1 /*
   2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/templateTable.hpp"
  29 #include "memory/universe.inline.hpp"
  30 #include "oops/methodDataOop.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "prims/methodHandles.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/stubRoutines.hpp"
  36 #include "runtime/synchronizer.hpp"
  37 
  38 #ifndef CC_INTERP
  39 
  40 #define __ _masm->
  41 
  42 // Platform-dependent initialization
  43 
  44 void TemplateTable::pd_initialize() {
  45   // No amd64 specific initialization
  46 }
  47 
  48 // Address computation: local variables
  49 
  50 static inline Address iaddress(int n) {
  51   return Address(r14, Interpreter::local_offset_in_bytes(n));
  52 }
  53 
  54 static inline Address laddress(int n) {
  55   return iaddress(n + 1);
  56 }
  57 
  58 static inline Address faddress(int n) {
  59   return iaddress(n);
  60 }
  61 
  62 static inline Address daddress(int n) {
  63   return laddress(n);
  64 }
  65 
  66 static inline Address aaddress(int n) {
  67   return iaddress(n);
  68 }
  69 
  70 static inline Address iaddress(Register r) {
  71   return Address(r14, r, Address::times_8);
  72 }
  73 
  74 static inline Address laddress(Register r) {
  75   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
  76 }
  77 
  78 static inline Address faddress(Register r) {
  79   return iaddress(r);
  80 }
  81 
  82 static inline Address daddress(Register r) {
  83   return laddress(r);
  84 }
  85 
  86 static inline Address aaddress(Register r) {
  87   return iaddress(r);
  88 }
  89 
  90 static inline Address at_rsp() {
  91   return Address(rsp, 0);
  92 }
  93 
  94 // At top of Java expression stack which may be different than esp().  It
  95 // isn't for category 1 objects.
  96 static inline Address at_tos   () {
  97   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
  98 }
  99 
 100 static inline Address at_tos_p1() {
 101   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
 102 }
 103 
 104 static inline Address at_tos_p2() {
 105   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
 106 }
 107 
 108 static inline Address at_tos_p3() {
 109   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
 110 }
 111 
 112 // Condition conversion
 113 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 114   switch (cc) {
 115   case TemplateTable::equal        : return Assembler::notEqual;
 116   case TemplateTable::not_equal    : return Assembler::equal;
 117   case TemplateTable::less         : return Assembler::greaterEqual;
 118   case TemplateTable::less_equal   : return Assembler::greater;
 119   case TemplateTable::greater      : return Assembler::lessEqual;
 120   case TemplateTable::greater_equal: return Assembler::less;
 121   }
 122   ShouldNotReachHere();
 123   return Assembler::zero;
 124 }
 125 
 126 
 127 // Miscelaneous helper routines
 128 // Store an oop (or NULL) at the address described by obj.
 129 // If val == noreg this means store a NULL
 130 
 131 static void do_oop_store(InterpreterMacroAssembler* _masm,
 132                          Address obj,
 133                          Register val,
 134                          BarrierSet::Name barrier,
 135                          bool precise) {
 136   assert(val == noreg || val == rax, "parameter is just for looks");
 137   switch (barrier) {
 138 #ifndef SERIALGC
 139     case BarrierSet::G1SATBCT:
 140     case BarrierSet::G1SATBCTLogging:
 141       {
 142         // flatten object address if needed
 143         if (obj.index() == noreg && obj.disp() == 0) {
 144           if (obj.base() != rdx) {
 145             __ movq(rdx, obj.base());
 146           }
 147         } else {
 148           __ leaq(rdx, obj);
 149         }
 150         __ g1_write_barrier_pre(rdx, r8, rbx, val != noreg);
 151         if (val == noreg) {
 152           __ store_heap_oop_null(Address(rdx, 0));
 153         } else {
 154           __ store_heap_oop(Address(rdx, 0), val);
 155           __ g1_write_barrier_post(rdx, val, r8, rbx);
 156         }
 157 
 158       }
 159       break;
 160 #endif // SERIALGC
 161     case BarrierSet::CardTableModRef:
 162     case BarrierSet::CardTableExtension:
 163       {
 164         if (val == noreg) {
 165           __ store_heap_oop_null(obj);
 166         } else {
 167           __ store_heap_oop(obj, val);
 168           // flatten object address if needed
 169           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 170             __ store_check(obj.base());
 171           } else {
 172             __ leaq(rdx, obj);
 173             __ store_check(rdx);
 174           }
 175         }
 176       }
 177       break;
 178     case BarrierSet::ModRef:
 179     case BarrierSet::Other:
 180       if (val == noreg) {
 181         __ store_heap_oop_null(obj);
 182       } else {
 183         __ store_heap_oop(obj, val);
 184       }
 185       break;
 186     default      :
 187       ShouldNotReachHere();
 188 
 189   }
 190 }
 191 
 192 Address TemplateTable::at_bcp(int offset) {
 193   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 194   return Address(r13, offset);
 195 }
 196 
 197 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
 198                                    Register scratch,
 199                                    bool load_bc_into_scratch/*=true*/) {
 200   if (!RewriteBytecodes) {
 201     return;
 202   }
 203   // the pair bytecodes have already done the load.
 204   if (load_bc_into_scratch) {
 205     __ movl(bc, bytecode);
 206   }
 207   Label patch_done;
 208   if (JvmtiExport::can_post_breakpoint()) {
 209     Label fast_patch;
 210     // if a breakpoint is present we can't rewrite the stream directly
 211     __ movzbl(scratch, at_bcp(0));
 212     __ cmpl(scratch, Bytecodes::_breakpoint);
 213     __ jcc(Assembler::notEqual, fast_patch);
 214     __ get_method(scratch);
 215     // Let breakpoint table handling rewrite to quicker bytecode
 216     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, r13, bc);
 217 #ifndef ASSERT
 218     __ jmpb(patch_done);
 219 #else
 220     __ jmp(patch_done);
 221 #endif
 222     __ bind(fast_patch);
 223   }
 224 #ifdef ASSERT
 225   Label okay;
 226   __ load_unsigned_byte(scratch, at_bcp(0));
 227   __ cmpl(scratch, (int) Bytecodes::java_code(bytecode));
 228   __ jcc(Assembler::equal, okay);
 229   __ cmpl(scratch, bc);
 230   __ jcc(Assembler::equal, okay);
 231   __ stop("patching the wrong bytecode");
 232   __ bind(okay);
 233 #endif
 234   // patch bytecode
 235   __ movb(at_bcp(0), bc);
 236   __ bind(patch_done);
 237 }
 238 
 239 
 240 // Individual instructions
 241 
 242 void TemplateTable::nop() {
 243   transition(vtos, vtos);
 244   // nothing to do
 245 }
 246 
 247 void TemplateTable::shouldnotreachhere() {
 248   transition(vtos, vtos);
 249   __ stop("shouldnotreachhere bytecode");
 250 }
 251 
 252 void TemplateTable::aconst_null() {
 253   transition(vtos, atos);
 254   __ xorl(rax, rax);
 255 }
 256 
 257 void TemplateTable::iconst(int value) {
 258   transition(vtos, itos);
 259   if (value == 0) {
 260     __ xorl(rax, rax);
 261   } else {
 262     __ movl(rax, value);
 263   }
 264 }
 265 
 266 void TemplateTable::lconst(int value) {
 267   transition(vtos, ltos);
 268   if (value == 0) {
 269     __ xorl(rax, rax);
 270   } else {
 271     __ movl(rax, value);
 272   }
 273 }
 274 
 275 void TemplateTable::fconst(int value) {
 276   transition(vtos, ftos);
 277   static float one = 1.0f, two = 2.0f;
 278   switch (value) {
 279   case 0:
 280     __ xorps(xmm0, xmm0);
 281     break;
 282   case 1:
 283     __ movflt(xmm0, ExternalAddress((address) &one));
 284     break;
 285   case 2:
 286     __ movflt(xmm0, ExternalAddress((address) &two));
 287     break;
 288   default:
 289     ShouldNotReachHere();
 290     break;
 291   }
 292 }
 293 
 294 void TemplateTable::dconst(int value) {
 295   transition(vtos, dtos);
 296   static double one = 1.0;
 297   switch (value) {
 298   case 0:
 299     __ xorpd(xmm0, xmm0);
 300     break;
 301   case 1:
 302     __ movdbl(xmm0, ExternalAddress((address) &one));
 303     break;
 304   default:
 305     ShouldNotReachHere();
 306     break;
 307   }
 308 }
 309 
 310 void TemplateTable::bipush() {
 311   transition(vtos, itos);
 312   __ load_signed_byte(rax, at_bcp(1));
 313 }
 314 
 315 void TemplateTable::sipush() {
 316   transition(vtos, itos);
 317   __ load_unsigned_short(rax, at_bcp(1));
 318   __ bswapl(rax);
 319   __ sarl(rax, 16);
 320 }
 321 
 322 void TemplateTable::ldc(bool wide) {
 323   transition(vtos, vtos);
 324   Label call_ldc, notFloat, notClass, Done;
 325 
 326   if (wide) {
 327     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 328   } else {
 329     __ load_unsigned_byte(rbx, at_bcp(1));
 330   }
 331 
 332   __ get_cpool_and_tags(rcx, rax);
 333   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 334   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 335 
 336   // get type
 337   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 338 
 339   // unresolved string - get the resolved string
 340   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
 341   __ jccb(Assembler::equal, call_ldc);
 342 
 343   // unresolved class - get the resolved class
 344   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 345   __ jccb(Assembler::equal, call_ldc);
 346 
 347   // unresolved class in error state - call into runtime to throw the error
 348   // from the first resolution attempt
 349   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 350   __ jccb(Assembler::equal, call_ldc);
 351 
 352   // resolved class - need to call vm to get java mirror of the class
 353   __ cmpl(rdx, JVM_CONSTANT_Class);
 354   __ jcc(Assembler::notEqual, notClass);
 355 
 356   __ bind(call_ldc);
 357   __ movl(c_rarg1, wide);
 358   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
 359   __ push_ptr(rax);
 360   __ verify_oop(rax);
 361   __ jmp(Done);
 362 
 363   __ bind(notClass);
 364   __ cmpl(rdx, JVM_CONSTANT_Float);
 365   __ jccb(Assembler::notEqual, notFloat);
 366   // ftos
 367   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 368   __ push_f();
 369   __ jmp(Done);
 370 
 371   __ bind(notFloat);
 372 #ifdef ASSERT
 373   {
 374     Label L;
 375     __ cmpl(rdx, JVM_CONSTANT_Integer);
 376     __ jcc(Assembler::equal, L);
 377     __ cmpl(rdx, JVM_CONSTANT_String);
 378     __ jcc(Assembler::equal, L);
 379     __ stop("unexpected tag type in ldc");
 380     __ bind(L);
 381   }
 382 #endif
 383   // atos and itos
 384   Label isOop;
 385   __ cmpl(rdx, JVM_CONSTANT_Integer);
 386   __ jcc(Assembler::notEqual, isOop);
 387   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
 388   __ push_i(rax);
 389   __ jmp(Done);
 390 
 391   __ bind(isOop);
 392   __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset));
 393   __ push_ptr(rax);
 394 
 395   if (VerifyOops) {
 396     __ verify_oop(rax);
 397   }
 398 
 399   __ bind(Done);
 400 }
 401 
 402 // Fast path for caching oop constants.
 403 // %%% We should use this to handle Class and String constants also.
 404 // %%% It will simplify the ldc/primitive path considerably.
 405 void TemplateTable::fast_aldc(bool wide) {
 406   transition(vtos, atos);
 407 
 408   if (!EnableInvokeDynamic) {
 409     // We should not encounter this bytecode if !EnableInvokeDynamic.
 410     // The verifier will stop it.  However, if we get past the verifier,
 411     // this will stop the thread in a reasonable way, without crashing the JVM.
 412     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 413                      InterpreterRuntime::throw_IncompatibleClassChangeError));
 414     // the call_VM checks for exception, so we should never return here.
 415     __ should_not_reach_here();
 416     return;
 417   }
 418 
 419   const Register cache = rcx;
 420   const Register index = rdx;
 421 
 422   resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
 423   if (VerifyOops) {
 424     __ verify_oop(rax);
 425   }
 426 
 427   Label L_done, L_throw_exception;
 428   const Register con_klass_temp = rcx;  // same as cache
 429   const Register array_klass_temp = rdx;  // same as index
 430   __ movptr(con_klass_temp, Address(rax, oopDesc::klass_offset_in_bytes()));
 431   __ lea(array_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
 432   __ cmpptr(con_klass_temp, Address(array_klass_temp, 0));
 433   __ jcc(Assembler::notEqual, L_done);
 434   __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
 435   __ jcc(Assembler::notEqual, L_throw_exception);
 436   __ xorptr(rax, rax);
 437   __ jmp(L_done);
 438 
 439   // Load the exception from the system-array which wraps it:
 440   __ bind(L_throw_exception);
 441   __ movptr(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 442   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
 443 
 444   __ bind(L_done);
 445 }
 446 
 447 void TemplateTable::ldc2_w() {
 448   transition(vtos, vtos);
 449   Label Long, Done;
 450   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 451 
 452   __ get_cpool_and_tags(rcx, rax);
 453   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 454   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 455 
 456   // get type
 457   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
 458           JVM_CONSTANT_Double);
 459   __ jccb(Assembler::notEqual, Long);
 460   // dtos
 461   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 462   __ push_d();
 463   __ jmpb(Done);
 464 
 465   __ bind(Long);
 466   // ltos
 467   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
 468   __ push_l();
 469 
 470   __ bind(Done);
 471 }
 472 
 473 void TemplateTable::locals_index(Register reg, int offset) {
 474   __ load_unsigned_byte(reg, at_bcp(offset));
 475   __ negptr(reg);
 476 }
 477 
 478 void TemplateTable::iload() {
 479   transition(vtos, itos);
 480   if (RewriteFrequentPairs) {
 481     Label rewrite, done;
 482     const Register bc = c_rarg3;
 483     assert(rbx != bc, "register damaged");
 484 
 485     // get next byte
 486     __ load_unsigned_byte(rbx,
 487                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 488     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 489     // last two iloads in a pair.  Comparing against fast_iload means that
 490     // the next bytecode is neither an iload or a caload, and therefore
 491     // an iload pair.
 492     __ cmpl(rbx, Bytecodes::_iload);
 493     __ jcc(Assembler::equal, done);
 494 
 495     __ cmpl(rbx, Bytecodes::_fast_iload);
 496     __ movl(bc, Bytecodes::_fast_iload2);
 497     __ jccb(Assembler::equal, rewrite);
 498 
 499     // if _caload, rewrite to fast_icaload
 500     __ cmpl(rbx, Bytecodes::_caload);
 501     __ movl(bc, Bytecodes::_fast_icaload);
 502     __ jccb(Assembler::equal, rewrite);
 503 
 504     // rewrite so iload doesn't check again.
 505     __ movl(bc, Bytecodes::_fast_iload);
 506 
 507     // rewrite
 508     // bc: fast bytecode
 509     __ bind(rewrite);
 510     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
 511     __ bind(done);
 512   }
 513 
 514   // Get the local value into tos
 515   locals_index(rbx);
 516   __ movl(rax, iaddress(rbx));
 517 }
 518 
 519 void TemplateTable::fast_iload2() {
 520   transition(vtos, itos);
 521   locals_index(rbx);
 522   __ movl(rax, iaddress(rbx));
 523   __ push(itos);
 524   locals_index(rbx, 3);
 525   __ movl(rax, iaddress(rbx));
 526 }
 527 
 528 void TemplateTable::fast_iload() {
 529   transition(vtos, itos);
 530   locals_index(rbx);
 531   __ movl(rax, iaddress(rbx));
 532 }
 533 
 534 void TemplateTable::lload() {
 535   transition(vtos, ltos);
 536   locals_index(rbx);
 537   __ movq(rax, laddress(rbx));
 538 }
 539 
 540 void TemplateTable::fload() {
 541   transition(vtos, ftos);
 542   locals_index(rbx);
 543   __ movflt(xmm0, faddress(rbx));
 544 }
 545 
 546 void TemplateTable::dload() {
 547   transition(vtos, dtos);
 548   locals_index(rbx);
 549   __ movdbl(xmm0, daddress(rbx));
 550 }
 551 
 552 void TemplateTable::aload() {
 553   transition(vtos, atos);
 554   locals_index(rbx);
 555   __ movptr(rax, aaddress(rbx));
 556 }
 557 
 558 void TemplateTable::locals_index_wide(Register reg) {
 559   __ movl(reg, at_bcp(2));
 560   __ bswapl(reg);
 561   __ shrl(reg, 16);
 562   __ negptr(reg);
 563 }
 564 
 565 void TemplateTable::wide_iload() {
 566   transition(vtos, itos);
 567   locals_index_wide(rbx);
 568   __ movl(rax, iaddress(rbx));
 569 }
 570 
 571 void TemplateTable::wide_lload() {
 572   transition(vtos, ltos);
 573   locals_index_wide(rbx);
 574   __ movq(rax, laddress(rbx));
 575 }
 576 
 577 void TemplateTable::wide_fload() {
 578   transition(vtos, ftos);
 579   locals_index_wide(rbx);
 580   __ movflt(xmm0, faddress(rbx));
 581 }
 582 
 583 void TemplateTable::wide_dload() {
 584   transition(vtos, dtos);
 585   locals_index_wide(rbx);
 586   __ movdbl(xmm0, daddress(rbx));
 587 }
 588 
 589 void TemplateTable::wide_aload() {
 590   transition(vtos, atos);
 591   locals_index_wide(rbx);
 592   __ movptr(rax, aaddress(rbx));
 593 }
 594 
 595 void TemplateTable::index_check(Register array, Register index) {
 596   // destroys rbx
 597   // check array
 598   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 599   // sign extend index for use by indexed load
 600   __ movl2ptr(index, index);
 601   // check index
 602   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 603   if (index != rbx) {
 604     // ??? convention: move aberrant index into ebx for exception message
 605     assert(rbx != array, "different registers");
 606     __ movl(rbx, index);
 607   }
 608   __ jump_cc(Assembler::aboveEqual,
 609              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 610 }
 611 
 612 void TemplateTable::iaload() {
 613   transition(itos, itos);
 614   __ pop_ptr(rdx);
 615   // eax: index
 616   // rdx: array
 617   index_check(rdx, rax); // kills rbx
 618   __ movl(rax, Address(rdx, rax,
 619                        Address::times_4,
 620                        arrayOopDesc::base_offset_in_bytes(T_INT)));
 621 }
 622 
 623 void TemplateTable::laload() {
 624   transition(itos, ltos);
 625   __ pop_ptr(rdx);
 626   // eax: index
 627   // rdx: array
 628   index_check(rdx, rax); // kills rbx
 629   __ movq(rax, Address(rdx, rbx,
 630                        Address::times_8,
 631                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
 632 }
 633 
 634 void TemplateTable::faload() {
 635   transition(itos, ftos);
 636   __ pop_ptr(rdx);
 637   // eax: index
 638   // rdx: array
 639   index_check(rdx, rax); // kills rbx
 640   __ movflt(xmm0, Address(rdx, rax,
 641                          Address::times_4,
 642                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 643 }
 644 
 645 void TemplateTable::daload() {
 646   transition(itos, dtos);
 647   __ pop_ptr(rdx);
 648   // eax: index
 649   // rdx: array
 650   index_check(rdx, rax); // kills rbx
 651   __ movdbl(xmm0, Address(rdx, rax,
 652                           Address::times_8,
 653                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 654 }
 655 
 656 void TemplateTable::aaload() {
 657   transition(itos, atos);
 658   __ pop_ptr(rdx);
 659   // eax: index
 660   // rdx: array
 661   index_check(rdx, rax); // kills rbx
 662   __ load_heap_oop(rax, Address(rdx, rax,
 663                                 UseCompressedOops ? Address::times_4 : Address::times_8,
 664                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 665 }
 666 
 667 void TemplateTable::baload() {
 668   transition(itos, itos);
 669   __ pop_ptr(rdx);
 670   // eax: index
 671   // rdx: array
 672   index_check(rdx, rax); // kills rbx
 673   __ load_signed_byte(rax,
 674                       Address(rdx, rax,
 675                               Address::times_1,
 676                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 677 }
 678 
 679 void TemplateTable::caload() {
 680   transition(itos, itos);
 681   __ pop_ptr(rdx);
 682   // eax: index
 683   // rdx: array
 684   index_check(rdx, rax); // kills rbx
 685   __ load_unsigned_short(rax,
 686                          Address(rdx, rax,
 687                                  Address::times_2,
 688                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 689 }
 690 
 691 // iload followed by caload frequent pair
 692 void TemplateTable::fast_icaload() {
 693   transition(vtos, itos);
 694   // load index out of locals
 695   locals_index(rbx);
 696   __ movl(rax, iaddress(rbx));
 697 
 698   // eax: index
 699   // rdx: array
 700   __ pop_ptr(rdx);
 701   index_check(rdx, rax); // kills rbx
 702   __ load_unsigned_short(rax,
 703                          Address(rdx, rax,
 704                                  Address::times_2,
 705                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 706 }
 707 
 708 void TemplateTable::saload() {
 709   transition(itos, itos);
 710   __ pop_ptr(rdx);
 711   // eax: index
 712   // rdx: array
 713   index_check(rdx, rax); // kills rbx
 714   __ load_signed_short(rax,
 715                        Address(rdx, rax,
 716                                Address::times_2,
 717                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 718 }
 719 
 720 void TemplateTable::iload(int n) {
 721   transition(vtos, itos);
 722   __ movl(rax, iaddress(n));
 723 }
 724 
 725 void TemplateTable::lload(int n) {
 726   transition(vtos, ltos);
 727   __ movq(rax, laddress(n));
 728 }
 729 
 730 void TemplateTable::fload(int n) {
 731   transition(vtos, ftos);
 732   __ movflt(xmm0, faddress(n));
 733 }
 734 
 735 void TemplateTable::dload(int n) {
 736   transition(vtos, dtos);
 737   __ movdbl(xmm0, daddress(n));
 738 }
 739 
 740 void TemplateTable::aload(int n) {
 741   transition(vtos, atos);
 742   __ movptr(rax, aaddress(n));
 743 }
 744 
 745 void TemplateTable::aload_0() {
 746   transition(vtos, atos);
 747   // According to bytecode histograms, the pairs:
 748   //
 749   // _aload_0, _fast_igetfield
 750   // _aload_0, _fast_agetfield
 751   // _aload_0, _fast_fgetfield
 752   //
 753   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 754   // _aload_0 bytecode checks if the next bytecode is either
 755   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 756   // rewrites the current bytecode into a pair bytecode; otherwise it
 757   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 758   // the pair check anymore.
 759   //
 760   // Note: If the next bytecode is _getfield, the rewrite must be
 761   //       delayed, otherwise we may miss an opportunity for a pair.
 762   //
 763   // Also rewrite frequent pairs
 764   //   aload_0, aload_1
 765   //   aload_0, iload_1
 766   // These bytecodes with a small amount of code are most profitable
 767   // to rewrite
 768   if (RewriteFrequentPairs) {
 769     Label rewrite, done;
 770     const Register bc = c_rarg3;
 771     assert(rbx != bc, "register damaged");
 772     // get next byte
 773     __ load_unsigned_byte(rbx,
 774                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 775 
 776     // do actual aload_0
 777     aload(0);
 778 
 779     // if _getfield then wait with rewrite
 780     __ cmpl(rbx, Bytecodes::_getfield);
 781     __ jcc(Assembler::equal, done);
 782 
 783     // if _igetfield then reqrite to _fast_iaccess_0
 784     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
 785            Bytecodes::_aload_0,
 786            "fix bytecode definition");
 787     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 788     __ movl(bc, Bytecodes::_fast_iaccess_0);
 789     __ jccb(Assembler::equal, rewrite);
 790 
 791     // if _agetfield then reqrite to _fast_aaccess_0
 792     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
 793            Bytecodes::_aload_0,
 794            "fix bytecode definition");
 795     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 796     __ movl(bc, Bytecodes::_fast_aaccess_0);
 797     __ jccb(Assembler::equal, rewrite);
 798 
 799     // if _fgetfield then reqrite to _fast_faccess_0
 800     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
 801            Bytecodes::_aload_0,
 802            "fix bytecode definition");
 803     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 804     __ movl(bc, Bytecodes::_fast_faccess_0);
 805     __ jccb(Assembler::equal, rewrite);
 806 
 807     // else rewrite to _fast_aload0
 808     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
 809            Bytecodes::_aload_0,
 810            "fix bytecode definition");
 811     __ movl(bc, Bytecodes::_fast_aload_0);
 812 
 813     // rewrite
 814     // bc: fast bytecode
 815     __ bind(rewrite);
 816     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
 817 
 818     __ bind(done);
 819   } else {
 820     aload(0);
 821   }
 822 }
 823 
 824 void TemplateTable::istore() {
 825   transition(itos, vtos);
 826   locals_index(rbx);
 827   __ movl(iaddress(rbx), rax);
 828 }
 829 
 830 void TemplateTable::lstore() {
 831   transition(ltos, vtos);
 832   locals_index(rbx);
 833   __ movq(laddress(rbx), rax);
 834 }
 835 
 836 void TemplateTable::fstore() {
 837   transition(ftos, vtos);
 838   locals_index(rbx);
 839   __ movflt(faddress(rbx), xmm0);
 840 }
 841 
 842 void TemplateTable::dstore() {
 843   transition(dtos, vtos);
 844   locals_index(rbx);
 845   __ movdbl(daddress(rbx), xmm0);
 846 }
 847 
 848 void TemplateTable::astore() {
 849   transition(vtos, vtos);
 850   __ pop_ptr(rax);
 851   locals_index(rbx);
 852   __ movptr(aaddress(rbx), rax);
 853 }
 854 
 855 void TemplateTable::wide_istore() {
 856   transition(vtos, vtos);
 857   __ pop_i();
 858   locals_index_wide(rbx);
 859   __ movl(iaddress(rbx), rax);
 860 }
 861 
 862 void TemplateTable::wide_lstore() {
 863   transition(vtos, vtos);
 864   __ pop_l();
 865   locals_index_wide(rbx);
 866   __ movq(laddress(rbx), rax);
 867 }
 868 
 869 void TemplateTable::wide_fstore() {
 870   transition(vtos, vtos);
 871   __ pop_f();
 872   locals_index_wide(rbx);
 873   __ movflt(faddress(rbx), xmm0);
 874 }
 875 
 876 void TemplateTable::wide_dstore() {
 877   transition(vtos, vtos);
 878   __ pop_d();
 879   locals_index_wide(rbx);
 880   __ movdbl(daddress(rbx), xmm0);
 881 }
 882 
 883 void TemplateTable::wide_astore() {
 884   transition(vtos, vtos);
 885   __ pop_ptr(rax);
 886   locals_index_wide(rbx);
 887   __ movptr(aaddress(rbx), rax);
 888 }
 889 
 890 void TemplateTable::iastore() {
 891   transition(itos, vtos);
 892   __ pop_i(rbx);
 893   __ pop_ptr(rdx);
 894   // eax: value
 895   // ebx: index
 896   // rdx: array
 897   index_check(rdx, rbx); // prefer index in ebx
 898   __ movl(Address(rdx, rbx,
 899                   Address::times_4,
 900                   arrayOopDesc::base_offset_in_bytes(T_INT)),
 901           rax);
 902 }
 903 
 904 void TemplateTable::lastore() {
 905   transition(ltos, vtos);
 906   __ pop_i(rbx);
 907   __ pop_ptr(rdx);
 908   // rax: value
 909   // ebx: index
 910   // rdx: array
 911   index_check(rdx, rbx); // prefer index in ebx
 912   __ movq(Address(rdx, rbx,
 913                   Address::times_8,
 914                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
 915           rax);
 916 }
 917 
 918 void TemplateTable::fastore() {
 919   transition(ftos, vtos);
 920   __ pop_i(rbx);
 921   __ pop_ptr(rdx);
 922   // xmm0: value
 923   // ebx:  index
 924   // rdx:  array
 925   index_check(rdx, rbx); // prefer index in ebx
 926   __ movflt(Address(rdx, rbx,
 927                    Address::times_4,
 928                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
 929            xmm0);
 930 }
 931 
 932 void TemplateTable::dastore() {
 933   transition(dtos, vtos);
 934   __ pop_i(rbx);
 935   __ pop_ptr(rdx);
 936   // xmm0: value
 937   // ebx:  index
 938   // rdx:  array
 939   index_check(rdx, rbx); // prefer index in ebx
 940   __ movdbl(Address(rdx, rbx,
 941                    Address::times_8,
 942                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
 943            xmm0);
 944 }
 945 
 946 void TemplateTable::aastore() {
 947   Label is_null, ok_is_subtype, done;
 948   transition(vtos, vtos);
 949   // stack: ..., array, index, value
 950   __ movptr(rax, at_tos());    // value
 951   __ movl(rcx, at_tos_p1()); // index
 952   __ movptr(rdx, at_tos_p2()); // array
 953 
 954   Address element_address(rdx, rcx,
 955                           UseCompressedOops? Address::times_4 : Address::times_8,
 956                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 957 
 958   index_check(rdx, rcx);     // kills rbx
 959   // do array store check - check for NULL value first
 960   __ testptr(rax, rax);
 961   __ jcc(Assembler::zero, is_null);
 962 
 963   // Move subklass into rbx
 964   __ load_klass(rbx, rax);
 965   // Move superklass into rax
 966   __ load_klass(rax, rdx);
 967   __ movptr(rax, Address(rax,
 968                          sizeof(oopDesc) +
 969                          objArrayKlass::element_klass_offset_in_bytes()));
 970   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
 971   __ lea(rdx, element_address);
 972 
 973   // Generate subtype check.  Blows rcx, rdi
 974   // Superklass in rax.  Subklass in rbx.
 975   __ gen_subtype_check(rbx, ok_is_subtype);
 976 
 977   // Come here on failure
 978   // object is at TOS
 979   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
 980 
 981   // Come here on success
 982   __ bind(ok_is_subtype);
 983 
 984   // Get the value we will store
 985   __ movptr(rax, at_tos());
 986   // Now store using the appropriate barrier
 987   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
 988   __ jmp(done);
 989 
 990   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
 991   __ bind(is_null);
 992   __ profile_null_seen(rbx);
 993 
 994   // Store a NULL
 995   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
 996 
 997   // Pop stack arguments
 998   __ bind(done);
 999   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1000 }
1001 
1002 void TemplateTable::bastore() {
1003   transition(itos, vtos);
1004   __ pop_i(rbx);
1005   __ pop_ptr(rdx);
1006   // eax: value
1007   // ebx: index
1008   // rdx: array
1009   index_check(rdx, rbx); // prefer index in ebx
1010   __ movb(Address(rdx, rbx,
1011                   Address::times_1,
1012                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1013           rax);
1014 }
1015 
1016 void TemplateTable::castore() {
1017   transition(itos, vtos);
1018   __ pop_i(rbx);
1019   __ pop_ptr(rdx);
1020   // eax: value
1021   // ebx: index
1022   // rdx: array
1023   index_check(rdx, rbx);  // prefer index in ebx
1024   __ movw(Address(rdx, rbx,
1025                   Address::times_2,
1026                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1027           rax);
1028 }
1029 
1030 void TemplateTable::sastore() {
1031   castore();
1032 }
1033 
1034 void TemplateTable::istore(int n) {
1035   transition(itos, vtos);
1036   __ movl(iaddress(n), rax);
1037 }
1038 
1039 void TemplateTable::lstore(int n) {
1040   transition(ltos, vtos);
1041   __ movq(laddress(n), rax);
1042 }
1043 
1044 void TemplateTable::fstore(int n) {
1045   transition(ftos, vtos);
1046   __ movflt(faddress(n), xmm0);
1047 }
1048 
1049 void TemplateTable::dstore(int n) {
1050   transition(dtos, vtos);
1051   __ movdbl(daddress(n), xmm0);
1052 }
1053 
1054 void TemplateTable::astore(int n) {
1055   transition(vtos, vtos);
1056   __ pop_ptr(rax);
1057   __ movptr(aaddress(n), rax);
1058 }
1059 
1060 void TemplateTable::pop() {
1061   transition(vtos, vtos);
1062   __ addptr(rsp, Interpreter::stackElementSize);
1063 }
1064 
1065 void TemplateTable::pop2() {
1066   transition(vtos, vtos);
1067   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1068 }
1069 
1070 void TemplateTable::dup() {
1071   transition(vtos, vtos);
1072   __ load_ptr(0, rax);
1073   __ push_ptr(rax);
1074   // stack: ..., a, a
1075 }
1076 
1077 void TemplateTable::dup_x1() {
1078   transition(vtos, vtos);
1079   // stack: ..., a, b
1080   __ load_ptr( 0, rax);  // load b
1081   __ load_ptr( 1, rcx);  // load a
1082   __ store_ptr(1, rax);  // store b
1083   __ store_ptr(0, rcx);  // store a
1084   __ push_ptr(rax);      // push b
1085   // stack: ..., b, a, b
1086 }
1087 
1088 void TemplateTable::dup_x2() {
1089   transition(vtos, vtos);
1090   // stack: ..., a, b, c
1091   __ load_ptr( 0, rax);  // load c
1092   __ load_ptr( 2, rcx);  // load a
1093   __ store_ptr(2, rax);  // store c in a
1094   __ push_ptr(rax);      // push c
1095   // stack: ..., c, b, c, c
1096   __ load_ptr( 2, rax);  // load b
1097   __ store_ptr(2, rcx);  // store a in b
1098   // stack: ..., c, a, c, c
1099   __ store_ptr(1, rax);  // store b in c
1100   // stack: ..., c, a, b, c
1101 }
1102 
1103 void TemplateTable::dup2() {
1104   transition(vtos, vtos);
1105   // stack: ..., a, b
1106   __ load_ptr(1, rax);  // load a
1107   __ push_ptr(rax);     // push a
1108   __ load_ptr(1, rax);  // load b
1109   __ push_ptr(rax);     // push b
1110   // stack: ..., a, b, a, b
1111 }
1112 
1113 void TemplateTable::dup2_x1() {
1114   transition(vtos, vtos);
1115   // stack: ..., a, b, c
1116   __ load_ptr( 0, rcx);  // load c
1117   __ load_ptr( 1, rax);  // load b
1118   __ push_ptr(rax);      // push b
1119   __ push_ptr(rcx);      // push c
1120   // stack: ..., a, b, c, b, c
1121   __ store_ptr(3, rcx);  // store c in b
1122   // stack: ..., a, c, c, b, c
1123   __ load_ptr( 4, rcx);  // load a
1124   __ store_ptr(2, rcx);  // store a in 2nd c
1125   // stack: ..., a, c, a, b, c
1126   __ store_ptr(4, rax);  // store b in a
1127   // stack: ..., b, c, a, b, c
1128 }
1129 
1130 void TemplateTable::dup2_x2() {
1131   transition(vtos, vtos);
1132   // stack: ..., a, b, c, d
1133   __ load_ptr( 0, rcx);  // load d
1134   __ load_ptr( 1, rax);  // load c
1135   __ push_ptr(rax);      // push c
1136   __ push_ptr(rcx);      // push d
1137   // stack: ..., a, b, c, d, c, d
1138   __ load_ptr( 4, rax);  // load b
1139   __ store_ptr(2, rax);  // store b in d
1140   __ store_ptr(4, rcx);  // store d in b
1141   // stack: ..., a, d, c, b, c, d
1142   __ load_ptr( 5, rcx);  // load a
1143   __ load_ptr( 3, rax);  // load c
1144   __ store_ptr(3, rcx);  // store a in c
1145   __ store_ptr(5, rax);  // store c in a
1146   // stack: ..., c, d, a, b, c, d
1147 }
1148 
1149 void TemplateTable::swap() {
1150   transition(vtos, vtos);
1151   // stack: ..., a, b
1152   __ load_ptr( 1, rcx);  // load a
1153   __ load_ptr( 0, rax);  // load b
1154   __ store_ptr(0, rcx);  // store a in b
1155   __ store_ptr(1, rax);  // store b in a
1156   // stack: ..., b, a
1157 }
1158 
1159 void TemplateTable::iop2(Operation op) {
1160   transition(itos, itos);
1161   switch (op) {
1162   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1163   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1164   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1165   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1166   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1167   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1168   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1169   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1170   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1171   default   : ShouldNotReachHere();
1172   }
1173 }
1174 
1175 void TemplateTable::lop2(Operation op) {
1176   transition(ltos, ltos);
1177   switch (op) {
1178   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1179   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1180   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1181   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1182   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1183   default   : ShouldNotReachHere();
1184   }
1185 }
1186 
1187 void TemplateTable::idiv() {
1188   transition(itos, itos);
1189   __ movl(rcx, rax);
1190   __ pop_i(rax);
1191   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1192   //       they are not equal, one could do a normal division (no correction
1193   //       needed), which may speed up this implementation for the common case.
1194   //       (see also JVM spec., p.243 & p.271)
1195   __ corrected_idivl(rcx);
1196 }
1197 
1198 void TemplateTable::irem() {
1199   transition(itos, itos);
1200   __ movl(rcx, rax);
1201   __ pop_i(rax);
1202   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1203   //       they are not equal, one could do a normal division (no correction
1204   //       needed), which may speed up this implementation for the common case.
1205   //       (see also JVM spec., p.243 & p.271)
1206   __ corrected_idivl(rcx);
1207   __ movl(rax, rdx);
1208 }
1209 
1210 void TemplateTable::lmul() {
1211   transition(ltos, ltos);
1212   __ pop_l(rdx);
1213   __ imulq(rax, rdx);
1214 }
1215 
1216 void TemplateTable::ldiv() {
1217   transition(ltos, ltos);
1218   __ mov(rcx, rax);
1219   __ pop_l(rax);
1220   // generate explicit div0 check
1221   __ testq(rcx, rcx);
1222   __ jump_cc(Assembler::zero,
1223              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1224   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1225   //       they are not equal, one could do a normal division (no correction
1226   //       needed), which may speed up this implementation for the common case.
1227   //       (see also JVM spec., p.243 & p.271)
1228   __ corrected_idivq(rcx); // kills rbx
1229 }
1230 
1231 void TemplateTable::lrem() {
1232   transition(ltos, ltos);
1233   __ mov(rcx, rax);
1234   __ pop_l(rax);
1235   __ testq(rcx, rcx);
1236   __ jump_cc(Assembler::zero,
1237              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1238   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1239   //       they are not equal, one could do a normal division (no correction
1240   //       needed), which may speed up this implementation for the common case.
1241   //       (see also JVM spec., p.243 & p.271)
1242   __ corrected_idivq(rcx); // kills rbx
1243   __ mov(rax, rdx);
1244 }
1245 
1246 void TemplateTable::lshl() {
1247   transition(itos, ltos);
1248   __ movl(rcx, rax);                             // get shift count
1249   __ pop_l(rax);                                 // get shift value
1250   __ shlq(rax);
1251 }
1252 
1253 void TemplateTable::lshr() {
1254   transition(itos, ltos);
1255   __ movl(rcx, rax);                             // get shift count
1256   __ pop_l(rax);                                 // get shift value
1257   __ sarq(rax);
1258 }
1259 
1260 void TemplateTable::lushr() {
1261   transition(itos, ltos);
1262   __ movl(rcx, rax);                             // get shift count
1263   __ pop_l(rax);                                 // get shift value
1264   __ shrq(rax);
1265 }
1266 
1267 void TemplateTable::fop2(Operation op) {
1268   transition(ftos, ftos);
1269   switch (op) {
1270   case add:
1271     __ addss(xmm0, at_rsp());
1272     __ addptr(rsp, Interpreter::stackElementSize);
1273     break;
1274   case sub:
1275     __ movflt(xmm1, xmm0);
1276     __ pop_f(xmm0);
1277     __ subss(xmm0, xmm1);
1278     break;
1279   case mul:
1280     __ mulss(xmm0, at_rsp());
1281     __ addptr(rsp, Interpreter::stackElementSize);
1282     break;
1283   case div:
1284     __ movflt(xmm1, xmm0);
1285     __ pop_f(xmm0);
1286     __ divss(xmm0, xmm1);
1287     break;
1288   case rem:
1289     __ movflt(xmm1, xmm0);
1290     __ pop_f(xmm0);
1291     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1292     break;
1293   default:
1294     ShouldNotReachHere();
1295     break;
1296   }
1297 }
1298 
1299 void TemplateTable::dop2(Operation op) {
1300   transition(dtos, dtos);
1301   switch (op) {
1302   case add:
1303     __ addsd(xmm0, at_rsp());
1304     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1305     break;
1306   case sub:
1307     __ movdbl(xmm1, xmm0);
1308     __ pop_d(xmm0);
1309     __ subsd(xmm0, xmm1);
1310     break;
1311   case mul:
1312     __ mulsd(xmm0, at_rsp());
1313     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1314     break;
1315   case div:
1316     __ movdbl(xmm1, xmm0);
1317     __ pop_d(xmm0);
1318     __ divsd(xmm0, xmm1);
1319     break;
1320   case rem:
1321     __ movdbl(xmm1, xmm0);
1322     __ pop_d(xmm0);
1323     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1324     break;
1325   default:
1326     ShouldNotReachHere();
1327     break;
1328   }
1329 }
1330 
1331 void TemplateTable::ineg() {
1332   transition(itos, itos);
1333   __ negl(rax);
1334 }
1335 
1336 void TemplateTable::lneg() {
1337   transition(ltos, ltos);
1338   __ negq(rax);
1339 }
1340 
1341 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1342 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1343   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1344   // of 128-bits operands for SSE instructions.
1345   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1346   // Store the value to a 128-bits operand.
1347   operand[0] = lo;
1348   operand[1] = hi;
1349   return operand;
1350 }
1351 
1352 // Buffer for 128-bits masks used by SSE instructions.
1353 static jlong float_signflip_pool[2*2];
1354 static jlong double_signflip_pool[2*2];
1355 
1356 void TemplateTable::fneg() {
1357   transition(ftos, ftos);
1358   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
1359   __ xorps(xmm0, ExternalAddress((address) float_signflip));
1360 }
1361 
1362 void TemplateTable::dneg() {
1363   transition(dtos, dtos);
1364   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
1365   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1366 }
1367 
1368 void TemplateTable::iinc() {
1369   transition(vtos, vtos);
1370   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1371   locals_index(rbx);
1372   __ addl(iaddress(rbx), rdx);
1373 }
1374 
1375 void TemplateTable::wide_iinc() {
1376   transition(vtos, vtos);
1377   __ movl(rdx, at_bcp(4)); // get constant
1378   locals_index_wide(rbx);
1379   __ bswapl(rdx); // swap bytes & sign-extend constant
1380   __ sarl(rdx, 16);
1381   __ addl(iaddress(rbx), rdx);
1382   // Note: should probably use only one movl to get both
1383   //       the index and the constant -> fix this
1384 }
1385 
1386 void TemplateTable::convert() {
1387   // Checking
1388 #ifdef ASSERT
1389   {
1390     TosState tos_in  = ilgl;
1391     TosState tos_out = ilgl;
1392     switch (bytecode()) {
1393     case Bytecodes::_i2l: // fall through
1394     case Bytecodes::_i2f: // fall through
1395     case Bytecodes::_i2d: // fall through
1396     case Bytecodes::_i2b: // fall through
1397     case Bytecodes::_i2c: // fall through
1398     case Bytecodes::_i2s: tos_in = itos; break;
1399     case Bytecodes::_l2i: // fall through
1400     case Bytecodes::_l2f: // fall through
1401     case Bytecodes::_l2d: tos_in = ltos; break;
1402     case Bytecodes::_f2i: // fall through
1403     case Bytecodes::_f2l: // fall through
1404     case Bytecodes::_f2d: tos_in = ftos; break;
1405     case Bytecodes::_d2i: // fall through
1406     case Bytecodes::_d2l: // fall through
1407     case Bytecodes::_d2f: tos_in = dtos; break;
1408     default             : ShouldNotReachHere();
1409     }
1410     switch (bytecode()) {
1411     case Bytecodes::_l2i: // fall through
1412     case Bytecodes::_f2i: // fall through
1413     case Bytecodes::_d2i: // fall through
1414     case Bytecodes::_i2b: // fall through
1415     case Bytecodes::_i2c: // fall through
1416     case Bytecodes::_i2s: tos_out = itos; break;
1417     case Bytecodes::_i2l: // fall through
1418     case Bytecodes::_f2l: // fall through
1419     case Bytecodes::_d2l: tos_out = ltos; break;
1420     case Bytecodes::_i2f: // fall through
1421     case Bytecodes::_l2f: // fall through
1422     case Bytecodes::_d2f: tos_out = ftos; break;
1423     case Bytecodes::_i2d: // fall through
1424     case Bytecodes::_l2d: // fall through
1425     case Bytecodes::_f2d: tos_out = dtos; break;
1426     default             : ShouldNotReachHere();
1427     }
1428     transition(tos_in, tos_out);
1429   }
1430 #endif // ASSERT
1431 
1432   static const int64_t is_nan = 0x8000000000000000L;
1433 
1434   // Conversion
1435   switch (bytecode()) {
1436   case Bytecodes::_i2l:
1437     __ movslq(rax, rax);
1438     break;
1439   case Bytecodes::_i2f:
1440     __ cvtsi2ssl(xmm0, rax);
1441     break;
1442   case Bytecodes::_i2d:
1443     __ cvtsi2sdl(xmm0, rax);
1444     break;
1445   case Bytecodes::_i2b:
1446     __ movsbl(rax, rax);
1447     break;
1448   case Bytecodes::_i2c:
1449     __ movzwl(rax, rax);
1450     break;
1451   case Bytecodes::_i2s:
1452     __ movswl(rax, rax);
1453     break;
1454   case Bytecodes::_l2i:
1455     __ movl(rax, rax);
1456     break;
1457   case Bytecodes::_l2f:
1458     __ cvtsi2ssq(xmm0, rax);
1459     break;
1460   case Bytecodes::_l2d:
1461     __ cvtsi2sdq(xmm0, rax);
1462     break;
1463   case Bytecodes::_f2i:
1464   {
1465     Label L;
1466     __ cvttss2sil(rax, xmm0);
1467     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1468     __ jcc(Assembler::notEqual, L);
1469     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1470     __ bind(L);
1471   }
1472     break;
1473   case Bytecodes::_f2l:
1474   {
1475     Label L;
1476     __ cvttss2siq(rax, xmm0);
1477     // NaN or overflow/underflow?
1478     __ cmp64(rax, ExternalAddress((address) &is_nan));
1479     __ jcc(Assembler::notEqual, L);
1480     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1481     __ bind(L);
1482   }
1483     break;
1484   case Bytecodes::_f2d:
1485     __ cvtss2sd(xmm0, xmm0);
1486     break;
1487   case Bytecodes::_d2i:
1488   {
1489     Label L;
1490     __ cvttsd2sil(rax, xmm0);
1491     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1492     __ jcc(Assembler::notEqual, L);
1493     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1494     __ bind(L);
1495   }
1496     break;
1497   case Bytecodes::_d2l:
1498   {
1499     Label L;
1500     __ cvttsd2siq(rax, xmm0);
1501     // NaN or overflow/underflow?
1502     __ cmp64(rax, ExternalAddress((address) &is_nan));
1503     __ jcc(Assembler::notEqual, L);
1504     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1505     __ bind(L);
1506   }
1507     break;
1508   case Bytecodes::_d2f:
1509     __ cvtsd2ss(xmm0, xmm0);
1510     break;
1511   default:
1512     ShouldNotReachHere();
1513   }
1514 }
1515 
1516 void TemplateTable::lcmp() {
1517   transition(ltos, itos);
1518   Label done;
1519   __ pop_l(rdx);
1520   __ cmpq(rdx, rax);
1521   __ movl(rax, -1);
1522   __ jccb(Assembler::less, done);
1523   __ setb(Assembler::notEqual, rax);
1524   __ movzbl(rax, rax);
1525   __ bind(done);
1526 }
1527 
1528 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1529   Label done;
1530   if (is_float) {
1531     // XXX get rid of pop here, use ... reg, mem32
1532     __ pop_f(xmm1);
1533     __ ucomiss(xmm1, xmm0);
1534   } else {
1535     // XXX get rid of pop here, use ... reg, mem64
1536     __ pop_d(xmm1);
1537     __ ucomisd(xmm1, xmm0);
1538   }
1539   if (unordered_result < 0) {
1540     __ movl(rax, -1);
1541     __ jccb(Assembler::parity, done);
1542     __ jccb(Assembler::below, done);
1543     __ setb(Assembler::notEqual, rdx);
1544     __ movzbl(rax, rdx);
1545   } else {
1546     __ movl(rax, 1);
1547     __ jccb(Assembler::parity, done);
1548     __ jccb(Assembler::above, done);
1549     __ movl(rax, 0);
1550     __ jccb(Assembler::equal, done);
1551     __ decrementl(rax);
1552   }
1553   __ bind(done);
1554 }
1555 
1556 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1557   __ get_method(rcx); // rcx holds method
1558   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
1559                                      // holds bumped taken count
1560 
1561   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
1562                              InvocationCounter::counter_offset();
1563   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
1564                               InvocationCounter::counter_offset();
1565   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
1566 
1567   // Load up edx with the branch displacement
1568   __ movl(rdx, at_bcp(1));
1569   __ bswapl(rdx);
1570 
1571   if (!is_wide) {
1572     __ sarl(rdx, 16);
1573   }
1574   __ movl2ptr(rdx, rdx);
1575 
1576   // Handle all the JSR stuff here, then exit.
1577   // It's much shorter and cleaner than intermingling with the non-JSR
1578   // normal-branch stuff occurring below.
1579   if (is_jsr) {
1580     // Pre-load the next target bytecode into rbx
1581     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
1582 
1583     // compute return address as bci in rax
1584     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
1585                         in_bytes(constMethodOopDesc::codes_offset())));
1586     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
1587     // Adjust the bcp in r13 by the displacement in rdx
1588     __ addptr(r13, rdx);
1589     // jsr returns atos that is not an oop
1590     __ push_i(rax);
1591     __ dispatch_only(vtos);
1592     return;
1593   }
1594 
1595   // Normal (non-jsr) branch handling
1596 
1597   // Adjust the bcp in r13 by the displacement in rdx
1598   __ addptr(r13, rdx);
1599 
1600   assert(UseLoopCounter || !UseOnStackReplacement,
1601          "on-stack-replacement requires loop counters");
1602   Label backedge_counter_overflow;
1603   Label profile_method;
1604   Label dispatch;
1605   if (UseLoopCounter) {
1606     // increment backedge counter for backward branches
1607     // rax: MDO
1608     // ebx: MDO bumped taken-count
1609     // rcx: method
1610     // rdx: target offset
1611     // r13: target bcp
1612     // r14: locals pointer
1613     __ testl(rdx, rdx);             // check if forward or backward branch
1614     __ jcc(Assembler::positive, dispatch); // count only if backward branch
1615     if (TieredCompilation) {
1616       Label no_mdo;
1617       int increment = InvocationCounter::count_increment;
1618       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1619       if (ProfileInterpreter) {
1620         // Are we profiling?
1621         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
1622         __ testptr(rbx, rbx);
1623         __ jccb(Assembler::zero, no_mdo);
1624         // Increment the MDO backedge counter
1625         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
1626                                            in_bytes(InvocationCounter::counter_offset()));
1627         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1628                                    rax, false, Assembler::zero, &backedge_counter_overflow);
1629         __ jmp(dispatch);
1630       }
1631       __ bind(no_mdo);
1632       // Increment backedge counter in methodOop
1633       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
1634                                  rax, false, Assembler::zero, &backedge_counter_overflow);
1635     } else {
1636       // increment counter
1637       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
1638       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
1639       __ movl(Address(rcx, be_offset), rax);        // store counter
1640 
1641       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
1642       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
1643       __ addl(rax, Address(rcx, be_offset));        // add both counters
1644 
1645       if (ProfileInterpreter) {
1646         // Test to see if we should create a method data oop
1647         __ cmp32(rax,
1648                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1649         __ jcc(Assembler::less, dispatch);
1650 
1651         // if no method data exists, go to profile method
1652         __ test_method_data_pointer(rax, profile_method);
1653 
1654         if (UseOnStackReplacement) {
1655           // check for overflow against ebx which is the MDO taken count
1656           __ cmp32(rbx,
1657                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1658           __ jcc(Assembler::below, dispatch);
1659 
1660           // When ProfileInterpreter is on, the backedge_count comes
1661           // from the methodDataOop, which value does not get reset on
1662           // the call to frequency_counter_overflow().  To avoid
1663           // excessive calls to the overflow routine while the method is
1664           // being compiled, add a second test to make sure the overflow
1665           // function is called only once every overflow_frequency.
1666           const int overflow_frequency = 1024;
1667           __ andl(rbx, overflow_frequency - 1);
1668           __ jcc(Assembler::zero, backedge_counter_overflow);
1669 
1670         }
1671       } else {
1672         if (UseOnStackReplacement) {
1673           // check for overflow against eax, which is the sum of the
1674           // counters
1675           __ cmp32(rax,
1676                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1677           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1678 
1679         }
1680       }
1681     }
1682     __ bind(dispatch);
1683   }
1684 
1685   // Pre-load the next target bytecode into rbx
1686   __ load_unsigned_byte(rbx, Address(r13, 0));
1687 
1688   // continue with the bytecode @ target
1689   // eax: return bci for jsr's, unused otherwise
1690   // ebx: target bytecode
1691   // r13: target bcp
1692   __ dispatch_only(vtos);
1693 
1694   if (UseLoopCounter) {
1695     if (ProfileInterpreter) {
1696       // Out-of-line code to allocate method data oop.
1697       __ bind(profile_method);
1698       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1699       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1700       __ set_method_data_pointer_for_bcp();
1701       __ jmp(dispatch);
1702     }
1703 
1704     if (UseOnStackReplacement) {
1705       // invocation counter overflow
1706       __ bind(backedge_counter_overflow);
1707       __ negptr(rdx);
1708       __ addptr(rdx, r13); // branch bcp
1709       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1710       __ call_VM(noreg,
1711                  CAST_FROM_FN_PTR(address,
1712                                   InterpreterRuntime::frequency_counter_overflow),
1713                  rdx);
1714       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1715 
1716       // rax: osr nmethod (osr ok) or NULL (osr not possible)
1717       // ebx: target bytecode
1718       // rdx: scratch
1719       // r14: locals pointer
1720       // r13: bcp
1721       __ testptr(rax, rax);                        // test result
1722       __ jcc(Assembler::zero, dispatch);         // no osr if null
1723       // nmethod may have been invalidated (VM may block upon call_VM return)
1724       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
1725       __ cmpl(rcx, InvalidOSREntryBci);
1726       __ jcc(Assembler::equal, dispatch);
1727 
1728       // We have the address of an on stack replacement routine in eax
1729       // We need to prepare to execute the OSR method. First we must
1730       // migrate the locals and monitors off of the stack.
1731 
1732       __ mov(r13, rax);                             // save the nmethod
1733 
1734       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1735 
1736       // eax is OSR buffer, move it to expected parameter location
1737       __ mov(j_rarg0, rax);
1738 
1739       // We use j_rarg definitions here so that registers don't conflict as parameter
1740       // registers change across platforms as we are in the midst of a calling
1741       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
1742 
1743       const Register retaddr = j_rarg2;
1744       const Register sender_sp = j_rarg1;
1745 
1746       // pop the interpreter frame
1747       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1748       __ leave();                                // remove frame anchor
1749       __ pop(retaddr);                           // get return address
1750       __ mov(rsp, sender_sp);                   // set sp to sender sp
1751       // Ensure compiled code always sees stack at proper alignment
1752       __ andptr(rsp, -(StackAlignmentInBytes));
1753 
1754       // unlike x86 we need no specialized return from compiled code
1755       // to the interpreter or the call stub.
1756 
1757       // push the return address
1758       __ push(retaddr);
1759 
1760       // and begin the OSR nmethod
1761       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
1762     }
1763   }
1764 }
1765 
1766 
1767 void TemplateTable::if_0cmp(Condition cc) {
1768   transition(itos, vtos);
1769   // assume branch is more often taken than not (loops use backward branches)
1770   Label not_taken;
1771   __ testl(rax, rax);
1772   __ jcc(j_not(cc), not_taken);
1773   branch(false, false);
1774   __ bind(not_taken);
1775   __ profile_not_taken_branch(rax);
1776 }
1777 
1778 void TemplateTable::if_icmp(Condition cc) {
1779   transition(itos, vtos);
1780   // assume branch is more often taken than not (loops use backward branches)
1781   Label not_taken;
1782   __ pop_i(rdx);
1783   __ cmpl(rdx, rax);
1784   __ jcc(j_not(cc), not_taken);
1785   branch(false, false);
1786   __ bind(not_taken);
1787   __ profile_not_taken_branch(rax);
1788 }
1789 
1790 void TemplateTable::if_nullcmp(Condition cc) {
1791   transition(atos, vtos);
1792   // assume branch is more often taken than not (loops use backward branches)
1793   Label not_taken;
1794   __ testptr(rax, rax);
1795   __ jcc(j_not(cc), not_taken);
1796   branch(false, false);
1797   __ bind(not_taken);
1798   __ profile_not_taken_branch(rax);
1799 }
1800 
1801 void TemplateTable::if_acmp(Condition cc) {
1802   transition(atos, vtos);
1803   // assume branch is more often taken than not (loops use backward branches)
1804   Label not_taken;
1805   __ pop_ptr(rdx);
1806   __ cmpptr(rdx, rax);
1807   __ jcc(j_not(cc), not_taken);
1808   branch(false, false);
1809   __ bind(not_taken);
1810   __ profile_not_taken_branch(rax);
1811 }
1812 
1813 void TemplateTable::ret() {
1814   transition(vtos, vtos);
1815   locals_index(rbx);
1816   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
1817   __ profile_ret(rbx, rcx);
1818   __ get_method(rax);
1819   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
1820   __ lea(r13, Address(r13, rbx, Address::times_1,
1821                       constMethodOopDesc::codes_offset()));
1822   __ dispatch_next(vtos);
1823 }
1824 
1825 void TemplateTable::wide_ret() {
1826   transition(vtos, vtos);
1827   locals_index_wide(rbx);
1828   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
1829   __ profile_ret(rbx, rcx);
1830   __ get_method(rax);
1831   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
1832   __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
1833   __ dispatch_next(vtos);
1834 }
1835 
1836 void TemplateTable::tableswitch() {
1837   Label default_case, continue_execution;
1838   transition(itos, vtos);
1839   // align r13
1840   __ lea(rbx, at_bcp(BytesPerInt));
1841   __ andptr(rbx, -BytesPerInt);
1842   // load lo & hi
1843   __ movl(rcx, Address(rbx, BytesPerInt));
1844   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
1845   __ bswapl(rcx);
1846   __ bswapl(rdx);
1847   // check against lo & hi
1848   __ cmpl(rax, rcx);
1849   __ jcc(Assembler::less, default_case);
1850   __ cmpl(rax, rdx);
1851   __ jcc(Assembler::greater, default_case);
1852   // lookup dispatch offset
1853   __ subl(rax, rcx);
1854   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1855   __ profile_switch_case(rax, rbx, rcx);
1856   // continue execution
1857   __ bind(continue_execution);
1858   __ bswapl(rdx);
1859   __ movl2ptr(rdx, rdx);
1860   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1861   __ addptr(r13, rdx);
1862   __ dispatch_only(vtos);
1863   // handle default
1864   __ bind(default_case);
1865   __ profile_switch_default(rax);
1866   __ movl(rdx, Address(rbx, 0));
1867   __ jmp(continue_execution);
1868 }
1869 
1870 void TemplateTable::lookupswitch() {
1871   transition(itos, itos);
1872   __ stop("lookupswitch bytecode should have been rewritten");
1873 }
1874 
1875 void TemplateTable::fast_linearswitch() {
1876   transition(itos, vtos);
1877   Label loop_entry, loop, found, continue_execution;
1878   // bswap rax so we can avoid bswapping the table entries
1879   __ bswapl(rax);
1880   // align r13
1881   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
1882                                     // this instruction (change offsets
1883                                     // below)
1884   __ andptr(rbx, -BytesPerInt);
1885   // set counter
1886   __ movl(rcx, Address(rbx, BytesPerInt));
1887   __ bswapl(rcx);
1888   __ jmpb(loop_entry);
1889   // table search
1890   __ bind(loop);
1891   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
1892   __ jcc(Assembler::equal, found);
1893   __ bind(loop_entry);
1894   __ decrementl(rcx);
1895   __ jcc(Assembler::greaterEqual, loop);
1896   // default case
1897   __ profile_switch_default(rax);
1898   __ movl(rdx, Address(rbx, 0));
1899   __ jmp(continue_execution);
1900   // entry found -> get offset
1901   __ bind(found);
1902   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
1903   __ profile_switch_case(rcx, rax, rbx);
1904   // continue execution
1905   __ bind(continue_execution);
1906   __ bswapl(rdx);
1907   __ movl2ptr(rdx, rdx);
1908   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1909   __ addptr(r13, rdx);
1910   __ dispatch_only(vtos);
1911 }
1912 
1913 void TemplateTable::fast_binaryswitch() {
1914   transition(itos, vtos);
1915   // Implementation using the following core algorithm:
1916   //
1917   // int binary_search(int key, LookupswitchPair* array, int n) {
1918   //   // Binary search according to "Methodik des Programmierens" by
1919   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1920   //   int i = 0;
1921   //   int j = n;
1922   //   while (i+1 < j) {
1923   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1924   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1925   //     // where a stands for the array and assuming that the (inexisting)
1926   //     // element a[n] is infinitely big.
1927   //     int h = (i + j) >> 1;
1928   //     // i < h < j
1929   //     if (key < array[h].fast_match()) {
1930   //       j = h;
1931   //     } else {
1932   //       i = h;
1933   //     }
1934   //   }
1935   //   // R: a[i] <= key < a[i+1] or Q
1936   //   // (i.e., if key is within array, i is the correct index)
1937   //   return i;
1938   // }
1939 
1940   // Register allocation
1941   const Register key   = rax; // already set (tosca)
1942   const Register array = rbx;
1943   const Register i     = rcx;
1944   const Register j     = rdx;
1945   const Register h     = rdi;
1946   const Register temp  = rsi;
1947 
1948   // Find array start
1949   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
1950                                           // get rid of this
1951                                           // instruction (change
1952                                           // offsets below)
1953   __ andptr(array, -BytesPerInt);
1954 
1955   // Initialize i & j
1956   __ xorl(i, i);                            // i = 0;
1957   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
1958 
1959   // Convert j into native byteordering
1960   __ bswapl(j);
1961 
1962   // And start
1963   Label entry;
1964   __ jmp(entry);
1965 
1966   // binary search loop
1967   {
1968     Label loop;
1969     __ bind(loop);
1970     // int h = (i + j) >> 1;
1971     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
1972     __ sarl(h, 1);                               // h = (i + j) >> 1;
1973     // if (key < array[h].fast_match()) {
1974     //   j = h;
1975     // } else {
1976     //   i = h;
1977     // }
1978     // Convert array[h].match to native byte-ordering before compare
1979     __ movl(temp, Address(array, h, Address::times_8));
1980     __ bswapl(temp);
1981     __ cmpl(key, temp);
1982     // j = h if (key <  array[h].fast_match())
1983     __ cmovl(Assembler::less, j, h);
1984     // i = h if (key >= array[h].fast_match())
1985     __ cmovl(Assembler::greaterEqual, i, h);
1986     // while (i+1 < j)
1987     __ bind(entry);
1988     __ leal(h, Address(i, 1)); // i+1
1989     __ cmpl(h, j);             // i+1 < j
1990     __ jcc(Assembler::less, loop);
1991   }
1992 
1993   // end of binary search, result index is i (must check again!)
1994   Label default_case;
1995   // Convert array[i].match to native byte-ordering before compare
1996   __ movl(temp, Address(array, i, Address::times_8));
1997   __ bswapl(temp);
1998   __ cmpl(key, temp);
1999   __ jcc(Assembler::notEqual, default_case);
2000 
2001   // entry found -> j = offset
2002   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2003   __ profile_switch_case(i, key, array);
2004   __ bswapl(j);
2005   __ movl2ptr(j, j);
2006   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2007   __ addptr(r13, j);
2008   __ dispatch_only(vtos);
2009 
2010   // default case -> j = default offset
2011   __ bind(default_case);
2012   __ profile_switch_default(i);
2013   __ movl(j, Address(array, -2 * BytesPerInt));
2014   __ bswapl(j);
2015   __ movl2ptr(j, j);
2016   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2017   __ addptr(r13, j);
2018   __ dispatch_only(vtos);
2019 }
2020 
2021 
2022 void TemplateTable::_return(TosState state) {
2023   transition(state, state);
2024   assert(_desc->calls_vm(),
2025          "inconsistent calls_vm information"); // call in remove_activation
2026 
2027   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2028     assert(state == vtos, "only valid state");
2029     __ movptr(c_rarg1, aaddress(0));
2030     __ load_klass(rdi, c_rarg1);
2031     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
2032     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2033     Label skip_register_finalizer;
2034     __ jcc(Assembler::zero, skip_register_finalizer);
2035 
2036     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2037 
2038     __ bind(skip_register_finalizer);
2039   }
2040 
2041   __ remove_activation(state, r13);
2042   __ jmp(r13);
2043 }
2044 
2045 // ----------------------------------------------------------------------------
2046 // Volatile variables demand their effects be made known to all CPU's
2047 // in order.  Store buffers on most chips allow reads & writes to
2048 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2049 // without some kind of memory barrier (i.e., it's not sufficient that
2050 // the interpreter does not reorder volatile references, the hardware
2051 // also must not reorder them).
2052 //
2053 // According to the new Java Memory Model (JMM):
2054 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2055 //     writes act as aquire & release, so:
2056 // (2) A read cannot let unrelated NON-volatile memory refs that
2057 //     happen after the read float up to before the read.  It's OK for
2058 //     non-volatile memory refs that happen before the volatile read to
2059 //     float down below it.
2060 // (3) Similar a volatile write cannot let unrelated NON-volatile
2061 //     memory refs that happen BEFORE the write float down to after the
2062 //     write.  It's OK for non-volatile memory refs that happen after the
2063 //     volatile write to float up before it.
2064 //
2065 // We only put in barriers around volatile refs (they are expensive),
2066 // not _between_ memory refs (that would require us to track the
2067 // flavor of the previous memory refs).  Requirements (2) and (3)
2068 // require some barriers before volatile stores and after volatile
2069 // loads.  These nearly cover requirement (1) but miss the
2070 // volatile-store-volatile-load case.  This final case is placed after
2071 // volatile-stores although it could just as well go before
2072 // volatile-loads.
2073 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
2074                                      order_constraint) {
2075   // Helper function to insert a is-volatile test and memory barrier
2076   if (os::is_MP()) { // Not needed on single CPU
2077     __ membar(order_constraint);
2078   }
2079 }
2080 
2081 void TemplateTable::resolve_cache_and_index(int byte_no,
2082                                             Register result,
2083                                             Register Rcache,
2084                                             Register index,
2085                                             size_t index_size) {
2086   const Register temp = rbx;
2087   assert_different_registers(result, Rcache, index, temp);
2088 
2089   Label resolved;
2090   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2091   if (byte_no == f1_oop) {
2092     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2093     // This kind of CP cache entry does not need to match the flags byte, because
2094     // there is a 1-1 relation between bytecode type and CP entry type.
2095     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
2096     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
2097     __ testptr(result, result);
2098     __ jcc(Assembler::notEqual, resolved);
2099   } else {
2100     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2101     assert(result == noreg, "");  //else change code for setting result
2102     const int shift_count = (1 + byte_no) * BitsPerByte;
2103     __ movl(temp, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
2104     __ shrl(temp, shift_count);
2105     // have we resolved this bytecode?
2106     __ andl(temp, 0xFF);
2107     __ cmpl(temp, (int) bytecode());
2108     __ jcc(Assembler::equal, resolved);
2109   }
2110 
2111   // resolve first time through
2112   address entry;
2113   switch (bytecode()) {
2114   case Bytecodes::_getstatic:
2115   case Bytecodes::_putstatic:
2116   case Bytecodes::_getfield:
2117   case Bytecodes::_putfield:
2118     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
2119     break;
2120   case Bytecodes::_invokevirtual:
2121   case Bytecodes::_invokespecial:
2122   case Bytecodes::_invokestatic:
2123   case Bytecodes::_invokeinterface:
2124     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
2125     break;
2126   case Bytecodes::_invokedynamic:
2127     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
2128     break;
2129   case Bytecodes::_fast_aldc:
2130     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
2131     break;
2132   case Bytecodes::_fast_aldc_w:
2133     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
2134     break;
2135   default:
2136     ShouldNotReachHere();
2137     break;
2138   }
2139   __ movl(temp, (int) bytecode());
2140   __ call_VM(noreg, entry, temp);
2141 
2142   // Update registers with resolved info
2143   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2144   if (result != noreg)
2145     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
2146   __ bind(resolved);
2147 }
2148 
2149 // The Rcache and index registers must be set before call
2150 void TemplateTable::load_field_cp_cache_entry(Register obj,
2151                                               Register cache,
2152                                               Register index,
2153                                               Register off,
2154                                               Register flags,
2155                                               bool is_static = false) {
2156   assert_different_registers(cache, index, flags, off);
2157 
2158   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2159   // Field offset
2160   __ movptr(off, Address(cache, index, Address::times_8,
2161                          in_bytes(cp_base_offset +
2162                                   ConstantPoolCacheEntry::f2_offset())));
2163   // Flags
2164   __ movl(flags, Address(cache, index, Address::times_8,
2165                          in_bytes(cp_base_offset +
2166                                   ConstantPoolCacheEntry::flags_offset())));
2167 
2168   // klass overwrite register
2169   if (is_static) {
2170     __ movptr(obj, Address(cache, index, Address::times_8,
2171                            in_bytes(cp_base_offset +
2172                                     ConstantPoolCacheEntry::f1_offset())));
2173   }
2174 }
2175 
2176 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2177                                                Register method,
2178                                                Register itable_index,
2179                                                Register flags,
2180                                                bool is_invokevirtual,
2181                                                bool is_invokevfinal, /*unused*/
2182                                                bool is_invokedynamic) {
2183   // setup registers
2184   const Register cache = rcx;
2185   const Register index = rdx;
2186   assert_different_registers(method, flags);
2187   assert_different_registers(method, cache, index);
2188   assert_different_registers(itable_index, flags);
2189   assert_different_registers(itable_index, cache, index);
2190   // determine constant pool cache field offsets
2191   const int method_offset = in_bytes(
2192     constantPoolCacheOopDesc::base_offset() +
2193       (is_invokevirtual
2194        ? ConstantPoolCacheEntry::f2_offset()
2195        : ConstantPoolCacheEntry::f1_offset()));
2196   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2197                                     ConstantPoolCacheEntry::flags_offset());
2198   // access constant pool cache fields
2199   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2200                                     ConstantPoolCacheEntry::f2_offset());
2201 
2202   if (byte_no == f1_oop) {
2203     // Resolved f1_oop goes directly into 'method' register.
2204     assert(is_invokedynamic, "");
2205     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
2206   } else {
2207     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2208     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2209   }
2210   if (itable_index != noreg) {
2211     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2212   }
2213   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2214 }
2215 
2216 
2217 // The registers cache and index expected to be set before call.
2218 // Correct values of the cache and index registers are preserved.
2219 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2220                                             bool is_static, bool has_tos) {
2221   // do the JVMTI work here to avoid disturbing the register state below
2222   // We use c_rarg registers here because we want to use the register used in
2223   // the call to the VM
2224   if (JvmtiExport::can_post_field_access()) {
2225     // Check to see if a field access watch has been set before we
2226     // take the time to call into the VM.
2227     Label L1;
2228     assert_different_registers(cache, index, rax);
2229     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2230     __ testl(rax, rax);
2231     __ jcc(Assembler::zero, L1);
2232 
2233     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
2234 
2235     // cache entry pointer
2236     __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
2237     __ shll(c_rarg3, LogBytesPerWord);
2238     __ addptr(c_rarg2, c_rarg3);
2239     if (is_static) {
2240       __ xorl(c_rarg1, c_rarg1); // NULL object reference
2241     } else {
2242       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
2243       __ verify_oop(c_rarg1);
2244     }
2245     // c_rarg1: object pointer or NULL
2246     // c_rarg2: cache entry pointer
2247     // c_rarg3: jvalue object on the stack
2248     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2249                                        InterpreterRuntime::post_field_access),
2250                c_rarg1, c_rarg2, c_rarg3);
2251     __ get_cache_and_index_at_bcp(cache, index, 1);
2252     __ bind(L1);
2253   }
2254 }
2255 
2256 void TemplateTable::pop_and_check_object(Register r) {
2257   __ pop_ptr(r);
2258   __ null_check(r);  // for field access must check obj.
2259   __ verify_oop(r);
2260 }
2261 
2262 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2263   transition(vtos, vtos);
2264 
2265   const Register cache = rcx;
2266   const Register index = rdx;
2267   const Register obj   = c_rarg3;
2268   const Register off   = rbx;
2269   const Register flags = rax;
2270   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
2271 
2272   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2273   jvmti_post_field_access(cache, index, is_static, false);
2274   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2275 
2276   if (!is_static) {
2277     // obj is on the stack
2278     pop_and_check_object(obj);
2279   }
2280 
2281   const Address field(obj, off, Address::times_1);
2282 
2283   Label Done, notByte, notInt, notShort, notChar,
2284               notLong, notFloat, notObj, notDouble;
2285 
2286   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2287   assert(btos == 0, "change code, btos != 0");
2288 
2289   __ andl(flags, 0x0F);
2290   __ jcc(Assembler::notZero, notByte);
2291   // btos
2292   __ load_signed_byte(rax, field);
2293   __ push(btos);
2294   // Rewrite bytecode to be faster
2295   if (!is_static) {
2296     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2297   }
2298   __ jmp(Done);
2299 
2300   __ bind(notByte);
2301   __ cmpl(flags, atos);
2302   __ jcc(Assembler::notEqual, notObj);
2303   // atos
2304   __ load_heap_oop(rax, field);
2305   __ push(atos);
2306   if (!is_static) {
2307     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2308   }
2309   __ jmp(Done);
2310 
2311   __ bind(notObj);
2312   __ cmpl(flags, itos);
2313   __ jcc(Assembler::notEqual, notInt);
2314   // itos
2315   __ movl(rax, field);
2316   __ push(itos);
2317   // Rewrite bytecode to be faster
2318   if (!is_static) {
2319     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2320   }
2321   __ jmp(Done);
2322 
2323   __ bind(notInt);
2324   __ cmpl(flags, ctos);
2325   __ jcc(Assembler::notEqual, notChar);
2326   // ctos
2327   __ load_unsigned_short(rax, field);
2328   __ push(ctos);
2329   // Rewrite bytecode to be faster
2330   if (!is_static) {
2331     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2332   }
2333   __ jmp(Done);
2334 
2335   __ bind(notChar);
2336   __ cmpl(flags, stos);
2337   __ jcc(Assembler::notEqual, notShort);
2338   // stos
2339   __ load_signed_short(rax, field);
2340   __ push(stos);
2341   // Rewrite bytecode to be faster
2342   if (!is_static) {
2343     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2344   }
2345   __ jmp(Done);
2346 
2347   __ bind(notShort);
2348   __ cmpl(flags, ltos);
2349   __ jcc(Assembler::notEqual, notLong);
2350   // ltos
2351   __ movq(rax, field);
2352   __ push(ltos);
2353   // Rewrite bytecode to be faster
2354   if (!is_static) {
2355     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
2356   }
2357   __ jmp(Done);
2358 
2359   __ bind(notLong);
2360   __ cmpl(flags, ftos);
2361   __ jcc(Assembler::notEqual, notFloat);
2362   // ftos
2363   __ movflt(xmm0, field);
2364   __ push(ftos);
2365   // Rewrite bytecode to be faster
2366   if (!is_static) {
2367     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2368   }
2369   __ jmp(Done);
2370 
2371   __ bind(notFloat);
2372 #ifdef ASSERT
2373   __ cmpl(flags, dtos);
2374   __ jcc(Assembler::notEqual, notDouble);
2375 #endif
2376   // dtos
2377   __ movdbl(xmm0, field);
2378   __ push(dtos);
2379   // Rewrite bytecode to be faster
2380   if (!is_static) {
2381     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2382   }
2383 #ifdef ASSERT
2384   __ jmp(Done);
2385 
2386   __ bind(notDouble);
2387   __ stop("Bad state");
2388 #endif
2389 
2390   __ bind(Done);
2391   // [jk] not needed currently
2392   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2393   //                                              Assembler::LoadStore));
2394 }
2395 
2396 
2397 void TemplateTable::getfield(int byte_no) {
2398   getfield_or_static(byte_no, false);
2399 }
2400 
2401 void TemplateTable::getstatic(int byte_no) {
2402   getfield_or_static(byte_no, true);
2403 }
2404 
2405 // The registers cache and index expected to be set before call.
2406 // The function may destroy various registers, just not the cache and index registers.
2407 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2408   transition(vtos, vtos);
2409 
2410   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2411 
2412   if (JvmtiExport::can_post_field_modification()) {
2413     // Check to see if a field modification watch has been set before
2414     // we take the time to call into the VM.
2415     Label L1;
2416     assert_different_registers(cache, index, rax);
2417     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2418     __ testl(rax, rax);
2419     __ jcc(Assembler::zero, L1);
2420 
2421     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
2422 
2423     if (is_static) {
2424       // Life is simple.  Null out the object pointer.
2425       __ xorl(c_rarg1, c_rarg1);
2426     } else {
2427       // Life is harder. The stack holds the value on top, followed by
2428       // the object.  We don't know the size of the value, though; it
2429       // could be one or two words depending on its type. As a result,
2430       // we must find the type to determine where the object is.
2431       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
2432                            Address::times_8,
2433                            in_bytes(cp_base_offset +
2434                                      ConstantPoolCacheEntry::flags_offset())));
2435       __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
2436       // Make sure we don't need to mask rcx for tosBits after the
2437       // above shift
2438       ConstantPoolCacheEntry::verify_tosBits();
2439       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
2440       __ cmpl(c_rarg3, ltos);
2441       __ cmovptr(Assembler::equal,
2442                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2443       __ cmpl(c_rarg3, dtos);
2444       __ cmovptr(Assembler::equal,
2445                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
2446     }
2447     // cache entry pointer
2448     __ addptr(c_rarg2, in_bytes(cp_base_offset));
2449     __ shll(rscratch1, LogBytesPerWord);
2450     __ addptr(c_rarg2, rscratch1);
2451     // object (tos)
2452     __ mov(c_rarg3, rsp);
2453     // c_rarg1: object pointer set up above (NULL if static)
2454     // c_rarg2: cache entry pointer
2455     // c_rarg3: jvalue object on the stack
2456     __ call_VM(noreg,
2457                CAST_FROM_FN_PTR(address,
2458                                 InterpreterRuntime::post_field_modification),
2459                c_rarg1, c_rarg2, c_rarg3);
2460     __ get_cache_and_index_at_bcp(cache, index, 1);
2461     __ bind(L1);
2462   }
2463 }
2464 
2465 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2466   transition(vtos, vtos);
2467 
2468   const Register cache = rcx;
2469   const Register index = rdx;
2470   const Register obj   = rcx;
2471   const Register off   = rbx;
2472   const Register flags = rax;
2473   const Register bc    = c_rarg3;
2474 
2475   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2476   jvmti_post_field_mod(cache, index, is_static);
2477   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2478 
2479   // [jk] not needed currently
2480   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2481   //                                              Assembler::StoreStore));
2482 
2483   Label notVolatile, Done;
2484   __ movl(rdx, flags);
2485   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2486   __ andl(rdx, 0x1);
2487 
2488   // field address
2489   const Address field(obj, off, Address::times_1);
2490 
2491   Label notByte, notInt, notShort, notChar,
2492         notLong, notFloat, notObj, notDouble;
2493 
2494   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2495 
2496   assert(btos == 0, "change code, btos != 0");
2497   __ andl(flags, 0x0f);
2498   __ jcc(Assembler::notZero, notByte);
2499   // btos
2500   __ pop(btos);
2501   if (!is_static) pop_and_check_object(obj);
2502   __ movb(field, rax);
2503   if (!is_static) {
2504     patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx);
2505   }
2506   __ jmp(Done);
2507 
2508   __ bind(notByte);
2509   __ cmpl(flags, atos);
2510   __ jcc(Assembler::notEqual, notObj);
2511   // atos
2512   __ pop(atos);
2513   if (!is_static) pop_and_check_object(obj);
2514 
2515   // Store into the field
2516   do_oop_store(_masm, field, rax, _bs->kind(), false);
2517 
2518   if (!is_static) {
2519     patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx);
2520   }
2521   __ jmp(Done);
2522 
2523   __ bind(notObj);
2524   __ cmpl(flags, itos);
2525   __ jcc(Assembler::notEqual, notInt);
2526   // itos
2527   __ pop(itos);
2528   if (!is_static) pop_and_check_object(obj);
2529   __ movl(field, rax);
2530   if (!is_static) {
2531     patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx);
2532   }
2533   __ jmp(Done);
2534 
2535   __ bind(notInt);
2536   __ cmpl(flags, ctos);
2537   __ jcc(Assembler::notEqual, notChar);
2538   // ctos
2539   __ pop(ctos);
2540   if (!is_static) pop_and_check_object(obj);
2541   __ movw(field, rax);
2542   if (!is_static) {
2543     patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx);
2544   }
2545   __ jmp(Done);
2546 
2547   __ bind(notChar);
2548   __ cmpl(flags, stos);
2549   __ jcc(Assembler::notEqual, notShort);
2550   // stos
2551   __ pop(stos);
2552   if (!is_static) pop_and_check_object(obj);
2553   __ movw(field, rax);
2554   if (!is_static) {
2555     patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx);
2556   }
2557   __ jmp(Done);
2558 
2559   __ bind(notShort);
2560   __ cmpl(flags, ltos);
2561   __ jcc(Assembler::notEqual, notLong);
2562   // ltos
2563   __ pop(ltos);
2564   if (!is_static) pop_and_check_object(obj);
2565   __ movq(field, rax);
2566   if (!is_static) {
2567     patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx);
2568   }
2569   __ jmp(Done);
2570 
2571   __ bind(notLong);
2572   __ cmpl(flags, ftos);
2573   __ jcc(Assembler::notEqual, notFloat);
2574   // ftos
2575   __ pop(ftos);
2576   if (!is_static) pop_and_check_object(obj);
2577   __ movflt(field, xmm0);
2578   if (!is_static) {
2579     patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx);
2580   }
2581   __ jmp(Done);
2582 
2583   __ bind(notFloat);
2584 #ifdef ASSERT
2585   __ cmpl(flags, dtos);
2586   __ jcc(Assembler::notEqual, notDouble);
2587 #endif
2588   // dtos
2589   __ pop(dtos);
2590   if (!is_static) pop_and_check_object(obj);
2591   __ movdbl(field, xmm0);
2592   if (!is_static) {
2593     patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx);
2594   }
2595 
2596 #ifdef ASSERT
2597   __ jmp(Done);
2598 
2599   __ bind(notDouble);
2600   __ stop("Bad state");
2601 #endif
2602 
2603   __ bind(Done);
2604   // Check for volatile store
2605   __ testl(rdx, rdx);
2606   __ jcc(Assembler::zero, notVolatile);
2607   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2608                                                Assembler::StoreStore));
2609 
2610   __ bind(notVolatile);
2611 }
2612 
2613 void TemplateTable::putfield(int byte_no) {
2614   putfield_or_static(byte_no, false);
2615 }
2616 
2617 void TemplateTable::putstatic(int byte_no) {
2618   putfield_or_static(byte_no, true);
2619 }
2620 
2621 void TemplateTable::jvmti_post_fast_field_mod() {
2622   if (JvmtiExport::can_post_field_modification()) {
2623     // Check to see if a field modification watch has been set before
2624     // we take the time to call into the VM.
2625     Label L2;
2626     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2627     __ testl(c_rarg3, c_rarg3);
2628     __ jcc(Assembler::zero, L2);
2629     __ pop_ptr(rbx);                  // copy the object pointer from tos
2630     __ verify_oop(rbx);
2631     __ push_ptr(rbx);                 // put the object pointer back on tos
2632     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
2633     __ mov(c_rarg3, rsp);
2634     const Address field(c_rarg3, 0);
2635 
2636     switch (bytecode()) {          // load values into the jvalue object
2637     case Bytecodes::_fast_aputfield: __ movq(field, rax); break;
2638     case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
2639     case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
2640     case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
2641     case Bytecodes::_fast_sputfield: // fall through
2642     case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
2643     case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
2644     case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
2645     default:
2646       ShouldNotReachHere();
2647     }
2648 
2649     // Save rax because call_VM() will clobber it, then use it for
2650     // JVMTI purposes
2651     __ push(rax);
2652     // access constant pool cache entry
2653     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
2654     __ verify_oop(rbx);
2655     // rbx: object pointer copied above
2656     // c_rarg2: cache entry pointer
2657     // c_rarg3: jvalue object on the stack
2658     __ call_VM(noreg,
2659                CAST_FROM_FN_PTR(address,
2660                                 InterpreterRuntime::post_field_modification),
2661                rbx, c_rarg2, c_rarg3);
2662     __ pop(rax);     // restore lower value
2663     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
2664     __ bind(L2);
2665   }
2666 }
2667 
2668 void TemplateTable::fast_storefield(TosState state) {
2669   transition(state, vtos);
2670 
2671   ByteSize base = constantPoolCacheOopDesc::base_offset();
2672 
2673   jvmti_post_fast_field_mod();
2674 
2675   // access constant pool cache
2676   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2677 
2678   // test for volatile with rdx
2679   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2680                        in_bytes(base +
2681                                 ConstantPoolCacheEntry::flags_offset())));
2682 
2683   // replace index with field offset from cache entry
2684   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2685                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2686 
2687   // [jk] not needed currently
2688   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2689   //                                              Assembler::StoreStore));
2690 
2691   Label notVolatile;
2692   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2693   __ andl(rdx, 0x1);
2694 
2695   // Get object from stack
2696   pop_and_check_object(rcx);
2697 
2698   // field address
2699   const Address field(rcx, rbx, Address::times_1);
2700 
2701   // access field
2702   switch (bytecode()) {
2703   case Bytecodes::_fast_aputfield:
2704     do_oop_store(_masm, field, rax, _bs->kind(), false);
2705     break;
2706   case Bytecodes::_fast_lputfield:
2707     __ movq(field, rax);
2708     break;
2709   case Bytecodes::_fast_iputfield:
2710     __ movl(field, rax);
2711     break;
2712   case Bytecodes::_fast_bputfield:
2713     __ movb(field, rax);
2714     break;
2715   case Bytecodes::_fast_sputfield:
2716     // fall through
2717   case Bytecodes::_fast_cputfield:
2718     __ movw(field, rax);
2719     break;
2720   case Bytecodes::_fast_fputfield:
2721     __ movflt(field, xmm0);
2722     break;
2723   case Bytecodes::_fast_dputfield:
2724     __ movdbl(field, xmm0);
2725     break;
2726   default:
2727     ShouldNotReachHere();
2728   }
2729 
2730   // Check for volatile store
2731   __ testl(rdx, rdx);
2732   __ jcc(Assembler::zero, notVolatile);
2733   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2734                                                Assembler::StoreStore));
2735   __ bind(notVolatile);
2736 }
2737 
2738 
2739 void TemplateTable::fast_accessfield(TosState state) {
2740   transition(atos, state);
2741 
2742   // Do the JVMTI work here to avoid disturbing the register state below
2743   if (JvmtiExport::can_post_field_access()) {
2744     // Check to see if a field access watch has been set before we
2745     // take the time to call into the VM.
2746     Label L1;
2747     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2748     __ testl(rcx, rcx);
2749     __ jcc(Assembler::zero, L1);
2750     // access constant pool cache entry
2751     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
2752     __ verify_oop(rax);
2753     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
2754     __ mov(c_rarg1, rax);
2755     // c_rarg1: object pointer copied above
2756     // c_rarg2: cache entry pointer
2757     __ call_VM(noreg,
2758                CAST_FROM_FN_PTR(address,
2759                                 InterpreterRuntime::post_field_access),
2760                c_rarg1, c_rarg2);
2761     __ pop_ptr(rax); // restore object pointer
2762     __ bind(L1);
2763   }
2764 
2765   // access constant pool cache
2766   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2767   // replace index with field offset from cache entry
2768   // [jk] not needed currently
2769   // if (os::is_MP()) {
2770   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2771   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
2772   //                                 ConstantPoolCacheEntry::flags_offset())));
2773   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2774   //   __ andl(rdx, 0x1);
2775   // }
2776   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2777                          in_bytes(constantPoolCacheOopDesc::base_offset() +
2778                                   ConstantPoolCacheEntry::f2_offset())));
2779 
2780   // rax: object
2781   __ verify_oop(rax);
2782   __ null_check(rax);
2783   Address field(rax, rbx, Address::times_1);
2784 
2785   // access field
2786   switch (bytecode()) {
2787   case Bytecodes::_fast_agetfield:
2788     __ load_heap_oop(rax, field);
2789     __ verify_oop(rax);
2790     break;
2791   case Bytecodes::_fast_lgetfield:
2792     __ movq(rax, field);
2793     break;
2794   case Bytecodes::_fast_igetfield:
2795     __ movl(rax, field);
2796     break;
2797   case Bytecodes::_fast_bgetfield:
2798     __ movsbl(rax, field);
2799     break;
2800   case Bytecodes::_fast_sgetfield:
2801     __ load_signed_short(rax, field);
2802     break;
2803   case Bytecodes::_fast_cgetfield:
2804     __ load_unsigned_short(rax, field);
2805     break;
2806   case Bytecodes::_fast_fgetfield:
2807     __ movflt(xmm0, field);
2808     break;
2809   case Bytecodes::_fast_dgetfield:
2810     __ movdbl(xmm0, field);
2811     break;
2812   default:
2813     ShouldNotReachHere();
2814   }
2815   // [jk] not needed currently
2816   // if (os::is_MP()) {
2817   //   Label notVolatile;
2818   //   __ testl(rdx, rdx);
2819   //   __ jcc(Assembler::zero, notVolatile);
2820   //   __ membar(Assembler::LoadLoad);
2821   //   __ bind(notVolatile);
2822   //};
2823 }
2824 
2825 void TemplateTable::fast_xaccess(TosState state) {
2826   transition(vtos, state);
2827 
2828   // get receiver
2829   __ movptr(rax, aaddress(0));
2830   // access constant pool cache
2831   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2832   __ movptr(rbx,
2833             Address(rcx, rdx, Address::times_8,
2834                     in_bytes(constantPoolCacheOopDesc::base_offset() +
2835                              ConstantPoolCacheEntry::f2_offset())));
2836   // make sure exception is reported in correct bcp range (getfield is
2837   // next instruction)
2838   __ increment(r13);
2839   __ null_check(rax);
2840   switch (state) {
2841   case itos:
2842     __ movl(rax, Address(rax, rbx, Address::times_1));
2843     break;
2844   case atos:
2845     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
2846     __ verify_oop(rax);
2847     break;
2848   case ftos:
2849     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
2850     break;
2851   default:
2852     ShouldNotReachHere();
2853   }
2854 
2855   // [jk] not needed currently
2856   // if (os::is_MP()) {
2857   //   Label notVolatile;
2858   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
2859   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
2860   //                                 ConstantPoolCacheEntry::flags_offset())));
2861   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2862   //   __ testl(rdx, 0x1);
2863   //   __ jcc(Assembler::zero, notVolatile);
2864   //   __ membar(Assembler::LoadLoad);
2865   //   __ bind(notVolatile);
2866   // }
2867 
2868   __ decrement(r13);
2869 }
2870 
2871 
2872 
2873 //-----------------------------------------------------------------------------
2874 // Calls
2875 
2876 void TemplateTable::count_calls(Register method, Register temp) {
2877   // implemented elsewhere
2878   ShouldNotReachHere();
2879 }
2880 
2881 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
2882   // determine flags
2883   Bytecodes::Code code = bytecode();
2884   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2885   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2886   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2887   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2888   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
2889   const bool receiver_null_check = is_invokespecial;
2890   const bool save_flags = is_invokeinterface || is_invokevirtual;
2891   // setup registers & access constant pool cache
2892   const Register recv   = rcx;
2893   const Register flags  = rdx;
2894   assert_different_registers(method, index, recv, flags);
2895 
2896   // save 'interpreter return address'
2897   __ save_bcp();
2898 
2899   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2900 
2901   // load receiver if needed (note: no return address pushed yet)
2902   if (load_receiver) {
2903     assert(!is_invokedynamic, "");
2904     __ movl(recv, flags);
2905     __ andl(recv, 0xFF);
2906     Address recv_addr(rsp, recv, Address::times_8, -Interpreter::expr_offset_in_bytes(1));
2907     __ movptr(recv, recv_addr);
2908     __ verify_oop(recv);
2909   }
2910 
2911   // do null check if needed
2912   if (receiver_null_check) {
2913     __ null_check(recv);
2914   }
2915 
2916   if (save_flags) {
2917     __ movl(r13, flags);
2918   }
2919 
2920   // compute return type
2921   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2922   // Make sure we don't need to mask flags for tosBits after the above shift
2923   ConstantPoolCacheEntry::verify_tosBits();
2924   // load return address
2925   {
2926     address table_addr;
2927     if (is_invokeinterface || is_invokedynamic)
2928       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
2929     else
2930       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
2931     ExternalAddress table(table_addr);
2932     __ lea(rscratch1, table);
2933     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
2934   }
2935 
2936   // push return address
2937   __ push(flags);
2938 
2939   // Restore flag field from the constant pool cache, and restore esi
2940   // for later null checks.  r13 is the bytecode pointer
2941   if (save_flags) {
2942     __ movl(flags, r13);
2943     __ restore_bcp();
2944   }
2945 }
2946 
2947 
2948 void TemplateTable::invokevirtual_helper(Register index,
2949                                          Register recv,
2950                                          Register flags) {
2951   // Uses temporary registers rax, rdx
2952   assert_different_registers(index, recv, rax, rdx);
2953 
2954   // Test for an invoke of a final method
2955   Label notFinal;
2956   __ movl(rax, flags);
2957   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
2958   __ jcc(Assembler::zero, notFinal);
2959 
2960   const Register method = index;  // method must be rbx
2961   assert(method == rbx,
2962          "methodOop must be rbx for interpreter calling convention");
2963 
2964   // do the call - the index is actually the method to call
2965   __ verify_oop(method);
2966 
2967   // It's final, need a null check here!
2968   __ null_check(recv);
2969 
2970   // profile this call
2971   __ profile_final_call(rax);
2972 
2973   __ jump_from_interpreted(method, rax);
2974 
2975   __ bind(notFinal);
2976 
2977   // get receiver klass
2978   __ null_check(recv, oopDesc::klass_offset_in_bytes());
2979   __ load_klass(rax, recv);
2980 
2981   __ verify_oop(rax);
2982 
2983   // profile this call
2984   __ profile_virtual_call(rax, r14, rdx);
2985 
2986   // get target methodOop & entry point
2987   const int base = instanceKlass::vtable_start_offset() * wordSize;
2988   assert(vtableEntry::size() * wordSize == 8,
2989          "adjust the scaling in the code below");
2990   __ movptr(method, Address(rax, index,
2991                                  Address::times_8,
2992                                  base + vtableEntry::method_offset_in_bytes()));
2993   __ movptr(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
2994   __ jump_from_interpreted(method, rdx);
2995 }
2996 
2997 
2998 void TemplateTable::invokevirtual(int byte_no) {
2999   transition(vtos, vtos);
3000   assert(byte_no == f2_byte, "use this argument");
3001   prepare_invoke(rbx, noreg, byte_no);
3002 
3003   // rbx: index
3004   // rcx: receiver
3005   // rdx: flags
3006 
3007   invokevirtual_helper(rbx, rcx, rdx);
3008 }
3009 
3010 
3011 void TemplateTable::invokespecial(int byte_no) {
3012   transition(vtos, vtos);
3013   assert(byte_no == f1_byte, "use this argument");
3014   prepare_invoke(rbx, noreg, byte_no);
3015   // do the call
3016   __ verify_oop(rbx);
3017   __ profile_call(rax);
3018   __ jump_from_interpreted(rbx, rax);
3019 }
3020 
3021 
3022 void TemplateTable::invokestatic(int byte_no) {
3023   transition(vtos, vtos);
3024   assert(byte_no == f1_byte, "use this argument");
3025   prepare_invoke(rbx, noreg, byte_no);
3026   // do the call
3027   __ verify_oop(rbx);
3028   __ profile_call(rax);
3029   __ jump_from_interpreted(rbx, rax);
3030 }
3031 
3032 void TemplateTable::fast_invokevfinal(int byte_no) {
3033   transition(vtos, vtos);
3034   assert(byte_no == f2_byte, "use this argument");
3035   __ stop("fast_invokevfinal not used on amd64");
3036 }
3037 
3038 void TemplateTable::invokeinterface(int byte_no) {
3039   transition(vtos, vtos);
3040   assert(byte_no == f1_byte, "use this argument");
3041   prepare_invoke(rax, rbx, byte_no);
3042 
3043   // rax: Interface
3044   // rbx: index
3045   // rcx: receiver
3046   // rdx: flags
3047 
3048   // Special case of invokeinterface called for virtual method of
3049   // java.lang.Object.  See cpCacheOop.cpp for details.
3050   // This code isn't produced by javac, but could be produced by
3051   // another compliant java compiler.
3052   Label notMethod;
3053   __ movl(r14, rdx);
3054   __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
3055   __ jcc(Assembler::zero, notMethod);
3056 
3057   invokevirtual_helper(rbx, rcx, rdx);
3058   __ bind(notMethod);
3059 
3060   // Get receiver klass into rdx - also a null check
3061   __ restore_locals(); // restore r14
3062   __ load_klass(rdx, rcx);
3063   __ verify_oop(rdx);
3064 
3065   // profile this call
3066   __ profile_virtual_call(rdx, r13, r14);
3067 
3068   Label no_such_interface, no_such_method;
3069 
3070   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3071                              rdx, rax, rbx,
3072                              // outputs: method, scan temp. reg
3073                              rbx, r13,
3074                              no_such_interface);
3075 
3076   // rbx,: methodOop to call
3077   // rcx: receiver
3078   // Check for abstract method error
3079   // Note: This should be done more efficiently via a throw_abstract_method_error
3080   //       interpreter entry point and a conditional jump to it in case of a null
3081   //       method.
3082   __ testptr(rbx, rbx);
3083   __ jcc(Assembler::zero, no_such_method);
3084 
3085   // do the call
3086   // rcx: receiver
3087   // rbx,: methodOop
3088   __ jump_from_interpreted(rbx, rdx);
3089   __ should_not_reach_here();
3090 
3091   // exception handling code follows...
3092   // note: must restore interpreter registers to canonical
3093   //       state for exception handling to work correctly!
3094 
3095   __ bind(no_such_method);
3096   // throw exception
3097   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3098   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3099   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3100   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3101   // the call_VM checks for exception, so we should never return here.
3102   __ should_not_reach_here();
3103 
3104   __ bind(no_such_interface);
3105   // throw exception
3106   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3107   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3108   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3109   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3110                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3111   // the call_VM checks for exception, so we should never return here.
3112   __ should_not_reach_here();
3113   return;
3114 }
3115 
3116 void TemplateTable::invokedynamic(int byte_no) {
3117   transition(vtos, vtos);
3118   assert(byte_no == f1_oop, "use this argument");
3119 
3120   if (!EnableInvokeDynamic) {
3121     // We should not encounter this bytecode if !EnableInvokeDynamic.
3122     // The verifier will stop it.  However, if we get past the verifier,
3123     // this will stop the thread in a reasonable way, without crashing the JVM.
3124     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3125                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3126     // the call_VM checks for exception, so we should never return here.
3127     __ should_not_reach_here();
3128     return;
3129   }
3130 
3131   assert(byte_no == f1_oop, "use this argument");
3132   prepare_invoke(rax, rbx, byte_no);
3133 
3134   // rax: CallSite object (f1)
3135   // rbx: unused (f2)
3136   // rcx: receiver address
3137   // rdx: flags (unused)
3138 
3139   Register rax_callsite      = rax;
3140   Register rcx_method_handle = rcx;
3141 
3142   if (ProfileInterpreter) {
3143     // %%% should make a type profile for any invokedynamic that takes a ref argument
3144     // profile this call
3145     __ profile_call(r13);
3146   }
3147 
3148   __ load_heap_oop(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rcx)));
3149   __ null_check(rcx_method_handle);
3150   __ prepare_to_jump_from_interpreted();
3151   __ jump_to_method_handle_entry(rcx_method_handle, rdx);
3152 }
3153 
3154 
3155 //-----------------------------------------------------------------------------
3156 // Allocation
3157 
3158 void TemplateTable::_new() {
3159   transition(vtos, atos);
3160   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3161   Label slow_case;
3162   Label done;
3163   Label initialize_header;
3164   Label initialize_object; // including clearing the fields
3165   Label allocate_shared;
3166 
3167   __ get_cpool_and_tags(rsi, rax);
3168   // Make sure the class we're about to instantiate has been resolved.
3169   // This is done before loading instanceKlass to be consistent with the order
3170   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
3171   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
3172   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
3173           JVM_CONSTANT_Class);
3174   __ jcc(Assembler::notEqual, slow_case);
3175 
3176   // get instanceKlass
3177   __ movptr(rsi, Address(rsi, rdx,
3178             Address::times_8, sizeof(constantPoolOopDesc)));
3179 
3180   // make sure klass is initialized & doesn't have finalizer
3181   // make sure klass is fully initialized
3182   __ cmpl(Address(rsi,
3183                   instanceKlass::init_state_offset_in_bytes() +
3184                   sizeof(oopDesc)),
3185           instanceKlass::fully_initialized);
3186   __ jcc(Assembler::notEqual, slow_case);
3187 
3188   // get instance_size in instanceKlass (scaled to a count of bytes)
3189   __ movl(rdx,
3190           Address(rsi,
3191                   Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
3192   // test to see if it has a finalizer or is malformed in some way
3193   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3194   __ jcc(Assembler::notZero, slow_case);
3195 
3196   // Allocate the instance
3197   // 1) Try to allocate in the TLAB
3198   // 2) if fail and the object is large allocate in the shared Eden
3199   // 3) if the above fails (or is not applicable), go to a slow case
3200   // (creates a new TLAB, etc.)
3201 
3202   const bool allow_shared_alloc =
3203     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3204 
3205   if (UseTLAB) {
3206     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
3207     __ lea(rbx, Address(rax, rdx, Address::times_1));
3208     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
3209     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3210     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3211     if (ZeroTLAB) {
3212       // the fields have been already cleared
3213       __ jmp(initialize_header);
3214     } else {
3215       // initialize both the header and fields
3216       __ jmp(initialize_object);
3217     }
3218   }
3219 
3220   // Allocation in the shared Eden, if allowed.
3221   //
3222   // rdx: instance size in bytes
3223   if (allow_shared_alloc) {
3224     __ bind(allocate_shared);
3225 
3226     ExternalAddress top((address)Universe::heap()->top_addr());
3227     ExternalAddress end((address)Universe::heap()->end_addr());
3228 
3229     const Register RtopAddr = rscratch1;
3230     const Register RendAddr = rscratch2;
3231 
3232     __ lea(RtopAddr, top);
3233     __ lea(RendAddr, end);
3234     __ movptr(rax, Address(RtopAddr, 0));
3235 
3236     // For retries rax gets set by cmpxchgq
3237     Label retry;
3238     __ bind(retry);
3239     __ lea(rbx, Address(rax, rdx, Address::times_1));
3240     __ cmpptr(rbx, Address(RendAddr, 0));
3241     __ jcc(Assembler::above, slow_case);
3242 
3243     // Compare rax with the top addr, and if still equal, store the new
3244     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
3245     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3246     //
3247     // rax: object begin
3248     // rbx: object end
3249     // rdx: instance size in bytes
3250     if (os::is_MP()) {
3251       __ lock();
3252     }
3253     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
3254 
3255     // if someone beat us on the allocation, try again, otherwise continue
3256     __ jcc(Assembler::notEqual, retry);
3257 
3258     __ incr_allocated_bytes(r15_thread, rdx, 0);
3259   }
3260 
3261   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3262     // The object is initialized before the header.  If the object size is
3263     // zero, go directly to the header initialization.
3264     __ bind(initialize_object);
3265     __ decrementl(rdx, sizeof(oopDesc));
3266     __ jcc(Assembler::zero, initialize_header);
3267 
3268     // Initialize object fields
3269     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3270     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
3271     {
3272       Label loop;
3273       __ bind(loop);
3274       __ movq(Address(rax, rdx, Address::times_8,
3275                       sizeof(oopDesc) - oopSize),
3276               rcx);
3277       __ decrementl(rdx);
3278       __ jcc(Assembler::notZero, loop);
3279     }
3280 
3281     // initialize object header only.
3282     __ bind(initialize_header);
3283     if (UseBiasedLocking) {
3284       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
3285       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
3286     } else {
3287       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
3288                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
3289     }
3290     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3291     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
3292     __ store_klass(rax, rsi);      // store klass last
3293 
3294     {
3295       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
3296       // Trigger dtrace event for fastpath
3297       __ push(atos); // save the return value
3298       __ call_VM_leaf(
3299            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3300       __ pop(atos); // restore the return value
3301 
3302     }
3303     __ jmp(done);
3304   }
3305 
3306 
3307   // slow case
3308   __ bind(slow_case);
3309   __ get_constant_pool(c_rarg1);
3310   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3311   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3312   __ verify_oop(rax);
3313 
3314   // continue
3315   __ bind(done);
3316 }
3317 
3318 void TemplateTable::newarray() {
3319   transition(itos, atos);
3320   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3321   __ movl(c_rarg2, rax);
3322   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3323           c_rarg1, c_rarg2);
3324 }
3325 
3326 void TemplateTable::anewarray() {
3327   transition(itos, atos);
3328   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3329   __ get_constant_pool(c_rarg1);
3330   __ movl(c_rarg3, rax);
3331   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3332           c_rarg1, c_rarg2, c_rarg3);
3333 }
3334 
3335 void TemplateTable::arraylength() {
3336   transition(atos, itos);
3337   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3338   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3339 }
3340 
3341 void TemplateTable::checkcast() {
3342   transition(atos, atos);
3343   Label done, is_null, ok_is_subtype, quicked, resolved;
3344   __ testptr(rax, rax); // object is in rax
3345   __ jcc(Assembler::zero, is_null);
3346 
3347   // Get cpool & tags index
3348   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3349   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3350   // See if bytecode has already been quicked
3351   __ cmpb(Address(rdx, rbx,
3352                   Address::times_1,
3353                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
3354           JVM_CONSTANT_Class);
3355   __ jcc(Assembler::equal, quicked);
3356   __ push(atos); // save receiver for result, and for GC
3357   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3358   __ pop_ptr(rdx); // restore receiver
3359   __ jmpb(resolved);
3360 
3361   // Get superklass in rax and subklass in rbx
3362   __ bind(quicked);
3363   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
3364   __ movptr(rax, Address(rcx, rbx,
3365                        Address::times_8, sizeof(constantPoolOopDesc)));
3366 
3367   __ bind(resolved);
3368   __ load_klass(rbx, rdx);
3369 
3370   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
3371   // Superklass in rax.  Subklass in rbx.
3372   __ gen_subtype_check(rbx, ok_is_subtype);
3373 
3374   // Come here on failure
3375   __ push_ptr(rdx);
3376   // object is at TOS
3377   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3378 
3379   // Come here on success
3380   __ bind(ok_is_subtype);
3381   __ mov(rax, rdx); // Restore object in rdx
3382 
3383   // Collect counts on whether this check-cast sees NULLs a lot or not.
3384   if (ProfileInterpreter) {
3385     __ jmp(done);
3386     __ bind(is_null);
3387     __ profile_null_seen(rcx);
3388   } else {
3389     __ bind(is_null);   // same as 'done'
3390   }
3391   __ bind(done);
3392 }
3393 
3394 void TemplateTable::instanceof() {
3395   transition(atos, itos);
3396   Label done, is_null, ok_is_subtype, quicked, resolved;
3397   __ testptr(rax, rax);
3398   __ jcc(Assembler::zero, is_null);
3399 
3400   // Get cpool & tags index
3401   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3402   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3403   // See if bytecode has already been quicked
3404   __ cmpb(Address(rdx, rbx,
3405                   Address::times_1,
3406                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
3407           JVM_CONSTANT_Class);
3408   __ jcc(Assembler::equal, quicked);
3409 
3410   __ push(atos); // save receiver for result, and for GC
3411   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3412   __ pop_ptr(rdx); // restore receiver
3413   __ verify_oop(rdx);
3414   __ load_klass(rdx, rdx);
3415   __ jmpb(resolved);
3416 
3417   // Get superklass in rax and subklass in rdx
3418   __ bind(quicked);
3419   __ load_klass(rdx, rax);
3420   __ movptr(rax, Address(rcx, rbx,
3421                          Address::times_8, sizeof(constantPoolOopDesc)));
3422 
3423   __ bind(resolved);
3424 
3425   // Generate subtype check.  Blows rcx, rdi
3426   // Superklass in rax.  Subklass in rdx.
3427   __ gen_subtype_check(rdx, ok_is_subtype);
3428 
3429   // Come here on failure
3430   __ xorl(rax, rax);
3431   __ jmpb(done);
3432   // Come here on success
3433   __ bind(ok_is_subtype);
3434   __ movl(rax, 1);
3435 
3436   // Collect counts on whether this test sees NULLs a lot or not.
3437   if (ProfileInterpreter) {
3438     __ jmp(done);
3439     __ bind(is_null);
3440     __ profile_null_seen(rcx);
3441   } else {
3442     __ bind(is_null);   // same as 'done'
3443   }
3444   __ bind(done);
3445   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
3446   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
3447 }
3448 
3449 //-----------------------------------------------------------------------------
3450 // Breakpoints
3451 void TemplateTable::_breakpoint() {
3452   // Note: We get here even if we are single stepping..
3453   // jbug inists on setting breakpoints at every bytecode
3454   // even if we are in single step mode.
3455 
3456   transition(vtos, vtos);
3457 
3458   // get the unpatched byte code
3459   __ get_method(c_rarg1);
3460   __ call_VM(noreg,
3461              CAST_FROM_FN_PTR(address,
3462                               InterpreterRuntime::get_original_bytecode_at),
3463              c_rarg1, r13);
3464   __ mov(rbx, rax);
3465 
3466   // post the breakpoint event
3467   __ get_method(c_rarg1);
3468   __ call_VM(noreg,
3469              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3470              c_rarg1, r13);
3471 
3472   // complete the execution of original bytecode
3473   __ dispatch_only_normal(vtos);
3474 }
3475 
3476 //-----------------------------------------------------------------------------
3477 // Exceptions
3478 
3479 void TemplateTable::athrow() {
3480   transition(atos, vtos);
3481   __ null_check(rax);
3482   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3483 }
3484 
3485 //-----------------------------------------------------------------------------
3486 // Synchronization
3487 //
3488 // Note: monitorenter & exit are symmetric routines; which is reflected
3489 //       in the assembly code structure as well
3490 //
3491 // Stack layout:
3492 //
3493 // [expressions  ] <--- rsp               = expression stack top
3494 // ..
3495 // [expressions  ]
3496 // [monitor entry] <--- monitor block top = expression stack bot
3497 // ..
3498 // [monitor entry]
3499 // [frame data   ] <--- monitor block bot
3500 // ...
3501 // [saved rbp    ] <--- rbp
3502 void TemplateTable::monitorenter() {
3503   transition(atos, vtos);
3504 
3505   // check for NULL object
3506   __ null_check(rax);
3507 
3508   const Address monitor_block_top(
3509         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3510   const Address monitor_block_bot(
3511         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3512   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3513 
3514   Label allocated;
3515 
3516   // initialize entry pointer
3517   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
3518 
3519   // find a free slot in the monitor block (result in c_rarg1)
3520   {
3521     Label entry, loop, exit;
3522     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
3523                                      // starting with top-most entry
3524     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3525                                      // of monitor block
3526     __ jmpb(entry);
3527 
3528     __ bind(loop);
3529     // check if current entry is used
3530     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
3531     // if not used then remember entry in c_rarg1
3532     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
3533     // check if current entry is for same object
3534     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
3535     // if same object then stop searching
3536     __ jccb(Assembler::equal, exit);
3537     // otherwise advance to next entry
3538     __ addptr(c_rarg3, entry_size);
3539     __ bind(entry);
3540     // check if bottom reached
3541     __ cmpptr(c_rarg3, c_rarg2);
3542     // if not at bottom then check this entry
3543     __ jcc(Assembler::notEqual, loop);
3544     __ bind(exit);
3545   }
3546 
3547   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
3548   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
3549 
3550   // allocate one if there's no free slot
3551   {
3552     Label entry, loop;
3553     // 1. compute new pointers             // rsp: old expression stack top
3554     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
3555     __ subptr(rsp, entry_size);            // move expression stack top
3556     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
3557     __ mov(c_rarg3, rsp);                  // set start value for copy loop
3558     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
3559     __ jmp(entry);
3560     // 2. move expression stack contents
3561     __ bind(loop);
3562     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3563                                                       // word from old location
3564     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
3565     __ addptr(c_rarg3, wordSize);                     // advance to next word
3566     __ bind(entry);
3567     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
3568     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
3569                                             // copy next word
3570   }
3571 
3572   // call run-time routine
3573   // c_rarg1: points to monitor entry
3574   __ bind(allocated);
3575 
3576   // Increment bcp to point to the next bytecode, so exception
3577   // handling for async. exceptions work correctly.
3578   // The object has already been poped from the stack, so the
3579   // expression stack looks correct.
3580   __ increment(r13);
3581 
3582   // store object
3583   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
3584   __ lock_object(c_rarg1);
3585 
3586   // check to make sure this monitor doesn't cause stack overflow after locking
3587   __ save_bcp();  // in case of exception
3588   __ generate_stack_overflow_check(0);
3589 
3590   // The bcp has already been incremented. Just need to dispatch to
3591   // next instruction.
3592   __ dispatch_next(vtos);
3593 }
3594 
3595 
3596 void TemplateTable::monitorexit() {
3597   transition(atos, vtos);
3598 
3599   // check for NULL object
3600   __ null_check(rax);
3601 
3602   const Address monitor_block_top(
3603         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3604   const Address monitor_block_bot(
3605         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3606   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3607 
3608   Label found;
3609 
3610   // find matching slot
3611   {
3612     Label entry, loop;
3613     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
3614                                      // starting with top-most entry
3615     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3616                                      // of monitor block
3617     __ jmpb(entry);
3618 
3619     __ bind(loop);
3620     // check if current entry is for same object
3621     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
3622     // if same object then stop searching
3623     __ jcc(Assembler::equal, found);
3624     // otherwise advance to next entry
3625     __ addptr(c_rarg1, entry_size);
3626     __ bind(entry);
3627     // check if bottom reached
3628     __ cmpptr(c_rarg1, c_rarg2);
3629     // if not at bottom then check this entry
3630     __ jcc(Assembler::notEqual, loop);
3631   }
3632 
3633   // error handling. Unlocking was not block-structured
3634   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3635                    InterpreterRuntime::throw_illegal_monitor_state_exception));
3636   __ should_not_reach_here();
3637 
3638   // call run-time routine
3639   // rsi: points to monitor entry
3640   __ bind(found);
3641   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
3642   __ unlock_object(c_rarg1);
3643   __ pop_ptr(rax); // discard object
3644 }
3645 
3646 
3647 // Wide instructions
3648 void TemplateTable::wide() {
3649   transition(vtos, vtos);
3650   __ load_unsigned_byte(rbx, at_bcp(1));
3651   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
3652   __ jmp(Address(rscratch1, rbx, Address::times_8));
3653   // Note: the r13 increment step is part of the individual wide
3654   // bytecode implementations
3655 }
3656 
3657 
3658 // Multi arrays
3659 void TemplateTable::multianewarray() {
3660   transition(vtos, atos);
3661   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3662   // last dim is on top of stack; we want address of first one:
3663   // first_addr = last_addr + (ndims - 1) * wordSize
3664   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
3665   call_VM(rax,
3666           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
3667           c_rarg1);
3668   __ load_unsigned_byte(rbx, at_bcp(3));
3669   __ lea(rsp, Address(rsp, rbx, Address::times_8));
3670 }
3671 #endif // !CC_INTERP