1 //
   2 // Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20 // CA 95054 USA or visit www.sun.com if you need additional information or
  21 // have any questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg());
 197 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg()->next());
 198 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg());
 199 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg()->next());
 200 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg());
 201 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg()->next());
 202 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg());
 203 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg()->next());
 204 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg());
 205 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg()->next());
 206 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg());
 207 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg()->next());
 208 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg());
 209 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg()->next());
 210 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg());
 211 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg()->next());
 212 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg());
 213 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg()->next());
 214 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg());
 215 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg()->next());
 216 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg());
 217 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg()->next());
 218 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg());
 219 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg()->next());
 220 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg());
 221 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg()->next());
 222 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg());
 223 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg()->next());
 224 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg());
 225 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg()->next());
 226 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg());
 227 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 // Macros to extract hi & lo halves from a long pair.
 464 // G0 is not part of any long pair, so assert on that.
 465 // Prevents accidentally using G1 instead of G0.
 466 #define LONG_HI_REG(x) (x)
 467 #define LONG_LO_REG(x) (x)
 468 
 469 %}
 470 
 471 source %{
 472 #define __ _masm.
 473 
 474 // tertiary op of a LoadP or StoreP encoding
 475 #define REGP_OP true
 476 
 477 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 478 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 479 static Register reg_to_register_object(int register_encoding);
 480 
 481 // Used by the DFA in dfa_sparc.cpp.
 482 // Check for being able to use a V9 branch-on-register.  Requires a
 483 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 484 // extended.  Doesn't work following an integer ADD, for example, because of
 485 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 486 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 487 // replace them with zero, which could become sign-extension in a different OS
 488 // release.  There's no obvious reason why an interrupt will ever fill these
 489 // bits with non-zero junk (the registers are reloaded with standard LD
 490 // instructions which either zero-fill or sign-fill).
 491 bool can_branch_register( Node *bol, Node *cmp ) {
 492   if( !BranchOnRegister ) return false;
 493 #ifdef _LP64
 494   if( cmp->Opcode() == Op_CmpP )
 495     return true;  // No problems with pointer compares
 496 #endif
 497   if( cmp->Opcode() == Op_CmpL )
 498     return true;  // No problems with long compares
 499 
 500   if( !SparcV9RegsHiBitsZero ) return false;
 501   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 502       bol->as_Bool()->_test._test != BoolTest::eq )
 503      return false;
 504 
 505   // Check for comparing against a 'safe' value.  Any operation which
 506   // clears out the high word is safe.  Thus, loads and certain shifts
 507   // are safe, as are non-negative constants.  Any operation which
 508   // preserves zero bits in the high word is safe as long as each of its
 509   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 510   // inputs are safe.  At present, the only important case to recognize
 511   // seems to be loads.  Constants should fold away, and shifts &
 512   // logicals can use the 'cc' forms.
 513   Node *x = cmp->in(1);
 514   if( x->is_Load() ) return true;
 515   if( x->is_Phi() ) {
 516     for( uint i = 1; i < x->req(); i++ )
 517       if( !x->in(i)->is_Load() )
 518         return false;
 519     return true;
 520   }
 521   return false;
 522 }
 523 
 524 // ****************************************************************************
 525 
 526 // REQUIRED FUNCTIONALITY
 527 
 528 // !!!!! Special hack to get all type of calls to specify the byte offset
 529 //       from the start of the call to the point where the return address
 530 //       will point.
 531 //       The "return address" is the address of the call instruction, plus 8.
 532 
 533 int MachCallStaticJavaNode::ret_addr_offset() {
 534   return NativeCall::instruction_size;  // call; delay slot
 535 }
 536 
 537 int MachCallDynamicJavaNode::ret_addr_offset() {
 538   int vtable_index = this->_vtable_index;
 539   if (vtable_index < 0) {
 540     // must be invalid_vtable_index, not nonvirtual_vtable_index
 541     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 542     return (NativeMovConstReg::instruction_size +
 543            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 544   } else {
 545     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 546     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 547     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 548     int klass_load_size;
 549     if (UseCompressedOops) {
 550       assert(Universe::heap() != NULL, "java heap should be initialized");
 551       if (Universe::narrow_oop_base() == NULL)
 552         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 553       else
 554         klass_load_size = 3*BytesPerInstWord;
 555     } else {
 556       klass_load_size = 1*BytesPerInstWord;
 557     }
 558     if( Assembler::is_simm13(v_off) ) {
 559       return klass_load_size +
 560              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 561              NativeCall::instruction_size);  // call; delay slot
 562     } else {
 563       return klass_load_size +
 564              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 565              NativeCall::instruction_size);  // call; delay slot
 566     }
 567   }
 568 }
 569 
 570 int MachCallRuntimeNode::ret_addr_offset() {
 571 #ifdef _LP64
 572   return NativeFarCall::instruction_size;  // farcall; delay slot
 573 #else
 574   return NativeCall::instruction_size;  // call; delay slot
 575 #endif
 576 }
 577 
 578 // Indicate if the safepoint node needs the polling page as an input.
 579 // Since Sparc does not have absolute addressing, it does.
 580 bool SafePointNode::needs_polling_address_input() {
 581   return true;
 582 }
 583 
 584 // emit an interrupt that is caught by the debugger (for debugging compiler)
 585 void emit_break(CodeBuffer &cbuf) {
 586   MacroAssembler _masm(&cbuf);
 587   __ breakpoint_trap();
 588 }
 589 
 590 #ifndef PRODUCT
 591 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 592   st->print("TA");
 593 }
 594 #endif
 595 
 596 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 597   emit_break(cbuf);
 598 }
 599 
 600 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 601   return MachNode::size(ra_);
 602 }
 603 
 604 // Traceable jump
 605 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 606   MacroAssembler _masm(&cbuf);
 607   Register rdest = reg_to_register_object(jump_target);
 608   __ JMP(rdest, 0);
 609   __ delayed()->nop();
 610 }
 611 
 612 // Traceable jump and set exception pc
 613 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 614   MacroAssembler _masm(&cbuf);
 615   Register rdest = reg_to_register_object(jump_target);
 616   __ JMP(rdest, 0);
 617   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 618 }
 619 
 620 void emit_nop(CodeBuffer &cbuf) {
 621   MacroAssembler _masm(&cbuf);
 622   __ nop();
 623 }
 624 
 625 void emit_illtrap(CodeBuffer &cbuf) {
 626   MacroAssembler _masm(&cbuf);
 627   __ illtrap(0);
 628 }
 629 
 630 
 631 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 632   assert(n->rule() != loadUB_rule, "");
 633 
 634   intptr_t offset = 0;
 635   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 636   const Node* addr = n->get_base_and_disp(offset, adr_type);
 637   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 638   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 639   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 640   atype = atype->add_offset(offset);
 641   assert(disp32 == offset, "wrong disp32");
 642   return atype->_offset;
 643 }
 644 
 645 
 646 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 647   assert(n->rule() != loadUB_rule, "");
 648 
 649   intptr_t offset = 0;
 650   Node* addr = n->in(2);
 651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 652   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 653     Node* a = addr->in(2/*AddPNode::Address*/);
 654     Node* o = addr->in(3/*AddPNode::Offset*/);
 655     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 656     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 657     assert(atype->isa_oop_ptr(), "still an oop");
 658   }
 659   offset = atype->is_ptr()->_offset;
 660   if (offset != Type::OffsetBot)  offset += disp32;
 661   return offset;
 662 }
 663 
 664 // Standard Sparc opcode form2 field breakdown
 665 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 666   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 667   int op = (f30 << 30) |
 668            (f29 << 29) |
 669            (f25 << 25) |
 670            (f22 << 22) |
 671            (f20 << 20) |
 672            (f19 << 19) |
 673            (f0  <<  0);
 674   *((int*)(cbuf.code_end())) = op;
 675   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 676 }
 677 
 678 // Standard Sparc opcode form2 field breakdown
 679 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 680   f0 >>= 10;           // Drop 10 bits
 681   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 682   int op = (f30 << 30) |
 683            (f25 << 25) |
 684            (f22 << 22) |
 685            (f0  <<  0);
 686   *((int*)(cbuf.code_end())) = op;
 687   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 688 }
 689 
 690 // Standard Sparc opcode form3 field breakdown
 691 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 692   int op = (f30 << 30) |
 693            (f25 << 25) |
 694            (f19 << 19) |
 695            (f14 << 14) |
 696            (f5  <<  5) |
 697            (f0  <<  0);
 698   *((int*)(cbuf.code_end())) = op;
 699   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 700 }
 701 
 702 // Standard Sparc opcode form3 field breakdown
 703 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 704   simm13 &= (1<<13)-1; // Mask to 13 bits
 705   int op = (f30 << 30) |
 706            (f25 << 25) |
 707            (f19 << 19) |
 708            (f14 << 14) |
 709            (1   << 13) | // bit to indicate immediate-mode
 710            (simm13<<0);
 711   *((int*)(cbuf.code_end())) = op;
 712   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 713 }
 714 
 715 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 716   simm10 &= (1<<10)-1; // Mask to 10 bits
 717   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 718 }
 719 
 720 #ifdef ASSERT
 721 // Helper function for VerifyOops in emit_form3_mem_reg
 722 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 723   warning("VerifyOops encountered unexpected instruction:");
 724   n->dump(2);
 725   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 726 }
 727 #endif
 728 
 729 
 730 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 731                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 732 
 733 #ifdef ASSERT
 734   // The following code implements the +VerifyOops feature.
 735   // It verifies oop values which are loaded into or stored out of
 736   // the current method activation.  +VerifyOops complements techniques
 737   // like ScavengeALot, because it eagerly inspects oops in transit,
 738   // as they enter or leave the stack, as opposed to ScavengeALot,
 739   // which inspects oops "at rest", in the stack or heap, at safepoints.
 740   // For this reason, +VerifyOops can sometimes detect bugs very close
 741   // to their point of creation.  It can also serve as a cross-check
 742   // on the validity of oop maps, when used toegether with ScavengeALot.
 743 
 744   // It would be good to verify oops at other points, especially
 745   // when an oop is used as a base pointer for a load or store.
 746   // This is presently difficult, because it is hard to know when
 747   // a base address is biased or not.  (If we had such information,
 748   // it would be easy and useful to make a two-argument version of
 749   // verify_oop which unbiases the base, and performs verification.)
 750 
 751   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 752   bool is_verified_oop_base  = false;
 753   bool is_verified_oop_load  = false;
 754   bool is_verified_oop_store = false;
 755   int tmp_enc = -1;
 756   if (VerifyOops && src1_enc != R_SP_enc) {
 757     // classify the op, mainly for an assert check
 758     int st_op = 0, ld_op = 0;
 759     switch (primary) {
 760     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 761     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 762     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 763     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 764     case Assembler::std_op3:  st_op = Op_StoreL; break;
 765     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 766     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 767 
 768     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 769     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 770     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 771     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 772     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 773     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 774     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 775     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 776     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 777     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
 778     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 779 
 780     default: ShouldNotReachHere();
 781     }
 782     if (tertiary == REGP_OP) {
 783       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 784       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 785       else                          ShouldNotReachHere();
 786       if (st_op) {
 787         // a store
 788         // inputs are (0:control, 1:memory, 2:address, 3:value)
 789         Node* n2 = n->in(3);
 790         if (n2 != NULL) {
 791           const Type* t = n2->bottom_type();
 792           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 793         }
 794       } else {
 795         // a load
 796         const Type* t = n->bottom_type();
 797         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 798       }
 799     }
 800 
 801     if (ld_op) {
 802       // a Load
 803       // inputs are (0:control, 1:memory, 2:address)
 804       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 805           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
 806           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 807           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 808           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 809           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 810           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 811           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 812           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 813           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 814           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 815           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 816           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 817           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 818           !(n->rule() == loadUB_rule)) {
 819         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 820       }
 821     } else if (st_op) {
 822       // a Store
 823       // inputs are (0:control, 1:memory, 2:address, 3:value)
 824       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 825           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 826           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 827           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 828           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 829           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 830         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 831       }
 832     }
 833 
 834     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 835       Node* addr = n->in(2);
 836       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 837         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 838         if (atype != NULL) {
 839           intptr_t offset = get_offset_from_base(n, atype, disp32);
 840           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 841           if (offset != offset_2) {
 842             get_offset_from_base(n, atype, disp32);
 843             get_offset_from_base_2(n, atype, disp32);
 844           }
 845           assert(offset == offset_2, "different offsets");
 846           if (offset == disp32) {
 847             // we now know that src1 is a true oop pointer
 848             is_verified_oop_base = true;
 849             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 850               if( primary == Assembler::ldd_op3 ) {
 851                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 852               } else {
 853                 tmp_enc = dst_enc;
 854                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 855                 assert(src1_enc != dst_enc, "");
 856               }
 857             }
 858           }
 859           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 860                        || offset == oopDesc::mark_offset_in_bytes())) {
 861                       // loading the mark should not be allowed either, but
 862                       // we don't check this since it conflicts with InlineObjectHash
 863                       // usage of LoadINode to get the mark. We could keep the
 864                       // check if we create a new LoadMarkNode
 865             // but do not verify the object before its header is initialized
 866             ShouldNotReachHere();
 867           }
 868         }
 869       }
 870     }
 871   }
 872 #endif
 873 
 874   uint instr;
 875   instr = (Assembler::ldst_op << 30)
 876         | (dst_enc        << 25)
 877         | (primary        << 19)
 878         | (src1_enc       << 14);
 879 
 880   uint index = src2_enc;
 881   int disp = disp32;
 882 
 883   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 884     disp += STACK_BIAS;
 885 
 886   // We should have a compiler bailout here rather than a guarantee.
 887   // Better yet would be some mechanism to handle variable-size matches correctly.
 888   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 889 
 890   if( disp == 0 ) {
 891     // use reg-reg form
 892     // bit 13 is already zero
 893     instr |= index;
 894   } else {
 895     // use reg-imm form
 896     instr |= 0x00002000;          // set bit 13 to one
 897     instr |= disp & 0x1FFF;
 898   }
 899 
 900   uint *code = (uint*)cbuf.code_end();
 901   *code = instr;
 902   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 903 
 904 #ifdef ASSERT
 905   {
 906     MacroAssembler _masm(&cbuf);
 907     if (is_verified_oop_base) {
 908       __ verify_oop(reg_to_register_object(src1_enc));
 909     }
 910     if (is_verified_oop_store) {
 911       __ verify_oop(reg_to_register_object(dst_enc));
 912     }
 913     if (tmp_enc != -1) {
 914       __ mov(O7, reg_to_register_object(tmp_enc));
 915     }
 916     if (is_verified_oop_load) {
 917       __ verify_oop(reg_to_register_object(dst_enc));
 918     }
 919   }
 920 #endif
 921 }
 922 
 923 void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 924                         int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) {
 925 
 926   uint instr;
 927   instr = (Assembler::ldst_op << 30)
 928         | (dst_enc        << 25)
 929         | (primary        << 19)
 930         | (src1_enc       << 14);
 931 
 932   int disp = disp32;
 933   int index    = src2_enc;
 934 
 935   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 936     disp += STACK_BIAS;
 937 
 938   // We should have a compiler bailout here rather than a guarantee.
 939   // Better yet would be some mechanism to handle variable-size matches correctly.
 940   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 941 
 942   if( disp != 0 ) {
 943     // use reg-reg form
 944     // set src2=R_O7 contains offset
 945     index = R_O7_enc;
 946     emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp);
 947   }
 948   instr |= (asi << 5);
 949   instr |= index;
 950   uint *code = (uint*)cbuf.code_end();
 951   *code = instr;
 952   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 953 }
 954 
 955 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
 956   // The method which records debug information at every safepoint
 957   // expects the call to be the first instruction in the snippet as
 958   // it creates a PcDesc structure which tracks the offset of a call
 959   // from the start of the codeBlob. This offset is computed as
 960   // code_end() - code_begin() of the code which has been emitted
 961   // so far.
 962   // In this particular case we have skirted around the problem by
 963   // putting the "mov" instruction in the delay slot but the problem
 964   // may bite us again at some other point and a cleaner/generic
 965   // solution using relocations would be needed.
 966   MacroAssembler _masm(&cbuf);
 967   __ set_inst_mark();
 968 
 969   // We flush the current window just so that there is a valid stack copy
 970   // the fact that the current window becomes active again instantly is
 971   // not a problem there is nothing live in it.
 972 
 973 #ifdef ASSERT
 974   int startpos = __ offset();
 975 #endif /* ASSERT */
 976 
 977 #ifdef _LP64
 978   // Calls to the runtime or native may not be reachable from compiled code,
 979   // so we generate the far call sequence on 64 bit sparc.
 980   // This code sequence is relocatable to any address, even on LP64.
 981   if ( force_far_call ) {
 982     __ relocate(rtype);
 983     AddressLiteral dest(entry_point);
 984     __ jumpl_to(dest, O7, O7);
 985   }
 986   else
 987 #endif
 988   {
 989      __ call((address)entry_point, rtype);
 990   }
 991 
 992   if (preserve_g2)   __ delayed()->mov(G2, L7);
 993   else __ delayed()->nop();
 994 
 995   if (preserve_g2)   __ mov(L7, G2);
 996 
 997 #ifdef ASSERT
 998   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 999 #ifdef _LP64
1000     // Trash argument dump slots.
1001     __ set(0xb0b8ac0db0b8ac0d, G1);
1002     __ mov(G1, G5);
1003     __ stx(G1, SP, STACK_BIAS + 0x80);
1004     __ stx(G1, SP, STACK_BIAS + 0x88);
1005     __ stx(G1, SP, STACK_BIAS + 0x90);
1006     __ stx(G1, SP, STACK_BIAS + 0x98);
1007     __ stx(G1, SP, STACK_BIAS + 0xA0);
1008     __ stx(G1, SP, STACK_BIAS + 0xA8);
1009 #else // _LP64
1010     // this is also a native call, so smash the first 7 stack locations,
1011     // and the various registers
1012 
1013     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1014     // while [SP+0x44..0x58] are the argument dump slots.
1015     __ set((intptr_t)0xbaadf00d, G1);
1016     __ mov(G1, G5);
1017     __ sllx(G1, 32, G1);
1018     __ or3(G1, G5, G1);
1019     __ mov(G1, G5);
1020     __ stx(G1, SP, 0x40);
1021     __ stx(G1, SP, 0x48);
1022     __ stx(G1, SP, 0x50);
1023     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1024 #endif // _LP64
1025   }
1026 #endif /*ASSERT*/
1027 }
1028 
1029 //=============================================================================
1030 // REQUIRED FUNCTIONALITY for encoding
1031 void emit_lo(CodeBuffer &cbuf, int val) {  }
1032 void emit_hi(CodeBuffer &cbuf, int val) {  }
1033 
1034 
1035 //=============================================================================
1036 
1037 #ifndef PRODUCT
1038 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1039   Compile* C = ra_->C;
1040 
1041   for (int i = 0; i < OptoPrologueNops; i++) {
1042     st->print_cr("NOP"); st->print("\t");
1043   }
1044 
1045   if( VerifyThread ) {
1046     st->print_cr("Verify_Thread"); st->print("\t");
1047   }
1048 
1049   size_t framesize = C->frame_slots() << LogBytesPerInt;
1050 
1051   // Calls to C2R adapters often do not accept exceptional returns.
1052   // We require that their callers must bang for them.  But be careful, because
1053   // some VM calls (such as call site linkage) can use several kilobytes of
1054   // stack.  But the stack safety zone should account for that.
1055   // See bugs 4446381, 4468289, 4497237.
1056   if (C->need_stack_bang(framesize)) {
1057     st->print_cr("! stack bang"); st->print("\t");
1058   }
1059 
1060   if (Assembler::is_simm13(-framesize)) {
1061     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1062   } else {
1063     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1064     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1065     st->print   ("SAVE   R_SP,R_G3,R_SP");
1066   }
1067 
1068 }
1069 #endif
1070 
1071 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1072   Compile* C = ra_->C;
1073   MacroAssembler _masm(&cbuf);
1074 
1075   for (int i = 0; i < OptoPrologueNops; i++) {
1076     __ nop();
1077   }
1078 
1079   __ verify_thread();
1080 
1081   size_t framesize = C->frame_slots() << LogBytesPerInt;
1082   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1083   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1084 
1085   // Calls to C2R adapters often do not accept exceptional returns.
1086   // We require that their callers must bang for them.  But be careful, because
1087   // some VM calls (such as call site linkage) can use several kilobytes of
1088   // stack.  But the stack safety zone should account for that.
1089   // See bugs 4446381, 4468289, 4497237.
1090   if (C->need_stack_bang(framesize)) {
1091     __ generate_stack_overflow_check(framesize);
1092   }
1093 
1094   if (Assembler::is_simm13(-framesize)) {
1095     __ save(SP, -framesize, SP);
1096   } else {
1097     __ sethi(-framesize & ~0x3ff, G3);
1098     __ add(G3, -framesize & 0x3ff, G3);
1099     __ save(SP, G3, SP);
1100   }
1101   C->set_frame_complete( __ offset() );
1102 }
1103 
1104 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1105   return MachNode::size(ra_);
1106 }
1107 
1108 int MachPrologNode::reloc() const {
1109   return 10; // a large enough number
1110 }
1111 
1112 //=============================================================================
1113 #ifndef PRODUCT
1114 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1115   Compile* C = ra_->C;
1116 
1117   if( do_polling() && ra_->C->is_method_compilation() ) {
1118     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1119 #ifdef _LP64
1120     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1121 #else
1122     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1123 #endif
1124   }
1125 
1126   if( do_polling() )
1127     st->print("RET\n\t");
1128 
1129   st->print("RESTORE");
1130 }
1131 #endif
1132 
1133 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1134   MacroAssembler _masm(&cbuf);
1135   Compile* C = ra_->C;
1136 
1137   __ verify_thread();
1138 
1139   // If this does safepoint polling, then do it here
1140   if( do_polling() && ra_->C->is_method_compilation() ) {
1141     AddressLiteral polling_page(os::get_polling_page());
1142     __ sethi(polling_page, L0);
1143     __ relocate(relocInfo::poll_return_type);
1144     __ ld_ptr( L0, 0, G0 );
1145   }
1146 
1147   // If this is a return, then stuff the restore in the delay slot
1148   if( do_polling() ) {
1149     __ ret();
1150     __ delayed()->restore();
1151   } else {
1152     __ restore();
1153   }
1154 }
1155 
1156 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1157   return MachNode::size(ra_);
1158 }
1159 
1160 int MachEpilogNode::reloc() const {
1161   return 16; // a large enough number
1162 }
1163 
1164 const Pipeline * MachEpilogNode::pipeline() const {
1165   return MachNode::pipeline_class();
1166 }
1167 
1168 int MachEpilogNode::safepoint_offset() const {
1169   assert( do_polling(), "no return for this epilog node");
1170   return MacroAssembler::size_of_sethi(os::get_polling_page());
1171 }
1172 
1173 //=============================================================================
1174 
1175 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1176 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1177 static enum RC rc_class( OptoReg::Name reg ) {
1178   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1179   if (OptoReg::is_stack(reg)) return rc_stack;
1180   VMReg r = OptoReg::as_VMReg(reg);
1181   if (r->is_Register()) return rc_int;
1182   assert(r->is_FloatRegister(), "must be");
1183   return rc_float;
1184 }
1185 
1186 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1187   if( cbuf ) {
1188     // Better yet would be some mechanism to handle variable-size matches correctly
1189     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1190       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1191     } else {
1192       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1193     }
1194   }
1195 #ifndef PRODUCT
1196   else if( !do_size ) {
1197     if( size != 0 ) st->print("\n\t");
1198     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1199     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1200   }
1201 #endif
1202   return size+4;
1203 }
1204 
1205 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1206   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1207 #ifndef PRODUCT
1208   else if( !do_size ) {
1209     if( size != 0 ) st->print("\n\t");
1210     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1211   }
1212 #endif
1213   return size+4;
1214 }
1215 
1216 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1217                                         PhaseRegAlloc *ra_,
1218                                         bool do_size,
1219                                         outputStream* st ) const {
1220   // Get registers to move
1221   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1222   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1223   OptoReg::Name dst_second = ra_->get_reg_second(this );
1224   OptoReg::Name dst_first = ra_->get_reg_first(this );
1225 
1226   enum RC src_second_rc = rc_class(src_second);
1227   enum RC src_first_rc = rc_class(src_first);
1228   enum RC dst_second_rc = rc_class(dst_second);
1229   enum RC dst_first_rc = rc_class(dst_first);
1230 
1231   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1232 
1233   // Generate spill code!
1234   int size = 0;
1235 
1236   if( src_first == dst_first && src_second == dst_second )
1237     return size;            // Self copy, no move
1238 
1239   // --------------------------------------
1240   // Check for mem-mem move.  Load into unused float registers and fall into
1241   // the float-store case.
1242   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1243     int offset = ra_->reg2offset(src_first);
1244     // Further check for aligned-adjacent pair, so we can use a double load
1245     if( (src_first&1)==0 && src_first+1 == src_second ) {
1246       src_second    = OptoReg::Name(R_F31_num);
1247       src_second_rc = rc_float;
1248       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1249     } else {
1250       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1251     }
1252     src_first    = OptoReg::Name(R_F30_num);
1253     src_first_rc = rc_float;
1254   }
1255 
1256   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1257     int offset = ra_->reg2offset(src_second);
1258     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1259     src_second    = OptoReg::Name(R_F31_num);
1260     src_second_rc = rc_float;
1261   }
1262 
1263   // --------------------------------------
1264   // Check for float->int copy; requires a trip through memory
1265   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
1266     int offset = frame::register_save_words*wordSize;
1267     if( cbuf ) {
1268       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1269       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1270       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1271       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1272     }
1273 #ifndef PRODUCT
1274     else if( !do_size ) {
1275       if( size != 0 ) st->print("\n\t");
1276       st->print(  "SUB    R_SP,16,R_SP\n");
1277       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1278       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1279       st->print("\tADD    R_SP,16,R_SP\n");
1280     }
1281 #endif
1282     size += 16;
1283   }
1284 
1285   // --------------------------------------
1286   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1287   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1288   // hardware does the flop for me.  Doubles are always aligned, so no problem
1289   // there.  Misaligned sources only come from native-long-returns (handled
1290   // special below).
1291 #ifndef _LP64
1292   if( src_first_rc == rc_int &&     // source is already big-endian
1293       src_second_rc != rc_bad &&    // 64-bit move
1294       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1295     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1296     // Do the big-endian flop.
1297     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1298     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1299   }
1300 #endif
1301 
1302   // --------------------------------------
1303   // Check for integer reg-reg copy
1304   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1305 #ifndef _LP64
1306     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1307       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1308       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1309       //       operand contains the least significant word of the 64-bit value and vice versa.
1310       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1311       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1312       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1313       if( cbuf ) {
1314         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1315         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1316         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1317 #ifndef PRODUCT
1318       } else if( !do_size ) {
1319         if( size != 0 ) st->print("\n\t");
1320         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1321         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1322         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1323 #endif
1324       }
1325       return size+12;
1326     }
1327     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1328       // returning a long value in I0/I1
1329       // a SpillCopy must be able to target a return instruction's reg_class
1330       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1331       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1332       //       operand contains the least significant word of the 64-bit value and vice versa.
1333       OptoReg::Name tdest = dst_first;
1334 
1335       if (src_first == dst_first) {
1336         tdest = OptoReg::Name(R_O7_num);
1337         size += 4;
1338       }
1339 
1340       if( cbuf ) {
1341         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1342         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1343         // ShrL_reg_imm6
1344         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1345         // ShrR_reg_imm6  src, 0, dst
1346         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1347         if (tdest != dst_first) {
1348           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1349         }
1350       }
1351 #ifndef PRODUCT
1352       else if( !do_size ) {
1353         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1354         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1355         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1356         if (tdest != dst_first) {
1357           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1358         }
1359       }
1360 #endif // PRODUCT
1361       return size+8;
1362     }
1363 #endif // !_LP64
1364     // Else normal reg-reg copy
1365     assert( src_second != dst_first, "smashed second before evacuating it" );
1366     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1367     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1368     // This moves an aligned adjacent pair.
1369     // See if we are done.
1370     if( src_first+1 == src_second && dst_first+1 == dst_second )
1371       return size;
1372   }
1373 
1374   // Check for integer store
1375   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1376     int offset = ra_->reg2offset(dst_first);
1377     // Further check for aligned-adjacent pair, so we can use a double store
1378     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1379       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1380     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1381   }
1382 
1383   // Check for integer load
1384   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1385     int offset = ra_->reg2offset(src_first);
1386     // Further check for aligned-adjacent pair, so we can use a double load
1387     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1388       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1389     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1390   }
1391 
1392   // Check for float reg-reg copy
1393   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1394     // Further check for aligned-adjacent pair, so we can use a double move
1395     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1396       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1397     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1398   }
1399 
1400   // Check for float store
1401   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1402     int offset = ra_->reg2offset(dst_first);
1403     // Further check for aligned-adjacent pair, so we can use a double store
1404     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1405       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1406     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1407   }
1408 
1409   // Check for float load
1410   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1411     int offset = ra_->reg2offset(src_first);
1412     // Further check for aligned-adjacent pair, so we can use a double load
1413     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1414       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1415     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1416   }
1417 
1418   // --------------------------------------------------------------------
1419   // Check for hi bits still needing moving.  Only happens for misaligned
1420   // arguments to native calls.
1421   if( src_second == dst_second )
1422     return size;               // Self copy; no move
1423   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1424 
1425 #ifndef _LP64
1426   // In the LP64 build, all registers can be moved as aligned/adjacent
1427   // pairs, so there's never any need to move the high bits separately.
1428   // The 32-bit builds have to deal with the 32-bit ABI which can force
1429   // all sorts of silly alignment problems.
1430 
1431   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1432   // 32-bits of a 64-bit register, but are needed in low bits of another
1433   // register (else it's a hi-bits-to-hi-bits copy which should have
1434   // happened already as part of a 64-bit move)
1435   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1436     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1437     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1438     // Shift src_second down to dst_second's low bits.
1439     if( cbuf ) {
1440       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1441 #ifndef PRODUCT
1442     } else if( !do_size ) {
1443       if( size != 0 ) st->print("\n\t");
1444       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1445 #endif
1446     }
1447     return size+4;
1448   }
1449 
1450   // Check for high word integer store.  Must down-shift the hi bits
1451   // into a temp register, then fall into the case of storing int bits.
1452   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1453     // Shift src_second down to dst_second's low bits.
1454     if( cbuf ) {
1455       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1456 #ifndef PRODUCT
1457     } else if( !do_size ) {
1458       if( size != 0 ) st->print("\n\t");
1459       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1460 #endif
1461     }
1462     size+=4;
1463     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1464   }
1465 
1466   // Check for high word integer load
1467   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1468     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1469 
1470   // Check for high word integer store
1471   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1472     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1473 
1474   // Check for high word float store
1475   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1476     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1477 
1478 #endif // !_LP64
1479 
1480   Unimplemented();
1481 }
1482 
1483 #ifndef PRODUCT
1484 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1485   implementation( NULL, ra_, false, st );
1486 }
1487 #endif
1488 
1489 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1490   implementation( &cbuf, ra_, false, NULL );
1491 }
1492 
1493 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1494   return implementation( NULL, ra_, true, NULL );
1495 }
1496 
1497 //=============================================================================
1498 #ifndef PRODUCT
1499 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1500   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1501 }
1502 #endif
1503 
1504 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1505   MacroAssembler _masm(&cbuf);
1506   for(int i = 0; i < _count; i += 1) {
1507     __ nop();
1508   }
1509 }
1510 
1511 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1512   return 4 * _count;
1513 }
1514 
1515 
1516 //=============================================================================
1517 #ifndef PRODUCT
1518 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1519   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1520   int reg = ra_->get_reg_first(this);
1521   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1522 }
1523 #endif
1524 
1525 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1526   MacroAssembler _masm(&cbuf);
1527   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1528   int reg = ra_->get_encode(this);
1529 
1530   if (Assembler::is_simm13(offset)) {
1531      __ add(SP, offset, reg_to_register_object(reg));
1532   } else {
1533      __ set(offset, O7);
1534      __ add(SP, O7, reg_to_register_object(reg));
1535   }
1536 }
1537 
1538 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1539   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1540   assert(ra_ == ra_->C->regalloc(), "sanity");
1541   return ra_->C->scratch_emit_size(this);
1542 }
1543 
1544 //=============================================================================
1545 
1546 // emit call stub, compiled java to interpretor
1547 void emit_java_to_interp(CodeBuffer &cbuf ) {
1548 
1549   // Stub is fixed up when the corresponding call is converted from calling
1550   // compiled code to calling interpreted code.
1551   // set (empty), G5
1552   // jmp -1
1553 
1554   address mark = cbuf.inst_mark();  // get mark within main instrs section
1555 
1556   MacroAssembler _masm(&cbuf);
1557 
1558   address base =
1559   __ start_a_stub(Compile::MAX_stubs_size);
1560   if (base == NULL)  return;  // CodeBuffer::expand failed
1561 
1562   // static stub relocation stores the instruction address of the call
1563   __ relocate(static_stub_Relocation::spec(mark));
1564 
1565   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1566 
1567   __ set_inst_mark();
1568   AddressLiteral addrlit(-1);
1569   __ JUMP(addrlit, G3, 0);
1570 
1571   __ delayed()->nop();
1572 
1573   // Update current stubs pointer and restore code_end.
1574   __ end_a_stub();
1575 }
1576 
1577 // size of call stub, compiled java to interpretor
1578 uint size_java_to_interp() {
1579   // This doesn't need to be accurate but it must be larger or equal to
1580   // the real size of the stub.
1581   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1582           NativeJump::instruction_size + // sethi; jmp; nop
1583           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1584 }
1585 // relocation entries for call stub, compiled java to interpretor
1586 uint reloc_java_to_interp() {
1587   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1588 }
1589 
1590 
1591 //=============================================================================
1592 #ifndef PRODUCT
1593 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1594   st->print_cr("\nUEP:");
1595 #ifdef    _LP64
1596   if (UseCompressedOops) {
1597     assert(Universe::heap() != NULL, "java heap should be initialized");
1598     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1599     st->print_cr("\tSLL    R_G5,3,R_G5");
1600     if (Universe::narrow_oop_base() != NULL)
1601       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1602   } else {
1603     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1604   }
1605   st->print_cr("\tCMP    R_G5,R_G3" );
1606   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1607 #else  // _LP64
1608   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1609   st->print_cr("\tCMP    R_G5,R_G3" );
1610   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1611 #endif // _LP64
1612 }
1613 #endif
1614 
1615 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1616   MacroAssembler _masm(&cbuf);
1617   Label L;
1618   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1619   Register temp_reg   = G3;
1620   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1621 
1622   // Load klass from receiver
1623   __ load_klass(O0, temp_reg);
1624   // Compare against expected klass
1625   __ cmp(temp_reg, G5_ic_reg);
1626   // Branch to miss code, checks xcc or icc depending
1627   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1628 }
1629 
1630 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1631   return MachNode::size(ra_);
1632 }
1633 
1634 
1635 //=============================================================================
1636 
1637 uint size_exception_handler() {
1638   if (TraceJumps) {
1639     return (400); // just a guess
1640   }
1641   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1642 }
1643 
1644 uint size_deopt_handler() {
1645   if (TraceJumps) {
1646     return (400); // just a guess
1647   }
1648   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1649 }
1650 
1651 // Emit exception handler code.
1652 int emit_exception_handler(CodeBuffer& cbuf) {
1653   Register temp_reg = G3;
1654   AddressLiteral exception_blob(OptoRuntime::exception_blob()->instructions_begin());
1655   MacroAssembler _masm(&cbuf);
1656 
1657   address base =
1658   __ start_a_stub(size_exception_handler());
1659   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1660 
1661   int offset = __ offset();
1662 
1663   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1664   __ delayed()->nop();
1665 
1666   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1667 
1668   __ end_a_stub();
1669 
1670   return offset;
1671 }
1672 
1673 int emit_deopt_handler(CodeBuffer& cbuf) {
1674   // Can't use any of the current frame's registers as we may have deopted
1675   // at a poll and everything (including G3) can be live.
1676   Register temp_reg = L0;
1677   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1678   MacroAssembler _masm(&cbuf);
1679 
1680   address base =
1681   __ start_a_stub(size_deopt_handler());
1682   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1683 
1684   int offset = __ offset();
1685   __ save_frame(0);
1686   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1687   __ delayed()->restore();
1688 
1689   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1690 
1691   __ end_a_stub();
1692   return offset;
1693 
1694 }
1695 
1696 // Given a register encoding, produce a Integer Register object
1697 static Register reg_to_register_object(int register_encoding) {
1698   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1699   return as_Register(register_encoding);
1700 }
1701 
1702 // Given a register encoding, produce a single-precision Float Register object
1703 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1704   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1705   return as_SingleFloatRegister(register_encoding);
1706 }
1707 
1708 // Given a register encoding, produce a double-precision Float Register object
1709 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1710   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1711   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1712   return as_DoubleFloatRegister(register_encoding);
1713 }
1714 
1715 const bool Matcher::match_rule_supported(int opcode) {
1716   if (!has_match_rule(opcode))
1717     return false;
1718 
1719   switch (opcode) {
1720   case Op_CountLeadingZerosI:
1721   case Op_CountLeadingZerosL:
1722   case Op_CountTrailingZerosI:
1723   case Op_CountTrailingZerosL:
1724     if (!UsePopCountInstruction)
1725       return false;
1726     break;
1727   }
1728 
1729   return true;  // Per default match rules are supported.
1730 }
1731 
1732 int Matcher::regnum_to_fpu_offset(int regnum) {
1733   return regnum - 32; // The FP registers are in the second chunk
1734 }
1735 
1736 #ifdef ASSERT
1737 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1738 #endif
1739 
1740 // Vector width in bytes
1741 const uint Matcher::vector_width_in_bytes(void) {
1742   return 8;
1743 }
1744 
1745 // Vector ideal reg
1746 const uint Matcher::vector_ideal_reg(void) {
1747   return Op_RegD;
1748 }
1749 
1750 // USII supports fxtof through the whole range of number, USIII doesn't
1751 const bool Matcher::convL2FSupported(void) {
1752   return VM_Version::has_fast_fxtof();
1753 }
1754 
1755 // Is this branch offset short enough that a short branch can be used?
1756 //
1757 // NOTE: If the platform does not provide any short branch variants, then
1758 //       this method should return false for offset 0.
1759 bool Matcher::is_short_branch_offset(int rule, int offset) {
1760   return false;
1761 }
1762 
1763 const bool Matcher::isSimpleConstant64(jlong value) {
1764   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1765   // Depends on optimizations in MacroAssembler::setx.
1766   int hi = (int)(value >> 32);
1767   int lo = (int)(value & ~0);
1768   return (hi == 0) || (hi == -1) || (lo == 0);
1769 }
1770 
1771 // No scaling for the parameter the ClearArray node.
1772 const bool Matcher::init_array_count_is_in_bytes = true;
1773 
1774 // Threshold size for cleararray.
1775 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1776 
1777 // Should the Matcher clone shifts on addressing modes, expecting them to
1778 // be subsumed into complex addressing expressions or compute them into
1779 // registers?  True for Intel but false for most RISCs
1780 const bool Matcher::clone_shift_expressions = false;
1781 
1782 // Is it better to copy float constants, or load them directly from memory?
1783 // Intel can load a float constant from a direct address, requiring no
1784 // extra registers.  Most RISCs will have to materialize an address into a
1785 // register first, so they would do better to copy the constant from stack.
1786 const bool Matcher::rematerialize_float_constants = false;
1787 
1788 // If CPU can load and store mis-aligned doubles directly then no fixup is
1789 // needed.  Else we split the double into 2 integer pieces and move it
1790 // piece-by-piece.  Only happens when passing doubles into C code as the
1791 // Java calling convention forces doubles to be aligned.
1792 #ifdef _LP64
1793 const bool Matcher::misaligned_doubles_ok = true;
1794 #else
1795 const bool Matcher::misaligned_doubles_ok = false;
1796 #endif
1797 
1798 // No-op on SPARC.
1799 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1800 }
1801 
1802 // Advertise here if the CPU requires explicit rounding operations
1803 // to implement the UseStrictFP mode.
1804 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1805 
1806 // Do floats take an entire double register or just half?
1807 const bool Matcher::float_in_double = false;
1808 
1809 // Do ints take an entire long register or just half?
1810 // Note that we if-def off of _LP64.
1811 // The relevant question is how the int is callee-saved.  In _LP64
1812 // the whole long is written but de-opt'ing will have to extract
1813 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1814 #ifdef _LP64
1815 const bool Matcher::int_in_long = true;
1816 #else
1817 const bool Matcher::int_in_long = false;
1818 #endif
1819 
1820 // Return whether or not this register is ever used as an argument.  This
1821 // function is used on startup to build the trampoline stubs in generateOptoStub.
1822 // Registers not mentioned will be killed by the VM call in the trampoline, and
1823 // arguments in those registers not be available to the callee.
1824 bool Matcher::can_be_java_arg( int reg ) {
1825   // Standard sparc 6 args in registers
1826   if( reg == R_I0_num ||
1827       reg == R_I1_num ||
1828       reg == R_I2_num ||
1829       reg == R_I3_num ||
1830       reg == R_I4_num ||
1831       reg == R_I5_num ) return true;
1832 #ifdef _LP64
1833   // 64-bit builds can pass 64-bit pointers and longs in
1834   // the high I registers
1835   if( reg == R_I0H_num ||
1836       reg == R_I1H_num ||
1837       reg == R_I2H_num ||
1838       reg == R_I3H_num ||
1839       reg == R_I4H_num ||
1840       reg == R_I5H_num ) return true;
1841 
1842   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1843     return true;
1844   }
1845 
1846 #else
1847   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1848   // Longs cannot be passed in O regs, because O regs become I regs
1849   // after a 'save' and I regs get their high bits chopped off on
1850   // interrupt.
1851   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1852   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1853 #endif
1854   // A few float args in registers
1855   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1856 
1857   return false;
1858 }
1859 
1860 bool Matcher::is_spillable_arg( int reg ) {
1861   return can_be_java_arg(reg);
1862 }
1863 
1864 // Register for DIVI projection of divmodI
1865 RegMask Matcher::divI_proj_mask() {
1866   ShouldNotReachHere();
1867   return RegMask();
1868 }
1869 
1870 // Register for MODI projection of divmodI
1871 RegMask Matcher::modI_proj_mask() {
1872   ShouldNotReachHere();
1873   return RegMask();
1874 }
1875 
1876 // Register for DIVL projection of divmodL
1877 RegMask Matcher::divL_proj_mask() {
1878   ShouldNotReachHere();
1879   return RegMask();
1880 }
1881 
1882 // Register for MODL projection of divmodL
1883 RegMask Matcher::modL_proj_mask() {
1884   ShouldNotReachHere();
1885   return RegMask();
1886 }
1887 
1888 %}
1889 
1890 
1891 // The intptr_t operand types, defined by textual substitution.
1892 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1893 #ifdef _LP64
1894 #define immX    immL
1895 #define immX13  immL13
1896 #define iRegX   iRegL
1897 #define g1RegX  g1RegL
1898 #else
1899 #define immX    immI
1900 #define immX13  immI13
1901 #define iRegX   iRegI
1902 #define g1RegX  g1RegI
1903 #endif
1904 
1905 //----------ENCODING BLOCK-----------------------------------------------------
1906 // This block specifies the encoding classes used by the compiler to output
1907 // byte streams.  Encoding classes are parameterized macros used by
1908 // Machine Instruction Nodes in order to generate the bit encoding of the
1909 // instruction.  Operands specify their base encoding interface with the
1910 // interface keyword.  There are currently supported four interfaces,
1911 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1912 // operand to generate a function which returns its register number when
1913 // queried.   CONST_INTER causes an operand to generate a function which
1914 // returns the value of the constant when queried.  MEMORY_INTER causes an
1915 // operand to generate four functions which return the Base Register, the
1916 // Index Register, the Scale Value, and the Offset Value of the operand when
1917 // queried.  COND_INTER causes an operand to generate six functions which
1918 // return the encoding code (ie - encoding bits for the instruction)
1919 // associated with each basic boolean condition for a conditional instruction.
1920 //
1921 // Instructions specify two basic values for encoding.  Again, a function
1922 // is available to check if the constant displacement is an oop. They use the
1923 // ins_encode keyword to specify their encoding classes (which must be
1924 // a sequence of enc_class names, and their parameters, specified in
1925 // the encoding block), and they use the
1926 // opcode keyword to specify, in order, their primary, secondary, and
1927 // tertiary opcode.  Only the opcode sections which a particular instruction
1928 // needs for encoding need to be specified.
1929 encode %{
1930   enc_class enc_untested %{
1931 #ifdef ASSERT
1932     MacroAssembler _masm(&cbuf);
1933     __ untested("encoding");
1934 #endif
1935   %}
1936 
1937   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
1938     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
1939                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1940   %}
1941 
1942   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
1943     emit_form3_mem_reg(cbuf, this, $primary, -1,
1944                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1945   %}
1946 
1947   enc_class form3_mem_reg_little( memory mem, iRegI dst) %{
1948     emit_form3_mem_reg_asi(cbuf, this, $primary, -1,
1949                      $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE);
1950   %}
1951 
1952   enc_class form3_mem_prefetch_read( memory mem ) %{
1953     emit_form3_mem_reg(cbuf, this, $primary, -1,
1954                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
1955   %}
1956 
1957   enc_class form3_mem_prefetch_write( memory mem ) %{
1958     emit_form3_mem_reg(cbuf, this, $primary, -1,
1959                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
1960   %}
1961 
1962   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
1963     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1964     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1965     guarantee($mem$$index == R_G0_enc, "double index?");
1966     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
1967     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
1968     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
1969     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
1970   %}
1971 
1972   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
1973     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1974     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1975     guarantee($mem$$index == R_G0_enc, "double index?");
1976     // Load long with 2 instructions
1977     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
1978     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
1979   %}
1980 
1981   //%%% form3_mem_plus_4_reg is a hack--get rid of it
1982   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
1983     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
1984     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
1985   %}
1986 
1987   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
1988     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1989     if( $rs2$$reg != $rd$$reg )
1990       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
1991   %}
1992 
1993   // Target lo half of long
1994   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
1995     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1996     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
1997       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
1998   %}
1999 
2000   // Source lo half of long
2001   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2002     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2003     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2004       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2005   %}
2006 
2007   // Target hi half of long
2008   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2009     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2010   %}
2011 
2012   // Source lo half of long, and leave it sign extended.
2013   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2014     // Sign extend low half
2015     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2016   %}
2017 
2018   // Source hi half of long, and leave it sign extended.
2019   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2020     // Shift high half to low half
2021     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2022   %}
2023 
2024   // Source hi half of long
2025   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2026     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2027     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2028       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2029   %}
2030 
2031   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2032     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2033   %}
2034 
2035   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2036     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2037     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2038   %}
2039 
2040   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2041     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2042     // clear if nothing else is happening
2043     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2044     // blt,a,pn done
2045     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2046     // mov dst,-1 in delay slot
2047     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2048   %}
2049 
2050   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2051     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2052   %}
2053 
2054   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2055     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2056   %}
2057 
2058   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2059     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2060   %}
2061 
2062   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2063     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2064   %}
2065 
2066   enc_class move_return_pc_to_o1() %{
2067     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2068   %}
2069 
2070 #ifdef _LP64
2071   /* %%% merge with enc_to_bool */
2072   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2073     MacroAssembler _masm(&cbuf);
2074 
2075     Register   src_reg = reg_to_register_object($src$$reg);
2076     Register   dst_reg = reg_to_register_object($dst$$reg);
2077     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2078   %}
2079 #endif
2080 
2081   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2082     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2083     MacroAssembler _masm(&cbuf);
2084 
2085     Register   p_reg = reg_to_register_object($p$$reg);
2086     Register   q_reg = reg_to_register_object($q$$reg);
2087     Register   y_reg = reg_to_register_object($y$$reg);
2088     Register tmp_reg = reg_to_register_object($tmp$$reg);
2089 
2090     __ subcc( p_reg, q_reg,   p_reg );
2091     __ add  ( p_reg, y_reg, tmp_reg );
2092     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2093   %}
2094 
2095   enc_class form_d2i_helper(regD src, regF dst) %{
2096     // fcmp %fcc0,$src,$src
2097     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2098     // branch %fcc0 not-nan, predict taken
2099     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2100     // fdtoi $src,$dst
2101     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2102     // fitos $dst,$dst (if nan)
2103     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2104     // clear $dst (if nan)
2105     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2106     // carry on here...
2107   %}
2108 
2109   enc_class form_d2l_helper(regD src, regD dst) %{
2110     // fcmp %fcc0,$src,$src  check for NAN
2111     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2112     // branch %fcc0 not-nan, predict taken
2113     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2114     // fdtox $src,$dst   convert in delay slot
2115     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2116     // fxtod $dst,$dst  (if nan)
2117     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2118     // clear $dst (if nan)
2119     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2120     // carry on here...
2121   %}
2122 
2123   enc_class form_f2i_helper(regF src, regF dst) %{
2124     // fcmps %fcc0,$src,$src
2125     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2126     // branch %fcc0 not-nan, predict taken
2127     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2128     // fstoi $src,$dst
2129     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2130     // fitos $dst,$dst (if nan)
2131     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2132     // clear $dst (if nan)
2133     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2134     // carry on here...
2135   %}
2136 
2137   enc_class form_f2l_helper(regF src, regD dst) %{
2138     // fcmps %fcc0,$src,$src
2139     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2140     // branch %fcc0 not-nan, predict taken
2141     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2142     // fstox $src,$dst
2143     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2144     // fxtod $dst,$dst (if nan)
2145     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2146     // clear $dst (if nan)
2147     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2148     // carry on here...
2149   %}
2150 
2151   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2152   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2153   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2154   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2155 
2156   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2157 
2158   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2159   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2160 
2161   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2162     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2163   %}
2164 
2165   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2166     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2167   %}
2168 
2169   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2170     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2171   %}
2172 
2173   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2174     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2175   %}
2176 
2177   enc_class form3_convI2F(regF rs2, regF rd) %{
2178     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2179   %}
2180 
2181   // Encloding class for traceable jumps
2182   enc_class form_jmpl(g3RegP dest) %{
2183     emit_jmpl(cbuf, $dest$$reg);
2184   %}
2185 
2186   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2187     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2188   %}
2189 
2190   enc_class form2_nop() %{
2191     emit_nop(cbuf);
2192   %}
2193 
2194   enc_class form2_illtrap() %{
2195     emit_illtrap(cbuf);
2196   %}
2197 
2198 
2199   // Compare longs and convert into -1, 0, 1.
2200   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2201     // CMP $src1,$src2
2202     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2203     // blt,a,pn done
2204     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2205     // mov dst,-1 in delay slot
2206     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2207     // bgt,a,pn done
2208     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2209     // mov dst,1 in delay slot
2210     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2211     // CLR    $dst
2212     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2213   %}
2214 
2215   enc_class enc_PartialSubtypeCheck() %{
2216     MacroAssembler _masm(&cbuf);
2217     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2218     __ delayed()->nop();
2219   %}
2220 
2221   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
2222     MacroAssembler _masm(&cbuf);
2223     Label &L = *($labl$$label);
2224     Assembler::Predict predict_taken =
2225       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2226 
2227     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
2228     __ delayed()->nop();
2229   %}
2230 
2231   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
2232     MacroAssembler _masm(&cbuf);
2233     Label &L = *($labl$$label);
2234     Assembler::Predict predict_taken =
2235       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2236 
2237     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
2238     __ delayed()->nop();
2239   %}
2240 
2241   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
2242     MacroAssembler _masm(&cbuf);
2243     Label &L = *($labl$$label);
2244     Assembler::Predict predict_taken =
2245       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2246 
2247     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
2248     __ delayed()->nop();
2249   %}
2250 
2251   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
2252     MacroAssembler _masm(&cbuf);
2253     Label &L = *($labl$$label);
2254     Assembler::Predict predict_taken =
2255       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2256 
2257     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
2258     __ delayed()->nop();
2259   %}
2260 
2261   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
2262     MacroAssembler _masm(&cbuf);
2263 
2264     Register switch_reg       = as_Register($switch_val$$reg);
2265     Register table_reg        = O7;
2266 
2267     address table_base = __ address_table_constant(_index2label);
2268     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
2269 
2270     // Move table address into a register.
2271     __ set(table_base, table_reg, rspec);
2272 
2273     // Jump to base address + switch value
2274     __ ld_ptr(table_reg, switch_reg, table_reg);
2275     __ jmp(table_reg, G0);
2276     __ delayed()->nop();
2277 
2278   %}
2279 
2280   enc_class enc_ba( Label labl ) %{
2281     MacroAssembler _masm(&cbuf);
2282     Label &L = *($labl$$label);
2283     __ ba(false, L);
2284     __ delayed()->nop();
2285   %}
2286 
2287   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
2288     MacroAssembler _masm(&cbuf);
2289     Label &L = *$labl$$label;
2290     Assembler::Predict predict_taken =
2291       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2292 
2293     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
2294     __ delayed()->nop();
2295   %}
2296 
2297   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2298     int op = (Assembler::arith_op << 30) |
2299              ($dst$$reg << 25) |
2300              (Assembler::movcc_op3 << 19) |
2301              (1 << 18) |                    // cc2 bit for 'icc'
2302              ($cmp$$cmpcode << 14) |
2303              (0 << 13) |                    // select register move
2304              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2305              ($src$$reg << 0);
2306     *((int*)(cbuf.code_end())) = op;
2307     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2308   %}
2309 
2310   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2311     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2312     int op = (Assembler::arith_op << 30) |
2313              ($dst$$reg << 25) |
2314              (Assembler::movcc_op3 << 19) |
2315              (1 << 18) |                    // cc2 bit for 'icc'
2316              ($cmp$$cmpcode << 14) |
2317              (1 << 13) |                    // select immediate move
2318              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2319              (simm11 << 0);
2320     *((int*)(cbuf.code_end())) = op;
2321     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2322   %}
2323 
2324   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2325     int op = (Assembler::arith_op << 30) |
2326              ($dst$$reg << 25) |
2327              (Assembler::movcc_op3 << 19) |
2328              (0 << 18) |                    // cc2 bit for 'fccX'
2329              ($cmp$$cmpcode << 14) |
2330              (0 << 13) |                    // select register move
2331              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2332              ($src$$reg << 0);
2333     *((int*)(cbuf.code_end())) = op;
2334     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2335   %}
2336 
2337   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2338     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2339     int op = (Assembler::arith_op << 30) |
2340              ($dst$$reg << 25) |
2341              (Assembler::movcc_op3 << 19) |
2342              (0 << 18) |                    // cc2 bit for 'fccX'
2343              ($cmp$$cmpcode << 14) |
2344              (1 << 13) |                    // select immediate move
2345              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2346              (simm11 << 0);
2347     *((int*)(cbuf.code_end())) = op;
2348     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2349   %}
2350 
2351   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2352     int op = (Assembler::arith_op << 30) |
2353              ($dst$$reg << 25) |
2354              (Assembler::fpop2_op3 << 19) |
2355              (0 << 18) |
2356              ($cmp$$cmpcode << 14) |
2357              (1 << 13) |                    // select register move
2358              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2359              ($primary << 5) |              // select single, double or quad
2360              ($src$$reg << 0);
2361     *((int*)(cbuf.code_end())) = op;
2362     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2363   %}
2364 
2365   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2366     int op = (Assembler::arith_op << 30) |
2367              ($dst$$reg << 25) |
2368              (Assembler::fpop2_op3 << 19) |
2369              (0 << 18) |
2370              ($cmp$$cmpcode << 14) |
2371              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2372              ($primary << 5) |              // select single, double or quad
2373              ($src$$reg << 0);
2374     *((int*)(cbuf.code_end())) = op;
2375     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2376   %}
2377 
2378   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2379   // the condition comes from opcode-field instead of an argument.
2380   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2381     int op = (Assembler::arith_op << 30) |
2382              ($dst$$reg << 25) |
2383              (Assembler::movcc_op3 << 19) |
2384              (1 << 18) |                    // cc2 bit for 'icc'
2385              ($primary << 14) |
2386              (0 << 13) |                    // select register move
2387              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2388              ($src$$reg << 0);
2389     *((int*)(cbuf.code_end())) = op;
2390     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2391   %}
2392 
2393   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2394     int op = (Assembler::arith_op << 30) |
2395              ($dst$$reg << 25) |
2396              (Assembler::movcc_op3 << 19) |
2397              (6 << 16) |                    // cc2 bit for 'xcc'
2398              ($primary << 14) |
2399              (0 << 13) |                    // select register move
2400              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2401              ($src$$reg << 0);
2402     *((int*)(cbuf.code_end())) = op;
2403     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2404   %}
2405 
2406   // Utility encoding for loading a 64 bit Pointer into a register
2407   // The 64 bit pointer is stored in the generated code stream
2408   enc_class SetPtr( immP src, iRegP rd ) %{
2409     Register dest = reg_to_register_object($rd$$reg);
2410     MacroAssembler _masm(&cbuf);
2411     // [RGV] This next line should be generated from ADLC
2412     if ( _opnds[1]->constant_is_oop() ) {
2413       intptr_t val = $src$$constant;
2414       __ set_oop_constant((jobject)val, dest);
2415     } else {          // non-oop pointers, e.g. card mark base, heap top
2416       __ set($src$$constant, dest);
2417     }
2418   %}
2419 
2420   enc_class Set13( immI13 src, iRegI rd ) %{
2421     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2422   %}
2423 
2424   enc_class SetHi22( immI src, iRegI rd ) %{
2425     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2426   %}
2427 
2428   enc_class Set32( immI src, iRegI rd ) %{
2429     MacroAssembler _masm(&cbuf);
2430     __ set($src$$constant, reg_to_register_object($rd$$reg));
2431   %}
2432 
2433   enc_class SetNull( iRegI rd ) %{
2434     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
2435   %}
2436 
2437   enc_class call_epilog %{
2438     if( VerifyStackAtCalls ) {
2439       MacroAssembler _masm(&cbuf);
2440       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2441       Register temp_reg = G3;
2442       __ add(SP, framesize, temp_reg);
2443       __ cmp(temp_reg, FP);
2444       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2445     }
2446   %}
2447 
2448   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2449   // to G1 so the register allocator will not have to deal with the misaligned register
2450   // pair.
2451   enc_class adjust_long_from_native_call %{
2452 #ifndef _LP64
2453     if (returns_long()) {
2454       //    sllx  O0,32,O0
2455       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2456       //    srl   O1,0,O1
2457       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2458       //    or    O0,O1,G1
2459       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2460     }
2461 #endif
2462   %}
2463 
2464   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2465     // CALL directly to the runtime
2466     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2467     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2468                     /*preserve_g2=*/true, /*force far call*/true);
2469   %}
2470 
2471   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2472     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2473     // who we intended to call.
2474     if ( !_method ) {
2475       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2476     } else if (_optimized_virtual) {
2477       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2478     } else {
2479       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2480     }
2481     if( _method ) {  // Emit stub for static call
2482       emit_java_to_interp(cbuf);
2483     }
2484   %}
2485 
2486   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2487     MacroAssembler _masm(&cbuf);
2488     __ set_inst_mark();
2489     int vtable_index = this->_vtable_index;
2490     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2491     if (vtable_index < 0) {
2492       // must be invalid_vtable_index, not nonvirtual_vtable_index
2493       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2494       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2495       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2496       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2497       // !!!!!
2498       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2499       // emit_call_dynamic_prologue( cbuf );
2500       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2501 
2502       address  virtual_call_oop_addr = __ inst_mark();
2503       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2504       // who we intended to call.
2505       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2506       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2507     } else {
2508       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2509       // Just go thru the vtable
2510       // get receiver klass (receiver already checked for non-null)
2511       // If we end up going thru a c2i adapter interpreter expects method in G5
2512       int off = __ offset();
2513       __ load_klass(O0, G3_scratch);
2514       int klass_load_size;
2515       if (UseCompressedOops) {
2516         assert(Universe::heap() != NULL, "java heap should be initialized");
2517         if (Universe::narrow_oop_base() == NULL)
2518           klass_load_size = 2*BytesPerInstWord;
2519         else
2520           klass_load_size = 3*BytesPerInstWord;
2521       } else {
2522         klass_load_size = 1*BytesPerInstWord;
2523       }
2524       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2525       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2526       if( __ is_simm13(v_off) ) {
2527         __ ld_ptr(G3, v_off, G5_method);
2528       } else {
2529         // Generate 2 instructions
2530         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2531         __ or3(G5_method, v_off & 0x3ff, G5_method);
2532         // ld_ptr, set_hi, set
2533         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2534                "Unexpected instruction size(s)");
2535         __ ld_ptr(G3, G5_method, G5_method);
2536       }
2537       // NOTE: for vtable dispatches, the vtable entry will never be null.
2538       // However it may very well end up in handle_wrong_method if the
2539       // method is abstract for the particular class.
2540       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2541       // jump to target (either compiled code or c2iadapter)
2542       __ jmpl(G3_scratch, G0, O7);
2543       __ delayed()->nop();
2544     }
2545   %}
2546 
2547   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2548     MacroAssembler _masm(&cbuf);
2549 
2550     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2551     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2552                               // we might be calling a C2I adapter which needs it.
2553 
2554     assert(temp_reg != G5_ic_reg, "conflicting registers");
2555     // Load nmethod
2556     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2557 
2558     // CALL to compiled java, indirect the contents of G3
2559     __ set_inst_mark();
2560     __ callr(temp_reg, G0);
2561     __ delayed()->nop();
2562   %}
2563 
2564 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2565     MacroAssembler _masm(&cbuf);
2566     Register Rdividend = reg_to_register_object($src1$$reg);
2567     Register Rdivisor = reg_to_register_object($src2$$reg);
2568     Register Rresult = reg_to_register_object($dst$$reg);
2569 
2570     __ sra(Rdivisor, 0, Rdivisor);
2571     __ sra(Rdividend, 0, Rdividend);
2572     __ sdivx(Rdividend, Rdivisor, Rresult);
2573 %}
2574 
2575 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2576     MacroAssembler _masm(&cbuf);
2577 
2578     Register Rdividend = reg_to_register_object($src1$$reg);
2579     int divisor = $imm$$constant;
2580     Register Rresult = reg_to_register_object($dst$$reg);
2581 
2582     __ sra(Rdividend, 0, Rdividend);
2583     __ sdivx(Rdividend, divisor, Rresult);
2584 %}
2585 
2586 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2587     MacroAssembler _masm(&cbuf);
2588     Register Rsrc1 = reg_to_register_object($src1$$reg);
2589     Register Rsrc2 = reg_to_register_object($src2$$reg);
2590     Register Rdst  = reg_to_register_object($dst$$reg);
2591 
2592     __ sra( Rsrc1, 0, Rsrc1 );
2593     __ sra( Rsrc2, 0, Rsrc2 );
2594     __ mulx( Rsrc1, Rsrc2, Rdst );
2595     __ srlx( Rdst, 32, Rdst );
2596 %}
2597 
2598 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2599     MacroAssembler _masm(&cbuf);
2600     Register Rdividend = reg_to_register_object($src1$$reg);
2601     Register Rdivisor = reg_to_register_object($src2$$reg);
2602     Register Rresult = reg_to_register_object($dst$$reg);
2603     Register Rscratch = reg_to_register_object($scratch$$reg);
2604 
2605     assert(Rdividend != Rscratch, "");
2606     assert(Rdivisor  != Rscratch, "");
2607 
2608     __ sra(Rdividend, 0, Rdividend);
2609     __ sra(Rdivisor, 0, Rdivisor);
2610     __ sdivx(Rdividend, Rdivisor, Rscratch);
2611     __ mulx(Rscratch, Rdivisor, Rscratch);
2612     __ sub(Rdividend, Rscratch, Rresult);
2613 %}
2614 
2615 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2616     MacroAssembler _masm(&cbuf);
2617 
2618     Register Rdividend = reg_to_register_object($src1$$reg);
2619     int divisor = $imm$$constant;
2620     Register Rresult = reg_to_register_object($dst$$reg);
2621     Register Rscratch = reg_to_register_object($scratch$$reg);
2622 
2623     assert(Rdividend != Rscratch, "");
2624 
2625     __ sra(Rdividend, 0, Rdividend);
2626     __ sdivx(Rdividend, divisor, Rscratch);
2627     __ mulx(Rscratch, divisor, Rscratch);
2628     __ sub(Rdividend, Rscratch, Rresult);
2629 %}
2630 
2631 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2632     MacroAssembler _masm(&cbuf);
2633 
2634     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2635     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2636 
2637     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2638 %}
2639 
2640 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2641     MacroAssembler _masm(&cbuf);
2642 
2643     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2644     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2645 
2646     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2647 %}
2648 
2649 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2650     MacroAssembler _masm(&cbuf);
2651 
2652     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2653     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2654 
2655     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2656 %}
2657 
2658 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2659     MacroAssembler _masm(&cbuf);
2660 
2661     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2662     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2663 
2664     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2665 %}
2666 
2667 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2668     MacroAssembler _masm(&cbuf);
2669 
2670     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2671     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2672 
2673     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2674 %}
2675 
2676 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2677     MacroAssembler _masm(&cbuf);
2678 
2679     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2680     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2681 
2682     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2683 %}
2684 
2685 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2686     MacroAssembler _masm(&cbuf);
2687 
2688     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2689     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2690 
2691     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2692 %}
2693 
2694 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2695     MacroAssembler _masm(&cbuf);
2696 
2697     Register Roop  = reg_to_register_object($oop$$reg);
2698     Register Rbox  = reg_to_register_object($box$$reg);
2699     Register Rscratch = reg_to_register_object($scratch$$reg);
2700     Register Rmark =    reg_to_register_object($scratch2$$reg);
2701 
2702     assert(Roop  != Rscratch, "");
2703     assert(Roop  != Rmark, "");
2704     assert(Rbox  != Rscratch, "");
2705     assert(Rbox  != Rmark, "");
2706 
2707     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2708 %}
2709 
2710 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2711     MacroAssembler _masm(&cbuf);
2712 
2713     Register Roop  = reg_to_register_object($oop$$reg);
2714     Register Rbox  = reg_to_register_object($box$$reg);
2715     Register Rscratch = reg_to_register_object($scratch$$reg);
2716     Register Rmark =    reg_to_register_object($scratch2$$reg);
2717 
2718     assert(Roop  != Rscratch, "");
2719     assert(Roop  != Rmark, "");
2720     assert(Rbox  != Rscratch, "");
2721     assert(Rbox  != Rmark, "");
2722 
2723     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2724   %}
2725 
2726   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2727     MacroAssembler _masm(&cbuf);
2728     Register Rmem = reg_to_register_object($mem$$reg);
2729     Register Rold = reg_to_register_object($old$$reg);
2730     Register Rnew = reg_to_register_object($new$$reg);
2731 
2732     // casx_under_lock picks 1 of 3 encodings:
2733     // For 32-bit pointers you get a 32-bit CAS
2734     // For 64-bit pointers you get a 64-bit CASX
2735     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2736     __ cmp( Rold, Rnew );
2737   %}
2738 
2739   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2740     Register Rmem = reg_to_register_object($mem$$reg);
2741     Register Rold = reg_to_register_object($old$$reg);
2742     Register Rnew = reg_to_register_object($new$$reg);
2743 
2744     MacroAssembler _masm(&cbuf);
2745     __ mov(Rnew, O7);
2746     __ casx(Rmem, Rold, O7);
2747     __ cmp( Rold, O7 );
2748   %}
2749 
2750   // raw int cas, used for compareAndSwap
2751   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2752     Register Rmem = reg_to_register_object($mem$$reg);
2753     Register Rold = reg_to_register_object($old$$reg);
2754     Register Rnew = reg_to_register_object($new$$reg);
2755 
2756     MacroAssembler _masm(&cbuf);
2757     __ mov(Rnew, O7);
2758     __ cas(Rmem, Rold, O7);
2759     __ cmp( Rold, O7 );
2760   %}
2761 
2762   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2763     Register Rres = reg_to_register_object($res$$reg);
2764 
2765     MacroAssembler _masm(&cbuf);
2766     __ mov(1, Rres);
2767     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2768   %}
2769 
2770   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2771     Register Rres = reg_to_register_object($res$$reg);
2772 
2773     MacroAssembler _masm(&cbuf);
2774     __ mov(1, Rres);
2775     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2776   %}
2777 
2778   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2779     MacroAssembler _masm(&cbuf);
2780     Register Rdst = reg_to_register_object($dst$$reg);
2781     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2782                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2783     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2784                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2785 
2786     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2787     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2788   %}
2789 
2790   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
2791     MacroAssembler _masm(&cbuf);
2792     Register dest = reg_to_register_object($dst$$reg);
2793     Register temp = reg_to_register_object($tmp$$reg);
2794     __ set64( $src$$constant, dest, temp );
2795   %}
2796 
2797   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
2798     // Load a constant replicated "count" times with width "width"
2799     int bit_width = $width$$constant * 8;
2800     jlong elt_val = $src$$constant;
2801     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
2802     jlong val = elt_val;
2803     for (int i = 0; i < $count$$constant - 1; i++) {
2804         val <<= bit_width;
2805         val |= elt_val;
2806     }
2807     jdouble dval = *(jdouble*)&val; // coerce to double type
2808     MacroAssembler _masm(&cbuf);
2809     address double_address = __ double_constant(dval);
2810     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
2811     AddressLiteral addrlit(double_address, rspec);
2812 
2813     __ sethi(addrlit, $tmp$$Register);
2814     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
2815   %}
2816 
2817   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2818   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2819     MacroAssembler _masm(&cbuf);
2820     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
2821     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
2822     Register    base_pointer_arg = reg_to_register_object($base$$reg);
2823 
2824     Label loop;
2825     __ mov(nof_bytes_arg, nof_bytes_tmp);
2826 
2827     // Loop and clear, walking backwards through the array.
2828     // nof_bytes_tmp (if >0) is always the number of bytes to zero
2829     __ bind(loop);
2830     __ deccc(nof_bytes_tmp, 8);
2831     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2832     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2833     // %%%% this mini-loop must not cross a cache boundary!
2834   %}
2835 
2836 
2837   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
2838     Label Ldone, Lloop;
2839     MacroAssembler _masm(&cbuf);
2840 
2841     Register   str1_reg = reg_to_register_object($str1$$reg);
2842     Register   str2_reg = reg_to_register_object($str2$$reg);
2843     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
2844     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
2845     Register result_reg = reg_to_register_object($result$$reg);
2846 
2847     // Get the first character position in both strings
2848     //         [8] char array, [12] offset, [16] count
2849     int  value_offset = java_lang_String:: value_offset_in_bytes();
2850     int offset_offset = java_lang_String::offset_offset_in_bytes();
2851     int  count_offset = java_lang_String:: count_offset_in_bytes();
2852 
2853     // load str1 (jchar*) base address into tmp1_reg
2854     __ load_heap_oop(str1_reg, value_offset, tmp1_reg);
2855     __ ld(str1_reg, offset_offset, result_reg);
2856     __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
2857     __   ld(str1_reg, count_offset, str1_reg); // hoisted
2858     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2859     __   load_heap_oop(str2_reg, value_offset, tmp2_reg); // hoisted
2860     __ add(result_reg, tmp1_reg, tmp1_reg);
2861 
2862     // load str2 (jchar*) base address into tmp2_reg
2863     // __ ld_ptr(str2_reg, value_offset, tmp2_reg); // hoisted
2864     __ ld(str2_reg, offset_offset, result_reg);
2865     __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
2866     __   ld(str2_reg, count_offset, str2_reg); // hoisted
2867     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2868     __   subcc(str1_reg, str2_reg, O7); // hoisted
2869     __ add(result_reg, tmp2_reg, tmp2_reg);
2870 
2871     // Compute the minimum of the string lengths(str1_reg) and the
2872     // difference of the string lengths (stack)
2873 
2874     // discard string base pointers, after loading up the lengths
2875     // __ ld(str1_reg, count_offset, str1_reg); // hoisted
2876     // __ ld(str2_reg, count_offset, str2_reg); // hoisted
2877 
2878     // See if the lengths are different, and calculate min in str1_reg.
2879     // Stash diff in O7 in case we need it for a tie-breaker.
2880     Label Lskip;
2881     // __ subcc(str1_reg, str2_reg, O7); // hoisted
2882     __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
2883     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2884     // str2 is shorter, so use its count:
2885     __ delayed()->sll(str2_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
2886     __ bind(Lskip);
2887 
2888     // reallocate str1_reg, str2_reg, result_reg
2889     // Note:  limit_reg holds the string length pre-scaled by 2
2890     Register limit_reg =   str1_reg;
2891     Register  chr2_reg =   str2_reg;
2892     Register  chr1_reg = result_reg;
2893     // tmp{12} are the base pointers
2894 
2895     // Is the minimum length zero?
2896     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2897     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2898     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2899 
2900     // Load first characters
2901     __ lduh(tmp1_reg, 0, chr1_reg);
2902     __ lduh(tmp2_reg, 0, chr2_reg);
2903 
2904     // Compare first characters
2905     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2906     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2907     assert(chr1_reg == result_reg, "result must be pre-placed");
2908     __ delayed()->nop();
2909 
2910     {
2911       // Check after comparing first character to see if strings are equivalent
2912       Label LSkip2;
2913       // Check if the strings start at same location
2914       __ cmp(tmp1_reg, tmp2_reg);
2915       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2916       __ delayed()->nop();
2917 
2918       // Check if the length difference is zero (in O7)
2919       __ cmp(G0, O7);
2920       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2921       __ delayed()->mov(G0, result_reg);  // result is zero
2922 
2923       // Strings might not be equal
2924       __ bind(LSkip2);
2925     }
2926 
2927     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2928     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2929     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2930 
2931     // Shift tmp1_reg and tmp2_reg to the end of the arrays, negate limit
2932     __ add(tmp1_reg, limit_reg, tmp1_reg);
2933     __ add(tmp2_reg, limit_reg, tmp2_reg);
2934     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2935 
2936     // Compare the rest of the characters
2937     __ lduh(tmp1_reg, limit_reg, chr1_reg);
2938     __ bind(Lloop);
2939     // __ lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
2940     __ lduh(tmp2_reg, limit_reg, chr2_reg);
2941     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2942     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2943     assert(chr1_reg == result_reg, "result must be pre-placed");
2944     __ delayed()->inccc(limit_reg, sizeof(jchar));
2945     // annul LDUH if branch is not taken to prevent access past end of string
2946     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2947     __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
2948 
2949     // If strings are equal up to min length, return the length difference.
2950     __ mov(O7, result_reg);
2951 
2952     // Otherwise, return the difference between the first mismatched chars.
2953     __ bind(Ldone);
2954   %}
2955 
2956 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
2957     Label Lword, Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2958     MacroAssembler _masm(&cbuf);
2959 
2960     Register   str1_reg = reg_to_register_object($str1$$reg);
2961     Register   str2_reg = reg_to_register_object($str2$$reg);
2962     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
2963     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
2964     Register result_reg = reg_to_register_object($result$$reg);
2965 
2966     // Get the first character position in both strings
2967     //         [8] char array, [12] offset, [16] count
2968     int  value_offset = java_lang_String:: value_offset_in_bytes();
2969     int offset_offset = java_lang_String::offset_offset_in_bytes();
2970     int  count_offset = java_lang_String:: count_offset_in_bytes();
2971 
2972     // load str1 (jchar*) base address into tmp1_reg
2973     __ load_heap_oop(Address(str1_reg, value_offset), tmp1_reg);
2974     __ ld(Address(str1_reg, offset_offset), result_reg);
2975     __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
2976     __    ld(Address(str1_reg, count_offset), str1_reg); // hoisted
2977     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2978     __    load_heap_oop(Address(str2_reg, value_offset), tmp2_reg); // hoisted
2979     __ add(result_reg, tmp1_reg, tmp1_reg);
2980 
2981     // load str2 (jchar*) base address into tmp2_reg
2982     // __ ld_ptr(Address(str2_reg, value_offset), tmp2_reg); // hoisted
2983     __ ld(Address(str2_reg, offset_offset), result_reg);
2984     __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
2985     __    ld(Address(str2_reg, count_offset), str2_reg); // hoisted
2986     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2987     __   cmp(str1_reg, str2_reg); // hoisted
2988     __ add(result_reg, tmp2_reg, tmp2_reg);
2989 
2990     __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg);
2991     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
2992     __ delayed()->mov(G0, result_reg);    // not equal
2993 
2994     __ br_zero(Assembler::equal, true, Assembler::pn, str1_reg, Ldone);
2995     __ delayed()->add(G0, 1, result_reg); //equals
2996 
2997     __ cmp(tmp1_reg, tmp2_reg); //same string ?
2998     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2999     __ delayed()->add(G0, 1, result_reg);
3000 
3001     //rename registers
3002     Register limit_reg =   str1_reg;
3003     Register  chr2_reg =   str2_reg;
3004     Register  chr1_reg = result_reg;
3005     // tmp{12} are the base pointers
3006 
3007     //check for alignment and position the pointers to the ends
3008     __ or3(tmp1_reg, tmp2_reg, chr1_reg);
3009     __ andcc(chr1_reg, 0x3, chr1_reg); // notZero means at least one not 4-byte aligned
3010     __ br(Assembler::notZero, false, Assembler::pn, Lchar);
3011     __ delayed()->nop();
3012 
3013     __ bind(Lword);
3014     __ and3(limit_reg, 0x2, O7); //remember the remainder (either 0 or 2)
3015     __ andn(limit_reg, 0x3, limit_reg);
3016     __ br_zero(Assembler::zero, false, Assembler::pn, limit_reg, Lpost_word);
3017     __ delayed()->nop();
3018 
3019     __ add(tmp1_reg, limit_reg, tmp1_reg);
3020     __ add(tmp2_reg, limit_reg, tmp2_reg);
3021     __ neg(limit_reg);
3022 
3023     __ lduw(tmp1_reg, limit_reg, chr1_reg);
3024     __ bind(Lword_loop);
3025     __ lduw(tmp2_reg, limit_reg, chr2_reg);
3026     __ cmp(chr1_reg, chr2_reg);
3027     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3028     __ delayed()->mov(G0, result_reg);
3029     __ inccc(limit_reg, 2*sizeof(jchar));
3030     // annul LDUW if branch i  s not taken to prevent access past end of string
3031     __ br(Assembler::notZero, true, Assembler::pt, Lword_loop); //annul on taken
3032     __ delayed()->lduw(tmp1_reg, limit_reg, chr1_reg); // hoisted
3033 
3034     __ bind(Lpost_word);
3035     __ br_zero(Assembler::zero, true, Assembler::pt, O7, Ldone);
3036     __ delayed()->add(G0, 1, result_reg);
3037 
3038     __ lduh(tmp1_reg, 0, chr1_reg);
3039     __ lduh(tmp2_reg, 0, chr2_reg);
3040     __ cmp (chr1_reg, chr2_reg);
3041     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3042     __ delayed()->mov(G0, result_reg);
3043     __ ba(false,Ldone);
3044     __ delayed()->add(G0, 1, result_reg);
3045 
3046     __ bind(Lchar);
3047     __ add(tmp1_reg, limit_reg, tmp1_reg);
3048     __ add(tmp2_reg, limit_reg, tmp2_reg);
3049     __ neg(limit_reg); //negate count
3050 
3051     __ lduh(tmp1_reg, limit_reg, chr1_reg);
3052     __ bind(Lchar_loop);
3053     __ lduh(tmp2_reg, limit_reg, chr2_reg);
3054     __ cmp(chr1_reg, chr2_reg);
3055     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3056     __ delayed()->mov(G0, result_reg); //not equal
3057     __ inccc(limit_reg, sizeof(jchar));
3058     // annul LDUH if branch is not taken to prevent access past end of string
3059     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop); //annul on taken
3060     __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
3061 
3062     __ add(G0, 1, result_reg);  //equal
3063 
3064     __ bind(Ldone);
3065   %}
3066 
3067 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
3068     Label Lvector, Ldone, Lloop;
3069     MacroAssembler _masm(&cbuf);
3070 
3071     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3072     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3073     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3074     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
3075     Register result_reg = reg_to_register_object($result$$reg);
3076 
3077     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3078     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3079 
3080     // return true if the same array
3081     __ cmp(ary1_reg, ary2_reg);
3082     __ br(Assembler::equal, true, Assembler::pn, Ldone);
3083     __ delayed()->add(G0, 1, result_reg); // equal
3084 
3085     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3086     __ delayed()->mov(G0, result_reg);    // not equal
3087 
3088     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3089     __ delayed()->mov(G0, result_reg);    // not equal
3090 
3091     //load the lengths of arrays
3092     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3093     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3094 
3095     // return false if the two arrays are not equal length
3096     __ cmp(tmp1_reg, tmp2_reg);
3097     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3098     __ delayed()->mov(G0, result_reg);     // not equal
3099 
3100     __ br_zero(Assembler::zero, true, Assembler::pn, tmp1_reg, Ldone);
3101     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3102 
3103     // load array addresses
3104     __ add(ary1_reg, base_offset, ary1_reg);
3105     __ add(ary2_reg, base_offset, ary2_reg);
3106 
3107     // renaming registers
3108     Register chr1_reg  =  tmp2_reg;   // for characters in ary1
3109     Register chr2_reg  =  result_reg; // for characters in ary2
3110     Register limit_reg =  tmp1_reg;   // length
3111 
3112     // set byte count
3113     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3114     __ andcc(limit_reg, 0x2, chr1_reg); //trailing character ?
3115     __ br(Assembler::zero, false, Assembler::pt, Lvector);
3116     __ delayed()->nop();
3117 
3118     //compare the trailing char
3119     __ sub(limit_reg, sizeof(jchar), limit_reg);
3120     __ lduh(ary1_reg, limit_reg, chr1_reg);
3121     __ lduh(ary2_reg, limit_reg, chr2_reg);
3122     __ cmp(chr1_reg, chr2_reg);
3123     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3124     __ delayed()->mov(G0, result_reg);     // not equal
3125 
3126     // only one char ?
3127     __ br_zero(Assembler::zero, true, Assembler::pn, limit_reg, Ldone);
3128     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3129 
3130     __ bind(Lvector);
3131     // Shift ary1_reg and ary2_reg to the end of the arrays, negate limit
3132     __ add(ary1_reg, limit_reg, ary1_reg);
3133     __ add(ary2_reg, limit_reg, ary2_reg);
3134     __ neg(limit_reg, limit_reg);
3135 
3136     __ lduw(ary1_reg, limit_reg, chr1_reg);
3137     __ bind(Lloop);
3138     __ lduw(ary2_reg, limit_reg, chr2_reg);
3139     __ cmp(chr1_reg, chr2_reg);
3140     __ br(Assembler::notEqual, false, Assembler::pt, Ldone);
3141     __ delayed()->mov(G0, result_reg);     // not equal
3142     __ inccc(limit_reg, 2*sizeof(jchar));
3143     // annul LDUW if branch is not taken to prevent access past end of string
3144     __ br(Assembler::notZero, true, Assembler::pt, Lloop); //annul on taken
3145     __ delayed()->lduw(ary1_reg, limit_reg, chr1_reg); // hoisted
3146 
3147     __ add(G0, 1, result_reg); // equals
3148 
3149     __ bind(Ldone);
3150   %}
3151 
3152   enc_class enc_rethrow() %{
3153     cbuf.set_inst_mark();
3154     Register temp_reg = G3;
3155     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3156     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3157     MacroAssembler _masm(&cbuf);
3158 #ifdef ASSERT
3159     __ save_frame(0);
3160     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3161     __ sethi(last_rethrow_addrlit, L1);
3162     Address addr(L1, last_rethrow_addrlit.low10());
3163     __ get_pc(L2);
3164     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3165     __ st_ptr(L2, addr);
3166     __ restore();
3167 #endif
3168     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3169     __ delayed()->nop();
3170   %}
3171 
3172   enc_class emit_mem_nop() %{
3173     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3174     unsigned int *code = (unsigned int*)cbuf.code_end();
3175     *code = (unsigned int)0xc0839040;
3176     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3177   %}
3178 
3179   enc_class emit_fadd_nop() %{
3180     // Generates the instruction FMOVS f31,f31
3181     unsigned int *code = (unsigned int*)cbuf.code_end();
3182     *code = (unsigned int)0xbfa0003f;
3183     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3184   %}
3185 
3186   enc_class emit_br_nop() %{
3187     // Generates the instruction BPN,PN .
3188     unsigned int *code = (unsigned int*)cbuf.code_end();
3189     *code = (unsigned int)0x00400000;
3190     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3191   %}
3192 
3193   enc_class enc_membar_acquire %{
3194     MacroAssembler _masm(&cbuf);
3195     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3196   %}
3197 
3198   enc_class enc_membar_release %{
3199     MacroAssembler _masm(&cbuf);
3200     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3201   %}
3202 
3203   enc_class enc_membar_volatile %{
3204     MacroAssembler _masm(&cbuf);
3205     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3206   %}
3207 
3208   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3209     MacroAssembler _masm(&cbuf);
3210     Register src_reg = reg_to_register_object($src$$reg);
3211     Register dst_reg = reg_to_register_object($dst$$reg);
3212     __ sllx(src_reg, 56, dst_reg);
3213     __ srlx(dst_reg,  8, O7);
3214     __ or3 (dst_reg, O7, dst_reg);
3215     __ srlx(dst_reg, 16, O7);
3216     __ or3 (dst_reg, O7, dst_reg);
3217     __ srlx(dst_reg, 32, O7);
3218     __ or3 (dst_reg, O7, dst_reg);
3219   %}
3220 
3221   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3222     MacroAssembler _masm(&cbuf);
3223     Register src_reg = reg_to_register_object($src$$reg);
3224     Register dst_reg = reg_to_register_object($dst$$reg);
3225     __ sll(src_reg, 24, dst_reg);
3226     __ srl(dst_reg,  8, O7);
3227     __ or3(dst_reg, O7, dst_reg);
3228     __ srl(dst_reg, 16, O7);
3229     __ or3(dst_reg, O7, dst_reg);
3230   %}
3231 
3232   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3233     MacroAssembler _masm(&cbuf);
3234     Register src_reg = reg_to_register_object($src$$reg);
3235     Register dst_reg = reg_to_register_object($dst$$reg);
3236     __ sllx(src_reg, 48, dst_reg);
3237     __ srlx(dst_reg, 16, O7);
3238     __ or3 (dst_reg, O7, dst_reg);
3239     __ srlx(dst_reg, 32, O7);
3240     __ or3 (dst_reg, O7, dst_reg);
3241   %}
3242 
3243   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3244     MacroAssembler _masm(&cbuf);
3245     Register src_reg = reg_to_register_object($src$$reg);
3246     Register dst_reg = reg_to_register_object($dst$$reg);
3247     __ sllx(src_reg, 32, dst_reg);
3248     __ srlx(dst_reg, 32, O7);
3249     __ or3 (dst_reg, O7, dst_reg);
3250   %}
3251 
3252 %}
3253 
3254 //----------FRAME--------------------------------------------------------------
3255 // Definition of frame structure and management information.
3256 //
3257 //  S T A C K   L A Y O U T    Allocators stack-slot number
3258 //                             |   (to get allocators register number
3259 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3260 //  r   CALLER     |        |
3261 //  o     |        +--------+      pad to even-align allocators stack-slot
3262 //  w     V        |  pad0  |        numbers; owned by CALLER
3263 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3264 //  h     ^        |   in   |  5
3265 //        |        |  args  |  4   Holes in incoming args owned by SELF
3266 //  |     |        |        |  3
3267 //  |     |        +--------+
3268 //  V     |        | old out|      Empty on Intel, window on Sparc
3269 //        |    old |preserve|      Must be even aligned.
3270 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3271 //        |        |   in   |  3   area for Intel ret address
3272 //     Owned by    |preserve|      Empty on Sparc.
3273 //       SELF      +--------+
3274 //        |        |  pad2  |  2   pad to align old SP
3275 //        |        +--------+  1
3276 //        |        | locks  |  0
3277 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3278 //        |        |  pad1  | 11   pad to align new SP
3279 //        |        +--------+
3280 //        |        |        | 10
3281 //        |        | spills |  9   spills
3282 //        V        |        |  8   (pad0 slot for callee)
3283 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3284 //        ^        |  out   |  7
3285 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3286 //     Owned by    +--------+
3287 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3288 //        |    new |preserve|      Must be even-aligned.
3289 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3290 //        |        |        |
3291 //
3292 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3293 //         known from SELF's arguments and the Java calling convention.
3294 //         Region 6-7 is determined per call site.
3295 // Note 2: If the calling convention leaves holes in the incoming argument
3296 //         area, those holes are owned by SELF.  Holes in the outgoing area
3297 //         are owned by the CALLEE.  Holes should not be nessecary in the
3298 //         incoming area, as the Java calling convention is completely under
3299 //         the control of the AD file.  Doubles can be sorted and packed to
3300 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3301 //         varargs C calling conventions.
3302 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3303 //         even aligned with pad0 as needed.
3304 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3305 //         region 6-11 is even aligned; it may be padded out more so that
3306 //         the region from SP to FP meets the minimum stack alignment.
3307 
3308 frame %{
3309   // What direction does stack grow in (assumed to be same for native & Java)
3310   stack_direction(TOWARDS_LOW);
3311 
3312   // These two registers define part of the calling convention
3313   // between compiled code and the interpreter.
3314   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3315   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3316 
3317   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3318   cisc_spilling_operand_name(indOffset);
3319 
3320   // Number of stack slots consumed by a Monitor enter
3321 #ifdef _LP64
3322   sync_stack_slots(2);
3323 #else
3324   sync_stack_slots(1);
3325 #endif
3326 
3327   // Compiled code's Frame Pointer
3328   frame_pointer(R_SP);
3329 
3330   // Stack alignment requirement
3331   stack_alignment(StackAlignmentInBytes);
3332   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3333   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3334 
3335   // Number of stack slots between incoming argument block and the start of
3336   // a new frame.  The PROLOG must add this many slots to the stack.  The
3337   // EPILOG must remove this many slots.
3338   in_preserve_stack_slots(0);
3339 
3340   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3341   // for calls to C.  Supports the var-args backing area for register parms.
3342   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3343 #ifdef _LP64
3344   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3345   varargs_C_out_slots_killed(12);
3346 #else
3347   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3348   varargs_C_out_slots_killed( 7);
3349 #endif
3350 
3351   // The after-PROLOG location of the return address.  Location of
3352   // return address specifies a type (REG or STACK) and a number
3353   // representing the register number (i.e. - use a register name) or
3354   // stack slot.
3355   return_addr(REG R_I7);          // Ret Addr is in register I7
3356 
3357   // Body of function which returns an OptoRegs array locating
3358   // arguments either in registers or in stack slots for calling
3359   // java
3360   calling_convention %{
3361     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3362 
3363   %}
3364 
3365   // Body of function which returns an OptoRegs array locating
3366   // arguments either in registers or in stack slots for callin
3367   // C.
3368   c_calling_convention %{
3369     // This is obviously always outgoing
3370     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3371   %}
3372 
3373   // Location of native (C/C++) and interpreter return values.  This is specified to
3374   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3375   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3376   // to and from the register pairs is done by the appropriate call and epilog
3377   // opcodes.  This simplifies the register allocator.
3378   c_return_value %{
3379     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3380 #ifdef     _LP64
3381     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3382     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3383     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3384     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3385 #else  // !_LP64
3386     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3387     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3388     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3389     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3390 #endif
3391     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3392                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3393   %}
3394 
3395   // Location of compiled Java return values.  Same as C
3396   return_value %{
3397     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3398 #ifdef     _LP64
3399     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3400     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3401     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3402     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3403 #else  // !_LP64
3404     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3405     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3406     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3407     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3408 #endif
3409     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3410                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3411   %}
3412 
3413 %}
3414 
3415 
3416 //----------ATTRIBUTES---------------------------------------------------------
3417 //----------Operand Attributes-------------------------------------------------
3418 op_attrib op_cost(1);          // Required cost attribute
3419 
3420 //----------Instruction Attributes---------------------------------------------
3421 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3422 ins_attrib ins_size(32);       // Required size attribute (in bits)
3423 ins_attrib ins_pc_relative(0); // Required PC Relative flag
3424 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3425                                 // non-matching short branch variant of some
3426                                                             // long branch?
3427 
3428 //----------OPERANDS-----------------------------------------------------------
3429 // Operand definitions must precede instruction definitions for correct parsing
3430 // in the ADLC because operands constitute user defined types which are used in
3431 // instruction definitions.
3432 
3433 //----------Simple Operands----------------------------------------------------
3434 // Immediate Operands
3435 // Integer Immediate: 32-bit
3436 operand immI() %{
3437   match(ConI);
3438 
3439   op_cost(0);
3440   // formats are generated automatically for constants and base registers
3441   format %{ %}
3442   interface(CONST_INTER);
3443 %}
3444 
3445 // Integer Immediate: 13-bit
3446 operand immI13() %{
3447   predicate(Assembler::is_simm13(n->get_int()));
3448   match(ConI);
3449   op_cost(0);
3450 
3451   format %{ %}
3452   interface(CONST_INTER);
3453 %}
3454 
3455 // Unsigned (positive) Integer Immediate: 13-bit
3456 operand immU13() %{
3457   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3458   match(ConI);
3459   op_cost(0);
3460 
3461   format %{ %}
3462   interface(CONST_INTER);
3463 %}
3464 
3465 // Integer Immediate: 6-bit
3466 operand immU6() %{
3467   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3468   match(ConI);
3469   op_cost(0);
3470   format %{ %}
3471   interface(CONST_INTER);
3472 %}
3473 
3474 // Integer Immediate: 11-bit
3475 operand immI11() %{
3476   predicate(Assembler::is_simm(n->get_int(),11));
3477   match(ConI);
3478   op_cost(0);
3479   format %{ %}
3480   interface(CONST_INTER);
3481 %}
3482 
3483 // Integer Immediate: 0-bit
3484 operand immI0() %{
3485   predicate(n->get_int() == 0);
3486   match(ConI);
3487   op_cost(0);
3488 
3489   format %{ %}
3490   interface(CONST_INTER);
3491 %}
3492 
3493 // Integer Immediate: the value 10
3494 operand immI10() %{
3495   predicate(n->get_int() == 10);
3496   match(ConI);
3497   op_cost(0);
3498 
3499   format %{ %}
3500   interface(CONST_INTER);
3501 %}
3502 
3503 // Integer Immediate: the values 0-31
3504 operand immU5() %{
3505   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3506   match(ConI);
3507   op_cost(0);
3508 
3509   format %{ %}
3510   interface(CONST_INTER);
3511 %}
3512 
3513 // Integer Immediate: the values 1-31
3514 operand immI_1_31() %{
3515   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3516   match(ConI);
3517   op_cost(0);
3518 
3519   format %{ %}
3520   interface(CONST_INTER);
3521 %}
3522 
3523 // Integer Immediate: the values 32-63
3524 operand immI_32_63() %{
3525   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3526   match(ConI);
3527   op_cost(0);
3528 
3529   format %{ %}
3530   interface(CONST_INTER);
3531 %}
3532 
3533 // Integer Immediate: the value 255
3534 operand immI_255() %{
3535   predicate( n->get_int() == 255 );
3536   match(ConI);
3537   op_cost(0);
3538 
3539   format %{ %}
3540   interface(CONST_INTER);
3541 %}
3542 
3543 // Long Immediate: the value FF
3544 operand immL_FF() %{
3545   predicate( n->get_long() == 0xFFL );
3546   match(ConL);
3547   op_cost(0);
3548 
3549   format %{ %}
3550   interface(CONST_INTER);
3551 %}
3552 
3553 // Long Immediate: the value FFFF
3554 operand immL_FFFF() %{
3555   predicate( n->get_long() == 0xFFFFL );
3556   match(ConL);
3557   op_cost(0);
3558 
3559   format %{ %}
3560   interface(CONST_INTER);
3561 %}
3562 
3563 // Pointer Immediate: 32 or 64-bit
3564 operand immP() %{
3565   match(ConP);
3566 
3567   op_cost(5);
3568   // formats are generated automatically for constants and base registers
3569   format %{ %}
3570   interface(CONST_INTER);
3571 %}
3572 
3573 operand immP13() %{
3574   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3575   match(ConP);
3576   op_cost(0);
3577 
3578   format %{ %}
3579   interface(CONST_INTER);
3580 %}
3581 
3582 operand immP0() %{
3583   predicate(n->get_ptr() == 0);
3584   match(ConP);
3585   op_cost(0);
3586 
3587   format %{ %}
3588   interface(CONST_INTER);
3589 %}
3590 
3591 operand immP_poll() %{
3592   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3593   match(ConP);
3594 
3595   // formats are generated automatically for constants and base registers
3596   format %{ %}
3597   interface(CONST_INTER);
3598 %}
3599 
3600 // Pointer Immediate
3601 operand immN()
3602 %{
3603   match(ConN);
3604 
3605   op_cost(10);
3606   format %{ %}
3607   interface(CONST_INTER);
3608 %}
3609 
3610 // NULL Pointer Immediate
3611 operand immN0()
3612 %{
3613   predicate(n->get_narrowcon() == 0);
3614   match(ConN);
3615 
3616   op_cost(0);
3617   format %{ %}
3618   interface(CONST_INTER);
3619 %}
3620 
3621 operand immL() %{
3622   match(ConL);
3623   op_cost(40);
3624   // formats are generated automatically for constants and base registers
3625   format %{ %}
3626   interface(CONST_INTER);
3627 %}
3628 
3629 operand immL0() %{
3630   predicate(n->get_long() == 0L);
3631   match(ConL);
3632   op_cost(0);
3633   // formats are generated automatically for constants and base registers
3634   format %{ %}
3635   interface(CONST_INTER);
3636 %}
3637 
3638 // Long Immediate: 13-bit
3639 operand immL13() %{
3640   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3641   match(ConL);
3642   op_cost(0);
3643 
3644   format %{ %}
3645   interface(CONST_INTER);
3646 %}
3647 
3648 // Long Immediate: low 32-bit mask
3649 operand immL_32bits() %{
3650   predicate(n->get_long() == 0xFFFFFFFFL);
3651   match(ConL);
3652   op_cost(0);
3653 
3654   format %{ %}
3655   interface(CONST_INTER);
3656 %}
3657 
3658 // Double Immediate
3659 operand immD() %{
3660   match(ConD);
3661 
3662   op_cost(40);
3663   format %{ %}
3664   interface(CONST_INTER);
3665 %}
3666 
3667 operand immD0() %{
3668 #ifdef _LP64
3669   // on 64-bit architectures this comparision is faster
3670   predicate(jlong_cast(n->getd()) == 0);
3671 #else
3672   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3673 #endif
3674   match(ConD);
3675 
3676   op_cost(0);
3677   format %{ %}
3678   interface(CONST_INTER);
3679 %}
3680 
3681 // Float Immediate
3682 operand immF() %{
3683   match(ConF);
3684 
3685   op_cost(20);
3686   format %{ %}
3687   interface(CONST_INTER);
3688 %}
3689 
3690 // Float Immediate: 0
3691 operand immF0() %{
3692   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3693   match(ConF);
3694 
3695   op_cost(0);
3696   format %{ %}
3697   interface(CONST_INTER);
3698 %}
3699 
3700 // Integer Register Operands
3701 // Integer Register
3702 operand iRegI() %{
3703   constraint(ALLOC_IN_RC(int_reg));
3704   match(RegI);
3705 
3706   match(notemp_iRegI);
3707   match(g1RegI);
3708   match(o0RegI);
3709   match(iRegIsafe);
3710 
3711   format %{ %}
3712   interface(REG_INTER);
3713 %}
3714 
3715 operand notemp_iRegI() %{
3716   constraint(ALLOC_IN_RC(notemp_int_reg));
3717   match(RegI);
3718 
3719   match(o0RegI);
3720 
3721   format %{ %}
3722   interface(REG_INTER);
3723 %}
3724 
3725 operand o0RegI() %{
3726   constraint(ALLOC_IN_RC(o0_regI));
3727   match(iRegI);
3728 
3729   format %{ %}
3730   interface(REG_INTER);
3731 %}
3732 
3733 // Pointer Register
3734 operand iRegP() %{
3735   constraint(ALLOC_IN_RC(ptr_reg));
3736   match(RegP);
3737 
3738   match(lock_ptr_RegP);
3739   match(g1RegP);
3740   match(g2RegP);
3741   match(g3RegP);
3742   match(g4RegP);
3743   match(i0RegP);
3744   match(o0RegP);
3745   match(o1RegP);
3746   match(l7RegP);
3747 
3748   format %{ %}
3749   interface(REG_INTER);
3750 %}
3751 
3752 operand sp_ptr_RegP() %{
3753   constraint(ALLOC_IN_RC(sp_ptr_reg));
3754   match(RegP);
3755   match(iRegP);
3756 
3757   format %{ %}
3758   interface(REG_INTER);
3759 %}
3760 
3761 operand lock_ptr_RegP() %{
3762   constraint(ALLOC_IN_RC(lock_ptr_reg));
3763   match(RegP);
3764   match(i0RegP);
3765   match(o0RegP);
3766   match(o1RegP);
3767   match(l7RegP);
3768 
3769   format %{ %}
3770   interface(REG_INTER);
3771 %}
3772 
3773 operand g1RegP() %{
3774   constraint(ALLOC_IN_RC(g1_regP));
3775   match(iRegP);
3776 
3777   format %{ %}
3778   interface(REG_INTER);
3779 %}
3780 
3781 operand g2RegP() %{
3782   constraint(ALLOC_IN_RC(g2_regP));
3783   match(iRegP);
3784 
3785   format %{ %}
3786   interface(REG_INTER);
3787 %}
3788 
3789 operand g3RegP() %{
3790   constraint(ALLOC_IN_RC(g3_regP));
3791   match(iRegP);
3792 
3793   format %{ %}
3794   interface(REG_INTER);
3795 %}
3796 
3797 operand g1RegI() %{
3798   constraint(ALLOC_IN_RC(g1_regI));
3799   match(iRegI);
3800 
3801   format %{ %}
3802   interface(REG_INTER);
3803 %}
3804 
3805 operand g3RegI() %{
3806   constraint(ALLOC_IN_RC(g3_regI));
3807   match(iRegI);
3808 
3809   format %{ %}
3810   interface(REG_INTER);
3811 %}
3812 
3813 operand g4RegI() %{
3814   constraint(ALLOC_IN_RC(g4_regI));
3815   match(iRegI);
3816 
3817   format %{ %}
3818   interface(REG_INTER);
3819 %}
3820 
3821 operand g4RegP() %{
3822   constraint(ALLOC_IN_RC(g4_regP));
3823   match(iRegP);
3824 
3825   format %{ %}
3826   interface(REG_INTER);
3827 %}
3828 
3829 operand i0RegP() %{
3830   constraint(ALLOC_IN_RC(i0_regP));
3831   match(iRegP);
3832 
3833   format %{ %}
3834   interface(REG_INTER);
3835 %}
3836 
3837 operand o0RegP() %{
3838   constraint(ALLOC_IN_RC(o0_regP));
3839   match(iRegP);
3840 
3841   format %{ %}
3842   interface(REG_INTER);
3843 %}
3844 
3845 operand o1RegP() %{
3846   constraint(ALLOC_IN_RC(o1_regP));
3847   match(iRegP);
3848 
3849   format %{ %}
3850   interface(REG_INTER);
3851 %}
3852 
3853 operand o2RegP() %{
3854   constraint(ALLOC_IN_RC(o2_regP));
3855   match(iRegP);
3856 
3857   format %{ %}
3858   interface(REG_INTER);
3859 %}
3860 
3861 operand o7RegP() %{
3862   constraint(ALLOC_IN_RC(o7_regP));
3863   match(iRegP);
3864 
3865   format %{ %}
3866   interface(REG_INTER);
3867 %}
3868 
3869 operand l7RegP() %{
3870   constraint(ALLOC_IN_RC(l7_regP));
3871   match(iRegP);
3872 
3873   format %{ %}
3874   interface(REG_INTER);
3875 %}
3876 
3877 operand o7RegI() %{
3878   constraint(ALLOC_IN_RC(o7_regI));
3879   match(iRegI);
3880 
3881   format %{ %}
3882   interface(REG_INTER);
3883 %}
3884 
3885 operand iRegN() %{
3886   constraint(ALLOC_IN_RC(int_reg));
3887   match(RegN);
3888 
3889   format %{ %}
3890   interface(REG_INTER);
3891 %}
3892 
3893 // Long Register
3894 operand iRegL() %{
3895   constraint(ALLOC_IN_RC(long_reg));
3896   match(RegL);
3897 
3898   format %{ %}
3899   interface(REG_INTER);
3900 %}
3901 
3902 operand o2RegL() %{
3903   constraint(ALLOC_IN_RC(o2_regL));
3904   match(iRegL);
3905 
3906   format %{ %}
3907   interface(REG_INTER);
3908 %}
3909 
3910 operand o7RegL() %{
3911   constraint(ALLOC_IN_RC(o7_regL));
3912   match(iRegL);
3913 
3914   format %{ %}
3915   interface(REG_INTER);
3916 %}
3917 
3918 operand g1RegL() %{
3919   constraint(ALLOC_IN_RC(g1_regL));
3920   match(iRegL);
3921 
3922   format %{ %}
3923   interface(REG_INTER);
3924 %}
3925 
3926 operand g3RegL() %{
3927   constraint(ALLOC_IN_RC(g3_regL));
3928   match(iRegL);
3929 
3930   format %{ %}
3931   interface(REG_INTER);
3932 %}
3933 
3934 // Int Register safe
3935 // This is 64bit safe
3936 operand iRegIsafe() %{
3937   constraint(ALLOC_IN_RC(long_reg));
3938 
3939   match(iRegI);
3940 
3941   format %{ %}
3942   interface(REG_INTER);
3943 %}
3944 
3945 // Condition Code Flag Register
3946 operand flagsReg() %{
3947   constraint(ALLOC_IN_RC(int_flags));
3948   match(RegFlags);
3949 
3950   format %{ "ccr" %} // both ICC and XCC
3951   interface(REG_INTER);
3952 %}
3953 
3954 // Condition Code Register, unsigned comparisons.
3955 operand flagsRegU() %{
3956   constraint(ALLOC_IN_RC(int_flags));
3957   match(RegFlags);
3958 
3959   format %{ "icc_U" %}
3960   interface(REG_INTER);
3961 %}
3962 
3963 // Condition Code Register, pointer comparisons.
3964 operand flagsRegP() %{
3965   constraint(ALLOC_IN_RC(int_flags));
3966   match(RegFlags);
3967 
3968 #ifdef _LP64
3969   format %{ "xcc_P" %}
3970 #else
3971   format %{ "icc_P" %}
3972 #endif
3973   interface(REG_INTER);
3974 %}
3975 
3976 // Condition Code Register, long comparisons.
3977 operand flagsRegL() %{
3978   constraint(ALLOC_IN_RC(int_flags));
3979   match(RegFlags);
3980 
3981   format %{ "xcc_L" %}
3982   interface(REG_INTER);
3983 %}
3984 
3985 // Condition Code Register, floating comparisons, unordered same as "less".
3986 operand flagsRegF() %{
3987   constraint(ALLOC_IN_RC(float_flags));
3988   match(RegFlags);
3989   match(flagsRegF0);
3990 
3991   format %{ %}
3992   interface(REG_INTER);
3993 %}
3994 
3995 operand flagsRegF0() %{
3996   constraint(ALLOC_IN_RC(float_flag0));
3997   match(RegFlags);
3998 
3999   format %{ %}
4000   interface(REG_INTER);
4001 %}
4002 
4003 
4004 // Condition Code Flag Register used by long compare
4005 operand flagsReg_long_LTGE() %{
4006   constraint(ALLOC_IN_RC(int_flags));
4007   match(RegFlags);
4008   format %{ "icc_LTGE" %}
4009   interface(REG_INTER);
4010 %}
4011 operand flagsReg_long_EQNE() %{
4012   constraint(ALLOC_IN_RC(int_flags));
4013   match(RegFlags);
4014   format %{ "icc_EQNE" %}
4015   interface(REG_INTER);
4016 %}
4017 operand flagsReg_long_LEGT() %{
4018   constraint(ALLOC_IN_RC(int_flags));
4019   match(RegFlags);
4020   format %{ "icc_LEGT" %}
4021   interface(REG_INTER);
4022 %}
4023 
4024 
4025 operand regD() %{
4026   constraint(ALLOC_IN_RC(dflt_reg));
4027   match(RegD);
4028 
4029   match(regD_low);
4030 
4031   format %{ %}
4032   interface(REG_INTER);
4033 %}
4034 
4035 operand regF() %{
4036   constraint(ALLOC_IN_RC(sflt_reg));
4037   match(RegF);
4038 
4039   format %{ %}
4040   interface(REG_INTER);
4041 %}
4042 
4043 operand regD_low() %{
4044   constraint(ALLOC_IN_RC(dflt_low_reg));
4045   match(regD);
4046 
4047   format %{ %}
4048   interface(REG_INTER);
4049 %}
4050 
4051 // Special Registers
4052 
4053 // Method Register
4054 operand inline_cache_regP(iRegP reg) %{
4055   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4056   match(reg);
4057   format %{ %}
4058   interface(REG_INTER);
4059 %}
4060 
4061 operand interpreter_method_oop_regP(iRegP reg) %{
4062   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4063   match(reg);
4064   format %{ %}
4065   interface(REG_INTER);
4066 %}
4067 
4068 
4069 //----------Complex Operands---------------------------------------------------
4070 // Indirect Memory Reference
4071 operand indirect(sp_ptr_RegP reg) %{
4072   constraint(ALLOC_IN_RC(sp_ptr_reg));
4073   match(reg);
4074 
4075   op_cost(100);
4076   format %{ "[$reg]" %}
4077   interface(MEMORY_INTER) %{
4078     base($reg);
4079     index(0x0);
4080     scale(0x0);
4081     disp(0x0);
4082   %}
4083 %}
4084 
4085 // Indirect with Offset
4086 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4087   constraint(ALLOC_IN_RC(sp_ptr_reg));
4088   match(AddP reg offset);
4089 
4090   op_cost(100);
4091   format %{ "[$reg + $offset]" %}
4092   interface(MEMORY_INTER) %{
4093     base($reg);
4094     index(0x0);
4095     scale(0x0);
4096     disp($offset);
4097   %}
4098 %}
4099 
4100 // Note:  Intel has a swapped version also, like this:
4101 //operand indOffsetX(iRegI reg, immP offset) %{
4102 //  constraint(ALLOC_IN_RC(int_reg));
4103 //  match(AddP offset reg);
4104 //
4105 //  op_cost(100);
4106 //  format %{ "[$reg + $offset]" %}
4107 //  interface(MEMORY_INTER) %{
4108 //    base($reg);
4109 //    index(0x0);
4110 //    scale(0x0);
4111 //    disp($offset);
4112 //  %}
4113 //%}
4114 //// However, it doesn't make sense for SPARC, since
4115 // we have no particularly good way to embed oops in
4116 // single instructions.
4117 
4118 // Indirect with Register Index
4119 operand indIndex(iRegP addr, iRegX index) %{
4120   constraint(ALLOC_IN_RC(ptr_reg));
4121   match(AddP addr index);
4122 
4123   op_cost(100);
4124   format %{ "[$addr + $index]" %}
4125   interface(MEMORY_INTER) %{
4126     base($addr);
4127     index($index);
4128     scale(0x0);
4129     disp(0x0);
4130   %}
4131 %}
4132 
4133 //----------Special Memory Operands--------------------------------------------
4134 // Stack Slot Operand - This operand is used for loading and storing temporary
4135 //                      values on the stack where a match requires a value to
4136 //                      flow through memory.
4137 operand stackSlotI(sRegI reg) %{
4138   constraint(ALLOC_IN_RC(stack_slots));
4139   op_cost(100);
4140   //match(RegI);
4141   format %{ "[$reg]" %}
4142   interface(MEMORY_INTER) %{
4143     base(0xE);   // R_SP
4144     index(0x0);
4145     scale(0x0);
4146     disp($reg);  // Stack Offset
4147   %}
4148 %}
4149 
4150 operand stackSlotP(sRegP reg) %{
4151   constraint(ALLOC_IN_RC(stack_slots));
4152   op_cost(100);
4153   //match(RegP);
4154   format %{ "[$reg]" %}
4155   interface(MEMORY_INTER) %{
4156     base(0xE);   // R_SP
4157     index(0x0);
4158     scale(0x0);
4159     disp($reg);  // Stack Offset
4160   %}
4161 %}
4162 
4163 operand stackSlotF(sRegF reg) %{
4164   constraint(ALLOC_IN_RC(stack_slots));
4165   op_cost(100);
4166   //match(RegF);
4167   format %{ "[$reg]" %}
4168   interface(MEMORY_INTER) %{
4169     base(0xE);   // R_SP
4170     index(0x0);
4171     scale(0x0);
4172     disp($reg);  // Stack Offset
4173   %}
4174 %}
4175 operand stackSlotD(sRegD reg) %{
4176   constraint(ALLOC_IN_RC(stack_slots));
4177   op_cost(100);
4178   //match(RegD);
4179   format %{ "[$reg]" %}
4180   interface(MEMORY_INTER) %{
4181     base(0xE);   // R_SP
4182     index(0x0);
4183     scale(0x0);
4184     disp($reg);  // Stack Offset
4185   %}
4186 %}
4187 operand stackSlotL(sRegL reg) %{
4188   constraint(ALLOC_IN_RC(stack_slots));
4189   op_cost(100);
4190   //match(RegL);
4191   format %{ "[$reg]" %}
4192   interface(MEMORY_INTER) %{
4193     base(0xE);   // R_SP
4194     index(0x0);
4195     scale(0x0);
4196     disp($reg);  // Stack Offset
4197   %}
4198 %}
4199 
4200 // Operands for expressing Control Flow
4201 // NOTE:  Label is a predefined operand which should not be redefined in
4202 //        the AD file.  It is generically handled within the ADLC.
4203 
4204 //----------Conditional Branch Operands----------------------------------------
4205 // Comparison Op  - This is the operation of the comparison, and is limited to
4206 //                  the following set of codes:
4207 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4208 //
4209 // Other attributes of the comparison, such as unsignedness, are specified
4210 // by the comparison instruction that sets a condition code flags register.
4211 // That result is represented by a flags operand whose subtype is appropriate
4212 // to the unsignedness (etc.) of the comparison.
4213 //
4214 // Later, the instruction which matches both the Comparison Op (a Bool) and
4215 // the flags (produced by the Cmp) specifies the coding of the comparison op
4216 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4217 
4218 operand cmpOp() %{
4219   match(Bool);
4220 
4221   format %{ "" %}
4222   interface(COND_INTER) %{
4223     equal(0x1);
4224     not_equal(0x9);
4225     less(0x3);
4226     greater_equal(0xB);
4227     less_equal(0x2);
4228     greater(0xA);
4229   %}
4230 %}
4231 
4232 // Comparison Op, unsigned
4233 operand cmpOpU() %{
4234   match(Bool);
4235 
4236   format %{ "u" %}
4237   interface(COND_INTER) %{
4238     equal(0x1);
4239     not_equal(0x9);
4240     less(0x5);
4241     greater_equal(0xD);
4242     less_equal(0x4);
4243     greater(0xC);
4244   %}
4245 %}
4246 
4247 // Comparison Op, pointer (same as unsigned)
4248 operand cmpOpP() %{
4249   match(Bool);
4250 
4251   format %{ "p" %}
4252   interface(COND_INTER) %{
4253     equal(0x1);
4254     not_equal(0x9);
4255     less(0x5);
4256     greater_equal(0xD);
4257     less_equal(0x4);
4258     greater(0xC);
4259   %}
4260 %}
4261 
4262 // Comparison Op, branch-register encoding
4263 operand cmpOp_reg() %{
4264   match(Bool);
4265 
4266   format %{ "" %}
4267   interface(COND_INTER) %{
4268     equal        (0x1);
4269     not_equal    (0x5);
4270     less         (0x3);
4271     greater_equal(0x7);
4272     less_equal   (0x2);
4273     greater      (0x6);
4274   %}
4275 %}
4276 
4277 // Comparison Code, floating, unordered same as less
4278 operand cmpOpF() %{
4279   match(Bool);
4280 
4281   format %{ "fl" %}
4282   interface(COND_INTER) %{
4283     equal(0x9);
4284     not_equal(0x1);
4285     less(0x3);
4286     greater_equal(0xB);
4287     less_equal(0xE);
4288     greater(0x6);
4289   %}
4290 %}
4291 
4292 // Used by long compare
4293 operand cmpOp_commute() %{
4294   match(Bool);
4295 
4296   format %{ "" %}
4297   interface(COND_INTER) %{
4298     equal(0x1);
4299     not_equal(0x9);
4300     less(0xA);
4301     greater_equal(0x2);
4302     less_equal(0xB);
4303     greater(0x3);
4304   %}
4305 %}
4306 
4307 //----------OPERAND CLASSES----------------------------------------------------
4308 // Operand Classes are groups of operands that are used to simplify
4309 // instruction definitions by not requiring the AD writer to specify separate
4310 // instructions for every form of operand when the instruction accepts
4311 // multiple operand types with the same basic encoding and format.  The classic
4312 // case of this is memory operands.
4313 // Indirect is not included since its use is limited to Compare & Swap
4314 opclass memory( indirect, indOffset13, indIndex );
4315 
4316 //----------PIPELINE-----------------------------------------------------------
4317 pipeline %{
4318 
4319 //----------ATTRIBUTES---------------------------------------------------------
4320 attributes %{
4321   fixed_size_instructions;           // Fixed size instructions
4322   branch_has_delay_slot;             // Branch has delay slot following
4323   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4324   instruction_unit_size = 4;         // An instruction is 4 bytes long
4325   instruction_fetch_unit_size = 16;  // The processor fetches one line
4326   instruction_fetch_units = 1;       // of 16 bytes
4327 
4328   // List of nop instructions
4329   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4330 %}
4331 
4332 //----------RESOURCES----------------------------------------------------------
4333 // Resources are the functional units available to the machine
4334 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4335 
4336 //----------PIPELINE DESCRIPTION-----------------------------------------------
4337 // Pipeline Description specifies the stages in the machine's pipeline
4338 
4339 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4340 
4341 //----------PIPELINE CLASSES---------------------------------------------------
4342 // Pipeline Classes describe the stages in which input and output are
4343 // referenced by the hardware pipeline.
4344 
4345 // Integer ALU reg-reg operation
4346 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4347     single_instruction;
4348     dst   : E(write);
4349     src1  : R(read);
4350     src2  : R(read);
4351     IALU  : R;
4352 %}
4353 
4354 // Integer ALU reg-reg long operation
4355 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4356     instruction_count(2);
4357     dst   : E(write);
4358     src1  : R(read);
4359     src2  : R(read);
4360     IALU  : R;
4361     IALU  : R;
4362 %}
4363 
4364 // Integer ALU reg-reg long dependent operation
4365 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4366     instruction_count(1); multiple_bundles;
4367     dst   : E(write);
4368     src1  : R(read);
4369     src2  : R(read);
4370     cr    : E(write);
4371     IALU  : R(2);
4372 %}
4373 
4374 // Integer ALU reg-imm operaion
4375 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4376     single_instruction;
4377     dst   : E(write);
4378     src1  : R(read);
4379     IALU  : R;
4380 %}
4381 
4382 // Integer ALU reg-reg operation with condition code
4383 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4384     single_instruction;
4385     dst   : E(write);
4386     cr    : E(write);
4387     src1  : R(read);
4388     src2  : R(read);
4389     IALU  : R;
4390 %}
4391 
4392 // Integer ALU reg-imm operation with condition code
4393 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4394     single_instruction;
4395     dst   : E(write);
4396     cr    : E(write);
4397     src1  : R(read);
4398     IALU  : R;
4399 %}
4400 
4401 // Integer ALU zero-reg operation
4402 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4403     single_instruction;
4404     dst   : E(write);
4405     src2  : R(read);
4406     IALU  : R;
4407 %}
4408 
4409 // Integer ALU zero-reg operation with condition code only
4410 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4411     single_instruction;
4412     cr    : E(write);
4413     src   : R(read);
4414     IALU  : R;
4415 %}
4416 
4417 // Integer ALU reg-reg operation with condition code only
4418 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4419     single_instruction;
4420     cr    : E(write);
4421     src1  : R(read);
4422     src2  : R(read);
4423     IALU  : R;
4424 %}
4425 
4426 // Integer ALU reg-imm operation with condition code only
4427 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4428     single_instruction;
4429     cr    : E(write);
4430     src1  : R(read);
4431     IALU  : R;
4432 %}
4433 
4434 // Integer ALU reg-reg-zero operation with condition code only
4435 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4436     single_instruction;
4437     cr    : E(write);
4438     src1  : R(read);
4439     src2  : R(read);
4440     IALU  : R;
4441 %}
4442 
4443 // Integer ALU reg-imm-zero operation with condition code only
4444 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4445     single_instruction;
4446     cr    : E(write);
4447     src1  : R(read);
4448     IALU  : R;
4449 %}
4450 
4451 // Integer ALU reg-reg operation with condition code, src1 modified
4452 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4453     single_instruction;
4454     cr    : E(write);
4455     src1  : E(write);
4456     src1  : R(read);
4457     src2  : R(read);
4458     IALU  : R;
4459 %}
4460 
4461 // Integer ALU reg-imm operation with condition code, src1 modified
4462 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4463     single_instruction;
4464     cr    : E(write);
4465     src1  : E(write);
4466     src1  : R(read);
4467     IALU  : R;
4468 %}
4469 
4470 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4471     multiple_bundles;
4472     dst   : E(write)+4;
4473     cr    : E(write);
4474     src1  : R(read);
4475     src2  : R(read);
4476     IALU  : R(3);
4477     BR    : R(2);
4478 %}
4479 
4480 // Integer ALU operation
4481 pipe_class ialu_none(iRegI dst) %{
4482     single_instruction;
4483     dst   : E(write);
4484     IALU  : R;
4485 %}
4486 
4487 // Integer ALU reg operation
4488 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4489     single_instruction; may_have_no_code;
4490     dst   : E(write);
4491     src   : R(read);
4492     IALU  : R;
4493 %}
4494 
4495 // Integer ALU reg conditional operation
4496 // This instruction has a 1 cycle stall, and cannot execute
4497 // in the same cycle as the instruction setting the condition
4498 // code. We kludge this by pretending to read the condition code
4499 // 1 cycle earlier, and by marking the functional units as busy
4500 // for 2 cycles with the result available 1 cycle later than
4501 // is really the case.
4502 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4503     single_instruction;
4504     op2_out : C(write);
4505     op1     : R(read);
4506     cr      : R(read);       // This is really E, with a 1 cycle stall
4507     BR      : R(2);
4508     MS      : R(2);
4509 %}
4510 
4511 #ifdef _LP64
4512 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4513     instruction_count(1); multiple_bundles;
4514     dst     : C(write)+1;
4515     src     : R(read)+1;
4516     IALU    : R(1);
4517     BR      : E(2);
4518     MS      : E(2);
4519 %}
4520 #endif
4521 
4522 // Integer ALU reg operation
4523 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4524     single_instruction; may_have_no_code;
4525     dst   : E(write);
4526     src   : R(read);
4527     IALU  : R;
4528 %}
4529 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4530     single_instruction; may_have_no_code;
4531     dst   : E(write);
4532     src   : R(read);
4533     IALU  : R;
4534 %}
4535 
4536 // Two integer ALU reg operations
4537 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4538     instruction_count(2);
4539     dst   : E(write);
4540     src   : R(read);
4541     A0    : R;
4542     A1    : R;
4543 %}
4544 
4545 // Two integer ALU reg operations
4546 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4547     instruction_count(2); may_have_no_code;
4548     dst   : E(write);
4549     src   : R(read);
4550     A0    : R;
4551     A1    : R;
4552 %}
4553 
4554 // Integer ALU imm operation
4555 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4556     single_instruction;
4557     dst   : E(write);
4558     IALU  : R;
4559 %}
4560 
4561 // Integer ALU reg-reg with carry operation
4562 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4563     single_instruction;
4564     dst   : E(write);
4565     src1  : R(read);
4566     src2  : R(read);
4567     IALU  : R;
4568 %}
4569 
4570 // Integer ALU cc operation
4571 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4572     single_instruction;
4573     dst   : E(write);
4574     cc    : R(read);
4575     IALU  : R;
4576 %}
4577 
4578 // Integer ALU cc / second IALU operation
4579 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4580     instruction_count(1); multiple_bundles;
4581     dst   : E(write)+1;
4582     src   : R(read);
4583     IALU  : R;
4584 %}
4585 
4586 // Integer ALU cc / second IALU operation
4587 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4588     instruction_count(1); multiple_bundles;
4589     dst   : E(write)+1;
4590     p     : R(read);
4591     q     : R(read);
4592     IALU  : R;
4593 %}
4594 
4595 // Integer ALU hi-lo-reg operation
4596 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4597     instruction_count(1); multiple_bundles;
4598     dst   : E(write)+1;
4599     IALU  : R(2);
4600 %}
4601 
4602 // Float ALU hi-lo-reg operation (with temp)
4603 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4604     instruction_count(1); multiple_bundles;
4605     dst   : E(write)+1;
4606     IALU  : R(2);
4607 %}
4608 
4609 // Long Constant
4610 pipe_class loadConL( iRegL dst, immL src ) %{
4611     instruction_count(2); multiple_bundles;
4612     dst   : E(write)+1;
4613     IALU  : R(2);
4614     IALU  : R(2);
4615 %}
4616 
4617 // Pointer Constant
4618 pipe_class loadConP( iRegP dst, immP src ) %{
4619     instruction_count(0); multiple_bundles;
4620     fixed_latency(6);
4621 %}
4622 
4623 // Polling Address
4624 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4625 #ifdef _LP64
4626     instruction_count(0); multiple_bundles;
4627     fixed_latency(6);
4628 #else
4629     dst   : E(write);
4630     IALU  : R;
4631 #endif
4632 %}
4633 
4634 // Long Constant small
4635 pipe_class loadConLlo( iRegL dst, immL src ) %{
4636     instruction_count(2);
4637     dst   : E(write);
4638     IALU  : R;
4639     IALU  : R;
4640 %}
4641 
4642 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4643 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4644     instruction_count(1); multiple_bundles;
4645     src   : R(read);
4646     dst   : M(write)+1;
4647     IALU  : R;
4648     MS    : E;
4649 %}
4650 
4651 // Integer ALU nop operation
4652 pipe_class ialu_nop() %{
4653     single_instruction;
4654     IALU  : R;
4655 %}
4656 
4657 // Integer ALU nop operation
4658 pipe_class ialu_nop_A0() %{
4659     single_instruction;
4660     A0    : R;
4661 %}
4662 
4663 // Integer ALU nop operation
4664 pipe_class ialu_nop_A1() %{
4665     single_instruction;
4666     A1    : R;
4667 %}
4668 
4669 // Integer Multiply reg-reg operation
4670 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4671     single_instruction;
4672     dst   : E(write);
4673     src1  : R(read);
4674     src2  : R(read);
4675     MS    : R(5);
4676 %}
4677 
4678 // Integer Multiply reg-imm operation
4679 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4680     single_instruction;
4681     dst   : E(write);
4682     src1  : R(read);
4683     MS    : R(5);
4684 %}
4685 
4686 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4687     single_instruction;
4688     dst   : E(write)+4;
4689     src1  : R(read);
4690     src2  : R(read);
4691     MS    : R(6);
4692 %}
4693 
4694 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4695     single_instruction;
4696     dst   : E(write)+4;
4697     src1  : R(read);
4698     MS    : R(6);
4699 %}
4700 
4701 // Integer Divide reg-reg
4702 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4703     instruction_count(1); multiple_bundles;
4704     dst   : E(write);
4705     temp  : E(write);
4706     src1  : R(read);
4707     src2  : R(read);
4708     temp  : R(read);
4709     MS    : R(38);
4710 %}
4711 
4712 // Integer Divide reg-imm
4713 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4714     instruction_count(1); multiple_bundles;
4715     dst   : E(write);
4716     temp  : E(write);
4717     src1  : R(read);
4718     temp  : R(read);
4719     MS    : R(38);
4720 %}
4721 
4722 // Long Divide
4723 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4724     dst  : E(write)+71;
4725     src1 : R(read);
4726     src2 : R(read)+1;
4727     MS   : R(70);
4728 %}
4729 
4730 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4731     dst  : E(write)+71;
4732     src1 : R(read);
4733     MS   : R(70);
4734 %}
4735 
4736 // Floating Point Add Float
4737 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4738     single_instruction;
4739     dst   : X(write);
4740     src1  : E(read);
4741     src2  : E(read);
4742     FA    : R;
4743 %}
4744 
4745 // Floating Point Add Double
4746 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4747     single_instruction;
4748     dst   : X(write);
4749     src1  : E(read);
4750     src2  : E(read);
4751     FA    : R;
4752 %}
4753 
4754 // Floating Point Conditional Move based on integer flags
4755 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4756     single_instruction;
4757     dst   : X(write);
4758     src   : E(read);
4759     cr    : R(read);
4760     FA    : R(2);
4761     BR    : R(2);
4762 %}
4763 
4764 // Floating Point Conditional Move based on integer flags
4765 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4766     single_instruction;
4767     dst   : X(write);
4768     src   : E(read);
4769     cr    : R(read);
4770     FA    : R(2);
4771     BR    : R(2);
4772 %}
4773 
4774 // Floating Point Multiply Float
4775 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4776     single_instruction;
4777     dst   : X(write);
4778     src1  : E(read);
4779     src2  : E(read);
4780     FM    : R;
4781 %}
4782 
4783 // Floating Point Multiply Double
4784 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4785     single_instruction;
4786     dst   : X(write);
4787     src1  : E(read);
4788     src2  : E(read);
4789     FM    : R;
4790 %}
4791 
4792 // Floating Point Divide Float
4793 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4794     single_instruction;
4795     dst   : X(write);
4796     src1  : E(read);
4797     src2  : E(read);
4798     FM    : R;
4799     FDIV  : C(14);
4800 %}
4801 
4802 // Floating Point Divide Double
4803 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4804     single_instruction;
4805     dst   : X(write);
4806     src1  : E(read);
4807     src2  : E(read);
4808     FM    : R;
4809     FDIV  : C(17);
4810 %}
4811 
4812 // Floating Point Move/Negate/Abs Float
4813 pipe_class faddF_reg(regF dst, regF src) %{
4814     single_instruction;
4815     dst   : W(write);
4816     src   : E(read);
4817     FA    : R(1);
4818 %}
4819 
4820 // Floating Point Move/Negate/Abs Double
4821 pipe_class faddD_reg(regD dst, regD src) %{
4822     single_instruction;
4823     dst   : W(write);
4824     src   : E(read);
4825     FA    : R;
4826 %}
4827 
4828 // Floating Point Convert F->D
4829 pipe_class fcvtF2D(regD dst, regF src) %{
4830     single_instruction;
4831     dst   : X(write);
4832     src   : E(read);
4833     FA    : R;
4834 %}
4835 
4836 // Floating Point Convert I->D
4837 pipe_class fcvtI2D(regD dst, regF src) %{
4838     single_instruction;
4839     dst   : X(write);
4840     src   : E(read);
4841     FA    : R;
4842 %}
4843 
4844 // Floating Point Convert LHi->D
4845 pipe_class fcvtLHi2D(regD dst, regD src) %{
4846     single_instruction;
4847     dst   : X(write);
4848     src   : E(read);
4849     FA    : R;
4850 %}
4851 
4852 // Floating Point Convert L->D
4853 pipe_class fcvtL2D(regD dst, regF src) %{
4854     single_instruction;
4855     dst   : X(write);
4856     src   : E(read);
4857     FA    : R;
4858 %}
4859 
4860 // Floating Point Convert L->F
4861 pipe_class fcvtL2F(regD dst, regF src) %{
4862     single_instruction;
4863     dst   : X(write);
4864     src   : E(read);
4865     FA    : R;
4866 %}
4867 
4868 // Floating Point Convert D->F
4869 pipe_class fcvtD2F(regD dst, regF src) %{
4870     single_instruction;
4871     dst   : X(write);
4872     src   : E(read);
4873     FA    : R;
4874 %}
4875 
4876 // Floating Point Convert I->L
4877 pipe_class fcvtI2L(regD dst, regF src) %{
4878     single_instruction;
4879     dst   : X(write);
4880     src   : E(read);
4881     FA    : R;
4882 %}
4883 
4884 // Floating Point Convert D->F
4885 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4886     instruction_count(1); multiple_bundles;
4887     dst   : X(write)+6;
4888     src   : E(read);
4889     FA    : R;
4890 %}
4891 
4892 // Floating Point Convert D->L
4893 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4894     instruction_count(1); multiple_bundles;
4895     dst   : X(write)+6;
4896     src   : E(read);
4897     FA    : R;
4898 %}
4899 
4900 // Floating Point Convert F->I
4901 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4902     instruction_count(1); multiple_bundles;
4903     dst   : X(write)+6;
4904     src   : E(read);
4905     FA    : R;
4906 %}
4907 
4908 // Floating Point Convert F->L
4909 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4910     instruction_count(1); multiple_bundles;
4911     dst   : X(write)+6;
4912     src   : E(read);
4913     FA    : R;
4914 %}
4915 
4916 // Floating Point Convert I->F
4917 pipe_class fcvtI2F(regF dst, regF src) %{
4918     single_instruction;
4919     dst   : X(write);
4920     src   : E(read);
4921     FA    : R;
4922 %}
4923 
4924 // Floating Point Compare
4925 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4926     single_instruction;
4927     cr    : X(write);
4928     src1  : E(read);
4929     src2  : E(read);
4930     FA    : R;
4931 %}
4932 
4933 // Floating Point Compare
4934 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4935     single_instruction;
4936     cr    : X(write);
4937     src1  : E(read);
4938     src2  : E(read);
4939     FA    : R;
4940 %}
4941 
4942 // Floating Add Nop
4943 pipe_class fadd_nop() %{
4944     single_instruction;
4945     FA  : R;
4946 %}
4947 
4948 // Integer Store to Memory
4949 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4950     single_instruction;
4951     mem   : R(read);
4952     src   : C(read);
4953     MS    : R;
4954 %}
4955 
4956 // Integer Store to Memory
4957 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4958     single_instruction;
4959     mem   : R(read);
4960     src   : C(read);
4961     MS    : R;
4962 %}
4963 
4964 // Integer Store Zero to Memory
4965 pipe_class istore_mem_zero(memory mem, immI0 src) %{
4966     single_instruction;
4967     mem   : R(read);
4968     MS    : R;
4969 %}
4970 
4971 // Special Stack Slot Store
4972 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4973     single_instruction;
4974     stkSlot : R(read);
4975     src     : C(read);
4976     MS      : R;
4977 %}
4978 
4979 // Special Stack Slot Store
4980 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
4981     instruction_count(2); multiple_bundles;
4982     stkSlot : R(read);
4983     src     : C(read);
4984     MS      : R(2);
4985 %}
4986 
4987 // Float Store
4988 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
4989     single_instruction;
4990     mem : R(read);
4991     src : C(read);
4992     MS  : R;
4993 %}
4994 
4995 // Float Store
4996 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
4997     single_instruction;
4998     mem : R(read);
4999     MS  : R;
5000 %}
5001 
5002 // Double Store
5003 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5004     instruction_count(1);
5005     mem : R(read);
5006     src : C(read);
5007     MS  : R;
5008 %}
5009 
5010 // Double Store
5011 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5012     single_instruction;
5013     mem : R(read);
5014     MS  : R;
5015 %}
5016 
5017 // Special Stack Slot Float Store
5018 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5019     single_instruction;
5020     stkSlot : R(read);
5021     src     : C(read);
5022     MS      : R;
5023 %}
5024 
5025 // Special Stack Slot Double Store
5026 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5027     single_instruction;
5028     stkSlot : R(read);
5029     src     : C(read);
5030     MS      : R;
5031 %}
5032 
5033 // Integer Load (when sign bit propagation not needed)
5034 pipe_class iload_mem(iRegI dst, memory mem) %{
5035     single_instruction;
5036     mem : R(read);
5037     dst : C(write);
5038     MS  : R;
5039 %}
5040 
5041 // Integer Load from stack operand
5042 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5043     single_instruction;
5044     mem : R(read);
5045     dst : C(write);
5046     MS  : R;
5047 %}
5048 
5049 // Integer Load (when sign bit propagation or masking is needed)
5050 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5051     single_instruction;
5052     mem : R(read);
5053     dst : M(write);
5054     MS  : R;
5055 %}
5056 
5057 // Float Load
5058 pipe_class floadF_mem(regF dst, memory mem) %{
5059     single_instruction;
5060     mem : R(read);
5061     dst : M(write);
5062     MS  : R;
5063 %}
5064 
5065 // Float Load
5066 pipe_class floadD_mem(regD dst, memory mem) %{
5067     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5068     mem : R(read);
5069     dst : M(write);
5070     MS  : R;
5071 %}
5072 
5073 // Float Load
5074 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5075     single_instruction;
5076     stkSlot : R(read);
5077     dst : M(write);
5078     MS  : R;
5079 %}
5080 
5081 // Float Load
5082 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5083     single_instruction;
5084     stkSlot : R(read);
5085     dst : M(write);
5086     MS  : R;
5087 %}
5088 
5089 // Memory Nop
5090 pipe_class mem_nop() %{
5091     single_instruction;
5092     MS  : R;
5093 %}
5094 
5095 pipe_class sethi(iRegP dst, immI src) %{
5096     single_instruction;
5097     dst  : E(write);
5098     IALU : R;
5099 %}
5100 
5101 pipe_class loadPollP(iRegP poll) %{
5102     single_instruction;
5103     poll : R(read);
5104     MS   : R;
5105 %}
5106 
5107 pipe_class br(Universe br, label labl) %{
5108     single_instruction_with_delay_slot;
5109     BR  : R;
5110 %}
5111 
5112 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5113     single_instruction_with_delay_slot;
5114     cr    : E(read);
5115     BR    : R;
5116 %}
5117 
5118 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5119     single_instruction_with_delay_slot;
5120     op1 : E(read);
5121     BR  : R;
5122     MS  : R;
5123 %}
5124 
5125 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5126     single_instruction_with_delay_slot;
5127     cr    : E(read);
5128     BR    : R;
5129 %}
5130 
5131 pipe_class br_nop() %{
5132     single_instruction;
5133     BR  : R;
5134 %}
5135 
5136 pipe_class simple_call(method meth) %{
5137     instruction_count(2); multiple_bundles; force_serialization;
5138     fixed_latency(100);
5139     BR  : R(1);
5140     MS  : R(1);
5141     A0  : R(1);
5142 %}
5143 
5144 pipe_class compiled_call(method meth) %{
5145     instruction_count(1); multiple_bundles; force_serialization;
5146     fixed_latency(100);
5147     MS  : R(1);
5148 %}
5149 
5150 pipe_class call(method meth) %{
5151     instruction_count(0); multiple_bundles; force_serialization;
5152     fixed_latency(100);
5153 %}
5154 
5155 pipe_class tail_call(Universe ignore, label labl) %{
5156     single_instruction; has_delay_slot;
5157     fixed_latency(100);
5158     BR  : R(1);
5159     MS  : R(1);
5160 %}
5161 
5162 pipe_class ret(Universe ignore) %{
5163     single_instruction; has_delay_slot;
5164     BR  : R(1);
5165     MS  : R(1);
5166 %}
5167 
5168 pipe_class ret_poll(g3RegP poll) %{
5169     instruction_count(3); has_delay_slot;
5170     poll : E(read);
5171     MS   : R;
5172 %}
5173 
5174 // The real do-nothing guy
5175 pipe_class empty( ) %{
5176     instruction_count(0);
5177 %}
5178 
5179 pipe_class long_memory_op() %{
5180     instruction_count(0); multiple_bundles; force_serialization;
5181     fixed_latency(25);
5182     MS  : R(1);
5183 %}
5184 
5185 // Check-cast
5186 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5187     array : R(read);
5188     match  : R(read);
5189     IALU   : R(2);
5190     BR     : R(2);
5191     MS     : R;
5192 %}
5193 
5194 // Convert FPU flags into +1,0,-1
5195 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5196     src1  : E(read);
5197     src2  : E(read);
5198     dst   : E(write);
5199     FA    : R;
5200     MS    : R(2);
5201     BR    : R(2);
5202 %}
5203 
5204 // Compare for p < q, and conditionally add y
5205 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5206     p     : E(read);
5207     q     : E(read);
5208     y     : E(read);
5209     IALU  : R(3)
5210 %}
5211 
5212 // Perform a compare, then move conditionally in a branch delay slot.
5213 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5214     src2   : E(read);
5215     srcdst : E(read);
5216     IALU   : R;
5217     BR     : R;
5218 %}
5219 
5220 // Define the class for the Nop node
5221 define %{
5222    MachNop = ialu_nop;
5223 %}
5224 
5225 %}
5226 
5227 //----------INSTRUCTIONS-------------------------------------------------------
5228 
5229 //------------Special Stack Slot instructions - no match rules-----------------
5230 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5231   // No match rule to avoid chain rule match.
5232   effect(DEF dst, USE src);
5233   ins_cost(MEMORY_REF_COST);
5234   size(4);
5235   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5236   opcode(Assembler::ldf_op3);
5237   ins_encode(simple_form3_mem_reg(src, dst));
5238   ins_pipe(floadF_stk);
5239 %}
5240 
5241 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5242   // No match rule to avoid chain rule match.
5243   effect(DEF dst, USE src);
5244   ins_cost(MEMORY_REF_COST);
5245   size(4);
5246   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5247   opcode(Assembler::lddf_op3);
5248   ins_encode(simple_form3_mem_reg(src, dst));
5249   ins_pipe(floadD_stk);
5250 %}
5251 
5252 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5253   // No match rule to avoid chain rule match.
5254   effect(DEF dst, USE src);
5255   ins_cost(MEMORY_REF_COST);
5256   size(4);
5257   format %{ "STF    $src,$dst\t! regF to stkI" %}
5258   opcode(Assembler::stf_op3);
5259   ins_encode(simple_form3_mem_reg(dst, src));
5260   ins_pipe(fstoreF_stk_reg);
5261 %}
5262 
5263 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5264   // No match rule to avoid chain rule match.
5265   effect(DEF dst, USE src);
5266   ins_cost(MEMORY_REF_COST);
5267   size(4);
5268   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5269   opcode(Assembler::stdf_op3);
5270   ins_encode(simple_form3_mem_reg(dst, src));
5271   ins_pipe(fstoreD_stk_reg);
5272 %}
5273 
5274 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5275   effect(DEF dst, USE src);
5276   ins_cost(MEMORY_REF_COST*2);
5277   size(8);
5278   format %{ "STW    $src,$dst.hi\t! long\n\t"
5279             "STW    R_G0,$dst.lo" %}
5280   opcode(Assembler::stw_op3);
5281   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5282   ins_pipe(lstoreI_stk_reg);
5283 %}
5284 
5285 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5286   // No match rule to avoid chain rule match.
5287   effect(DEF dst, USE src);
5288   ins_cost(MEMORY_REF_COST);
5289   size(4);
5290   format %{ "STX    $src,$dst\t! regL to stkD" %}
5291   opcode(Assembler::stx_op3);
5292   ins_encode(simple_form3_mem_reg( dst, src ) );
5293   ins_pipe(istore_stk_reg);
5294 %}
5295 
5296 //---------- Chain stack slots between similar types --------
5297 
5298 // Load integer from stack slot
5299 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5300   match(Set dst src);
5301   ins_cost(MEMORY_REF_COST);
5302 
5303   size(4);
5304   format %{ "LDUW   $src,$dst\t!stk" %}
5305   opcode(Assembler::lduw_op3);
5306   ins_encode(simple_form3_mem_reg( src, dst ) );
5307   ins_pipe(iload_mem);
5308 %}
5309 
5310 // Store integer to stack slot
5311 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5312   match(Set dst src);
5313   ins_cost(MEMORY_REF_COST);
5314 
5315   size(4);
5316   format %{ "STW    $src,$dst\t!stk" %}
5317   opcode(Assembler::stw_op3);
5318   ins_encode(simple_form3_mem_reg( dst, src ) );
5319   ins_pipe(istore_mem_reg);
5320 %}
5321 
5322 // Load long from stack slot
5323 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5324   match(Set dst src);
5325 
5326   ins_cost(MEMORY_REF_COST);
5327   size(4);
5328   format %{ "LDX    $src,$dst\t! long" %}
5329   opcode(Assembler::ldx_op3);
5330   ins_encode(simple_form3_mem_reg( src, dst ) );
5331   ins_pipe(iload_mem);
5332 %}
5333 
5334 // Store long to stack slot
5335 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5336   match(Set dst src);
5337 
5338   ins_cost(MEMORY_REF_COST);
5339   size(4);
5340   format %{ "STX    $src,$dst\t! long" %}
5341   opcode(Assembler::stx_op3);
5342   ins_encode(simple_form3_mem_reg( dst, src ) );
5343   ins_pipe(istore_mem_reg);
5344 %}
5345 
5346 #ifdef _LP64
5347 // Load pointer from stack slot, 64-bit encoding
5348 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5349   match(Set dst src);
5350   ins_cost(MEMORY_REF_COST);
5351   size(4);
5352   format %{ "LDX    $src,$dst\t!ptr" %}
5353   opcode(Assembler::ldx_op3);
5354   ins_encode(simple_form3_mem_reg( src, dst ) );
5355   ins_pipe(iload_mem);
5356 %}
5357 
5358 // Store pointer to stack slot
5359 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5360   match(Set dst src);
5361   ins_cost(MEMORY_REF_COST);
5362   size(4);
5363   format %{ "STX    $src,$dst\t!ptr" %}
5364   opcode(Assembler::stx_op3);
5365   ins_encode(simple_form3_mem_reg( dst, src ) );
5366   ins_pipe(istore_mem_reg);
5367 %}
5368 #else // _LP64
5369 // Load pointer from stack slot, 32-bit encoding
5370 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5371   match(Set dst src);
5372   ins_cost(MEMORY_REF_COST);
5373   format %{ "LDUW   $src,$dst\t!ptr" %}
5374   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5375   ins_encode(simple_form3_mem_reg( src, dst ) );
5376   ins_pipe(iload_mem);
5377 %}
5378 
5379 // Store pointer to stack slot
5380 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5381   match(Set dst src);
5382   ins_cost(MEMORY_REF_COST);
5383   format %{ "STW    $src,$dst\t!ptr" %}
5384   opcode(Assembler::stw_op3, Assembler::ldst_op);
5385   ins_encode(simple_form3_mem_reg( dst, src ) );
5386   ins_pipe(istore_mem_reg);
5387 %}
5388 #endif // _LP64
5389 
5390 //------------Special Nop instructions for bundling - no match rules-----------
5391 // Nop using the A0 functional unit
5392 instruct Nop_A0() %{
5393   ins_cost(0);
5394 
5395   format %{ "NOP    ! Alu Pipeline" %}
5396   opcode(Assembler::or_op3, Assembler::arith_op);
5397   ins_encode( form2_nop() );
5398   ins_pipe(ialu_nop_A0);
5399 %}
5400 
5401 // Nop using the A1 functional unit
5402 instruct Nop_A1( ) %{
5403   ins_cost(0);
5404 
5405   format %{ "NOP    ! Alu Pipeline" %}
5406   opcode(Assembler::or_op3, Assembler::arith_op);
5407   ins_encode( form2_nop() );
5408   ins_pipe(ialu_nop_A1);
5409 %}
5410 
5411 // Nop using the memory functional unit
5412 instruct Nop_MS( ) %{
5413   ins_cost(0);
5414 
5415   format %{ "NOP    ! Memory Pipeline" %}
5416   ins_encode( emit_mem_nop );
5417   ins_pipe(mem_nop);
5418 %}
5419 
5420 // Nop using the floating add functional unit
5421 instruct Nop_FA( ) %{
5422   ins_cost(0);
5423 
5424   format %{ "NOP    ! Floating Add Pipeline" %}
5425   ins_encode( emit_fadd_nop );
5426   ins_pipe(fadd_nop);
5427 %}
5428 
5429 // Nop using the branch functional unit
5430 instruct Nop_BR( ) %{
5431   ins_cost(0);
5432 
5433   format %{ "NOP    ! Branch Pipeline" %}
5434   ins_encode( emit_br_nop );
5435   ins_pipe(br_nop);
5436 %}
5437 
5438 //----------Load/Store/Move Instructions---------------------------------------
5439 //----------Load Instructions--------------------------------------------------
5440 // Load Byte (8bit signed)
5441 instruct loadB(iRegI dst, memory mem) %{
5442   match(Set dst (LoadB mem));
5443   ins_cost(MEMORY_REF_COST);
5444 
5445   size(4);
5446   format %{ "LDSB   $mem,$dst\t! byte" %}
5447   ins_encode %{
5448     __ ldsb($mem$$Address, $dst$$Register);
5449   %}
5450   ins_pipe(iload_mask_mem);
5451 %}
5452 
5453 // Load Byte (8bit signed) into a Long Register
5454 instruct loadB2L(iRegL dst, memory mem) %{
5455   match(Set dst (ConvI2L (LoadB mem)));
5456   ins_cost(MEMORY_REF_COST);
5457 
5458   size(4);
5459   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5460   ins_encode %{
5461     __ ldsb($mem$$Address, $dst$$Register);
5462   %}
5463   ins_pipe(iload_mask_mem);
5464 %}
5465 
5466 // Load Unsigned Byte (8bit UNsigned) into an int reg
5467 instruct loadUB(iRegI dst, memory mem) %{
5468   match(Set dst (LoadUB mem));
5469   ins_cost(MEMORY_REF_COST);
5470 
5471   size(4);
5472   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5473   ins_encode %{
5474     __ ldub($mem$$Address, $dst$$Register);
5475   %}
5476   ins_pipe(iload_mask_mem);
5477 %}
5478 
5479 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5480 instruct loadUB2L(iRegL dst, memory mem) %{
5481   match(Set dst (ConvI2L (LoadUB mem)));
5482   ins_cost(MEMORY_REF_COST);
5483 
5484   size(4);
5485   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5486   ins_encode %{
5487     __ ldub($mem$$Address, $dst$$Register);
5488   %}
5489   ins_pipe(iload_mask_mem);
5490 %}
5491 
5492 // Load Short (16bit signed)
5493 instruct loadS(iRegI dst, memory mem) %{
5494   match(Set dst (LoadS mem));
5495   ins_cost(MEMORY_REF_COST);
5496 
5497   size(4);
5498   format %{ "LDSH   $mem,$dst\t! short" %}
5499   ins_encode %{
5500     __ ldsh($mem$$Address, $dst$$Register);
5501   %}
5502   ins_pipe(iload_mask_mem);
5503 %}
5504 
5505 // Load Short (16bit signed) into a Long Register
5506 instruct loadS2L(iRegL dst, memory mem) %{
5507   match(Set dst (ConvI2L (LoadS mem)));
5508   ins_cost(MEMORY_REF_COST);
5509 
5510   size(4);
5511   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5512   ins_encode %{
5513     __ ldsh($mem$$Address, $dst$$Register);
5514   %}
5515   ins_pipe(iload_mask_mem);
5516 %}
5517 
5518 // Load Unsigned Short/Char (16bit UNsigned)
5519 instruct loadUS(iRegI dst, memory mem) %{
5520   match(Set dst (LoadUS mem));
5521   ins_cost(MEMORY_REF_COST);
5522 
5523   size(4);
5524   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5525   ins_encode %{
5526     __ lduh($mem$$Address, $dst$$Register);
5527   %}
5528   ins_pipe(iload_mask_mem);
5529 %}
5530 
5531 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5532 instruct loadUS2L(iRegL dst, memory mem) %{
5533   match(Set dst (ConvI2L (LoadUS mem)));
5534   ins_cost(MEMORY_REF_COST);
5535 
5536   size(4);
5537   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5538   ins_encode %{
5539     __ lduh($mem$$Address, $dst$$Register);
5540   %}
5541   ins_pipe(iload_mask_mem);
5542 %}
5543 
5544 // Load Integer
5545 instruct loadI(iRegI dst, memory mem) %{
5546   match(Set dst (LoadI mem));
5547   ins_cost(MEMORY_REF_COST);
5548 
5549   size(4);
5550   format %{ "LDUW   $mem,$dst\t! int" %}
5551   ins_encode %{
5552     __ lduw($mem$$Address, $dst$$Register);
5553   %}
5554   ins_pipe(iload_mem);
5555 %}
5556 
5557 // Load Integer into a Long Register
5558 instruct loadI2L(iRegL dst, memory mem) %{
5559   match(Set dst (ConvI2L (LoadI mem)));
5560   ins_cost(MEMORY_REF_COST);
5561 
5562   size(4);
5563   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5564   ins_encode %{
5565     __ ldsw($mem$$Address, $dst$$Register);
5566   %}
5567   ins_pipe(iload_mem);
5568 %}
5569 
5570 // Load Unsigned Integer into a Long Register
5571 instruct loadUI2L(iRegL dst, memory mem) %{
5572   match(Set dst (LoadUI2L mem));
5573   ins_cost(MEMORY_REF_COST);
5574 
5575   size(4);
5576   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5577   ins_encode %{
5578     __ lduw($mem$$Address, $dst$$Register);
5579   %}
5580   ins_pipe(iload_mem);
5581 %}
5582 
5583 // Load Long - aligned
5584 instruct loadL(iRegL dst, memory mem ) %{
5585   match(Set dst (LoadL mem));
5586   ins_cost(MEMORY_REF_COST);
5587 
5588   size(4);
5589   format %{ "LDX    $mem,$dst\t! long" %}
5590   ins_encode %{
5591     __ ldx($mem$$Address, $dst$$Register);
5592   %}
5593   ins_pipe(iload_mem);
5594 %}
5595 
5596 // Load Long - UNaligned
5597 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5598   match(Set dst (LoadL_unaligned mem));
5599   effect(KILL tmp);
5600   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5601   size(16);
5602   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5603           "\tLDUW   $mem  ,$dst\n"
5604           "\tSLLX   #32, $dst, $dst\n"
5605           "\tOR     $dst, R_O7, $dst" %}
5606   opcode(Assembler::lduw_op3);
5607   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5608   ins_pipe(iload_mem);
5609 %}
5610 
5611 // Load Aligned Packed Byte into a Double Register
5612 instruct loadA8B(regD dst, memory mem) %{
5613   match(Set dst (Load8B mem));
5614   ins_cost(MEMORY_REF_COST);
5615   size(4);
5616   format %{ "LDDF   $mem,$dst\t! packed8B" %}
5617   opcode(Assembler::lddf_op3);
5618   ins_encode(simple_form3_mem_reg( mem, dst ) );
5619   ins_pipe(floadD_mem);
5620 %}
5621 
5622 // Load Aligned Packed Char into a Double Register
5623 instruct loadA4C(regD dst, memory mem) %{
5624   match(Set dst (Load4C mem));
5625   ins_cost(MEMORY_REF_COST);
5626   size(4);
5627   format %{ "LDDF   $mem,$dst\t! packed4C" %}
5628   opcode(Assembler::lddf_op3);
5629   ins_encode(simple_form3_mem_reg( mem, dst ) );
5630   ins_pipe(floadD_mem);
5631 %}
5632 
5633 // Load Aligned Packed Short into a Double Register
5634 instruct loadA4S(regD dst, memory mem) %{
5635   match(Set dst (Load4S mem));
5636   ins_cost(MEMORY_REF_COST);
5637   size(4);
5638   format %{ "LDDF   $mem,$dst\t! packed4S" %}
5639   opcode(Assembler::lddf_op3);
5640   ins_encode(simple_form3_mem_reg( mem, dst ) );
5641   ins_pipe(floadD_mem);
5642 %}
5643 
5644 // Load Aligned Packed Int into a Double Register
5645 instruct loadA2I(regD dst, memory mem) %{
5646   match(Set dst (Load2I mem));
5647   ins_cost(MEMORY_REF_COST);
5648   size(4);
5649   format %{ "LDDF   $mem,$dst\t! packed2I" %}
5650   opcode(Assembler::lddf_op3);
5651   ins_encode(simple_form3_mem_reg( mem, dst ) );
5652   ins_pipe(floadD_mem);
5653 %}
5654 
5655 // Load Range
5656 instruct loadRange(iRegI dst, memory mem) %{
5657   match(Set dst (LoadRange mem));
5658   ins_cost(MEMORY_REF_COST);
5659 
5660   size(4);
5661   format %{ "LDUW   $mem,$dst\t! range" %}
5662   opcode(Assembler::lduw_op3);
5663   ins_encode(simple_form3_mem_reg( mem, dst ) );
5664   ins_pipe(iload_mem);
5665 %}
5666 
5667 // Load Integer into %f register (for fitos/fitod)
5668 instruct loadI_freg(regF dst, memory mem) %{
5669   match(Set dst (LoadI mem));
5670   ins_cost(MEMORY_REF_COST);
5671   size(4);
5672 
5673   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5674   opcode(Assembler::ldf_op3);
5675   ins_encode(simple_form3_mem_reg( mem, dst ) );
5676   ins_pipe(floadF_mem);
5677 %}
5678 
5679 // Load Pointer
5680 instruct loadP(iRegP dst, memory mem) %{
5681   match(Set dst (LoadP mem));
5682   ins_cost(MEMORY_REF_COST);
5683   size(4);
5684 
5685 #ifndef _LP64
5686   format %{ "LDUW   $mem,$dst\t! ptr" %}
5687   ins_encode %{
5688     __ lduw($mem$$Address, $dst$$Register);
5689   %}
5690 #else
5691   format %{ "LDX    $mem,$dst\t! ptr" %}
5692   ins_encode %{
5693     __ ldx($mem$$Address, $dst$$Register);
5694   %}
5695 #endif
5696   ins_pipe(iload_mem);
5697 %}
5698 
5699 // Load Compressed Pointer
5700 instruct loadN(iRegN dst, memory mem) %{
5701   match(Set dst (LoadN mem));
5702   ins_cost(MEMORY_REF_COST);
5703   size(4);
5704 
5705   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5706   ins_encode %{
5707     __ lduw($mem$$Address, $dst$$Register);
5708   %}
5709   ins_pipe(iload_mem);
5710 %}
5711 
5712 // Load Klass Pointer
5713 instruct loadKlass(iRegP dst, memory mem) %{
5714   match(Set dst (LoadKlass mem));
5715   ins_cost(MEMORY_REF_COST);
5716   size(4);
5717 
5718 #ifndef _LP64
5719   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5720   ins_encode %{
5721     __ lduw($mem$$Address, $dst$$Register);
5722   %}
5723 #else
5724   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5725   ins_encode %{
5726     __ ldx($mem$$Address, $dst$$Register);
5727   %}
5728 #endif
5729   ins_pipe(iload_mem);
5730 %}
5731 
5732 // Load narrow Klass Pointer
5733 instruct loadNKlass(iRegN dst, memory mem) %{
5734   match(Set dst (LoadNKlass mem));
5735   ins_cost(MEMORY_REF_COST);
5736   size(4);
5737 
5738   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5739   ins_encode %{
5740     __ lduw($mem$$Address, $dst$$Register);
5741   %}
5742   ins_pipe(iload_mem);
5743 %}
5744 
5745 // Load Double
5746 instruct loadD(regD dst, memory mem) %{
5747   match(Set dst (LoadD mem));
5748   ins_cost(MEMORY_REF_COST);
5749 
5750   size(4);
5751   format %{ "LDDF   $mem,$dst" %}
5752   opcode(Assembler::lddf_op3);
5753   ins_encode(simple_form3_mem_reg( mem, dst ) );
5754   ins_pipe(floadD_mem);
5755 %}
5756 
5757 // Load Double - UNaligned
5758 instruct loadD_unaligned(regD_low dst, memory mem ) %{
5759   match(Set dst (LoadD_unaligned mem));
5760   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5761   size(8);
5762   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5763           "\tLDF    $mem+4,$dst.lo\t!" %}
5764   opcode(Assembler::ldf_op3);
5765   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5766   ins_pipe(iload_mem);
5767 %}
5768 
5769 // Load Float
5770 instruct loadF(regF dst, memory mem) %{
5771   match(Set dst (LoadF mem));
5772   ins_cost(MEMORY_REF_COST);
5773 
5774   size(4);
5775   format %{ "LDF    $mem,$dst" %}
5776   opcode(Assembler::ldf_op3);
5777   ins_encode(simple_form3_mem_reg( mem, dst ) );
5778   ins_pipe(floadF_mem);
5779 %}
5780 
5781 // Load Constant
5782 instruct loadConI( iRegI dst, immI src ) %{
5783   match(Set dst src);
5784   ins_cost(DEFAULT_COST * 3/2);
5785   format %{ "SET    $src,$dst" %}
5786   ins_encode( Set32(src, dst) );
5787   ins_pipe(ialu_hi_lo_reg);
5788 %}
5789 
5790 instruct loadConI13( iRegI dst, immI13 src ) %{
5791   match(Set dst src);
5792 
5793   size(4);
5794   format %{ "MOV    $src,$dst" %}
5795   ins_encode( Set13( src, dst ) );
5796   ins_pipe(ialu_imm);
5797 %}
5798 
5799 instruct loadConP(iRegP dst, immP src) %{
5800   match(Set dst src);
5801   ins_cost(DEFAULT_COST * 3/2);
5802   format %{ "SET    $src,$dst\t!ptr" %}
5803   // This rule does not use "expand" unlike loadConI because then
5804   // the result type is not known to be an Oop.  An ADLC
5805   // enhancement will be needed to make that work - not worth it!
5806 
5807   ins_encode( SetPtr( src, dst ) );
5808   ins_pipe(loadConP);
5809 
5810 %}
5811 
5812 instruct loadConP0(iRegP dst, immP0 src) %{
5813   match(Set dst src);
5814 
5815   size(4);
5816   format %{ "CLR    $dst\t!ptr" %}
5817   ins_encode( SetNull( dst ) );
5818   ins_pipe(ialu_imm);
5819 %}
5820 
5821 instruct loadConP_poll(iRegP dst, immP_poll src) %{
5822   match(Set dst src);
5823   ins_cost(DEFAULT_COST);
5824   format %{ "SET    $src,$dst\t!ptr" %}
5825   ins_encode %{
5826     AddressLiteral polling_page(os::get_polling_page());
5827     __ sethi(polling_page, reg_to_register_object($dst$$reg));
5828   %}
5829   ins_pipe(loadConP_poll);
5830 %}
5831 
5832 instruct loadConN0(iRegN dst, immN0 src) %{
5833   match(Set dst src);
5834 
5835   size(4);
5836   format %{ "CLR    $dst\t! compressed NULL ptr" %}
5837   ins_encode( SetNull( dst ) );
5838   ins_pipe(ialu_imm);
5839 %}
5840 
5841 instruct loadConN(iRegN dst, immN src) %{
5842   match(Set dst src);
5843   ins_cost(DEFAULT_COST * 3/2);
5844   format %{ "SET    $src,$dst\t! compressed ptr" %}
5845   ins_encode %{
5846     Register dst = $dst$$Register;
5847     __ set_narrow_oop((jobject)$src$$constant, dst);
5848   %}
5849   ins_pipe(ialu_hi_lo_reg);
5850 %}
5851 
5852 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
5853   // %%% maybe this should work like loadConD
5854   match(Set dst src);
5855   effect(KILL tmp);
5856   ins_cost(DEFAULT_COST * 4);
5857   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
5858   ins_encode( LdImmL(src, dst, tmp) );
5859   ins_pipe(loadConL);
5860 %}
5861 
5862 instruct loadConL0( iRegL dst, immL0 src ) %{
5863   match(Set dst src);
5864   ins_cost(DEFAULT_COST);
5865   size(4);
5866   format %{ "CLR    $dst\t! long" %}
5867   ins_encode( Set13( src, dst ) );
5868   ins_pipe(ialu_imm);
5869 %}
5870 
5871 instruct loadConL13( iRegL dst, immL13 src ) %{
5872   match(Set dst src);
5873   ins_cost(DEFAULT_COST * 2);
5874 
5875   size(4);
5876   format %{ "MOV    $src,$dst\t! long" %}
5877   ins_encode( Set13( src, dst ) );
5878   ins_pipe(ialu_imm);
5879 %}
5880 
5881 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
5882   match(Set dst src);
5883   effect(KILL tmp);
5884 
5885 #ifdef _LP64
5886   size(8*4);
5887 #else
5888   size(2*4);
5889 #endif
5890 
5891   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
5892             "LDF    [$tmp+lo(&$src)],$dst" %}
5893   ins_encode %{
5894     address float_address = __ float_constant($src$$constant);
5895     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
5896     AddressLiteral addrlit(float_address, rspec);
5897 
5898     __ sethi(addrlit, $tmp$$Register);
5899     __ ldf(FloatRegisterImpl::S, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
5900   %}
5901   ins_pipe(loadConFD);
5902 %}
5903 
5904 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
5905   match(Set dst src);
5906   effect(KILL tmp);
5907 
5908 #ifdef _LP64
5909   size(8*4);
5910 #else
5911   size(2*4);
5912 #endif
5913 
5914   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
5915             "LDDF   [$tmp+lo(&$src)],$dst" %}
5916   ins_encode %{
5917     address double_address = __ double_constant($src$$constant);
5918     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
5919     AddressLiteral addrlit(double_address, rspec);
5920 
5921     __ sethi(addrlit, $tmp$$Register);
5922     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
5923   %}
5924   ins_pipe(loadConFD);
5925 %}
5926 
5927 // Prefetch instructions.
5928 // Must be safe to execute with invalid address (cannot fault).
5929 
5930 instruct prefetchr( memory mem ) %{
5931   match( PrefetchRead mem );
5932   ins_cost(MEMORY_REF_COST);
5933 
5934   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
5935   opcode(Assembler::prefetch_op3);
5936   ins_encode( form3_mem_prefetch_read( mem ) );
5937   ins_pipe(iload_mem);
5938 %}
5939 
5940 instruct prefetchw( memory mem ) %{
5941   match( PrefetchWrite mem );
5942   ins_cost(MEMORY_REF_COST);
5943 
5944   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
5945   opcode(Assembler::prefetch_op3);
5946   ins_encode( form3_mem_prefetch_write( mem ) );
5947   ins_pipe(iload_mem);
5948 %}
5949 
5950 
5951 //----------Store Instructions-------------------------------------------------
5952 // Store Byte
5953 instruct storeB(memory mem, iRegI src) %{
5954   match(Set mem (StoreB mem src));
5955   ins_cost(MEMORY_REF_COST);
5956 
5957   size(4);
5958   format %{ "STB    $src,$mem\t! byte" %}
5959   opcode(Assembler::stb_op3);
5960   ins_encode(simple_form3_mem_reg( mem, src ) );
5961   ins_pipe(istore_mem_reg);
5962 %}
5963 
5964 instruct storeB0(memory mem, immI0 src) %{
5965   match(Set mem (StoreB mem src));
5966   ins_cost(MEMORY_REF_COST);
5967 
5968   size(4);
5969   format %{ "STB    $src,$mem\t! byte" %}
5970   opcode(Assembler::stb_op3);
5971   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
5972   ins_pipe(istore_mem_zero);
5973 %}
5974 
5975 instruct storeCM0(memory mem, immI0 src) %{
5976   match(Set mem (StoreCM mem src));
5977   ins_cost(MEMORY_REF_COST);
5978 
5979   size(4);
5980   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
5981   opcode(Assembler::stb_op3);
5982   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
5983   ins_pipe(istore_mem_zero);
5984 %}
5985 
5986 // Store Char/Short
5987 instruct storeC(memory mem, iRegI src) %{
5988   match(Set mem (StoreC mem src));
5989   ins_cost(MEMORY_REF_COST);
5990 
5991   size(4);
5992   format %{ "STH    $src,$mem\t! short" %}
5993   opcode(Assembler::sth_op3);
5994   ins_encode(simple_form3_mem_reg( mem, src ) );
5995   ins_pipe(istore_mem_reg);
5996 %}
5997 
5998 instruct storeC0(memory mem, immI0 src) %{
5999   match(Set mem (StoreC mem src));
6000   ins_cost(MEMORY_REF_COST);
6001 
6002   size(4);
6003   format %{ "STH    $src,$mem\t! short" %}
6004   opcode(Assembler::sth_op3);
6005   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6006   ins_pipe(istore_mem_zero);
6007 %}
6008 
6009 // Store Integer
6010 instruct storeI(memory mem, iRegI src) %{
6011   match(Set mem (StoreI mem src));
6012   ins_cost(MEMORY_REF_COST);
6013 
6014   size(4);
6015   format %{ "STW    $src,$mem" %}
6016   opcode(Assembler::stw_op3);
6017   ins_encode(simple_form3_mem_reg( mem, src ) );
6018   ins_pipe(istore_mem_reg);
6019 %}
6020 
6021 // Store Long
6022 instruct storeL(memory mem, iRegL src) %{
6023   match(Set mem (StoreL mem src));
6024   ins_cost(MEMORY_REF_COST);
6025   size(4);
6026   format %{ "STX    $src,$mem\t! long" %}
6027   opcode(Assembler::stx_op3);
6028   ins_encode(simple_form3_mem_reg( mem, src ) );
6029   ins_pipe(istore_mem_reg);
6030 %}
6031 
6032 instruct storeI0(memory mem, immI0 src) %{
6033   match(Set mem (StoreI mem src));
6034   ins_cost(MEMORY_REF_COST);
6035 
6036   size(4);
6037   format %{ "STW    $src,$mem" %}
6038   opcode(Assembler::stw_op3);
6039   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6040   ins_pipe(istore_mem_zero);
6041 %}
6042 
6043 instruct storeL0(memory mem, immL0 src) %{
6044   match(Set mem (StoreL mem src));
6045   ins_cost(MEMORY_REF_COST);
6046 
6047   size(4);
6048   format %{ "STX    $src,$mem" %}
6049   opcode(Assembler::stx_op3);
6050   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6051   ins_pipe(istore_mem_zero);
6052 %}
6053 
6054 // Store Integer from float register (used after fstoi)
6055 instruct storeI_Freg(memory mem, regF src) %{
6056   match(Set mem (StoreI mem src));
6057   ins_cost(MEMORY_REF_COST);
6058 
6059   size(4);
6060   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6061   opcode(Assembler::stf_op3);
6062   ins_encode(simple_form3_mem_reg( mem, src ) );
6063   ins_pipe(fstoreF_mem_reg);
6064 %}
6065 
6066 // Store Pointer
6067 instruct storeP(memory dst, sp_ptr_RegP src) %{
6068   match(Set dst (StoreP dst src));
6069   ins_cost(MEMORY_REF_COST);
6070   size(4);
6071 
6072 #ifndef _LP64
6073   format %{ "STW    $src,$dst\t! ptr" %}
6074   opcode(Assembler::stw_op3, 0, REGP_OP);
6075 #else
6076   format %{ "STX    $src,$dst\t! ptr" %}
6077   opcode(Assembler::stx_op3, 0, REGP_OP);
6078 #endif
6079   ins_encode( form3_mem_reg( dst, src ) );
6080   ins_pipe(istore_mem_spORreg);
6081 %}
6082 
6083 instruct storeP0(memory dst, immP0 src) %{
6084   match(Set dst (StoreP dst src));
6085   ins_cost(MEMORY_REF_COST);
6086   size(4);
6087 
6088 #ifndef _LP64
6089   format %{ "STW    $src,$dst\t! ptr" %}
6090   opcode(Assembler::stw_op3, 0, REGP_OP);
6091 #else
6092   format %{ "STX    $src,$dst\t! ptr" %}
6093   opcode(Assembler::stx_op3, 0, REGP_OP);
6094 #endif
6095   ins_encode( form3_mem_reg( dst, R_G0 ) );
6096   ins_pipe(istore_mem_zero);
6097 %}
6098 
6099 // Store Compressed Pointer
6100 instruct storeN(memory dst, iRegN src) %{
6101    match(Set dst (StoreN dst src));
6102    ins_cost(MEMORY_REF_COST);
6103    size(4);
6104 
6105    format %{ "STW    $src,$dst\t! compressed ptr" %}
6106    ins_encode %{
6107      Register base = as_Register($dst$$base);
6108      Register index = as_Register($dst$$index);
6109      Register src = $src$$Register;
6110      if (index != G0) {
6111        __ stw(src, base, index);
6112      } else {
6113        __ stw(src, base, $dst$$disp);
6114      }
6115    %}
6116    ins_pipe(istore_mem_spORreg);
6117 %}
6118 
6119 instruct storeN0(memory dst, immN0 src) %{
6120    match(Set dst (StoreN dst src));
6121    ins_cost(MEMORY_REF_COST);
6122    size(4);
6123 
6124    format %{ "STW    $src,$dst\t! compressed ptr" %}
6125    ins_encode %{
6126      Register base = as_Register($dst$$base);
6127      Register index = as_Register($dst$$index);
6128      if (index != G0) {
6129        __ stw(0, base, index);
6130      } else {
6131        __ stw(0, base, $dst$$disp);
6132      }
6133    %}
6134    ins_pipe(istore_mem_zero);
6135 %}
6136 
6137 // Store Double
6138 instruct storeD( memory mem, regD src) %{
6139   match(Set mem (StoreD mem src));
6140   ins_cost(MEMORY_REF_COST);
6141 
6142   size(4);
6143   format %{ "STDF   $src,$mem" %}
6144   opcode(Assembler::stdf_op3);
6145   ins_encode(simple_form3_mem_reg( mem, src ) );
6146   ins_pipe(fstoreD_mem_reg);
6147 %}
6148 
6149 instruct storeD0( memory mem, immD0 src) %{
6150   match(Set mem (StoreD mem src));
6151   ins_cost(MEMORY_REF_COST);
6152 
6153   size(4);
6154   format %{ "STX    $src,$mem" %}
6155   opcode(Assembler::stx_op3);
6156   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6157   ins_pipe(fstoreD_mem_zero);
6158 %}
6159 
6160 // Store Float
6161 instruct storeF( memory mem, regF src) %{
6162   match(Set mem (StoreF mem src));
6163   ins_cost(MEMORY_REF_COST);
6164 
6165   size(4);
6166   format %{ "STF    $src,$mem" %}
6167   opcode(Assembler::stf_op3);
6168   ins_encode(simple_form3_mem_reg( mem, src ) );
6169   ins_pipe(fstoreF_mem_reg);
6170 %}
6171 
6172 instruct storeF0( memory mem, immF0 src) %{
6173   match(Set mem (StoreF mem src));
6174   ins_cost(MEMORY_REF_COST);
6175 
6176   size(4);
6177   format %{ "STW    $src,$mem\t! storeF0" %}
6178   opcode(Assembler::stw_op3);
6179   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6180   ins_pipe(fstoreF_mem_zero);
6181 %}
6182 
6183 // Store Aligned Packed Bytes in Double register to memory
6184 instruct storeA8B(memory mem, regD src) %{
6185   match(Set mem (Store8B mem src));
6186   ins_cost(MEMORY_REF_COST);
6187   size(4);
6188   format %{ "STDF   $src,$mem\t! packed8B" %}
6189   opcode(Assembler::stdf_op3);
6190   ins_encode(simple_form3_mem_reg( mem, src ) );
6191   ins_pipe(fstoreD_mem_reg);
6192 %}
6193 
6194 // Convert oop pointer into compressed form
6195 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6196   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6197   match(Set dst (EncodeP src));
6198   format %{ "encode_heap_oop $src, $dst" %}
6199   ins_encode %{
6200     __ encode_heap_oop($src$$Register, $dst$$Register);
6201   %}
6202   ins_pipe(ialu_reg);
6203 %}
6204 
6205 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6206   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6207   match(Set dst (EncodeP src));
6208   format %{ "encode_heap_oop_not_null $src, $dst" %}
6209   ins_encode %{
6210     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6211   %}
6212   ins_pipe(ialu_reg);
6213 %}
6214 
6215 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6216   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6217             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6218   match(Set dst (DecodeN src));
6219   format %{ "decode_heap_oop $src, $dst" %}
6220   ins_encode %{
6221     __ decode_heap_oop($src$$Register, $dst$$Register);
6222   %}
6223   ins_pipe(ialu_reg);
6224 %}
6225 
6226 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6227   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6228             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6229   match(Set dst (DecodeN src));
6230   format %{ "decode_heap_oop_not_null $src, $dst" %}
6231   ins_encode %{
6232     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6233   %}
6234   ins_pipe(ialu_reg);
6235 %}
6236 
6237 
6238 // Store Zero into Aligned Packed Bytes
6239 instruct storeA8B0(memory mem, immI0 zero) %{
6240   match(Set mem (Store8B mem zero));
6241   ins_cost(MEMORY_REF_COST);
6242   size(4);
6243   format %{ "STX    $zero,$mem\t! packed8B" %}
6244   opcode(Assembler::stx_op3);
6245   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6246   ins_pipe(fstoreD_mem_zero);
6247 %}
6248 
6249 // Store Aligned Packed Chars/Shorts in Double register to memory
6250 instruct storeA4C(memory mem, regD src) %{
6251   match(Set mem (Store4C mem src));
6252   ins_cost(MEMORY_REF_COST);
6253   size(4);
6254   format %{ "STDF   $src,$mem\t! packed4C" %}
6255   opcode(Assembler::stdf_op3);
6256   ins_encode(simple_form3_mem_reg( mem, src ) );
6257   ins_pipe(fstoreD_mem_reg);
6258 %}
6259 
6260 // Store Zero into Aligned Packed Chars/Shorts
6261 instruct storeA4C0(memory mem, immI0 zero) %{
6262   match(Set mem (Store4C mem (Replicate4C zero)));
6263   ins_cost(MEMORY_REF_COST);
6264   size(4);
6265   format %{ "STX    $zero,$mem\t! packed4C" %}
6266   opcode(Assembler::stx_op3);
6267   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6268   ins_pipe(fstoreD_mem_zero);
6269 %}
6270 
6271 // Store Aligned Packed Ints in Double register to memory
6272 instruct storeA2I(memory mem, regD src) %{
6273   match(Set mem (Store2I mem src));
6274   ins_cost(MEMORY_REF_COST);
6275   size(4);
6276   format %{ "STDF   $src,$mem\t! packed2I" %}
6277   opcode(Assembler::stdf_op3);
6278   ins_encode(simple_form3_mem_reg( mem, src ) );
6279   ins_pipe(fstoreD_mem_reg);
6280 %}
6281 
6282 // Store Zero into Aligned Packed Ints
6283 instruct storeA2I0(memory mem, immI0 zero) %{
6284   match(Set mem (Store2I mem zero));
6285   ins_cost(MEMORY_REF_COST);
6286   size(4);
6287   format %{ "STX    $zero,$mem\t! packed2I" %}
6288   opcode(Assembler::stx_op3);
6289   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6290   ins_pipe(fstoreD_mem_zero);
6291 %}
6292 
6293 
6294 //----------MemBar Instructions-----------------------------------------------
6295 // Memory barrier flavors
6296 
6297 instruct membar_acquire() %{
6298   match(MemBarAcquire);
6299   ins_cost(4*MEMORY_REF_COST);
6300 
6301   size(0);
6302   format %{ "MEMBAR-acquire" %}
6303   ins_encode( enc_membar_acquire );
6304   ins_pipe(long_memory_op);
6305 %}
6306 
6307 instruct membar_acquire_lock() %{
6308   match(MemBarAcquire);
6309   predicate(Matcher::prior_fast_lock(n));
6310   ins_cost(0);
6311 
6312   size(0);
6313   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6314   ins_encode( );
6315   ins_pipe(empty);
6316 %}
6317 
6318 instruct membar_release() %{
6319   match(MemBarRelease);
6320   ins_cost(4*MEMORY_REF_COST);
6321 
6322   size(0);
6323   format %{ "MEMBAR-release" %}
6324   ins_encode( enc_membar_release );
6325   ins_pipe(long_memory_op);
6326 %}
6327 
6328 instruct membar_release_lock() %{
6329   match(MemBarRelease);
6330   predicate(Matcher::post_fast_unlock(n));
6331   ins_cost(0);
6332 
6333   size(0);
6334   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6335   ins_encode( );
6336   ins_pipe(empty);
6337 %}
6338 
6339 instruct membar_volatile() %{
6340   match(MemBarVolatile);
6341   ins_cost(4*MEMORY_REF_COST);
6342 
6343   size(4);
6344   format %{ "MEMBAR-volatile" %}
6345   ins_encode( enc_membar_volatile );
6346   ins_pipe(long_memory_op);
6347 %}
6348 
6349 instruct unnecessary_membar_volatile() %{
6350   match(MemBarVolatile);
6351   predicate(Matcher::post_store_load_barrier(n));
6352   ins_cost(0);
6353 
6354   size(0);
6355   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6356   ins_encode( );
6357   ins_pipe(empty);
6358 %}
6359 
6360 //----------Register Move Instructions-----------------------------------------
6361 instruct roundDouble_nop(regD dst) %{
6362   match(Set dst (RoundDouble dst));
6363   ins_cost(0);
6364   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6365   ins_encode( );
6366   ins_pipe(empty);
6367 %}
6368 
6369 
6370 instruct roundFloat_nop(regF dst) %{
6371   match(Set dst (RoundFloat dst));
6372   ins_cost(0);
6373   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6374   ins_encode( );
6375   ins_pipe(empty);
6376 %}
6377 
6378 
6379 // Cast Index to Pointer for unsafe natives
6380 instruct castX2P(iRegX src, iRegP dst) %{
6381   match(Set dst (CastX2P src));
6382 
6383   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6384   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6385   ins_pipe(ialu_reg);
6386 %}
6387 
6388 // Cast Pointer to Index for unsafe natives
6389 instruct castP2X(iRegP src, iRegX dst) %{
6390   match(Set dst (CastP2X src));
6391 
6392   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6393   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6394   ins_pipe(ialu_reg);
6395 %}
6396 
6397 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6398   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6399   match(Set stkSlot src);   // chain rule
6400   ins_cost(MEMORY_REF_COST);
6401   format %{ "STDF   $src,$stkSlot\t!stk" %}
6402   opcode(Assembler::stdf_op3);
6403   ins_encode(simple_form3_mem_reg(stkSlot, src));
6404   ins_pipe(fstoreD_stk_reg);
6405 %}
6406 
6407 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6408   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6409   match(Set dst stkSlot);   // chain rule
6410   ins_cost(MEMORY_REF_COST);
6411   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6412   opcode(Assembler::lddf_op3);
6413   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6414   ins_pipe(floadD_stk);
6415 %}
6416 
6417 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6418   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6419   match(Set stkSlot src);   // chain rule
6420   ins_cost(MEMORY_REF_COST);
6421   format %{ "STF   $src,$stkSlot\t!stk" %}
6422   opcode(Assembler::stf_op3);
6423   ins_encode(simple_form3_mem_reg(stkSlot, src));
6424   ins_pipe(fstoreF_stk_reg);
6425 %}
6426 
6427 //----------Conditional Move---------------------------------------------------
6428 // Conditional move
6429 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6430   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6431   ins_cost(150);
6432   format %{ "MOV$cmp $pcc,$src,$dst" %}
6433   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6434   ins_pipe(ialu_reg);
6435 %}
6436 
6437 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6438   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6439   ins_cost(140);
6440   format %{ "MOV$cmp $pcc,$src,$dst" %}
6441   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6442   ins_pipe(ialu_imm);
6443 %}
6444 
6445 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6446   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6447   ins_cost(150);
6448   size(4);
6449   format %{ "MOV$cmp  $icc,$src,$dst" %}
6450   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6451   ins_pipe(ialu_reg);
6452 %}
6453 
6454 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6455   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6456   ins_cost(140);
6457   size(4);
6458   format %{ "MOV$cmp  $icc,$src,$dst" %}
6459   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6460   ins_pipe(ialu_imm);
6461 %}
6462 
6463 instruct cmovII_U_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6464   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6465   ins_cost(150);
6466   size(4);
6467   format %{ "MOV$cmp  $icc,$src,$dst" %}
6468   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6469   ins_pipe(ialu_reg);
6470 %}
6471 
6472 instruct cmovII_U_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6473   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6474   ins_cost(140);
6475   size(4);
6476   format %{ "MOV$cmp  $icc,$src,$dst" %}
6477   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6478   ins_pipe(ialu_imm);
6479 %}
6480 
6481 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6482   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6483   ins_cost(150);
6484   size(4);
6485   format %{ "MOV$cmp $fcc,$src,$dst" %}
6486   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6487   ins_pipe(ialu_reg);
6488 %}
6489 
6490 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6491   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6492   ins_cost(140);
6493   size(4);
6494   format %{ "MOV$cmp $fcc,$src,$dst" %}
6495   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6496   ins_pipe(ialu_imm);
6497 %}
6498 
6499 // Conditional move for RegN. Only cmov(reg,reg).
6500 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6501   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6502   ins_cost(150);
6503   format %{ "MOV$cmp $pcc,$src,$dst" %}
6504   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6505   ins_pipe(ialu_reg);
6506 %}
6507 
6508 // This instruction also works with CmpN so we don't need cmovNN_reg.
6509 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6510   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6511   ins_cost(150);
6512   size(4);
6513   format %{ "MOV$cmp  $icc,$src,$dst" %}
6514   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6515   ins_pipe(ialu_reg);
6516 %}
6517 
6518 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6519   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6520   ins_cost(150);
6521   size(4);
6522   format %{ "MOV$cmp $fcc,$src,$dst" %}
6523   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6524   ins_pipe(ialu_reg);
6525 %}
6526 
6527 // Conditional move
6528 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6529   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6530   ins_cost(150);
6531   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6532   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6533   ins_pipe(ialu_reg);
6534 %}
6535 
6536 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6537   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6538   ins_cost(140);
6539   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6540   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6541   ins_pipe(ialu_imm);
6542 %}
6543 
6544 // This instruction also works with CmpN so we don't need cmovPN_reg.
6545 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6546   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6547   ins_cost(150);
6548 
6549   size(4);
6550   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6551   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6552   ins_pipe(ialu_reg);
6553 %}
6554 
6555 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6556   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6557   ins_cost(140);
6558 
6559   size(4);
6560   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6561   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6562   ins_pipe(ialu_imm);
6563 %}
6564 
6565 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6566   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6567   ins_cost(150);
6568   size(4);
6569   format %{ "MOV$cmp $fcc,$src,$dst" %}
6570   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6571   ins_pipe(ialu_imm);
6572 %}
6573 
6574 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6575   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6576   ins_cost(140);
6577   size(4);
6578   format %{ "MOV$cmp $fcc,$src,$dst" %}
6579   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6580   ins_pipe(ialu_imm);
6581 %}
6582 
6583 // Conditional move
6584 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6585   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6586   ins_cost(150);
6587   opcode(0x101);
6588   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6589   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6590   ins_pipe(int_conditional_float_move);
6591 %}
6592 
6593 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6594   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6595   ins_cost(150);
6596 
6597   size(4);
6598   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6599   opcode(0x101);
6600   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6601   ins_pipe(int_conditional_float_move);
6602 %}
6603 
6604 // Conditional move,
6605 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6606   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6607   ins_cost(150);
6608   size(4);
6609   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6610   opcode(0x1);
6611   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6612   ins_pipe(int_conditional_double_move);
6613 %}
6614 
6615 // Conditional move
6616 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6617   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6618   ins_cost(150);
6619   size(4);
6620   opcode(0x102);
6621   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6622   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6623   ins_pipe(int_conditional_double_move);
6624 %}
6625 
6626 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6627   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6628   ins_cost(150);
6629 
6630   size(4);
6631   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6632   opcode(0x102);
6633   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6634   ins_pipe(int_conditional_double_move);
6635 %}
6636 
6637 // Conditional move,
6638 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6639   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6640   ins_cost(150);
6641   size(4);
6642   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6643   opcode(0x2);
6644   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6645   ins_pipe(int_conditional_double_move);
6646 %}
6647 
6648 // Conditional move
6649 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6650   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6651   ins_cost(150);
6652   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6653   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6654   ins_pipe(ialu_reg);
6655 %}
6656 
6657 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6658   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6659   ins_cost(140);
6660   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6661   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6662   ins_pipe(ialu_imm);
6663 %}
6664 
6665 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6666   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6667   ins_cost(150);
6668 
6669   size(4);
6670   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6671   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6672   ins_pipe(ialu_reg);
6673 %}
6674 
6675 
6676 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6677   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6678   ins_cost(150);
6679 
6680   size(4);
6681   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
6682   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6683   ins_pipe(ialu_reg);
6684 %}
6685 
6686 
6687 
6688 //----------OS and Locking Instructions----------------------------------------
6689 
6690 // This name is KNOWN by the ADLC and cannot be changed.
6691 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6692 // for this guy.
6693 instruct tlsLoadP(g2RegP dst) %{
6694   match(Set dst (ThreadLocal));
6695 
6696   size(0);
6697   ins_cost(0);
6698   format %{ "# TLS is in G2" %}
6699   ins_encode( /*empty encoding*/ );
6700   ins_pipe(ialu_none);
6701 %}
6702 
6703 instruct checkCastPP( iRegP dst ) %{
6704   match(Set dst (CheckCastPP dst));
6705 
6706   size(0);
6707   format %{ "# checkcastPP of $dst" %}
6708   ins_encode( /*empty encoding*/ );
6709   ins_pipe(empty);
6710 %}
6711 
6712 
6713 instruct castPP( iRegP dst ) %{
6714   match(Set dst (CastPP dst));
6715   format %{ "# castPP of $dst" %}
6716   ins_encode( /*empty encoding*/ );
6717   ins_pipe(empty);
6718 %}
6719 
6720 instruct castII( iRegI dst ) %{
6721   match(Set dst (CastII dst));
6722   format %{ "# castII of $dst" %}
6723   ins_encode( /*empty encoding*/ );
6724   ins_cost(0);
6725   ins_pipe(empty);
6726 %}
6727 
6728 //----------Arithmetic Instructions--------------------------------------------
6729 // Addition Instructions
6730 // Register Addition
6731 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6732   match(Set dst (AddI src1 src2));
6733 
6734   size(4);
6735   format %{ "ADD    $src1,$src2,$dst" %}
6736   ins_encode %{
6737     __ add($src1$$Register, $src2$$Register, $dst$$Register);
6738   %}
6739   ins_pipe(ialu_reg_reg);
6740 %}
6741 
6742 // Immediate Addition
6743 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6744   match(Set dst (AddI src1 src2));
6745 
6746   size(4);
6747   format %{ "ADD    $src1,$src2,$dst" %}
6748   opcode(Assembler::add_op3, Assembler::arith_op);
6749   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6750   ins_pipe(ialu_reg_imm);
6751 %}
6752 
6753 // Pointer Register Addition
6754 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
6755   match(Set dst (AddP src1 src2));
6756 
6757   size(4);
6758   format %{ "ADD    $src1,$src2,$dst" %}
6759   opcode(Assembler::add_op3, Assembler::arith_op);
6760   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6761   ins_pipe(ialu_reg_reg);
6762 %}
6763 
6764 // Pointer Immediate Addition
6765 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
6766   match(Set dst (AddP src1 src2));
6767 
6768   size(4);
6769   format %{ "ADD    $src1,$src2,$dst" %}
6770   opcode(Assembler::add_op3, Assembler::arith_op);
6771   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6772   ins_pipe(ialu_reg_imm);
6773 %}
6774 
6775 // Long Addition
6776 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6777   match(Set dst (AddL src1 src2));
6778 
6779   size(4);
6780   format %{ "ADD    $src1,$src2,$dst\t! long" %}
6781   opcode(Assembler::add_op3, Assembler::arith_op);
6782   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6783   ins_pipe(ialu_reg_reg);
6784 %}
6785 
6786 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
6787   match(Set dst (AddL src1 con));
6788 
6789   size(4);
6790   format %{ "ADD    $src1,$con,$dst" %}
6791   opcode(Assembler::add_op3, Assembler::arith_op);
6792   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
6793   ins_pipe(ialu_reg_imm);
6794 %}
6795 
6796 //----------Conditional_store--------------------------------------------------
6797 // Conditional-store of the updated heap-top.
6798 // Used during allocation of the shared heap.
6799 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
6800 
6801 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
6802 instruct loadPLocked(iRegP dst, memory mem) %{
6803   match(Set dst (LoadPLocked mem));
6804   ins_cost(MEMORY_REF_COST);
6805 
6806 #ifndef _LP64
6807   size(4);
6808   format %{ "LDUW   $mem,$dst\t! ptr" %}
6809   opcode(Assembler::lduw_op3, 0, REGP_OP);
6810 #else
6811   format %{ "LDX    $mem,$dst\t! ptr" %}
6812   opcode(Assembler::ldx_op3, 0, REGP_OP);
6813 #endif
6814   ins_encode( form3_mem_reg( mem, dst ) );
6815   ins_pipe(iload_mem);
6816 %}
6817 
6818 // LoadL-locked.  Same as a regular long load when used with a compare-swap
6819 instruct loadLLocked(iRegL dst, memory mem) %{
6820   match(Set dst (LoadLLocked mem));
6821   ins_cost(MEMORY_REF_COST);
6822   size(4);
6823   format %{ "LDX    $mem,$dst\t! long" %}
6824   opcode(Assembler::ldx_op3);
6825   ins_encode(simple_form3_mem_reg( mem, dst ) );
6826   ins_pipe(iload_mem);
6827 %}
6828 
6829 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
6830   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
6831   effect( KILL newval );
6832   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
6833             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
6834   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
6835   ins_pipe( long_memory_op );
6836 %}
6837 
6838 // Conditional-store of an int value.
6839 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
6840   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
6841   effect( KILL newval );
6842   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
6843             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
6844   ins_encode( enc_cas(mem_ptr,oldval,newval) );
6845   ins_pipe( long_memory_op );
6846 %}
6847 
6848 // Conditional-store of a long value.
6849 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
6850   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
6851   effect( KILL newval );
6852   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
6853             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
6854   ins_encode( enc_cas(mem_ptr,oldval,newval) );
6855   ins_pipe( long_memory_op );
6856 %}
6857 
6858 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
6859 
6860 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6861   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
6862   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6863   format %{
6864             "MOV    $newval,O7\n\t"
6865             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6866             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6867             "MOV    1,$res\n\t"
6868             "MOVne  xcc,R_G0,$res"
6869   %}
6870   ins_encode( enc_casx(mem_ptr, oldval, newval),
6871               enc_lflags_ne_to_boolean(res) );
6872   ins_pipe( long_memory_op );
6873 %}
6874 
6875 
6876 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6877   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
6878   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6879   format %{
6880             "MOV    $newval,O7\n\t"
6881             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6882             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6883             "MOV    1,$res\n\t"
6884             "MOVne  icc,R_G0,$res"
6885   %}
6886   ins_encode( enc_casi(mem_ptr, oldval, newval),
6887               enc_iflags_ne_to_boolean(res) );
6888   ins_pipe( long_memory_op );
6889 %}
6890 
6891 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6892   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
6893   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6894   format %{
6895             "MOV    $newval,O7\n\t"
6896             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6897             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6898             "MOV    1,$res\n\t"
6899             "MOVne  xcc,R_G0,$res"
6900   %}
6901 #ifdef _LP64
6902   ins_encode( enc_casx(mem_ptr, oldval, newval),
6903               enc_lflags_ne_to_boolean(res) );
6904 #else
6905   ins_encode( enc_casi(mem_ptr, oldval, newval),
6906               enc_iflags_ne_to_boolean(res) );
6907 #endif
6908   ins_pipe( long_memory_op );
6909 %}
6910 
6911 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6912   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
6913   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6914   format %{
6915             "MOV    $newval,O7\n\t"
6916             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6917             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6918             "MOV    1,$res\n\t"
6919             "MOVne  icc,R_G0,$res"
6920   %}
6921   ins_encode( enc_casi(mem_ptr, oldval, newval),
6922               enc_iflags_ne_to_boolean(res) );
6923   ins_pipe( long_memory_op );
6924 %}
6925 
6926 //---------------------
6927 // Subtraction Instructions
6928 // Register Subtraction
6929 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6930   match(Set dst (SubI src1 src2));
6931 
6932   size(4);
6933   format %{ "SUB    $src1,$src2,$dst" %}
6934   opcode(Assembler::sub_op3, Assembler::arith_op);
6935   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6936   ins_pipe(ialu_reg_reg);
6937 %}
6938 
6939 // Immediate Subtraction
6940 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6941   match(Set dst (SubI src1 src2));
6942 
6943   size(4);
6944   format %{ "SUB    $src1,$src2,$dst" %}
6945   opcode(Assembler::sub_op3, Assembler::arith_op);
6946   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6947   ins_pipe(ialu_reg_imm);
6948 %}
6949 
6950 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
6951   match(Set dst (SubI zero src2));
6952 
6953   size(4);
6954   format %{ "NEG    $src2,$dst" %}
6955   opcode(Assembler::sub_op3, Assembler::arith_op);
6956   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
6957   ins_pipe(ialu_zero_reg);
6958 %}
6959 
6960 // Long subtraction
6961 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6962   match(Set dst (SubL src1 src2));
6963 
6964   size(4);
6965   format %{ "SUB    $src1,$src2,$dst\t! long" %}
6966   opcode(Assembler::sub_op3, Assembler::arith_op);
6967   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6968   ins_pipe(ialu_reg_reg);
6969 %}
6970 
6971 // Immediate Subtraction
6972 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
6973   match(Set dst (SubL src1 con));
6974 
6975   size(4);
6976   format %{ "SUB    $src1,$con,$dst\t! long" %}
6977   opcode(Assembler::sub_op3, Assembler::arith_op);
6978   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
6979   ins_pipe(ialu_reg_imm);
6980 %}
6981 
6982 // Long negation
6983 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
6984   match(Set dst (SubL zero src2));
6985 
6986   size(4);
6987   format %{ "NEG    $src2,$dst\t! long" %}
6988   opcode(Assembler::sub_op3, Assembler::arith_op);
6989   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
6990   ins_pipe(ialu_zero_reg);
6991 %}
6992 
6993 // Multiplication Instructions
6994 // Integer Multiplication
6995 // Register Multiplication
6996 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6997   match(Set dst (MulI src1 src2));
6998 
6999   size(4);
7000   format %{ "MULX   $src1,$src2,$dst" %}
7001   opcode(Assembler::mulx_op3, Assembler::arith_op);
7002   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7003   ins_pipe(imul_reg_reg);
7004 %}
7005 
7006 // Immediate Multiplication
7007 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7008   match(Set dst (MulI src1 src2));
7009 
7010   size(4);
7011   format %{ "MULX   $src1,$src2,$dst" %}
7012   opcode(Assembler::mulx_op3, Assembler::arith_op);
7013   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7014   ins_pipe(imul_reg_imm);
7015 %}
7016 
7017 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7018   match(Set dst (MulL src1 src2));
7019   ins_cost(DEFAULT_COST * 5);
7020   size(4);
7021   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7022   opcode(Assembler::mulx_op3, Assembler::arith_op);
7023   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7024   ins_pipe(mulL_reg_reg);
7025 %}
7026 
7027 // Immediate Multiplication
7028 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7029   match(Set dst (MulL src1 src2));
7030   ins_cost(DEFAULT_COST * 5);
7031   size(4);
7032   format %{ "MULX   $src1,$src2,$dst" %}
7033   opcode(Assembler::mulx_op3, Assembler::arith_op);
7034   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7035   ins_pipe(mulL_reg_imm);
7036 %}
7037 
7038 // Integer Division
7039 // Register Division
7040 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7041   match(Set dst (DivI src1 src2));
7042   ins_cost((2+71)*DEFAULT_COST);
7043 
7044   format %{ "SRA     $src2,0,$src2\n\t"
7045             "SRA     $src1,0,$src1\n\t"
7046             "SDIVX   $src1,$src2,$dst" %}
7047   ins_encode( idiv_reg( src1, src2, dst ) );
7048   ins_pipe(sdiv_reg_reg);
7049 %}
7050 
7051 // Immediate Division
7052 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7053   match(Set dst (DivI src1 src2));
7054   ins_cost((2+71)*DEFAULT_COST);
7055 
7056   format %{ "SRA     $src1,0,$src1\n\t"
7057             "SDIVX   $src1,$src2,$dst" %}
7058   ins_encode( idiv_imm( src1, src2, dst ) );
7059   ins_pipe(sdiv_reg_imm);
7060 %}
7061 
7062 //----------Div-By-10-Expansion------------------------------------------------
7063 // Extract hi bits of a 32x32->64 bit multiply.
7064 // Expand rule only, not matched
7065 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7066   effect( DEF dst, USE src1, USE src2 );
7067   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7068             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7069   ins_encode( enc_mul_hi(dst,src1,src2));
7070   ins_pipe(sdiv_reg_reg);
7071 %}
7072 
7073 // Magic constant, reciprocal of 10
7074 instruct loadConI_x66666667(iRegIsafe dst) %{
7075   effect( DEF dst );
7076 
7077   size(8);
7078   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7079   ins_encode( Set32(0x66666667, dst) );
7080   ins_pipe(ialu_hi_lo_reg);
7081 %}
7082 
7083 // Register Shift Right Arithmetic Long by 32-63
7084 instruct sra_31( iRegI dst, iRegI src ) %{
7085   effect( DEF dst, USE src );
7086   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7087   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7088   ins_pipe(ialu_reg_reg);
7089 %}
7090 
7091 // Arithmetic Shift Right by 8-bit immediate
7092 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7093   effect( DEF dst, USE src );
7094   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7095   opcode(Assembler::sra_op3, Assembler::arith_op);
7096   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7097   ins_pipe(ialu_reg_imm);
7098 %}
7099 
7100 // Integer DIV with 10
7101 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7102   match(Set dst (DivI src div));
7103   ins_cost((6+6)*DEFAULT_COST);
7104   expand %{
7105     iRegIsafe tmp1;               // Killed temps;
7106     iRegIsafe tmp2;               // Killed temps;
7107     iRegI tmp3;                   // Killed temps;
7108     iRegI tmp4;                   // Killed temps;
7109     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7110     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7111     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7112     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7113     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7114   %}
7115 %}
7116 
7117 // Register Long Division
7118 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7119   match(Set dst (DivL src1 src2));
7120   ins_cost(DEFAULT_COST*71);
7121   size(4);
7122   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7123   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7124   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7125   ins_pipe(divL_reg_reg);
7126 %}
7127 
7128 // Register Long Division
7129 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7130   match(Set dst (DivL src1 src2));
7131   ins_cost(DEFAULT_COST*71);
7132   size(4);
7133   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7134   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7135   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7136   ins_pipe(divL_reg_imm);
7137 %}
7138 
7139 // Integer Remainder
7140 // Register Remainder
7141 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7142   match(Set dst (ModI src1 src2));
7143   effect( KILL ccr, KILL temp);
7144 
7145   format %{ "SREM   $src1,$src2,$dst" %}
7146   ins_encode( irem_reg(src1, src2, dst, temp) );
7147   ins_pipe(sdiv_reg_reg);
7148 %}
7149 
7150 // Immediate Remainder
7151 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7152   match(Set dst (ModI src1 src2));
7153   effect( KILL ccr, KILL temp);
7154 
7155   format %{ "SREM   $src1,$src2,$dst" %}
7156   ins_encode( irem_imm(src1, src2, dst, temp) );
7157   ins_pipe(sdiv_reg_imm);
7158 %}
7159 
7160 // Register Long Remainder
7161 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7162   effect(DEF dst, USE src1, USE src2);
7163   size(4);
7164   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7165   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7166   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7167   ins_pipe(divL_reg_reg);
7168 %}
7169 
7170 // Register Long Division
7171 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7172   effect(DEF dst, USE src1, USE src2);
7173   size(4);
7174   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7175   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7176   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7177   ins_pipe(divL_reg_imm);
7178 %}
7179 
7180 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7181   effect(DEF dst, USE src1, USE src2);
7182   size(4);
7183   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7184   opcode(Assembler::mulx_op3, Assembler::arith_op);
7185   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7186   ins_pipe(mulL_reg_reg);
7187 %}
7188 
7189 // Immediate Multiplication
7190 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7191   effect(DEF dst, USE src1, USE src2);
7192   size(4);
7193   format %{ "MULX   $src1,$src2,$dst" %}
7194   opcode(Assembler::mulx_op3, Assembler::arith_op);
7195   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7196   ins_pipe(mulL_reg_imm);
7197 %}
7198 
7199 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7200   effect(DEF dst, USE src1, USE src2);
7201   size(4);
7202   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7203   opcode(Assembler::sub_op3, Assembler::arith_op);
7204   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7205   ins_pipe(ialu_reg_reg);
7206 %}
7207 
7208 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7209   effect(DEF dst, USE src1, USE src2);
7210   size(4);
7211   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7212   opcode(Assembler::sub_op3, Assembler::arith_op);
7213   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7214   ins_pipe(ialu_reg_reg);
7215 %}
7216 
7217 // Register Long Remainder
7218 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7219   match(Set dst (ModL src1 src2));
7220   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7221   expand %{
7222     iRegL tmp1;
7223     iRegL tmp2;
7224     divL_reg_reg_1(tmp1, src1, src2);
7225     mulL_reg_reg_1(tmp2, tmp1, src2);
7226     subL_reg_reg_1(dst,  src1, tmp2);
7227   %}
7228 %}
7229 
7230 // Register Long Remainder
7231 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7232   match(Set dst (ModL src1 src2));
7233   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7234   expand %{
7235     iRegL tmp1;
7236     iRegL tmp2;
7237     divL_reg_imm13_1(tmp1, src1, src2);
7238     mulL_reg_imm13_1(tmp2, tmp1, src2);
7239     subL_reg_reg_2  (dst,  src1, tmp2);
7240   %}
7241 %}
7242 
7243 // Integer Shift Instructions
7244 // Register Shift Left
7245 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7246   match(Set dst (LShiftI src1 src2));
7247 
7248   size(4);
7249   format %{ "SLL    $src1,$src2,$dst" %}
7250   opcode(Assembler::sll_op3, Assembler::arith_op);
7251   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7252   ins_pipe(ialu_reg_reg);
7253 %}
7254 
7255 // Register Shift Left Immediate
7256 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7257   match(Set dst (LShiftI src1 src2));
7258 
7259   size(4);
7260   format %{ "SLL    $src1,$src2,$dst" %}
7261   opcode(Assembler::sll_op3, Assembler::arith_op);
7262   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7263   ins_pipe(ialu_reg_imm);
7264 %}
7265 
7266 // Register Shift Left
7267 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7268   match(Set dst (LShiftL src1 src2));
7269 
7270   size(4);
7271   format %{ "SLLX   $src1,$src2,$dst" %}
7272   opcode(Assembler::sllx_op3, Assembler::arith_op);
7273   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7274   ins_pipe(ialu_reg_reg);
7275 %}
7276 
7277 // Register Shift Left Immediate
7278 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7279   match(Set dst (LShiftL src1 src2));
7280 
7281   size(4);
7282   format %{ "SLLX   $src1,$src2,$dst" %}
7283   opcode(Assembler::sllx_op3, Assembler::arith_op);
7284   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7285   ins_pipe(ialu_reg_imm);
7286 %}
7287 
7288 // Register Arithmetic Shift Right
7289 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7290   match(Set dst (RShiftI src1 src2));
7291   size(4);
7292   format %{ "SRA    $src1,$src2,$dst" %}
7293   opcode(Assembler::sra_op3, Assembler::arith_op);
7294   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7295   ins_pipe(ialu_reg_reg);
7296 %}
7297 
7298 // Register Arithmetic Shift Right Immediate
7299 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7300   match(Set dst (RShiftI src1 src2));
7301 
7302   size(4);
7303   format %{ "SRA    $src1,$src2,$dst" %}
7304   opcode(Assembler::sra_op3, Assembler::arith_op);
7305   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7306   ins_pipe(ialu_reg_imm);
7307 %}
7308 
7309 // Register Shift Right Arithmatic Long
7310 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7311   match(Set dst (RShiftL src1 src2));
7312 
7313   size(4);
7314   format %{ "SRAX   $src1,$src2,$dst" %}
7315   opcode(Assembler::srax_op3, Assembler::arith_op);
7316   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7317   ins_pipe(ialu_reg_reg);
7318 %}
7319 
7320 // Register Shift Left Immediate
7321 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7322   match(Set dst (RShiftL src1 src2));
7323 
7324   size(4);
7325   format %{ "SRAX   $src1,$src2,$dst" %}
7326   opcode(Assembler::srax_op3, Assembler::arith_op);
7327   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7328   ins_pipe(ialu_reg_imm);
7329 %}
7330 
7331 // Register Shift Right
7332 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7333   match(Set dst (URShiftI src1 src2));
7334 
7335   size(4);
7336   format %{ "SRL    $src1,$src2,$dst" %}
7337   opcode(Assembler::srl_op3, Assembler::arith_op);
7338   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7339   ins_pipe(ialu_reg_reg);
7340 %}
7341 
7342 // Register Shift Right Immediate
7343 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7344   match(Set dst (URShiftI src1 src2));
7345 
7346   size(4);
7347   format %{ "SRL    $src1,$src2,$dst" %}
7348   opcode(Assembler::srl_op3, Assembler::arith_op);
7349   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7350   ins_pipe(ialu_reg_imm);
7351 %}
7352 
7353 // Register Shift Right
7354 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7355   match(Set dst (URShiftL src1 src2));
7356 
7357   size(4);
7358   format %{ "SRLX   $src1,$src2,$dst" %}
7359   opcode(Assembler::srlx_op3, Assembler::arith_op);
7360   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7361   ins_pipe(ialu_reg_reg);
7362 %}
7363 
7364 // Register Shift Right Immediate
7365 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7366   match(Set dst (URShiftL src1 src2));
7367 
7368   size(4);
7369   format %{ "SRLX   $src1,$src2,$dst" %}
7370   opcode(Assembler::srlx_op3, Assembler::arith_op);
7371   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7372   ins_pipe(ialu_reg_imm);
7373 %}
7374 
7375 // Register Shift Right Immediate with a CastP2X
7376 #ifdef _LP64
7377 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7378   match(Set dst (URShiftL (CastP2X src1) src2));
7379   size(4);
7380   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7381   opcode(Assembler::srlx_op3, Assembler::arith_op);
7382   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7383   ins_pipe(ialu_reg_imm);
7384 %}
7385 #else
7386 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7387   match(Set dst (URShiftI (CastP2X src1) src2));
7388   size(4);
7389   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7390   opcode(Assembler::srl_op3, Assembler::arith_op);
7391   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7392   ins_pipe(ialu_reg_imm);
7393 %}
7394 #endif
7395 
7396 
7397 //----------Floating Point Arithmetic Instructions-----------------------------
7398 
7399 //  Add float single precision
7400 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7401   match(Set dst (AddF src1 src2));
7402 
7403   size(4);
7404   format %{ "FADDS  $src1,$src2,$dst" %}
7405   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7406   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7407   ins_pipe(faddF_reg_reg);
7408 %}
7409 
7410 //  Add float double precision
7411 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7412   match(Set dst (AddD src1 src2));
7413 
7414   size(4);
7415   format %{ "FADDD  $src1,$src2,$dst" %}
7416   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7417   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7418   ins_pipe(faddD_reg_reg);
7419 %}
7420 
7421 //  Sub float single precision
7422 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7423   match(Set dst (SubF src1 src2));
7424 
7425   size(4);
7426   format %{ "FSUBS  $src1,$src2,$dst" %}
7427   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7428   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7429   ins_pipe(faddF_reg_reg);
7430 %}
7431 
7432 //  Sub float double precision
7433 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7434   match(Set dst (SubD src1 src2));
7435 
7436   size(4);
7437   format %{ "FSUBD  $src1,$src2,$dst" %}
7438   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7439   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7440   ins_pipe(faddD_reg_reg);
7441 %}
7442 
7443 //  Mul float single precision
7444 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7445   match(Set dst (MulF src1 src2));
7446 
7447   size(4);
7448   format %{ "FMULS  $src1,$src2,$dst" %}
7449   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7450   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7451   ins_pipe(fmulF_reg_reg);
7452 %}
7453 
7454 //  Mul float double precision
7455 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7456   match(Set dst (MulD src1 src2));
7457 
7458   size(4);
7459   format %{ "FMULD  $src1,$src2,$dst" %}
7460   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7461   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7462   ins_pipe(fmulD_reg_reg);
7463 %}
7464 
7465 //  Div float single precision
7466 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7467   match(Set dst (DivF src1 src2));
7468 
7469   size(4);
7470   format %{ "FDIVS  $src1,$src2,$dst" %}
7471   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7472   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7473   ins_pipe(fdivF_reg_reg);
7474 %}
7475 
7476 //  Div float double precision
7477 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7478   match(Set dst (DivD src1 src2));
7479 
7480   size(4);
7481   format %{ "FDIVD  $src1,$src2,$dst" %}
7482   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7483   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7484   ins_pipe(fdivD_reg_reg);
7485 %}
7486 
7487 //  Absolute float double precision
7488 instruct absD_reg(regD dst, regD src) %{
7489   match(Set dst (AbsD src));
7490 
7491   format %{ "FABSd  $src,$dst" %}
7492   ins_encode(fabsd(dst, src));
7493   ins_pipe(faddD_reg);
7494 %}
7495 
7496 //  Absolute float single precision
7497 instruct absF_reg(regF dst, regF src) %{
7498   match(Set dst (AbsF src));
7499 
7500   format %{ "FABSs  $src,$dst" %}
7501   ins_encode(fabss(dst, src));
7502   ins_pipe(faddF_reg);
7503 %}
7504 
7505 instruct negF_reg(regF dst, regF src) %{
7506   match(Set dst (NegF src));
7507 
7508   size(4);
7509   format %{ "FNEGs  $src,$dst" %}
7510   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7511   ins_encode(form3_opf_rs2F_rdF(src, dst));
7512   ins_pipe(faddF_reg);
7513 %}
7514 
7515 instruct negD_reg(regD dst, regD src) %{
7516   match(Set dst (NegD src));
7517 
7518   format %{ "FNEGd  $src,$dst" %}
7519   ins_encode(fnegd(dst, src));
7520   ins_pipe(faddD_reg);
7521 %}
7522 
7523 //  Sqrt float double precision
7524 instruct sqrtF_reg_reg(regF dst, regF src) %{
7525   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7526 
7527   size(4);
7528   format %{ "FSQRTS $src,$dst" %}
7529   ins_encode(fsqrts(dst, src));
7530   ins_pipe(fdivF_reg_reg);
7531 %}
7532 
7533 //  Sqrt float double precision
7534 instruct sqrtD_reg_reg(regD dst, regD src) %{
7535   match(Set dst (SqrtD src));
7536 
7537   size(4);
7538   format %{ "FSQRTD $src,$dst" %}
7539   ins_encode(fsqrtd(dst, src));
7540   ins_pipe(fdivD_reg_reg);
7541 %}
7542 
7543 //----------Logical Instructions-----------------------------------------------
7544 // And Instructions
7545 // Register And
7546 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7547   match(Set dst (AndI src1 src2));
7548 
7549   size(4);
7550   format %{ "AND    $src1,$src2,$dst" %}
7551   opcode(Assembler::and_op3, Assembler::arith_op);
7552   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7553   ins_pipe(ialu_reg_reg);
7554 %}
7555 
7556 // Immediate And
7557 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7558   match(Set dst (AndI src1 src2));
7559 
7560   size(4);
7561   format %{ "AND    $src1,$src2,$dst" %}
7562   opcode(Assembler::and_op3, Assembler::arith_op);
7563   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7564   ins_pipe(ialu_reg_imm);
7565 %}
7566 
7567 // Register And Long
7568 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7569   match(Set dst (AndL src1 src2));
7570 
7571   ins_cost(DEFAULT_COST);
7572   size(4);
7573   format %{ "AND    $src1,$src2,$dst\t! long" %}
7574   opcode(Assembler::and_op3, Assembler::arith_op);
7575   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7576   ins_pipe(ialu_reg_reg);
7577 %}
7578 
7579 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7580   match(Set dst (AndL src1 con));
7581 
7582   ins_cost(DEFAULT_COST);
7583   size(4);
7584   format %{ "AND    $src1,$con,$dst\t! long" %}
7585   opcode(Assembler::and_op3, Assembler::arith_op);
7586   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7587   ins_pipe(ialu_reg_imm);
7588 %}
7589 
7590 // Or Instructions
7591 // Register Or
7592 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7593   match(Set dst (OrI src1 src2));
7594 
7595   size(4);
7596   format %{ "OR     $src1,$src2,$dst" %}
7597   opcode(Assembler::or_op3, Assembler::arith_op);
7598   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7599   ins_pipe(ialu_reg_reg);
7600 %}
7601 
7602 // Immediate Or
7603 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7604   match(Set dst (OrI src1 src2));
7605 
7606   size(4);
7607   format %{ "OR     $src1,$src2,$dst" %}
7608   opcode(Assembler::or_op3, Assembler::arith_op);
7609   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7610   ins_pipe(ialu_reg_imm);
7611 %}
7612 
7613 // Register Or Long
7614 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7615   match(Set dst (OrL src1 src2));
7616 
7617   ins_cost(DEFAULT_COST);
7618   size(4);
7619   format %{ "OR     $src1,$src2,$dst\t! long" %}
7620   opcode(Assembler::or_op3, Assembler::arith_op);
7621   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7622   ins_pipe(ialu_reg_reg);
7623 %}
7624 
7625 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7626   match(Set dst (OrL src1 con));
7627   ins_cost(DEFAULT_COST*2);
7628 
7629   ins_cost(DEFAULT_COST);
7630   size(4);
7631   format %{ "OR     $src1,$con,$dst\t! long" %}
7632   opcode(Assembler::or_op3, Assembler::arith_op);
7633   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7634   ins_pipe(ialu_reg_imm);
7635 %}
7636 
7637 #ifndef _LP64
7638 
7639 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
7640 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
7641   match(Set dst (OrI src1 (CastP2X src2)));
7642 
7643   size(4);
7644   format %{ "OR     $src1,$src2,$dst" %}
7645   opcode(Assembler::or_op3, Assembler::arith_op);
7646   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7647   ins_pipe(ialu_reg_reg);
7648 %}
7649 
7650 #else
7651 
7652 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
7653   match(Set dst (OrL src1 (CastP2X src2)));
7654 
7655   ins_cost(DEFAULT_COST);
7656   size(4);
7657   format %{ "OR     $src1,$src2,$dst\t! long" %}
7658   opcode(Assembler::or_op3, Assembler::arith_op);
7659   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7660   ins_pipe(ialu_reg_reg);
7661 %}
7662 
7663 #endif
7664 
7665 // Xor Instructions
7666 // Register Xor
7667 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7668   match(Set dst (XorI src1 src2));
7669 
7670   size(4);
7671   format %{ "XOR    $src1,$src2,$dst" %}
7672   opcode(Assembler::xor_op3, Assembler::arith_op);
7673   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7674   ins_pipe(ialu_reg_reg);
7675 %}
7676 
7677 // Immediate Xor
7678 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7679   match(Set dst (XorI src1 src2));
7680 
7681   size(4);
7682   format %{ "XOR    $src1,$src2,$dst" %}
7683   opcode(Assembler::xor_op3, Assembler::arith_op);
7684   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7685   ins_pipe(ialu_reg_imm);
7686 %}
7687 
7688 // Register Xor Long
7689 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7690   match(Set dst (XorL src1 src2));
7691 
7692   ins_cost(DEFAULT_COST);
7693   size(4);
7694   format %{ "XOR    $src1,$src2,$dst\t! long" %}
7695   opcode(Assembler::xor_op3, Assembler::arith_op);
7696   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7697   ins_pipe(ialu_reg_reg);
7698 %}
7699 
7700 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7701   match(Set dst (XorL src1 con));
7702 
7703   ins_cost(DEFAULT_COST);
7704   size(4);
7705   format %{ "XOR    $src1,$con,$dst\t! long" %}
7706   opcode(Assembler::xor_op3, Assembler::arith_op);
7707   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7708   ins_pipe(ialu_reg_imm);
7709 %}
7710 
7711 //----------Convert to Boolean-------------------------------------------------
7712 // Nice hack for 32-bit tests but doesn't work for
7713 // 64-bit pointers.
7714 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
7715   match(Set dst (Conv2B src));
7716   effect( KILL ccr );
7717   ins_cost(DEFAULT_COST*2);
7718   format %{ "CMP    R_G0,$src\n\t"
7719             "ADDX   R_G0,0,$dst" %}
7720   ins_encode( enc_to_bool( src, dst ) );
7721   ins_pipe(ialu_reg_ialu);
7722 %}
7723 
7724 #ifndef _LP64
7725 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
7726   match(Set dst (Conv2B src));
7727   effect( KILL ccr );
7728   ins_cost(DEFAULT_COST*2);
7729   format %{ "CMP    R_G0,$src\n\t"
7730             "ADDX   R_G0,0,$dst" %}
7731   ins_encode( enc_to_bool( src, dst ) );
7732   ins_pipe(ialu_reg_ialu);
7733 %}
7734 #else
7735 instruct convP2B( iRegI dst, iRegP src ) %{
7736   match(Set dst (Conv2B src));
7737   ins_cost(DEFAULT_COST*2);
7738   format %{ "MOV    $src,$dst\n\t"
7739             "MOVRNZ $src,1,$dst" %}
7740   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
7741   ins_pipe(ialu_clr_and_mover);
7742 %}
7743 #endif
7744 
7745 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
7746   match(Set dst (CmpLTMask p q));
7747   effect( KILL ccr );
7748   ins_cost(DEFAULT_COST*4);
7749   format %{ "CMP    $p,$q\n\t"
7750             "MOV    #0,$dst\n\t"
7751             "BLT,a  .+8\n\t"
7752             "MOV    #-1,$dst" %}
7753   ins_encode( enc_ltmask(p,q,dst) );
7754   ins_pipe(ialu_reg_reg_ialu);
7755 %}
7756 
7757 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7758   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
7759   effect(KILL ccr, TEMP tmp);
7760   ins_cost(DEFAULT_COST*3);
7761 
7762   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
7763             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
7764             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7765   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
7766   ins_pipe( cadd_cmpltmask );
7767 %}
7768 
7769 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7770   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
7771   effect( KILL ccr, TEMP tmp);
7772   ins_cost(DEFAULT_COST*3);
7773 
7774   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
7775             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
7776             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7777   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
7778   ins_pipe( cadd_cmpltmask );
7779 %}
7780 
7781 //----------Arithmetic Conversion Instructions---------------------------------
7782 // The conversions operations are all Alpha sorted.  Please keep it that way!
7783 
7784 instruct convD2F_reg(regF dst, regD src) %{
7785   match(Set dst (ConvD2F src));
7786   size(4);
7787   format %{ "FDTOS  $src,$dst" %}
7788   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
7789   ins_encode(form3_opf_rs2D_rdF(src, dst));
7790   ins_pipe(fcvtD2F);
7791 %}
7792 
7793 
7794 // Convert a double to an int in a float register.
7795 // If the double is a NAN, stuff a zero in instead.
7796 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
7797   effect(DEF dst, USE src, KILL fcc0);
7798   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
7799             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7800             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
7801             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
7802             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
7803       "skip:" %}
7804   ins_encode(form_d2i_helper(src,dst));
7805   ins_pipe(fcvtD2I);
7806 %}
7807 
7808 instruct convD2I_reg(stackSlotI dst, regD src) %{
7809   match(Set dst (ConvD2I src));
7810   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7811   expand %{
7812     regF tmp;
7813     convD2I_helper(tmp, src);
7814     regF_to_stkI(dst, tmp);
7815   %}
7816 %}
7817 
7818 // Convert a double to a long in a double register.
7819 // If the double is a NAN, stuff a zero in instead.
7820 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
7821   effect(DEF dst, USE src, KILL fcc0);
7822   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
7823             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7824             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
7825             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
7826             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
7827       "skip:" %}
7828   ins_encode(form_d2l_helper(src,dst));
7829   ins_pipe(fcvtD2L);
7830 %}
7831 
7832 
7833 // Double to Long conversion
7834 instruct convD2L_reg(stackSlotL dst, regD src) %{
7835   match(Set dst (ConvD2L src));
7836   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7837   expand %{
7838     regD tmp;
7839     convD2L_helper(tmp, src);
7840     regD_to_stkL(dst, tmp);
7841   %}
7842 %}
7843 
7844 
7845 instruct convF2D_reg(regD dst, regF src) %{
7846   match(Set dst (ConvF2D src));
7847   format %{ "FSTOD  $src,$dst" %}
7848   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
7849   ins_encode(form3_opf_rs2F_rdD(src, dst));
7850   ins_pipe(fcvtF2D);
7851 %}
7852 
7853 
7854 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
7855   effect(DEF dst, USE src, KILL fcc0);
7856   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
7857             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7858             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
7859             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
7860             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
7861       "skip:" %}
7862   ins_encode(form_f2i_helper(src,dst));
7863   ins_pipe(fcvtF2I);
7864 %}
7865 
7866 instruct convF2I_reg(stackSlotI dst, regF src) %{
7867   match(Set dst (ConvF2I src));
7868   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7869   expand %{
7870     regF tmp;
7871     convF2I_helper(tmp, src);
7872     regF_to_stkI(dst, tmp);
7873   %}
7874 %}
7875 
7876 
7877 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
7878   effect(DEF dst, USE src, KILL fcc0);
7879   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
7880             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7881             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
7882             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
7883             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
7884       "skip:" %}
7885   ins_encode(form_f2l_helper(src,dst));
7886   ins_pipe(fcvtF2L);
7887 %}
7888 
7889 // Float to Long conversion
7890 instruct convF2L_reg(stackSlotL dst, regF src) %{
7891   match(Set dst (ConvF2L src));
7892   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7893   expand %{
7894     regD tmp;
7895     convF2L_helper(tmp, src);
7896     regD_to_stkL(dst, tmp);
7897   %}
7898 %}
7899 
7900 
7901 instruct convI2D_helper(regD dst, regF tmp) %{
7902   effect(USE tmp, DEF dst);
7903   format %{ "FITOD  $tmp,$dst" %}
7904   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
7905   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
7906   ins_pipe(fcvtI2D);
7907 %}
7908 
7909 instruct convI2D_reg(stackSlotI src, regD dst) %{
7910   match(Set dst (ConvI2D src));
7911   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7912   expand %{
7913     regF tmp;
7914     stkI_to_regF( tmp, src);
7915     convI2D_helper( dst, tmp);
7916   %}
7917 %}
7918 
7919 instruct convI2D_mem( regD_low dst, memory mem ) %{
7920   match(Set dst (ConvI2D (LoadI mem)));
7921   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7922   size(8);
7923   format %{ "LDF    $mem,$dst\n\t"
7924             "FITOD  $dst,$dst" %}
7925   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
7926   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
7927   ins_pipe(floadF_mem);
7928 %}
7929 
7930 
7931 instruct convI2F_helper(regF dst, regF tmp) %{
7932   effect(DEF dst, USE tmp);
7933   format %{ "FITOS  $tmp,$dst" %}
7934   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
7935   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
7936   ins_pipe(fcvtI2F);
7937 %}
7938 
7939 instruct convI2F_reg( regF dst, stackSlotI src ) %{
7940   match(Set dst (ConvI2F src));
7941   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7942   expand %{
7943     regF tmp;
7944     stkI_to_regF(tmp,src);
7945     convI2F_helper(dst, tmp);
7946   %}
7947 %}
7948 
7949 instruct convI2F_mem( regF dst, memory mem ) %{
7950   match(Set dst (ConvI2F (LoadI mem)));
7951   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7952   size(8);
7953   format %{ "LDF    $mem,$dst\n\t"
7954             "FITOS  $dst,$dst" %}
7955   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
7956   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
7957   ins_pipe(floadF_mem);
7958 %}
7959 
7960 
7961 instruct convI2L_reg(iRegL dst, iRegI src) %{
7962   match(Set dst (ConvI2L src));
7963   size(4);
7964   format %{ "SRA    $src,0,$dst\t! int->long" %}
7965   opcode(Assembler::sra_op3, Assembler::arith_op);
7966   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
7967   ins_pipe(ialu_reg_reg);
7968 %}
7969 
7970 // Zero-extend convert int to long
7971 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
7972   match(Set dst (AndL (ConvI2L src) mask) );
7973   size(4);
7974   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
7975   opcode(Assembler::srl_op3, Assembler::arith_op);
7976   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
7977   ins_pipe(ialu_reg_reg);
7978 %}
7979 
7980 // Zero-extend long
7981 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
7982   match(Set dst (AndL src mask) );
7983   size(4);
7984   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
7985   opcode(Assembler::srl_op3, Assembler::arith_op);
7986   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
7987   ins_pipe(ialu_reg_reg);
7988 %}
7989 
7990 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
7991   match(Set dst (MoveF2I src));
7992   effect(DEF dst, USE src);
7993   ins_cost(MEMORY_REF_COST);
7994 
7995   size(4);
7996   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
7997   opcode(Assembler::lduw_op3);
7998   ins_encode(simple_form3_mem_reg( src, dst ) );
7999   ins_pipe(iload_mem);
8000 %}
8001 
8002 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8003   match(Set dst (MoveI2F src));
8004   effect(DEF dst, USE src);
8005   ins_cost(MEMORY_REF_COST);
8006 
8007   size(4);
8008   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8009   opcode(Assembler::ldf_op3);
8010   ins_encode(simple_form3_mem_reg(src, dst));
8011   ins_pipe(floadF_stk);
8012 %}
8013 
8014 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8015   match(Set dst (MoveD2L src));
8016   effect(DEF dst, USE src);
8017   ins_cost(MEMORY_REF_COST);
8018 
8019   size(4);
8020   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8021   opcode(Assembler::ldx_op3);
8022   ins_encode(simple_form3_mem_reg( src, dst ) );
8023   ins_pipe(iload_mem);
8024 %}
8025 
8026 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8027   match(Set dst (MoveL2D src));
8028   effect(DEF dst, USE src);
8029   ins_cost(MEMORY_REF_COST);
8030 
8031   size(4);
8032   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8033   opcode(Assembler::lddf_op3);
8034   ins_encode(simple_form3_mem_reg(src, dst));
8035   ins_pipe(floadD_stk);
8036 %}
8037 
8038 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8039   match(Set dst (MoveF2I src));
8040   effect(DEF dst, USE src);
8041   ins_cost(MEMORY_REF_COST);
8042 
8043   size(4);
8044   format %{ "STF   $src,$dst\t!MoveF2I" %}
8045   opcode(Assembler::stf_op3);
8046   ins_encode(simple_form3_mem_reg(dst, src));
8047   ins_pipe(fstoreF_stk_reg);
8048 %}
8049 
8050 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8051   match(Set dst (MoveI2F src));
8052   effect(DEF dst, USE src);
8053   ins_cost(MEMORY_REF_COST);
8054 
8055   size(4);
8056   format %{ "STW    $src,$dst\t!MoveI2F" %}
8057   opcode(Assembler::stw_op3);
8058   ins_encode(simple_form3_mem_reg( dst, src ) );
8059   ins_pipe(istore_mem_reg);
8060 %}
8061 
8062 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8063   match(Set dst (MoveD2L src));
8064   effect(DEF dst, USE src);
8065   ins_cost(MEMORY_REF_COST);
8066 
8067   size(4);
8068   format %{ "STDF   $src,$dst\t!MoveD2L" %}
8069   opcode(Assembler::stdf_op3);
8070   ins_encode(simple_form3_mem_reg(dst, src));
8071   ins_pipe(fstoreD_stk_reg);
8072 %}
8073 
8074 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8075   match(Set dst (MoveL2D src));
8076   effect(DEF dst, USE src);
8077   ins_cost(MEMORY_REF_COST);
8078 
8079   size(4);
8080   format %{ "STX    $src,$dst\t!MoveL2D" %}
8081   opcode(Assembler::stx_op3);
8082   ins_encode(simple_form3_mem_reg( dst, src ) );
8083   ins_pipe(istore_mem_reg);
8084 %}
8085 
8086 
8087 //-----------
8088 // Long to Double conversion using V8 opcodes.
8089 // Still useful because cheetah traps and becomes
8090 // amazingly slow for some common numbers.
8091 
8092 // Magic constant, 0x43300000
8093 instruct loadConI_x43300000(iRegI dst) %{
8094   effect(DEF dst);
8095   size(4);
8096   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8097   ins_encode(SetHi22(0x43300000, dst));
8098   ins_pipe(ialu_none);
8099 %}
8100 
8101 // Magic constant, 0x41f00000
8102 instruct loadConI_x41f00000(iRegI dst) %{
8103   effect(DEF dst);
8104   size(4);
8105   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8106   ins_encode(SetHi22(0x41f00000, dst));
8107   ins_pipe(ialu_none);
8108 %}
8109 
8110 // Construct a double from two float halves
8111 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8112   effect(DEF dst, USE src1, USE src2);
8113   size(8);
8114   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8115             "FMOVS  $src2.lo,$dst.lo" %}
8116   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8117   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8118   ins_pipe(faddD_reg_reg);
8119 %}
8120 
8121 // Convert integer in high half of a double register (in the lower half of
8122 // the double register file) to double
8123 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8124   effect(DEF dst, USE src);
8125   size(4);
8126   format %{ "FITOD  $src,$dst" %}
8127   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8128   ins_encode(form3_opf_rs2D_rdD(src, dst));
8129   ins_pipe(fcvtLHi2D);
8130 %}
8131 
8132 // Add float double precision
8133 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8134   effect(DEF dst, USE src1, USE src2);
8135   size(4);
8136   format %{ "FADDD  $src1,$src2,$dst" %}
8137   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8138   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8139   ins_pipe(faddD_reg_reg);
8140 %}
8141 
8142 // Sub float double precision
8143 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8144   effect(DEF dst, USE src1, USE src2);
8145   size(4);
8146   format %{ "FSUBD  $src1,$src2,$dst" %}
8147   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8148   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8149   ins_pipe(faddD_reg_reg);
8150 %}
8151 
8152 // Mul float double precision
8153 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8154   effect(DEF dst, USE src1, USE src2);
8155   size(4);
8156   format %{ "FMULD  $src1,$src2,$dst" %}
8157   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8158   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8159   ins_pipe(fmulD_reg_reg);
8160 %}
8161 
8162 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8163   match(Set dst (ConvL2D src));
8164   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8165 
8166   expand %{
8167     regD_low   tmpsrc;
8168     iRegI      ix43300000;
8169     iRegI      ix41f00000;
8170     stackSlotL lx43300000;
8171     stackSlotL lx41f00000;
8172     regD_low   dx43300000;
8173     regD       dx41f00000;
8174     regD       tmp1;
8175     regD_low   tmp2;
8176     regD       tmp3;
8177     regD       tmp4;
8178 
8179     stkL_to_regD(tmpsrc, src);
8180 
8181     loadConI_x43300000(ix43300000);
8182     loadConI_x41f00000(ix41f00000);
8183     regI_to_stkLHi(lx43300000, ix43300000);
8184     regI_to_stkLHi(lx41f00000, ix41f00000);
8185     stkL_to_regD(dx43300000, lx43300000);
8186     stkL_to_regD(dx41f00000, lx41f00000);
8187 
8188     convI2D_regDHi_regD(tmp1, tmpsrc);
8189     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8190     subD_regD_regD(tmp3, tmp2, dx43300000);
8191     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8192     addD_regD_regD(dst, tmp3, tmp4);
8193   %}
8194 %}
8195 
8196 // Long to Double conversion using fast fxtof
8197 instruct convL2D_helper(regD dst, regD tmp) %{
8198   effect(DEF dst, USE tmp);
8199   size(4);
8200   format %{ "FXTOD  $tmp,$dst" %}
8201   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8202   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8203   ins_pipe(fcvtL2D);
8204 %}
8205 
8206 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
8207   predicate(VM_Version::has_fast_fxtof());
8208   match(Set dst (ConvL2D src));
8209   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8210   expand %{
8211     regD tmp;
8212     stkL_to_regD(tmp, src);
8213     convL2D_helper(dst, tmp);
8214   %}
8215 %}
8216 
8217 //-----------
8218 // Long to Float conversion using V8 opcodes.
8219 // Still useful because cheetah traps and becomes
8220 // amazingly slow for some common numbers.
8221 
8222 // Long to Float conversion using fast fxtof
8223 instruct convL2F_helper(regF dst, regD tmp) %{
8224   effect(DEF dst, USE tmp);
8225   size(4);
8226   format %{ "FXTOS  $tmp,$dst" %}
8227   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8228   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8229   ins_pipe(fcvtL2F);
8230 %}
8231 
8232 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
8233   match(Set dst (ConvL2F src));
8234   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8235   expand %{
8236     regD tmp;
8237     stkL_to_regD(tmp, src);
8238     convL2F_helper(dst, tmp);
8239   %}
8240 %}
8241 //-----------
8242 
8243 instruct convL2I_reg(iRegI dst, iRegL src) %{
8244   match(Set dst (ConvL2I src));
8245 #ifndef _LP64
8246   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8247   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8248   ins_pipe(ialu_move_reg_I_to_L);
8249 #else
8250   size(4);
8251   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8252   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8253   ins_pipe(ialu_reg);
8254 #endif
8255 %}
8256 
8257 // Register Shift Right Immediate
8258 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8259   match(Set dst (ConvL2I (RShiftL src cnt)));
8260 
8261   size(4);
8262   format %{ "SRAX   $src,$cnt,$dst" %}
8263   opcode(Assembler::srax_op3, Assembler::arith_op);
8264   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8265   ins_pipe(ialu_reg_imm);
8266 %}
8267 
8268 // Replicate scalar to packed byte values in Double register
8269 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8270   effect(DEF dst, USE src);
8271   format %{ "SLLX  $src,56,$dst\n\t"
8272             "SRLX  $dst, 8,O7\n\t"
8273             "OR    $dst,O7,$dst\n\t"
8274             "SRLX  $dst,16,O7\n\t"
8275             "OR    $dst,O7,$dst\n\t"
8276             "SRLX  $dst,32,O7\n\t"
8277             "OR    $dst,O7,$dst\t! replicate8B" %}
8278   ins_encode( enc_repl8b(src, dst));
8279   ins_pipe(ialu_reg);
8280 %}
8281 
8282 // Replicate scalar to packed byte values in Double register
8283 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8284   match(Set dst (Replicate8B src));
8285   expand %{
8286     iRegL tmp;
8287     Repl8B_reg_helper(tmp, src);
8288     regL_to_stkD(dst, tmp);
8289   %}
8290 %}
8291 
8292 // Replicate scalar constant to packed byte values in Double register
8293 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
8294   match(Set dst (Replicate8B src));
8295 #ifdef _LP64
8296   size(36);
8297 #else
8298   size(8);
8299 #endif
8300   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
8301             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
8302   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
8303   ins_pipe(loadConFD);
8304 %}
8305 
8306 // Replicate scalar to packed char values into stack slot
8307 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8308   effect(DEF dst, USE src);
8309   format %{ "SLLX  $src,48,$dst\n\t"
8310             "SRLX  $dst,16,O7\n\t"
8311             "OR    $dst,O7,$dst\n\t"
8312             "SRLX  $dst,32,O7\n\t"
8313             "OR    $dst,O7,$dst\t! replicate4C" %}
8314   ins_encode( enc_repl4s(src, dst) );
8315   ins_pipe(ialu_reg);
8316 %}
8317 
8318 // Replicate scalar to packed char values into stack slot
8319 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8320   match(Set dst (Replicate4C src));
8321   expand %{
8322     iRegL tmp;
8323     Repl4C_reg_helper(tmp, src);
8324     regL_to_stkD(dst, tmp);
8325   %}
8326 %}
8327 
8328 // Replicate scalar constant to packed char values in Double register
8329 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
8330   match(Set dst (Replicate4C src));
8331 #ifdef _LP64
8332   size(36);
8333 #else
8334   size(8);
8335 #endif
8336   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
8337             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8338   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8339   ins_pipe(loadConFD);
8340 %}
8341 
8342 // Replicate scalar to packed short values into stack slot
8343 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8344   effect(DEF dst, USE src);
8345   format %{ "SLLX  $src,48,$dst\n\t"
8346             "SRLX  $dst,16,O7\n\t"
8347             "OR    $dst,O7,$dst\n\t"
8348             "SRLX  $dst,32,O7\n\t"
8349             "OR    $dst,O7,$dst\t! replicate4S" %}
8350   ins_encode( enc_repl4s(src, dst) );
8351   ins_pipe(ialu_reg);
8352 %}
8353 
8354 // Replicate scalar to packed short values into stack slot
8355 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8356   match(Set dst (Replicate4S src));
8357   expand %{
8358     iRegL tmp;
8359     Repl4S_reg_helper(tmp, src);
8360     regL_to_stkD(dst, tmp);
8361   %}
8362 %}
8363 
8364 // Replicate scalar constant to packed short values in Double register
8365 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
8366   match(Set dst (Replicate4S src));
8367 #ifdef _LP64
8368   size(36);
8369 #else
8370   size(8);
8371 #endif
8372   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
8373             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8374   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8375   ins_pipe(loadConFD);
8376 %}
8377 
8378 // Replicate scalar to packed int values in Double register
8379 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
8380   effect(DEF dst, USE src);
8381   format %{ "SLLX  $src,32,$dst\n\t"
8382             "SRLX  $dst,32,O7\n\t"
8383             "OR    $dst,O7,$dst\t! replicate2I" %}
8384   ins_encode( enc_repl2i(src, dst));
8385   ins_pipe(ialu_reg);
8386 %}
8387 
8388 // Replicate scalar to packed int values in Double register
8389 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
8390   match(Set dst (Replicate2I src));
8391   expand %{
8392     iRegL tmp;
8393     Repl2I_reg_helper(tmp, src);
8394     regL_to_stkD(dst, tmp);
8395   %}
8396 %}
8397 
8398 // Replicate scalar zero constant to packed int values in Double register
8399 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
8400   match(Set dst (Replicate2I src));
8401 #ifdef _LP64
8402   size(36);
8403 #else
8404   size(8);
8405 #endif
8406   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
8407             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
8408   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
8409   ins_pipe(loadConFD);
8410 %}
8411 
8412 //----------Control Flow Instructions------------------------------------------
8413 // Compare Instructions
8414 // Compare Integers
8415 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8416   match(Set icc (CmpI op1 op2));
8417   effect( DEF icc, USE op1, USE op2 );
8418 
8419   size(4);
8420   format %{ "CMP    $op1,$op2" %}
8421   opcode(Assembler::subcc_op3, Assembler::arith_op);
8422   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8423   ins_pipe(ialu_cconly_reg_reg);
8424 %}
8425 
8426 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8427   match(Set icc (CmpU op1 op2));
8428 
8429   size(4);
8430   format %{ "CMP    $op1,$op2\t! unsigned" %}
8431   opcode(Assembler::subcc_op3, Assembler::arith_op);
8432   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8433   ins_pipe(ialu_cconly_reg_reg);
8434 %}
8435 
8436 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8437   match(Set icc (CmpI op1 op2));
8438   effect( DEF icc, USE op1 );
8439 
8440   size(4);
8441   format %{ "CMP    $op1,$op2" %}
8442   opcode(Assembler::subcc_op3, Assembler::arith_op);
8443   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8444   ins_pipe(ialu_cconly_reg_imm);
8445 %}
8446 
8447 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8448   match(Set icc (CmpI (AndI op1 op2) zero));
8449 
8450   size(4);
8451   format %{ "BTST   $op2,$op1" %}
8452   opcode(Assembler::andcc_op3, Assembler::arith_op);
8453   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8454   ins_pipe(ialu_cconly_reg_reg_zero);
8455 %}
8456 
8457 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8458   match(Set icc (CmpI (AndI op1 op2) zero));
8459 
8460   size(4);
8461   format %{ "BTST   $op2,$op1" %}
8462   opcode(Assembler::andcc_op3, Assembler::arith_op);
8463   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8464   ins_pipe(ialu_cconly_reg_imm_zero);
8465 %}
8466 
8467 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8468   match(Set xcc (CmpL op1 op2));
8469   effect( DEF xcc, USE op1, USE op2 );
8470 
8471   size(4);
8472   format %{ "CMP    $op1,$op2\t\t! long" %}
8473   opcode(Assembler::subcc_op3, Assembler::arith_op);
8474   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8475   ins_pipe(ialu_cconly_reg_reg);
8476 %}
8477 
8478 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8479   match(Set xcc (CmpL op1 con));
8480   effect( DEF xcc, USE op1, USE con );
8481 
8482   size(4);
8483   format %{ "CMP    $op1,$con\t\t! long" %}
8484   opcode(Assembler::subcc_op3, Assembler::arith_op);
8485   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8486   ins_pipe(ialu_cconly_reg_reg);
8487 %}
8488 
8489 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8490   match(Set xcc (CmpL (AndL op1 op2) zero));
8491   effect( DEF xcc, USE op1, USE op2 );
8492 
8493   size(4);
8494   format %{ "BTST   $op1,$op2\t\t! long" %}
8495   opcode(Assembler::andcc_op3, Assembler::arith_op);
8496   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8497   ins_pipe(ialu_cconly_reg_reg);
8498 %}
8499 
8500 // useful for checking the alignment of a pointer:
8501 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8502   match(Set xcc (CmpL (AndL op1 con) zero));
8503   effect( DEF xcc, USE op1, USE con );
8504 
8505   size(4);
8506   format %{ "BTST   $op1,$con\t\t! long" %}
8507   opcode(Assembler::andcc_op3, Assembler::arith_op);
8508   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8509   ins_pipe(ialu_cconly_reg_reg);
8510 %}
8511 
8512 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8513   match(Set icc (CmpU op1 op2));
8514 
8515   size(4);
8516   format %{ "CMP    $op1,$op2\t! unsigned" %}
8517   opcode(Assembler::subcc_op3, Assembler::arith_op);
8518   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8519   ins_pipe(ialu_cconly_reg_imm);
8520 %}
8521 
8522 // Compare Pointers
8523 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8524   match(Set pcc (CmpP op1 op2));
8525 
8526   size(4);
8527   format %{ "CMP    $op1,$op2\t! ptr" %}
8528   opcode(Assembler::subcc_op3, Assembler::arith_op);
8529   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8530   ins_pipe(ialu_cconly_reg_reg);
8531 %}
8532 
8533 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8534   match(Set pcc (CmpP op1 op2));
8535 
8536   size(4);
8537   format %{ "CMP    $op1,$op2\t! ptr" %}
8538   opcode(Assembler::subcc_op3, Assembler::arith_op);
8539   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8540   ins_pipe(ialu_cconly_reg_imm);
8541 %}
8542 
8543 // Compare Narrow oops
8544 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8545   match(Set icc (CmpN op1 op2));
8546 
8547   size(4);
8548   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8549   opcode(Assembler::subcc_op3, Assembler::arith_op);
8550   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8551   ins_pipe(ialu_cconly_reg_reg);
8552 %}
8553 
8554 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8555   match(Set icc (CmpN op1 op2));
8556 
8557   size(4);
8558   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8559   opcode(Assembler::subcc_op3, Assembler::arith_op);
8560   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8561   ins_pipe(ialu_cconly_reg_imm);
8562 %}
8563 
8564 //----------Max and Min--------------------------------------------------------
8565 // Min Instructions
8566 // Conditional move for min
8567 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8568   effect( USE_DEF op2, USE op1, USE icc );
8569 
8570   size(4);
8571   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8572   opcode(Assembler::less);
8573   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8574   ins_pipe(ialu_reg_flags);
8575 %}
8576 
8577 // Min Register with Register.
8578 instruct minI_eReg(iRegI op1, iRegI op2) %{
8579   match(Set op2 (MinI op1 op2));
8580   ins_cost(DEFAULT_COST*2);
8581   expand %{
8582     flagsReg icc;
8583     compI_iReg(icc,op1,op2);
8584     cmovI_reg_lt(op2,op1,icc);
8585   %}
8586 %}
8587 
8588 // Max Instructions
8589 // Conditional move for max
8590 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8591   effect( USE_DEF op2, USE op1, USE icc );
8592   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8593   opcode(Assembler::greater);
8594   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8595   ins_pipe(ialu_reg_flags);
8596 %}
8597 
8598 // Max Register with Register
8599 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8600   match(Set op2 (MaxI op1 op2));
8601   ins_cost(DEFAULT_COST*2);
8602   expand %{
8603     flagsReg icc;
8604     compI_iReg(icc,op1,op2);
8605     cmovI_reg_gt(op2,op1,icc);
8606   %}
8607 %}
8608 
8609 
8610 //----------Float Compares----------------------------------------------------
8611 // Compare floating, generate condition code
8612 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8613   match(Set fcc (CmpF src1 src2));
8614 
8615   size(4);
8616   format %{ "FCMPs  $fcc,$src1,$src2" %}
8617   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8618   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8619   ins_pipe(faddF_fcc_reg_reg_zero);
8620 %}
8621 
8622 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8623   match(Set fcc (CmpD src1 src2));
8624 
8625   size(4);
8626   format %{ "FCMPd  $fcc,$src1,$src2" %}
8627   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8628   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8629   ins_pipe(faddD_fcc_reg_reg_zero);
8630 %}
8631 
8632 
8633 // Compare floating, generate -1,0,1
8634 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8635   match(Set dst (CmpF3 src1 src2));
8636   effect(KILL fcc0);
8637   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8638   format %{ "fcmpl  $dst,$src1,$src2" %}
8639   // Primary = float
8640   opcode( true );
8641   ins_encode( floating_cmp( dst, src1, src2 ) );
8642   ins_pipe( floating_cmp );
8643 %}
8644 
8645 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8646   match(Set dst (CmpD3 src1 src2));
8647   effect(KILL fcc0);
8648   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8649   format %{ "dcmpl  $dst,$src1,$src2" %}
8650   // Primary = double (not float)
8651   opcode( false );
8652   ins_encode( floating_cmp( dst, src1, src2 ) );
8653   ins_pipe( floating_cmp );
8654 %}
8655 
8656 //----------Branches---------------------------------------------------------
8657 // Jump
8658 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8659 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8660   match(Jump switch_val);
8661 
8662   ins_cost(350);
8663 
8664   format %{  "SETHI  [hi(table_base)],O7\n\t"
8665              "ADD    O7, lo(table_base), O7\n\t"
8666              "LD     [O7+$switch_val], O7\n\t"
8667              "JUMP   O7"
8668          %}
8669   ins_encode( jump_enc( switch_val, table) );
8670   ins_pc_relative(1);
8671   ins_pipe(ialu_reg_reg);
8672 %}
8673 
8674 // Direct Branch.  Use V8 version with longer range.
8675 instruct branch(label labl) %{
8676   match(Goto);
8677   effect(USE labl);
8678 
8679   size(8);
8680   ins_cost(BRANCH_COST);
8681   format %{ "BA     $labl" %}
8682   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
8683   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
8684   ins_encode( enc_ba( labl ) );
8685   ins_pc_relative(1);
8686   ins_pipe(br);
8687 %}
8688 
8689 // Conditional Direct Branch
8690 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
8691   match(If cmp icc);
8692   effect(USE labl);
8693 
8694   size(8);
8695   ins_cost(BRANCH_COST);
8696   format %{ "BP$cmp   $icc,$labl" %}
8697   // Prim = bits 24-22, Secnd = bits 31-30
8698   ins_encode( enc_bp( labl, cmp, icc ) );
8699   ins_pc_relative(1);
8700   ins_pipe(br_cc);
8701 %}
8702 
8703 // Branch-on-register tests all 64 bits.  We assume that values
8704 // in 64-bit registers always remains zero or sign extended
8705 // unless our code munges the high bits.  Interrupts can chop
8706 // the high order bits to zero or sign at any time.
8707 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
8708   match(If cmp (CmpI op1 zero));
8709   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8710   effect(USE labl);
8711 
8712   size(8);
8713   ins_cost(BRANCH_COST);
8714   format %{ "BR$cmp   $op1,$labl" %}
8715   ins_encode( enc_bpr( labl, cmp, op1 ) );
8716   ins_pc_relative(1);
8717   ins_pipe(br_reg);
8718 %}
8719 
8720 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
8721   match(If cmp (CmpP op1 null));
8722   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8723   effect(USE labl);
8724 
8725   size(8);
8726   ins_cost(BRANCH_COST);
8727   format %{ "BR$cmp   $op1,$labl" %}
8728   ins_encode( enc_bpr( labl, cmp, op1 ) );
8729   ins_pc_relative(1);
8730   ins_pipe(br_reg);
8731 %}
8732 
8733 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
8734   match(If cmp (CmpL op1 zero));
8735   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8736   effect(USE labl);
8737 
8738   size(8);
8739   ins_cost(BRANCH_COST);
8740   format %{ "BR$cmp   $op1,$labl" %}
8741   ins_encode( enc_bpr( labl, cmp, op1 ) );
8742   ins_pc_relative(1);
8743   ins_pipe(br_reg);
8744 %}
8745 
8746 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
8747   match(If cmp icc);
8748   effect(USE labl);
8749 
8750   format %{ "BP$cmp  $icc,$labl" %}
8751   // Prim = bits 24-22, Secnd = bits 31-30
8752   ins_encode( enc_bp( labl, cmp, icc ) );
8753   ins_pc_relative(1);
8754   ins_pipe(br_cc);
8755 %}
8756 
8757 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
8758   match(If cmp pcc);
8759   effect(USE labl);
8760 
8761   size(8);
8762   ins_cost(BRANCH_COST);
8763   format %{ "BP$cmp  $pcc,$labl" %}
8764   // Prim = bits 24-22, Secnd = bits 31-30
8765   ins_encode( enc_bpx( labl, cmp, pcc ) );
8766   ins_pc_relative(1);
8767   ins_pipe(br_cc);
8768 %}
8769 
8770 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
8771   match(If cmp fcc);
8772   effect(USE labl);
8773 
8774   size(8);
8775   ins_cost(BRANCH_COST);
8776   format %{ "FBP$cmp $fcc,$labl" %}
8777   // Prim = bits 24-22, Secnd = bits 31-30
8778   ins_encode( enc_fbp( labl, cmp, fcc ) );
8779   ins_pc_relative(1);
8780   ins_pipe(br_fcc);
8781 %}
8782 
8783 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
8784   match(CountedLoopEnd cmp icc);
8785   effect(USE labl);
8786 
8787   size(8);
8788   ins_cost(BRANCH_COST);
8789   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
8790   // Prim = bits 24-22, Secnd = bits 31-30
8791   ins_encode( enc_bp( labl, cmp, icc ) );
8792   ins_pc_relative(1);
8793   ins_pipe(br_cc);
8794 %}
8795 
8796 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
8797   match(CountedLoopEnd cmp icc);
8798   effect(USE labl);
8799 
8800   size(8);
8801   ins_cost(BRANCH_COST);
8802   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
8803   // Prim = bits 24-22, Secnd = bits 31-30
8804   ins_encode( enc_bp( labl, cmp, icc ) );
8805   ins_pc_relative(1);
8806   ins_pipe(br_cc);
8807 %}
8808 
8809 // ============================================================================
8810 // Long Compare
8811 //
8812 // Currently we hold longs in 2 registers.  Comparing such values efficiently
8813 // is tricky.  The flavor of compare used depends on whether we are testing
8814 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
8815 // The GE test is the negated LT test.  The LE test can be had by commuting
8816 // the operands (yielding a GE test) and then negating; negate again for the
8817 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
8818 // NE test is negated from that.
8819 
8820 // Due to a shortcoming in the ADLC, it mixes up expressions like:
8821 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
8822 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
8823 // are collapsed internally in the ADLC's dfa-gen code.  The match for
8824 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
8825 // foo match ends up with the wrong leaf.  One fix is to not match both
8826 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
8827 // both forms beat the trinary form of long-compare and both are very useful
8828 // on Intel which has so few registers.
8829 
8830 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
8831   match(If cmp xcc);
8832   effect(USE labl);
8833 
8834   size(8);
8835   ins_cost(BRANCH_COST);
8836   format %{ "BP$cmp   $xcc,$labl" %}
8837   // Prim = bits 24-22, Secnd = bits 31-30
8838   ins_encode( enc_bpl( labl, cmp, xcc ) );
8839   ins_pc_relative(1);
8840   ins_pipe(br_cc);
8841 %}
8842 
8843 // Manifest a CmpL3 result in an integer register.  Very painful.
8844 // This is the test to avoid.
8845 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
8846   match(Set dst (CmpL3 src1 src2) );
8847   effect( KILL ccr );
8848   ins_cost(6*DEFAULT_COST);
8849   size(24);
8850   format %{ "CMP    $src1,$src2\t\t! long\n"
8851           "\tBLT,a,pn done\n"
8852           "\tMOV    -1,$dst\t! delay slot\n"
8853           "\tBGT,a,pn done\n"
8854           "\tMOV    1,$dst\t! delay slot\n"
8855           "\tCLR    $dst\n"
8856     "done:"     %}
8857   ins_encode( cmpl_flag(src1,src2,dst) );
8858   ins_pipe(cmpL_reg);
8859 %}
8860 
8861 // Conditional move
8862 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
8863   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
8864   ins_cost(150);
8865   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
8866   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8867   ins_pipe(ialu_reg);
8868 %}
8869 
8870 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
8871   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
8872   ins_cost(140);
8873   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
8874   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
8875   ins_pipe(ialu_imm);
8876 %}
8877 
8878 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
8879   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
8880   ins_cost(150);
8881   format %{ "MOV$cmp  $xcc,$src,$dst" %}
8882   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8883   ins_pipe(ialu_reg);
8884 %}
8885 
8886 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
8887   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
8888   ins_cost(140);
8889   format %{ "MOV$cmp  $xcc,$src,$dst" %}
8890   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
8891   ins_pipe(ialu_imm);
8892 %}
8893 
8894 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
8895   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
8896   ins_cost(150);
8897   format %{ "MOV$cmp  $xcc,$src,$dst" %}
8898   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8899   ins_pipe(ialu_reg);
8900 %}
8901 
8902 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
8903   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
8904   ins_cost(150);
8905   format %{ "MOV$cmp  $xcc,$src,$dst" %}
8906   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8907   ins_pipe(ialu_reg);
8908 %}
8909 
8910 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
8911   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
8912   ins_cost(140);
8913   format %{ "MOV$cmp  $xcc,$src,$dst" %}
8914   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
8915   ins_pipe(ialu_imm);
8916 %}
8917 
8918 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
8919   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
8920   ins_cost(150);
8921   opcode(0x101);
8922   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
8923   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
8924   ins_pipe(int_conditional_float_move);
8925 %}
8926 
8927 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
8928   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
8929   ins_cost(150);
8930   opcode(0x102);
8931   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
8932   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
8933   ins_pipe(int_conditional_float_move);
8934 %}
8935 
8936 // ============================================================================
8937 // Safepoint Instruction
8938 instruct safePoint_poll(iRegP poll) %{
8939   match(SafePoint poll);
8940   effect(USE poll);
8941 
8942   size(4);
8943 #ifdef _LP64
8944   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
8945 #else
8946   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
8947 #endif
8948   ins_encode %{
8949     __ relocate(relocInfo::poll_type);
8950     __ ld_ptr($poll$$Register, 0, G0);
8951   %}
8952   ins_pipe(loadPollP);
8953 %}
8954 
8955 // ============================================================================
8956 // Call Instructions
8957 // Call Java Static Instruction
8958 instruct CallStaticJavaDirect( method meth ) %{
8959   match(CallStaticJava);
8960   effect(USE meth);
8961 
8962   size(8);
8963   ins_cost(CALL_COST);
8964   format %{ "CALL,static  ; NOP ==> " %}
8965   ins_encode( Java_Static_Call( meth ), call_epilog );
8966   ins_pc_relative(1);
8967   ins_pipe(simple_call);
8968 %}
8969 
8970 // Call Java Dynamic Instruction
8971 instruct CallDynamicJavaDirect( method meth ) %{
8972   match(CallDynamicJava);
8973   effect(USE meth);
8974 
8975   ins_cost(CALL_COST);
8976   format %{ "SET    (empty),R_G5\n\t"
8977             "CALL,dynamic  ; NOP ==> " %}
8978   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
8979   ins_pc_relative(1);
8980   ins_pipe(call);
8981 %}
8982 
8983 // Call Runtime Instruction
8984 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
8985   match(CallRuntime);
8986   effect(USE meth, KILL l7);
8987   ins_cost(CALL_COST);
8988   format %{ "CALL,runtime" %}
8989   ins_encode( Java_To_Runtime( meth ),
8990               call_epilog, adjust_long_from_native_call );
8991   ins_pc_relative(1);
8992   ins_pipe(simple_call);
8993 %}
8994 
8995 // Call runtime without safepoint - same as CallRuntime
8996 instruct CallLeafDirect(method meth, l7RegP l7) %{
8997   match(CallLeaf);
8998   effect(USE meth, KILL l7);
8999   ins_cost(CALL_COST);
9000   format %{ "CALL,runtime leaf" %}
9001   ins_encode( Java_To_Runtime( meth ),
9002               call_epilog,
9003               adjust_long_from_native_call );
9004   ins_pc_relative(1);
9005   ins_pipe(simple_call);
9006 %}
9007 
9008 // Call runtime without safepoint - same as CallLeaf
9009 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9010   match(CallLeafNoFP);
9011   effect(USE meth, KILL l7);
9012   ins_cost(CALL_COST);
9013   format %{ "CALL,runtime leaf nofp" %}
9014   ins_encode( Java_To_Runtime( meth ),
9015               call_epilog,
9016               adjust_long_from_native_call );
9017   ins_pc_relative(1);
9018   ins_pipe(simple_call);
9019 %}
9020 
9021 // Tail Call; Jump from runtime stub to Java code.
9022 // Also known as an 'interprocedural jump'.
9023 // Target of jump will eventually return to caller.
9024 // TailJump below removes the return address.
9025 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9026   match(TailCall jump_target method_oop );
9027 
9028   ins_cost(CALL_COST);
9029   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9030   ins_encode(form_jmpl(jump_target));
9031   ins_pipe(tail_call);
9032 %}
9033 
9034 
9035 // Return Instruction
9036 instruct Ret() %{
9037   match(Return);
9038 
9039   // The epilogue node did the ret already.
9040   size(0);
9041   format %{ "! return" %}
9042   ins_encode();
9043   ins_pipe(empty);
9044 %}
9045 
9046 
9047 // Tail Jump; remove the return address; jump to target.
9048 // TailCall above leaves the return address around.
9049 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9050 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9051 // "restore" before this instruction (in Epilogue), we need to materialize it
9052 // in %i0.
9053 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9054   match( TailJump jump_target ex_oop );
9055   ins_cost(CALL_COST);
9056   format %{ "! discard R_O7\n\t"
9057             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9058   ins_encode(form_jmpl_set_exception_pc(jump_target));
9059   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9060   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9061   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9062   ins_pipe(tail_call);
9063 %}
9064 
9065 // Create exception oop: created by stack-crawling runtime code.
9066 // Created exception is now available to this handler, and is setup
9067 // just prior to jumping to this handler.  No code emitted.
9068 instruct CreateException( o0RegP ex_oop )
9069 %{
9070   match(Set ex_oop (CreateEx));
9071   ins_cost(0);
9072 
9073   size(0);
9074   // use the following format syntax
9075   format %{ "! exception oop is in R_O0; no code emitted" %}
9076   ins_encode();
9077   ins_pipe(empty);
9078 %}
9079 
9080 
9081 // Rethrow exception:
9082 // The exception oop will come in the first argument position.
9083 // Then JUMP (not call) to the rethrow stub code.
9084 instruct RethrowException()
9085 %{
9086   match(Rethrow);
9087   ins_cost(CALL_COST);
9088 
9089   // use the following format syntax
9090   format %{ "Jmp    rethrow_stub" %}
9091   ins_encode(enc_rethrow);
9092   ins_pipe(tail_call);
9093 %}
9094 
9095 
9096 // Die now
9097 instruct ShouldNotReachHere( )
9098 %{
9099   match(Halt);
9100   ins_cost(CALL_COST);
9101 
9102   size(4);
9103   // Use the following format syntax
9104   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9105   ins_encode( form2_illtrap() );
9106   ins_pipe(tail_call);
9107 %}
9108 
9109 // ============================================================================
9110 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9111 // array for an instance of the superklass.  Set a hidden internal cache on a
9112 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9113 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9114 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9115   match(Set index (PartialSubtypeCheck sub super));
9116   effect( KILL pcc, KILL o7 );
9117   ins_cost(DEFAULT_COST*10);
9118   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9119   ins_encode( enc_PartialSubtypeCheck() );
9120   ins_pipe(partial_subtype_check_pipe);
9121 %}
9122 
9123 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9124   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9125   effect( KILL idx, KILL o7 );
9126   ins_cost(DEFAULT_COST*10);
9127   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9128   ins_encode( enc_PartialSubtypeCheck() );
9129   ins_pipe(partial_subtype_check_pipe);
9130 %}
9131 
9132 
9133 // ============================================================================
9134 // inlined locking and unlocking
9135 
9136 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9137   match(Set pcc (FastLock object box));
9138 
9139   effect(KILL scratch, TEMP scratch2);
9140   ins_cost(100);
9141 
9142   size(4*112);       // conservative overestimation ...
9143   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9144   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9145   ins_pipe(long_memory_op);
9146 %}
9147 
9148 
9149 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9150   match(Set pcc (FastUnlock object box));
9151   effect(KILL scratch, TEMP scratch2);
9152   ins_cost(100);
9153 
9154   size(4*120);       // conservative overestimation ...
9155   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9156   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9157   ins_pipe(long_memory_op);
9158 %}
9159 
9160 // Count and Base registers are fixed because the allocator cannot
9161 // kill unknown registers.  The encodings are generic.
9162 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9163   match(Set dummy (ClearArray cnt base));
9164   effect(TEMP temp, KILL ccr);
9165   ins_cost(300);
9166   format %{ "MOV    $cnt,$temp\n"
9167     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9168     "        BRge   loop\t\t! Clearing loop\n"
9169     "        STX    G0,[$base+$temp]\t! delay slot" %}
9170   ins_encode( enc_Clear_Array(cnt, base, temp) );
9171   ins_pipe(long_memory_op);
9172 %}
9173 
9174 instruct string_compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
9175                         o7RegI tmp3, flagsReg ccr) %{
9176   match(Set result (StrComp str1 str2));
9177   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr, KILL tmp3);
9178   ins_cost(300);
9179   format %{ "String Compare $str1,$str2 -> $result" %}
9180   ins_encode( enc_String_Compare(str1, str2, tmp1, tmp2, result) );
9181   ins_pipe(long_memory_op);
9182 %}
9183 
9184 instruct string_equals(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
9185                        o7RegI tmp3, flagsReg ccr) %{
9186   match(Set result (StrEquals str1 str2));
9187   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr, KILL tmp3);
9188   ins_cost(300);
9189   format %{ "String Equals $str1,$str2 -> $result" %}
9190   ins_encode( enc_String_Equals(str1, str2, tmp1, tmp2, result) );
9191   ins_pipe(long_memory_op);
9192 %}
9193 
9194 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
9195                         flagsReg ccr) %{
9196   match(Set result (AryEq ary1 ary2));
9197   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
9198   ins_cost(300);
9199   format %{ "Array Equals $ary1,$ary2 -> $result" %}
9200   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, tmp2, result));
9201   ins_pipe(long_memory_op);
9202 %}
9203 
9204 
9205 //---------- Zeros Count Instructions ------------------------------------------
9206 
9207 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
9208   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9209   match(Set dst (CountLeadingZerosI src));
9210   effect(TEMP dst, TEMP tmp, KILL cr);
9211 
9212   // x |= (x >> 1);
9213   // x |= (x >> 2);
9214   // x |= (x >> 4);
9215   // x |= (x >> 8);
9216   // x |= (x >> 16);
9217   // return (WORDBITS - popc(x));
9218   format %{ "SRL     $src,1,$dst\t! count leading zeros (int)\n\t"
9219             "OR      $src,$tmp,$dst\n\t"
9220             "SRL     $dst,2,$tmp\n\t"
9221             "OR      $dst,$tmp,$dst\n\t"
9222             "SRL     $dst,4,$tmp\n\t"
9223             "OR      $dst,$tmp,$dst\n\t"
9224             "SRL     $dst,8,$tmp\n\t"
9225             "OR      $dst,$tmp,$dst\n\t"
9226             "SRL     $dst,16,$tmp\n\t"
9227             "OR      $dst,$tmp,$dst\n\t"
9228             "POPC    $dst,$dst\n\t"
9229             "MOV     32,$tmp\n\t"
9230             "SUB     $tmp,$dst,$dst" %}
9231   ins_encode %{
9232     Register Rdst = $dst$$Register;
9233     Register Rsrc = $src$$Register;
9234     Register Rtmp = $tmp$$Register;
9235     __ srl(Rsrc, 1, Rtmp);
9236     __ or3(Rsrc, Rtmp, Rdst);
9237     __ srl(Rdst, 2, Rtmp);
9238     __ or3(Rdst, Rtmp, Rdst);
9239     __ srl(Rdst, 4, Rtmp);
9240     __ or3(Rdst, Rtmp, Rdst);
9241     __ srl(Rdst, 8, Rtmp);
9242     __ or3(Rdst, Rtmp, Rdst);
9243     __ srl(Rdst, 16, Rtmp);
9244     __ or3(Rdst, Rtmp, Rdst);
9245     __ popc(Rdst, Rdst);
9246     __ mov(BitsPerInt, Rtmp);
9247     __ sub(Rtmp, Rdst, Rdst);
9248   %}
9249   ins_pipe(ialu_reg);
9250 %}
9251 
9252 instruct countLeadingZerosL(iRegI dst, iRegL src, iRegL tmp, iRegL tmp2, flagsReg cr) %{
9253   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9254   match(Set dst (CountLeadingZerosL src));
9255   effect(TEMP tmp, TEMP tmp2, KILL cr);
9256 
9257   // x |= (x >> 1);
9258   // x |= (x >> 2);
9259   // x |= (x >> 4);
9260   // x |= (x >> 8);
9261   // x |= (x >> 16);
9262   // x |= (x >> 32);
9263   // return (WORDBITS - popc(x));
9264   format %{ "SRLX    $src,1,$tmp2\t! count leading zeros (long)\n\t"
9265             "OR      $src,$tmp2,$tmp\n\t"
9266             "SRLX    $tmp,2,$tmp2\n\t"
9267             "OR      $tmp,$tmp2,$tmp\n\t"
9268             "SRLX    $tmp,4,$tmp2\n\t"
9269             "OR      $tmp,$tmp2,$tmp\n\t"
9270             "SRLX    $tmp,8,$tmp2\n\t"
9271             "OR      $tmp,$tmp2,$tmp\n\t"
9272             "SRLX    $tmp,16,$tmp2\n\t"
9273             "OR      $tmp,$tmp2,$tmp\n\t"
9274             "SRLX    $tmp,32,$tmp2\n\t"
9275             "OR      $tmp,$tmp2,$tmp\n\t"
9276             "POPC    $tmp,$dst\n\t"
9277             "MOV     64,$tmp2\n\t"
9278             "SUB     $tmp2,$dst,$dst" %}
9279   ins_encode %{
9280     Register Rdst = $dst$$Register;
9281     Register Rsrc = $src$$Register;
9282     Register Rtmp = $tmp$$Register;
9283     Register Rtmp2 = $tmp2$$Register;
9284     __ srlx(Rsrc, 1, Rtmp2);
9285     __ or3(Rsrc, Rtmp2, Rtmp);
9286     __ srlx(Rtmp, 2, Rtmp2);
9287     __ or3(Rtmp, Rtmp2, Rtmp);
9288     __ srlx(Rtmp, 4, Rtmp2);
9289     __ or3(Rtmp, Rtmp2, Rtmp);
9290     __ srlx(Rtmp, 8, Rtmp2);
9291     __ or3(Rtmp, Rtmp2, Rtmp);
9292     __ srlx(Rtmp, 16, Rtmp2);
9293     __ or3(Rtmp, Rtmp2, Rtmp);
9294     __ srlx(Rtmp, 32, Rtmp2);
9295     __ or3(Rtmp, Rtmp2, Rtmp);
9296     __ popc(Rtmp, Rdst);
9297     __ mov(BitsPerLong, Rtmp2);
9298     __ sub(Rtmp2, Rdst, Rdst);
9299   %}
9300   ins_pipe(ialu_reg);
9301 %}
9302 
9303 instruct countTrailingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
9304   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9305   match(Set dst (CountTrailingZerosI src));
9306   effect(TEMP tmp, KILL cr);
9307 
9308   // return popc(~x & (x - 1));
9309   format %{ "SUB     $src, 1, $tmp\t! count trailing zeros (int)\n\t"
9310             "ANDN    $tmp, $src, $tmp\n\t"
9311             "SRL     $tmp, R_G0, Rtmp\n\t"
9312             "POPC    $tmp, $dst" %}
9313   ins_encode %{
9314     Register Rdst = $dst$$Register;
9315     Register Rsrc = $src$$Register;
9316     Register Rtmp = $tmp$$Register;
9317     __ sub(Rsrc, 1, Rtmp);
9318     __ andn(Rtmp, Rsrc, Rtmp);
9319     __ srl(Rtmp, G0, Rtmp);
9320     __ popc(Rtmp, Rdst);
9321   %}
9322   ins_pipe(ialu_reg);
9323 %}
9324 
9325 instruct countTrailingZerosL(iRegI dst, iRegL src, iRegL tmp, flagsReg cr) %{
9326   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9327   match(Set dst (CountTrailingZerosL src));
9328   effect(TEMP tmp, KILL cr);
9329 
9330   // return popc(~x & (x - 1));
9331   format %{ "SUB     $src, 1, $tmp\t! count trailing zeros (long)\n\t"
9332             "ANDN    $tmp, $src, $tmp\n\t"
9333             "POPC    $tmp, $dst" %}
9334   ins_encode %{
9335     Register Rdst = $dst$$Register;
9336     Register Rsrc = $src$$Register;
9337     Register Rtmp = $tmp$$Register;
9338     __ sub(Rsrc, 1, Rtmp);
9339     __ andn(Rtmp, Rsrc, Rtmp);
9340     __ popc(Rtmp, Rdst);
9341   %}
9342   ins_pipe(ialu_reg);
9343 %}
9344 
9345 
9346 //---------- Population Count Instructions -------------------------------------
9347 
9348 instruct popCountI(iRegI dst, iRegI src) %{
9349   predicate(UsePopCountInstruction);
9350   match(Set dst (PopCountI src));
9351 
9352   format %{ "POPC   $src, $dst" %}
9353   ins_encode %{
9354     __ popc($src$$Register, $dst$$Register);
9355   %}
9356   ins_pipe(ialu_reg);
9357 %}
9358 
9359 // Note: Long.bitCount(long) returns an int.
9360 instruct popCountL(iRegI dst, iRegL src) %{
9361   predicate(UsePopCountInstruction);
9362   match(Set dst (PopCountL src));
9363 
9364   format %{ "POPC   $src, $dst" %}
9365   ins_encode %{
9366     __ popc($src$$Register, $dst$$Register);
9367   %}
9368   ins_pipe(ialu_reg);
9369 %}
9370 
9371 
9372 // ============================================================================
9373 //------------Bytes reverse--------------------------------------------------
9374 
9375 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
9376   match(Set dst (ReverseBytesI src));
9377   effect(DEF dst, USE src);
9378 
9379   // Op cost is artificially doubled to make sure that load or store
9380   // instructions are preferred over this one which requires a spill
9381   // onto a stack slot.
9382   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9383   size(8);
9384   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9385   opcode(Assembler::lduwa_op3);
9386   ins_encode( form3_mem_reg_little(src, dst) );
9387   ins_pipe( iload_mem );
9388 %}
9389 
9390 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
9391   match(Set dst (ReverseBytesL src));
9392   effect(DEF dst, USE src);
9393 
9394   // Op cost is artificially doubled to make sure that load or store
9395   // instructions are preferred over this one which requires a spill
9396   // onto a stack slot.
9397   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9398   size(8);
9399   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9400 
9401   opcode(Assembler::ldxa_op3);
9402   ins_encode( form3_mem_reg_little(src, dst) );
9403   ins_pipe( iload_mem );
9404 %}
9405 
9406 // Load Integer reversed byte order
9407 instruct loadI_reversed(iRegI dst, memory src) %{
9408   match(Set dst (ReverseBytesI (LoadI src)));
9409 
9410   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9411   size(8);
9412   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9413 
9414   opcode(Assembler::lduwa_op3);
9415   ins_encode( form3_mem_reg_little( src, dst) );
9416   ins_pipe(iload_mem);
9417 %}
9418 
9419 // Load Long - aligned and reversed
9420 instruct loadL_reversed(iRegL dst, memory src) %{
9421   match(Set dst (ReverseBytesL (LoadL src)));
9422 
9423   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9424   size(8);
9425   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9426 
9427   opcode(Assembler::ldxa_op3);
9428   ins_encode( form3_mem_reg_little( src, dst ) );
9429   ins_pipe(iload_mem);
9430 %}
9431 
9432 // Store Integer reversed byte order
9433 instruct storeI_reversed(memory dst, iRegI src) %{
9434   match(Set dst (StoreI dst (ReverseBytesI src)));
9435 
9436   ins_cost(MEMORY_REF_COST);
9437   size(8);
9438   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
9439 
9440   opcode(Assembler::stwa_op3);
9441   ins_encode( form3_mem_reg_little( dst, src) );
9442   ins_pipe(istore_mem_reg);
9443 %}
9444 
9445 // Store Long reversed byte order
9446 instruct storeL_reversed(memory dst, iRegL src) %{
9447   match(Set dst (StoreL dst (ReverseBytesL src)));
9448 
9449   ins_cost(MEMORY_REF_COST);
9450   size(8);
9451   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
9452 
9453   opcode(Assembler::stxa_op3);
9454   ins_encode( form3_mem_reg_little( dst, src) );
9455   ins_pipe(istore_mem_reg);
9456 %}
9457 
9458 //----------PEEPHOLE RULES-----------------------------------------------------
9459 // These must follow all instruction definitions as they use the names
9460 // defined in the instructions definitions.
9461 //
9462 // peepmatch ( root_instr_name [preceding_instruction]* );
9463 //
9464 // peepconstraint %{
9465 // (instruction_number.operand_name relational_op instruction_number.operand_name
9466 //  [, ...] );
9467 // // instruction numbers are zero-based using left to right order in peepmatch
9468 //
9469 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
9470 // // provide an instruction_number.operand_name for each operand that appears
9471 // // in the replacement instruction's match rule
9472 //
9473 // ---------VM FLAGS---------------------------------------------------------
9474 //
9475 // All peephole optimizations can be turned off using -XX:-OptoPeephole
9476 //
9477 // Each peephole rule is given an identifying number starting with zero and
9478 // increasing by one in the order seen by the parser.  An individual peephole
9479 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
9480 // on the command-line.
9481 //
9482 // ---------CURRENT LIMITATIONS----------------------------------------------
9483 //
9484 // Only match adjacent instructions in same basic block
9485 // Only equality constraints
9486 // Only constraints between operands, not (0.dest_reg == EAX_enc)
9487 // Only one replacement instruction
9488 //
9489 // ---------EXAMPLE----------------------------------------------------------
9490 //
9491 // // pertinent parts of existing instructions in architecture description
9492 // instruct movI(eRegI dst, eRegI src) %{
9493 //   match(Set dst (CopyI src));
9494 // %}
9495 //
9496 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
9497 //   match(Set dst (AddI dst src));
9498 //   effect(KILL cr);
9499 // %}
9500 //
9501 // // Change (inc mov) to lea
9502 // peephole %{
9503 //   // increment preceeded by register-register move
9504 //   peepmatch ( incI_eReg movI );
9505 //   // require that the destination register of the increment
9506 //   // match the destination register of the move
9507 //   peepconstraint ( 0.dst == 1.dst );
9508 //   // construct a replacement instruction that sets
9509 //   // the destination to ( move's source register + one )
9510 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
9511 // %}
9512 //
9513 
9514 // // Change load of spilled value to only a spill
9515 // instruct storeI(memory mem, eRegI src) %{
9516 //   match(Set mem (StoreI mem src));
9517 // %}
9518 //
9519 // instruct loadI(eRegI dst, memory mem) %{
9520 //   match(Set dst (LoadI mem));
9521 // %}
9522 //
9523 // peephole %{
9524 //   peepmatch ( loadI storeI );
9525 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
9526 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
9527 // %}
9528 
9529 //----------SMARTSPILL RULES---------------------------------------------------
9530 // These must follow all instruction definitions as they use the names
9531 // defined in the instructions definitions.
9532 //
9533 // SPARC will probably not have any of these rules due to RISC instruction set.
9534 
9535 //----------PIPELINE-----------------------------------------------------------
9536 // Rules which define the behavior of the target architectures pipeline.