1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_assembler_x86.cpp.incl"
  27 
  28 // Implementation of AddressLiteral
  29 
  30 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  31   _is_lval = false;
  32   _target = target;
  33   switch (rtype) {
  34   case relocInfo::oop_type:
  35     // Oops are a special case. Normally they would be their own section
  36     // but in cases like icBuffer they are literals in the code stream that
  37     // we don't have a section for. We use none so that we get a literal address
  38     // which is always patchable.
  39     break;
  40   case relocInfo::external_word_type:
  41     _rspec = external_word_Relocation::spec(target);
  42     break;
  43   case relocInfo::internal_word_type:
  44     _rspec = internal_word_Relocation::spec(target);
  45     break;
  46   case relocInfo::opt_virtual_call_type:
  47     _rspec = opt_virtual_call_Relocation::spec();
  48     break;
  49   case relocInfo::static_call_type:
  50     _rspec = static_call_Relocation::spec();
  51     break;
  52   case relocInfo::runtime_call_type:
  53     _rspec = runtime_call_Relocation::spec();
  54     break;
  55   case relocInfo::poll_type:
  56   case relocInfo::poll_return_type:
  57     _rspec = Relocation::spec_simple(rtype);
  58     break;
  59   case relocInfo::none:
  60     break;
  61   default:
  62     ShouldNotReachHere();
  63     break;
  64   }
  65 }
  66 
  67 // Implementation of Address
  68 
  69 #ifdef _LP64
  70 
  71 Address Address::make_array(ArrayAddress adr) {
  72   // Not implementable on 64bit machines
  73   // Should have been handled higher up the call chain.
  74   ShouldNotReachHere();
  75   return Address();
  76 }
  77 
  78 // exceedingly dangerous constructor
  79 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
  80   _base  = noreg;
  81   _index = noreg;
  82   _scale = no_scale;
  83   _disp  = disp;
  84   switch (rtype) {
  85     case relocInfo::external_word_type:
  86       _rspec = external_word_Relocation::spec(loc);
  87       break;
  88     case relocInfo::internal_word_type:
  89       _rspec = internal_word_Relocation::spec(loc);
  90       break;
  91     case relocInfo::runtime_call_type:
  92       // HMM
  93       _rspec = runtime_call_Relocation::spec();
  94       break;
  95     case relocInfo::poll_type:
  96     case relocInfo::poll_return_type:
  97       _rspec = Relocation::spec_simple(rtype);
  98       break;
  99     case relocInfo::none:
 100       break;
 101     default:
 102       ShouldNotReachHere();
 103   }
 104 }
 105 #else // LP64
 106 
 107 Address Address::make_array(ArrayAddress adr) {
 108   AddressLiteral base = adr.base();
 109   Address index = adr.index();
 110   assert(index._disp == 0, "must not have disp"); // maybe it can?
 111   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 112   array._rspec = base._rspec;
 113   return array;
 114 }
 115 
 116 // exceedingly dangerous constructor
 117 Address::Address(address loc, RelocationHolder spec) {
 118   _base  = noreg;
 119   _index = noreg;
 120   _scale = no_scale;
 121   _disp  = (intptr_t) loc;
 122   _rspec = spec;
 123 }
 124 
 125 #endif // _LP64
 126 
 127 
 128 
 129 // Convert the raw encoding form into the form expected by the constructor for
 130 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 131 // that to noreg for the Address constructor.
 132 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
 133   RelocationHolder rspec;
 134   if (disp_is_oop) {
 135     rspec = Relocation::spec_simple(relocInfo::oop_type);
 136   }
 137   bool valid_index = index != rsp->encoding();
 138   if (valid_index) {
 139     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 140     madr._rspec = rspec;
 141     return madr;
 142   } else {
 143     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 144     madr._rspec = rspec;
 145     return madr;
 146   }
 147 }
 148 
 149 // Implementation of Assembler
 150 
 151 int AbstractAssembler::code_fill_byte() {
 152   return (u_char)'\xF4'; // hlt
 153 }
 154 
 155 // make this go away someday
 156 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 157   if (rtype == relocInfo::none)
 158         emit_long(data);
 159   else  emit_data(data, Relocation::spec_simple(rtype), format);
 160 }
 161 
 162 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 163   assert(imm_operand == 0, "default format must be immediate in this file");
 164   assert(inst_mark() != NULL, "must be inside InstructionMark");
 165   if (rspec.type() !=  relocInfo::none) {
 166     #ifdef ASSERT
 167       check_relocation(rspec, format);
 168     #endif
 169     // Do not use AbstractAssembler::relocate, which is not intended for
 170     // embedded words.  Instead, relocate to the enclosing instruction.
 171 
 172     // hack. call32 is too wide for mask so use disp32
 173     if (format == call32_operand)
 174       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 175     else
 176       code_section()->relocate(inst_mark(), rspec, format);
 177   }
 178   emit_long(data);
 179 }
 180 
 181 static int encode(Register r) {
 182   int enc = r->encoding();
 183   if (enc >= 8) {
 184     enc -= 8;
 185   }
 186   return enc;
 187 }
 188 
 189 static int encode(XMMRegister r) {
 190   int enc = r->encoding();
 191   if (enc >= 8) {
 192     enc -= 8;
 193   }
 194   return enc;
 195 }
 196 
 197 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 198   assert(dst->has_byte_register(), "must have byte register");
 199   assert(isByte(op1) && isByte(op2), "wrong opcode");
 200   assert(isByte(imm8), "not a byte");
 201   assert((op1 & 0x01) == 0, "should be 8bit operation");
 202   emit_byte(op1);
 203   emit_byte(op2 | encode(dst));
 204   emit_byte(imm8);
 205 }
 206 
 207 
 208 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 209   assert(isByte(op1) && isByte(op2), "wrong opcode");
 210   assert((op1 & 0x01) == 1, "should be 32bit operation");
 211   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 212   if (is8bit(imm32)) {
 213     emit_byte(op1 | 0x02); // set sign bit
 214     emit_byte(op2 | encode(dst));
 215     emit_byte(imm32 & 0xFF);
 216   } else {
 217     emit_byte(op1);
 218     emit_byte(op2 | encode(dst));
 219     emit_long(imm32);
 220   }
 221 }
 222 
 223 // immediate-to-memory forms
 224 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 225   assert((op1 & 0x01) == 1, "should be 32bit operation");
 226   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 227   if (is8bit(imm32)) {
 228     emit_byte(op1 | 0x02); // set sign bit
 229     emit_operand(rm, adr, 1);
 230     emit_byte(imm32 & 0xFF);
 231   } else {
 232     emit_byte(op1);
 233     emit_operand(rm, adr, 4);
 234     emit_long(imm32);
 235   }
 236 }
 237 
 238 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
 239   LP64_ONLY(ShouldNotReachHere());
 240   assert(isByte(op1) && isByte(op2), "wrong opcode");
 241   assert((op1 & 0x01) == 1, "should be 32bit operation");
 242   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 243   InstructionMark im(this);
 244   emit_byte(op1);
 245   emit_byte(op2 | encode(dst));
 246   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
 247 }
 248 
 249 
 250 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 251   assert(isByte(op1) && isByte(op2), "wrong opcode");
 252   emit_byte(op1);
 253   emit_byte(op2 | encode(dst) << 3 | encode(src));
 254 }
 255 
 256 
 257 void Assembler::emit_operand(Register reg, Register base, Register index,
 258                              Address::ScaleFactor scale, int disp,
 259                              RelocationHolder const& rspec,
 260                              int rip_relative_correction) {
 261   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 262 
 263   // Encode the registers as needed in the fields they are used in
 264 
 265   int regenc = encode(reg) << 3;
 266   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 267   int baseenc = base->is_valid() ? encode(base) : 0;
 268 
 269   if (base->is_valid()) {
 270     if (index->is_valid()) {
 271       assert(scale != Address::no_scale, "inconsistent address");
 272       // [base + index*scale + disp]
 273       if (disp == 0 && rtype == relocInfo::none  &&
 274           base != rbp LP64_ONLY(&& base != r13)) {
 275         // [base + index*scale]
 276         // [00 reg 100][ss index base]
 277         assert(index != rsp, "illegal addressing mode");
 278         emit_byte(0x04 | regenc);
 279         emit_byte(scale << 6 | indexenc | baseenc);
 280       } else if (is8bit(disp) && rtype == relocInfo::none) {
 281         // [base + index*scale + imm8]
 282         // [01 reg 100][ss index base] imm8
 283         assert(index != rsp, "illegal addressing mode");
 284         emit_byte(0x44 | regenc);
 285         emit_byte(scale << 6 | indexenc | baseenc);
 286         emit_byte(disp & 0xFF);
 287       } else {
 288         // [base + index*scale + disp32]
 289         // [10 reg 100][ss index base] disp32
 290         assert(index != rsp, "illegal addressing mode");
 291         emit_byte(0x84 | regenc);
 292         emit_byte(scale << 6 | indexenc | baseenc);
 293         emit_data(disp, rspec, disp32_operand);
 294       }
 295     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 296       // [rsp + disp]
 297       if (disp == 0 && rtype == relocInfo::none) {
 298         // [rsp]
 299         // [00 reg 100][00 100 100]
 300         emit_byte(0x04 | regenc);
 301         emit_byte(0x24);
 302       } else if (is8bit(disp) && rtype == relocInfo::none) {
 303         // [rsp + imm8]
 304         // [01 reg 100][00 100 100] disp8
 305         emit_byte(0x44 | regenc);
 306         emit_byte(0x24);
 307         emit_byte(disp & 0xFF);
 308       } else {
 309         // [rsp + imm32]
 310         // [10 reg 100][00 100 100] disp32
 311         emit_byte(0x84 | regenc);
 312         emit_byte(0x24);
 313         emit_data(disp, rspec, disp32_operand);
 314       }
 315     } else {
 316       // [base + disp]
 317       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 318       if (disp == 0 && rtype == relocInfo::none &&
 319           base != rbp LP64_ONLY(&& base != r13)) {
 320         // [base]
 321         // [00 reg base]
 322         emit_byte(0x00 | regenc | baseenc);
 323       } else if (is8bit(disp) && rtype == relocInfo::none) {
 324         // [base + disp8]
 325         // [01 reg base] disp8
 326         emit_byte(0x40 | regenc | baseenc);
 327         emit_byte(disp & 0xFF);
 328       } else {
 329         // [base + disp32]
 330         // [10 reg base] disp32
 331         emit_byte(0x80 | regenc | baseenc);
 332         emit_data(disp, rspec, disp32_operand);
 333       }
 334     }
 335   } else {
 336     if (index->is_valid()) {
 337       assert(scale != Address::no_scale, "inconsistent address");
 338       // [index*scale + disp]
 339       // [00 reg 100][ss index 101] disp32
 340       assert(index != rsp, "illegal addressing mode");
 341       emit_byte(0x04 | regenc);
 342       emit_byte(scale << 6 | indexenc | 0x05);
 343       emit_data(disp, rspec, disp32_operand);
 344     } else if (rtype != relocInfo::none ) {
 345       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 346       // [00 000 101] disp32
 347 
 348       emit_byte(0x05 | regenc);
 349       // Note that the RIP-rel. correction applies to the generated
 350       // disp field, but _not_ to the target address in the rspec.
 351 
 352       // disp was created by converting the target address minus the pc
 353       // at the start of the instruction. That needs more correction here.
 354       // intptr_t disp = target - next_ip;
 355       assert(inst_mark() != NULL, "must be inside InstructionMark");
 356       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 357       int64_t adjusted = disp;
 358       // Do rip-rel adjustment for 64bit
 359       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 360       assert(is_simm32(adjusted),
 361              "must be 32bit offset (RIP relative address)");
 362       emit_data((int32_t) adjusted, rspec, disp32_operand);
 363 
 364     } else {
 365       // 32bit never did this, did everything as the rip-rel/disp code above
 366       // [disp] ABSOLUTE
 367       // [00 reg 100][00 100 101] disp32
 368       emit_byte(0x04 | regenc);
 369       emit_byte(0x25);
 370       emit_data(disp, rspec, disp32_operand);
 371     }
 372   }
 373 }
 374 
 375 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 376                              Address::ScaleFactor scale, int disp,
 377                              RelocationHolder const& rspec) {
 378   emit_operand((Register)reg, base, index, scale, disp, rspec);
 379 }
 380 
 381 // Secret local extension to Assembler::WhichOperand:
 382 #define end_pc_operand (_WhichOperand_limit)
 383 
 384 address Assembler::locate_operand(address inst, WhichOperand which) {
 385   // Decode the given instruction, and return the address of
 386   // an embedded 32-bit operand word.
 387 
 388   // If "which" is disp32_operand, selects the displacement portion
 389   // of an effective address specifier.
 390   // If "which" is imm64_operand, selects the trailing immediate constant.
 391   // If "which" is call32_operand, selects the displacement of a call or jump.
 392   // Caller is responsible for ensuring that there is such an operand,
 393   // and that it is 32/64 bits wide.
 394 
 395   // If "which" is end_pc_operand, find the end of the instruction.
 396 
 397   address ip = inst;
 398   bool is_64bit = false;
 399 
 400   debug_only(bool has_disp32 = false);
 401   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 402 
 403   again_after_prefix:
 404   switch (0xFF & *ip++) {
 405 
 406   // These convenience macros generate groups of "case" labels for the switch.
 407 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 408 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 409              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 410 #define REP16(x) REP8((x)+0): \
 411               case REP8((x)+8)
 412 
 413   case CS_segment:
 414   case SS_segment:
 415   case DS_segment:
 416   case ES_segment:
 417   case FS_segment:
 418   case GS_segment:
 419     // Seems dubious
 420     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 421     assert(ip == inst+1, "only one prefix allowed");
 422     goto again_after_prefix;
 423 
 424   case 0x67:
 425   case REX:
 426   case REX_B:
 427   case REX_X:
 428   case REX_XB:
 429   case REX_R:
 430   case REX_RB:
 431   case REX_RX:
 432   case REX_RXB:
 433     NOT_LP64(assert(false, "64bit prefixes"));
 434     goto again_after_prefix;
 435 
 436   case REX_W:
 437   case REX_WB:
 438   case REX_WX:
 439   case REX_WXB:
 440   case REX_WR:
 441   case REX_WRB:
 442   case REX_WRX:
 443   case REX_WRXB:
 444     NOT_LP64(assert(false, "64bit prefixes"));
 445     is_64bit = true;
 446     goto again_after_prefix;
 447 
 448   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 449   case 0x88: // movb a, r
 450   case 0x89: // movl a, r
 451   case 0x8A: // movb r, a
 452   case 0x8B: // movl r, a
 453   case 0x8F: // popl a
 454     debug_only(has_disp32 = true);
 455     break;
 456 
 457   case 0x68: // pushq #32
 458     if (which == end_pc_operand) {
 459       return ip + 4;
 460     }
 461     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 462     return ip;                  // not produced by emit_operand
 463 
 464   case 0x66: // movw ... (size prefix)
 465     again_after_size_prefix2:
 466     switch (0xFF & *ip++) {
 467     case REX:
 468     case REX_B:
 469     case REX_X:
 470     case REX_XB:
 471     case REX_R:
 472     case REX_RB:
 473     case REX_RX:
 474     case REX_RXB:
 475     case REX_W:
 476     case REX_WB:
 477     case REX_WX:
 478     case REX_WXB:
 479     case REX_WR:
 480     case REX_WRB:
 481     case REX_WRX:
 482     case REX_WRXB:
 483       NOT_LP64(assert(false, "64bit prefix found"));
 484       goto again_after_size_prefix2;
 485     case 0x8B: // movw r, a
 486     case 0x89: // movw a, r
 487       debug_only(has_disp32 = true);
 488       break;
 489     case 0xC7: // movw a, #16
 490       debug_only(has_disp32 = true);
 491       tail_size = 2;  // the imm16
 492       break;
 493     case 0x0F: // several SSE/SSE2 variants
 494       ip--;    // reparse the 0x0F
 495       goto again_after_prefix;
 496     default:
 497       ShouldNotReachHere();
 498     }
 499     break;
 500 
 501   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 502     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 503     // these asserts are somewhat nonsensical
 504 #ifndef _LP64
 505     assert(which == imm_operand || which == disp32_operand, "");
 506 #else
 507     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 508            which == narrow_oop_operand && !is_64bit, "");
 509 #endif // _LP64
 510     return ip;
 511 
 512   case 0x69: // imul r, a, #32
 513   case 0xC7: // movl a, #32(oop?)
 514     tail_size = 4;
 515     debug_only(has_disp32 = true); // has both kinds of operands!
 516     break;
 517 
 518   case 0x0F: // movx..., etc.
 519     switch (0xFF & *ip++) {
 520     case 0x12: // movlps
 521     case 0x28: // movaps
 522     case 0x2E: // ucomiss
 523     case 0x2F: // comiss
 524     case 0x54: // andps
 525     case 0x55: // andnps
 526     case 0x56: // orps
 527     case 0x57: // xorps
 528     case 0x6E: // movd
 529     case 0x7E: // movd
 530     case 0xAE: // ldmxcsr   a
 531       // 64bit side says it these have both operands but that doesn't
 532       // appear to be true
 533       debug_only(has_disp32 = true);
 534       break;
 535 
 536     case 0xAD: // shrd r, a, %cl
 537     case 0xAF: // imul r, a
 538     case 0xBE: // movsbl r, a (movsxb)
 539     case 0xBF: // movswl r, a (movsxw)
 540     case 0xB6: // movzbl r, a (movzxb)
 541     case 0xB7: // movzwl r, a (movzxw)
 542     case REP16(0x40): // cmovl cc, r, a
 543     case 0xB0: // cmpxchgb
 544     case 0xB1: // cmpxchg
 545     case 0xC1: // xaddl
 546     case 0xC7: // cmpxchg8
 547     case REP16(0x90): // setcc a
 548       debug_only(has_disp32 = true);
 549       // fall out of the switch to decode the address
 550       break;
 551 
 552     case 0xAC: // shrd r, a, #8
 553       debug_only(has_disp32 = true);
 554       tail_size = 1;  // the imm8
 555       break;
 556 
 557     case REP16(0x80): // jcc rdisp32
 558       if (which == end_pc_operand)  return ip + 4;
 559       assert(which == call32_operand, "jcc has no disp32 or imm");
 560       return ip;
 561     default:
 562       ShouldNotReachHere();
 563     }
 564     break;
 565 
 566   case 0x81: // addl a, #32; addl r, #32
 567     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 568     // on 32bit in the case of cmpl, the imm might be an oop
 569     tail_size = 4;
 570     debug_only(has_disp32 = true); // has both kinds of operands!
 571     break;
 572 
 573   case 0x83: // addl a, #8; addl r, #8
 574     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 575     debug_only(has_disp32 = true); // has both kinds of operands!
 576     tail_size = 1;
 577     break;
 578 
 579   case 0x9B:
 580     switch (0xFF & *ip++) {
 581     case 0xD9: // fnstcw a
 582       debug_only(has_disp32 = true);
 583       break;
 584     default:
 585       ShouldNotReachHere();
 586     }
 587     break;
 588 
 589   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 590   case REP4(0x10): // adc...
 591   case REP4(0x20): // and...
 592   case REP4(0x30): // xor...
 593   case REP4(0x08): // or...
 594   case REP4(0x18): // sbb...
 595   case REP4(0x28): // sub...
 596   case 0xF7: // mull a
 597   case 0x8D: // lea r, a
 598   case 0x87: // xchg r, a
 599   case REP4(0x38): // cmp...
 600   case 0x85: // test r, a
 601     debug_only(has_disp32 = true); // has both kinds of operands!
 602     break;
 603 
 604   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 605   case 0xC6: // movb a, #8
 606   case 0x80: // cmpb a, #8
 607   case 0x6B: // imul r, a, #8
 608     debug_only(has_disp32 = true); // has both kinds of operands!
 609     tail_size = 1; // the imm8
 610     break;
 611 
 612   case 0xE8: // call rdisp32
 613   case 0xE9: // jmp  rdisp32
 614     if (which == end_pc_operand)  return ip + 4;
 615     assert(which == call32_operand, "call has no disp32 or imm");
 616     return ip;
 617 
 618   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 619   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 620   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 621   case 0xDD: // fld_d a; fst_d a; fstp_d a
 622   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 623   case 0xDF: // fild_d a; fistp_d a
 624   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 625   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 626   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 627     debug_only(has_disp32 = true);
 628     break;
 629 
 630   case 0xF0:                    // Lock
 631     assert(os::is_MP(), "only on MP");
 632     goto again_after_prefix;
 633 
 634   case 0xF3:                    // For SSE
 635   case 0xF2:                    // For SSE2
 636     switch (0xFF & *ip++) {
 637     case REX:
 638     case REX_B:
 639     case REX_X:
 640     case REX_XB:
 641     case REX_R:
 642     case REX_RB:
 643     case REX_RX:
 644     case REX_RXB:
 645     case REX_W:
 646     case REX_WB:
 647     case REX_WX:
 648     case REX_WXB:
 649     case REX_WR:
 650     case REX_WRB:
 651     case REX_WRX:
 652     case REX_WRXB:
 653       NOT_LP64(assert(false, "found 64bit prefix"));
 654       ip++;
 655     default:
 656       ip++;
 657     }
 658     debug_only(has_disp32 = true); // has both kinds of operands!
 659     break;
 660 
 661   default:
 662     ShouldNotReachHere();
 663 
 664 #undef REP8
 665 #undef REP16
 666   }
 667 
 668   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 669 #ifdef _LP64
 670   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 671 #else
 672   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 673   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 674 #endif // LP64
 675   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 676 
 677   // parse the output of emit_operand
 678   int op2 = 0xFF & *ip++;
 679   int base = op2 & 0x07;
 680   int op3 = -1;
 681   const int b100 = 4;
 682   const int b101 = 5;
 683   if (base == b100 && (op2 >> 6) != 3) {
 684     op3 = 0xFF & *ip++;
 685     base = op3 & 0x07;   // refetch the base
 686   }
 687   // now ip points at the disp (if any)
 688 
 689   switch (op2 >> 6) {
 690   case 0:
 691     // [00 reg  100][ss index base]
 692     // [00 reg  100][00   100  esp]
 693     // [00 reg base]
 694     // [00 reg  100][ss index  101][disp32]
 695     // [00 reg  101]               [disp32]
 696 
 697     if (base == b101) {
 698       if (which == disp32_operand)
 699         return ip;              // caller wants the disp32
 700       ip += 4;                  // skip the disp32
 701     }
 702     break;
 703 
 704   case 1:
 705     // [01 reg  100][ss index base][disp8]
 706     // [01 reg  100][00   100  esp][disp8]
 707     // [01 reg base]               [disp8]
 708     ip += 1;                    // skip the disp8
 709     break;
 710 
 711   case 2:
 712     // [10 reg  100][ss index base][disp32]
 713     // [10 reg  100][00   100  esp][disp32]
 714     // [10 reg base]               [disp32]
 715     if (which == disp32_operand)
 716       return ip;                // caller wants the disp32
 717     ip += 4;                    // skip the disp32
 718     break;
 719 
 720   case 3:
 721     // [11 reg base]  (not a memory addressing mode)
 722     break;
 723   }
 724 
 725   if (which == end_pc_operand) {
 726     return ip + tail_size;
 727   }
 728 
 729 #ifdef _LP64
 730   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
 731 #else
 732   assert(which == imm_operand, "instruction has only an imm field");
 733 #endif // LP64
 734   return ip;
 735 }
 736 
 737 address Assembler::locate_next_instruction(address inst) {
 738   // Secretly share code with locate_operand:
 739   return locate_operand(inst, end_pc_operand);
 740 }
 741 
 742 
 743 #ifdef ASSERT
 744 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
 745   address inst = inst_mark();
 746   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
 747   address opnd;
 748 
 749   Relocation* r = rspec.reloc();
 750   if (r->type() == relocInfo::none) {
 751     return;
 752   } else if (r->is_call() || format == call32_operand) {
 753     // assert(format == imm32_operand, "cannot specify a nonzero format");
 754     opnd = locate_operand(inst, call32_operand);
 755   } else if (r->is_data()) {
 756     assert(format == imm_operand || format == disp32_operand
 757            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
 758     opnd = locate_operand(inst, (WhichOperand)format);
 759   } else {
 760     assert(format == imm_operand, "cannot specify a format");
 761     return;
 762   }
 763   assert(opnd == pc(), "must put operand where relocs can find it");
 764 }
 765 #endif // ASSERT
 766 
 767 void Assembler::emit_operand32(Register reg, Address adr) {
 768   assert(reg->encoding() < 8, "no extended registers");
 769   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 770   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 771                adr._rspec);
 772 }
 773 
 774 void Assembler::emit_operand(Register reg, Address adr,
 775                              int rip_relative_correction) {
 776   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 777                adr._rspec,
 778                rip_relative_correction);
 779 }
 780 
 781 void Assembler::emit_operand(XMMRegister reg, Address adr) {
 782   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 783                adr._rspec);
 784 }
 785 
 786 // MMX operations
 787 void Assembler::emit_operand(MMXRegister reg, Address adr) {
 788   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 789   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 790 }
 791 
 792 // work around gcc (3.2.1-7a) bug
 793 void Assembler::emit_operand(Address adr, MMXRegister reg) {
 794   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 795   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 796 }
 797 
 798 
 799 void Assembler::emit_farith(int b1, int b2, int i) {
 800   assert(isByte(b1) && isByte(b2), "wrong opcode");
 801   assert(0 <= i &&  i < 8, "illegal stack offset");
 802   emit_byte(b1);
 803   emit_byte(b2 + i);
 804 }
 805 
 806 
 807 // Now the Assembler instruction (identical for 32/64 bits)
 808 
 809 void Assembler::adcl(Register dst, int32_t imm32) {
 810   prefix(dst);
 811   emit_arith(0x81, 0xD0, dst, imm32);
 812 }
 813 
 814 void Assembler::adcl(Register dst, Address src) {
 815   InstructionMark im(this);
 816   prefix(src, dst);
 817   emit_byte(0x13);
 818   emit_operand(dst, src);
 819 }
 820 
 821 void Assembler::adcl(Register dst, Register src) {
 822   (void) prefix_and_encode(dst->encoding(), src->encoding());
 823   emit_arith(0x13, 0xC0, dst, src);
 824 }
 825 
 826 void Assembler::addl(Address dst, int32_t imm32) {
 827   InstructionMark im(this);
 828   prefix(dst);
 829   emit_arith_operand(0x81, rax, dst, imm32);
 830 }
 831 
 832 void Assembler::addl(Address dst, Register src) {
 833   InstructionMark im(this);
 834   prefix(dst, src);
 835   emit_byte(0x01);
 836   emit_operand(src, dst);
 837 }
 838 
 839 void Assembler::addl(Register dst, int32_t imm32) {
 840   prefix(dst);
 841   emit_arith(0x81, 0xC0, dst, imm32);
 842 }
 843 
 844 void Assembler::addl(Register dst, Address src) {
 845   InstructionMark im(this);
 846   prefix(src, dst);
 847   emit_byte(0x03);
 848   emit_operand(dst, src);
 849 }
 850 
 851 void Assembler::addl(Register dst, Register src) {
 852   (void) prefix_and_encode(dst->encoding(), src->encoding());
 853   emit_arith(0x03, 0xC0, dst, src);
 854 }
 855 
 856 void Assembler::addr_nop_4() {
 857   // 4 bytes: NOP DWORD PTR [EAX+0]
 858   emit_byte(0x0F);
 859   emit_byte(0x1F);
 860   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
 861   emit_byte(0);    // 8-bits offset (1 byte)
 862 }
 863 
 864 void Assembler::addr_nop_5() {
 865   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
 866   emit_byte(0x0F);
 867   emit_byte(0x1F);
 868   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
 869   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 870   emit_byte(0);    // 8-bits offset (1 byte)
 871 }
 872 
 873 void Assembler::addr_nop_7() {
 874   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
 875   emit_byte(0x0F);
 876   emit_byte(0x1F);
 877   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
 878   emit_long(0);    // 32-bits offset (4 bytes)
 879 }
 880 
 881 void Assembler::addr_nop_8() {
 882   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
 883   emit_byte(0x0F);
 884   emit_byte(0x1F);
 885   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
 886   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 887   emit_long(0);    // 32-bits offset (4 bytes)
 888 }
 889 
 890 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
 891   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 892   emit_byte(0xF2);
 893   int encode = prefix_and_encode(dst->encoding(), src->encoding());
 894   emit_byte(0x0F);
 895   emit_byte(0x58);
 896   emit_byte(0xC0 | encode);
 897 }
 898 
 899 void Assembler::addsd(XMMRegister dst, Address src) {
 900   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 901   InstructionMark im(this);
 902   emit_byte(0xF2);
 903   prefix(src, dst);
 904   emit_byte(0x0F);
 905   emit_byte(0x58);
 906   emit_operand(dst, src);
 907 }
 908 
 909 void Assembler::addss(XMMRegister dst, XMMRegister src) {
 910   NOT_LP64(assert(VM_Version::supports_sse(), ""));
 911   emit_byte(0xF3);
 912   int encode = prefix_and_encode(dst->encoding(), src->encoding());
 913   emit_byte(0x0F);
 914   emit_byte(0x58);
 915   emit_byte(0xC0 | encode);
 916 }
 917 
 918 void Assembler::addss(XMMRegister dst, Address src) {
 919   NOT_LP64(assert(VM_Version::supports_sse(), ""));
 920   InstructionMark im(this);
 921   emit_byte(0xF3);
 922   prefix(src, dst);
 923   emit_byte(0x0F);
 924   emit_byte(0x58);
 925   emit_operand(dst, src);
 926 }
 927 
 928 void Assembler::andl(Register dst, int32_t imm32) {
 929   prefix(dst);
 930   emit_arith(0x81, 0xE0, dst, imm32);
 931 }
 932 
 933 void Assembler::andl(Register dst, Address src) {
 934   InstructionMark im(this);
 935   prefix(src, dst);
 936   emit_byte(0x23);
 937   emit_operand(dst, src);
 938 }
 939 
 940 void Assembler::andl(Register dst, Register src) {
 941   (void) prefix_and_encode(dst->encoding(), src->encoding());
 942   emit_arith(0x23, 0xC0, dst, src);
 943 }
 944 
 945 void Assembler::andpd(XMMRegister dst, Address src) {
 946   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 947   InstructionMark im(this);
 948   emit_byte(0x66);
 949   prefix(src, dst);
 950   emit_byte(0x0F);
 951   emit_byte(0x54);
 952   emit_operand(dst, src);
 953 }
 954 
 955 void Assembler::bswapl(Register reg) { // bswap
 956   int encode = prefix_and_encode(reg->encoding());
 957   emit_byte(0x0F);
 958   emit_byte(0xC8 | encode);
 959 }
 960 
 961 void Assembler::call(Label& L, relocInfo::relocType rtype) {
 962   // suspect disp32 is always good
 963   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
 964 
 965   if (L.is_bound()) {
 966     const int long_size = 5;
 967     int offs = (int)( target(L) - pc() );
 968     assert(offs <= 0, "assembler error");
 969     InstructionMark im(this);
 970     // 1110 1000 #32-bit disp
 971     emit_byte(0xE8);
 972     emit_data(offs - long_size, rtype, operand);
 973   } else {
 974     InstructionMark im(this);
 975     // 1110 1000 #32-bit disp
 976     L.add_patch_at(code(), locator());
 977 
 978     emit_byte(0xE8);
 979     emit_data(int(0), rtype, operand);
 980   }
 981 }
 982 
 983 void Assembler::call(Register dst) {
 984   // This was originally using a 32bit register encoding
 985   // and surely we want 64bit!
 986   // this is a 32bit encoding but in 64bit mode the default
 987   // operand size is 64bit so there is no need for the
 988   // wide prefix. So prefix only happens if we use the
 989   // new registers. Much like push/pop.
 990   int x = offset();
 991   // this may be true but dbx disassembles it as if it
 992   // were 32bits...
 993   // int encode = prefix_and_encode(dst->encoding());
 994   // if (offset() != x) assert(dst->encoding() >= 8, "what?");
 995   int encode = prefixq_and_encode(dst->encoding());
 996 
 997   emit_byte(0xFF);
 998   emit_byte(0xD0 | encode);
 999 }
1000 
1001 
1002 void Assembler::call(Address adr) {
1003   InstructionMark im(this);
1004   prefix(adr);
1005   emit_byte(0xFF);
1006   emit_operand(rdx, adr);
1007 }
1008 
1009 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1010   assert(entry != NULL, "call most probably wrong");
1011   InstructionMark im(this);
1012   emit_byte(0xE8);
1013   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
1014   assert(is_simm32(disp), "must be 32bit offset (call2)");
1015   // Technically, should use call32_operand, but this format is
1016   // implied by the fact that we're emitting a call instruction.
1017 
1018   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1019   emit_data((int) disp, rspec, operand);
1020 }
1021 
1022 void Assembler::cdql() {
1023   emit_byte(0x99);
1024 }
1025 
1026 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1027   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1028   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1029   emit_byte(0x0F);
1030   emit_byte(0x40 | cc);
1031   emit_byte(0xC0 | encode);
1032 }
1033 
1034 
1035 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1036   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1037   prefix(src, dst);
1038   emit_byte(0x0F);
1039   emit_byte(0x40 | cc);
1040   emit_operand(dst, src);
1041 }
1042 
1043 void Assembler::cmpb(Address dst, int imm8) {
1044   InstructionMark im(this);
1045   prefix(dst);
1046   emit_byte(0x80);
1047   emit_operand(rdi, dst, 1);
1048   emit_byte(imm8);
1049 }
1050 
1051 void Assembler::cmpl(Address dst, int32_t imm32) {
1052   InstructionMark im(this);
1053   prefix(dst);
1054   emit_byte(0x81);
1055   emit_operand(rdi, dst, 4);
1056   emit_long(imm32);
1057 }
1058 
1059 void Assembler::cmpl(Register dst, int32_t imm32) {
1060   prefix(dst);
1061   emit_arith(0x81, 0xF8, dst, imm32);
1062 }
1063 
1064 void Assembler::cmpl(Register dst, Register src) {
1065   (void) prefix_and_encode(dst->encoding(), src->encoding());
1066   emit_arith(0x3B, 0xC0, dst, src);
1067 }
1068 
1069 
1070 void Assembler::cmpl(Register dst, Address  src) {
1071   InstructionMark im(this);
1072   prefix(src, dst);
1073   emit_byte(0x3B);
1074   emit_operand(dst, src);
1075 }
1076 
1077 void Assembler::cmpw(Address dst, int imm16) {
1078   InstructionMark im(this);
1079   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1080   emit_byte(0x66);
1081   emit_byte(0x81);
1082   emit_operand(rdi, dst, 2);
1083   emit_word(imm16);
1084 }
1085 
1086 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1087 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1088 // The ZF is set if the compared values were equal, and cleared otherwise.
1089 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1090   if (Atomics & 2) {
1091      // caveat: no instructionmark, so this isn't relocatable.
1092      // Emit a synthetic, non-atomic, CAS equivalent.
1093      // Beware.  The synthetic form sets all ICCs, not just ZF.
1094      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
1095      cmpl(rax, adr);
1096      movl(rax, adr);
1097      if (reg != rax) {
1098         Label L ;
1099         jcc(Assembler::notEqual, L);
1100         movl(adr, reg);
1101         bind(L);
1102      }
1103   } else {
1104      InstructionMark im(this);
1105      prefix(adr, reg);
1106      emit_byte(0x0F);
1107      emit_byte(0xB1);
1108      emit_operand(reg, adr);
1109   }
1110 }
1111 
1112 void Assembler::comisd(XMMRegister dst, Address src) {
1113   // NOTE: dbx seems to decode this as comiss even though the
1114   // 0x66 is there. Strangly ucomisd comes out correct
1115   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1116   emit_byte(0x66);
1117   comiss(dst, src);
1118 }
1119 
1120 void Assembler::comiss(XMMRegister dst, Address src) {
1121   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1122 
1123   InstructionMark im(this);
1124   prefix(src, dst);
1125   emit_byte(0x0F);
1126   emit_byte(0x2F);
1127   emit_operand(dst, src);
1128 }
1129 
1130 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1131   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1132   emit_byte(0xF3);
1133   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1134   emit_byte(0x0F);
1135   emit_byte(0xE6);
1136   emit_byte(0xC0 | encode);
1137 }
1138 
1139 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1140   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1141   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1142   emit_byte(0x0F);
1143   emit_byte(0x5B);
1144   emit_byte(0xC0 | encode);
1145 }
1146 
1147 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1148   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1149   emit_byte(0xF2);
1150   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1151   emit_byte(0x0F);
1152   emit_byte(0x5A);
1153   emit_byte(0xC0 | encode);
1154 }
1155 
1156 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1157   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1158   emit_byte(0xF2);
1159   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1160   emit_byte(0x0F);
1161   emit_byte(0x2A);
1162   emit_byte(0xC0 | encode);
1163 }
1164 
1165 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1166   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1167   emit_byte(0xF3);
1168   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1169   emit_byte(0x0F);
1170   emit_byte(0x2A);
1171   emit_byte(0xC0 | encode);
1172 }
1173 
1174 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1175   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1176   emit_byte(0xF3);
1177   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1178   emit_byte(0x0F);
1179   emit_byte(0x5A);
1180   emit_byte(0xC0 | encode);
1181 }
1182 
1183 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1184   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1185   emit_byte(0xF2);
1186   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1187   emit_byte(0x0F);
1188   emit_byte(0x2C);
1189   emit_byte(0xC0 | encode);
1190 }
1191 
1192 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1193   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1194   emit_byte(0xF3);
1195   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1196   emit_byte(0x0F);
1197   emit_byte(0x2C);
1198   emit_byte(0xC0 | encode);
1199 }
1200 
1201 void Assembler::decl(Address dst) {
1202   // Don't use it directly. Use MacroAssembler::decrement() instead.
1203   InstructionMark im(this);
1204   prefix(dst);
1205   emit_byte(0xFF);
1206   emit_operand(rcx, dst);
1207 }
1208 
1209 void Assembler::divsd(XMMRegister dst, Address src) {
1210   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1211   InstructionMark im(this);
1212   emit_byte(0xF2);
1213   prefix(src, dst);
1214   emit_byte(0x0F);
1215   emit_byte(0x5E);
1216   emit_operand(dst, src);
1217 }
1218 
1219 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1220   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1221   emit_byte(0xF2);
1222   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1223   emit_byte(0x0F);
1224   emit_byte(0x5E);
1225   emit_byte(0xC0 | encode);
1226 }
1227 
1228 void Assembler::divss(XMMRegister dst, Address src) {
1229   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1230   InstructionMark im(this);
1231   emit_byte(0xF3);
1232   prefix(src, dst);
1233   emit_byte(0x0F);
1234   emit_byte(0x5E);
1235   emit_operand(dst, src);
1236 }
1237 
1238 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1239   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1240   emit_byte(0xF3);
1241   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1242   emit_byte(0x0F);
1243   emit_byte(0x5E);
1244   emit_byte(0xC0 | encode);
1245 }
1246 
1247 void Assembler::emms() {
1248   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1249   emit_byte(0x0F);
1250   emit_byte(0x77);
1251 }
1252 
1253 void Assembler::hlt() {
1254   emit_byte(0xF4);
1255 }
1256 
1257 void Assembler::idivl(Register src) {
1258   int encode = prefix_and_encode(src->encoding());
1259   emit_byte(0xF7);
1260   emit_byte(0xF8 | encode);
1261 }
1262 
1263 void Assembler::imull(Register dst, Register src) {
1264   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1265   emit_byte(0x0F);
1266   emit_byte(0xAF);
1267   emit_byte(0xC0 | encode);
1268 }
1269 
1270 
1271 void Assembler::imull(Register dst, Register src, int value) {
1272   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1273   if (is8bit(value)) {
1274     emit_byte(0x6B);
1275     emit_byte(0xC0 | encode);
1276     emit_byte(value);
1277   } else {
1278     emit_byte(0x69);
1279     emit_byte(0xC0 | encode);
1280     emit_long(value);
1281   }
1282 }
1283 
1284 void Assembler::incl(Address dst) {
1285   // Don't use it directly. Use MacroAssembler::increment() instead.
1286   InstructionMark im(this);
1287   prefix(dst);
1288   emit_byte(0xFF);
1289   emit_operand(rax, dst);
1290 }
1291 
1292 void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
1293   InstructionMark im(this);
1294   relocate(rtype);
1295   assert((0 <= cc) && (cc < 16), "illegal cc");
1296   if (L.is_bound()) {
1297     address dst = target(L);
1298     assert(dst != NULL, "jcc most probably wrong");
1299 
1300     const int short_size = 2;
1301     const int long_size = 6;
1302     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
1303     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
1304       // 0111 tttn #8-bit disp
1305       emit_byte(0x70 | cc);
1306       emit_byte((offs - short_size) & 0xFF);
1307     } else {
1308       // 0000 1111 1000 tttn #32-bit disp
1309       assert(is_simm32(offs - long_size),
1310              "must be 32bit offset (call4)");
1311       emit_byte(0x0F);
1312       emit_byte(0x80 | cc);
1313       emit_long(offs - long_size);
1314     }
1315   } else {
1316     // Note: could eliminate cond. jumps to this jump if condition
1317     //       is the same however, seems to be rather unlikely case.
1318     // Note: use jccb() if label to be bound is very close to get
1319     //       an 8-bit displacement
1320     L.add_patch_at(code(), locator());
1321     emit_byte(0x0F);
1322     emit_byte(0x80 | cc);
1323     emit_long(0);
1324   }
1325 }
1326 
1327 void Assembler::jccb(Condition cc, Label& L) {
1328   if (L.is_bound()) {
1329     const int short_size = 2;
1330     address entry = target(L);
1331     assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
1332            "Dispacement too large for a short jmp");
1333     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
1334     // 0111 tttn #8-bit disp
1335     emit_byte(0x70 | cc);
1336     emit_byte((offs - short_size) & 0xFF);
1337   } else {
1338     InstructionMark im(this);
1339     L.add_patch_at(code(), locator());
1340     emit_byte(0x70 | cc);
1341     emit_byte(0);
1342   }
1343 }
1344 
1345 void Assembler::jmp(Address adr) {
1346   InstructionMark im(this);
1347   prefix(adr);
1348   emit_byte(0xFF);
1349   emit_operand(rsp, adr);
1350 }
1351 
1352 void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
1353   if (L.is_bound()) {
1354     address entry = target(L);
1355     assert(entry != NULL, "jmp most probably wrong");
1356     InstructionMark im(this);
1357     const int short_size = 2;
1358     const int long_size = 5;
1359     intptr_t offs = entry - _code_pos;
1360     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
1361       emit_byte(0xEB);
1362       emit_byte((offs - short_size) & 0xFF);
1363     } else {
1364       emit_byte(0xE9);
1365       emit_long(offs - long_size);
1366     }
1367   } else {
1368     // By default, forward jumps are always 32-bit displacements, since
1369     // we can't yet know where the label will be bound.  If you're sure that
1370     // the forward jump will not run beyond 256 bytes, use jmpb to
1371     // force an 8-bit displacement.
1372     InstructionMark im(this);
1373     relocate(rtype);
1374     L.add_patch_at(code(), locator());
1375     emit_byte(0xE9);
1376     emit_long(0);
1377   }
1378 }
1379 
1380 void Assembler::jmp(Register entry) {
1381   int encode = prefix_and_encode(entry->encoding());
1382   emit_byte(0xFF);
1383   emit_byte(0xE0 | encode);
1384 }
1385 
1386 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1387   InstructionMark im(this);
1388   emit_byte(0xE9);
1389   assert(dest != NULL, "must have a target");
1390   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
1391   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1392   emit_data(disp, rspec.reloc(), call32_operand);
1393 }
1394 
1395 void Assembler::jmpb(Label& L) {
1396   if (L.is_bound()) {
1397     const int short_size = 2;
1398     address entry = target(L);
1399     assert(is8bit((entry - _code_pos) + short_size),
1400            "Dispacement too large for a short jmp");
1401     assert(entry != NULL, "jmp most probably wrong");
1402     intptr_t offs = entry - _code_pos;
1403     emit_byte(0xEB);
1404     emit_byte((offs - short_size) & 0xFF);
1405   } else {
1406     InstructionMark im(this);
1407     L.add_patch_at(code(), locator());
1408     emit_byte(0xEB);
1409     emit_byte(0);
1410   }
1411 }
1412 
1413 void Assembler::ldmxcsr( Address src) {
1414   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1415   InstructionMark im(this);
1416   prefix(src);
1417   emit_byte(0x0F);
1418   emit_byte(0xAE);
1419   emit_operand(as_Register(2), src);
1420 }
1421 
1422 void Assembler::leal(Register dst, Address src) {
1423   InstructionMark im(this);
1424 #ifdef _LP64
1425   emit_byte(0x67); // addr32
1426   prefix(src, dst);
1427 #endif // LP64
1428   emit_byte(0x8D);
1429   emit_operand(dst, src);
1430 }
1431 
1432 void Assembler::lock() {
1433   if (Atomics & 1) {
1434      // Emit either nothing, a NOP, or a NOP: prefix
1435      emit_byte(0x90) ;
1436   } else {
1437      emit_byte(0xF0);
1438   }
1439 }
1440 
1441 // Emit mfence instruction
1442 void Assembler::mfence() {
1443   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1444   emit_byte( 0x0F );
1445   emit_byte( 0xAE );
1446   emit_byte( 0xF0 );
1447 }
1448 
1449 void Assembler::mov(Register dst, Register src) {
1450   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1451 }
1452 
1453 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1454   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1455   int dstenc = dst->encoding();
1456   int srcenc = src->encoding();
1457   emit_byte(0x66);
1458   if (dstenc < 8) {
1459     if (srcenc >= 8) {
1460       prefix(REX_B);
1461       srcenc -= 8;
1462     }
1463   } else {
1464     if (srcenc < 8) {
1465       prefix(REX_R);
1466     } else {
1467       prefix(REX_RB);
1468       srcenc -= 8;
1469     }
1470     dstenc -= 8;
1471   }
1472   emit_byte(0x0F);
1473   emit_byte(0x28);
1474   emit_byte(0xC0 | dstenc << 3 | srcenc);
1475 }
1476 
1477 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1478   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1479   int dstenc = dst->encoding();
1480   int srcenc = src->encoding();
1481   if (dstenc < 8) {
1482     if (srcenc >= 8) {
1483       prefix(REX_B);
1484       srcenc -= 8;
1485     }
1486   } else {
1487     if (srcenc < 8) {
1488       prefix(REX_R);
1489     } else {
1490       prefix(REX_RB);
1491       srcenc -= 8;
1492     }
1493     dstenc -= 8;
1494   }
1495   emit_byte(0x0F);
1496   emit_byte(0x28);
1497   emit_byte(0xC0 | dstenc << 3 | srcenc);
1498 }
1499 
1500 void Assembler::movb(Register dst, Address src) {
1501   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
1502   InstructionMark im(this);
1503   prefix(src, dst, true);
1504   emit_byte(0x8A);
1505   emit_operand(dst, src);
1506 }
1507 
1508 
1509 void Assembler::movb(Address dst, int imm8) {
1510   InstructionMark im(this);
1511    prefix(dst);
1512   emit_byte(0xC6);
1513   emit_operand(rax, dst, 1);
1514   emit_byte(imm8);
1515 }
1516 
1517 
1518 void Assembler::movb(Address dst, Register src) {
1519   assert(src->has_byte_register(), "must have byte register");
1520   InstructionMark im(this);
1521   prefix(dst, src, true);
1522   emit_byte(0x88);
1523   emit_operand(src, dst);
1524 }
1525 
1526 void Assembler::movdl(XMMRegister dst, Register src) {
1527   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1528   emit_byte(0x66);
1529   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1530   emit_byte(0x0F);
1531   emit_byte(0x6E);
1532   emit_byte(0xC0 | encode);
1533 }
1534 
1535 void Assembler::movdl(Register dst, XMMRegister src) {
1536   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1537   emit_byte(0x66);
1538   // swap src/dst to get correct prefix
1539   int encode = prefix_and_encode(src->encoding(), dst->encoding());
1540   emit_byte(0x0F);
1541   emit_byte(0x7E);
1542   emit_byte(0xC0 | encode);
1543 }
1544 
1545 void Assembler::movdqa(XMMRegister dst, Address src) {
1546   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1547   InstructionMark im(this);
1548   emit_byte(0x66);
1549   prefix(src, dst);
1550   emit_byte(0x0F);
1551   emit_byte(0x6F);
1552   emit_operand(dst, src);
1553 }
1554 
1555 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
1556   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1557   emit_byte(0x66);
1558   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
1559   emit_byte(0x0F);
1560   emit_byte(0x6F);
1561   emit_byte(0xC0 | encode);
1562 }
1563 
1564 void Assembler::movdqa(Address dst, XMMRegister src) {
1565   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1566   InstructionMark im(this);
1567   emit_byte(0x66);
1568   prefix(dst, src);
1569   emit_byte(0x0F);
1570   emit_byte(0x7F);
1571   emit_operand(src, dst);
1572 }
1573 
1574 void Assembler::movdqu(XMMRegister dst, Address src) {
1575   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1576   InstructionMark im(this);
1577   emit_byte(0xF3);
1578   prefix(src, dst);
1579   emit_byte(0x0F);
1580   emit_byte(0x6F);
1581   emit_operand(dst, src);
1582 }
1583 
1584 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
1585   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1586   emit_byte(0xF3);
1587   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
1588   emit_byte(0x0F);
1589   emit_byte(0x6F);
1590   emit_byte(0xC0 | encode);
1591 }
1592 
1593 void Assembler::movdqu(Address dst, XMMRegister src) {
1594   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1595   InstructionMark im(this);
1596   emit_byte(0xF3);
1597   prefix(dst, src);
1598   emit_byte(0x0F);
1599   emit_byte(0x7F);
1600   emit_operand(src, dst);
1601 }
1602 
1603 // Uses zero extension on 64bit
1604 
1605 void Assembler::movl(Register dst, int32_t imm32) {
1606   int encode = prefix_and_encode(dst->encoding());
1607   emit_byte(0xB8 | encode);
1608   emit_long(imm32);
1609 }
1610 
1611 void Assembler::movl(Register dst, Register src) {
1612   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1613   emit_byte(0x8B);
1614   emit_byte(0xC0 | encode);
1615 }
1616 
1617 void Assembler::movl(Register dst, Address src) {
1618   InstructionMark im(this);
1619   prefix(src, dst);
1620   emit_byte(0x8B);
1621   emit_operand(dst, src);
1622 }
1623 
1624 void Assembler::movl(Address dst, int32_t imm32) {
1625   InstructionMark im(this);
1626   prefix(dst);
1627   emit_byte(0xC7);
1628   emit_operand(rax, dst, 4);
1629   emit_long(imm32);
1630 }
1631 
1632 void Assembler::movl(Address dst, Register src) {
1633   InstructionMark im(this);
1634   prefix(dst, src);
1635   emit_byte(0x89);
1636   emit_operand(src, dst);
1637 }
1638 
1639 // New cpus require to use movsd and movss to avoid partial register stall
1640 // when loading from memory. But for old Opteron use movlpd instead of movsd.
1641 // The selection is done in MacroAssembler::movdbl() and movflt().
1642 void Assembler::movlpd(XMMRegister dst, Address src) {
1643   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1644   InstructionMark im(this);
1645   emit_byte(0x66);
1646   prefix(src, dst);
1647   emit_byte(0x0F);
1648   emit_byte(0x12);
1649   emit_operand(dst, src);
1650 }
1651 
1652 void Assembler::movq( MMXRegister dst, Address src ) {
1653   assert( VM_Version::supports_mmx(), "" );
1654   emit_byte(0x0F);
1655   emit_byte(0x6F);
1656   emit_operand(dst, src);
1657 }
1658 
1659 void Assembler::movq( Address dst, MMXRegister src ) {
1660   assert( VM_Version::supports_mmx(), "" );
1661   emit_byte(0x0F);
1662   emit_byte(0x7F);
1663   // workaround gcc (3.2.1-7a) bug
1664   // In that version of gcc with only an emit_operand(MMX, Address)
1665   // gcc will tail jump and try and reverse the parameters completely
1666   // obliterating dst in the process. By having a version available
1667   // that doesn't need to swap the args at the tail jump the bug is
1668   // avoided.
1669   emit_operand(dst, src);
1670 }
1671 
1672 void Assembler::movq(XMMRegister dst, Address src) {
1673   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1674   InstructionMark im(this);
1675   emit_byte(0xF3);
1676   prefix(src, dst);
1677   emit_byte(0x0F);
1678   emit_byte(0x7E);
1679   emit_operand(dst, src);
1680 }
1681 
1682 void Assembler::movq(Address dst, XMMRegister src) {
1683   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1684   InstructionMark im(this);
1685   emit_byte(0x66);
1686   prefix(dst, src);
1687   emit_byte(0x0F);
1688   emit_byte(0xD6);
1689   emit_operand(src, dst);
1690 }
1691 
1692 void Assembler::movsbl(Register dst, Address src) { // movsxb
1693   InstructionMark im(this);
1694   prefix(src, dst);
1695   emit_byte(0x0F);
1696   emit_byte(0xBE);
1697   emit_operand(dst, src);
1698 }
1699 
1700 void Assembler::movsbl(Register dst, Register src) { // movsxb
1701   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1702   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1703   emit_byte(0x0F);
1704   emit_byte(0xBE);
1705   emit_byte(0xC0 | encode);
1706 }
1707 
1708 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
1709   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1710   emit_byte(0xF2);
1711   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1712   emit_byte(0x0F);
1713   emit_byte(0x10);
1714   emit_byte(0xC0 | encode);
1715 }
1716 
1717 void Assembler::movsd(XMMRegister dst, Address src) {
1718   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1719   InstructionMark im(this);
1720   emit_byte(0xF2);
1721   prefix(src, dst);
1722   emit_byte(0x0F);
1723   emit_byte(0x10);
1724   emit_operand(dst, src);
1725 }
1726 
1727 void Assembler::movsd(Address dst, XMMRegister src) {
1728   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1729   InstructionMark im(this);
1730   emit_byte(0xF2);
1731   prefix(dst, src);
1732   emit_byte(0x0F);
1733   emit_byte(0x11);
1734   emit_operand(src, dst);
1735 }
1736 
1737 void Assembler::movss(XMMRegister dst, XMMRegister src) {
1738   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1739   emit_byte(0xF3);
1740   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1741   emit_byte(0x0F);
1742   emit_byte(0x10);
1743   emit_byte(0xC0 | encode);
1744 }
1745 
1746 void Assembler::movss(XMMRegister dst, Address src) {
1747   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1748   InstructionMark im(this);
1749   emit_byte(0xF3);
1750   prefix(src, dst);
1751   emit_byte(0x0F);
1752   emit_byte(0x10);
1753   emit_operand(dst, src);
1754 }
1755 
1756 void Assembler::movss(Address dst, XMMRegister src) {
1757   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1758   InstructionMark im(this);
1759   emit_byte(0xF3);
1760   prefix(dst, src);
1761   emit_byte(0x0F);
1762   emit_byte(0x11);
1763   emit_operand(src, dst);
1764 }
1765 
1766 void Assembler::movswl(Register dst, Address src) { // movsxw
1767   InstructionMark im(this);
1768   prefix(src, dst);
1769   emit_byte(0x0F);
1770   emit_byte(0xBF);
1771   emit_operand(dst, src);
1772 }
1773 
1774 void Assembler::movswl(Register dst, Register src) { // movsxw
1775   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1776   emit_byte(0x0F);
1777   emit_byte(0xBF);
1778   emit_byte(0xC0 | encode);
1779 }
1780 
1781 void Assembler::movw(Address dst, int imm16) {
1782   InstructionMark im(this);
1783 
1784   emit_byte(0x66); // switch to 16-bit mode
1785   prefix(dst);
1786   emit_byte(0xC7);
1787   emit_operand(rax, dst, 2);
1788   emit_word(imm16);
1789 }
1790 
1791 void Assembler::movw(Register dst, Address src) {
1792   InstructionMark im(this);
1793   emit_byte(0x66);
1794   prefix(src, dst);
1795   emit_byte(0x8B);
1796   emit_operand(dst, src);
1797 }
1798 
1799 void Assembler::movw(Address dst, Register src) {
1800   InstructionMark im(this);
1801   emit_byte(0x66);
1802   prefix(dst, src);
1803   emit_byte(0x89);
1804   emit_operand(src, dst);
1805 }
1806 
1807 void Assembler::movzbl(Register dst, Address src) { // movzxb
1808   InstructionMark im(this);
1809   prefix(src, dst);
1810   emit_byte(0x0F);
1811   emit_byte(0xB6);
1812   emit_operand(dst, src);
1813 }
1814 
1815 void Assembler::movzbl(Register dst, Register src) { // movzxb
1816   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1817   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1818   emit_byte(0x0F);
1819   emit_byte(0xB6);
1820   emit_byte(0xC0 | encode);
1821 }
1822 
1823 void Assembler::movzwl(Register dst, Address src) { // movzxw
1824   InstructionMark im(this);
1825   prefix(src, dst);
1826   emit_byte(0x0F);
1827   emit_byte(0xB7);
1828   emit_operand(dst, src);
1829 }
1830 
1831 void Assembler::movzwl(Register dst, Register src) { // movzxw
1832   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1833   emit_byte(0x0F);
1834   emit_byte(0xB7);
1835   emit_byte(0xC0 | encode);
1836 }
1837 
1838 void Assembler::mull(Address src) {
1839   InstructionMark im(this);
1840   prefix(src);
1841   emit_byte(0xF7);
1842   emit_operand(rsp, src);
1843 }
1844 
1845 void Assembler::mull(Register src) {
1846   int encode = prefix_and_encode(src->encoding());
1847   emit_byte(0xF7);
1848   emit_byte(0xE0 | encode);
1849 }
1850 
1851 void Assembler::mulsd(XMMRegister dst, Address src) {
1852   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1853   InstructionMark im(this);
1854   emit_byte(0xF2);
1855   prefix(src, dst);
1856   emit_byte(0x0F);
1857   emit_byte(0x59);
1858   emit_operand(dst, src);
1859 }
1860 
1861 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
1862   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1863   emit_byte(0xF2);
1864   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1865   emit_byte(0x0F);
1866   emit_byte(0x59);
1867   emit_byte(0xC0 | encode);
1868 }
1869 
1870 void Assembler::mulss(XMMRegister dst, Address src) {
1871   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1872   InstructionMark im(this);
1873   emit_byte(0xF3);
1874   prefix(src, dst);
1875   emit_byte(0x0F);
1876   emit_byte(0x59);
1877   emit_operand(dst, src);
1878 }
1879 
1880 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
1881   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1882   emit_byte(0xF3);
1883   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1884   emit_byte(0x0F);
1885   emit_byte(0x59);
1886   emit_byte(0xC0 | encode);
1887 }
1888 
1889 void Assembler::negl(Register dst) {
1890   int encode = prefix_and_encode(dst->encoding());
1891   emit_byte(0xF7);
1892   emit_byte(0xD8 | encode);
1893 }
1894 
1895 void Assembler::nop(int i) {
1896 #ifdef ASSERT
1897   assert(i > 0, " ");
1898   // The fancy nops aren't currently recognized by debuggers making it a
1899   // pain to disassemble code while debugging. If asserts are on clearly
1900   // speed is not an issue so simply use the single byte traditional nop
1901   // to do alignment.
1902 
1903   for (; i > 0 ; i--) emit_byte(0x90);
1904   return;
1905 
1906 #endif // ASSERT
1907 
1908   if (UseAddressNop && VM_Version::is_intel()) {
1909     //
1910     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
1911     //  1: 0x90
1912     //  2: 0x66 0x90
1913     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
1914     //  4: 0x0F 0x1F 0x40 0x00
1915     //  5: 0x0F 0x1F 0x44 0x00 0x00
1916     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
1917     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
1918     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1919     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1920     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1921     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1922 
1923     // The rest coding is Intel specific - don't use consecutive address nops
1924 
1925     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
1926     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
1927     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
1928     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
1929 
1930     while(i >= 15) {
1931       // For Intel don't generate consecutive addess nops (mix with regular nops)
1932       i -= 15;
1933       emit_byte(0x66);   // size prefix
1934       emit_byte(0x66);   // size prefix
1935       emit_byte(0x66);   // size prefix
1936       addr_nop_8();
1937       emit_byte(0x66);   // size prefix
1938       emit_byte(0x66);   // size prefix
1939       emit_byte(0x66);   // size prefix
1940       emit_byte(0x90);   // nop
1941     }
1942     switch (i) {
1943       case 14:
1944         emit_byte(0x66); // size prefix
1945       case 13:
1946         emit_byte(0x66); // size prefix
1947       case 12:
1948         addr_nop_8();
1949         emit_byte(0x66); // size prefix
1950         emit_byte(0x66); // size prefix
1951         emit_byte(0x66); // size prefix
1952         emit_byte(0x90); // nop
1953         break;
1954       case 11:
1955         emit_byte(0x66); // size prefix
1956       case 10:
1957         emit_byte(0x66); // size prefix
1958       case 9:
1959         emit_byte(0x66); // size prefix
1960       case 8:
1961         addr_nop_8();
1962         break;
1963       case 7:
1964         addr_nop_7();
1965         break;
1966       case 6:
1967         emit_byte(0x66); // size prefix
1968       case 5:
1969         addr_nop_5();
1970         break;
1971       case 4:
1972         addr_nop_4();
1973         break;
1974       case 3:
1975         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
1976         emit_byte(0x66); // size prefix
1977       case 2:
1978         emit_byte(0x66); // size prefix
1979       case 1:
1980         emit_byte(0x90); // nop
1981         break;
1982       default:
1983         assert(i == 0, " ");
1984     }
1985     return;
1986   }
1987   if (UseAddressNop && VM_Version::is_amd()) {
1988     //
1989     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
1990     //  1: 0x90
1991     //  2: 0x66 0x90
1992     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
1993     //  4: 0x0F 0x1F 0x40 0x00
1994     //  5: 0x0F 0x1F 0x44 0x00 0x00
1995     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
1996     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
1997     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1998     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1999     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2000     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2001 
2002     // The rest coding is AMD specific - use consecutive address nops
2003 
2004     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2005     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2006     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2007     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2008     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2009     //     Size prefixes (0x66) are added for larger sizes
2010 
2011     while(i >= 22) {
2012       i -= 11;
2013       emit_byte(0x66); // size prefix
2014       emit_byte(0x66); // size prefix
2015       emit_byte(0x66); // size prefix
2016       addr_nop_8();
2017     }
2018     // Generate first nop for size between 21-12
2019     switch (i) {
2020       case 21:
2021         i -= 1;
2022         emit_byte(0x66); // size prefix
2023       case 20:
2024       case 19:
2025         i -= 1;
2026         emit_byte(0x66); // size prefix
2027       case 18:
2028       case 17:
2029         i -= 1;
2030         emit_byte(0x66); // size prefix
2031       case 16:
2032       case 15:
2033         i -= 8;
2034         addr_nop_8();
2035         break;
2036       case 14:
2037       case 13:
2038         i -= 7;
2039         addr_nop_7();
2040         break;
2041       case 12:
2042         i -= 6;
2043         emit_byte(0x66); // size prefix
2044         addr_nop_5();
2045         break;
2046       default:
2047         assert(i < 12, " ");
2048     }
2049 
2050     // Generate second nop for size between 11-1
2051     switch (i) {
2052       case 11:
2053         emit_byte(0x66); // size prefix
2054       case 10:
2055         emit_byte(0x66); // size prefix
2056       case 9:
2057         emit_byte(0x66); // size prefix
2058       case 8:
2059         addr_nop_8();
2060         break;
2061       case 7:
2062         addr_nop_7();
2063         break;
2064       case 6:
2065         emit_byte(0x66); // size prefix
2066       case 5:
2067         addr_nop_5();
2068         break;
2069       case 4:
2070         addr_nop_4();
2071         break;
2072       case 3:
2073         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2074         emit_byte(0x66); // size prefix
2075       case 2:
2076         emit_byte(0x66); // size prefix
2077       case 1:
2078         emit_byte(0x90); // nop
2079         break;
2080       default:
2081         assert(i == 0, " ");
2082     }
2083     return;
2084   }
2085 
2086   // Using nops with size prefixes "0x66 0x90".
2087   // From AMD Optimization Guide:
2088   //  1: 0x90
2089   //  2: 0x66 0x90
2090   //  3: 0x66 0x66 0x90
2091   //  4: 0x66 0x66 0x66 0x90
2092   //  5: 0x66 0x66 0x90 0x66 0x90
2093   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2094   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2095   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2096   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2097   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2098   //
2099   while(i > 12) {
2100     i -= 4;
2101     emit_byte(0x66); // size prefix
2102     emit_byte(0x66);
2103     emit_byte(0x66);
2104     emit_byte(0x90); // nop
2105   }
2106   // 1 - 12 nops
2107   if(i > 8) {
2108     if(i > 9) {
2109       i -= 1;
2110       emit_byte(0x66);
2111     }
2112     i -= 3;
2113     emit_byte(0x66);
2114     emit_byte(0x66);
2115     emit_byte(0x90);
2116   }
2117   // 1 - 8 nops
2118   if(i > 4) {
2119     if(i > 6) {
2120       i -= 1;
2121       emit_byte(0x66);
2122     }
2123     i -= 3;
2124     emit_byte(0x66);
2125     emit_byte(0x66);
2126     emit_byte(0x90);
2127   }
2128   switch (i) {
2129     case 4:
2130       emit_byte(0x66);
2131     case 3:
2132       emit_byte(0x66);
2133     case 2:
2134       emit_byte(0x66);
2135     case 1:
2136       emit_byte(0x90);
2137       break;
2138     default:
2139       assert(i == 0, " ");
2140   }
2141 }
2142 
2143 void Assembler::notl(Register dst) {
2144   int encode = prefix_and_encode(dst->encoding());
2145   emit_byte(0xF7);
2146   emit_byte(0xD0 | encode );
2147 }
2148 
2149 void Assembler::orl(Address dst, int32_t imm32) {
2150   InstructionMark im(this);
2151   prefix(dst);
2152   emit_byte(0x81);
2153   emit_operand(rcx, dst, 4);
2154   emit_long(imm32);
2155 }
2156 
2157 void Assembler::orl(Register dst, int32_t imm32) {
2158   prefix(dst);
2159   emit_arith(0x81, 0xC8, dst, imm32);
2160 }
2161 
2162 
2163 void Assembler::orl(Register dst, Address src) {
2164   InstructionMark im(this);
2165   prefix(src, dst);
2166   emit_byte(0x0B);
2167   emit_operand(dst, src);
2168 }
2169 
2170 
2171 void Assembler::orl(Register dst, Register src) {
2172   (void) prefix_and_encode(dst->encoding(), src->encoding());
2173   emit_arith(0x0B, 0xC0, dst, src);
2174 }
2175 
2176 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2177   assert(VM_Version::supports_sse4_2(), "");
2178 
2179   InstructionMark im(this);
2180   emit_byte(0x66);
2181   prefix(src, dst);
2182   emit_byte(0x0F);
2183   emit_byte(0x3A);
2184   emit_byte(0x61);
2185   emit_operand(dst, src);
2186   emit_byte(imm8);
2187 }
2188 
2189 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2190   assert(VM_Version::supports_sse4_2(), "");
2191 
2192   emit_byte(0x66);
2193   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
2194   emit_byte(0x0F);
2195   emit_byte(0x3A);
2196   emit_byte(0x61);
2197   emit_byte(0xC0 | encode);
2198   emit_byte(imm8);
2199 }
2200 
2201 // generic
2202 void Assembler::pop(Register dst) {
2203   int encode = prefix_and_encode(dst->encoding());
2204   emit_byte(0x58 | encode);
2205 }
2206 
2207 void Assembler::popcntl(Register dst, Address src) {
2208   assert(VM_Version::supports_popcnt(), "must support");
2209   InstructionMark im(this);
2210   emit_byte(0xF3);
2211   prefix(src, dst);
2212   emit_byte(0x0F);
2213   emit_byte(0xB8);
2214   emit_operand(dst, src);
2215 }
2216 
2217 void Assembler::popcntl(Register dst, Register src) {
2218   assert(VM_Version::supports_popcnt(), "must support");
2219   emit_byte(0xF3);
2220   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2221   emit_byte(0x0F);
2222   emit_byte(0xB8);
2223   emit_byte(0xC0 | encode);
2224 }
2225 
2226 void Assembler::popf() {
2227   emit_byte(0x9D);
2228 }
2229 
2230 void Assembler::popl(Address dst) {
2231   // NOTE: this will adjust stack by 8byte on 64bits
2232   InstructionMark im(this);
2233   prefix(dst);
2234   emit_byte(0x8F);
2235   emit_operand(rax, dst);
2236 }
2237 
2238 void Assembler::prefetch_prefix(Address src) {
2239   prefix(src);
2240   emit_byte(0x0F);
2241 }
2242 
2243 void Assembler::prefetchnta(Address src) {
2244   NOT_LP64(assert(VM_Version::supports_sse2(), "must support"));
2245   InstructionMark im(this);
2246   prefetch_prefix(src);
2247   emit_byte(0x18);
2248   emit_operand(rax, src); // 0, src
2249 }
2250 
2251 void Assembler::prefetchr(Address src) {
2252   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
2253   InstructionMark im(this);
2254   prefetch_prefix(src);
2255   emit_byte(0x0D);
2256   emit_operand(rax, src); // 0, src
2257 }
2258 
2259 void Assembler::prefetcht0(Address src) {
2260   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2261   InstructionMark im(this);
2262   prefetch_prefix(src);
2263   emit_byte(0x18);
2264   emit_operand(rcx, src); // 1, src
2265 }
2266 
2267 void Assembler::prefetcht1(Address src) {
2268   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2269   InstructionMark im(this);
2270   prefetch_prefix(src);
2271   emit_byte(0x18);
2272   emit_operand(rdx, src); // 2, src
2273 }
2274 
2275 void Assembler::prefetcht2(Address src) {
2276   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2277   InstructionMark im(this);
2278   prefetch_prefix(src);
2279   emit_byte(0x18);
2280   emit_operand(rbx, src); // 3, src
2281 }
2282 
2283 void Assembler::prefetchw(Address src) {
2284   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
2285   InstructionMark im(this);
2286   prefetch_prefix(src);
2287   emit_byte(0x0D);
2288   emit_operand(rcx, src); // 1, src
2289 }
2290 
2291 void Assembler::prefix(Prefix p) {
2292   a_byte(p);
2293 }
2294 
2295 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
2296   assert(isByte(mode), "invalid value");
2297   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2298 
2299   emit_byte(0x66);
2300   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2301   emit_byte(0x0F);
2302   emit_byte(0x70);
2303   emit_byte(0xC0 | encode);
2304   emit_byte(mode & 0xFF);
2305 
2306 }
2307 
2308 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
2309   assert(isByte(mode), "invalid value");
2310   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2311 
2312   InstructionMark im(this);
2313   emit_byte(0x66);
2314   prefix(src, dst);
2315   emit_byte(0x0F);
2316   emit_byte(0x70);
2317   emit_operand(dst, src);
2318   emit_byte(mode & 0xFF);
2319 }
2320 
2321 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
2322   assert(isByte(mode), "invalid value");
2323   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2324 
2325   emit_byte(0xF2);
2326   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2327   emit_byte(0x0F);
2328   emit_byte(0x70);
2329   emit_byte(0xC0 | encode);
2330   emit_byte(mode & 0xFF);
2331 }
2332 
2333 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
2334   assert(isByte(mode), "invalid value");
2335   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2336 
2337   InstructionMark im(this);
2338   emit_byte(0xF2);
2339   prefix(src, dst); // QQ new
2340   emit_byte(0x0F);
2341   emit_byte(0x70);
2342   emit_operand(dst, src);
2343   emit_byte(mode & 0xFF);
2344 }
2345 
2346 void Assembler::psrlq(XMMRegister dst, int shift) {
2347   // HMM Table D-1 says sse2 or mmx
2348   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2349 
2350   int encode = prefixq_and_encode(xmm2->encoding(), dst->encoding());
2351   emit_byte(0x66);
2352   emit_byte(0x0F);
2353   emit_byte(0x73);
2354   emit_byte(0xC0 | encode);
2355   emit_byte(shift);
2356 }
2357 
2358 void Assembler::ptest(XMMRegister dst, Address src) {
2359   assert(VM_Version::supports_sse4_1(), "");
2360 
2361   InstructionMark im(this);
2362   emit_byte(0x66);
2363   prefix(src, dst);
2364   emit_byte(0x0F);
2365   emit_byte(0x38);
2366   emit_byte(0x17);
2367   emit_operand(dst, src);
2368 }
2369 
2370 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2371   assert(VM_Version::supports_sse4_1(), "");
2372 
2373   emit_byte(0x66);
2374   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
2375   emit_byte(0x0F);
2376   emit_byte(0x38);
2377   emit_byte(0x17);
2378   emit_byte(0xC0 | encode);
2379 }
2380 
2381 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
2382   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2383   emit_byte(0x66);
2384   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2385   emit_byte(0x0F);
2386   emit_byte(0x60);
2387   emit_byte(0xC0 | encode);
2388 }
2389 
2390 void Assembler::push(int32_t imm32) {
2391   // in 64bits we push 64bits onto the stack but only
2392   // take a 32bit immediate
2393   emit_byte(0x68);
2394   emit_long(imm32);
2395 }
2396 
2397 void Assembler::push(Register src) {
2398   int encode = prefix_and_encode(src->encoding());
2399 
2400   emit_byte(0x50 | encode);
2401 }
2402 
2403 void Assembler::pushf() {
2404   emit_byte(0x9C);
2405 }
2406 
2407 void Assembler::pushl(Address src) {
2408   // Note this will push 64bit on 64bit
2409   InstructionMark im(this);
2410   prefix(src);
2411   emit_byte(0xFF);
2412   emit_operand(rsi, src);
2413 }
2414 
2415 void Assembler::pxor(XMMRegister dst, Address src) {
2416   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2417   InstructionMark im(this);
2418   emit_byte(0x66);
2419   prefix(src, dst);
2420   emit_byte(0x0F);
2421   emit_byte(0xEF);
2422   emit_operand(dst, src);
2423 }
2424 
2425 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
2426   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2427   InstructionMark im(this);
2428   emit_byte(0x66);
2429   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2430   emit_byte(0x0F);
2431   emit_byte(0xEF);
2432   emit_byte(0xC0 | encode);
2433 }
2434 
2435 void Assembler::rcll(Register dst, int imm8) {
2436   assert(isShiftCount(imm8), "illegal shift count");
2437   int encode = prefix_and_encode(dst->encoding());
2438   if (imm8 == 1) {
2439     emit_byte(0xD1);
2440     emit_byte(0xD0 | encode);
2441   } else {
2442     emit_byte(0xC1);
2443     emit_byte(0xD0 | encode);
2444     emit_byte(imm8);
2445   }
2446 }
2447 
2448 // copies data from [esi] to [edi] using rcx pointer sized words
2449 // generic
2450 void Assembler::rep_mov() {
2451   emit_byte(0xF3);
2452   // MOVSQ
2453   LP64_ONLY(prefix(REX_W));
2454   emit_byte(0xA5);
2455 }
2456 
2457 // sets rcx pointer sized words with rax, value at [edi]
2458 // generic
2459 void Assembler::rep_set() { // rep_set
2460   emit_byte(0xF3);
2461   // STOSQ
2462   LP64_ONLY(prefix(REX_W));
2463   emit_byte(0xAB);
2464 }
2465 
2466 // scans rcx pointer sized words at [edi] for occurance of rax,
2467 // generic
2468 void Assembler::repne_scan() { // repne_scan
2469   emit_byte(0xF2);
2470   // SCASQ
2471   LP64_ONLY(prefix(REX_W));
2472   emit_byte(0xAF);
2473 }
2474 
2475 #ifdef _LP64
2476 // scans rcx 4 byte words at [edi] for occurance of rax,
2477 // generic
2478 void Assembler::repne_scanl() { // repne_scan
2479   emit_byte(0xF2);
2480   // SCASL
2481   emit_byte(0xAF);
2482 }
2483 #endif
2484 
2485 void Assembler::ret(int imm16) {
2486   if (imm16 == 0) {
2487     emit_byte(0xC3);
2488   } else {
2489     emit_byte(0xC2);
2490     emit_word(imm16);
2491   }
2492 }
2493 
2494 void Assembler::sahf() {
2495 #ifdef _LP64
2496   // Not supported in 64bit mode
2497   ShouldNotReachHere();
2498 #endif
2499   emit_byte(0x9E);
2500 }
2501 
2502 void Assembler::sarl(Register dst, int imm8) {
2503   int encode = prefix_and_encode(dst->encoding());
2504   assert(isShiftCount(imm8), "illegal shift count");
2505   if (imm8 == 1) {
2506     emit_byte(0xD1);
2507     emit_byte(0xF8 | encode);
2508   } else {
2509     emit_byte(0xC1);
2510     emit_byte(0xF8 | encode);
2511     emit_byte(imm8);
2512   }
2513 }
2514 
2515 void Assembler::sarl(Register dst) {
2516   int encode = prefix_and_encode(dst->encoding());
2517   emit_byte(0xD3);
2518   emit_byte(0xF8 | encode);
2519 }
2520 
2521 void Assembler::sbbl(Address dst, int32_t imm32) {
2522   InstructionMark im(this);
2523   prefix(dst);
2524   emit_arith_operand(0x81, rbx, dst, imm32);
2525 }
2526 
2527 void Assembler::sbbl(Register dst, int32_t imm32) {
2528   prefix(dst);
2529   emit_arith(0x81, 0xD8, dst, imm32);
2530 }
2531 
2532 
2533 void Assembler::sbbl(Register dst, Address src) {
2534   InstructionMark im(this);
2535   prefix(src, dst);
2536   emit_byte(0x1B);
2537   emit_operand(dst, src);
2538 }
2539 
2540 void Assembler::sbbl(Register dst, Register src) {
2541   (void) prefix_and_encode(dst->encoding(), src->encoding());
2542   emit_arith(0x1B, 0xC0, dst, src);
2543 }
2544 
2545 void Assembler::setb(Condition cc, Register dst) {
2546   assert(0 <= cc && cc < 16, "illegal cc");
2547   int encode = prefix_and_encode(dst->encoding(), true);
2548   emit_byte(0x0F);
2549   emit_byte(0x90 | cc);
2550   emit_byte(0xC0 | encode);
2551 }
2552 
2553 void Assembler::shll(Register dst, int imm8) {
2554   assert(isShiftCount(imm8), "illegal shift count");
2555   int encode = prefix_and_encode(dst->encoding());
2556   if (imm8 == 1 ) {
2557     emit_byte(0xD1);
2558     emit_byte(0xE0 | encode);
2559   } else {
2560     emit_byte(0xC1);
2561     emit_byte(0xE0 | encode);
2562     emit_byte(imm8);
2563   }
2564 }
2565 
2566 void Assembler::shll(Register dst) {
2567   int encode = prefix_and_encode(dst->encoding());
2568   emit_byte(0xD3);
2569   emit_byte(0xE0 | encode);
2570 }
2571 
2572 void Assembler::shrl(Register dst, int imm8) {
2573   assert(isShiftCount(imm8), "illegal shift count");
2574   int encode = prefix_and_encode(dst->encoding());
2575   emit_byte(0xC1);
2576   emit_byte(0xE8 | encode);
2577   emit_byte(imm8);
2578 }
2579 
2580 void Assembler::shrl(Register dst) {
2581   int encode = prefix_and_encode(dst->encoding());
2582   emit_byte(0xD3);
2583   emit_byte(0xE8 | encode);
2584 }
2585 
2586 // copies a single word from [esi] to [edi]
2587 void Assembler::smovl() {
2588   emit_byte(0xA5);
2589 }
2590 
2591 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
2592   // HMM Table D-1 says sse2
2593   // NOT_LP64(assert(VM_Version::supports_sse(), ""));
2594   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2595   emit_byte(0xF2);
2596   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2597   emit_byte(0x0F);
2598   emit_byte(0x51);
2599   emit_byte(0xC0 | encode);
2600 }
2601 
2602 void Assembler::stmxcsr( Address dst) {
2603   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2604   InstructionMark im(this);
2605   prefix(dst);
2606   emit_byte(0x0F);
2607   emit_byte(0xAE);
2608   emit_operand(as_Register(3), dst);
2609 }
2610 
2611 void Assembler::subl(Address dst, int32_t imm32) {
2612   InstructionMark im(this);
2613   prefix(dst);
2614   if (is8bit(imm32)) {
2615     emit_byte(0x83);
2616     emit_operand(rbp, dst, 1);
2617     emit_byte(imm32 & 0xFF);
2618   } else {
2619     emit_byte(0x81);
2620     emit_operand(rbp, dst, 4);
2621     emit_long(imm32);
2622   }
2623 }
2624 
2625 void Assembler::subl(Register dst, int32_t imm32) {
2626   prefix(dst);
2627   emit_arith(0x81, 0xE8, dst, imm32);
2628 }
2629 
2630 void Assembler::subl(Address dst, Register src) {
2631   InstructionMark im(this);
2632   prefix(dst, src);
2633   emit_byte(0x29);
2634   emit_operand(src, dst);
2635 }
2636 
2637 void Assembler::subl(Register dst, Address src) {
2638   InstructionMark im(this);
2639   prefix(src, dst);
2640   emit_byte(0x2B);
2641   emit_operand(dst, src);
2642 }
2643 
2644 void Assembler::subl(Register dst, Register src) {
2645   (void) prefix_and_encode(dst->encoding(), src->encoding());
2646   emit_arith(0x2B, 0xC0, dst, src);
2647 }
2648 
2649 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
2650   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2651   emit_byte(0xF2);
2652   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2653   emit_byte(0x0F);
2654   emit_byte(0x5C);
2655   emit_byte(0xC0 | encode);
2656 }
2657 
2658 void Assembler::subsd(XMMRegister dst, Address src) {
2659   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2660   InstructionMark im(this);
2661   emit_byte(0xF2);
2662   prefix(src, dst);
2663   emit_byte(0x0F);
2664   emit_byte(0x5C);
2665   emit_operand(dst, src);
2666 }
2667 
2668 void Assembler::subss(XMMRegister dst, XMMRegister src) {
2669   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2670   emit_byte(0xF3);
2671   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2672   emit_byte(0x0F);
2673   emit_byte(0x5C);
2674   emit_byte(0xC0 | encode);
2675 }
2676 
2677 void Assembler::subss(XMMRegister dst, Address src) {
2678   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2679   InstructionMark im(this);
2680   emit_byte(0xF3);
2681   prefix(src, dst);
2682   emit_byte(0x0F);
2683   emit_byte(0x5C);
2684   emit_operand(dst, src);
2685 }
2686 
2687 void Assembler::testb(Register dst, int imm8) {
2688   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2689   (void) prefix_and_encode(dst->encoding(), true);
2690   emit_arith_b(0xF6, 0xC0, dst, imm8);
2691 }
2692 
2693 void Assembler::testl(Register dst, int32_t imm32) {
2694   // not using emit_arith because test
2695   // doesn't support sign-extension of
2696   // 8bit operands
2697   int encode = dst->encoding();
2698   if (encode == 0) {
2699     emit_byte(0xA9);
2700   } else {
2701     encode = prefix_and_encode(encode);
2702     emit_byte(0xF7);
2703     emit_byte(0xC0 | encode);
2704   }
2705   emit_long(imm32);
2706 }
2707 
2708 void Assembler::testl(Register dst, Register src) {
2709   (void) prefix_and_encode(dst->encoding(), src->encoding());
2710   emit_arith(0x85, 0xC0, dst, src);
2711 }
2712 
2713 void Assembler::testl(Register dst, Address  src) {
2714   InstructionMark im(this);
2715   prefix(src, dst);
2716   emit_byte(0x85);
2717   emit_operand(dst, src);
2718 }
2719 
2720 void Assembler::ucomisd(XMMRegister dst, Address src) {
2721   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2722   emit_byte(0x66);
2723   ucomiss(dst, src);
2724 }
2725 
2726 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
2727   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2728   emit_byte(0x66);
2729   ucomiss(dst, src);
2730 }
2731 
2732 void Assembler::ucomiss(XMMRegister dst, Address src) {
2733   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2734 
2735   InstructionMark im(this);
2736   prefix(src, dst);
2737   emit_byte(0x0F);
2738   emit_byte(0x2E);
2739   emit_operand(dst, src);
2740 }
2741 
2742 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
2743   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2744   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2745   emit_byte(0x0F);
2746   emit_byte(0x2E);
2747   emit_byte(0xC0 | encode);
2748 }
2749 
2750 
2751 void Assembler::xaddl(Address dst, Register src) {
2752   InstructionMark im(this);
2753   prefix(dst, src);
2754   emit_byte(0x0F);
2755   emit_byte(0xC1);
2756   emit_operand(src, dst);
2757 }
2758 
2759 void Assembler::xchgl(Register dst, Address src) { // xchg
2760   InstructionMark im(this);
2761   prefix(src, dst);
2762   emit_byte(0x87);
2763   emit_operand(dst, src);
2764 }
2765 
2766 void Assembler::xchgl(Register dst, Register src) {
2767   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2768   emit_byte(0x87);
2769   emit_byte(0xc0 | encode);
2770 }
2771 
2772 void Assembler::xorl(Register dst, int32_t imm32) {
2773   prefix(dst);
2774   emit_arith(0x81, 0xF0, dst, imm32);
2775 }
2776 
2777 void Assembler::xorl(Register dst, Address src) {
2778   InstructionMark im(this);
2779   prefix(src, dst);
2780   emit_byte(0x33);
2781   emit_operand(dst, src);
2782 }
2783 
2784 void Assembler::xorl(Register dst, Register src) {
2785   (void) prefix_and_encode(dst->encoding(), src->encoding());
2786   emit_arith(0x33, 0xC0, dst, src);
2787 }
2788 
2789 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
2790   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2791   emit_byte(0x66);
2792   xorps(dst, src);
2793 }
2794 
2795 void Assembler::xorpd(XMMRegister dst, Address src) {
2796   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2797   InstructionMark im(this);
2798   emit_byte(0x66);
2799   prefix(src, dst);
2800   emit_byte(0x0F);
2801   emit_byte(0x57);
2802   emit_operand(dst, src);
2803 }
2804 
2805 
2806 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
2807   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2808   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2809   emit_byte(0x0F);
2810   emit_byte(0x57);
2811   emit_byte(0xC0 | encode);
2812 }
2813 
2814 void Assembler::xorps(XMMRegister dst, Address src) {
2815   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2816   InstructionMark im(this);
2817   prefix(src, dst);
2818   emit_byte(0x0F);
2819   emit_byte(0x57);
2820   emit_operand(dst, src);
2821 }
2822 
2823 #ifndef _LP64
2824 // 32bit only pieces of the assembler
2825 
2826 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
2827   // NO PREFIX AS NEVER 64BIT
2828   InstructionMark im(this);
2829   emit_byte(0x81);
2830   emit_byte(0xF8 | src1->encoding());
2831   emit_data(imm32, rspec, 0);
2832 }
2833 
2834 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
2835   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
2836   InstructionMark im(this);
2837   emit_byte(0x81);
2838   emit_operand(rdi, src1);
2839   emit_data(imm32, rspec, 0);
2840 }
2841 
2842 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
2843 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
2844 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
2845 void Assembler::cmpxchg8(Address adr) {
2846   InstructionMark im(this);
2847   emit_byte(0x0F);
2848   emit_byte(0xc7);
2849   emit_operand(rcx, adr);
2850 }
2851 
2852 void Assembler::decl(Register dst) {
2853   // Don't use it directly. Use MacroAssembler::decrementl() instead.
2854  emit_byte(0x48 | dst->encoding());
2855 }
2856 
2857 #endif // _LP64
2858 
2859 // 64bit typically doesn't use the x87 but needs to for the trig funcs
2860 
2861 void Assembler::fabs() {
2862   emit_byte(0xD9);
2863   emit_byte(0xE1);
2864 }
2865 
2866 void Assembler::fadd(int i) {
2867   emit_farith(0xD8, 0xC0, i);
2868 }
2869 
2870 void Assembler::fadd_d(Address src) {
2871   InstructionMark im(this);
2872   emit_byte(0xDC);
2873   emit_operand32(rax, src);
2874 }
2875 
2876 void Assembler::fadd_s(Address src) {
2877   InstructionMark im(this);
2878   emit_byte(0xD8);
2879   emit_operand32(rax, src);
2880 }
2881 
2882 void Assembler::fadda(int i) {
2883   emit_farith(0xDC, 0xC0, i);
2884 }
2885 
2886 void Assembler::faddp(int i) {
2887   emit_farith(0xDE, 0xC0, i);
2888 }
2889 
2890 void Assembler::fchs() {
2891   emit_byte(0xD9);
2892   emit_byte(0xE0);
2893 }
2894 
2895 void Assembler::fcom(int i) {
2896   emit_farith(0xD8, 0xD0, i);
2897 }
2898 
2899 void Assembler::fcomp(int i) {
2900   emit_farith(0xD8, 0xD8, i);
2901 }
2902 
2903 void Assembler::fcomp_d(Address src) {
2904   InstructionMark im(this);
2905   emit_byte(0xDC);
2906   emit_operand32(rbx, src);
2907 }
2908 
2909 void Assembler::fcomp_s(Address src) {
2910   InstructionMark im(this);
2911   emit_byte(0xD8);
2912   emit_operand32(rbx, src);
2913 }
2914 
2915 void Assembler::fcompp() {
2916   emit_byte(0xDE);
2917   emit_byte(0xD9);
2918 }
2919 
2920 void Assembler::fcos() {
2921   emit_byte(0xD9);
2922   emit_byte(0xFF);
2923 }
2924 
2925 void Assembler::fdecstp() {
2926   emit_byte(0xD9);
2927   emit_byte(0xF6);
2928 }
2929 
2930 void Assembler::fdiv(int i) {
2931   emit_farith(0xD8, 0xF0, i);
2932 }
2933 
2934 void Assembler::fdiv_d(Address src) {
2935   InstructionMark im(this);
2936   emit_byte(0xDC);
2937   emit_operand32(rsi, src);
2938 }
2939 
2940 void Assembler::fdiv_s(Address src) {
2941   InstructionMark im(this);
2942   emit_byte(0xD8);
2943   emit_operand32(rsi, src);
2944 }
2945 
2946 void Assembler::fdiva(int i) {
2947   emit_farith(0xDC, 0xF8, i);
2948 }
2949 
2950 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
2951 //       is erroneous for some of the floating-point instructions below.
2952 
2953 void Assembler::fdivp(int i) {
2954   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
2955 }
2956 
2957 void Assembler::fdivr(int i) {
2958   emit_farith(0xD8, 0xF8, i);
2959 }
2960 
2961 void Assembler::fdivr_d(Address src) {
2962   InstructionMark im(this);
2963   emit_byte(0xDC);
2964   emit_operand32(rdi, src);
2965 }
2966 
2967 void Assembler::fdivr_s(Address src) {
2968   InstructionMark im(this);
2969   emit_byte(0xD8);
2970   emit_operand32(rdi, src);
2971 }
2972 
2973 void Assembler::fdivra(int i) {
2974   emit_farith(0xDC, 0xF0, i);
2975 }
2976 
2977 void Assembler::fdivrp(int i) {
2978   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
2979 }
2980 
2981 void Assembler::ffree(int i) {
2982   emit_farith(0xDD, 0xC0, i);
2983 }
2984 
2985 void Assembler::fild_d(Address adr) {
2986   InstructionMark im(this);
2987   emit_byte(0xDF);
2988   emit_operand32(rbp, adr);
2989 }
2990 
2991 void Assembler::fild_s(Address adr) {
2992   InstructionMark im(this);
2993   emit_byte(0xDB);
2994   emit_operand32(rax, adr);
2995 }
2996 
2997 void Assembler::fincstp() {
2998   emit_byte(0xD9);
2999   emit_byte(0xF7);
3000 }
3001 
3002 void Assembler::finit() {
3003   emit_byte(0x9B);
3004   emit_byte(0xDB);
3005   emit_byte(0xE3);
3006 }
3007 
3008 void Assembler::fist_s(Address adr) {
3009   InstructionMark im(this);
3010   emit_byte(0xDB);
3011   emit_operand32(rdx, adr);
3012 }
3013 
3014 void Assembler::fistp_d(Address adr) {
3015   InstructionMark im(this);
3016   emit_byte(0xDF);
3017   emit_operand32(rdi, adr);
3018 }
3019 
3020 void Assembler::fistp_s(Address adr) {
3021   InstructionMark im(this);
3022   emit_byte(0xDB);
3023   emit_operand32(rbx, adr);
3024 }
3025 
3026 void Assembler::fld1() {
3027   emit_byte(0xD9);
3028   emit_byte(0xE8);
3029 }
3030 
3031 void Assembler::fld_d(Address adr) {
3032   InstructionMark im(this);
3033   emit_byte(0xDD);
3034   emit_operand32(rax, adr);
3035 }
3036 
3037 void Assembler::fld_s(Address adr) {
3038   InstructionMark im(this);
3039   emit_byte(0xD9);
3040   emit_operand32(rax, adr);
3041 }
3042 
3043 
3044 void Assembler::fld_s(int index) {
3045   emit_farith(0xD9, 0xC0, index);
3046 }
3047 
3048 void Assembler::fld_x(Address adr) {
3049   InstructionMark im(this);
3050   emit_byte(0xDB);
3051   emit_operand32(rbp, adr);
3052 }
3053 
3054 void Assembler::fldcw(Address src) {
3055   InstructionMark im(this);
3056   emit_byte(0xd9);
3057   emit_operand32(rbp, src);
3058 }
3059 
3060 void Assembler::fldenv(Address src) {
3061   InstructionMark im(this);
3062   emit_byte(0xD9);
3063   emit_operand32(rsp, src);
3064 }
3065 
3066 void Assembler::fldlg2() {
3067   emit_byte(0xD9);
3068   emit_byte(0xEC);
3069 }
3070 
3071 void Assembler::fldln2() {
3072   emit_byte(0xD9);
3073   emit_byte(0xED);
3074 }
3075 
3076 void Assembler::fldz() {
3077   emit_byte(0xD9);
3078   emit_byte(0xEE);
3079 }
3080 
3081 void Assembler::flog() {
3082   fldln2();
3083   fxch();
3084   fyl2x();
3085 }
3086 
3087 void Assembler::flog10() {
3088   fldlg2();
3089   fxch();
3090   fyl2x();
3091 }
3092 
3093 void Assembler::fmul(int i) {
3094   emit_farith(0xD8, 0xC8, i);
3095 }
3096 
3097 void Assembler::fmul_d(Address src) {
3098   InstructionMark im(this);
3099   emit_byte(0xDC);
3100   emit_operand32(rcx, src);
3101 }
3102 
3103 void Assembler::fmul_s(Address src) {
3104   InstructionMark im(this);
3105   emit_byte(0xD8);
3106   emit_operand32(rcx, src);
3107 }
3108 
3109 void Assembler::fmula(int i) {
3110   emit_farith(0xDC, 0xC8, i);
3111 }
3112 
3113 void Assembler::fmulp(int i) {
3114   emit_farith(0xDE, 0xC8, i);
3115 }
3116 
3117 void Assembler::fnsave(Address dst) {
3118   InstructionMark im(this);
3119   emit_byte(0xDD);
3120   emit_operand32(rsi, dst);
3121 }
3122 
3123 void Assembler::fnstcw(Address src) {
3124   InstructionMark im(this);
3125   emit_byte(0x9B);
3126   emit_byte(0xD9);
3127   emit_operand32(rdi, src);
3128 }
3129 
3130 void Assembler::fnstsw_ax() {
3131   emit_byte(0xdF);
3132   emit_byte(0xE0);
3133 }
3134 
3135 void Assembler::fprem() {
3136   emit_byte(0xD9);
3137   emit_byte(0xF8);
3138 }
3139 
3140 void Assembler::fprem1() {
3141   emit_byte(0xD9);
3142   emit_byte(0xF5);
3143 }
3144 
3145 void Assembler::frstor(Address src) {
3146   InstructionMark im(this);
3147   emit_byte(0xDD);
3148   emit_operand32(rsp, src);
3149 }
3150 
3151 void Assembler::fsin() {
3152   emit_byte(0xD9);
3153   emit_byte(0xFE);
3154 }
3155 
3156 void Assembler::fsqrt() {
3157   emit_byte(0xD9);
3158   emit_byte(0xFA);
3159 }
3160 
3161 void Assembler::fst_d(Address adr) {
3162   InstructionMark im(this);
3163   emit_byte(0xDD);
3164   emit_operand32(rdx, adr);
3165 }
3166 
3167 void Assembler::fst_s(Address adr) {
3168   InstructionMark im(this);
3169   emit_byte(0xD9);
3170   emit_operand32(rdx, adr);
3171 }
3172 
3173 void Assembler::fstp_d(Address adr) {
3174   InstructionMark im(this);
3175   emit_byte(0xDD);
3176   emit_operand32(rbx, adr);
3177 }
3178 
3179 void Assembler::fstp_d(int index) {
3180   emit_farith(0xDD, 0xD8, index);
3181 }
3182 
3183 void Assembler::fstp_s(Address adr) {
3184   InstructionMark im(this);
3185   emit_byte(0xD9);
3186   emit_operand32(rbx, adr);
3187 }
3188 
3189 void Assembler::fstp_x(Address adr) {
3190   InstructionMark im(this);
3191   emit_byte(0xDB);
3192   emit_operand32(rdi, adr);
3193 }
3194 
3195 void Assembler::fsub(int i) {
3196   emit_farith(0xD8, 0xE0, i);
3197 }
3198 
3199 void Assembler::fsub_d(Address src) {
3200   InstructionMark im(this);
3201   emit_byte(0xDC);
3202   emit_operand32(rsp, src);
3203 }
3204 
3205 void Assembler::fsub_s(Address src) {
3206   InstructionMark im(this);
3207   emit_byte(0xD8);
3208   emit_operand32(rsp, src);
3209 }
3210 
3211 void Assembler::fsuba(int i) {
3212   emit_farith(0xDC, 0xE8, i);
3213 }
3214 
3215 void Assembler::fsubp(int i) {
3216   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
3217 }
3218 
3219 void Assembler::fsubr(int i) {
3220   emit_farith(0xD8, 0xE8, i);
3221 }
3222 
3223 void Assembler::fsubr_d(Address src) {
3224   InstructionMark im(this);
3225   emit_byte(0xDC);
3226   emit_operand32(rbp, src);
3227 }
3228 
3229 void Assembler::fsubr_s(Address src) {
3230   InstructionMark im(this);
3231   emit_byte(0xD8);
3232   emit_operand32(rbp, src);
3233 }
3234 
3235 void Assembler::fsubra(int i) {
3236   emit_farith(0xDC, 0xE0, i);
3237 }
3238 
3239 void Assembler::fsubrp(int i) {
3240   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
3241 }
3242 
3243 void Assembler::ftan() {
3244   emit_byte(0xD9);
3245   emit_byte(0xF2);
3246   emit_byte(0xDD);
3247   emit_byte(0xD8);
3248 }
3249 
3250 void Assembler::ftst() {
3251   emit_byte(0xD9);
3252   emit_byte(0xE4);
3253 }
3254 
3255 void Assembler::fucomi(int i) {
3256   // make sure the instruction is supported (introduced for P6, together with cmov)
3257   guarantee(VM_Version::supports_cmov(), "illegal instruction");
3258   emit_farith(0xDB, 0xE8, i);
3259 }
3260 
3261 void Assembler::fucomip(int i) {
3262   // make sure the instruction is supported (introduced for P6, together with cmov)
3263   guarantee(VM_Version::supports_cmov(), "illegal instruction");
3264   emit_farith(0xDF, 0xE8, i);
3265 }
3266 
3267 void Assembler::fwait() {
3268   emit_byte(0x9B);
3269 }
3270 
3271 void Assembler::fxch(int i) {
3272   emit_farith(0xD9, 0xC8, i);
3273 }
3274 
3275 void Assembler::fyl2x() {
3276   emit_byte(0xD9);
3277   emit_byte(0xF1);
3278 }
3279 
3280 
3281 #ifndef _LP64
3282 
3283 void Assembler::incl(Register dst) {
3284   // Don't use it directly. Use MacroAssembler::incrementl() instead.
3285  emit_byte(0x40 | dst->encoding());
3286 }
3287 
3288 void Assembler::lea(Register dst, Address src) {
3289   leal(dst, src);
3290 }
3291 
3292 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
3293   InstructionMark im(this);
3294   emit_byte(0xC7);
3295   emit_operand(rax, dst);
3296   emit_data((int)imm32, rspec, 0);
3297 }
3298 
3299 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
3300   InstructionMark im(this);
3301   int encode = prefix_and_encode(dst->encoding());
3302   emit_byte(0xB8 | encode);
3303   emit_data((int)imm32, rspec, 0);
3304 }
3305 
3306 void Assembler::popa() { // 32bit
3307   emit_byte(0x61);
3308 }
3309 
3310 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
3311   InstructionMark im(this);
3312   emit_byte(0x68);
3313   emit_data(imm32, rspec, 0);
3314 }
3315 
3316 void Assembler::pusha() { // 32bit
3317   emit_byte(0x60);
3318 }
3319 
3320 void Assembler::set_byte_if_not_zero(Register dst) {
3321   emit_byte(0x0F);
3322   emit_byte(0x95);
3323   emit_byte(0xE0 | dst->encoding());
3324 }
3325 
3326 void Assembler::shldl(Register dst, Register src) {
3327   emit_byte(0x0F);
3328   emit_byte(0xA5);
3329   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
3330 }
3331 
3332 void Assembler::shrdl(Register dst, Register src) {
3333   emit_byte(0x0F);
3334   emit_byte(0xAD);
3335   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
3336 }
3337 
3338 #else // LP64
3339 
3340 // 64bit only pieces of the assembler
3341 // This should only be used by 64bit instructions that can use rip-relative
3342 // it cannot be used by instructions that want an immediate value.
3343 
3344 bool Assembler::reachable(AddressLiteral adr) {
3345   int64_t disp;
3346   // None will force a 64bit literal to the code stream. Likely a placeholder
3347   // for something that will be patched later and we need to certain it will
3348   // always be reachable.
3349   if (adr.reloc() == relocInfo::none) {
3350     return false;
3351   }
3352   if (adr.reloc() == relocInfo::internal_word_type) {
3353     // This should be rip relative and easily reachable.
3354     return true;
3355   }
3356   if (adr.reloc() == relocInfo::virtual_call_type ||
3357       adr.reloc() == relocInfo::opt_virtual_call_type ||
3358       adr.reloc() == relocInfo::static_call_type ||
3359       adr.reloc() == relocInfo::static_stub_type ) {
3360     // This should be rip relative within the code cache and easily
3361     // reachable until we get huge code caches. (At which point
3362     // ic code is going to have issues).
3363     return true;
3364   }
3365   if (adr.reloc() != relocInfo::external_word_type &&
3366       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
3367       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
3368       adr.reloc() != relocInfo::runtime_call_type ) {
3369     return false;
3370   }
3371 
3372   // Stress the correction code
3373   if (ForceUnreachable) {
3374     // Must be runtimecall reloc, see if it is in the codecache
3375     // Flipping stuff in the codecache to be unreachable causes issues
3376     // with things like inline caches where the additional instructions
3377     // are not handled.
3378     if (CodeCache::find_blob(adr._target) == NULL) {
3379       return false;
3380     }
3381   }
3382   // For external_word_type/runtime_call_type if it is reachable from where we
3383   // are now (possibly a temp buffer) and where we might end up
3384   // anywhere in the codeCache then we are always reachable.
3385   // This would have to change if we ever save/restore shared code
3386   // to be more pessimistic.
3387 
3388   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
3389   if (!is_simm32(disp)) return false;
3390   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
3391   if (!is_simm32(disp)) return false;
3392 
3393   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
3394 
3395   // Because rip relative is a disp + address_of_next_instruction and we
3396   // don't know the value of address_of_next_instruction we apply a fudge factor
3397   // to make sure we will be ok no matter the size of the instruction we get placed into.
3398   // We don't have to fudge the checks above here because they are already worst case.
3399 
3400   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
3401   // + 4 because better safe than sorry.
3402   const int fudge = 12 + 4;
3403   if (disp < 0) {
3404     disp -= fudge;
3405   } else {
3406     disp += fudge;
3407   }
3408   return is_simm32(disp);
3409 }
3410 
3411 void Assembler::emit_data64(jlong data,
3412                             relocInfo::relocType rtype,
3413                             int format) {
3414   if (rtype == relocInfo::none) {
3415     emit_long64(data);
3416   } else {
3417     emit_data64(data, Relocation::spec_simple(rtype), format);
3418   }
3419 }
3420 
3421 void Assembler::emit_data64(jlong data,
3422                             RelocationHolder const& rspec,
3423                             int format) {
3424   assert(imm_operand == 0, "default format must be immediate in this file");
3425   assert(imm_operand == format, "must be immediate");
3426   assert(inst_mark() != NULL, "must be inside InstructionMark");
3427   // Do not use AbstractAssembler::relocate, which is not intended for
3428   // embedded words.  Instead, relocate to the enclosing instruction.
3429   code_section()->relocate(inst_mark(), rspec, format);
3430 #ifdef ASSERT
3431   check_relocation(rspec, format);
3432 #endif
3433   emit_long64(data);
3434 }
3435 
3436 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
3437   if (reg_enc >= 8) {
3438     prefix(REX_B);
3439     reg_enc -= 8;
3440   } else if (byteinst && reg_enc >= 4) {
3441     prefix(REX);
3442   }
3443   return reg_enc;
3444 }
3445 
3446 int Assembler::prefixq_and_encode(int reg_enc) {
3447   if (reg_enc < 8) {
3448     prefix(REX_W);
3449   } else {
3450     prefix(REX_WB);
3451     reg_enc -= 8;
3452   }
3453   return reg_enc;
3454 }
3455 
3456 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
3457   if (dst_enc < 8) {
3458     if (src_enc >= 8) {
3459       prefix(REX_B);
3460       src_enc -= 8;
3461     } else if (byteinst && src_enc >= 4) {
3462       prefix(REX);
3463     }
3464   } else {
3465     if (src_enc < 8) {
3466       prefix(REX_R);
3467     } else {
3468       prefix(REX_RB);
3469       src_enc -= 8;
3470     }
3471     dst_enc -= 8;
3472   }
3473   return dst_enc << 3 | src_enc;
3474 }
3475 
3476 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
3477   if (dst_enc < 8) {
3478     if (src_enc < 8) {
3479       prefix(REX_W);
3480     } else {
3481       prefix(REX_WB);
3482       src_enc -= 8;
3483     }
3484   } else {
3485     if (src_enc < 8) {
3486       prefix(REX_WR);
3487     } else {
3488       prefix(REX_WRB);
3489       src_enc -= 8;
3490     }
3491     dst_enc -= 8;
3492   }
3493   return dst_enc << 3 | src_enc;
3494 }
3495 
3496 void Assembler::prefix(Register reg) {
3497   if (reg->encoding() >= 8) {
3498     prefix(REX_B);
3499   }
3500 }
3501 
3502 void Assembler::prefix(Address adr) {
3503   if (adr.base_needs_rex()) {
3504     if (adr.index_needs_rex()) {
3505       prefix(REX_XB);
3506     } else {
3507       prefix(REX_B);
3508     }
3509   } else {
3510     if (adr.index_needs_rex()) {
3511       prefix(REX_X);
3512     }
3513   }
3514 }
3515 
3516 void Assembler::prefixq(Address adr) {
3517   if (adr.base_needs_rex()) {
3518     if (adr.index_needs_rex()) {
3519       prefix(REX_WXB);
3520     } else {
3521       prefix(REX_WB);
3522     }
3523   } else {
3524     if (adr.index_needs_rex()) {
3525       prefix(REX_WX);
3526     } else {
3527       prefix(REX_W);
3528     }
3529   }
3530 }
3531 
3532 
3533 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
3534   if (reg->encoding() < 8) {
3535     if (adr.base_needs_rex()) {
3536       if (adr.index_needs_rex()) {
3537         prefix(REX_XB);
3538       } else {
3539         prefix(REX_B);
3540       }
3541     } else {
3542       if (adr.index_needs_rex()) {
3543         prefix(REX_X);
3544       } else if (reg->encoding() >= 4 ) {
3545         prefix(REX);
3546       }
3547     }
3548   } else {
3549     if (adr.base_needs_rex()) {
3550       if (adr.index_needs_rex()) {
3551         prefix(REX_RXB);
3552       } else {
3553         prefix(REX_RB);
3554       }
3555     } else {
3556       if (adr.index_needs_rex()) {
3557         prefix(REX_RX);
3558       } else {
3559         prefix(REX_R);
3560       }
3561     }
3562   }
3563 }
3564 
3565 void Assembler::prefixq(Address adr, Register src) {
3566   if (src->encoding() < 8) {
3567     if (adr.base_needs_rex()) {
3568       if (adr.index_needs_rex()) {
3569         prefix(REX_WXB);
3570       } else {
3571         prefix(REX_WB);
3572       }
3573     } else {
3574       if (adr.index_needs_rex()) {
3575         prefix(REX_WX);
3576       } else {
3577         prefix(REX_W);
3578       }
3579     }
3580   } else {
3581     if (adr.base_needs_rex()) {
3582       if (adr.index_needs_rex()) {
3583         prefix(REX_WRXB);
3584       } else {
3585         prefix(REX_WRB);
3586       }
3587     } else {
3588       if (adr.index_needs_rex()) {
3589         prefix(REX_WRX);
3590       } else {
3591         prefix(REX_WR);
3592       }
3593     }
3594   }
3595 }
3596 
3597 void Assembler::prefix(Address adr, XMMRegister reg) {
3598   if (reg->encoding() < 8) {
3599     if (adr.base_needs_rex()) {
3600       if (adr.index_needs_rex()) {
3601         prefix(REX_XB);
3602       } else {
3603         prefix(REX_B);
3604       }
3605     } else {
3606       if (adr.index_needs_rex()) {
3607         prefix(REX_X);
3608       }
3609     }
3610   } else {
3611     if (adr.base_needs_rex()) {
3612       if (adr.index_needs_rex()) {
3613         prefix(REX_RXB);
3614       } else {
3615         prefix(REX_RB);
3616       }
3617     } else {
3618       if (adr.index_needs_rex()) {
3619         prefix(REX_RX);
3620       } else {
3621         prefix(REX_R);
3622       }
3623     }
3624   }
3625 }
3626 
3627 void Assembler::adcq(Register dst, int32_t imm32) {
3628   (void) prefixq_and_encode(dst->encoding());
3629   emit_arith(0x81, 0xD0, dst, imm32);
3630 }
3631 
3632 void Assembler::adcq(Register dst, Address src) {
3633   InstructionMark im(this);
3634   prefixq(src, dst);
3635   emit_byte(0x13);
3636   emit_operand(dst, src);
3637 }
3638 
3639 void Assembler::adcq(Register dst, Register src) {
3640   (int) prefixq_and_encode(dst->encoding(), src->encoding());
3641   emit_arith(0x13, 0xC0, dst, src);
3642 }
3643 
3644 void Assembler::addq(Address dst, int32_t imm32) {
3645   InstructionMark im(this);
3646   prefixq(dst);
3647   emit_arith_operand(0x81, rax, dst,imm32);
3648 }
3649 
3650 void Assembler::addq(Address dst, Register src) {
3651   InstructionMark im(this);
3652   prefixq(dst, src);
3653   emit_byte(0x01);
3654   emit_operand(src, dst);
3655 }
3656 
3657 void Assembler::addq(Register dst, int32_t imm32) {
3658   (void) prefixq_and_encode(dst->encoding());
3659   emit_arith(0x81, 0xC0, dst, imm32);
3660 }
3661 
3662 void Assembler::addq(Register dst, Address src) {
3663   InstructionMark im(this);
3664   prefixq(src, dst);
3665   emit_byte(0x03);
3666   emit_operand(dst, src);
3667 }
3668 
3669 void Assembler::addq(Register dst, Register src) {
3670   (void) prefixq_and_encode(dst->encoding(), src->encoding());
3671   emit_arith(0x03, 0xC0, dst, src);
3672 }
3673 
3674 void Assembler::andq(Register dst, int32_t imm32) {
3675   (void) prefixq_and_encode(dst->encoding());
3676   emit_arith(0x81, 0xE0, dst, imm32);
3677 }
3678 
3679 void Assembler::andq(Register dst, Address src) {
3680   InstructionMark im(this);
3681   prefixq(src, dst);
3682   emit_byte(0x23);
3683   emit_operand(dst, src);
3684 }
3685 
3686 void Assembler::andq(Register dst, Register src) {
3687   (int) prefixq_and_encode(dst->encoding(), src->encoding());
3688   emit_arith(0x23, 0xC0, dst, src);
3689 }
3690 
3691 void Assembler::bswapq(Register reg) {
3692   int encode = prefixq_and_encode(reg->encoding());
3693   emit_byte(0x0F);
3694   emit_byte(0xC8 | encode);
3695 }
3696 
3697 void Assembler::cdqq() {
3698   prefix(REX_W);
3699   emit_byte(0x99);
3700 }
3701 
3702 void Assembler::clflush(Address adr) {
3703   prefix(adr);
3704   emit_byte(0x0F);
3705   emit_byte(0xAE);
3706   emit_operand(rdi, adr);
3707 }
3708 
3709 void Assembler::cmovq(Condition cc, Register dst, Register src) {
3710   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3711   emit_byte(0x0F);
3712   emit_byte(0x40 | cc);
3713   emit_byte(0xC0 | encode);
3714 }
3715 
3716 void Assembler::cmovq(Condition cc, Register dst, Address src) {
3717   InstructionMark im(this);
3718   prefixq(src, dst);
3719   emit_byte(0x0F);
3720   emit_byte(0x40 | cc);
3721   emit_operand(dst, src);
3722 }
3723 
3724 void Assembler::cmpq(Address dst, int32_t imm32) {
3725   InstructionMark im(this);
3726   prefixq(dst);
3727   emit_byte(0x81);
3728   emit_operand(rdi, dst, 4);
3729   emit_long(imm32);
3730 }
3731 
3732 void Assembler::cmpq(Register dst, int32_t imm32) {
3733   (void) prefixq_and_encode(dst->encoding());
3734   emit_arith(0x81, 0xF8, dst, imm32);
3735 }
3736 
3737 void Assembler::cmpq(Address dst, Register src) {
3738   InstructionMark im(this);
3739   prefixq(dst, src);
3740   emit_byte(0x3B);
3741   emit_operand(src, dst);
3742 }
3743 
3744 void Assembler::cmpq(Register dst, Register src) {
3745   (void) prefixq_and_encode(dst->encoding(), src->encoding());
3746   emit_arith(0x3B, 0xC0, dst, src);
3747 }
3748 
3749 void Assembler::cmpq(Register dst, Address  src) {
3750   InstructionMark im(this);
3751   prefixq(src, dst);
3752   emit_byte(0x3B);
3753   emit_operand(dst, src);
3754 }
3755 
3756 void Assembler::cmpxchgq(Register reg, Address adr) {
3757   InstructionMark im(this);
3758   prefixq(adr, reg);
3759   emit_byte(0x0F);
3760   emit_byte(0xB1);
3761   emit_operand(reg, adr);
3762 }
3763 
3764 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
3765   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3766   emit_byte(0xF2);
3767   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3768   emit_byte(0x0F);
3769   emit_byte(0x2A);
3770   emit_byte(0xC0 | encode);
3771 }
3772 
3773 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
3774   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3775   emit_byte(0xF3);
3776   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3777   emit_byte(0x0F);
3778   emit_byte(0x2A);
3779   emit_byte(0xC0 | encode);
3780 }
3781 
3782 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
3783   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3784   emit_byte(0xF2);
3785   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3786   emit_byte(0x0F);
3787   emit_byte(0x2C);
3788   emit_byte(0xC0 | encode);
3789 }
3790 
3791 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
3792   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3793   emit_byte(0xF3);
3794   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3795   emit_byte(0x0F);
3796   emit_byte(0x2C);
3797   emit_byte(0xC0 | encode);
3798 }
3799 
3800 void Assembler::decl(Register dst) {
3801   // Don't use it directly. Use MacroAssembler::decrementl() instead.
3802   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
3803   int encode = prefix_and_encode(dst->encoding());
3804   emit_byte(0xFF);
3805   emit_byte(0xC8 | encode);
3806 }
3807 
3808 void Assembler::decq(Register dst) {
3809   // Don't use it directly. Use MacroAssembler::decrementq() instead.
3810   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
3811   int encode = prefixq_and_encode(dst->encoding());
3812   emit_byte(0xFF);
3813   emit_byte(0xC8 | encode);
3814 }
3815 
3816 void Assembler::decq(Address dst) {
3817   // Don't use it directly. Use MacroAssembler::decrementq() instead.
3818   InstructionMark im(this);
3819   prefixq(dst);
3820   emit_byte(0xFF);
3821   emit_operand(rcx, dst);
3822 }
3823 
3824 void Assembler::fxrstor(Address src) {
3825   prefixq(src);
3826   emit_byte(0x0F);
3827   emit_byte(0xAE);
3828   emit_operand(as_Register(1), src);
3829 }
3830 
3831 void Assembler::fxsave(Address dst) {
3832   prefixq(dst);
3833   emit_byte(0x0F);
3834   emit_byte(0xAE);
3835   emit_operand(as_Register(0), dst);
3836 }
3837 
3838 void Assembler::idivq(Register src) {
3839   int encode = prefixq_and_encode(src->encoding());
3840   emit_byte(0xF7);
3841   emit_byte(0xF8 | encode);
3842 }
3843 
3844 void Assembler::imulq(Register dst, Register src) {
3845   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3846   emit_byte(0x0F);
3847   emit_byte(0xAF);
3848   emit_byte(0xC0 | encode);
3849 }
3850 
3851 void Assembler::imulq(Register dst, Register src, int value) {
3852   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3853   if (is8bit(value)) {
3854     emit_byte(0x6B);
3855     emit_byte(0xC0 | encode);
3856     emit_byte(value);
3857   } else {
3858     emit_byte(0x69);
3859     emit_byte(0xC0 | encode);
3860     emit_long(value);
3861   }
3862 }
3863 
3864 void Assembler::incl(Register dst) {
3865   // Don't use it directly. Use MacroAssembler::incrementl() instead.
3866   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
3867   int encode = prefix_and_encode(dst->encoding());
3868   emit_byte(0xFF);
3869   emit_byte(0xC0 | encode);
3870 }
3871 
3872 void Assembler::incq(Register dst) {
3873   // Don't use it directly. Use MacroAssembler::incrementq() instead.
3874   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
3875   int encode = prefixq_and_encode(dst->encoding());
3876   emit_byte(0xFF);
3877   emit_byte(0xC0 | encode);
3878 }
3879 
3880 void Assembler::incq(Address dst) {
3881   // Don't use it directly. Use MacroAssembler::incrementq() instead.
3882   InstructionMark im(this);
3883   prefixq(dst);
3884   emit_byte(0xFF);
3885   emit_operand(rax, dst);
3886 }
3887 
3888 void Assembler::lea(Register dst, Address src) {
3889   leaq(dst, src);
3890 }
3891 
3892 void Assembler::leaq(Register dst, Address src) {
3893   InstructionMark im(this);
3894   prefixq(src, dst);
3895   emit_byte(0x8D);
3896   emit_operand(dst, src);
3897 }
3898 
3899 void Assembler::mov64(Register dst, int64_t imm64) {
3900   InstructionMark im(this);
3901   int encode = prefixq_and_encode(dst->encoding());
3902   emit_byte(0xB8 | encode);
3903   emit_long64(imm64);
3904 }
3905 
3906 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
3907   InstructionMark im(this);
3908   int encode = prefixq_and_encode(dst->encoding());
3909   emit_byte(0xB8 | encode);
3910   emit_data64(imm64, rspec);
3911 }
3912 
3913 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
3914   InstructionMark im(this);
3915   int encode = prefix_and_encode(dst->encoding());
3916   emit_byte(0xB8 | encode);
3917   emit_data((int)imm32, rspec, narrow_oop_operand);
3918 }
3919 
3920 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
3921   InstructionMark im(this);
3922   prefix(dst);
3923   emit_byte(0xC7);
3924   emit_operand(rax, dst, 4);
3925   emit_data((int)imm32, rspec, narrow_oop_operand);
3926 }
3927 
3928 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
3929   InstructionMark im(this);
3930   int encode = prefix_and_encode(src1->encoding());
3931   emit_byte(0x81);
3932   emit_byte(0xF8 | encode);
3933   emit_data((int)imm32, rspec, narrow_oop_operand);
3934 }
3935 
3936 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
3937   InstructionMark im(this);
3938   prefix(src1);
3939   emit_byte(0x81);
3940   emit_operand(rax, src1, 4);
3941   emit_data((int)imm32, rspec, narrow_oop_operand);
3942 }
3943 
3944 void Assembler::movdq(XMMRegister dst, Register src) {
3945   // table D-1 says MMX/SSE2
3946   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
3947   emit_byte(0x66);
3948   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3949   emit_byte(0x0F);
3950   emit_byte(0x6E);
3951   emit_byte(0xC0 | encode);
3952 }
3953 
3954 void Assembler::movdq(Register dst, XMMRegister src) {
3955   // table D-1 says MMX/SSE2
3956   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
3957   emit_byte(0x66);
3958   // swap src/dst to get correct prefix
3959   int encode = prefixq_and_encode(src->encoding(), dst->encoding());
3960   emit_byte(0x0F);
3961   emit_byte(0x7E);
3962   emit_byte(0xC0 | encode);
3963 }
3964 
3965 void Assembler::movq(Register dst, Register src) {
3966   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3967   emit_byte(0x8B);
3968   emit_byte(0xC0 | encode);
3969 }
3970 
3971 void Assembler::movq(Register dst, Address src) {
3972   InstructionMark im(this);
3973   prefixq(src, dst);
3974   emit_byte(0x8B);
3975   emit_operand(dst, src);
3976 }
3977 
3978 void Assembler::movq(Address dst, Register src) {
3979   InstructionMark im(this);
3980   prefixq(dst, src);
3981   emit_byte(0x89);
3982   emit_operand(src, dst);
3983 }
3984 
3985 void Assembler::movsbq(Register dst, Address src) {
3986   InstructionMark im(this);
3987   prefixq(src, dst);
3988   emit_byte(0x0F);
3989   emit_byte(0xBE);
3990   emit_operand(dst, src);
3991 }
3992 
3993 void Assembler::movsbq(Register dst, Register src) {
3994   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3995   emit_byte(0x0F);
3996   emit_byte(0xBE);
3997   emit_byte(0xC0 | encode);
3998 }
3999 
4000 void Assembler::movslq(Register dst, int32_t imm32) {
4001   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
4002   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
4003   // as a result we shouldn't use until tested at runtime...
4004   ShouldNotReachHere();
4005   InstructionMark im(this);
4006   int encode = prefixq_and_encode(dst->encoding());
4007   emit_byte(0xC7 | encode);
4008   emit_long(imm32);
4009 }
4010 
4011 void Assembler::movslq(Address dst, int32_t imm32) {
4012   assert(is_simm32(imm32), "lost bits");
4013   InstructionMark im(this);
4014   prefixq(dst);
4015   emit_byte(0xC7);
4016   emit_operand(rax, dst, 4);
4017   emit_long(imm32);
4018 }
4019 
4020 void Assembler::movslq(Register dst, Address src) {
4021   InstructionMark im(this);
4022   prefixq(src, dst);
4023   emit_byte(0x63);
4024   emit_operand(dst, src);
4025 }
4026 
4027 void Assembler::movslq(Register dst, Register src) {
4028   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4029   emit_byte(0x63);
4030   emit_byte(0xC0 | encode);
4031 }
4032 
4033 void Assembler::movswq(Register dst, Address src) {
4034   InstructionMark im(this);
4035   prefixq(src, dst);
4036   emit_byte(0x0F);
4037   emit_byte(0xBF);
4038   emit_operand(dst, src);
4039 }
4040 
4041 void Assembler::movswq(Register dst, Register src) {
4042   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4043   emit_byte(0x0F);
4044   emit_byte(0xBF);
4045   emit_byte(0xC0 | encode);
4046 }
4047 
4048 void Assembler::movzbq(Register dst, Address src) {
4049   InstructionMark im(this);
4050   prefixq(src, dst);
4051   emit_byte(0x0F);
4052   emit_byte(0xB6);
4053   emit_operand(dst, src);
4054 }
4055 
4056 void Assembler::movzbq(Register dst, Register src) {
4057   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4058   emit_byte(0x0F);
4059   emit_byte(0xB6);
4060   emit_byte(0xC0 | encode);
4061 }
4062 
4063 void Assembler::movzwq(Register dst, Address src) {
4064   InstructionMark im(this);
4065   prefixq(src, dst);
4066   emit_byte(0x0F);
4067   emit_byte(0xB7);
4068   emit_operand(dst, src);
4069 }
4070 
4071 void Assembler::movzwq(Register dst, Register src) {
4072   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4073   emit_byte(0x0F);
4074   emit_byte(0xB7);
4075   emit_byte(0xC0 | encode);
4076 }
4077 
4078 void Assembler::negq(Register dst) {
4079   int encode = prefixq_and_encode(dst->encoding());
4080   emit_byte(0xF7);
4081   emit_byte(0xD8 | encode);
4082 }
4083 
4084 void Assembler::notq(Register dst) {
4085   int encode = prefixq_and_encode(dst->encoding());
4086   emit_byte(0xF7);
4087   emit_byte(0xD0 | encode);
4088 }
4089 
4090 void Assembler::orq(Address dst, int32_t imm32) {
4091   InstructionMark im(this);
4092   prefixq(dst);
4093   emit_byte(0x81);
4094   emit_operand(rcx, dst, 4);
4095   emit_long(imm32);
4096 }
4097 
4098 void Assembler::orq(Register dst, int32_t imm32) {
4099   (void) prefixq_and_encode(dst->encoding());
4100   emit_arith(0x81, 0xC8, dst, imm32);
4101 }
4102 
4103 void Assembler::orq(Register dst, Address src) {
4104   InstructionMark im(this);
4105   prefixq(src, dst);
4106   emit_byte(0x0B);
4107   emit_operand(dst, src);
4108 }
4109 
4110 void Assembler::orq(Register dst, Register src) {
4111   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4112   emit_arith(0x0B, 0xC0, dst, src);
4113 }
4114 
4115 void Assembler::popa() { // 64bit
4116   movq(r15, Address(rsp, 0));
4117   movq(r14, Address(rsp, wordSize));
4118   movq(r13, Address(rsp, 2 * wordSize));
4119   movq(r12, Address(rsp, 3 * wordSize));
4120   movq(r11, Address(rsp, 4 * wordSize));
4121   movq(r10, Address(rsp, 5 * wordSize));
4122   movq(r9,  Address(rsp, 6 * wordSize));
4123   movq(r8,  Address(rsp, 7 * wordSize));
4124   movq(rdi, Address(rsp, 8 * wordSize));
4125   movq(rsi, Address(rsp, 9 * wordSize));
4126   movq(rbp, Address(rsp, 10 * wordSize));
4127   // skip rsp
4128   movq(rbx, Address(rsp, 12 * wordSize));
4129   movq(rdx, Address(rsp, 13 * wordSize));
4130   movq(rcx, Address(rsp, 14 * wordSize));
4131   movq(rax, Address(rsp, 15 * wordSize));
4132 
4133   addq(rsp, 16 * wordSize);
4134 }
4135 
4136 void Assembler::popcntq(Register dst, Address src) {
4137   assert(VM_Version::supports_popcnt(), "must support");
4138   InstructionMark im(this);
4139   emit_byte(0xF3);
4140   prefixq(src, dst);
4141   emit_byte(0x0F);
4142   emit_byte(0xB8);
4143   emit_operand(dst, src);
4144 }
4145 
4146 void Assembler::popcntq(Register dst, Register src) {
4147   assert(VM_Version::supports_popcnt(), "must support");
4148   emit_byte(0xF3);
4149   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4150   emit_byte(0x0F);
4151   emit_byte(0xB8);
4152   emit_byte(0xC0 | encode);
4153 }
4154 
4155 void Assembler::popq(Address dst) {
4156   InstructionMark im(this);
4157   prefixq(dst);
4158   emit_byte(0x8F);
4159   emit_operand(rax, dst);
4160 }
4161 
4162 void Assembler::pusha() { // 64bit
4163   // we have to store original rsp.  ABI says that 128 bytes
4164   // below rsp are local scratch.
4165   movq(Address(rsp, -5 * wordSize), rsp);
4166 
4167   subq(rsp, 16 * wordSize);
4168 
4169   movq(Address(rsp, 15 * wordSize), rax);
4170   movq(Address(rsp, 14 * wordSize), rcx);
4171   movq(Address(rsp, 13 * wordSize), rdx);
4172   movq(Address(rsp, 12 * wordSize), rbx);
4173   // skip rsp
4174   movq(Address(rsp, 10 * wordSize), rbp);
4175   movq(Address(rsp, 9 * wordSize), rsi);
4176   movq(Address(rsp, 8 * wordSize), rdi);
4177   movq(Address(rsp, 7 * wordSize), r8);
4178   movq(Address(rsp, 6 * wordSize), r9);
4179   movq(Address(rsp, 5 * wordSize), r10);
4180   movq(Address(rsp, 4 * wordSize), r11);
4181   movq(Address(rsp, 3 * wordSize), r12);
4182   movq(Address(rsp, 2 * wordSize), r13);
4183   movq(Address(rsp, wordSize), r14);
4184   movq(Address(rsp, 0), r15);
4185 }
4186 
4187 void Assembler::pushq(Address src) {
4188   InstructionMark im(this);
4189   prefixq(src);
4190   emit_byte(0xFF);
4191   emit_operand(rsi, src);
4192 }
4193 
4194 void Assembler::rclq(Register dst, int imm8) {
4195   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4196   int encode = prefixq_and_encode(dst->encoding());
4197   if (imm8 == 1) {
4198     emit_byte(0xD1);
4199     emit_byte(0xD0 | encode);
4200   } else {
4201     emit_byte(0xC1);
4202     emit_byte(0xD0 | encode);
4203     emit_byte(imm8);
4204   }
4205 }
4206 void Assembler::sarq(Register dst, int imm8) {
4207   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4208   int encode = prefixq_and_encode(dst->encoding());
4209   if (imm8 == 1) {
4210     emit_byte(0xD1);
4211     emit_byte(0xF8 | encode);
4212   } else {
4213     emit_byte(0xC1);
4214     emit_byte(0xF8 | encode);
4215     emit_byte(imm8);
4216   }
4217 }
4218 
4219 void Assembler::sarq(Register dst) {
4220   int encode = prefixq_and_encode(dst->encoding());
4221   emit_byte(0xD3);
4222   emit_byte(0xF8 | encode);
4223 }
4224 void Assembler::sbbq(Address dst, int32_t imm32) {
4225   InstructionMark im(this);
4226   prefixq(dst);
4227   emit_arith_operand(0x81, rbx, dst, imm32);
4228 }
4229 
4230 void Assembler::sbbq(Register dst, int32_t imm32) {
4231   (void) prefixq_and_encode(dst->encoding());
4232   emit_arith(0x81, 0xD8, dst, imm32);
4233 }
4234 
4235 void Assembler::sbbq(Register dst, Address src) {
4236   InstructionMark im(this);
4237   prefixq(src, dst);
4238   emit_byte(0x1B);
4239   emit_operand(dst, src);
4240 }
4241 
4242 void Assembler::sbbq(Register dst, Register src) {
4243   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4244   emit_arith(0x1B, 0xC0, dst, src);
4245 }
4246 
4247 void Assembler::shlq(Register dst, int imm8) {
4248   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4249   int encode = prefixq_and_encode(dst->encoding());
4250   if (imm8 == 1) {
4251     emit_byte(0xD1);
4252     emit_byte(0xE0 | encode);
4253   } else {
4254     emit_byte(0xC1);
4255     emit_byte(0xE0 | encode);
4256     emit_byte(imm8);
4257   }
4258 }
4259 
4260 void Assembler::shlq(Register dst) {
4261   int encode = prefixq_and_encode(dst->encoding());
4262   emit_byte(0xD3);
4263   emit_byte(0xE0 | encode);
4264 }
4265 
4266 void Assembler::shrq(Register dst, int imm8) {
4267   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4268   int encode = prefixq_and_encode(dst->encoding());
4269   emit_byte(0xC1);
4270   emit_byte(0xE8 | encode);
4271   emit_byte(imm8);
4272 }
4273 
4274 void Assembler::shrq(Register dst) {
4275   int encode = prefixq_and_encode(dst->encoding());
4276   emit_byte(0xD3);
4277   emit_byte(0xE8 | encode);
4278 }
4279 
4280 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4281   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4282   InstructionMark im(this);
4283   emit_byte(0xF2);
4284   prefix(src, dst);
4285   emit_byte(0x0F);
4286   emit_byte(0x51);
4287   emit_operand(dst, src);
4288 }
4289 
4290 void Assembler::subq(Address dst, int32_t imm32) {
4291   InstructionMark im(this);
4292   prefixq(dst);
4293   if (is8bit(imm32)) {
4294     emit_byte(0x83);
4295     emit_operand(rbp, dst, 1);
4296     emit_byte(imm32 & 0xFF);
4297   } else {
4298     emit_byte(0x81);
4299     emit_operand(rbp, dst, 4);
4300     emit_long(imm32);
4301   }
4302 }
4303 
4304 void Assembler::subq(Register dst, int32_t imm32) {
4305   (void) prefixq_and_encode(dst->encoding());
4306   emit_arith(0x81, 0xE8, dst, imm32);
4307 }
4308 
4309 void Assembler::subq(Address dst, Register src) {
4310   InstructionMark im(this);
4311   prefixq(dst, src);
4312   emit_byte(0x29);
4313   emit_operand(src, dst);
4314 }
4315 
4316 void Assembler::subq(Register dst, Address src) {
4317   InstructionMark im(this);
4318   prefixq(src, dst);
4319   emit_byte(0x2B);
4320   emit_operand(dst, src);
4321 }
4322 
4323 void Assembler::subq(Register dst, Register src) {
4324   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4325   emit_arith(0x2B, 0xC0, dst, src);
4326 }
4327 
4328 void Assembler::testq(Register dst, int32_t imm32) {
4329   // not using emit_arith because test
4330   // doesn't support sign-extension of
4331   // 8bit operands
4332   int encode = dst->encoding();
4333   if (encode == 0) {
4334     prefix(REX_W);
4335     emit_byte(0xA9);
4336   } else {
4337     encode = prefixq_and_encode(encode);
4338     emit_byte(0xF7);
4339     emit_byte(0xC0 | encode);
4340   }
4341   emit_long(imm32);
4342 }
4343 
4344 void Assembler::testq(Register dst, Register src) {
4345   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4346   emit_arith(0x85, 0xC0, dst, src);
4347 }
4348 
4349 void Assembler::xaddq(Address dst, Register src) {
4350   InstructionMark im(this);
4351   prefixq(dst, src);
4352   emit_byte(0x0F);
4353   emit_byte(0xC1);
4354   emit_operand(src, dst);
4355 }
4356 
4357 void Assembler::xchgq(Register dst, Address src) {
4358   InstructionMark im(this);
4359   prefixq(src, dst);
4360   emit_byte(0x87);
4361   emit_operand(dst, src);
4362 }
4363 
4364 void Assembler::xchgq(Register dst, Register src) {
4365   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4366   emit_byte(0x87);
4367   emit_byte(0xc0 | encode);
4368 }
4369 
4370 void Assembler::xorq(Register dst, Register src) {
4371   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4372   emit_arith(0x33, 0xC0, dst, src);
4373 }
4374 
4375 void Assembler::xorq(Register dst, Address src) {
4376   InstructionMark im(this);
4377   prefixq(src, dst);
4378   emit_byte(0x33);
4379   emit_operand(dst, src);
4380 }
4381 
4382 #endif // !LP64
4383 
4384 static Assembler::Condition reverse[] = {
4385     Assembler::noOverflow     /* overflow      = 0x0 */ ,
4386     Assembler::overflow       /* noOverflow    = 0x1 */ ,
4387     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
4388     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
4389     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
4390     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
4391     Assembler::above          /* belowEqual    = 0x6 */ ,
4392     Assembler::belowEqual     /* above         = 0x7 */ ,
4393     Assembler::positive       /* negative      = 0x8 */ ,
4394     Assembler::negative       /* positive      = 0x9 */ ,
4395     Assembler::noParity       /* parity        = 0xa */ ,
4396     Assembler::parity         /* noParity      = 0xb */ ,
4397     Assembler::greaterEqual   /* less          = 0xc */ ,
4398     Assembler::less           /* greaterEqual  = 0xd */ ,
4399     Assembler::greater        /* lessEqual     = 0xe */ ,
4400     Assembler::lessEqual      /* greater       = 0xf, */
4401 
4402 };
4403 
4404 
4405 // Implementation of MacroAssembler
4406 
4407 // First all the versions that have distinct versions depending on 32/64 bit
4408 // Unless the difference is trivial (1 line or so).
4409 
4410 #ifndef _LP64
4411 
4412 // 32bit versions
4413 
4414 Address MacroAssembler::as_Address(AddressLiteral adr) {
4415   return Address(adr.target(), adr.rspec());
4416 }
4417 
4418 Address MacroAssembler::as_Address(ArrayAddress adr) {
4419   return Address::make_array(adr);
4420 }
4421 
4422 int MacroAssembler::biased_locking_enter(Register lock_reg,
4423                                          Register obj_reg,
4424                                          Register swap_reg,
4425                                          Register tmp_reg,
4426                                          bool swap_reg_contains_mark,
4427                                          Label& done,
4428                                          Label* slow_case,
4429                                          BiasedLockingCounters* counters) {
4430   assert(UseBiasedLocking, "why call this otherwise?");
4431   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
4432   assert_different_registers(lock_reg, obj_reg, swap_reg);
4433 
4434   if (PrintBiasedLockingStatistics && counters == NULL)
4435     counters = BiasedLocking::counters();
4436 
4437   bool need_tmp_reg = false;
4438   if (tmp_reg == noreg) {
4439     need_tmp_reg = true;
4440     tmp_reg = lock_reg;
4441   } else {
4442     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
4443   }
4444   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
4445   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
4446   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
4447   Address saved_mark_addr(lock_reg, 0);
4448 
4449   // Biased locking
4450   // See whether the lock is currently biased toward our thread and
4451   // whether the epoch is still valid
4452   // Note that the runtime guarantees sufficient alignment of JavaThread
4453   // pointers to allow age to be placed into low bits
4454   // First check to see whether biasing is even enabled for this object
4455   Label cas_label;
4456   int null_check_offset = -1;
4457   if (!swap_reg_contains_mark) {
4458     null_check_offset = offset();
4459     movl(swap_reg, mark_addr);
4460   }
4461   if (need_tmp_reg) {
4462     push(tmp_reg);
4463   }
4464   movl(tmp_reg, swap_reg);
4465   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
4466   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
4467   if (need_tmp_reg) {
4468     pop(tmp_reg);
4469   }
4470   jcc(Assembler::notEqual, cas_label);
4471   // The bias pattern is present in the object's header. Need to check
4472   // whether the bias owner and the epoch are both still current.
4473   // Note that because there is no current thread register on x86 we
4474   // need to store off the mark word we read out of the object to
4475   // avoid reloading it and needing to recheck invariants below. This
4476   // store is unfortunate but it makes the overall code shorter and
4477   // simpler.
4478   movl(saved_mark_addr, swap_reg);
4479   if (need_tmp_reg) {
4480     push(tmp_reg);
4481   }
4482   get_thread(tmp_reg);
4483   xorl(swap_reg, tmp_reg);
4484   if (swap_reg_contains_mark) {
4485     null_check_offset = offset();
4486   }
4487   movl(tmp_reg, klass_addr);
4488   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
4489   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
4490   if (need_tmp_reg) {
4491     pop(tmp_reg);
4492   }
4493   if (counters != NULL) {
4494     cond_inc32(Assembler::zero,
4495                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
4496   }
4497   jcc(Assembler::equal, done);
4498 
4499   Label try_revoke_bias;
4500   Label try_rebias;
4501 
4502   // At this point we know that the header has the bias pattern and
4503   // that we are not the bias owner in the current epoch. We need to
4504   // figure out more details about the state of the header in order to
4505   // know what operations can be legally performed on the object's
4506   // header.
4507 
4508   // If the low three bits in the xor result aren't clear, that means
4509   // the prototype header is no longer biased and we have to revoke
4510   // the bias on this object.
4511   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
4512   jcc(Assembler::notZero, try_revoke_bias);
4513 
4514   // Biasing is still enabled for this data type. See whether the
4515   // epoch of the current bias is still valid, meaning that the epoch
4516   // bits of the mark word are equal to the epoch bits of the
4517   // prototype header. (Note that the prototype header's epoch bits
4518   // only change at a safepoint.) If not, attempt to rebias the object
4519   // toward the current thread. Note that we must be absolutely sure
4520   // that the current epoch is invalid in order to do this because
4521   // otherwise the manipulations it performs on the mark word are
4522   // illegal.
4523   testl(swap_reg, markOopDesc::epoch_mask_in_place);
4524   jcc(Assembler::notZero, try_rebias);
4525 
4526   // The epoch of the current bias is still valid but we know nothing
4527   // about the owner; it might be set or it might be clear. Try to
4528   // acquire the bias of the object using an atomic operation. If this
4529   // fails we will go in to the runtime to revoke the object's bias.
4530   // Note that we first construct the presumed unbiased header so we
4531   // don't accidentally blow away another thread's valid bias.
4532   movl(swap_reg, saved_mark_addr);
4533   andl(swap_reg,
4534        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
4535   if (need_tmp_reg) {
4536     push(tmp_reg);
4537   }
4538   get_thread(tmp_reg);
4539   orl(tmp_reg, swap_reg);
4540   if (os::is_MP()) {
4541     lock();
4542   }
4543   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
4544   if (need_tmp_reg) {
4545     pop(tmp_reg);
4546   }
4547   // If the biasing toward our thread failed, this means that
4548   // another thread succeeded in biasing it toward itself and we
4549   // need to revoke that bias. The revocation will occur in the
4550   // interpreter runtime in the slow case.
4551   if (counters != NULL) {
4552     cond_inc32(Assembler::zero,
4553                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
4554   }
4555   if (slow_case != NULL) {
4556     jcc(Assembler::notZero, *slow_case);
4557   }
4558   jmp(done);
4559 
4560   bind(try_rebias);
4561   // At this point we know the epoch has expired, meaning that the
4562   // current "bias owner", if any, is actually invalid. Under these
4563   // circumstances _only_, we are allowed to use the current header's
4564   // value as the comparison value when doing the cas to acquire the
4565   // bias in the current epoch. In other words, we allow transfer of
4566   // the bias from one thread to another directly in this situation.
4567   //
4568   // FIXME: due to a lack of registers we currently blow away the age
4569   // bits in this situation. Should attempt to preserve them.
4570   if (need_tmp_reg) {
4571     push(tmp_reg);
4572   }
4573   get_thread(tmp_reg);
4574   movl(swap_reg, klass_addr);
4575   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
4576   movl(swap_reg, saved_mark_addr);
4577   if (os::is_MP()) {
4578     lock();
4579   }
4580   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
4581   if (need_tmp_reg) {
4582     pop(tmp_reg);
4583   }
4584   // If the biasing toward our thread failed, then another thread
4585   // succeeded in biasing it toward itself and we need to revoke that
4586   // bias. The revocation will occur in the runtime in the slow case.
4587   if (counters != NULL) {
4588     cond_inc32(Assembler::zero,
4589                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
4590   }
4591   if (slow_case != NULL) {
4592     jcc(Assembler::notZero, *slow_case);
4593   }
4594   jmp(done);
4595 
4596   bind(try_revoke_bias);
4597   // The prototype mark in the klass doesn't have the bias bit set any
4598   // more, indicating that objects of this data type are not supposed
4599   // to be biased any more. We are going to try to reset the mark of
4600   // this object to the prototype value and fall through to the
4601   // CAS-based locking scheme. Note that if our CAS fails, it means
4602   // that another thread raced us for the privilege of revoking the
4603   // bias of this particular object, so it's okay to continue in the
4604   // normal locking code.
4605   //
4606   // FIXME: due to a lack of registers we currently blow away the age
4607   // bits in this situation. Should attempt to preserve them.
4608   movl(swap_reg, saved_mark_addr);
4609   if (need_tmp_reg) {
4610     push(tmp_reg);
4611   }
4612   movl(tmp_reg, klass_addr);
4613   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
4614   if (os::is_MP()) {
4615     lock();
4616   }
4617   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
4618   if (need_tmp_reg) {
4619     pop(tmp_reg);
4620   }
4621   // Fall through to the normal CAS-based lock, because no matter what
4622   // the result of the above CAS, some thread must have succeeded in
4623   // removing the bias bit from the object's header.
4624   if (counters != NULL) {
4625     cond_inc32(Assembler::zero,
4626                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
4627   }
4628 
4629   bind(cas_label);
4630 
4631   return null_check_offset;
4632 }
4633 void MacroAssembler::call_VM_leaf_base(address entry_point,
4634                                        int number_of_arguments) {
4635   call(RuntimeAddress(entry_point));
4636   increment(rsp, number_of_arguments * wordSize);
4637 }
4638 
4639 void MacroAssembler::cmpoop(Address src1, jobject obj) {
4640   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
4641 }
4642 
4643 void MacroAssembler::cmpoop(Register src1, jobject obj) {
4644   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
4645 }
4646 
4647 void MacroAssembler::extend_sign(Register hi, Register lo) {
4648   // According to Intel Doc. AP-526, "Integer Divide", p.18.
4649   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
4650     cdql();
4651   } else {
4652     movl(hi, lo);
4653     sarl(hi, 31);
4654   }
4655 }
4656 
4657 void MacroAssembler::fat_nop() {
4658   // A 5 byte nop that is safe for patching (see patch_verified_entry)
4659   emit_byte(0x26); // es:
4660   emit_byte(0x2e); // cs:
4661   emit_byte(0x64); // fs:
4662   emit_byte(0x65); // gs:
4663   emit_byte(0x90);
4664 }
4665 
4666 void MacroAssembler::jC2(Register tmp, Label& L) {
4667   // set parity bit if FPU flag C2 is set (via rax)
4668   save_rax(tmp);
4669   fwait(); fnstsw_ax();
4670   sahf();
4671   restore_rax(tmp);
4672   // branch
4673   jcc(Assembler::parity, L);
4674 }
4675 
4676 void MacroAssembler::jnC2(Register tmp, Label& L) {
4677   // set parity bit if FPU flag C2 is set (via rax)
4678   save_rax(tmp);
4679   fwait(); fnstsw_ax();
4680   sahf();
4681   restore_rax(tmp);
4682   // branch
4683   jcc(Assembler::noParity, L);
4684 }
4685 
4686 // 32bit can do a case table jump in one instruction but we no longer allow the base
4687 // to be installed in the Address class
4688 void MacroAssembler::jump(ArrayAddress entry) {
4689   jmp(as_Address(entry));
4690 }
4691 
4692 // Note: y_lo will be destroyed
4693 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
4694   // Long compare for Java (semantics as described in JVM spec.)
4695   Label high, low, done;
4696 
4697   cmpl(x_hi, y_hi);
4698   jcc(Assembler::less, low);
4699   jcc(Assembler::greater, high);
4700   // x_hi is the return register
4701   xorl(x_hi, x_hi);
4702   cmpl(x_lo, y_lo);
4703   jcc(Assembler::below, low);
4704   jcc(Assembler::equal, done);
4705 
4706   bind(high);
4707   xorl(x_hi, x_hi);
4708   increment(x_hi);
4709   jmp(done);
4710 
4711   bind(low);
4712   xorl(x_hi, x_hi);
4713   decrementl(x_hi);
4714 
4715   bind(done);
4716 }
4717 
4718 void MacroAssembler::lea(Register dst, AddressLiteral src) {
4719     mov_literal32(dst, (int32_t)src.target(), src.rspec());
4720 }
4721 
4722 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
4723   // leal(dst, as_Address(adr));
4724   // see note in movl as to why we must use a move
4725   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
4726 }
4727 
4728 void MacroAssembler::leave() {
4729   mov(rsp, rbp);
4730   pop(rbp);
4731 }
4732 
4733 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
4734   // Multiplication of two Java long values stored on the stack
4735   // as illustrated below. Result is in rdx:rax.
4736   //
4737   // rsp ---> [  ??  ] \               \
4738   //            ....    | y_rsp_offset  |
4739   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
4740   //          [ y_hi ]                  | (in bytes)
4741   //            ....                    |
4742   //          [ x_lo ]                 /
4743   //          [ x_hi ]
4744   //            ....
4745   //
4746   // Basic idea: lo(result) = lo(x_lo * y_lo)
4747   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
4748   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
4749   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
4750   Label quick;
4751   // load x_hi, y_hi and check if quick
4752   // multiplication is possible
4753   movl(rbx, x_hi);
4754   movl(rcx, y_hi);
4755   movl(rax, rbx);
4756   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
4757   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
4758   // do full multiplication
4759   // 1st step
4760   mull(y_lo);                                    // x_hi * y_lo
4761   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
4762   // 2nd step
4763   movl(rax, x_lo);
4764   mull(rcx);                                     // x_lo * y_hi
4765   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
4766   // 3rd step
4767   bind(quick);                                   // note: rbx, = 0 if quick multiply!
4768   movl(rax, x_lo);
4769   mull(y_lo);                                    // x_lo * y_lo
4770   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
4771 }
4772 
4773 void MacroAssembler::lneg(Register hi, Register lo) {
4774   negl(lo);
4775   adcl(hi, 0);
4776   negl(hi);
4777 }
4778 
4779 void MacroAssembler::lshl(Register hi, Register lo) {
4780   // Java shift left long support (semantics as described in JVM spec., p.305)
4781   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
4782   // shift value is in rcx !
4783   assert(hi != rcx, "must not use rcx");
4784   assert(lo != rcx, "must not use rcx");
4785   const Register s = rcx;                        // shift count
4786   const int      n = BitsPerWord;
4787   Label L;
4788   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
4789   cmpl(s, n);                                    // if (s < n)
4790   jcc(Assembler::less, L);                       // else (s >= n)
4791   movl(hi, lo);                                  // x := x << n
4792   xorl(lo, lo);
4793   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
4794   bind(L);                                       // s (mod n) < n
4795   shldl(hi, lo);                                 // x := x << s
4796   shll(lo);
4797 }
4798 
4799 
4800 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
4801   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
4802   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
4803   assert(hi != rcx, "must not use rcx");
4804   assert(lo != rcx, "must not use rcx");
4805   const Register s = rcx;                        // shift count
4806   const int      n = BitsPerWord;
4807   Label L;
4808   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
4809   cmpl(s, n);                                    // if (s < n)
4810   jcc(Assembler::less, L);                       // else (s >= n)
4811   movl(lo, hi);                                  // x := x >> n
4812   if (sign_extension) sarl(hi, 31);
4813   else                xorl(hi, hi);
4814   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
4815   bind(L);                                       // s (mod n) < n
4816   shrdl(lo, hi);                                 // x := x >> s
4817   if (sign_extension) sarl(hi);
4818   else                shrl(hi);
4819 }
4820 
4821 void MacroAssembler::movoop(Register dst, jobject obj) {
4822   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
4823 }
4824 
4825 void MacroAssembler::movoop(Address dst, jobject obj) {
4826   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
4827 }
4828 
4829 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
4830   if (src.is_lval()) {
4831     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
4832   } else {
4833     movl(dst, as_Address(src));
4834   }
4835 }
4836 
4837 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
4838   movl(as_Address(dst), src);
4839 }
4840 
4841 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
4842   movl(dst, as_Address(src));
4843 }
4844 
4845 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
4846 void MacroAssembler::movptr(Address dst, intptr_t src) {
4847   movl(dst, src);
4848 }
4849 
4850 
4851 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
4852   movsd(dst, as_Address(src));
4853 }
4854 
4855 void MacroAssembler::pop_callee_saved_registers() {
4856   pop(rcx);
4857   pop(rdx);
4858   pop(rdi);
4859   pop(rsi);
4860 }
4861 
4862 void MacroAssembler::pop_fTOS() {
4863   fld_d(Address(rsp, 0));
4864   addl(rsp, 2 * wordSize);
4865 }
4866 
4867 void MacroAssembler::push_callee_saved_registers() {
4868   push(rsi);
4869   push(rdi);
4870   push(rdx);
4871   push(rcx);
4872 }
4873 
4874 void MacroAssembler::push_fTOS() {
4875   subl(rsp, 2 * wordSize);
4876   fstp_d(Address(rsp, 0));
4877 }
4878 
4879 
4880 void MacroAssembler::pushoop(jobject obj) {
4881   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
4882 }
4883 
4884 
4885 void MacroAssembler::pushptr(AddressLiteral src) {
4886   if (src.is_lval()) {
4887     push_literal32((int32_t)src.target(), src.rspec());
4888   } else {
4889     pushl(as_Address(src));
4890   }
4891 }
4892 
4893 void MacroAssembler::set_word_if_not_zero(Register dst) {
4894   xorl(dst, dst);
4895   set_byte_if_not_zero(dst);
4896 }
4897 
4898 static void pass_arg0(MacroAssembler* masm, Register arg) {
4899   masm->push(arg);
4900 }
4901 
4902 static void pass_arg1(MacroAssembler* masm, Register arg) {
4903   masm->push(arg);
4904 }
4905 
4906 static void pass_arg2(MacroAssembler* masm, Register arg) {
4907   masm->push(arg);
4908 }
4909 
4910 static void pass_arg3(MacroAssembler* masm, Register arg) {
4911   masm->push(arg);
4912 }
4913 
4914 #ifndef PRODUCT
4915 extern "C" void findpc(intptr_t x);
4916 #endif
4917 
4918 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
4919   // In order to get locks to work, we need to fake a in_VM state
4920   JavaThread* thread = JavaThread::current();
4921   JavaThreadState saved_state = thread->thread_state();
4922   thread->set_thread_state(_thread_in_vm);
4923   if (ShowMessageBoxOnError) {
4924     JavaThread* thread = JavaThread::current();
4925     JavaThreadState saved_state = thread->thread_state();
4926     thread->set_thread_state(_thread_in_vm);
4927     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
4928       ttyLocker ttyl;
4929       BytecodeCounter::print();
4930     }
4931     // To see where a verify_oop failed, get $ebx+40/X for this frame.
4932     // This is the value of eip which points to where verify_oop will return.
4933     if (os::message_box(msg, "Execution stopped, print registers?")) {
4934       ttyLocker ttyl;
4935       tty->print_cr("eip = 0x%08x", eip);
4936 #ifndef PRODUCT
4937       tty->cr();
4938       findpc(eip);
4939       tty->cr();
4940 #endif
4941       tty->print_cr("rax, = 0x%08x", rax);
4942       tty->print_cr("rbx, = 0x%08x", rbx);
4943       tty->print_cr("rcx = 0x%08x", rcx);
4944       tty->print_cr("rdx = 0x%08x", rdx);
4945       tty->print_cr("rdi = 0x%08x", rdi);
4946       tty->print_cr("rsi = 0x%08x", rsi);
4947       tty->print_cr("rbp, = 0x%08x", rbp);
4948       tty->print_cr("rsp = 0x%08x", rsp);
4949       BREAKPOINT;
4950     }
4951   } else {
4952     ttyLocker ttyl;
4953     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
4954     assert(false, "DEBUG MESSAGE");
4955   }
4956   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
4957 }
4958 
4959 void MacroAssembler::stop(const char* msg) {
4960   ExternalAddress message((address)msg);
4961   // push address of message
4962   pushptr(message.addr());
4963   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
4964   pusha();                                           // push registers
4965   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
4966   hlt();
4967 }
4968 
4969 void MacroAssembler::warn(const char* msg) {
4970   push_CPU_state();
4971 
4972   ExternalAddress message((address) msg);
4973   // push address of message
4974   pushptr(message.addr());
4975 
4976   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
4977   addl(rsp, wordSize);       // discard argument
4978   pop_CPU_state();
4979 }
4980 
4981 #else // _LP64
4982 
4983 // 64 bit versions
4984 
4985 Address MacroAssembler::as_Address(AddressLiteral adr) {
4986   // amd64 always does this as a pc-rel
4987   // we can be absolute or disp based on the instruction type
4988   // jmp/call are displacements others are absolute
4989   assert(!adr.is_lval(), "must be rval");
4990   assert(reachable(adr), "must be");
4991   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
4992 
4993 }
4994 
4995 Address MacroAssembler::as_Address(ArrayAddress adr) {
4996   AddressLiteral base = adr.base();
4997   lea(rscratch1, base);
4998   Address index = adr.index();
4999   assert(index._disp == 0, "must not have disp"); // maybe it can?
5000   Address array(rscratch1, index._index, index._scale, index._disp);
5001   return array;
5002 }
5003 
5004 int MacroAssembler::biased_locking_enter(Register lock_reg,
5005                                          Register obj_reg,
5006                                          Register swap_reg,
5007                                          Register tmp_reg,
5008                                          bool swap_reg_contains_mark,
5009                                          Label& done,
5010                                          Label* slow_case,
5011                                          BiasedLockingCounters* counters) {
5012   assert(UseBiasedLocking, "why call this otherwise?");
5013   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
5014   assert(tmp_reg != noreg, "tmp_reg must be supplied");
5015   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
5016   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
5017   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
5018   Address saved_mark_addr(lock_reg, 0);
5019 
5020   if (PrintBiasedLockingStatistics && counters == NULL)
5021     counters = BiasedLocking::counters();
5022 
5023   // Biased locking
5024   // See whether the lock is currently biased toward our thread and
5025   // whether the epoch is still valid
5026   // Note that the runtime guarantees sufficient alignment of JavaThread
5027   // pointers to allow age to be placed into low bits
5028   // First check to see whether biasing is even enabled for this object
5029   Label cas_label;
5030   int null_check_offset = -1;
5031   if (!swap_reg_contains_mark) {
5032     null_check_offset = offset();
5033     movq(swap_reg, mark_addr);
5034   }
5035   movq(tmp_reg, swap_reg);
5036   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
5037   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
5038   jcc(Assembler::notEqual, cas_label);
5039   // The bias pattern is present in the object's header. Need to check
5040   // whether the bias owner and the epoch are both still current.
5041   load_prototype_header(tmp_reg, obj_reg);
5042   orq(tmp_reg, r15_thread);
5043   xorq(tmp_reg, swap_reg);
5044   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
5045   if (counters != NULL) {
5046     cond_inc32(Assembler::zero,
5047                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
5048   }
5049   jcc(Assembler::equal, done);
5050 
5051   Label try_revoke_bias;
5052   Label try_rebias;
5053 
5054   // At this point we know that the header has the bias pattern and
5055   // that we are not the bias owner in the current epoch. We need to
5056   // figure out more details about the state of the header in order to
5057   // know what operations can be legally performed on the object's
5058   // header.
5059 
5060   // If the low three bits in the xor result aren't clear, that means
5061   // the prototype header is no longer biased and we have to revoke
5062   // the bias on this object.
5063   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
5064   jcc(Assembler::notZero, try_revoke_bias);
5065 
5066   // Biasing is still enabled for this data type. See whether the
5067   // epoch of the current bias is still valid, meaning that the epoch
5068   // bits of the mark word are equal to the epoch bits of the
5069   // prototype header. (Note that the prototype header's epoch bits
5070   // only change at a safepoint.) If not, attempt to rebias the object
5071   // toward the current thread. Note that we must be absolutely sure
5072   // that the current epoch is invalid in order to do this because
5073   // otherwise the manipulations it performs on the mark word are
5074   // illegal.
5075   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
5076   jcc(Assembler::notZero, try_rebias);
5077 
5078   // The epoch of the current bias is still valid but we know nothing
5079   // about the owner; it might be set or it might be clear. Try to
5080   // acquire the bias of the object using an atomic operation. If this
5081   // fails we will go in to the runtime to revoke the object's bias.
5082   // Note that we first construct the presumed unbiased header so we
5083   // don't accidentally blow away another thread's valid bias.
5084   andq(swap_reg,
5085        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
5086   movq(tmp_reg, swap_reg);
5087   orq(tmp_reg, r15_thread);
5088   if (os::is_MP()) {
5089     lock();
5090   }
5091   cmpxchgq(tmp_reg, Address(obj_reg, 0));
5092   // If the biasing toward our thread failed, this means that
5093   // another thread succeeded in biasing it toward itself and we
5094   // need to revoke that bias. The revocation will occur in the
5095   // interpreter runtime in the slow case.
5096   if (counters != NULL) {
5097     cond_inc32(Assembler::zero,
5098                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
5099   }
5100   if (slow_case != NULL) {
5101     jcc(Assembler::notZero, *slow_case);
5102   }
5103   jmp(done);
5104 
5105   bind(try_rebias);
5106   // At this point we know the epoch has expired, meaning that the
5107   // current "bias owner", if any, is actually invalid. Under these
5108   // circumstances _only_, we are allowed to use the current header's
5109   // value as the comparison value when doing the cas to acquire the
5110   // bias in the current epoch. In other words, we allow transfer of
5111   // the bias from one thread to another directly in this situation.
5112   //
5113   // FIXME: due to a lack of registers we currently blow away the age
5114   // bits in this situation. Should attempt to preserve them.
5115   load_prototype_header(tmp_reg, obj_reg);
5116   orq(tmp_reg, r15_thread);
5117   if (os::is_MP()) {
5118     lock();
5119   }
5120   cmpxchgq(tmp_reg, Address(obj_reg, 0));
5121   // If the biasing toward our thread failed, then another thread
5122   // succeeded in biasing it toward itself and we need to revoke that
5123   // bias. The revocation will occur in the runtime in the slow case.
5124   if (counters != NULL) {
5125     cond_inc32(Assembler::zero,
5126                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
5127   }
5128   if (slow_case != NULL) {
5129     jcc(Assembler::notZero, *slow_case);
5130   }
5131   jmp(done);
5132 
5133   bind(try_revoke_bias);
5134   // The prototype mark in the klass doesn't have the bias bit set any
5135   // more, indicating that objects of this data type are not supposed
5136   // to be biased any more. We are going to try to reset the mark of
5137   // this object to the prototype value and fall through to the
5138   // CAS-based locking scheme. Note that if our CAS fails, it means
5139   // that another thread raced us for the privilege of revoking the
5140   // bias of this particular object, so it's okay to continue in the
5141   // normal locking code.
5142   //
5143   // FIXME: due to a lack of registers we currently blow away the age
5144   // bits in this situation. Should attempt to preserve them.
5145   load_prototype_header(tmp_reg, obj_reg);
5146   if (os::is_MP()) {
5147     lock();
5148   }
5149   cmpxchgq(tmp_reg, Address(obj_reg, 0));
5150   // Fall through to the normal CAS-based lock, because no matter what
5151   // the result of the above CAS, some thread must have succeeded in
5152   // removing the bias bit from the object's header.
5153   if (counters != NULL) {
5154     cond_inc32(Assembler::zero,
5155                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
5156   }
5157 
5158   bind(cas_label);
5159 
5160   return null_check_offset;
5161 }
5162 
5163 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
5164   Label L, E;
5165 
5166 #ifdef _WIN64
5167   // Windows always allocates space for it's register args
5168   assert(num_args <= 4, "only register arguments supported");
5169   subq(rsp,  frame::arg_reg_save_area_bytes);
5170 #endif
5171 
5172   // Align stack if necessary
5173   testl(rsp, 15);
5174   jcc(Assembler::zero, L);
5175 
5176   subq(rsp, 8);
5177   {
5178     call(RuntimeAddress(entry_point));
5179   }
5180   addq(rsp, 8);
5181   jmp(E);
5182 
5183   bind(L);
5184   {
5185     call(RuntimeAddress(entry_point));
5186   }
5187 
5188   bind(E);
5189 
5190 #ifdef _WIN64
5191   // restore stack pointer
5192   addq(rsp, frame::arg_reg_save_area_bytes);
5193 #endif
5194 
5195 }
5196 
5197 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
5198   assert(!src2.is_lval(), "should use cmpptr");
5199 
5200   if (reachable(src2)) {
5201     cmpq(src1, as_Address(src2));
5202   } else {
5203     lea(rscratch1, src2);
5204     Assembler::cmpq(src1, Address(rscratch1, 0));
5205   }
5206 }
5207 
5208 int MacroAssembler::corrected_idivq(Register reg) {
5209   // Full implementation of Java ldiv and lrem; checks for special
5210   // case as described in JVM spec., p.243 & p.271.  The function
5211   // returns the (pc) offset of the idivl instruction - may be needed
5212   // for implicit exceptions.
5213   //
5214   //         normal case                           special case
5215   //
5216   // input : rax: dividend                         min_long
5217   //         reg: divisor   (may not be eax/edx)   -1
5218   //
5219   // output: rax: quotient  (= rax idiv reg)       min_long
5220   //         rdx: remainder (= rax irem reg)       0
5221   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
5222   static const int64_t min_long = 0x8000000000000000;
5223   Label normal_case, special_case;
5224 
5225   // check for special case
5226   cmp64(rax, ExternalAddress((address) &min_long));
5227   jcc(Assembler::notEqual, normal_case);
5228   xorl(rdx, rdx); // prepare rdx for possible special case (where
5229                   // remainder = 0)
5230   cmpq(reg, -1);
5231   jcc(Assembler::equal, special_case);
5232 
5233   // handle normal case
5234   bind(normal_case);
5235   cdqq();
5236   int idivq_offset = offset();
5237   idivq(reg);
5238 
5239   // normal and special case exit
5240   bind(special_case);
5241 
5242   return idivq_offset;
5243 }
5244 
5245 void MacroAssembler::decrementq(Register reg, int value) {
5246   if (value == min_jint) { subq(reg, value); return; }
5247   if (value <  0) { incrementq(reg, -value); return; }
5248   if (value == 0) {                        ; return; }
5249   if (value == 1 && UseIncDec) { decq(reg) ; return; }
5250   /* else */      { subq(reg, value)       ; return; }
5251 }
5252 
5253 void MacroAssembler::decrementq(Address dst, int value) {
5254   if (value == min_jint) { subq(dst, value); return; }
5255   if (value <  0) { incrementq(dst, -value); return; }
5256   if (value == 0) {                        ; return; }
5257   if (value == 1 && UseIncDec) { decq(dst) ; return; }
5258   /* else */      { subq(dst, value)       ; return; }
5259 }
5260 
5261 void MacroAssembler::fat_nop() {
5262   // A 5 byte nop that is safe for patching (see patch_verified_entry)
5263   // Recommened sequence from 'Software Optimization Guide for the AMD
5264   // Hammer Processor'
5265   emit_byte(0x66);
5266   emit_byte(0x66);
5267   emit_byte(0x90);
5268   emit_byte(0x66);
5269   emit_byte(0x90);
5270 }
5271 
5272 void MacroAssembler::incrementq(Register reg, int value) {
5273   if (value == min_jint) { addq(reg, value); return; }
5274   if (value <  0) { decrementq(reg, -value); return; }
5275   if (value == 0) {                        ; return; }
5276   if (value == 1 && UseIncDec) { incq(reg) ; return; }
5277   /* else */      { addq(reg, value)       ; return; }
5278 }
5279 
5280 void MacroAssembler::incrementq(Address dst, int value) {
5281   if (value == min_jint) { addq(dst, value); return; }
5282   if (value <  0) { decrementq(dst, -value); return; }
5283   if (value == 0) {                        ; return; }
5284   if (value == 1 && UseIncDec) { incq(dst) ; return; }
5285   /* else */      { addq(dst, value)       ; return; }
5286 }
5287 
5288 // 32bit can do a case table jump in one instruction but we no longer allow the base
5289 // to be installed in the Address class
5290 void MacroAssembler::jump(ArrayAddress entry) {
5291   lea(rscratch1, entry.base());
5292   Address dispatch = entry.index();
5293   assert(dispatch._base == noreg, "must be");
5294   dispatch._base = rscratch1;
5295   jmp(dispatch);
5296 }
5297 
5298 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
5299   ShouldNotReachHere(); // 64bit doesn't use two regs
5300   cmpq(x_lo, y_lo);
5301 }
5302 
5303 void MacroAssembler::lea(Register dst, AddressLiteral src) {
5304     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
5305 }
5306 
5307 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
5308   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
5309   movptr(dst, rscratch1);
5310 }
5311 
5312 void MacroAssembler::leave() {
5313   // %%% is this really better? Why not on 32bit too?
5314   emit_byte(0xC9); // LEAVE
5315 }
5316 
5317 void MacroAssembler::lneg(Register hi, Register lo) {
5318   ShouldNotReachHere(); // 64bit doesn't use two regs
5319   negq(lo);
5320 }
5321 
5322 void MacroAssembler::movoop(Register dst, jobject obj) {
5323   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
5324 }
5325 
5326 void MacroAssembler::movoop(Address dst, jobject obj) {
5327   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
5328   movq(dst, rscratch1);
5329 }
5330 
5331 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
5332   if (src.is_lval()) {
5333     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
5334   } else {
5335     if (reachable(src)) {
5336       movq(dst, as_Address(src));
5337     } else {
5338       lea(rscratch1, src);
5339       movq(dst, Address(rscratch1,0));
5340     }
5341   }
5342 }
5343 
5344 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
5345   movq(as_Address(dst), src);
5346 }
5347 
5348 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
5349   movq(dst, as_Address(src));
5350 }
5351 
5352 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
5353 void MacroAssembler::movptr(Address dst, intptr_t src) {
5354   mov64(rscratch1, src);
5355   movq(dst, rscratch1);
5356 }
5357 
5358 // These are mostly for initializing NULL
5359 void MacroAssembler::movptr(Address dst, int32_t src) {
5360   movslq(dst, src);
5361 }
5362 
5363 void MacroAssembler::movptr(Register dst, int32_t src) {
5364   mov64(dst, (intptr_t)src);
5365 }
5366 
5367 void MacroAssembler::pushoop(jobject obj) {
5368   movoop(rscratch1, obj);
5369   push(rscratch1);
5370 }
5371 
5372 void MacroAssembler::pushptr(AddressLiteral src) {
5373   lea(rscratch1, src);
5374   if (src.is_lval()) {
5375     push(rscratch1);
5376   } else {
5377     pushq(Address(rscratch1, 0));
5378   }
5379 }
5380 
5381 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
5382                                            bool clear_pc) {
5383   // we must set sp to zero to clear frame
5384   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
5385   // must clear fp, so that compiled frames are not confused; it is
5386   // possible that we need it only for debugging
5387   if (clear_fp) {
5388     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
5389   }
5390 
5391   if (clear_pc) {
5392     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
5393   }
5394 }
5395 
5396 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
5397                                          Register last_java_fp,
5398                                          address  last_java_pc) {
5399   // determine last_java_sp register
5400   if (!last_java_sp->is_valid()) {
5401     last_java_sp = rsp;
5402   }
5403 
5404   // last_java_fp is optional
5405   if (last_java_fp->is_valid()) {
5406     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
5407            last_java_fp);
5408   }
5409 
5410   // last_java_pc is optional
5411   if (last_java_pc != NULL) {
5412     Address java_pc(r15_thread,
5413                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
5414     lea(rscratch1, InternalAddress(last_java_pc));
5415     movptr(java_pc, rscratch1);
5416   }
5417 
5418   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
5419 }
5420 
5421 static void pass_arg0(MacroAssembler* masm, Register arg) {
5422   if (c_rarg0 != arg ) {
5423     masm->mov(c_rarg0, arg);
5424   }
5425 }
5426 
5427 static void pass_arg1(MacroAssembler* masm, Register arg) {
5428   if (c_rarg1 != arg ) {
5429     masm->mov(c_rarg1, arg);
5430   }
5431 }
5432 
5433 static void pass_arg2(MacroAssembler* masm, Register arg) {
5434   if (c_rarg2 != arg ) {
5435     masm->mov(c_rarg2, arg);
5436   }
5437 }
5438 
5439 static void pass_arg3(MacroAssembler* masm, Register arg) {
5440   if (c_rarg3 != arg ) {
5441     masm->mov(c_rarg3, arg);
5442   }
5443 }
5444 
5445 void MacroAssembler::stop(const char* msg) {
5446   address rip = pc();
5447   pusha(); // get regs on stack
5448   lea(c_rarg0, ExternalAddress((address) msg));
5449   lea(c_rarg1, InternalAddress(rip));
5450   movq(c_rarg2, rsp); // pass pointer to regs array
5451   andq(rsp, -16); // align stack as required by ABI
5452   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
5453   hlt();
5454 }
5455 
5456 void MacroAssembler::warn(const char* msg) {
5457   push(r12);
5458   movq(r12, rsp);
5459   andq(rsp, -16);     // align stack as required by push_CPU_state and call
5460 
5461   push_CPU_state();   // keeps alignment at 16 bytes
5462   lea(c_rarg0, ExternalAddress((address) msg));
5463   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
5464   pop_CPU_state();
5465 
5466   movq(rsp, r12);
5467   pop(r12);
5468 }
5469 
5470 #ifndef PRODUCT
5471 extern "C" void findpc(intptr_t x);
5472 #endif
5473 
5474 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
5475   // In order to get locks to work, we need to fake a in_VM state
5476   if (ShowMessageBoxOnError ) {
5477     JavaThread* thread = JavaThread::current();
5478     JavaThreadState saved_state = thread->thread_state();
5479     thread->set_thread_state(_thread_in_vm);
5480 #ifndef PRODUCT
5481     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
5482       ttyLocker ttyl;
5483       BytecodeCounter::print();
5484     }
5485 #endif
5486     // To see where a verify_oop failed, get $ebx+40/X for this frame.
5487     // XXX correct this offset for amd64
5488     // This is the value of eip which points to where verify_oop will return.
5489     if (os::message_box(msg, "Execution stopped, print registers?")) {
5490       ttyLocker ttyl;
5491       tty->print_cr("rip = 0x%016lx", pc);
5492 #ifndef PRODUCT
5493       tty->cr();
5494       findpc(pc);
5495       tty->cr();
5496 #endif
5497       tty->print_cr("rax = 0x%016lx", regs[15]);
5498       tty->print_cr("rbx = 0x%016lx", regs[12]);
5499       tty->print_cr("rcx = 0x%016lx", regs[14]);
5500       tty->print_cr("rdx = 0x%016lx", regs[13]);
5501       tty->print_cr("rdi = 0x%016lx", regs[8]);
5502       tty->print_cr("rsi = 0x%016lx", regs[9]);
5503       tty->print_cr("rbp = 0x%016lx", regs[10]);
5504       tty->print_cr("rsp = 0x%016lx", regs[11]);
5505       tty->print_cr("r8  = 0x%016lx", regs[7]);
5506       tty->print_cr("r9  = 0x%016lx", regs[6]);
5507       tty->print_cr("r10 = 0x%016lx", regs[5]);
5508       tty->print_cr("r11 = 0x%016lx", regs[4]);
5509       tty->print_cr("r12 = 0x%016lx", regs[3]);
5510       tty->print_cr("r13 = 0x%016lx", regs[2]);
5511       tty->print_cr("r14 = 0x%016lx", regs[1]);
5512       tty->print_cr("r15 = 0x%016lx", regs[0]);
5513       BREAKPOINT;
5514     }
5515     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
5516   } else {
5517     ttyLocker ttyl;
5518     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
5519                     msg);
5520   }
5521 }
5522 
5523 #endif // _LP64
5524 
5525 // Now versions that are common to 32/64 bit
5526 
5527 void MacroAssembler::addptr(Register dst, int32_t imm32) {
5528   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
5529 }
5530 
5531 void MacroAssembler::addptr(Register dst, Register src) {
5532   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
5533 }
5534 
5535 void MacroAssembler::addptr(Address dst, Register src) {
5536   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
5537 }
5538 
5539 void MacroAssembler::align(int modulus) {
5540   if (offset() % modulus != 0) {
5541     nop(modulus - (offset() % modulus));
5542   }
5543 }
5544 
5545 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
5546   andpd(dst, as_Address(src));
5547 }
5548 
5549 void MacroAssembler::andptr(Register dst, int32_t imm32) {
5550   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
5551 }
5552 
5553 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
5554   pushf();
5555   if (os::is_MP())
5556     lock();
5557   incrementl(counter_addr);
5558   popf();
5559 }
5560 
5561 // Writes to stack successive pages until offset reached to check for
5562 // stack overflow + shadow pages.  This clobbers tmp.
5563 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
5564   movptr(tmp, rsp);
5565   // Bang stack for total size given plus shadow page size.
5566   // Bang one page at a time because large size can bang beyond yellow and
5567   // red zones.
5568   Label loop;
5569   bind(loop);
5570   movl(Address(tmp, (-os::vm_page_size())), size );
5571   subptr(tmp, os::vm_page_size());
5572   subl(size, os::vm_page_size());
5573   jcc(Assembler::greater, loop);
5574 
5575   // Bang down shadow pages too.
5576   // The -1 because we already subtracted 1 page.
5577   for (int i = 0; i< StackShadowPages-1; i++) {
5578     // this could be any sized move but this is can be a debugging crumb
5579     // so the bigger the better.
5580     movptr(Address(tmp, (-i*os::vm_page_size())), size );
5581   }
5582 }
5583 
5584 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
5585   assert(UseBiasedLocking, "why call this otherwise?");
5586 
5587   // Check for biased locking unlock case, which is a no-op
5588   // Note: we do not have to check the thread ID for two reasons.
5589   // First, the interpreter checks for IllegalMonitorStateException at
5590   // a higher level. Second, if the bias was revoked while we held the
5591   // lock, the object could not be rebiased toward another thread, so
5592   // the bias bit would be clear.
5593   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
5594   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
5595   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
5596   jcc(Assembler::equal, done);
5597 }
5598 
5599 void MacroAssembler::c2bool(Register x) {
5600   // implements x == 0 ? 0 : 1
5601   // note: must only look at least-significant byte of x
5602   //       since C-style booleans are stored in one byte
5603   //       only! (was bug)
5604   andl(x, 0xFF);
5605   setb(Assembler::notZero, x);
5606 }
5607 
5608 // Wouldn't need if AddressLiteral version had new name
5609 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
5610   Assembler::call(L, rtype);
5611 }
5612 
5613 void MacroAssembler::call(Register entry) {
5614   Assembler::call(entry);
5615 }
5616 
5617 void MacroAssembler::call(AddressLiteral entry) {
5618   if (reachable(entry)) {
5619     Assembler::call_literal(entry.target(), entry.rspec());
5620   } else {
5621     lea(rscratch1, entry);
5622     Assembler::call(rscratch1);
5623   }
5624 }
5625 
5626 // Implementation of call_VM versions
5627 
5628 void MacroAssembler::call_VM(Register oop_result,
5629                              address entry_point,
5630                              bool check_exceptions) {
5631   Label C, E;
5632   call(C, relocInfo::none);
5633   jmp(E);
5634 
5635   bind(C);
5636   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
5637   ret(0);
5638 
5639   bind(E);
5640 }
5641 
5642 void MacroAssembler::call_VM(Register oop_result,
5643                              address entry_point,
5644                              Register arg_1,
5645                              bool check_exceptions) {
5646   Label C, E;
5647   call(C, relocInfo::none);
5648   jmp(E);
5649 
5650   bind(C);
5651   pass_arg1(this, arg_1);
5652   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
5653   ret(0);
5654 
5655   bind(E);
5656 }
5657 
5658 void MacroAssembler::call_VM(Register oop_result,
5659                              address entry_point,
5660                              Register arg_1,
5661                              Register arg_2,
5662                              bool check_exceptions) {
5663   Label C, E;
5664   call(C, relocInfo::none);
5665   jmp(E);
5666 
5667   bind(C);
5668 
5669   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5670 
5671   pass_arg2(this, arg_2);
5672   pass_arg1(this, arg_1);
5673   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
5674   ret(0);
5675 
5676   bind(E);
5677 }
5678 
5679 void MacroAssembler::call_VM(Register oop_result,
5680                              address entry_point,
5681                              Register arg_1,
5682                              Register arg_2,
5683                              Register arg_3,
5684                              bool check_exceptions) {
5685   Label C, E;
5686   call(C, relocInfo::none);
5687   jmp(E);
5688 
5689   bind(C);
5690 
5691   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
5692   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
5693   pass_arg3(this, arg_3);
5694 
5695   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5696   pass_arg2(this, arg_2);
5697 
5698   pass_arg1(this, arg_1);
5699   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
5700   ret(0);
5701 
5702   bind(E);
5703 }
5704 
5705 void MacroAssembler::call_VM(Register oop_result,
5706                              Register last_java_sp,
5707                              address entry_point,
5708                              int number_of_arguments,
5709                              bool check_exceptions) {
5710   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
5711   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
5712 }
5713 
5714 void MacroAssembler::call_VM(Register oop_result,
5715                              Register last_java_sp,
5716                              address entry_point,
5717                              Register arg_1,
5718                              bool check_exceptions) {
5719   pass_arg1(this, arg_1);
5720   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
5721 }
5722 
5723 void MacroAssembler::call_VM(Register oop_result,
5724                              Register last_java_sp,
5725                              address entry_point,
5726                              Register arg_1,
5727                              Register arg_2,
5728                              bool check_exceptions) {
5729 
5730   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5731   pass_arg2(this, arg_2);
5732   pass_arg1(this, arg_1);
5733   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
5734 }
5735 
5736 void MacroAssembler::call_VM(Register oop_result,
5737                              Register last_java_sp,
5738                              address entry_point,
5739                              Register arg_1,
5740                              Register arg_2,
5741                              Register arg_3,
5742                              bool check_exceptions) {
5743   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
5744   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
5745   pass_arg3(this, arg_3);
5746   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5747   pass_arg2(this, arg_2);
5748   pass_arg1(this, arg_1);
5749   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
5750 }
5751 
5752 void MacroAssembler::call_VM_base(Register oop_result,
5753                                   Register java_thread,
5754                                   Register last_java_sp,
5755                                   address  entry_point,
5756                                   int      number_of_arguments,
5757                                   bool     check_exceptions) {
5758   // determine java_thread register
5759   if (!java_thread->is_valid()) {
5760 #ifdef _LP64
5761     java_thread = r15_thread;
5762 #else
5763     java_thread = rdi;
5764     get_thread(java_thread);
5765 #endif // LP64
5766   }
5767   // determine last_java_sp register
5768   if (!last_java_sp->is_valid()) {
5769     last_java_sp = rsp;
5770   }
5771   // debugging support
5772   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
5773   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
5774   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
5775   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
5776 
5777   // push java thread (becomes first argument of C function)
5778 
5779   NOT_LP64(push(java_thread); number_of_arguments++);
5780   LP64_ONLY(mov(c_rarg0, r15_thread));
5781 
5782   // set last Java frame before call
5783   assert(last_java_sp != rbp, "can't use ebp/rbp");
5784 
5785   // Only interpreter should have to set fp
5786   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
5787 
5788   // do the call, remove parameters
5789   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
5790 
5791   // restore the thread (cannot use the pushed argument since arguments
5792   // may be overwritten by C code generated by an optimizing compiler);
5793   // however can use the register value directly if it is callee saved.
5794   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
5795     // rdi & rsi (also r15) are callee saved -> nothing to do
5796 #ifdef ASSERT
5797     guarantee(java_thread != rax, "change this code");
5798     push(rax);
5799     { Label L;
5800       get_thread(rax);
5801       cmpptr(java_thread, rax);
5802       jcc(Assembler::equal, L);
5803       stop("MacroAssembler::call_VM_base: rdi not callee saved?");
5804       bind(L);
5805     }
5806     pop(rax);
5807 #endif
5808   } else {
5809     get_thread(java_thread);
5810   }
5811   // reset last Java frame
5812   // Only interpreter should have to clear fp
5813   reset_last_Java_frame(java_thread, true, false);
5814 
5815 #ifndef CC_INTERP
5816    // C++ interp handles this in the interpreter
5817   check_and_handle_popframe(java_thread);
5818   check_and_handle_earlyret(java_thread);
5819 #endif /* CC_INTERP */
5820 
5821   if (check_exceptions) {
5822     // check for pending exceptions (java_thread is set upon return)
5823     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
5824 #ifndef _LP64
5825     jump_cc(Assembler::notEqual,
5826             RuntimeAddress(StubRoutines::forward_exception_entry()));
5827 #else
5828     // This used to conditionally jump to forward_exception however it is
5829     // possible if we relocate that the branch will not reach. So we must jump
5830     // around so we can always reach
5831 
5832     Label ok;
5833     jcc(Assembler::equal, ok);
5834     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
5835     bind(ok);
5836 #endif // LP64
5837   }
5838 
5839   // get oop result if there is one and reset the value in the thread
5840   if (oop_result->is_valid()) {
5841     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
5842     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
5843     verify_oop(oop_result, "broken oop in call_VM_base");
5844   }
5845 }
5846 
5847 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
5848 
5849   // Calculate the value for last_Java_sp
5850   // somewhat subtle. call_VM does an intermediate call
5851   // which places a return address on the stack just under the
5852   // stack pointer as the user finsihed with it. This allows
5853   // use to retrieve last_Java_pc from last_Java_sp[-1].
5854   // On 32bit we then have to push additional args on the stack to accomplish
5855   // the actual requested call. On 64bit call_VM only can use register args
5856   // so the only extra space is the return address that call_VM created.
5857   // This hopefully explains the calculations here.
5858 
5859 #ifdef _LP64
5860   // We've pushed one address, correct last_Java_sp
5861   lea(rax, Address(rsp, wordSize));
5862 #else
5863   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
5864 #endif // LP64
5865 
5866   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
5867 
5868 }
5869 
5870 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
5871   call_VM_leaf_base(entry_point, number_of_arguments);
5872 }
5873 
5874 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
5875   pass_arg0(this, arg_0);
5876   call_VM_leaf(entry_point, 1);
5877 }
5878 
5879 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
5880 
5881   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
5882   pass_arg1(this, arg_1);
5883   pass_arg0(this, arg_0);
5884   call_VM_leaf(entry_point, 2);
5885 }
5886 
5887 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
5888   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
5889   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5890   pass_arg2(this, arg_2);
5891   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
5892   pass_arg1(this, arg_1);
5893   pass_arg0(this, arg_0);
5894   call_VM_leaf(entry_point, 3);
5895 }
5896 
5897 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
5898 }
5899 
5900 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
5901 }
5902 
5903 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
5904   if (reachable(src1)) {
5905     cmpl(as_Address(src1), imm);
5906   } else {
5907     lea(rscratch1, src1);
5908     cmpl(Address(rscratch1, 0), imm);
5909   }
5910 }
5911 
5912 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
5913   assert(!src2.is_lval(), "use cmpptr");
5914   if (reachable(src2)) {
5915     cmpl(src1, as_Address(src2));
5916   } else {
5917     lea(rscratch1, src2);
5918     cmpl(src1, Address(rscratch1, 0));
5919   }
5920 }
5921 
5922 void MacroAssembler::cmp32(Register src1, int32_t imm) {
5923   Assembler::cmpl(src1, imm);
5924 }
5925 
5926 void MacroAssembler::cmp32(Register src1, Address src2) {
5927   Assembler::cmpl(src1, src2);
5928 }
5929 
5930 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
5931   ucomisd(opr1, opr2);
5932 
5933   Label L;
5934   if (unordered_is_less) {
5935     movl(dst, -1);
5936     jcc(Assembler::parity, L);
5937     jcc(Assembler::below , L);
5938     movl(dst, 0);
5939     jcc(Assembler::equal , L);
5940     increment(dst);
5941   } else { // unordered is greater
5942     movl(dst, 1);
5943     jcc(Assembler::parity, L);
5944     jcc(Assembler::above , L);
5945     movl(dst, 0);
5946     jcc(Assembler::equal , L);
5947     decrementl(dst);
5948   }
5949   bind(L);
5950 }
5951 
5952 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
5953   ucomiss(opr1, opr2);
5954 
5955   Label L;
5956   if (unordered_is_less) {
5957     movl(dst, -1);
5958     jcc(Assembler::parity, L);
5959     jcc(Assembler::below , L);
5960     movl(dst, 0);
5961     jcc(Assembler::equal , L);
5962     increment(dst);
5963   } else { // unordered is greater
5964     movl(dst, 1);
5965     jcc(Assembler::parity, L);
5966     jcc(Assembler::above , L);
5967     movl(dst, 0);
5968     jcc(Assembler::equal , L);
5969     decrementl(dst);
5970   }
5971   bind(L);
5972 }
5973 
5974 
5975 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
5976   if (reachable(src1)) {
5977     cmpb(as_Address(src1), imm);
5978   } else {
5979     lea(rscratch1, src1);
5980     cmpb(Address(rscratch1, 0), imm);
5981   }
5982 }
5983 
5984 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
5985 #ifdef _LP64
5986   if (src2.is_lval()) {
5987     movptr(rscratch1, src2);
5988     Assembler::cmpq(src1, rscratch1);
5989   } else if (reachable(src2)) {
5990     cmpq(src1, as_Address(src2));
5991   } else {
5992     lea(rscratch1, src2);
5993     Assembler::cmpq(src1, Address(rscratch1, 0));
5994   }
5995 #else
5996   if (src2.is_lval()) {
5997     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
5998   } else {
5999     cmpl(src1, as_Address(src2));
6000   }
6001 #endif // _LP64
6002 }
6003 
6004 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
6005   assert(src2.is_lval(), "not a mem-mem compare");
6006 #ifdef _LP64
6007   // moves src2's literal address
6008   movptr(rscratch1, src2);
6009   Assembler::cmpq(src1, rscratch1);
6010 #else
6011   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
6012 #endif // _LP64
6013 }
6014 
6015 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
6016   if (reachable(adr)) {
6017     if (os::is_MP())
6018       lock();
6019     cmpxchgptr(reg, as_Address(adr));
6020   } else {
6021     lea(rscratch1, adr);
6022     if (os::is_MP())
6023       lock();
6024     cmpxchgptr(reg, Address(rscratch1, 0));
6025   }
6026 }
6027 
6028 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
6029   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
6030 }
6031 
6032 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
6033   comisd(dst, as_Address(src));
6034 }
6035 
6036 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
6037   comiss(dst, as_Address(src));
6038 }
6039 
6040 
6041 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
6042   Condition negated_cond = negate_condition(cond);
6043   Label L;
6044   jcc(negated_cond, L);
6045   atomic_incl(counter_addr);
6046   bind(L);
6047 }
6048 
6049 int MacroAssembler::corrected_idivl(Register reg) {
6050   // Full implementation of Java idiv and irem; checks for
6051   // special case as described in JVM spec., p.243 & p.271.
6052   // The function returns the (pc) offset of the idivl
6053   // instruction - may be needed for implicit exceptions.
6054   //
6055   //         normal case                           special case
6056   //
6057   // input : rax,: dividend                         min_int
6058   //         reg: divisor   (may not be rax,/rdx)   -1
6059   //
6060   // output: rax,: quotient  (= rax, idiv reg)       min_int
6061   //         rdx: remainder (= rax, irem reg)       0
6062   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
6063   const int min_int = 0x80000000;
6064   Label normal_case, special_case;
6065 
6066   // check for special case
6067   cmpl(rax, min_int);
6068   jcc(Assembler::notEqual, normal_case);
6069   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
6070   cmpl(reg, -1);
6071   jcc(Assembler::equal, special_case);
6072 
6073   // handle normal case
6074   bind(normal_case);
6075   cdql();
6076   int idivl_offset = offset();
6077   idivl(reg);
6078 
6079   // normal and special case exit
6080   bind(special_case);
6081 
6082   return idivl_offset;
6083 }
6084 
6085 
6086 
6087 void MacroAssembler::decrementl(Register reg, int value) {
6088   if (value == min_jint) {subl(reg, value) ; return; }
6089   if (value <  0) { incrementl(reg, -value); return; }
6090   if (value == 0) {                        ; return; }
6091   if (value == 1 && UseIncDec) { decl(reg) ; return; }
6092   /* else */      { subl(reg, value)       ; return; }
6093 }
6094 
6095 void MacroAssembler::decrementl(Address dst, int value) {
6096   if (value == min_jint) {subl(dst, value) ; return; }
6097   if (value <  0) { incrementl(dst, -value); return; }
6098   if (value == 0) {                        ; return; }
6099   if (value == 1 && UseIncDec) { decl(dst) ; return; }
6100   /* else */      { subl(dst, value)       ; return; }
6101 }
6102 
6103 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
6104   assert (shift_value > 0, "illegal shift value");
6105   Label _is_positive;
6106   testl (reg, reg);
6107   jcc (Assembler::positive, _is_positive);
6108   int offset = (1 << shift_value) - 1 ;
6109 
6110   if (offset == 1) {
6111     incrementl(reg);
6112   } else {
6113     addl(reg, offset);
6114   }
6115 
6116   bind (_is_positive);
6117   sarl(reg, shift_value);
6118 }
6119 
6120 // !defined(COMPILER2) is because of stupid core builds
6121 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
6122 void MacroAssembler::empty_FPU_stack() {
6123   if (VM_Version::supports_mmx()) {
6124     emms();
6125   } else {
6126     for (int i = 8; i-- > 0; ) ffree(i);
6127   }
6128 }
6129 #endif // !LP64 || C1 || !C2
6130 
6131 
6132 // Defines obj, preserves var_size_in_bytes
6133 void MacroAssembler::eden_allocate(Register obj,
6134                                    Register var_size_in_bytes,
6135                                    int con_size_in_bytes,
6136                                    Register t1,
6137                                    Label& slow_case) {
6138   assert(obj == rax, "obj must be in rax, for cmpxchg");
6139   assert_different_registers(obj, var_size_in_bytes, t1);
6140   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
6141     jmp(slow_case);
6142   } else {
6143     Register end = t1;
6144     Label retry;
6145     bind(retry);
6146     ExternalAddress heap_top((address) Universe::heap()->top_addr());
6147     movptr(obj, heap_top);
6148     if (var_size_in_bytes == noreg) {
6149       lea(end, Address(obj, con_size_in_bytes));
6150     } else {
6151       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
6152     }
6153     // if end < obj then we wrapped around => object too long => slow case
6154     cmpptr(end, obj);
6155     jcc(Assembler::below, slow_case);
6156     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
6157     jcc(Assembler::above, slow_case);
6158     // Compare obj with the top addr, and if still equal, store the new top addr in
6159     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
6160     // it otherwise. Use lock prefix for atomicity on MPs.
6161     locked_cmpxchgptr(end, heap_top);
6162     jcc(Assembler::notEqual, retry);
6163   }
6164 }
6165 
6166 void MacroAssembler::enter() {
6167   push(rbp);
6168   mov(rbp, rsp);
6169 }
6170 
6171 void MacroAssembler::fcmp(Register tmp) {
6172   fcmp(tmp, 1, true, true);
6173 }
6174 
6175 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
6176   assert(!pop_right || pop_left, "usage error");
6177   if (VM_Version::supports_cmov()) {
6178     assert(tmp == noreg, "unneeded temp");
6179     if (pop_left) {
6180       fucomip(index);
6181     } else {
6182       fucomi(index);
6183     }
6184     if (pop_right) {
6185       fpop();
6186     }
6187   } else {
6188     assert(tmp != noreg, "need temp");
6189     if (pop_left) {
6190       if (pop_right) {
6191         fcompp();
6192       } else {
6193         fcomp(index);
6194       }
6195     } else {
6196       fcom(index);
6197     }
6198     // convert FPU condition into eflags condition via rax,
6199     save_rax(tmp);
6200     fwait(); fnstsw_ax();
6201     sahf();
6202     restore_rax(tmp);
6203   }
6204   // condition codes set as follows:
6205   //
6206   // CF (corresponds to C0) if x < y
6207   // PF (corresponds to C2) if unordered
6208   // ZF (corresponds to C3) if x = y
6209 }
6210 
6211 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
6212   fcmp2int(dst, unordered_is_less, 1, true, true);
6213 }
6214 
6215 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
6216   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
6217   Label L;
6218   if (unordered_is_less) {
6219     movl(dst, -1);
6220     jcc(Assembler::parity, L);
6221     jcc(Assembler::below , L);
6222     movl(dst, 0);
6223     jcc(Assembler::equal , L);
6224     increment(dst);
6225   } else { // unordered is greater
6226     movl(dst, 1);
6227     jcc(Assembler::parity, L);
6228     jcc(Assembler::above , L);
6229     movl(dst, 0);
6230     jcc(Assembler::equal , L);
6231     decrementl(dst);
6232   }
6233   bind(L);
6234 }
6235 
6236 void MacroAssembler::fld_d(AddressLiteral src) {
6237   fld_d(as_Address(src));
6238 }
6239 
6240 void MacroAssembler::fld_s(AddressLiteral src) {
6241   fld_s(as_Address(src));
6242 }
6243 
6244 void MacroAssembler::fld_x(AddressLiteral src) {
6245   Assembler::fld_x(as_Address(src));
6246 }
6247 
6248 void MacroAssembler::fldcw(AddressLiteral src) {
6249   Assembler::fldcw(as_Address(src));
6250 }
6251 
6252 void MacroAssembler::fpop() {
6253   ffree();
6254   fincstp();
6255 }
6256 
6257 void MacroAssembler::fremr(Register tmp) {
6258   save_rax(tmp);
6259   { Label L;
6260     bind(L);
6261     fprem();
6262     fwait(); fnstsw_ax();
6263 #ifdef _LP64
6264     testl(rax, 0x400);
6265     jcc(Assembler::notEqual, L);
6266 #else
6267     sahf();
6268     jcc(Assembler::parity, L);
6269 #endif // _LP64
6270   }
6271   restore_rax(tmp);
6272   // Result is in ST0.
6273   // Note: fxch & fpop to get rid of ST1
6274   // (otherwise FPU stack could overflow eventually)
6275   fxch(1);
6276   fpop();
6277 }
6278 
6279 
6280 void MacroAssembler::incrementl(AddressLiteral dst) {
6281   if (reachable(dst)) {
6282     incrementl(as_Address(dst));
6283   } else {
6284     lea(rscratch1, dst);
6285     incrementl(Address(rscratch1, 0));
6286   }
6287 }
6288 
6289 void MacroAssembler::incrementl(ArrayAddress dst) {
6290   incrementl(as_Address(dst));
6291 }
6292 
6293 void MacroAssembler::incrementl(Register reg, int value) {
6294   if (value == min_jint) {addl(reg, value) ; return; }
6295   if (value <  0) { decrementl(reg, -value); return; }
6296   if (value == 0) {                        ; return; }
6297   if (value == 1 && UseIncDec) { incl(reg) ; return; }
6298   /* else */      { addl(reg, value)       ; return; }
6299 }
6300 
6301 void MacroAssembler::incrementl(Address dst, int value) {
6302   if (value == min_jint) {addl(dst, value) ; return; }
6303   if (value <  0) { decrementl(dst, -value); return; }
6304   if (value == 0) {                        ; return; }
6305   if (value == 1 && UseIncDec) { incl(dst) ; return; }
6306   /* else */      { addl(dst, value)       ; return; }
6307 }
6308 
6309 void MacroAssembler::jump(AddressLiteral dst) {
6310   if (reachable(dst)) {
6311     jmp_literal(dst.target(), dst.rspec());
6312   } else {
6313     lea(rscratch1, dst);
6314     jmp(rscratch1);
6315   }
6316 }
6317 
6318 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
6319   if (reachable(dst)) {
6320     InstructionMark im(this);
6321     relocate(dst.reloc());
6322     const int short_size = 2;
6323     const int long_size = 6;
6324     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
6325     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
6326       // 0111 tttn #8-bit disp
6327       emit_byte(0x70 | cc);
6328       emit_byte((offs - short_size) & 0xFF);
6329     } else {
6330       // 0000 1111 1000 tttn #32-bit disp
6331       emit_byte(0x0F);
6332       emit_byte(0x80 | cc);
6333       emit_long(offs - long_size);
6334     }
6335   } else {
6336 #ifdef ASSERT
6337     warning("reversing conditional branch");
6338 #endif /* ASSERT */
6339     Label skip;
6340     jccb(reverse[cc], skip);
6341     lea(rscratch1, dst);
6342     Assembler::jmp(rscratch1);
6343     bind(skip);
6344   }
6345 }
6346 
6347 void MacroAssembler::ldmxcsr(AddressLiteral src) {
6348   if (reachable(src)) {
6349     Assembler::ldmxcsr(as_Address(src));
6350   } else {
6351     lea(rscratch1, src);
6352     Assembler::ldmxcsr(Address(rscratch1, 0));
6353   }
6354 }
6355 
6356 int MacroAssembler::load_signed_byte(Register dst, Address src) {
6357   int off;
6358   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
6359     off = offset();
6360     movsbl(dst, src); // movsxb
6361   } else {
6362     off = load_unsigned_byte(dst, src);
6363     shll(dst, 24);
6364     sarl(dst, 24);
6365   }
6366   return off;
6367 }
6368 
6369 // Note: load_signed_short used to be called load_signed_word.
6370 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
6371 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
6372 // The term "word" in HotSpot means a 32- or 64-bit machine word.
6373 int MacroAssembler::load_signed_short(Register dst, Address src) {
6374   int off;
6375   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
6376     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
6377     // version but this is what 64bit has always done. This seems to imply
6378     // that users are only using 32bits worth.
6379     off = offset();
6380     movswl(dst, src); // movsxw
6381   } else {
6382     off = load_unsigned_short(dst, src);
6383     shll(dst, 16);
6384     sarl(dst, 16);
6385   }
6386   return off;
6387 }
6388 
6389 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
6390   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
6391   // and "3.9 Partial Register Penalties", p. 22).
6392   int off;
6393   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
6394     off = offset();
6395     movzbl(dst, src); // movzxb
6396   } else {
6397     xorl(dst, dst);
6398     off = offset();
6399     movb(dst, src);
6400   }
6401   return off;
6402 }
6403 
6404 // Note: load_unsigned_short used to be called load_unsigned_word.
6405 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
6406   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
6407   // and "3.9 Partial Register Penalties", p. 22).
6408   int off;
6409   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
6410     off = offset();
6411     movzwl(dst, src); // movzxw
6412   } else {
6413     xorl(dst, dst);
6414     off = offset();
6415     movw(dst, src);
6416   }
6417   return off;
6418 }
6419 
6420 void MacroAssembler::load_sized_value(Register dst, Address src,
6421                                       int size_in_bytes, bool is_signed) {
6422   switch (size_in_bytes ^ (is_signed ? -1 : 0)) {
6423 #ifndef _LP64
6424   // For case 8, caller is responsible for manually loading
6425   // the second word into another register.
6426   case ~8:  // fall through:
6427   case  8:  movl(                dst, src ); break;
6428 #else
6429   case ~8:  // fall through:
6430   case  8:  movq(                dst, src ); break;
6431 #endif
6432   case ~4:  // fall through:
6433   case  4:  movl(                dst, src ); break;
6434   case ~2:  load_signed_short(   dst, src ); break;
6435   case  2:  load_unsigned_short( dst, src ); break;
6436   case ~1:  load_signed_byte(    dst, src ); break;
6437   case  1:  load_unsigned_byte(  dst, src ); break;
6438   default:  ShouldNotReachHere();
6439   }
6440 }
6441 
6442 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
6443   if (reachable(dst)) {
6444     movl(as_Address(dst), src);
6445   } else {
6446     lea(rscratch1, dst);
6447     movl(Address(rscratch1, 0), src);
6448   }
6449 }
6450 
6451 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
6452   if (reachable(src)) {
6453     movl(dst, as_Address(src));
6454   } else {
6455     lea(rscratch1, src);
6456     movl(dst, Address(rscratch1, 0));
6457   }
6458 }
6459 
6460 // C++ bool manipulation
6461 
6462 void MacroAssembler::movbool(Register dst, Address src) {
6463   if(sizeof(bool) == 1)
6464     movb(dst, src);
6465   else if(sizeof(bool) == 2)
6466     movw(dst, src);
6467   else if(sizeof(bool) == 4)
6468     movl(dst, src);
6469   else
6470     // unsupported
6471     ShouldNotReachHere();
6472 }
6473 
6474 void MacroAssembler::movbool(Address dst, bool boolconst) {
6475   if(sizeof(bool) == 1)
6476     movb(dst, (int) boolconst);
6477   else if(sizeof(bool) == 2)
6478     movw(dst, (int) boolconst);
6479   else if(sizeof(bool) == 4)
6480     movl(dst, (int) boolconst);
6481   else
6482     // unsupported
6483     ShouldNotReachHere();
6484 }
6485 
6486 void MacroAssembler::movbool(Address dst, Register src) {
6487   if(sizeof(bool) == 1)
6488     movb(dst, src);
6489   else if(sizeof(bool) == 2)
6490     movw(dst, src);
6491   else if(sizeof(bool) == 4)
6492     movl(dst, src);
6493   else
6494     // unsupported
6495     ShouldNotReachHere();
6496 }
6497 
6498 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
6499   movb(as_Address(dst), src);
6500 }
6501 
6502 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
6503   if (reachable(src)) {
6504     if (UseXmmLoadAndClearUpper) {
6505       movsd (dst, as_Address(src));
6506     } else {
6507       movlpd(dst, as_Address(src));
6508     }
6509   } else {
6510     lea(rscratch1, src);
6511     if (UseXmmLoadAndClearUpper) {
6512       movsd (dst, Address(rscratch1, 0));
6513     } else {
6514       movlpd(dst, Address(rscratch1, 0));
6515     }
6516   }
6517 }
6518 
6519 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
6520   if (reachable(src)) {
6521     movss(dst, as_Address(src));
6522   } else {
6523     lea(rscratch1, src);
6524     movss(dst, Address(rscratch1, 0));
6525   }
6526 }
6527 
6528 void MacroAssembler::movptr(Register dst, Register src) {
6529   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
6530 }
6531 
6532 void MacroAssembler::movptr(Register dst, Address src) {
6533   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
6534 }
6535 
6536 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
6537 void MacroAssembler::movptr(Register dst, intptr_t src) {
6538   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
6539 }
6540 
6541 void MacroAssembler::movptr(Address dst, Register src) {
6542   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
6543 }
6544 
6545 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
6546   if (reachable(src)) {
6547     movss(dst, as_Address(src));
6548   } else {
6549     lea(rscratch1, src);
6550     movss(dst, Address(rscratch1, 0));
6551   }
6552 }
6553 
6554 void MacroAssembler::null_check(Register reg, int offset) {
6555   if (needs_explicit_null_check(offset)) {
6556     // provoke OS NULL exception if reg = NULL by
6557     // accessing M[reg] w/o changing any (non-CC) registers
6558     // NOTE: cmpl is plenty here to provoke a segv
6559     cmpptr(rax, Address(reg, 0));
6560     // Note: should probably use testl(rax, Address(reg, 0));
6561     //       may be shorter code (however, this version of
6562     //       testl needs to be implemented first)
6563   } else {
6564     // nothing to do, (later) access of M[reg + offset]
6565     // will provoke OS NULL exception if reg = NULL
6566   }
6567 }
6568 
6569 void MacroAssembler::os_breakpoint() {
6570   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
6571   // (e.g., MSVC can't call ps() otherwise)
6572   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
6573 }
6574 
6575 void MacroAssembler::pop_CPU_state() {
6576   pop_FPU_state();
6577   pop_IU_state();
6578 }
6579 
6580 void MacroAssembler::pop_FPU_state() {
6581   NOT_LP64(frstor(Address(rsp, 0));)
6582   LP64_ONLY(fxrstor(Address(rsp, 0));)
6583   addptr(rsp, FPUStateSizeInWords * wordSize);
6584 }
6585 
6586 void MacroAssembler::pop_IU_state() {
6587   popa();
6588   LP64_ONLY(addq(rsp, 8));
6589   popf();
6590 }
6591 
6592 // Save Integer and Float state
6593 // Warning: Stack must be 16 byte aligned (64bit)
6594 void MacroAssembler::push_CPU_state() {
6595   push_IU_state();
6596   push_FPU_state();
6597 }
6598 
6599 void MacroAssembler::push_FPU_state() {
6600   subptr(rsp, FPUStateSizeInWords * wordSize);
6601 #ifndef _LP64
6602   fnsave(Address(rsp, 0));
6603   fwait();
6604 #else
6605   fxsave(Address(rsp, 0));
6606 #endif // LP64
6607 }
6608 
6609 void MacroAssembler::push_IU_state() {
6610   // Push flags first because pusha kills them
6611   pushf();
6612   // Make sure rsp stays 16-byte aligned
6613   LP64_ONLY(subq(rsp, 8));
6614   pusha();
6615 }
6616 
6617 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
6618   // determine java_thread register
6619   if (!java_thread->is_valid()) {
6620     java_thread = rdi;
6621     get_thread(java_thread);
6622   }
6623   // we must set sp to zero to clear frame
6624   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
6625   if (clear_fp) {
6626     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
6627   }
6628 
6629   if (clear_pc)
6630     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
6631 
6632 }
6633 
6634 void MacroAssembler::restore_rax(Register tmp) {
6635   if (tmp == noreg) pop(rax);
6636   else if (tmp != rax) mov(rax, tmp);
6637 }
6638 
6639 void MacroAssembler::round_to(Register reg, int modulus) {
6640   addptr(reg, modulus - 1);
6641   andptr(reg, -modulus);
6642 }
6643 
6644 void MacroAssembler::save_rax(Register tmp) {
6645   if (tmp == noreg) push(rax);
6646   else if (tmp != rax) mov(tmp, rax);
6647 }
6648 
6649 // Write serialization page so VM thread can do a pseudo remote membar.
6650 // We use the current thread pointer to calculate a thread specific
6651 // offset to write to within the page. This minimizes bus traffic
6652 // due to cache line collision.
6653 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
6654   movl(tmp, thread);
6655   shrl(tmp, os::get_serialize_page_shift_count());
6656   andl(tmp, (os::vm_page_size() - sizeof(int)));
6657 
6658   Address index(noreg, tmp, Address::times_1);
6659   ExternalAddress page(os::get_memory_serialize_page());
6660 
6661   // Size of store must match masking code above
6662   movl(as_Address(ArrayAddress(page, index)), tmp);
6663 }
6664 
6665 // Calls to C land
6666 //
6667 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
6668 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
6669 // has to be reset to 0. This is required to allow proper stack traversal.
6670 void MacroAssembler::set_last_Java_frame(Register java_thread,
6671                                          Register last_java_sp,
6672                                          Register last_java_fp,
6673                                          address  last_java_pc) {
6674   // determine java_thread register
6675   if (!java_thread->is_valid()) {
6676     java_thread = rdi;
6677     get_thread(java_thread);
6678   }
6679   // determine last_java_sp register
6680   if (!last_java_sp->is_valid()) {
6681     last_java_sp = rsp;
6682   }
6683 
6684   // last_java_fp is optional
6685 
6686   if (last_java_fp->is_valid()) {
6687     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
6688   }
6689 
6690   // last_java_pc is optional
6691 
6692   if (last_java_pc != NULL) {
6693     lea(Address(java_thread,
6694                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
6695         InternalAddress(last_java_pc));
6696 
6697   }
6698   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
6699 }
6700 
6701 void MacroAssembler::shlptr(Register dst, int imm8) {
6702   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
6703 }
6704 
6705 void MacroAssembler::shrptr(Register dst, int imm8) {
6706   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
6707 }
6708 
6709 void MacroAssembler::sign_extend_byte(Register reg) {
6710   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
6711     movsbl(reg, reg); // movsxb
6712   } else {
6713     shll(reg, 24);
6714     sarl(reg, 24);
6715   }
6716 }
6717 
6718 void MacroAssembler::sign_extend_short(Register reg) {
6719   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
6720     movswl(reg, reg); // movsxw
6721   } else {
6722     shll(reg, 16);
6723     sarl(reg, 16);
6724   }
6725 }
6726 
6727 //////////////////////////////////////////////////////////////////////////////////
6728 #ifndef SERIALGC
6729 
6730 void MacroAssembler::g1_write_barrier_pre(Register obj,
6731 #ifndef _LP64
6732                                           Register thread,
6733 #endif
6734                                           Register tmp,
6735                                           Register tmp2,
6736                                           bool tosca_live) {
6737   LP64_ONLY(Register thread = r15_thread;)
6738   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
6739                                        PtrQueue::byte_offset_of_active()));
6740 
6741   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
6742                                        PtrQueue::byte_offset_of_index()));
6743   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
6744                                        PtrQueue::byte_offset_of_buf()));
6745 
6746 
6747   Label done;
6748   Label runtime;
6749 
6750   // if (!marking_in_progress) goto done;
6751   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
6752     cmpl(in_progress, 0);
6753   } else {
6754     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
6755     cmpb(in_progress, 0);
6756   }
6757   jcc(Assembler::equal, done);
6758 
6759   // if (x.f == NULL) goto done;
6760   cmpptr(Address(obj, 0), NULL_WORD);
6761   jcc(Assembler::equal, done);
6762 
6763   // Can we store original value in the thread's buffer?
6764 
6765   LP64_ONLY(movslq(tmp, index);)
6766   movptr(tmp2, Address(obj, 0));
6767 #ifdef _LP64
6768   cmpq(tmp, 0);
6769 #else
6770   cmpl(index, 0);
6771 #endif
6772   jcc(Assembler::equal, runtime);
6773 #ifdef _LP64
6774   subq(tmp, wordSize);
6775   movl(index, tmp);
6776   addq(tmp, buffer);
6777 #else
6778   subl(index, wordSize);
6779   movl(tmp, buffer);
6780   addl(tmp, index);
6781 #endif
6782   movptr(Address(tmp, 0), tmp2);
6783   jmp(done);
6784   bind(runtime);
6785   // save the live input values
6786   if(tosca_live) push(rax);
6787   push(obj);
6788 #ifdef _LP64
6789   movq(c_rarg0, Address(obj, 0));
6790   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), c_rarg0, r15_thread);
6791 #else
6792   push(thread);
6793   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, thread);
6794   pop(thread);
6795 #endif
6796   pop(obj);
6797   if(tosca_live) pop(rax);
6798   bind(done);
6799 
6800 }
6801 
6802 void MacroAssembler::g1_write_barrier_post(Register store_addr,
6803                                            Register new_val,
6804 #ifndef _LP64
6805                                            Register thread,
6806 #endif
6807                                            Register tmp,
6808                                            Register tmp2) {
6809 
6810   LP64_ONLY(Register thread = r15_thread;)
6811   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
6812                                        PtrQueue::byte_offset_of_index()));
6813   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
6814                                        PtrQueue::byte_offset_of_buf()));
6815   BarrierSet* bs = Universe::heap()->barrier_set();
6816   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
6817   Label done;
6818   Label runtime;
6819 
6820   // Does store cross heap regions?
6821 
6822   movptr(tmp, store_addr);
6823   xorptr(tmp, new_val);
6824   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
6825   jcc(Assembler::equal, done);
6826 
6827   // crosses regions, storing NULL?
6828 
6829   cmpptr(new_val, (int32_t) NULL_WORD);
6830   jcc(Assembler::equal, done);
6831 
6832   // storing region crossing non-NULL, is card already dirty?
6833 
6834   ExternalAddress cardtable((address) ct->byte_map_base);
6835   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
6836 #ifdef _LP64
6837   const Register card_addr = tmp;
6838 
6839   movq(card_addr, store_addr);
6840   shrq(card_addr, CardTableModRefBS::card_shift);
6841 
6842   lea(tmp2, cardtable);
6843 
6844   // get the address of the card
6845   addq(card_addr, tmp2);
6846 #else
6847   const Register card_index = tmp;
6848 
6849   movl(card_index, store_addr);
6850   shrl(card_index, CardTableModRefBS::card_shift);
6851 
6852   Address index(noreg, card_index, Address::times_1);
6853   const Register card_addr = tmp;
6854   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
6855 #endif
6856   cmpb(Address(card_addr, 0), 0);
6857   jcc(Assembler::equal, done);
6858 
6859   // storing a region crossing, non-NULL oop, card is clean.
6860   // dirty card and log.
6861 
6862   movb(Address(card_addr, 0), 0);
6863 
6864   cmpl(queue_index, 0);
6865   jcc(Assembler::equal, runtime);
6866   subl(queue_index, wordSize);
6867   movptr(tmp2, buffer);
6868 #ifdef _LP64
6869   movslq(rscratch1, queue_index);
6870   addq(tmp2, rscratch1);
6871   movq(Address(tmp2, 0), card_addr);
6872 #else
6873   addl(tmp2, queue_index);
6874   movl(Address(tmp2, 0), card_index);
6875 #endif
6876   jmp(done);
6877 
6878   bind(runtime);
6879   // save the live input values
6880   push(store_addr);
6881   push(new_val);
6882 #ifdef _LP64
6883   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
6884 #else
6885   push(thread);
6886   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
6887   pop(thread);
6888 #endif
6889   pop(new_val);
6890   pop(store_addr);
6891 
6892   bind(done);
6893 
6894 }
6895 
6896 #endif // SERIALGC
6897 //////////////////////////////////////////////////////////////////////////////////
6898 
6899 
6900 void MacroAssembler::store_check(Register obj) {
6901   // Does a store check for the oop in register obj. The content of
6902   // register obj is destroyed afterwards.
6903   store_check_part_1(obj);
6904   store_check_part_2(obj);
6905 }
6906 
6907 void MacroAssembler::store_check(Register obj, Address dst) {
6908   store_check(obj);
6909 }
6910 
6911 
6912 // split the store check operation so that other instructions can be scheduled inbetween
6913 void MacroAssembler::store_check_part_1(Register obj) {
6914   BarrierSet* bs = Universe::heap()->barrier_set();
6915   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
6916   shrptr(obj, CardTableModRefBS::card_shift);
6917 }
6918 
6919 void MacroAssembler::store_check_part_2(Register obj) {
6920   BarrierSet* bs = Universe::heap()->barrier_set();
6921   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
6922   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
6923   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
6924 
6925   // The calculation for byte_map_base is as follows:
6926   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
6927   // So this essentially converts an address to a displacement and
6928   // it will never need to be relocated. On 64bit however the value may be too
6929   // large for a 32bit displacement
6930 
6931   intptr_t disp = (intptr_t) ct->byte_map_base;
6932   if (is_simm32(disp)) {
6933     Address cardtable(noreg, obj, Address::times_1, disp);
6934     movb(cardtable, 0);
6935   } else {
6936     // By doing it as an ExternalAddress disp could be converted to a rip-relative
6937     // displacement and done in a single instruction given favorable mapping and
6938     // a smarter version of as_Address. Worst case it is two instructions which
6939     // is no worse off then loading disp into a register and doing as a simple
6940     // Address() as above.
6941     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
6942     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
6943     // in some cases we'll get a single instruction version.
6944 
6945     ExternalAddress cardtable((address)disp);
6946     Address index(noreg, obj, Address::times_1);
6947     movb(as_Address(ArrayAddress(cardtable, index)), 0);
6948   }
6949 }
6950 
6951 void MacroAssembler::subptr(Register dst, int32_t imm32) {
6952   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
6953 }
6954 
6955 void MacroAssembler::subptr(Register dst, Register src) {
6956   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
6957 }
6958 
6959 void MacroAssembler::test32(Register src1, AddressLiteral src2) {
6960   // src2 must be rval
6961 
6962   if (reachable(src2)) {
6963     testl(src1, as_Address(src2));
6964   } else {
6965     lea(rscratch1, src2);
6966     testl(src1, Address(rscratch1, 0));
6967   }
6968 }
6969 
6970 // C++ bool manipulation
6971 void MacroAssembler::testbool(Register dst) {
6972   if(sizeof(bool) == 1)
6973     testb(dst, 0xff);
6974   else if(sizeof(bool) == 2) {
6975     // testw implementation needed for two byte bools
6976     ShouldNotReachHere();
6977   } else if(sizeof(bool) == 4)
6978     testl(dst, dst);
6979   else
6980     // unsupported
6981     ShouldNotReachHere();
6982 }
6983 
6984 void MacroAssembler::testptr(Register dst, Register src) {
6985   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
6986 }
6987 
6988 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
6989 void MacroAssembler::tlab_allocate(Register obj,
6990                                    Register var_size_in_bytes,
6991                                    int con_size_in_bytes,
6992                                    Register t1,
6993                                    Register t2,
6994                                    Label& slow_case) {
6995   assert_different_registers(obj, t1, t2);
6996   assert_different_registers(obj, var_size_in_bytes, t1);
6997   Register end = t2;
6998   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
6999 
7000   verify_tlab();
7001 
7002   NOT_LP64(get_thread(thread));
7003 
7004   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
7005   if (var_size_in_bytes == noreg) {
7006     lea(end, Address(obj, con_size_in_bytes));
7007   } else {
7008     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
7009   }
7010   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
7011   jcc(Assembler::above, slow_case);
7012 
7013   // update the tlab top pointer
7014   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
7015 
7016   // recover var_size_in_bytes if necessary
7017   if (var_size_in_bytes == end) {
7018     subptr(var_size_in_bytes, obj);
7019   }
7020   verify_tlab();
7021 }
7022 
7023 // Preserves rbx, and rdx.
7024 void MacroAssembler::tlab_refill(Label& retry,
7025                                  Label& try_eden,
7026                                  Label& slow_case) {
7027   Register top = rax;
7028   Register t1  = rcx;
7029   Register t2  = rsi;
7030   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
7031   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
7032   Label do_refill, discard_tlab;
7033 
7034   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
7035     // No allocation in the shared eden.
7036     jmp(slow_case);
7037   }
7038 
7039   NOT_LP64(get_thread(thread_reg));
7040 
7041   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
7042   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
7043 
7044   // calculate amount of free space
7045   subptr(t1, top);
7046   shrptr(t1, LogHeapWordSize);
7047 
7048   // Retain tlab and allocate object in shared space if
7049   // the amount free in the tlab is too large to discard.
7050   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
7051   jcc(Assembler::lessEqual, discard_tlab);
7052 
7053   // Retain
7054   // %%% yuck as movptr...
7055   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
7056   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
7057   if (TLABStats) {
7058     // increment number of slow_allocations
7059     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
7060   }
7061   jmp(try_eden);
7062 
7063   bind(discard_tlab);
7064   if (TLABStats) {
7065     // increment number of refills
7066     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
7067     // accumulate wastage -- t1 is amount free in tlab
7068     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
7069   }
7070 
7071   // if tlab is currently allocated (top or end != null) then
7072   // fill [top, end + alignment_reserve) with array object
7073   testptr (top, top);
7074   jcc(Assembler::zero, do_refill);
7075 
7076   // set up the mark word
7077   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
7078   // set the length to the remaining space
7079   subptr(t1, typeArrayOopDesc::header_size(T_INT));
7080   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
7081   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
7082   movptr(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
7083   // set klass to intArrayKlass
7084   // dubious reloc why not an oop reloc?
7085   movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
7086   // store klass last.  concurrent gcs assumes klass length is valid if
7087   // klass field is not null.
7088   store_klass(top, t1);
7089 
7090   // refill the tlab with an eden allocation
7091   bind(do_refill);
7092   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
7093   shlptr(t1, LogHeapWordSize);
7094   // add object_size ??
7095   eden_allocate(top, t1, 0, t2, slow_case);
7096 
7097   // Check that t1 was preserved in eden_allocate.
7098 #ifdef ASSERT
7099   if (UseTLAB) {
7100     Label ok;
7101     Register tsize = rsi;
7102     assert_different_registers(tsize, thread_reg, t1);
7103     push(tsize);
7104     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
7105     shlptr(tsize, LogHeapWordSize);
7106     cmpptr(t1, tsize);
7107     jcc(Assembler::equal, ok);
7108     stop("assert(t1 != tlab size)");
7109     should_not_reach_here();
7110 
7111     bind(ok);
7112     pop(tsize);
7113   }
7114 #endif
7115   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
7116   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
7117   addptr(top, t1);
7118   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
7119   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
7120   verify_tlab();
7121   jmp(retry);
7122 }
7123 
7124 static const double     pi_4 =  0.7853981633974483;
7125 
7126 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
7127   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
7128   // was attempted in this code; unfortunately it appears that the
7129   // switch to 80-bit precision and back causes this to be
7130   // unprofitable compared with simply performing a runtime call if
7131   // the argument is out of the (-pi/4, pi/4) range.
7132 
7133   Register tmp = noreg;
7134   if (!VM_Version::supports_cmov()) {
7135     // fcmp needs a temporary so preserve rbx,
7136     tmp = rbx;
7137     push(tmp);
7138   }
7139 
7140   Label slow_case, done;
7141 
7142   ExternalAddress pi4_adr = (address)&pi_4;
7143   if (reachable(pi4_adr)) {
7144     // x ?<= pi/4
7145     fld_d(pi4_adr);
7146     fld_s(1);                // Stack:  X  PI/4  X
7147     fabs();                  // Stack: |X| PI/4  X
7148     fcmp(tmp);
7149     jcc(Assembler::above, slow_case);
7150 
7151     // fastest case: -pi/4 <= x <= pi/4
7152     switch(trig) {
7153     case 's':
7154       fsin();
7155       break;
7156     case 'c':
7157       fcos();
7158       break;
7159     case 't':
7160       ftan();
7161       break;
7162     default:
7163       assert(false, "bad intrinsic");
7164       break;
7165     }
7166     jmp(done);
7167   }
7168 
7169   // slow case: runtime call
7170   bind(slow_case);
7171   // Preserve registers across runtime call
7172   pusha();
7173   int incoming_argument_and_return_value_offset = -1;
7174   if (num_fpu_regs_in_use > 1) {
7175     // Must preserve all other FPU regs (could alternatively convert
7176     // SharedRuntime::dsin and dcos into assembly routines known not to trash
7177     // FPU state, but can not trust C compiler)
7178     NEEDS_CLEANUP;
7179     // NOTE that in this case we also push the incoming argument to
7180     // the stack and restore it later; we also use this stack slot to
7181     // hold the return value from dsin or dcos.
7182     for (int i = 0; i < num_fpu_regs_in_use; i++) {
7183       subptr(rsp, sizeof(jdouble));
7184       fstp_d(Address(rsp, 0));
7185     }
7186     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
7187     fld_d(Address(rsp, incoming_argument_and_return_value_offset));
7188   }
7189   subptr(rsp, sizeof(jdouble));
7190   fstp_d(Address(rsp, 0));
7191 #ifdef _LP64
7192   movdbl(xmm0, Address(rsp, 0));
7193 #endif // _LP64
7194 
7195   // NOTE: we must not use call_VM_leaf here because that requires a
7196   // complete interpreter frame in debug mode -- same bug as 4387334
7197   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
7198   // do proper 64bit abi
7199 
7200   NEEDS_CLEANUP;
7201   // Need to add stack banging before this runtime call if it needs to
7202   // be taken; however, there is no generic stack banging routine at
7203   // the MacroAssembler level
7204   switch(trig) {
7205   case 's':
7206     {
7207       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
7208     }
7209     break;
7210   case 'c':
7211     {
7212       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
7213     }
7214     break;
7215   case 't':
7216     {
7217       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
7218     }
7219     break;
7220   default:
7221     assert(false, "bad intrinsic");
7222     break;
7223   }
7224 #ifdef _LP64
7225     movsd(Address(rsp, 0), xmm0);
7226     fld_d(Address(rsp, 0));
7227 #endif // _LP64
7228   addptr(rsp, sizeof(jdouble));
7229   if (num_fpu_regs_in_use > 1) {
7230     // Must save return value to stack and then restore entire FPU stack
7231     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
7232     for (int i = 0; i < num_fpu_regs_in_use; i++) {
7233       fld_d(Address(rsp, 0));
7234       addptr(rsp, sizeof(jdouble));
7235     }
7236   }
7237   popa();
7238 
7239   // Come here with result in F-TOS
7240   bind(done);
7241 
7242   if (tmp != noreg) {
7243     pop(tmp);
7244   }
7245 }
7246 
7247 
7248 // Look up the method for a megamorphic invokeinterface call.
7249 // The target method is determined by <intf_klass, itable_index>.
7250 // The receiver klass is in recv_klass.
7251 // On success, the result will be in method_result, and execution falls through.
7252 // On failure, execution transfers to the given label.
7253 void MacroAssembler::lookup_interface_method(Register recv_klass,
7254                                              Register intf_klass,
7255                                              RegisterOrConstant itable_index,
7256                                              Register method_result,
7257                                              Register scan_temp,
7258                                              Label& L_no_such_interface) {
7259   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
7260   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
7261          "caller must use same register for non-constant itable index as for method");
7262 
7263   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
7264   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
7265   int itentry_off = itableMethodEntry::method_offset_in_bytes();
7266   int scan_step   = itableOffsetEntry::size() * wordSize;
7267   int vte_size    = vtableEntry::size() * wordSize;
7268   Address::ScaleFactor times_vte_scale = Address::times_ptr;
7269   assert(vte_size == wordSize, "else adjust times_vte_scale");
7270 
7271   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
7272 
7273   // %%% Could store the aligned, prescaled offset in the klassoop.
7274   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
7275   if (HeapWordsPerLong > 1) {
7276     // Round up to align_object_offset boundary
7277     // see code for instanceKlass::start_of_itable!
7278     round_to(scan_temp, BytesPerLong);
7279   }
7280 
7281   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
7282   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
7283   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
7284 
7285   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
7286   //   if (scan->interface() == intf) {
7287   //     result = (klass + scan->offset() + itable_index);
7288   //   }
7289   // }
7290   Label search, found_method;
7291 
7292   for (int peel = 1; peel >= 0; peel--) {
7293     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
7294     cmpptr(intf_klass, method_result);
7295 
7296     if (peel) {
7297       jccb(Assembler::equal, found_method);
7298     } else {
7299       jccb(Assembler::notEqual, search);
7300       // (invert the test to fall through to found_method...)
7301     }
7302 
7303     if (!peel)  break;
7304 
7305     bind(search);
7306 
7307     // Check that the previous entry is non-null.  A null entry means that
7308     // the receiver class doesn't implement the interface, and wasn't the
7309     // same as when the caller was compiled.
7310     testptr(method_result, method_result);
7311     jcc(Assembler::zero, L_no_such_interface);
7312     addptr(scan_temp, scan_step);
7313   }
7314 
7315   bind(found_method);
7316 
7317   // Got a hit.
7318   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
7319   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
7320 }
7321 
7322 
7323 void MacroAssembler::check_klass_subtype(Register sub_klass,
7324                            Register super_klass,
7325                            Register temp_reg,
7326                            Label& L_success) {
7327   Label L_failure;
7328   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
7329   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
7330   bind(L_failure);
7331 }
7332 
7333 
7334 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
7335                                                    Register super_klass,
7336                                                    Register temp_reg,
7337                                                    Label* L_success,
7338                                                    Label* L_failure,
7339                                                    Label* L_slow_path,
7340                                         RegisterOrConstant super_check_offset) {
7341   assert_different_registers(sub_klass, super_klass, temp_reg);
7342   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
7343   if (super_check_offset.is_register()) {
7344     assert_different_registers(sub_klass, super_klass,
7345                                super_check_offset.as_register());
7346   } else if (must_load_sco) {
7347     assert(temp_reg != noreg, "supply either a temp or a register offset");
7348   }
7349 
7350   Label L_fallthrough;
7351   int label_nulls = 0;
7352   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
7353   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
7354   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
7355   assert(label_nulls <= 1, "at most one NULL in the batch");
7356 
7357   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
7358                    Klass::secondary_super_cache_offset_in_bytes());
7359   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
7360                     Klass::super_check_offset_offset_in_bytes());
7361   Address super_check_offset_addr(super_klass, sco_offset);
7362 
7363   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
7364   // range of a jccb.  If this routine grows larger, reconsider at
7365   // least some of these.
7366 #define local_jcc(assembler_cond, label)                                \
7367   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
7368   else                             jcc( assembler_cond, label) /*omit semi*/
7369 
7370   // Hacked jmp, which may only be used just before L_fallthrough.
7371 #define final_jmp(label)                                                \
7372   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
7373   else                            jmp(label)                /*omit semi*/
7374 
7375   // If the pointers are equal, we are done (e.g., String[] elements).
7376   // This self-check enables sharing of secondary supertype arrays among
7377   // non-primary types such as array-of-interface.  Otherwise, each such
7378   // type would need its own customized SSA.
7379   // We move this check to the front of the fast path because many
7380   // type checks are in fact trivially successful in this manner,
7381   // so we get a nicely predicted branch right at the start of the check.
7382   cmpptr(sub_klass, super_klass);
7383   local_jcc(Assembler::equal, *L_success);
7384 
7385   // Check the supertype display:
7386   if (must_load_sco) {
7387     // Positive movl does right thing on LP64.
7388     movl(temp_reg, super_check_offset_addr);
7389     super_check_offset = RegisterOrConstant(temp_reg);
7390   }
7391   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
7392   cmpptr(super_klass, super_check_addr); // load displayed supertype
7393 
7394   // This check has worked decisively for primary supers.
7395   // Secondary supers are sought in the super_cache ('super_cache_addr').
7396   // (Secondary supers are interfaces and very deeply nested subtypes.)
7397   // This works in the same check above because of a tricky aliasing
7398   // between the super_cache and the primary super display elements.
7399   // (The 'super_check_addr' can address either, as the case requires.)
7400   // Note that the cache is updated below if it does not help us find
7401   // what we need immediately.
7402   // So if it was a primary super, we can just fail immediately.
7403   // Otherwise, it's the slow path for us (no success at this point).
7404 
7405   if (super_check_offset.is_register()) {
7406     local_jcc(Assembler::equal, *L_success);
7407     cmpl(super_check_offset.as_register(), sc_offset);
7408     if (L_failure == &L_fallthrough) {
7409       local_jcc(Assembler::equal, *L_slow_path);
7410     } else {
7411       local_jcc(Assembler::notEqual, *L_failure);
7412       final_jmp(*L_slow_path);
7413     }
7414   } else if (super_check_offset.as_constant() == sc_offset) {
7415     // Need a slow path; fast failure is impossible.
7416     if (L_slow_path == &L_fallthrough) {
7417       local_jcc(Assembler::equal, *L_success);
7418     } else {
7419       local_jcc(Assembler::notEqual, *L_slow_path);
7420       final_jmp(*L_success);
7421     }
7422   } else {
7423     // No slow path; it's a fast decision.
7424     if (L_failure == &L_fallthrough) {
7425       local_jcc(Assembler::equal, *L_success);
7426     } else {
7427       local_jcc(Assembler::notEqual, *L_failure);
7428       final_jmp(*L_success);
7429     }
7430   }
7431 
7432   bind(L_fallthrough);
7433 
7434 #undef local_jcc
7435 #undef final_jmp
7436 }
7437 
7438 
7439 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
7440                                                    Register super_klass,
7441                                                    Register temp_reg,
7442                                                    Register temp2_reg,
7443                                                    Label* L_success,
7444                                                    Label* L_failure,
7445                                                    bool set_cond_codes) {
7446   assert_different_registers(sub_klass, super_klass, temp_reg);
7447   if (temp2_reg != noreg)
7448     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
7449 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
7450 
7451   Label L_fallthrough;
7452   int label_nulls = 0;
7453   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
7454   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
7455   assert(label_nulls <= 1, "at most one NULL in the batch");
7456 
7457   // a couple of useful fields in sub_klass:
7458   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
7459                    Klass::secondary_supers_offset_in_bytes());
7460   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
7461                    Klass::secondary_super_cache_offset_in_bytes());
7462   Address secondary_supers_addr(sub_klass, ss_offset);
7463   Address super_cache_addr(     sub_klass, sc_offset);
7464 
7465   // Do a linear scan of the secondary super-klass chain.
7466   // This code is rarely used, so simplicity is a virtue here.
7467   // The repne_scan instruction uses fixed registers, which we must spill.
7468   // Don't worry too much about pre-existing connections with the input regs.
7469 
7470   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
7471   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
7472 
7473   // Get super_klass value into rax (even if it was in rdi or rcx).
7474   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
7475   if (super_klass != rax || UseCompressedOops) {
7476     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
7477     mov(rax, super_klass);
7478   }
7479   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
7480   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
7481 
7482 #ifndef PRODUCT
7483   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
7484   ExternalAddress pst_counter_addr((address) pst_counter);
7485   NOT_LP64(  incrementl(pst_counter_addr) );
7486   LP64_ONLY( lea(rcx, pst_counter_addr) );
7487   LP64_ONLY( incrementl(Address(rcx, 0)) );
7488 #endif //PRODUCT
7489 
7490   // We will consult the secondary-super array.
7491   movptr(rdi, secondary_supers_addr);
7492   // Load the array length.  (Positive movl does right thing on LP64.)
7493   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
7494   // Skip to start of data.
7495   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
7496 
7497   // Scan RCX words at [RDI] for an occurrence of RAX.
7498   // Set NZ/Z based on last compare.
7499 #ifdef _LP64
7500   // This part is tricky, as values in supers array could be 32 or 64 bit wide
7501   // and we store values in objArrays always encoded, thus we need to encode
7502   // the value of rax before repne.  Note that rax is dead after the repne.
7503   if (UseCompressedOops) {
7504     encode_heap_oop_not_null(rax);
7505     // The superclass is never null; it would be a basic system error if a null
7506     // pointer were to sneak in here.  Note that we have already loaded the
7507     // Klass::super_check_offset from the super_klass in the fast path,
7508     // so if there is a null in that register, we are already in the afterlife.
7509     repne_scanl();
7510   } else
7511 #endif // _LP64
7512     repne_scan();
7513 
7514   // Unspill the temp. registers:
7515   if (pushed_rdi)  pop(rdi);
7516   if (pushed_rcx)  pop(rcx);
7517   if (pushed_rax)  pop(rax);
7518 
7519   if (set_cond_codes) {
7520     // Special hack for the AD files:  rdi is guaranteed non-zero.
7521     assert(!pushed_rdi, "rdi must be left non-NULL");
7522     // Also, the condition codes are properly set Z/NZ on succeed/failure.
7523   }
7524 
7525   if (L_failure == &L_fallthrough)
7526         jccb(Assembler::notEqual, *L_failure);
7527   else  jcc(Assembler::notEqual, *L_failure);
7528 
7529   // Success.  Cache the super we found and proceed in triumph.
7530   movptr(super_cache_addr, super_klass);
7531 
7532   if (L_success != &L_fallthrough) {
7533     jmp(*L_success);
7534   }
7535 
7536 #undef IS_A_TEMP
7537 
7538   bind(L_fallthrough);
7539 }
7540 
7541 
7542 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
7543   ucomisd(dst, as_Address(src));
7544 }
7545 
7546 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
7547   ucomiss(dst, as_Address(src));
7548 }
7549 
7550 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
7551   if (reachable(src)) {
7552     xorpd(dst, as_Address(src));
7553   } else {
7554     lea(rscratch1, src);
7555     xorpd(dst, Address(rscratch1, 0));
7556   }
7557 }
7558 
7559 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
7560   if (reachable(src)) {
7561     xorps(dst, as_Address(src));
7562   } else {
7563     lea(rscratch1, src);
7564     xorps(dst, Address(rscratch1, 0));
7565   }
7566 }
7567 
7568 void MacroAssembler::verify_oop(Register reg, const char* s) {
7569   if (!VerifyOops) return;
7570 
7571   // Pass register number to verify_oop_subroutine
7572   char* b = new char[strlen(s) + 50];
7573   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
7574   push(rax);                          // save rax,
7575   push(reg);                          // pass register argument
7576   ExternalAddress buffer((address) b);
7577   // avoid using pushptr, as it modifies scratch registers
7578   // and our contract is not to modify anything
7579   movptr(rax, buffer.addr());
7580   push(rax);
7581   // call indirectly to solve generation ordering problem
7582   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
7583   call(rax);
7584 }
7585 
7586 
7587 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
7588                                                       Register tmp,
7589                                                       int offset) {
7590   intptr_t value = *delayed_value_addr;
7591   if (value != 0)
7592     return RegisterOrConstant(value + offset);
7593 
7594   // load indirectly to solve generation ordering problem
7595   movptr(tmp, ExternalAddress((address) delayed_value_addr));
7596 
7597 #ifdef ASSERT
7598   Label L;
7599   testl(tmp, tmp);
7600   jccb(Assembler::notZero, L);
7601   hlt();
7602   bind(L);
7603 #endif
7604 
7605   if (offset != 0)
7606     addptr(tmp, offset);
7607 
7608   return RegisterOrConstant(tmp);
7609 }
7610 
7611 
7612 // registers on entry:
7613 //  - rax ('check' register): required MethodType
7614 //  - rcx: method handle
7615 //  - rdx, rsi, or ?: killable temp
7616 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
7617                                               Register temp_reg,
7618                                               Label& wrong_method_type) {
7619   if (UseCompressedOops)  unimplemented();  // field accesses must decode
7620   // compare method type against that of the receiver
7621   cmpptr(mtype_reg, Address(mh_reg, delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg)));
7622   jcc(Assembler::notEqual, wrong_method_type);
7623 }
7624 
7625 
7626 // A method handle has a "vmslots" field which gives the size of its
7627 // argument list in JVM stack slots.  This field is either located directly
7628 // in every method handle, or else is indirectly accessed through the
7629 // method handle's MethodType.  This macro hides the distinction.
7630 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
7631                                                 Register temp_reg) {
7632   if (UseCompressedOops)  unimplemented();  // field accesses must decode
7633   // load mh.type.form.vmslots
7634   if (java_dyn_MethodHandle::vmslots_offset_in_bytes() != 0) {
7635     // hoist vmslots into every mh to avoid dependent load chain
7636     movl(vmslots_reg, Address(mh_reg, delayed_value(java_dyn_MethodHandle::vmslots_offset_in_bytes, temp_reg)));
7637   } else {
7638     Register temp2_reg = vmslots_reg;
7639     movptr(temp2_reg, Address(mh_reg,    delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg)));
7640     movptr(temp2_reg, Address(temp2_reg, delayed_value(java_dyn_MethodType::form_offset_in_bytes, temp_reg)));
7641     movl(vmslots_reg, Address(temp2_reg, delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
7642   }
7643 }
7644 
7645 
7646 // registers on entry:
7647 //  - rcx: method handle
7648 //  - rdx: killable temp (interpreted only)
7649 //  - rax: killable temp (compiled only)
7650 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
7651   assert(mh_reg == rcx, "caller must put MH object in rcx");
7652   assert_different_registers(mh_reg, temp_reg);
7653 
7654   if (UseCompressedOops)  unimplemented();  // field accesses must decode
7655 
7656   // pick out the interpreted side of the handler
7657   movptr(temp_reg, Address(mh_reg, delayed_value(java_dyn_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
7658 
7659   // off we go...
7660   jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
7661 
7662   // for the various stubs which take control at this point,
7663   // see MethodHandles::generate_method_handle_stub
7664 }
7665 
7666 
7667 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
7668                                          int extra_slot_offset) {
7669   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
7670   int stackElementSize = Interpreter::stackElementSize();
7671   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
7672 #ifdef ASSERT
7673   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
7674   assert(offset1 - offset == stackElementSize, "correct arithmetic");
7675 #endif
7676   Register             scale_reg    = noreg;
7677   Address::ScaleFactor scale_factor = Address::no_scale;
7678   if (arg_slot.is_constant()) {
7679     offset += arg_slot.as_constant() * stackElementSize;
7680   } else {
7681     scale_reg    = arg_slot.as_register();
7682     scale_factor = Address::times(stackElementSize);
7683   }
7684   offset += wordSize;           // return PC is on stack
7685   return Address(rsp, scale_reg, scale_factor, offset);
7686 }
7687 
7688 
7689 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
7690   if (!VerifyOops) return;
7691 
7692   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
7693   // Pass register number to verify_oop_subroutine
7694   char* b = new char[strlen(s) + 50];
7695   sprintf(b, "verify_oop_addr: %s", s);
7696 
7697   push(rax);                          // save rax,
7698   // addr may contain rsp so we will have to adjust it based on the push
7699   // we just did
7700   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
7701   // stores rax into addr which is backwards of what was intended.
7702   if (addr.uses(rsp)) {
7703     lea(rax, addr);
7704     pushptr(Address(rax, BytesPerWord));
7705   } else {
7706     pushptr(addr);
7707   }
7708 
7709   ExternalAddress buffer((address) b);
7710   // pass msg argument
7711   // avoid using pushptr, as it modifies scratch registers
7712   // and our contract is not to modify anything
7713   movptr(rax, buffer.addr());
7714   push(rax);
7715 
7716   // call indirectly to solve generation ordering problem
7717   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
7718   call(rax);
7719   // Caller pops the arguments and restores rax, from the stack
7720 }
7721 
7722 void MacroAssembler::verify_tlab() {
7723 #ifdef ASSERT
7724   if (UseTLAB && VerifyOops) {
7725     Label next, ok;
7726     Register t1 = rsi;
7727     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
7728 
7729     push(t1);
7730     NOT_LP64(push(thread_reg));
7731     NOT_LP64(get_thread(thread_reg));
7732 
7733     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
7734     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
7735     jcc(Assembler::aboveEqual, next);
7736     stop("assert(top >= start)");
7737     should_not_reach_here();
7738 
7739     bind(next);
7740     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
7741     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
7742     jcc(Assembler::aboveEqual, ok);
7743     stop("assert(top <= end)");
7744     should_not_reach_here();
7745 
7746     bind(ok);
7747     NOT_LP64(pop(thread_reg));
7748     pop(t1);
7749   }
7750 #endif
7751 }
7752 
7753 class ControlWord {
7754  public:
7755   int32_t _value;
7756 
7757   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
7758   int  precision_control() const       { return  (_value >>  8) & 3      ; }
7759   bool precision() const               { return ((_value >>  5) & 1) != 0; }
7760   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
7761   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
7762   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
7763   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
7764   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
7765 
7766   void print() const {
7767     // rounding control
7768     const char* rc;
7769     switch (rounding_control()) {
7770       case 0: rc = "round near"; break;
7771       case 1: rc = "round down"; break;
7772       case 2: rc = "round up  "; break;
7773       case 3: rc = "chop      "; break;
7774     };
7775     // precision control
7776     const char* pc;
7777     switch (precision_control()) {
7778       case 0: pc = "24 bits "; break;
7779       case 1: pc = "reserved"; break;
7780       case 2: pc = "53 bits "; break;
7781       case 3: pc = "64 bits "; break;
7782     };
7783     // flags
7784     char f[9];
7785     f[0] = ' ';
7786     f[1] = ' ';
7787     f[2] = (precision   ()) ? 'P' : 'p';
7788     f[3] = (underflow   ()) ? 'U' : 'u';
7789     f[4] = (overflow    ()) ? 'O' : 'o';
7790     f[5] = (zero_divide ()) ? 'Z' : 'z';
7791     f[6] = (denormalized()) ? 'D' : 'd';
7792     f[7] = (invalid     ()) ? 'I' : 'i';
7793     f[8] = '\x0';
7794     // output
7795     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
7796   }
7797 
7798 };
7799 
7800 class StatusWord {
7801  public:
7802   int32_t _value;
7803 
7804   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
7805   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
7806   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
7807   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
7808   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
7809   int  top() const                     { return  (_value >> 11) & 7      ; }
7810   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
7811   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
7812   bool precision() const               { return ((_value >>  5) & 1) != 0; }
7813   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
7814   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
7815   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
7816   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
7817   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
7818 
7819   void print() const {
7820     // condition codes
7821     char c[5];
7822     c[0] = (C3()) ? '3' : '-';
7823     c[1] = (C2()) ? '2' : '-';
7824     c[2] = (C1()) ? '1' : '-';
7825     c[3] = (C0()) ? '0' : '-';
7826     c[4] = '\x0';
7827     // flags
7828     char f[9];
7829     f[0] = (error_status()) ? 'E' : '-';
7830     f[1] = (stack_fault ()) ? 'S' : '-';
7831     f[2] = (precision   ()) ? 'P' : '-';
7832     f[3] = (underflow   ()) ? 'U' : '-';
7833     f[4] = (overflow    ()) ? 'O' : '-';
7834     f[5] = (zero_divide ()) ? 'Z' : '-';
7835     f[6] = (denormalized()) ? 'D' : '-';
7836     f[7] = (invalid     ()) ? 'I' : '-';
7837     f[8] = '\x0';
7838     // output
7839     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
7840   }
7841 
7842 };
7843 
7844 class TagWord {
7845  public:
7846   int32_t _value;
7847 
7848   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
7849 
7850   void print() const {
7851     printf("%04x", _value & 0xFFFF);
7852   }
7853 
7854 };
7855 
7856 class FPU_Register {
7857  public:
7858   int32_t _m0;
7859   int32_t _m1;
7860   int16_t _ex;
7861 
7862   bool is_indefinite() const           {
7863     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
7864   }
7865 
7866   void print() const {
7867     char  sign = (_ex < 0) ? '-' : '+';
7868     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
7869     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
7870   };
7871 
7872 };
7873 
7874 class FPU_State {
7875  public:
7876   enum {
7877     register_size       = 10,
7878     number_of_registers =  8,
7879     register_mask       =  7
7880   };
7881 
7882   ControlWord  _control_word;
7883   StatusWord   _status_word;
7884   TagWord      _tag_word;
7885   int32_t      _error_offset;
7886   int32_t      _error_selector;
7887   int32_t      _data_offset;
7888   int32_t      _data_selector;
7889   int8_t       _register[register_size * number_of_registers];
7890 
7891   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
7892   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
7893 
7894   const char* tag_as_string(int tag) const {
7895     switch (tag) {
7896       case 0: return "valid";
7897       case 1: return "zero";
7898       case 2: return "special";
7899       case 3: return "empty";
7900     }
7901     ShouldNotReachHere()
7902     return NULL;
7903   }
7904 
7905   void print() const {
7906     // print computation registers
7907     { int t = _status_word.top();
7908       for (int i = 0; i < number_of_registers; i++) {
7909         int j = (i - t) & register_mask;
7910         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
7911         st(j)->print();
7912         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
7913       }
7914     }
7915     printf("\n");
7916     // print control registers
7917     printf("ctrl = "); _control_word.print(); printf("\n");
7918     printf("stat = "); _status_word .print(); printf("\n");
7919     printf("tags = "); _tag_word    .print(); printf("\n");
7920   }
7921 
7922 };
7923 
7924 class Flag_Register {
7925  public:
7926   int32_t _value;
7927 
7928   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
7929   bool direction() const               { return ((_value >> 10) & 1) != 0; }
7930   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
7931   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
7932   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
7933   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
7934   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
7935 
7936   void print() const {
7937     // flags
7938     char f[8];
7939     f[0] = (overflow       ()) ? 'O' : '-';
7940     f[1] = (direction      ()) ? 'D' : '-';
7941     f[2] = (sign           ()) ? 'S' : '-';
7942     f[3] = (zero           ()) ? 'Z' : '-';
7943     f[4] = (auxiliary_carry()) ? 'A' : '-';
7944     f[5] = (parity         ()) ? 'P' : '-';
7945     f[6] = (carry          ()) ? 'C' : '-';
7946     f[7] = '\x0';
7947     // output
7948     printf("%08x  flags = %s", _value, f);
7949   }
7950 
7951 };
7952 
7953 class IU_Register {
7954  public:
7955   int32_t _value;
7956 
7957   void print() const {
7958     printf("%08x  %11d", _value, _value);
7959   }
7960 
7961 };
7962 
7963 class IU_State {
7964  public:
7965   Flag_Register _eflags;
7966   IU_Register   _rdi;
7967   IU_Register   _rsi;
7968   IU_Register   _rbp;
7969   IU_Register   _rsp;
7970   IU_Register   _rbx;
7971   IU_Register   _rdx;
7972   IU_Register   _rcx;
7973   IU_Register   _rax;
7974 
7975   void print() const {
7976     // computation registers
7977     printf("rax,  = "); _rax.print(); printf("\n");
7978     printf("rbx,  = "); _rbx.print(); printf("\n");
7979     printf("rcx  = "); _rcx.print(); printf("\n");
7980     printf("rdx  = "); _rdx.print(); printf("\n");
7981     printf("rdi  = "); _rdi.print(); printf("\n");
7982     printf("rsi  = "); _rsi.print(); printf("\n");
7983     printf("rbp,  = "); _rbp.print(); printf("\n");
7984     printf("rsp  = "); _rsp.print(); printf("\n");
7985     printf("\n");
7986     // control registers
7987     printf("flgs = "); _eflags.print(); printf("\n");
7988   }
7989 };
7990 
7991 
7992 class CPU_State {
7993  public:
7994   FPU_State _fpu_state;
7995   IU_State  _iu_state;
7996 
7997   void print() const {
7998     printf("--------------------------------------------------\n");
7999     _iu_state .print();
8000     printf("\n");
8001     _fpu_state.print();
8002     printf("--------------------------------------------------\n");
8003   }
8004 
8005 };
8006 
8007 
8008 static void _print_CPU_state(CPU_State* state) {
8009   state->print();
8010 };
8011 
8012 
8013 void MacroAssembler::print_CPU_state() {
8014   push_CPU_state();
8015   push(rsp);                // pass CPU state
8016   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
8017   addptr(rsp, wordSize);       // discard argument
8018   pop_CPU_state();
8019 }
8020 
8021 
8022 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
8023   static int counter = 0;
8024   FPU_State* fs = &state->_fpu_state;
8025   counter++;
8026   // For leaf calls, only verify that the top few elements remain empty.
8027   // We only need 1 empty at the top for C2 code.
8028   if( stack_depth < 0 ) {
8029     if( fs->tag_for_st(7) != 3 ) {
8030       printf("FPR7 not empty\n");
8031       state->print();
8032       assert(false, "error");
8033       return false;
8034     }
8035     return true;                // All other stack states do not matter
8036   }
8037 
8038   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
8039          "bad FPU control word");
8040 
8041   // compute stack depth
8042   int i = 0;
8043   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
8044   int d = i;
8045   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
8046   // verify findings
8047   if (i != FPU_State::number_of_registers) {
8048     // stack not contiguous
8049     printf("%s: stack not contiguous at ST%d\n", s, i);
8050     state->print();
8051     assert(false, "error");
8052     return false;
8053   }
8054   // check if computed stack depth corresponds to expected stack depth
8055   if (stack_depth < 0) {
8056     // expected stack depth is -stack_depth or less
8057     if (d > -stack_depth) {
8058       // too many elements on the stack
8059       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
8060       state->print();
8061       assert(false, "error");
8062       return false;
8063     }
8064   } else {
8065     // expected stack depth is stack_depth
8066     if (d != stack_depth) {
8067       // wrong stack depth
8068       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
8069       state->print();
8070       assert(false, "error");
8071       return false;
8072     }
8073   }
8074   // everything is cool
8075   return true;
8076 }
8077 
8078 
8079 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
8080   if (!VerifyFPU) return;
8081   push_CPU_state();
8082   push(rsp);                // pass CPU state
8083   ExternalAddress msg((address) s);
8084   // pass message string s
8085   pushptr(msg.addr());
8086   push(stack_depth);        // pass stack depth
8087   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
8088   addptr(rsp, 3 * wordSize);   // discard arguments
8089   // check for error
8090   { Label L;
8091     testl(rax, rax);
8092     jcc(Assembler::notZero, L);
8093     int3();                  // break if error condition
8094     bind(L);
8095   }
8096   pop_CPU_state();
8097 }
8098 
8099 void MacroAssembler::load_klass(Register dst, Register src) {
8100 #ifdef _LP64
8101   if (UseCompressedOops) {
8102     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8103     decode_heap_oop_not_null(dst);
8104   } else
8105 #endif
8106     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8107 }
8108 
8109 void MacroAssembler::load_prototype_header(Register dst, Register src) {
8110 #ifdef _LP64
8111   if (UseCompressedOops) {
8112     assert (Universe::heap() != NULL, "java heap should be initialized");
8113     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8114     if (Universe::narrow_oop_shift() != 0) {
8115       assert(Address::times_8 == LogMinObjAlignmentInBytes &&
8116              Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
8117       movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
8118     } else {
8119       movq(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
8120     }
8121   } else
8122 #endif
8123   {
8124     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8125     movptr(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
8126   }
8127 }
8128 
8129 void MacroAssembler::store_klass(Register dst, Register src) {
8130 #ifdef _LP64
8131   if (UseCompressedOops) {
8132     encode_heap_oop_not_null(src);
8133     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
8134   } else
8135 #endif
8136     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
8137 }
8138 
8139 #ifdef _LP64
8140 void MacroAssembler::store_klass_gap(Register dst, Register src) {
8141   if (UseCompressedOops) {
8142     // Store to klass gap in destination
8143     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
8144   }
8145 }
8146 
8147 void MacroAssembler::load_heap_oop(Register dst, Address src) {
8148   if (UseCompressedOops) {
8149     movl(dst, src);
8150     decode_heap_oop(dst);
8151   } else {
8152     movq(dst, src);
8153   }
8154 }
8155 
8156 void MacroAssembler::store_heap_oop(Address dst, Register src) {
8157   if (UseCompressedOops) {
8158     assert(!dst.uses(src), "not enough registers");
8159     encode_heap_oop(src);
8160     movl(dst, src);
8161   } else {
8162     movq(dst, src);
8163   }
8164 }
8165 
8166 // Algorithm must match oop.inline.hpp encode_heap_oop.
8167 void MacroAssembler::encode_heap_oop(Register r) {
8168   assert (UseCompressedOops, "should be compressed");
8169   assert (Universe::heap() != NULL, "java heap should be initialized");
8170   if (Universe::narrow_oop_base() == NULL) {
8171     verify_oop(r, "broken oop in encode_heap_oop");
8172     if (Universe::narrow_oop_shift() != 0) {
8173       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8174       shrq(r, LogMinObjAlignmentInBytes);
8175     }
8176     return;
8177   }
8178 #ifdef ASSERT
8179   if (CheckCompressedOops) {
8180     Label ok;
8181     push(rscratch1); // cmpptr trashes rscratch1
8182     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
8183     jcc(Assembler::equal, ok);
8184     stop("MacroAssembler::encode_heap_oop: heap base corrupted?");
8185     bind(ok);
8186     pop(rscratch1);
8187   }
8188 #endif
8189   verify_oop(r, "broken oop in encode_heap_oop");
8190   testq(r, r);
8191   cmovq(Assembler::equal, r, r12_heapbase);
8192   subq(r, r12_heapbase);
8193   shrq(r, LogMinObjAlignmentInBytes);
8194 }
8195 
8196 void MacroAssembler::encode_heap_oop_not_null(Register r) {
8197   assert (UseCompressedOops, "should be compressed");
8198   assert (Universe::heap() != NULL, "java heap should be initialized");
8199 #ifdef ASSERT
8200   if (CheckCompressedOops) {
8201     Label ok;
8202     testq(r, r);
8203     jcc(Assembler::notEqual, ok);
8204     stop("null oop passed to encode_heap_oop_not_null");
8205     bind(ok);
8206   }
8207 #endif
8208   verify_oop(r, "broken oop in encode_heap_oop_not_null");
8209   if (Universe::narrow_oop_base() != NULL) {
8210     subq(r, r12_heapbase);
8211   }
8212   if (Universe::narrow_oop_shift() != 0) {
8213     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8214     shrq(r, LogMinObjAlignmentInBytes);
8215   }
8216 }
8217 
8218 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
8219   assert (UseCompressedOops, "should be compressed");
8220   assert (Universe::heap() != NULL, "java heap should be initialized");
8221 #ifdef ASSERT
8222   if (CheckCompressedOops) {
8223     Label ok;
8224     testq(src, src);
8225     jcc(Assembler::notEqual, ok);
8226     stop("null oop passed to encode_heap_oop_not_null2");
8227     bind(ok);
8228   }
8229 #endif
8230   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
8231   if (dst != src) {
8232     movq(dst, src);
8233   }
8234   if (Universe::narrow_oop_base() != NULL) {
8235     subq(dst, r12_heapbase);
8236   }
8237   if (Universe::narrow_oop_shift() != 0) {
8238     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8239     shrq(dst, LogMinObjAlignmentInBytes);
8240   }
8241 }
8242 
8243 void  MacroAssembler::decode_heap_oop(Register r) {
8244   assert (UseCompressedOops, "should be compressed");
8245   assert (Universe::heap() != NULL, "java heap should be initialized");
8246   if (Universe::narrow_oop_base() == NULL) {
8247     if (Universe::narrow_oop_shift() != 0) {
8248       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8249       shlq(r, LogMinObjAlignmentInBytes);
8250     }
8251     verify_oop(r, "broken oop in decode_heap_oop");
8252     return;
8253   }
8254 #ifdef ASSERT
8255   if (CheckCompressedOops) {
8256     Label ok;
8257     push(rscratch1);
8258     cmpptr(r12_heapbase,
8259            ExternalAddress((address)Universe::narrow_oop_base_addr()));
8260     jcc(Assembler::equal, ok);
8261     stop("MacroAssembler::decode_heap_oop: heap base corrupted?");
8262     bind(ok);
8263     pop(rscratch1);
8264   }
8265 #endif
8266 
8267   Label done;
8268   shlq(r, LogMinObjAlignmentInBytes);
8269   jccb(Assembler::equal, done);
8270   addq(r, r12_heapbase);
8271 #if 0
8272    // alternate decoding probably a wash.
8273    testq(r, r);
8274    jccb(Assembler::equal, done);
8275    leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
8276 #endif
8277   bind(done);
8278   verify_oop(r, "broken oop in decode_heap_oop");
8279 }
8280 
8281 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
8282   assert (UseCompressedOops, "should only be used for compressed headers");
8283   assert (Universe::heap() != NULL, "java heap should be initialized");
8284   // Cannot assert, unverified entry point counts instructions (see .ad file)
8285   // vtableStubs also counts instructions in pd_code_size_limit.
8286   // Also do not verify_oop as this is called by verify_oop.
8287   if (Universe::narrow_oop_base() == NULL) {
8288     if (Universe::narrow_oop_shift() != 0) {
8289       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8290       shlq(r, LogMinObjAlignmentInBytes);
8291     }
8292   } else {
8293       assert (Address::times_8 == LogMinObjAlignmentInBytes &&
8294               Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
8295     leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
8296   }
8297 }
8298 
8299 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
8300   assert (UseCompressedOops, "should only be used for compressed headers");
8301   assert (Universe::heap() != NULL, "java heap should be initialized");
8302   // Cannot assert, unverified entry point counts instructions (see .ad file)
8303   // vtableStubs also counts instructions in pd_code_size_limit.
8304   // Also do not verify_oop as this is called by verify_oop.
8305   if (Universe::narrow_oop_shift() != 0) {
8306     assert (Address::times_8 == LogMinObjAlignmentInBytes &&
8307             Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
8308     leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
8309   } else if (dst != src) {
8310     movq(dst, src);
8311   }
8312 }
8313 
8314 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
8315   assert (UseCompressedOops, "should only be used for compressed headers");
8316   assert (Universe::heap() != NULL, "java heap should be initialized");
8317   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
8318   int oop_index = oop_recorder()->find_index(obj);
8319   RelocationHolder rspec = oop_Relocation::spec(oop_index);
8320   mov_narrow_oop(dst, oop_index, rspec);
8321 }
8322 
8323 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
8324   assert (UseCompressedOops, "should only be used for compressed headers");
8325   assert (Universe::heap() != NULL, "java heap should be initialized");
8326   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
8327   int oop_index = oop_recorder()->find_index(obj);
8328   RelocationHolder rspec = oop_Relocation::spec(oop_index);
8329   mov_narrow_oop(dst, oop_index, rspec);
8330 }
8331 
8332 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
8333   assert (UseCompressedOops, "should only be used for compressed headers");
8334   assert (Universe::heap() != NULL, "java heap should be initialized");
8335   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
8336   int oop_index = oop_recorder()->find_index(obj);
8337   RelocationHolder rspec = oop_Relocation::spec(oop_index);
8338   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
8339 }
8340 
8341 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
8342   assert (UseCompressedOops, "should only be used for compressed headers");
8343   assert (Universe::heap() != NULL, "java heap should be initialized");
8344   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
8345   int oop_index = oop_recorder()->find_index(obj);
8346   RelocationHolder rspec = oop_Relocation::spec(oop_index);
8347   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
8348 }
8349 
8350 void MacroAssembler::reinit_heapbase() {
8351   if (UseCompressedOops) {
8352     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
8353   }
8354 }
8355 #endif // _LP64
8356 
8357 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
8358   switch (cond) {
8359     // Note some conditions are synonyms for others
8360     case Assembler::zero:         return Assembler::notZero;
8361     case Assembler::notZero:      return Assembler::zero;
8362     case Assembler::less:         return Assembler::greaterEqual;
8363     case Assembler::lessEqual:    return Assembler::greater;
8364     case Assembler::greater:      return Assembler::lessEqual;
8365     case Assembler::greaterEqual: return Assembler::less;
8366     case Assembler::below:        return Assembler::aboveEqual;
8367     case Assembler::belowEqual:   return Assembler::above;
8368     case Assembler::above:        return Assembler::belowEqual;
8369     case Assembler::aboveEqual:   return Assembler::below;
8370     case Assembler::overflow:     return Assembler::noOverflow;
8371     case Assembler::noOverflow:   return Assembler::overflow;
8372     case Assembler::negative:     return Assembler::positive;
8373     case Assembler::positive:     return Assembler::negative;
8374     case Assembler::parity:       return Assembler::noParity;
8375     case Assembler::noParity:     return Assembler::parity;
8376   }
8377   ShouldNotReachHere(); return Assembler::overflow;
8378 }
8379 
8380 SkipIfEqual::SkipIfEqual(
8381     MacroAssembler* masm, const bool* flag_addr, bool value) {
8382   _masm = masm;
8383   _masm->cmp8(ExternalAddress((address)flag_addr), value);
8384   _masm->jcc(Assembler::equal, _label);
8385 }
8386 
8387 SkipIfEqual::~SkipIfEqual() {
8388   _masm->bind(_label);
8389 }