1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_vm_version_x86.cpp.incl"
  27 
  28 
  29 int VM_Version::_cpu;
  30 int VM_Version::_model;
  31 int VM_Version::_stepping;
  32 int VM_Version::_cpuFeatures;
  33 const char*           VM_Version::_features_str = "";
  34 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
  35 
  36 static BufferBlob* stub_blob;
  37 static const int stub_size = 300;
  38 
  39 extern "C" {
  40   typedef void (*getPsrInfo_stub_t)(void*);
  41 }
  42 static getPsrInfo_stub_t getPsrInfo_stub = NULL;
  43 
  44 
  45 class VM_Version_StubGenerator: public StubCodeGenerator {
  46  public:
  47 
  48   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
  49 
  50   address generate_getPsrInfo() {
  51     // Flags to test CPU type.
  52     const uint32_t EFL_AC           = 0x40000;
  53     const uint32_t EFL_ID           = 0x200000;
  54     // Values for when we don't have a CPUID instruction.
  55     const int      CPU_FAMILY_SHIFT = 8;
  56     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
  57     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
  58 
  59     Label detect_486, cpu486, detect_586, std_cpuid1;
  60     Label ext_cpuid1, ext_cpuid5, done;
  61 
  62     StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
  63 #   define __ _masm->
  64 
  65     address start = __ pc();
  66 
  67     //
  68     // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
  69     //
  70     // LP64: rcx and rdx are first and second argument registers on windows
  71 
  72     __ push(rbp);
  73 #ifdef _LP64
  74     __ mov(rbp, c_rarg0); // cpuid_info address
  75 #else
  76     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
  77 #endif
  78     __ push(rbx);
  79     __ push(rsi);
  80     __ pushf();          // preserve rbx, and flags
  81     __ pop(rax);
  82     __ push(rax);
  83     __ mov(rcx, rax);
  84     //
  85     // if we are unable to change the AC flag, we have a 386
  86     //
  87     __ xorl(rax, EFL_AC);
  88     __ push(rax);
  89     __ popf();
  90     __ pushf();
  91     __ pop(rax);
  92     __ cmpptr(rax, rcx);
  93     __ jccb(Assembler::notEqual, detect_486);
  94 
  95     __ movl(rax, CPU_FAMILY_386);
  96     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
  97     __ jmp(done);
  98 
  99     //
 100     // If we are unable to change the ID flag, we have a 486 which does
 101     // not support the "cpuid" instruction.
 102     //
 103     __ bind(detect_486);
 104     __ mov(rax, rcx);
 105     __ xorl(rax, EFL_ID);
 106     __ push(rax);
 107     __ popf();
 108     __ pushf();
 109     __ pop(rax);
 110     __ cmpptr(rcx, rax);
 111     __ jccb(Assembler::notEqual, detect_586);
 112 
 113     __ bind(cpu486);
 114     __ movl(rax, CPU_FAMILY_486);
 115     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 116     __ jmp(done);
 117 
 118     //
 119     // At this point, we have a chip which supports the "cpuid" instruction
 120     //
 121     __ bind(detect_586);
 122     __ xorl(rax, rax);
 123     __ cpuid();
 124     __ orl(rax, rax);
 125     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
 126                                         // value of at least 1, we give up and
 127                                         // assume a 486
 128     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
 129     __ movl(Address(rsi, 0), rax);
 130     __ movl(Address(rsi, 4), rbx);
 131     __ movl(Address(rsi, 8), rcx);
 132     __ movl(Address(rsi,12), rdx);
 133 
 134     __ cmpl(rax, 3);     // Is cpuid(0x4) supported?
 135     __ jccb(Assembler::belowEqual, std_cpuid1);
 136 
 137     //
 138     // cpuid(0x4) Deterministic cache params
 139     //
 140     __ movl(rax, 4);
 141     __ xorl(rcx, rcx);   // L1 cache
 142     __ cpuid();
 143     __ push(rax);
 144     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
 145     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
 146     __ pop(rax);
 147     __ jccb(Assembler::equal, std_cpuid1);
 148 
 149     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
 150     __ movl(Address(rsi, 0), rax);
 151     __ movl(Address(rsi, 4), rbx);
 152     __ movl(Address(rsi, 8), rcx);
 153     __ movl(Address(rsi,12), rdx);
 154 
 155     //
 156     // Standard cpuid(0x1)
 157     //
 158     __ bind(std_cpuid1);
 159     __ movl(rax, 1);
 160     __ cpuid();
 161     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 162     __ movl(Address(rsi, 0), rax);
 163     __ movl(Address(rsi, 4), rbx);
 164     __ movl(Address(rsi, 8), rcx);
 165     __ movl(Address(rsi,12), rdx);
 166 
 167     __ movl(rax, 0x80000000);
 168     __ cpuid();
 169     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
 170     __ jcc(Assembler::belowEqual, done);
 171     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
 172     __ jccb(Assembler::belowEqual, ext_cpuid1);
 173     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
 174     __ jccb(Assembler::belowEqual, ext_cpuid5);
 175     //
 176     // Extended cpuid(0x80000008)
 177     //
 178     __ movl(rax, 0x80000008);
 179     __ cpuid();
 180     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
 181     __ movl(Address(rsi, 0), rax);
 182     __ movl(Address(rsi, 4), rbx);
 183     __ movl(Address(rsi, 8), rcx);
 184     __ movl(Address(rsi,12), rdx);
 185 
 186     //
 187     // Extended cpuid(0x80000005)
 188     //
 189     __ bind(ext_cpuid5);
 190     __ movl(rax, 0x80000005);
 191     __ cpuid();
 192     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
 193     __ movl(Address(rsi, 0), rax);
 194     __ movl(Address(rsi, 4), rbx);
 195     __ movl(Address(rsi, 8), rcx);
 196     __ movl(Address(rsi,12), rdx);
 197 
 198     //
 199     // Extended cpuid(0x80000001)
 200     //
 201     __ bind(ext_cpuid1);
 202     __ movl(rax, 0x80000001);
 203     __ cpuid();
 204     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
 205     __ movl(Address(rsi, 0), rax);
 206     __ movl(Address(rsi, 4), rbx);
 207     __ movl(Address(rsi, 8), rcx);
 208     __ movl(Address(rsi,12), rdx);
 209 
 210     //
 211     // return
 212     //
 213     __ bind(done);
 214     __ popf();
 215     __ pop(rsi);
 216     __ pop(rbx);
 217     __ pop(rbp);
 218     __ ret(0);
 219 
 220 #   undef __
 221 
 222     return start;
 223   };
 224 };
 225 
 226 
 227 void VM_Version::get_processor_features() {
 228 
 229   _cpu = 4; // 486 by default
 230   _model = 0;
 231   _stepping = 0;
 232   _cpuFeatures = 0;
 233   _logical_processors_per_package = 1;
 234 
 235   if (!Use486InstrsOnly) {
 236     // Get raw processor info
 237     getPsrInfo_stub(&_cpuid_info);
 238     assert_is_initialized();
 239     _cpu = extended_cpu_family();
 240     _model = extended_cpu_model();
 241     _stepping = cpu_stepping();
 242 
 243     if (cpu_family() > 4) { // it supports CPUID
 244       _cpuFeatures = feature_flags();
 245       // Logical processors are only available on P4s and above,
 246       // and only if hyperthreading is available.
 247       _logical_processors_per_package = logical_processor_count();
 248     }
 249   }
 250 
 251   _supports_cx8 = supports_cmpxchg8();
 252 
 253 #ifdef _LP64
 254   // OS should support SSE for x64 and hardware should support at least SSE2.
 255   if (!VM_Version::supports_sse2()) {
 256     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
 257   }
 258 #endif
 259 
 260   // If the OS doesn't support SSE, we can't use this feature even if the HW does
 261   if (!os::supports_sse())
 262     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
 263 
 264   if (UseSSE < 4) {
 265     _cpuFeatures &= ~CPU_SSE4_1;
 266     _cpuFeatures &= ~CPU_SSE4_2;
 267   }
 268 
 269   if (UseSSE < 3) {
 270     _cpuFeatures &= ~CPU_SSE3;
 271     _cpuFeatures &= ~CPU_SSSE3;
 272     _cpuFeatures &= ~CPU_SSE4A;
 273   }
 274 
 275   if (UseSSE < 2)
 276     _cpuFeatures &= ~CPU_SSE2;
 277 
 278   if (UseSSE < 1)
 279     _cpuFeatures &= ~CPU_SSE;
 280 
 281   if (logical_processors_per_package() == 1) {
 282     // HT processor could be installed on a system which doesn't support HT.
 283     _cpuFeatures &= ~CPU_HT;
 284   }
 285 
 286   char buf[256];
 287   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
 288                cores_per_cpu(), threads_per_core(),
 289                cpu_family(), _model, _stepping,
 290                (supports_cmov() ? ", cmov" : ""),
 291                (supports_cmpxchg8() ? ", cx8" : ""),
 292                (supports_fxsr() ? ", fxsr" : ""),
 293                (supports_mmx()  ? ", mmx"  : ""),
 294                (supports_sse()  ? ", sse"  : ""),
 295                (supports_sse2() ? ", sse2" : ""),
 296                (supports_sse3() ? ", sse3" : ""),
 297                (supports_ssse3()? ", ssse3": ""),
 298                (supports_sse4_1() ? ", sse4.1" : ""),
 299                (supports_sse4_2() ? ", sse4.2" : ""),
 300                (supports_popcnt() ? ", popcnt" : ""),
 301                (supports_mmx_ext() ? ", mmxext" : ""),
 302                (supports_3dnow()   ? ", 3dnow"  : ""),
 303                (supports_3dnow2()  ? ", 3dnowext" : ""),
 304                (supports_sse4a()   ? ", sse4a": ""),
 305                (supports_ht() ? ", ht": ""));
 306   _features_str = strdup(buf);
 307 
 308   // UseSSE is set to the smaller of what hardware supports and what
 309   // the command line requires.  I.e., you cannot set UseSSE to 2 on
 310   // older Pentiums which do not support it.
 311   if( UseSSE > 4 ) UseSSE=4;
 312   if( UseSSE < 0 ) UseSSE=0;
 313   if( !supports_sse4_1() ) // Drop to 3 if no SSE4 support
 314     UseSSE = MIN2((intx)3,UseSSE);
 315   if( !supports_sse3() ) // Drop to 2 if no SSE3 support
 316     UseSSE = MIN2((intx)2,UseSSE);
 317   if( !supports_sse2() ) // Drop to 1 if no SSE2 support
 318     UseSSE = MIN2((intx)1,UseSSE);
 319   if( !supports_sse () ) // Drop to 0 if no SSE  support
 320     UseSSE = 0;
 321 
 322   // On new cpus instructions which update whole XMM register should be used
 323   // to prevent partial register stall due to dependencies on high half.
 324   //
 325   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
 326   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
 327   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
 328   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
 329 
 330   if( is_amd() ) { // AMD cpus specific settings
 331     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
 332       // Use it on new AMD cpus starting from Opteron.
 333       UseAddressNop = true;
 334     }
 335     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
 336       // Use it on new AMD cpus starting from Opteron.
 337       UseNewLongLShift = true;
 338     }
 339     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
 340       if( supports_sse4a() ) {
 341         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
 342       } else {
 343         UseXmmLoadAndClearUpper = false;
 344       }
 345     }
 346     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
 347       if( supports_sse4a() ) {
 348         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
 349       } else {
 350         UseXmmRegToRegMoveAll = false;
 351       }
 352     }
 353     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
 354       if( supports_sse4a() ) {
 355         UseXmmI2F = true;
 356       } else {
 357         UseXmmI2F = false;
 358       }
 359     }
 360     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
 361       if( supports_sse4a() ) {
 362         UseXmmI2D = true;
 363       } else {
 364         UseXmmI2D = false;
 365       }
 366     }
 367   }
 368 
 369   if( is_intel() ) { // Intel cpus specific settings
 370     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
 371       UseStoreImmI16 = false; // don't use it on Intel cpus
 372     }
 373     if( cpu_family() == 6 || cpu_family() == 15 ) {
 374       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
 375         // Use it on all Intel cpus starting from PentiumPro
 376         UseAddressNop = true;
 377       }
 378     }
 379     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
 380       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
 381     }
 382     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
 383       if( supports_sse3() ) {
 384         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
 385       } else {
 386         UseXmmRegToRegMoveAll = false;
 387       }
 388     }
 389     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
 390 #ifdef COMPILER2
 391       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
 392         // For new Intel cpus do the next optimization:
 393         // don't align the beginning of a loop if there are enough instructions
 394         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
 395         // in current fetch line (OptoLoopAlignment) or the padding
 396         // is big (> MaxLoopPad).
 397         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
 398         // generated NOP instructions. 11 is the largest size of one
 399         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
 400         MaxLoopPad = 11;
 401       }
 402 #endif // COMPILER2
 403       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
 404         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
 405       }
 406       if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
 407         if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
 408           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
 409         }
 410       }
 411       if( supports_sse4_2() && UseSSE >= 4 ) {
 412         if( FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
 413           UseSSE42Intrinsics = true;
 414         }
 415       }
 416     }
 417   }
 418 
 419   // Use population count instruction if available.
 420   if (supports_popcnt()) {
 421     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
 422       UsePopCountInstruction = true;
 423     }
 424   }
 425 
 426   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
 427   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
 428 
 429   // set valid Prefetch instruction
 430   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
 431   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
 432   if( ReadPrefetchInstr == 3 && !supports_3dnow() ) ReadPrefetchInstr = 0;
 433   if( !supports_sse() && supports_3dnow() ) ReadPrefetchInstr = 3;
 434 
 435   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
 436   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
 437   if( AllocatePrefetchInstr == 3 && !supports_3dnow() ) AllocatePrefetchInstr=0;
 438   if( !supports_sse() && supports_3dnow() ) AllocatePrefetchInstr = 3;
 439 
 440   // Allocation prefetch settings
 441   intx cache_line_size = L1_data_cache_line_size();
 442   if( cache_line_size > AllocatePrefetchStepSize )
 443     AllocatePrefetchStepSize = cache_line_size;
 444   if( FLAG_IS_DEFAULT(AllocatePrefetchLines) )
 445     AllocatePrefetchLines = 3; // Optimistic value
 446   assert(AllocatePrefetchLines > 0, "invalid value");
 447   if( AllocatePrefetchLines < 1 ) // set valid value in product VM
 448     AllocatePrefetchLines = 1; // Conservative value
 449 
 450   AllocatePrefetchDistance = allocate_prefetch_distance();
 451   AllocatePrefetchStyle    = allocate_prefetch_style();
 452 
 453   if( AllocatePrefetchStyle == 2 && is_intel() &&
 454       cpu_family() == 6 && supports_sse3() ) { // watermark prefetching on Core
 455 #ifdef _LP64
 456     AllocatePrefetchDistance = 384;
 457 #else
 458     AllocatePrefetchDistance = 320;
 459 #endif
 460   }
 461   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
 462 
 463 #ifdef _LP64
 464   // Prefetch settings
 465   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
 466   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
 467   PrefetchFieldsAhead         = prefetch_fields_ahead();
 468 #endif
 469 
 470 #ifndef PRODUCT
 471   if (PrintMiscellaneous && Verbose) {
 472     tty->print_cr("Logical CPUs per core: %u",
 473                   logical_processors_per_package());
 474     tty->print_cr("UseSSE=%d",UseSSE);
 475     tty->print("Allocation: ");
 476     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow()) {
 477       tty->print_cr("no prefetching");
 478     } else {
 479       if (UseSSE == 0 && supports_3dnow()) {
 480         tty->print("PREFETCHW");
 481       } else if (UseSSE >= 1) {
 482         if (AllocatePrefetchInstr == 0) {
 483           tty->print("PREFETCHNTA");
 484         } else if (AllocatePrefetchInstr == 1) {
 485           tty->print("PREFETCHT0");
 486         } else if (AllocatePrefetchInstr == 2) {
 487           tty->print("PREFETCHT2");
 488         } else if (AllocatePrefetchInstr == 3) {
 489           tty->print("PREFETCHW");
 490         }
 491       }
 492       if (AllocatePrefetchLines > 1) {
 493         tty->print_cr(" %d, %d lines with step %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
 494       } else {
 495         tty->print_cr(" %d, one line", AllocatePrefetchDistance);
 496       }
 497     }
 498 
 499     if (PrefetchCopyIntervalInBytes > 0) {
 500       tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
 501     }
 502     if (PrefetchScanIntervalInBytes > 0) {
 503       tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
 504     }
 505     if (PrefetchFieldsAhead > 0) {
 506       tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
 507     }
 508   }
 509 #endif // !PRODUCT
 510 }
 511 
 512 void VM_Version::initialize() {
 513   ResourceMark rm;
 514   // Making this stub must be FIRST use of assembler
 515 
 516   stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
 517   if (stub_blob == NULL) {
 518     vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
 519   }
 520   CodeBuffer c(stub_blob->instructions_begin(),
 521                stub_blob->instructions_size());
 522   VM_Version_StubGenerator g(&c);
 523   getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
 524                                    g.generate_getPsrInfo());
 525 
 526   get_processor_features();
 527 }