has been resolved.
3135   // This is done before loading instanceKlass to be consistent with the order
3136   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
3137   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
3138   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
3139   __ jcc(Assembler::notEqual, slow_case_no_pop);
3140 
3141   // get instanceKlass
3142   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(constantPoolOopDesc)));
3143   __ push(rcx);  // save the contexts of klass for initializing the header
3144 
3145   // make sure klass is initialized & doesn't have finalizer
3146   // make sure klass is fully initialized
3147   __ cmpl(Address(rcx, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
3148   __ jcc(Assembler::notEqual, slow_case);
3149 
3150   // get instance_size in instanceKlass (scaled to a count of bytes)
3151   __ movl(rdx, Address(rcx, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
3152   // test to see if it has a finalizer or is malformed in some way
3153   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3154   __ jcc(Assembler::notZero, slow_case);
3155 
3156   //
3157   // Allocate the instance
3158   // 1) Try to allocate in the TLAB
3159   // 2) if fail and the object is large allocate in the shared Eden
3160   // 3) if the above fails (or is not applicable), go to a slow case
3161   // (creates a new TLAB, etc.)
3162 
3163   const bool allow_shared_alloc =
3164     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3165 
3166   const Register thread = rcx;
3167   if (UseTLAB || allow_shared_alloc) {
3168     __ get_thread(thread);
3169   }
3170 
3171   if (UseTLAB) {
3172     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
3173     __ lea(rbx, Address(rax, rdx, Address::times_1));
3174     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
3175     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3176     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3177     if (ZeroTLAB) {
3178       // the fields have been already cleared
3179       __ jmp(initialize_header);
3180     } else {
3181       // initialize both the header and fields
3182       __ jmp(initialize_object);
3183     }
3184   }
3185 
3186   // Allocation in the shared Eden, if allowed.
3187   //
3188   // rdx: instance size in bytes
3189   if (allow_shared_alloc) {
3190     __ bind(allocate_shared);
3191 
3192     ExternalAddress heap_top((address)Universe::heap()->top_addr());
3193 
3194     Label retry;
3195     __ bind(retry);
3196     __ movptr(rax, heap_top);
3197     __ lea(rbx, Address(rax, rdx, Address::times_1));
3198     __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
3199     __ jcc(Assembler::above, slow_case);
3200 
3201     // Compare rax, with the top addr, and if still equal, store the new
3202     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
3203     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3204     //
3205     // rax,: object begin
3206     // rbx,: object end
3207     // rdx: instance size in bytes
3208     __ locked_cmpxchgptr(rbx, heap_top);
3209 
3210     // if someone beat us on the allocation, try again, otherwise continue
3211     __ jcc(Assembler::notEqual, retry);
3212 
3213     __ incr_allocated_bytes(thread, rdx, 0);
3214   }
3215 
3216   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3217     // The object is initialized before the header.  If the object size is
3218     // zero, go directly to the header initialization.
3219     __ bind(initialize_object);
3220     __ decrement(rdx, sizeof(oopDesc));
3221     __ jcc(Assembler::zero, initialize_header);
3222 
3223     // Initialize topmost object field, divide rdx by 8, check if odd and
3224     // test if zero.
3225     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
3226     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
3227 
3228     // rdx must have been multiple of 8
3229 #ifdef ASSERT
3230     // make sure rdx was multiple of 8
3231     Label L;
3232     // Ignore partial flag stall after shrl() since it is debug VM
3233     __ jccb(Assembler::carryClear, L);
3234     __ stop("object size is not multiple of 2 - adjust this code");
3235     __ bind(L);
3236     // rdx must be > 0, no extra check needed here
3237 #endif
3238 
3239     // initialize remaining object fields: rdx was a multiple of 8
3240     { Label loop;
3241     __ bind(loop);
3242     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
3243     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
3244     __ decrement(rdx);
3245     __ jcc(Assembler::notZero, loop);
3246     }
3247 
3248     // initialize object header only.
3249     __ bind(initialize_header);
3250     if (UseBiasedLocking) {
3251       __ pop(rcx);   // get saved klass back in the register.
3252       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
3253       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
3254     } else {
3255       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
3256                 (int32_t)markOopDesc::prototype()); // header
3257       __ pop(rcx);   // get saved klass back in the register.
3258     }
3259     __ movptr(Address(rax, oopDesc::klass_offset_in_bytes()), rcx);  // klass
3260 
3261     {
3262       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
3263       // Trigger dtrace event for fastpath
3264       __ push(atos);
3265       __ call_VM_leaf(
3266            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3267       __ pop(atos);
3268     }
3269 
3270     __ jmp(done);
3271   }
3272 
3273   // slow case
3274   __ bind(slow_case);
3275   __ pop(rcx);   // restore stack pointer to what it was when we came in.
3276   __ bind(slow_case_no_pop);
3277   __ get_constant_pool(rax);
3278   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3279   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
3280 
3281   // continue
3282   __ bind(done);
3283 }
3284 
3285 
3286 void TemplateTable::newarray() {
3287   transition(itos, atos);
3288   __ push_i(rax);                                 // make sure everything is on the stack
3289   __ load_unsigned_byte(rdx, at_bcp(1));
3290   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
3291   __ pop_i(rdx);                                  // discard size
3292 }
3293 
3294 
3295 void TemplateTable::anewarray() {
3296   transition(itos, atos);
3297   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3298   __ get_constant_pool(rcx);
3299   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
3300 }
3301 
3302 
3303 void TemplateTable::arraylength() {
3304   transition(atos, itos);
3305   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3306   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3307 }
3308 
3309 
3310 void TemplateTable::checkcast() {
3311   transition(atos, atos);
3312   Label done, is_null, ok_is_subtype, quicked, resolved;
3313   __ testptr(rax, rax);   // Object is in EAX
3314   __ jcc(Assembler::zero, is_null);
3315 
3316   // Get cpool & tags index
3317   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
3318   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
3319   // See if bytecode has already been quicked
3320   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
3321   __ jcc(Assembler::equal, quicked);
3322 
3323   __ push(atos);
3324   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3325   __ pop_ptr(rdx);
3326   __ jmpb(resolved);
3327 
3328   // Get superklass in EAX and subklass in EBX
3329   __ bind(quicked);
3330   __ mov(rdx, rax);          // Save object in EDX; EAX needed for subtype check
3331   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
3332 
3333   __ bind(resolved);
3334   __ movptr(rbx, Address(rdx, oopDesc::klass_offset_in_bytes()));
3335 
3336   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
3337   // Superklass in EAX.  Subklass in EBX.
3338   __ gen_subtype_check( rbx, ok_is_subtype );
3339 
3340   // Come here on failure
3341   __ push(rdx);
3342   // object is at TOS
3343   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3344 
3345   // Come here on success
3346   __ bind(ok_is_subtype);
3347   __ mov(rax,rdx);           // Restore object in EDX
3348 
3349   // Collect counts on whether this check-cast sees NULLs a lot or not.
3350   if (ProfileInterpreter) {
3351     __ jmp(done);
3352     __ bind(is_null);
3353     __ profile_null_seen(rcx);
3354   } else {
3355     __ bind(is_null);   // same as 'done'
3356   }
3357   __ bind(done);
3358 }
3359 
3360 
3361 void TemplateTable::instanceof() {
3362   transition(atos, itos);
3363   Label done, is_null, ok_is_subtype, quicked, resolved;
3364   __ testptr(rax, rax);
3365   __ jcc(Assembler::zero, is_null);
3366 
3367   // Get cpool & tags index
3368   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
3369   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
3370   // See if bytecode has already been quicked
3371   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
3372   __ jcc(Assembler::equal, quicked);
3373 
3374   __ push(atos);
3375   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3376   __ pop_ptr(rdx);
3377   __ movptr(rdx, Address(rdx, oopDesc::klass_offset_in_bytes()));
3378   __ jmp(resolved);
3379 
3380   // Get superklass in EAX and subklass in EDX
3381   __ bind(quicked);
3382   __ movptr(rdx, Address(rax, oopDesc::klass_offset_in_bytes()));
3383   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
3384 
3385   __ bind(resolved);
3386 
3387   // Generate subtype check.  Blows ECX.  Resets EDI.
3388   // Superklass in EAX.  Subklass in EDX.
3389   __ gen_subtype_check( rdx, ok_is_subtype );
3390 
3391   // Come here on failure
3392   __ xorl(rax,rax);
3393   __ jmpb(done);
3394   // Come here on success
3395   __ bind(ok_is_subtype);
3396   __ movl(rax, 1);
3397 
3398   // Collect counts on whether this test sees NULLs a lot or not.
3399   if (ProfileInterpreter) {
3400     __ jmp(done);
3401     __ bind(is_null);
3402     __ profile_null_seen(rcx);
3403   } else {
3404     __ bind(is_null);   // same as 'done'
3405   }
3406   __ bind(done);
3407   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
3408   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
3409 }
3410 
3411 
3412 //----------------------------------------------------------------------------------------------------
3413 // Breakpoints
3414 void TemplateTable::_breakpoint() {
3415 
3416   // Note: We get here even if we are single stepping..
3417   // jbug inists on setting breakpoints at every bytecode
3418   // even if we are in single step mode.
3419 
3420   transition(vtos, vtos);
3421 
3422   // get the unpatched byte code
3423   __ get_method(rcx);
3424   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
3425   __ mov(rbx, rax);
3426 
3427   // post the breakpoint event
3428   __ get_method(rcx);
3429   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
3430 
3431   // complete the execution of original bytecode
3432   __ dispatch_only_normal(vtos);
3433 }
3434 
3435 
3436 //----------------------------------------------------------------------------------------------------
3437 // Exceptions
3438 
3439 void TemplateTable::athrow() {
3440   transition(atos, vtos);
3441   __ null_check(rax);
3442   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3443 }
3444 
3445 
3446 //----------------------------------------------------------------------------------------------------
3447 // Synchronization
3448 //
3449 // Note: monitorenter & exit are symmetric routines; which is reflected
3450 //       in the assembly code structure as well
3451 //
3452 // Stack layout:
3453 //
3454 // [expressions  ] <--- rsp               = expression stack top
3455 // ..
3456 // [expressions  ]
3457 // [monitor entry] <--- monitor block top = expression stack bot
3458 // ..
3459 // [monitor entry]
3460 // [frame data   ] <--- monitor block bot
3461 // ...
3462 // [saved rbp,    ] <--- rbp,
3463 
3464 
3465 void TemplateTable::monitorenter() {
3466   transition(atos, vtos);
3467 
3468   // check for NULL object
3469   __ null_check(rax);
3470 
3471   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3472   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
3473   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
3474   Label allocated;
3475 
3476   // initialize entry pointer
3477   __ xorl(rdx, rdx);                             // points to free slot or NULL
3478 
3479   // find a free slot in the monitor block (result in rdx)
3480   { Label entry, loop, exit;
3481     __ movptr(rcx, monitor_block_top);            // points to current entry, starting with top-most entry
3482     __ lea(rbx, monitor_block_bot);               // points to word before bottom of monitor block
3483     __ jmpb(entry);
3484 
3485     __ bind(loop);
3486     __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
3487 
3488 // TODO - need new func here - kbt
3489     if (VM_Version::supports_cmov()) {
3490       __ cmov(Assembler::equal, rdx, rcx);       // if not used then remember entry in rdx
3491     } else {
3492       Label L;
3493       __ jccb(Assembler::notEqual, L);
3494       __ mov(rdx, rcx);                          // if not used then remember entry in rdx
3495       __ bind(L);
3496     }
3497     __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
3498     __ jccb(Assembler::equal, exit);             // if same object then stop searching
3499     __ addptr(rcx, entry_size);                  // otherwise advance to next entry
3500     __ bind(entry);
3501     __ cmpptr(rcx, rbx);                         // check if bottom reached
3502     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
3503     __ bind(exit);
3504   }
3505 
3506   __ testptr(rdx, rdx);                          // check if a slot has been found
3507   __ jccb(Assembler::notZero, allocated);        // if found, continue with that one
3508 
3509   // allocate one if there's no free slot
3510   { Label entry, loop;
3511     // 1. compute new pointers                   // rsp: old expression stack top
3512     __ movptr(rdx, monitor_block_bot);           // rdx: old expression stack bottom
3513     __ subptr(rsp, entry_size);                  // move expression stack top
3514     __ subptr(rdx, entry_size);                  // move expression stack bottom
3515     __ mov(rcx, rsp);                            // set start value for copy loop
3516     __ movptr(monitor_block_bot, rdx);           // set new monitor block top
3517     __ jmp(entry);
3518     // 2. move expression stack contents
3519     __ bind(loop);
3520     __ movptr(rbx, Address(rcx, entry_size));    // load expression stack word from old location
3521     __ movptr(Address(rcx, 0), rbx);             // and store it at new location
3522     __ addptr(rcx, wordSize);                    // advance to next word
3523     __ bind(entry);
3524     __ cmpptr(rcx, rdx);                         // check if bottom reached
3525     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
3526   }
3527 
3528   // call run-time routine
3529   // rdx: points to monitor entry
3530   __ bind(allocated);
3531 
3532   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3533   // The object has already been poped from the stack, so the expression stack looks correct.
3534   __ increment(rsi);
3535 
3536   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
3537   __ lock_object(rdx);
3538 
3539   // check to make sure this monitor doesn't cause stack overflow after locking
3540   __ save_bcp();  // in case of exception
3541   __ generate_stack_overflow_check(0);
3542 
3543   // The bcp has already been incremented. Just need to dispatch to next instruction.
3544   __ dispatch_next(vtos);
3545 }
3546 
3547 
3548 void TemplateTable::monitorexit() {
3549   transition(atos, vtos);
3550 
3551   // check for NULL object
3552   __ null_check(rax);
3553 
3554   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3555   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
3556   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
3557   Label found;
3558 
3559   // find matching slot
3560   { Label entry, loop;
3561     __ movptr(rdx, monitor_block_top);           // points to current entry, starting with top-most entry
3562     __ lea(rbx, monitor_block_bot);             // points to word before bottom of monitor block
3563     __ jmpb(entry);
3564 
3565     __ bind(loop);
3566     __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
3567     __ jcc(Assembler::equal, found);             // if same object then stop searching
3568     __ addptr(rdx, entry_size);                  // otherwise advance to next entry
3569     __ bind(entry);
3570     __ cmpptr(rdx, rbx);                         // check if bottom reached
3571     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
3572   }
3573 
3574   // error handling. Unlocking was not block-structured
3575   Label end;
3576   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3577   __ should_not_reach_here();
3578 
3579   // call run-time routine
3580   // rcx: points to monitor entry
3581   __ bind(found);
3582   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
3583   __ unlock_object(rdx);
3584   __ pop_ptr(rax);                                  // discard object
3585   __ bind(end);
3586 }
3587 
3588 
3589 //----------------------------------------------------------------------------------------------------
3590 // Wide instructions
3591 
3592 void TemplateTable::wide() {
3593   transition(vtos, vtos);
3594   __ load_unsigned_byte(rbx, at_bcp(1));
3595   ExternalAddress wtable((address)Interpreter::_wentry_point);
3596   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
3597   // Note: the rsi increment step is part of the individual wide bytecode implementations
3598 }
3599 
3600 
3601 //----------------------------------------------------------------------------------------------------
3602 // Multi arrays
3603 
3604 void TemplateTable::multianewarray() {
3605   transition(vtos, atos);
3606   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3607   // last dim is on top of stack; we want address of first one:
3608   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
3609   // the latter wordSize to point to the beginning of the array.
3610   __ lea(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
3611   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
3612   __ load_unsigned_byte(rbx, at_bcp(3));
3613   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
3614 }
3615 
3616 #endif /* !CC_INTERP */