1 //
   2 // Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20 // CA 95054 USA or visit www.sun.com if you need additional information or
  21 // have any questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg());
 197 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg()->next());
 198 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg());
 199 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg()->next());
 200 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg());
 201 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg()->next());
 202 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg());
 203 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg()->next());
 204 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg());
 205 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg()->next());
 206 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg());
 207 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg()->next());
 208 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg());
 209 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg()->next());
 210 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg());
 211 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg()->next());
 212 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg());
 213 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg()->next());
 214 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg());
 215 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg()->next());
 216 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg());
 217 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg()->next());
 218 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg());
 219 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg()->next());
 220 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg());
 221 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg()->next());
 222 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg());
 223 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg()->next());
 224 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg());
 225 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg()->next());
 226 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg());
 227 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 // Macros to extract hi & lo halves from a long pair.
 464 // G0 is not part of any long pair, so assert on that.
 465 // Prevents accidentally using G1 instead of G0.
 466 #define LONG_HI_REG(x) (x)
 467 #define LONG_LO_REG(x) (x)
 468 
 469 %}
 470 
 471 source %{
 472 #define __ _masm.
 473 
 474 // tertiary op of a LoadP or StoreP encoding
 475 #define REGP_OP true
 476 
 477 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 478 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 479 static Register reg_to_register_object(int register_encoding);
 480 
 481 // Used by the DFA in dfa_sparc.cpp.
 482 // Check for being able to use a V9 branch-on-register.  Requires a
 483 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 484 // extended.  Doesn't work following an integer ADD, for example, because of
 485 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 486 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 487 // replace them with zero, which could become sign-extension in a different OS
 488 // release.  There's no obvious reason why an interrupt will ever fill these
 489 // bits with non-zero junk (the registers are reloaded with standard LD
 490 // instructions which either zero-fill or sign-fill).
 491 bool can_branch_register( Node *bol, Node *cmp ) {
 492   if( !BranchOnRegister ) return false;
 493 #ifdef _LP64
 494   if( cmp->Opcode() == Op_CmpP )
 495     return true;  // No problems with pointer compares
 496 #endif
 497   if( cmp->Opcode() == Op_CmpL )
 498     return true;  // No problems with long compares
 499 
 500   if( !SparcV9RegsHiBitsZero ) return false;
 501   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 502       bol->as_Bool()->_test._test != BoolTest::eq )
 503      return false;
 504 
 505   // Check for comparing against a 'safe' value.  Any operation which
 506   // clears out the high word is safe.  Thus, loads and certain shifts
 507   // are safe, as are non-negative constants.  Any operation which
 508   // preserves zero bits in the high word is safe as long as each of its
 509   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 510   // inputs are safe.  At present, the only important case to recognize
 511   // seems to be loads.  Constants should fold away, and shifts &
 512   // logicals can use the 'cc' forms.
 513   Node *x = cmp->in(1);
 514   if( x->is_Load() ) return true;
 515   if( x->is_Phi() ) {
 516     for( uint i = 1; i < x->req(); i++ )
 517       if( !x->in(i)->is_Load() )
 518         return false;
 519     return true;
 520   }
 521   return false;
 522 }
 523 
 524 // ****************************************************************************
 525 
 526 // REQUIRED FUNCTIONALITY
 527 
 528 // !!!!! Special hack to get all type of calls to specify the byte offset
 529 //       from the start of the call to the point where the return address
 530 //       will point.
 531 //       The "return address" is the address of the call instruction, plus 8.
 532 
 533 int MachCallStaticJavaNode::ret_addr_offset() {
 534   return NativeCall::instruction_size;  // call; delay slot
 535 }
 536 
 537 int MachCallDynamicJavaNode::ret_addr_offset() {
 538   int vtable_index = this->_vtable_index;
 539   if (vtable_index < 0) {
 540     // must be invalid_vtable_index, not nonvirtual_vtable_index
 541     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 542     return (NativeMovConstReg::instruction_size +
 543            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 544   } else {
 545     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 546     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 547     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 548     int klass_load_size;
 549     if (UseCompressedOops) {
 550       assert(Universe::heap() != NULL, "java heap should be initialized");
 551       if (Universe::narrow_oop_base() == NULL)
 552         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 553       else
 554         klass_load_size = 3*BytesPerInstWord;
 555     } else {
 556       klass_load_size = 1*BytesPerInstWord;
 557     }
 558     if( Assembler::is_simm13(v_off) ) {
 559       return klass_load_size +
 560              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 561              NativeCall::instruction_size);  // call; delay slot
 562     } else {
 563       return klass_load_size +
 564              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 565              NativeCall::instruction_size);  // call; delay slot
 566     }
 567   }
 568 }
 569 
 570 int MachCallRuntimeNode::ret_addr_offset() {
 571 #ifdef _LP64
 572   return NativeFarCall::instruction_size;  // farcall; delay slot
 573 #else
 574   return NativeCall::instruction_size;  // call; delay slot
 575 #endif
 576 }
 577 
 578 // Indicate if the safepoint node needs the polling page as an input.
 579 // Since Sparc does not have absolute addressing, it does.
 580 bool SafePointNode::needs_polling_address_input() {
 581   return true;
 582 }
 583 
 584 // emit an interrupt that is caught by the debugger (for debugging compiler)
 585 void emit_break(CodeBuffer &cbuf) {
 586   MacroAssembler _masm(&cbuf);
 587   __ breakpoint_trap();
 588 }
 589 
 590 #ifndef PRODUCT
 591 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 592   st->print("TA");
 593 }
 594 #endif
 595 
 596 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 597   emit_break(cbuf);
 598 }
 599 
 600 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 601   return MachNode::size(ra_);
 602 }
 603 
 604 // Traceable jump
 605 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 606   MacroAssembler _masm(&cbuf);
 607   Register rdest = reg_to_register_object(jump_target);
 608   __ JMP(rdest, 0);
 609   __ delayed()->nop();
 610 }
 611 
 612 // Traceable jump and set exception pc
 613 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 614   MacroAssembler _masm(&cbuf);
 615   Register rdest = reg_to_register_object(jump_target);
 616   __ JMP(rdest, 0);
 617   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 618 }
 619 
 620 void emit_nop(CodeBuffer &cbuf) {
 621   MacroAssembler _masm(&cbuf);
 622   __ nop();
 623 }
 624 
 625 void emit_illtrap(CodeBuffer &cbuf) {
 626   MacroAssembler _masm(&cbuf);
 627   __ illtrap(0);
 628 }
 629 
 630 
 631 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 632   assert(n->rule() != loadUB_rule, "");
 633 
 634   intptr_t offset = 0;
 635   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 636   const Node* addr = n->get_base_and_disp(offset, adr_type);
 637   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 638   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 639   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 640   atype = atype->add_offset(offset);
 641   assert(disp32 == offset, "wrong disp32");
 642   return atype->_offset;
 643 }
 644 
 645 
 646 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 647   assert(n->rule() != loadUB_rule, "");
 648 
 649   intptr_t offset = 0;
 650   Node* addr = n->in(2);
 651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 652   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 653     Node* a = addr->in(2/*AddPNode::Address*/);
 654     Node* o = addr->in(3/*AddPNode::Offset*/);
 655     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 656     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 657     assert(atype->isa_oop_ptr(), "still an oop");
 658   }
 659   offset = atype->is_ptr()->_offset;
 660   if (offset != Type::OffsetBot)  offset += disp32;
 661   return offset;
 662 }
 663 
 664 // Standard Sparc opcode form2 field breakdown
 665 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 666   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 667   int op = (f30 << 30) |
 668            (f29 << 29) |
 669            (f25 << 25) |
 670            (f22 << 22) |
 671            (f20 << 20) |
 672            (f19 << 19) |
 673            (f0  <<  0);
 674   *((int*)(cbuf.code_end())) = op;
 675   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 676 }
 677 
 678 // Standard Sparc opcode form2 field breakdown
 679 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 680   f0 >>= 10;           // Drop 10 bits
 681   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 682   int op = (f30 << 30) |
 683            (f25 << 25) |
 684            (f22 << 22) |
 685            (f0  <<  0);
 686   *((int*)(cbuf.code_end())) = op;
 687   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 688 }
 689 
 690 // Standard Sparc opcode form3 field breakdown
 691 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 692   int op = (f30 << 30) |
 693            (f25 << 25) |
 694            (f19 << 19) |
 695            (f14 << 14) |
 696            (f5  <<  5) |
 697            (f0  <<  0);
 698   *((int*)(cbuf.code_end())) = op;
 699   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 700 }
 701 
 702 // Standard Sparc opcode form3 field breakdown
 703 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 704   simm13 &= (1<<13)-1; // Mask to 13 bits
 705   int op = (f30 << 30) |
 706            (f25 << 25) |
 707            (f19 << 19) |
 708            (f14 << 14) |
 709            (1   << 13) | // bit to indicate immediate-mode
 710            (simm13<<0);
 711   *((int*)(cbuf.code_end())) = op;
 712   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 713 }
 714 
 715 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 716   simm10 &= (1<<10)-1; // Mask to 10 bits
 717   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 718 }
 719 
 720 #ifdef ASSERT
 721 // Helper function for VerifyOops in emit_form3_mem_reg
 722 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 723   warning("VerifyOops encountered unexpected instruction:");
 724   n->dump(2);
 725   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 726 }
 727 #endif
 728 
 729 
 730 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 731                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 732 
 733 #ifdef ASSERT
 734   // The following code implements the +VerifyOops feature.
 735   // It verifies oop values which are loaded into or stored out of
 736   // the current method activation.  +VerifyOops complements techniques
 737   // like ScavengeALot, because it eagerly inspects oops in transit,
 738   // as they enter or leave the stack, as opposed to ScavengeALot,
 739   // which inspects oops "at rest", in the stack or heap, at safepoints.
 740   // For this reason, +VerifyOops can sometimes detect bugs very close
 741   // to their point of creation.  It can also serve as a cross-check
 742   // on the validity of oop maps, when used toegether with ScavengeALot.
 743 
 744   // It would be good to verify oops at other points, especially
 745   // when an oop is used as a base pointer for a load or store.
 746   // This is presently difficult, because it is hard to know when
 747   // a base address is biased or not.  (If we had such information,
 748   // it would be easy and useful to make a two-argument version of
 749   // verify_oop which unbiases the base, and performs verification.)
 750 
 751   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 752   bool is_verified_oop_base  = false;
 753   bool is_verified_oop_load  = false;
 754   bool is_verified_oop_store = false;
 755   int tmp_enc = -1;
 756   if (VerifyOops && src1_enc != R_SP_enc) {
 757     // classify the op, mainly for an assert check
 758     int st_op = 0, ld_op = 0;
 759     switch (primary) {
 760     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 761     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 762     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 763     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 764     case Assembler::std_op3:  st_op = Op_StoreL; break;
 765     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 766     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 767 
 768     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 769     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 770     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 771     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 772     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 773     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 774     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 775     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 776     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 777     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
 778     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 779 
 780     default: ShouldNotReachHere();
 781     }
 782     if (tertiary == REGP_OP) {
 783       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 784       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 785       else                          ShouldNotReachHere();
 786       if (st_op) {
 787         // a store
 788         // inputs are (0:control, 1:memory, 2:address, 3:value)
 789         Node* n2 = n->in(3);
 790         if (n2 != NULL) {
 791           const Type* t = n2->bottom_type();
 792           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 793         }
 794       } else {
 795         // a load
 796         const Type* t = n->bottom_type();
 797         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 798       }
 799     }
 800 
 801     if (ld_op) {
 802       // a Load
 803       // inputs are (0:control, 1:memory, 2:address)
 804       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 805           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
 806           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 807           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 808           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 809           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 810           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 811           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 812           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 813           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 814           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 815           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 816           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 817           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 818           !(n->rule() == loadUB_rule)) {
 819         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 820       }
 821     } else if (st_op) {
 822       // a Store
 823       // inputs are (0:control, 1:memory, 2:address, 3:value)
 824       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 825           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 826           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 827           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 828           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 829           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 830         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 831       }
 832     }
 833 
 834     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 835       Node* addr = n->in(2);
 836       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 837         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 838         if (atype != NULL) {
 839           intptr_t offset = get_offset_from_base(n, atype, disp32);
 840           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 841           if (offset != offset_2) {
 842             get_offset_from_base(n, atype, disp32);
 843             get_offset_from_base_2(n, atype, disp32);
 844           }
 845           assert(offset == offset_2, "different offsets");
 846           if (offset == disp32) {
 847             // we now know that src1 is a true oop pointer
 848             is_verified_oop_base = true;
 849             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 850               if( primary == Assembler::ldd_op3 ) {
 851                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 852               } else {
 853                 tmp_enc = dst_enc;
 854                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 855                 assert(src1_enc != dst_enc, "");
 856               }
 857             }
 858           }
 859           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 860                        || offset == oopDesc::mark_offset_in_bytes())) {
 861                       // loading the mark should not be allowed either, but
 862                       // we don't check this since it conflicts with InlineObjectHash
 863                       // usage of LoadINode to get the mark. We could keep the
 864                       // check if we create a new LoadMarkNode
 865             // but do not verify the object before its header is initialized
 866             ShouldNotReachHere();
 867           }
 868         }
 869       }
 870     }
 871   }
 872 #endif
 873 
 874   uint instr;
 875   instr = (Assembler::ldst_op << 30)
 876         | (dst_enc        << 25)
 877         | (primary        << 19)
 878         | (src1_enc       << 14);
 879 
 880   uint index = src2_enc;
 881   int disp = disp32;
 882 
 883   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 884     disp += STACK_BIAS;
 885 
 886   // We should have a compiler bailout here rather than a guarantee.
 887   // Better yet would be some mechanism to handle variable-size matches correctly.
 888   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 889 
 890   if( disp == 0 ) {
 891     // use reg-reg form
 892     // bit 13 is already zero
 893     instr |= index;
 894   } else {
 895     // use reg-imm form
 896     instr |= 0x00002000;          // set bit 13 to one
 897     instr |= disp & 0x1FFF;
 898   }
 899 
 900   uint *code = (uint*)cbuf.code_end();
 901   *code = instr;
 902   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 903 
 904 #ifdef ASSERT
 905   {
 906     MacroAssembler _masm(&cbuf);
 907     if (is_verified_oop_base) {
 908       __ verify_oop(reg_to_register_object(src1_enc));
 909     }
 910     if (is_verified_oop_store) {
 911       __ verify_oop(reg_to_register_object(dst_enc));
 912     }
 913     if (tmp_enc != -1) {
 914       __ mov(O7, reg_to_register_object(tmp_enc));
 915     }
 916     if (is_verified_oop_load) {
 917       __ verify_oop(reg_to_register_object(dst_enc));
 918     }
 919   }
 920 #endif
 921 }
 922 
 923 void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 924                         int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) {
 925 
 926   uint instr;
 927   instr = (Assembler::ldst_op << 30)
 928         | (dst_enc        << 25)
 929         | (primary        << 19)
 930         | (src1_enc       << 14);
 931 
 932   int disp = disp32;
 933   int index    = src2_enc;
 934 
 935   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 936     disp += STACK_BIAS;
 937 
 938   // We should have a compiler bailout here rather than a guarantee.
 939   // Better yet would be some mechanism to handle variable-size matches correctly.
 940   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 941 
 942   if( disp != 0 ) {
 943     // use reg-reg form
 944     // set src2=R_O7 contains offset
 945     index = R_O7_enc;
 946     emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp);
 947   }
 948   instr |= (asi << 5);
 949   instr |= index;
 950   uint *code = (uint*)cbuf.code_end();
 951   *code = instr;
 952   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 953 }
 954 
 955 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
 956   // The method which records debug information at every safepoint
 957   // expects the call to be the first instruction in the snippet as
 958   // it creates a PcDesc structure which tracks the offset of a call
 959   // from the start of the codeBlob. This offset is computed as
 960   // code_end() - code_begin() of the code which has been emitted
 961   // so far.
 962   // In this particular case we have skirted around the problem by
 963   // putting the "mov" instruction in the delay slot but the problem
 964   // may bite us again at some other point and a cleaner/generic
 965   // solution using relocations would be needed.
 966   MacroAssembler _masm(&cbuf);
 967   __ set_inst_mark();
 968 
 969   // We flush the current window just so that there is a valid stack copy
 970   // the fact that the current window becomes active again instantly is
 971   // not a problem there is nothing live in it.
 972 
 973 #ifdef ASSERT
 974   int startpos = __ offset();
 975 #endif /* ASSERT */
 976 
 977 #ifdef _LP64
 978   // Calls to the runtime or native may not be reachable from compiled code,
 979   // so we generate the far call sequence on 64 bit sparc.
 980   // This code sequence is relocatable to any address, even on LP64.
 981   if ( force_far_call ) {
 982     __ relocate(rtype);
 983     AddressLiteral dest(entry_point);
 984     __ jumpl_to(dest, O7, O7);
 985   }
 986   else
 987 #endif
 988   {
 989      __ call((address)entry_point, rtype);
 990   }
 991 
 992   if (preserve_g2)   __ delayed()->mov(G2, L7);
 993   else __ delayed()->nop();
 994 
 995   if (preserve_g2)   __ mov(L7, G2);
 996 
 997 #ifdef ASSERT
 998   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 999 #ifdef _LP64
1000     // Trash argument dump slots.
1001     __ set(0xb0b8ac0db0b8ac0d, G1);
1002     __ mov(G1, G5);
1003     __ stx(G1, SP, STACK_BIAS + 0x80);
1004     __ stx(G1, SP, STACK_BIAS + 0x88);
1005     __ stx(G1, SP, STACK_BIAS + 0x90);
1006     __ stx(G1, SP, STACK_BIAS + 0x98);
1007     __ stx(G1, SP, STACK_BIAS + 0xA0);
1008     __ stx(G1, SP, STACK_BIAS + 0xA8);
1009 #else // _LP64
1010     // this is also a native call, so smash the first 7 stack locations,
1011     // and the various registers
1012 
1013     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1014     // while [SP+0x44..0x58] are the argument dump slots.
1015     __ set((intptr_t)0xbaadf00d, G1);
1016     __ mov(G1, G5);
1017     __ sllx(G1, 32, G1);
1018     __ or3(G1, G5, G1);
1019     __ mov(G1, G5);
1020     __ stx(G1, SP, 0x40);
1021     __ stx(G1, SP, 0x48);
1022     __ stx(G1, SP, 0x50);
1023     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1024 #endif // _LP64
1025   }
1026 #endif /*ASSERT*/
1027 }
1028 
1029 //=============================================================================
1030 // REQUIRED FUNCTIONALITY for encoding
1031 void emit_lo(CodeBuffer &cbuf, int val) {  }
1032 void emit_hi(CodeBuffer &cbuf, int val) {  }
1033 
1034 
1035 //=============================================================================
1036 
1037 #ifndef PRODUCT
1038 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1039   Compile* C = ra_->C;
1040 
1041   for (int i = 0; i < OptoPrologueNops; i++) {
1042     st->print_cr("NOP"); st->print("\t");
1043   }
1044 
1045   if( VerifyThread ) {
1046     st->print_cr("Verify_Thread"); st->print("\t");
1047   }
1048 
1049   size_t framesize = C->frame_slots() << LogBytesPerInt;
1050 
1051   // Calls to C2R adapters often do not accept exceptional returns.
1052   // We require that their callers must bang for them.  But be careful, because
1053   // some VM calls (such as call site linkage) can use several kilobytes of
1054   // stack.  But the stack safety zone should account for that.
1055   // See bugs 4446381, 4468289, 4497237.
1056   if (C->need_stack_bang(framesize)) {
1057     st->print_cr("! stack bang"); st->print("\t");
1058   }
1059 
1060   if (Assembler::is_simm13(-framesize)) {
1061     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1062   } else {
1063     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1064     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1065     st->print   ("SAVE   R_SP,R_G3,R_SP");
1066   }
1067 
1068 }
1069 #endif
1070 
1071 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1072   Compile* C = ra_->C;
1073   MacroAssembler _masm(&cbuf);
1074 
1075   for (int i = 0; i < OptoPrologueNops; i++) {
1076     __ nop();
1077   }
1078 
1079   __ verify_thread();
1080 
1081   size_t framesize = C->frame_slots() << LogBytesPerInt;
1082   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1083   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1084 
1085   // Calls to C2R adapters often do not accept exceptional returns.
1086   // We require that their callers must bang for them.  But be careful, because
1087   // some VM calls (such as call site linkage) can use several kilobytes of
1088   // stack.  But the stack safety zone should account for that.
1089   // See bugs 4446381, 4468289, 4497237.
1090   if (C->need_stack_bang(framesize)) {
1091     __ generate_stack_overflow_check(framesize);
1092   }
1093 
1094   if (Assembler::is_simm13(-framesize)) {
1095     __ save(SP, -framesize, SP);
1096   } else {
1097     __ sethi(-framesize & ~0x3ff, G3);
1098     __ add(G3, -framesize & 0x3ff, G3);
1099     __ save(SP, G3, SP);
1100   }
1101   C->set_frame_complete( __ offset() );
1102 }
1103 
1104 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1105   return MachNode::size(ra_);
1106 }
1107 
1108 int MachPrologNode::reloc() const {
1109   return 10; // a large enough number
1110 }
1111 
1112 //=============================================================================
1113 #ifndef PRODUCT
1114 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1115   Compile* C = ra_->C;
1116 
1117   if( do_polling() && ra_->C->is_method_compilation() ) {
1118     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1119 #ifdef _LP64
1120     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1121 #else
1122     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1123 #endif
1124   }
1125 
1126   if( do_polling() )
1127     st->print("RET\n\t");
1128 
1129   st->print("RESTORE");
1130 }
1131 #endif
1132 
1133 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1134   MacroAssembler _masm(&cbuf);
1135   Compile* C = ra_->C;
1136 
1137   __ verify_thread();
1138 
1139   // If this does safepoint polling, then do it here
1140   if( do_polling() && ra_->C->is_method_compilation() ) {
1141     AddressLiteral polling_page(os::get_polling_page());
1142     __ sethi(polling_page, L0);
1143     __ relocate(relocInfo::poll_return_type);
1144     __ ld_ptr( L0, 0, G0 );
1145   }
1146 
1147   // If this is a return, then stuff the restore in the delay slot
1148   if( do_polling() ) {
1149     __ ret();
1150     __ delayed()->restore();
1151   } else {
1152     __ restore();
1153   }
1154 }
1155 
1156 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1157   return MachNode::size(ra_);
1158 }
1159 
1160 int MachEpilogNode::reloc() const {
1161   return 16; // a large enough number
1162 }
1163 
1164 const Pipeline * MachEpilogNode::pipeline() const {
1165   return MachNode::pipeline_class();
1166 }
1167 
1168 int MachEpilogNode::safepoint_offset() const {
1169   assert( do_polling(), "no return for this epilog node");
1170   return MacroAssembler::size_of_sethi(os::get_polling_page());
1171 }
1172 
1173 //=============================================================================
1174 
1175 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1176 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1177 static enum RC rc_class( OptoReg::Name reg ) {
1178   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1179   if (OptoReg::is_stack(reg)) return rc_stack;
1180   VMReg r = OptoReg::as_VMReg(reg);
1181   if (r->is_Register()) return rc_int;
1182   assert(r->is_FloatRegister(), "must be");
1183   return rc_float;
1184 }
1185 
1186 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1187   if( cbuf ) {
1188     // Better yet would be some mechanism to handle variable-size matches correctly
1189     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1190       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1191     } else {
1192       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1193     }
1194   }
1195 #ifndef PRODUCT
1196   else if( !do_size ) {
1197     if( size != 0 ) st->print("\n\t");
1198     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1199     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1200   }
1201 #endif
1202   return size+4;
1203 }
1204 
1205 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1206   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1207 #ifndef PRODUCT
1208   else if( !do_size ) {
1209     if( size != 0 ) st->print("\n\t");
1210     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1211   }
1212 #endif
1213   return size+4;
1214 }
1215 
1216 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1217                                         PhaseRegAlloc *ra_,
1218                                         bool do_size,
1219                                         outputStream* st ) const {
1220   // Get registers to move
1221   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1222   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1223   OptoReg::Name dst_second = ra_->get_reg_second(this );
1224   OptoReg::Name dst_first = ra_->get_reg_first(this );
1225 
1226   enum RC src_second_rc = rc_class(src_second);
1227   enum RC src_first_rc = rc_class(src_first);
1228   enum RC dst_second_rc = rc_class(dst_second);
1229   enum RC dst_first_rc = rc_class(dst_first);
1230 
1231   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1232 
1233   // Generate spill code!
1234   int size = 0;
1235 
1236   if( src_first == dst_first && src_second == dst_second )
1237     return size;            // Self copy, no move
1238 
1239   // --------------------------------------
1240   // Check for mem-mem move.  Load into unused float registers and fall into
1241   // the float-store case.
1242   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1243     int offset = ra_->reg2offset(src_first);
1244     // Further check for aligned-adjacent pair, so we can use a double load
1245     if( (src_first&1)==0 && src_first+1 == src_second ) {
1246       src_second    = OptoReg::Name(R_F31_num);
1247       src_second_rc = rc_float;
1248       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1249     } else {
1250       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1251     }
1252     src_first    = OptoReg::Name(R_F30_num);
1253     src_first_rc = rc_float;
1254   }
1255 
1256   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1257     int offset = ra_->reg2offset(src_second);
1258     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1259     src_second    = OptoReg::Name(R_F31_num);
1260     src_second_rc = rc_float;
1261   }
1262 
1263   // --------------------------------------
1264   // Check for float->int copy; requires a trip through memory
1265   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
1266     int offset = frame::register_save_words*wordSize;
1267     if( cbuf ) {
1268       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1269       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1270       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1271       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1272     }
1273 #ifndef PRODUCT
1274     else if( !do_size ) {
1275       if( size != 0 ) st->print("\n\t");
1276       st->print(  "SUB    R_SP,16,R_SP\n");
1277       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1278       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1279       st->print("\tADD    R_SP,16,R_SP\n");
1280     }
1281 #endif
1282     size += 16;
1283   }
1284 
1285   // --------------------------------------
1286   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1287   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1288   // hardware does the flop for me.  Doubles are always aligned, so no problem
1289   // there.  Misaligned sources only come from native-long-returns (handled
1290   // special below).
1291 #ifndef _LP64
1292   if( src_first_rc == rc_int &&     // source is already big-endian
1293       src_second_rc != rc_bad &&    // 64-bit move
1294       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1295     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1296     // Do the big-endian flop.
1297     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1298     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1299   }
1300 #endif
1301 
1302   // --------------------------------------
1303   // Check for integer reg-reg copy
1304   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1305 #ifndef _LP64
1306     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1307       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1308       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1309       //       operand contains the least significant word of the 64-bit value and vice versa.
1310       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1311       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1312       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1313       if( cbuf ) {
1314         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1315         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1316         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1317 #ifndef PRODUCT
1318       } else if( !do_size ) {
1319         if( size != 0 ) st->print("\n\t");
1320         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1321         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1322         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1323 #endif
1324       }
1325       return size+12;
1326     }
1327     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1328       // returning a long value in I0/I1
1329       // a SpillCopy must be able to target a return instruction's reg_class
1330       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1331       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1332       //       operand contains the least significant word of the 64-bit value and vice versa.
1333       OptoReg::Name tdest = dst_first;
1334 
1335       if (src_first == dst_first) {
1336         tdest = OptoReg::Name(R_O7_num);
1337         size += 4;
1338       }
1339 
1340       if( cbuf ) {
1341         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1342         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1343         // ShrL_reg_imm6
1344         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1345         // ShrR_reg_imm6  src, 0, dst
1346         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1347         if (tdest != dst_first) {
1348           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1349         }
1350       }
1351 #ifndef PRODUCT
1352       else if( !do_size ) {
1353         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1354         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1355         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1356         if (tdest != dst_first) {
1357           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1358         }
1359       }
1360 #endif // PRODUCT
1361       return size+8;
1362     }
1363 #endif // !_LP64
1364     // Else normal reg-reg copy
1365     assert( src_second != dst_first, "smashed second before evacuating it" );
1366     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1367     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1368     // This moves an aligned adjacent pair.
1369     // See if we are done.
1370     if( src_first+1 == src_second && dst_first+1 == dst_second )
1371       return size;
1372   }
1373 
1374   // Check for integer store
1375   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1376     int offset = ra_->reg2offset(dst_first);
1377     // Further check for aligned-adjacent pair, so we can use a double store
1378     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1379       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1380     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1381   }
1382 
1383   // Check for integer load
1384   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1385     int offset = ra_->reg2offset(src_first);
1386     // Further check for aligned-adjacent pair, so we can use a double load
1387     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1388       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1389     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1390   }
1391 
1392   // Check for float reg-reg copy
1393   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1394     // Further check for aligned-adjacent pair, so we can use a double move
1395     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1396       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1397     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1398   }
1399 
1400   // Check for float store
1401   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1402     int offset = ra_->reg2offset(dst_first);
1403     // Further check for aligned-adjacent pair, so we can use a double store
1404     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1405       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1406     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1407   }
1408 
1409   // Check for float load
1410   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1411     int offset = ra_->reg2offset(src_first);
1412     // Further check for aligned-adjacent pair, so we can use a double load
1413     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1414       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1415     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1416   }
1417 
1418   // --------------------------------------------------------------------
1419   // Check for hi bits still needing moving.  Only happens for misaligned
1420   // arguments to native calls.
1421   if( src_second == dst_second )
1422     return size;               // Self copy; no move
1423   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1424 
1425 #ifndef _LP64
1426   // In the LP64 build, all registers can be moved as aligned/adjacent
1427   // pairs, so there's never any need to move the high bits separately.
1428   // The 32-bit builds have to deal with the 32-bit ABI which can force
1429   // all sorts of silly alignment problems.
1430 
1431   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1432   // 32-bits of a 64-bit register, but are needed in low bits of another
1433   // register (else it's a hi-bits-to-hi-bits copy which should have
1434   // happened already as part of a 64-bit move)
1435   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1436     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1437     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1438     // Shift src_second down to dst_second's low bits.
1439     if( cbuf ) {
1440       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1441 #ifndef PRODUCT
1442     } else if( !do_size ) {
1443       if( size != 0 ) st->print("\n\t");
1444       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1445 #endif
1446     }
1447     return size+4;
1448   }
1449 
1450   // Check for high word integer store.  Must down-shift the hi bits
1451   // into a temp register, then fall into the case of storing int bits.
1452   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1453     // Shift src_second down to dst_second's low bits.
1454     if( cbuf ) {
1455       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1456 #ifndef PRODUCT
1457     } else if( !do_size ) {
1458       if( size != 0 ) st->print("\n\t");
1459       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1460 #endif
1461     }
1462     size+=4;
1463     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1464   }
1465 
1466   // Check for high word integer load
1467   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1468     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1469 
1470   // Check for high word integer store
1471   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1472     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1473 
1474   // Check for high word float store
1475   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1476     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1477 
1478 #endif // !_LP64
1479 
1480   Unimplemented();
1481 }
1482 
1483 #ifndef PRODUCT
1484 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1485   implementation( NULL, ra_, false, st );
1486 }
1487 #endif
1488 
1489 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1490   implementation( &cbuf, ra_, false, NULL );
1491 }
1492 
1493 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1494   return implementation( NULL, ra_, true, NULL );
1495 }
1496 
1497 //=============================================================================
1498 #ifndef PRODUCT
1499 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1500   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1501 }
1502 #endif
1503 
1504 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1505   MacroAssembler _masm(&cbuf);
1506   for(int i = 0; i < _count; i += 1) {
1507     __ nop();
1508   }
1509 }
1510 
1511 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1512   return 4 * _count;
1513 }
1514 
1515 
1516 //=============================================================================
1517 #ifndef PRODUCT
1518 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1519   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1520   int reg = ra_->get_reg_first(this);
1521   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1522 }
1523 #endif
1524 
1525 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1526   MacroAssembler _masm(&cbuf);
1527   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1528   int reg = ra_->get_encode(this);
1529 
1530   if (Assembler::is_simm13(offset)) {
1531      __ add(SP, offset, reg_to_register_object(reg));
1532   } else {
1533      __ set(offset, O7);
1534      __ add(SP, O7, reg_to_register_object(reg));
1535   }
1536 }
1537 
1538 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1539   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1540   assert(ra_ == ra_->C->regalloc(), "sanity");
1541   return ra_->C->scratch_emit_size(this);
1542 }
1543 
1544 //=============================================================================
1545 
1546 // emit call stub, compiled java to interpretor
1547 void emit_java_to_interp(CodeBuffer &cbuf ) {
1548 
1549   // Stub is fixed up when the corresponding call is converted from calling
1550   // compiled code to calling interpreted code.
1551   // set (empty), G5
1552   // jmp -1
1553 
1554   address mark = cbuf.inst_mark();  // get mark within main instrs section
1555 
1556   MacroAssembler _masm(&cbuf);
1557 
1558   address base =
1559   __ start_a_stub(Compile::MAX_stubs_size);
1560   if (base == NULL)  return;  // CodeBuffer::expand failed
1561 
1562   // static stub relocation stores the instruction address of the call
1563   __ relocate(static_stub_Relocation::spec(mark));
1564 
1565   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1566 
1567   __ set_inst_mark();
1568   AddressLiteral addrlit(-1);
1569   __ JUMP(addrlit, G3, 0);
1570 
1571   __ delayed()->nop();
1572 
1573   // Update current stubs pointer and restore code_end.
1574   __ end_a_stub();
1575 }
1576 
1577 // size of call stub, compiled java to interpretor
1578 uint size_java_to_interp() {
1579   // This doesn't need to be accurate but it must be larger or equal to
1580   // the real size of the stub.
1581   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1582           NativeJump::instruction_size + // sethi; jmp; nop
1583           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1584 }
1585 // relocation entries for call stub, compiled java to interpretor
1586 uint reloc_java_to_interp() {
1587   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1588 }
1589 
1590 
1591 //=============================================================================
1592 #ifndef PRODUCT
1593 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1594   st->print_cr("\nUEP:");
1595 #ifdef    _LP64
1596   if (UseCompressedOops) {
1597     assert(Universe::heap() != NULL, "java heap should be initialized");
1598     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1599     st->print_cr("\tSLL    R_G5,3,R_G5");
1600     if (Universe::narrow_oop_base() != NULL)
1601       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1602   } else {
1603     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1604   }
1605   st->print_cr("\tCMP    R_G5,R_G3" );
1606   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1607 #else  // _LP64
1608   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1609   st->print_cr("\tCMP    R_G5,R_G3" );
1610   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1611 #endif // _LP64
1612 }
1613 #endif
1614 
1615 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1616   MacroAssembler _masm(&cbuf);
1617   Label L;
1618   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1619   Register temp_reg   = G3;
1620   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1621 
1622   // Load klass from receiver
1623   __ load_klass(O0, temp_reg);
1624   // Compare against expected klass
1625   __ cmp(temp_reg, G5_ic_reg);
1626   // Branch to miss code, checks xcc or icc depending
1627   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1628 }
1629 
1630 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1631   return MachNode::size(ra_);
1632 }
1633 
1634 
1635 //=============================================================================
1636 
1637 uint size_exception_handler() {
1638   if (TraceJumps) {
1639     return (400); // just a guess
1640   }
1641   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1642 }
1643 
1644 uint size_deopt_handler() {
1645   if (TraceJumps) {
1646     return (400); // just a guess
1647   }
1648   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1649 }
1650 
1651 // Emit exception handler code.
1652 int emit_exception_handler(CodeBuffer& cbuf) {
1653   Register temp_reg = G3;
1654   AddressLiteral exception_blob(OptoRuntime::exception_blob()->instructions_begin());
1655   MacroAssembler _masm(&cbuf);
1656 
1657   address base =
1658   __ start_a_stub(size_exception_handler());
1659   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1660 
1661   int offset = __ offset();
1662 
1663   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1664   __ delayed()->nop();
1665 
1666   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1667 
1668   __ end_a_stub();
1669 
1670   return offset;
1671 }
1672 
1673 int emit_deopt_handler(CodeBuffer& cbuf) {
1674   // Can't use any of the current frame's registers as we may have deopted
1675   // at a poll and everything (including G3) can be live.
1676   Register temp_reg = L0;
1677   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1678   MacroAssembler _masm(&cbuf);
1679 
1680   address base =
1681   __ start_a_stub(size_deopt_handler());
1682   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1683 
1684   int offset = __ offset();
1685   __ save_frame(0);
1686   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1687   __ delayed()->restore();
1688 
1689   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1690 
1691   __ end_a_stub();
1692   return offset;
1693 
1694 }
1695 
1696 // Given a register encoding, produce a Integer Register object
1697 static Register reg_to_register_object(int register_encoding) {
1698   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1699   return as_Register(register_encoding);
1700 }
1701 
1702 // Given a register encoding, produce a single-precision Float Register object
1703 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1704   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1705   return as_SingleFloatRegister(register_encoding);
1706 }
1707 
1708 // Given a register encoding, produce a double-precision Float Register object
1709 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1710   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1711   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1712   return as_DoubleFloatRegister(register_encoding);
1713 }
1714 
1715 int Matcher::regnum_to_fpu_offset(int regnum) {
1716   return regnum - 32; // The FP registers are in the second chunk
1717 }
1718 
1719 #ifdef ASSERT
1720 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1721 #endif
1722 
1723 // Vector width in bytes
1724 const uint Matcher::vector_width_in_bytes(void) {
1725   return 8;
1726 }
1727 
1728 // Vector ideal reg
1729 const uint Matcher::vector_ideal_reg(void) {
1730   return Op_RegD;
1731 }
1732 
1733 // USII supports fxtof through the whole range of number, USIII doesn't
1734 const bool Matcher::convL2FSupported(void) {
1735   return VM_Version::has_fast_fxtof();
1736 }
1737 
1738 // Is this branch offset short enough that a short branch can be used?
1739 //
1740 // NOTE: If the platform does not provide any short branch variants, then
1741 //       this method should return false for offset 0.
1742 bool Matcher::is_short_branch_offset(int rule, int offset) {
1743   return false;
1744 }
1745 
1746 const bool Matcher::isSimpleConstant64(jlong value) {
1747   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1748   // Depends on optimizations in MacroAssembler::setx.
1749   int hi = (int)(value >> 32);
1750   int lo = (int)(value & ~0);
1751   return (hi == 0) || (hi == -1) || (lo == 0);
1752 }
1753 
1754 // No scaling for the parameter the ClearArray node.
1755 const bool Matcher::init_array_count_is_in_bytes = true;
1756 
1757 // Threshold size for cleararray.
1758 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1759 
1760 // Should the Matcher clone shifts on addressing modes, expecting them to
1761 // be subsumed into complex addressing expressions or compute them into
1762 // registers?  True for Intel but false for most RISCs
1763 const bool Matcher::clone_shift_expressions = false;
1764 
1765 // Is it better to copy float constants, or load them directly from memory?
1766 // Intel can load a float constant from a direct address, requiring no
1767 // extra registers.  Most RISCs will have to materialize an address into a
1768 // register first, so they would do better to copy the constant from stack.
1769 const bool Matcher::rematerialize_float_constants = false;
1770 
1771 // If CPU can load and store mis-aligned doubles directly then no fixup is
1772 // needed.  Else we split the double into 2 integer pieces and move it
1773 // piece-by-piece.  Only happens when passing doubles into C code as the
1774 // Java calling convention forces doubles to be aligned.
1775 #ifdef _LP64
1776 const bool Matcher::misaligned_doubles_ok = true;
1777 #else
1778 const bool Matcher::misaligned_doubles_ok = false;
1779 #endif
1780 
1781 // No-op on SPARC.
1782 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1783 }
1784 
1785 // Advertise here if the CPU requires explicit rounding operations
1786 // to implement the UseStrictFP mode.
1787 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1788 
1789 // Do floats take an entire double register or just half?
1790 const bool Matcher::float_in_double = false;
1791 
1792 // Do ints take an entire long register or just half?
1793 // Note that we if-def off of _LP64.
1794 // The relevant question is how the int is callee-saved.  In _LP64
1795 // the whole long is written but de-opt'ing will have to extract
1796 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1797 #ifdef _LP64
1798 const bool Matcher::int_in_long = true;
1799 #else
1800 const bool Matcher::int_in_long = false;
1801 #endif
1802 
1803 // Return whether or not this register is ever used as an argument.  This
1804 // function is used on startup to build the trampoline stubs in generateOptoStub.
1805 // Registers not mentioned will be killed by the VM call in the trampoline, and
1806 // arguments in those registers not be available to the callee.
1807 bool Matcher::can_be_java_arg( int reg ) {
1808   // Standard sparc 6 args in registers
1809   if( reg == R_I0_num ||
1810       reg == R_I1_num ||
1811       reg == R_I2_num ||
1812       reg == R_I3_num ||
1813       reg == R_I4_num ||
1814       reg == R_I5_num ) return true;
1815 #ifdef _LP64
1816   // 64-bit builds can pass 64-bit pointers and longs in
1817   // the high I registers
1818   if( reg == R_I0H_num ||
1819       reg == R_I1H_num ||
1820       reg == R_I2H_num ||
1821       reg == R_I3H_num ||
1822       reg == R_I4H_num ||
1823       reg == R_I5H_num ) return true;
1824 
1825   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1826     return true;
1827   }
1828 
1829 #else
1830   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1831   // Longs cannot be passed in O regs, because O regs become I regs
1832   // after a 'save' and I regs get their high bits chopped off on
1833   // interrupt.
1834   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1835   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1836 #endif
1837   // A few float args in registers
1838   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1839 
1840   return false;
1841 }
1842 
1843 bool Matcher::is_spillable_arg( int reg ) {
1844   return can_be_java_arg(reg);
1845 }
1846 
1847 // Register for DIVI projection of divmodI
1848 RegMask Matcher::divI_proj_mask() {
1849   ShouldNotReachHere();
1850   return RegMask();
1851 }
1852 
1853 // Register for MODI projection of divmodI
1854 RegMask Matcher::modI_proj_mask() {
1855   ShouldNotReachHere();
1856   return RegMask();
1857 }
1858 
1859 // Register for DIVL projection of divmodL
1860 RegMask Matcher::divL_proj_mask() {
1861   ShouldNotReachHere();
1862   return RegMask();
1863 }
1864 
1865 // Register for MODL projection of divmodL
1866 RegMask Matcher::modL_proj_mask() {
1867   ShouldNotReachHere();
1868   return RegMask();
1869 }
1870 
1871 %}
1872 
1873 
1874 // The intptr_t operand types, defined by textual substitution.
1875 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1876 #ifdef _LP64
1877 #define immX    immL
1878 #define immX13  immL13
1879 #define iRegX   iRegL
1880 #define g1RegX  g1RegL
1881 #else
1882 #define immX    immI
1883 #define immX13  immI13
1884 #define iRegX   iRegI
1885 #define g1RegX  g1RegI
1886 #endif
1887 
1888 //----------ENCODING BLOCK-----------------------------------------------------
1889 // This block specifies the encoding classes used by the compiler to output
1890 // byte streams.  Encoding classes are parameterized macros used by
1891 // Machine Instruction Nodes in order to generate the bit encoding of the
1892 // instruction.  Operands specify their base encoding interface with the
1893 // interface keyword.  There are currently supported four interfaces,
1894 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1895 // operand to generate a function which returns its register number when
1896 // queried.   CONST_INTER causes an operand to generate a function which
1897 // returns the value of the constant when queried.  MEMORY_INTER causes an
1898 // operand to generate four functions which return the Base Register, the
1899 // Index Register, the Scale Value, and the Offset Value of the operand when
1900 // queried.  COND_INTER causes an operand to generate six functions which
1901 // return the encoding code (ie - encoding bits for the instruction)
1902 // associated with each basic boolean condition for a conditional instruction.
1903 //
1904 // Instructions specify two basic values for encoding.  Again, a function
1905 // is available to check if the constant displacement is an oop. They use the
1906 // ins_encode keyword to specify their encoding classes (which must be
1907 // a sequence of enc_class names, and their parameters, specified in
1908 // the encoding block), and they use the
1909 // opcode keyword to specify, in order, their primary, secondary, and
1910 // tertiary opcode.  Only the opcode sections which a particular instruction
1911 // needs for encoding need to be specified.
1912 encode %{
1913   enc_class enc_untested %{
1914 #ifdef ASSERT
1915     MacroAssembler _masm(&cbuf);
1916     __ untested("encoding");
1917 #endif
1918   %}
1919 
1920   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
1921     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
1922                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1923   %}
1924 
1925   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
1926     emit_form3_mem_reg(cbuf, this, $primary, -1,
1927                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1928   %}
1929 
1930   enc_class form3_mem_reg_little( memory mem, iRegI dst) %{
1931     emit_form3_mem_reg_asi(cbuf, this, $primary, -1,
1932                      $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE);
1933   %}
1934 
1935   enc_class form3_mem_prefetch_read( memory mem ) %{
1936     emit_form3_mem_reg(cbuf, this, $primary, -1,
1937                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
1938   %}
1939 
1940   enc_class form3_mem_prefetch_write( memory mem ) %{
1941     emit_form3_mem_reg(cbuf, this, $primary, -1,
1942                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
1943   %}
1944 
1945   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
1946     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1947     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1948     guarantee($mem$$index == R_G0_enc, "double index?");
1949     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
1950     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
1951     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
1952     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
1953   %}
1954 
1955   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
1956     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1957     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1958     guarantee($mem$$index == R_G0_enc, "double index?");
1959     // Load long with 2 instructions
1960     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
1961     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
1962   %}
1963 
1964   //%%% form3_mem_plus_4_reg is a hack--get rid of it
1965   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
1966     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
1967     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
1968   %}
1969 
1970   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
1971     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1972     if( $rs2$$reg != $rd$$reg )
1973       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
1974   %}
1975 
1976   // Target lo half of long
1977   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
1978     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1979     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
1980       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
1981   %}
1982 
1983   // Source lo half of long
1984   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
1985     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1986     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
1987       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
1988   %}
1989 
1990   // Target hi half of long
1991   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
1992     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
1993   %}
1994 
1995   // Source lo half of long, and leave it sign extended.
1996   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
1997     // Sign extend low half
1998     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
1999   %}
2000 
2001   // Source hi half of long, and leave it sign extended.
2002   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2003     // Shift high half to low half
2004     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2005   %}
2006 
2007   // Source hi half of long
2008   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2009     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2010     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2011       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2012   %}
2013 
2014   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2015     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2016   %}
2017 
2018   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2019     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2020     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2021   %}
2022 
2023   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2024     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2025     // clear if nothing else is happening
2026     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2027     // blt,a,pn done
2028     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2029     // mov dst,-1 in delay slot
2030     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2031   %}
2032 
2033   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2034     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2035   %}
2036 
2037   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2038     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2039   %}
2040 
2041   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2042     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2043   %}
2044 
2045   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2046     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2047   %}
2048 
2049   enc_class move_return_pc_to_o1() %{
2050     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2051   %}
2052 
2053 #ifdef _LP64
2054   /* %%% merge with enc_to_bool */
2055   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2056     MacroAssembler _masm(&cbuf);
2057 
2058     Register   src_reg = reg_to_register_object($src$$reg);
2059     Register   dst_reg = reg_to_register_object($dst$$reg);
2060     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2061   %}
2062 #endif
2063 
2064   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2065     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2066     MacroAssembler _masm(&cbuf);
2067 
2068     Register   p_reg = reg_to_register_object($p$$reg);
2069     Register   q_reg = reg_to_register_object($q$$reg);
2070     Register   y_reg = reg_to_register_object($y$$reg);
2071     Register tmp_reg = reg_to_register_object($tmp$$reg);
2072 
2073     __ subcc( p_reg, q_reg,   p_reg );
2074     __ add  ( p_reg, y_reg, tmp_reg );
2075     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2076   %}
2077 
2078   enc_class form_d2i_helper(regD src, regF dst) %{
2079     // fcmp %fcc0,$src,$src
2080     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2081     // branch %fcc0 not-nan, predict taken
2082     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2083     // fdtoi $src,$dst
2084     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2085     // fitos $dst,$dst (if nan)
2086     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2087     // clear $dst (if nan)
2088     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2089     // carry on here...
2090   %}
2091 
2092   enc_class form_d2l_helper(regD src, regD dst) %{
2093     // fcmp %fcc0,$src,$src  check for NAN
2094     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2095     // branch %fcc0 not-nan, predict taken
2096     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2097     // fdtox $src,$dst   convert in delay slot
2098     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2099     // fxtod $dst,$dst  (if nan)
2100     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2101     // clear $dst (if nan)
2102     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2103     // carry on here...
2104   %}
2105 
2106   enc_class form_f2i_helper(regF src, regF dst) %{
2107     // fcmps %fcc0,$src,$src
2108     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2109     // branch %fcc0 not-nan, predict taken
2110     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2111     // fstoi $src,$dst
2112     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2113     // fitos $dst,$dst (if nan)
2114     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2115     // clear $dst (if nan)
2116     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2117     // carry on here...
2118   %}
2119 
2120   enc_class form_f2l_helper(regF src, regD dst) %{
2121     // fcmps %fcc0,$src,$src
2122     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2123     // branch %fcc0 not-nan, predict taken
2124     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2125     // fstox $src,$dst
2126     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2127     // fxtod $dst,$dst (if nan)
2128     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2129     // clear $dst (if nan)
2130     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2131     // carry on here...
2132   %}
2133 
2134   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2135   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2136   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2137   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2138 
2139   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2140 
2141   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2142   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2143 
2144   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2145     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2146   %}
2147 
2148   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2149     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2150   %}
2151 
2152   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2153     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2154   %}
2155 
2156   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2157     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2158   %}
2159 
2160   enc_class form3_convI2F(regF rs2, regF rd) %{
2161     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2162   %}
2163 
2164   // Encloding class for traceable jumps
2165   enc_class form_jmpl(g3RegP dest) %{
2166     emit_jmpl(cbuf, $dest$$reg);
2167   %}
2168 
2169   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2170     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2171   %}
2172 
2173   enc_class form2_nop() %{
2174     emit_nop(cbuf);
2175   %}
2176 
2177   enc_class form2_illtrap() %{
2178     emit_illtrap(cbuf);
2179   %}
2180 
2181 
2182   // Compare longs and convert into -1, 0, 1.
2183   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2184     // CMP $src1,$src2
2185     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2186     // blt,a,pn done
2187     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2188     // mov dst,-1 in delay slot
2189     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2190     // bgt,a,pn done
2191     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2192     // mov dst,1 in delay slot
2193     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2194     // CLR    $dst
2195     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2196   %}
2197 
2198   enc_class enc_PartialSubtypeCheck() %{
2199     MacroAssembler _masm(&cbuf);
2200     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2201     __ delayed()->nop();
2202   %}
2203 
2204   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
2205     MacroAssembler _masm(&cbuf);
2206     Label &L = *($labl$$label);
2207     Assembler::Predict predict_taken =
2208       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2209 
2210     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
2211     __ delayed()->nop();
2212   %}
2213 
2214   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
2215     MacroAssembler _masm(&cbuf);
2216     Label &L = *($labl$$label);
2217     Assembler::Predict predict_taken =
2218       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2219 
2220     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
2221     __ delayed()->nop();
2222   %}
2223 
2224   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
2225     MacroAssembler _masm(&cbuf);
2226     Label &L = *($labl$$label);
2227     Assembler::Predict predict_taken =
2228       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2229 
2230     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
2231     __ delayed()->nop();
2232   %}
2233 
2234   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
2235     MacroAssembler _masm(&cbuf);
2236     Label &L = *($labl$$label);
2237     Assembler::Predict predict_taken =
2238       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2239 
2240     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
2241     __ delayed()->nop();
2242   %}
2243 
2244   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
2245     MacroAssembler _masm(&cbuf);
2246 
2247     Register switch_reg       = as_Register($switch_val$$reg);
2248     Register table_reg        = O7;
2249 
2250     address table_base = __ address_table_constant(_index2label);
2251     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
2252 
2253     // Move table address into a register.
2254     __ set(table_base, table_reg, rspec);
2255 
2256     // Jump to base address + switch value
2257     __ ld_ptr(table_reg, switch_reg, table_reg);
2258     __ jmp(table_reg, G0);
2259     __ delayed()->nop();
2260 
2261   %}
2262 
2263   enc_class enc_ba( Label labl ) %{
2264     MacroAssembler _masm(&cbuf);
2265     Label &L = *($labl$$label);
2266     __ ba(false, L);
2267     __ delayed()->nop();
2268   %}
2269 
2270   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
2271     MacroAssembler _masm(&cbuf);
2272     Label &L = *$labl$$label;
2273     Assembler::Predict predict_taken =
2274       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2275 
2276     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
2277     __ delayed()->nop();
2278   %}
2279 
2280   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2281     int op = (Assembler::arith_op << 30) |
2282              ($dst$$reg << 25) |
2283              (Assembler::movcc_op3 << 19) |
2284              (1 << 18) |                    // cc2 bit for 'icc'
2285              ($cmp$$cmpcode << 14) |
2286              (0 << 13) |                    // select register move
2287              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2288              ($src$$reg << 0);
2289     *((int*)(cbuf.code_end())) = op;
2290     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2291   %}
2292 
2293   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2294     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2295     int op = (Assembler::arith_op << 30) |
2296              ($dst$$reg << 25) |
2297              (Assembler::movcc_op3 << 19) |
2298              (1 << 18) |                    // cc2 bit for 'icc'
2299              ($cmp$$cmpcode << 14) |
2300              (1 << 13) |                    // select immediate move
2301              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2302              (simm11 << 0);
2303     *((int*)(cbuf.code_end())) = op;
2304     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2305   %}
2306 
2307   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2308     int op = (Assembler::arith_op << 30) |
2309              ($dst$$reg << 25) |
2310              (Assembler::movcc_op3 << 19) |
2311              (0 << 18) |                    // cc2 bit for 'fccX'
2312              ($cmp$$cmpcode << 14) |
2313              (0 << 13) |                    // select register move
2314              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2315              ($src$$reg << 0);
2316     *((int*)(cbuf.code_end())) = op;
2317     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2318   %}
2319 
2320   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2321     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2322     int op = (Assembler::arith_op << 30) |
2323              ($dst$$reg << 25) |
2324              (Assembler::movcc_op3 << 19) |
2325              (0 << 18) |                    // cc2 bit for 'fccX'
2326              ($cmp$$cmpcode << 14) |
2327              (1 << 13) |                    // select immediate move
2328              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2329              (simm11 << 0);
2330     *((int*)(cbuf.code_end())) = op;
2331     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2332   %}
2333 
2334   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2335     int op = (Assembler::arith_op << 30) |
2336              ($dst$$reg << 25) |
2337              (Assembler::fpop2_op3 << 19) |
2338              (0 << 18) |
2339              ($cmp$$cmpcode << 14) |
2340              (1 << 13) |                    // select register move
2341              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2342              ($primary << 5) |              // select single, double or quad
2343              ($src$$reg << 0);
2344     *((int*)(cbuf.code_end())) = op;
2345     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2346   %}
2347 
2348   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2349     int op = (Assembler::arith_op << 30) |
2350              ($dst$$reg << 25) |
2351              (Assembler::fpop2_op3 << 19) |
2352              (0 << 18) |
2353              ($cmp$$cmpcode << 14) |
2354              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2355              ($primary << 5) |              // select single, double or quad
2356              ($src$$reg << 0);
2357     *((int*)(cbuf.code_end())) = op;
2358     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2359   %}
2360 
2361   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2362   // the condition comes from opcode-field instead of an argument.
2363   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2364     int op = (Assembler::arith_op << 30) |
2365              ($dst$$reg << 25) |
2366              (Assembler::movcc_op3 << 19) |
2367              (1 << 18) |                    // cc2 bit for 'icc'
2368              ($primary << 14) |
2369              (0 << 13) |                    // select register move
2370              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2371              ($src$$reg << 0);
2372     *((int*)(cbuf.code_end())) = op;
2373     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2374   %}
2375 
2376   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2377     int op = (Assembler::arith_op << 30) |
2378              ($dst$$reg << 25) |
2379              (Assembler::movcc_op3 << 19) |
2380              (6 << 16) |                    // cc2 bit for 'xcc'
2381              ($primary << 14) |
2382              (0 << 13) |                    // select register move
2383              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2384              ($src$$reg << 0);
2385     *((int*)(cbuf.code_end())) = op;
2386     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2387   %}
2388 
2389   // Utility encoding for loading a 64 bit Pointer into a register
2390   // The 64 bit pointer is stored in the generated code stream
2391   enc_class SetPtr( immP src, iRegP rd ) %{
2392     Register dest = reg_to_register_object($rd$$reg);
2393     MacroAssembler _masm(&cbuf);
2394     // [RGV] This next line should be generated from ADLC
2395     if ( _opnds[1]->constant_is_oop() ) {
2396       intptr_t val = $src$$constant;
2397       __ set_oop_constant((jobject)val, dest);
2398     } else {          // non-oop pointers, e.g. card mark base, heap top
2399       __ set($src$$constant, dest);
2400     }
2401   %}
2402 
2403   enc_class Set13( immI13 src, iRegI rd ) %{
2404     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2405   %}
2406 
2407   enc_class SetHi22( immI src, iRegI rd ) %{
2408     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2409   %}
2410 
2411   enc_class Set32( immI src, iRegI rd ) %{
2412     MacroAssembler _masm(&cbuf);
2413     __ set($src$$constant, reg_to_register_object($rd$$reg));
2414   %}
2415 
2416   enc_class SetNull( iRegI rd ) %{
2417     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
2418   %}
2419 
2420   enc_class call_epilog %{
2421     if( VerifyStackAtCalls ) {
2422       MacroAssembler _masm(&cbuf);
2423       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2424       Register temp_reg = G3;
2425       __ add(SP, framesize, temp_reg);
2426       __ cmp(temp_reg, FP);
2427       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2428     }
2429   %}
2430 
2431   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2432   // to G1 so the register allocator will not have to deal with the misaligned register
2433   // pair.
2434   enc_class adjust_long_from_native_call %{
2435 #ifndef _LP64
2436     if (returns_long()) {
2437       //    sllx  O0,32,O0
2438       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2439       //    srl   O1,0,O1
2440       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2441       //    or    O0,O1,G1
2442       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2443     }
2444 #endif
2445   %}
2446 
2447   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2448     // CALL directly to the runtime
2449     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2450     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2451                     /*preserve_g2=*/true, /*force far call*/true);
2452   %}
2453 
2454   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2455     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2456     // who we intended to call.
2457     if ( !_method ) {
2458       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2459     } else if (_optimized_virtual) {
2460       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2461     } else {
2462       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2463     }
2464     if( _method ) {  // Emit stub for static call
2465       emit_java_to_interp(cbuf);
2466     }
2467   %}
2468 
2469   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2470     MacroAssembler _masm(&cbuf);
2471     __ set_inst_mark();
2472     int vtable_index = this->_vtable_index;
2473     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2474     if (vtable_index < 0) {
2475       // must be invalid_vtable_index, not nonvirtual_vtable_index
2476       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2477       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2478       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2479       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2480       // !!!!!
2481       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2482       // emit_call_dynamic_prologue( cbuf );
2483       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2484 
2485       address  virtual_call_oop_addr = __ inst_mark();
2486       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2487       // who we intended to call.
2488       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2489       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2490     } else {
2491       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2492       // Just go thru the vtable
2493       // get receiver klass (receiver already checked for non-null)
2494       // If we end up going thru a c2i adapter interpreter expects method in G5
2495       int off = __ offset();
2496       __ load_klass(O0, G3_scratch);
2497       int klass_load_size;
2498       if (UseCompressedOops) {
2499         assert(Universe::heap() != NULL, "java heap should be initialized");
2500         if (Universe::narrow_oop_base() == NULL)
2501           klass_load_size = 2*BytesPerInstWord;
2502         else
2503           klass_load_size = 3*BytesPerInstWord;
2504       } else {
2505         klass_load_size = 1*BytesPerInstWord;
2506       }
2507       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2508       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2509       if( __ is_simm13(v_off) ) {
2510         __ ld_ptr(G3, v_off, G5_method);
2511       } else {
2512         // Generate 2 instructions
2513         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2514         __ or3(G5_method, v_off & 0x3ff, G5_method);
2515         // ld_ptr, set_hi, set
2516         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2517                "Unexpected instruction size(s)");
2518         __ ld_ptr(G3, G5_method, G5_method);
2519       }
2520       // NOTE: for vtable dispatches, the vtable entry will never be null.
2521       // However it may very well end up in handle_wrong_method if the
2522       // method is abstract for the particular class.
2523       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2524       // jump to target (either compiled code or c2iadapter)
2525       __ jmpl(G3_scratch, G0, O7);
2526       __ delayed()->nop();
2527     }
2528   %}
2529 
2530   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2531     MacroAssembler _masm(&cbuf);
2532 
2533     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2534     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2535                               // we might be calling a C2I adapter which needs it.
2536 
2537     assert(temp_reg != G5_ic_reg, "conflicting registers");
2538     // Load nmethod
2539     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2540 
2541     // CALL to compiled java, indirect the contents of G3
2542     __ set_inst_mark();
2543     __ callr(temp_reg, G0);
2544     __ delayed()->nop();
2545   %}
2546 
2547 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2548     MacroAssembler _masm(&cbuf);
2549     Register Rdividend = reg_to_register_object($src1$$reg);
2550     Register Rdivisor = reg_to_register_object($src2$$reg);
2551     Register Rresult = reg_to_register_object($dst$$reg);
2552 
2553     __ sra(Rdivisor, 0, Rdivisor);
2554     __ sra(Rdividend, 0, Rdividend);
2555     __ sdivx(Rdividend, Rdivisor, Rresult);
2556 %}
2557 
2558 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2559     MacroAssembler _masm(&cbuf);
2560 
2561     Register Rdividend = reg_to_register_object($src1$$reg);
2562     int divisor = $imm$$constant;
2563     Register Rresult = reg_to_register_object($dst$$reg);
2564 
2565     __ sra(Rdividend, 0, Rdividend);
2566     __ sdivx(Rdividend, divisor, Rresult);
2567 %}
2568 
2569 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2570     MacroAssembler _masm(&cbuf);
2571     Register Rsrc1 = reg_to_register_object($src1$$reg);
2572     Register Rsrc2 = reg_to_register_object($src2$$reg);
2573     Register Rdst  = reg_to_register_object($dst$$reg);
2574 
2575     __ sra( Rsrc1, 0, Rsrc1 );
2576     __ sra( Rsrc2, 0, Rsrc2 );
2577     __ mulx( Rsrc1, Rsrc2, Rdst );
2578     __ srlx( Rdst, 32, Rdst );
2579 %}
2580 
2581 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2582     MacroAssembler _masm(&cbuf);
2583     Register Rdividend = reg_to_register_object($src1$$reg);
2584     Register Rdivisor = reg_to_register_object($src2$$reg);
2585     Register Rresult = reg_to_register_object($dst$$reg);
2586     Register Rscratch = reg_to_register_object($scratch$$reg);
2587 
2588     assert(Rdividend != Rscratch, "");
2589     assert(Rdivisor  != Rscratch, "");
2590 
2591     __ sra(Rdividend, 0, Rdividend);
2592     __ sra(Rdivisor, 0, Rdivisor);
2593     __ sdivx(Rdividend, Rdivisor, Rscratch);
2594     __ mulx(Rscratch, Rdivisor, Rscratch);
2595     __ sub(Rdividend, Rscratch, Rresult);
2596 %}
2597 
2598 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2599     MacroAssembler _masm(&cbuf);
2600 
2601     Register Rdividend = reg_to_register_object($src1$$reg);
2602     int divisor = $imm$$constant;
2603     Register Rresult = reg_to_register_object($dst$$reg);
2604     Register Rscratch = reg_to_register_object($scratch$$reg);
2605 
2606     assert(Rdividend != Rscratch, "");
2607 
2608     __ sra(Rdividend, 0, Rdividend);
2609     __ sdivx(Rdividend, divisor, Rscratch);
2610     __ mulx(Rscratch, divisor, Rscratch);
2611     __ sub(Rdividend, Rscratch, Rresult);
2612 %}
2613 
2614 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2615     MacroAssembler _masm(&cbuf);
2616 
2617     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2618     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2619 
2620     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2621 %}
2622 
2623 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2624     MacroAssembler _masm(&cbuf);
2625 
2626     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2627     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2628 
2629     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2630 %}
2631 
2632 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2633     MacroAssembler _masm(&cbuf);
2634 
2635     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2636     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2637 
2638     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2639 %}
2640 
2641 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2642     MacroAssembler _masm(&cbuf);
2643 
2644     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2645     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2646 
2647     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2648 %}
2649 
2650 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2651     MacroAssembler _masm(&cbuf);
2652 
2653     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2654     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2655 
2656     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2657 %}
2658 
2659 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2660     MacroAssembler _masm(&cbuf);
2661 
2662     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2663     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2664 
2665     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2666 %}
2667 
2668 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2669     MacroAssembler _masm(&cbuf);
2670 
2671     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2672     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2673 
2674     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2675 %}
2676 
2677 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2678     MacroAssembler _masm(&cbuf);
2679 
2680     Register Roop  = reg_to_register_object($oop$$reg);
2681     Register Rbox  = reg_to_register_object($box$$reg);
2682     Register Rscratch = reg_to_register_object($scratch$$reg);
2683     Register Rmark =    reg_to_register_object($scratch2$$reg);
2684 
2685     assert(Roop  != Rscratch, "");
2686     assert(Roop  != Rmark, "");
2687     assert(Rbox  != Rscratch, "");
2688     assert(Rbox  != Rmark, "");
2689 
2690     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2691 %}
2692 
2693 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2694     MacroAssembler _masm(&cbuf);
2695 
2696     Register Roop  = reg_to_register_object($oop$$reg);
2697     Register Rbox  = reg_to_register_object($box$$reg);
2698     Register Rscratch = reg_to_register_object($scratch$$reg);
2699     Register Rmark =    reg_to_register_object($scratch2$$reg);
2700 
2701     assert(Roop  != Rscratch, "");
2702     assert(Roop  != Rmark, "");
2703     assert(Rbox  != Rscratch, "");
2704     assert(Rbox  != Rmark, "");
2705 
2706     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2707   %}
2708 
2709   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2710     MacroAssembler _masm(&cbuf);
2711     Register Rmem = reg_to_register_object($mem$$reg);
2712     Register Rold = reg_to_register_object($old$$reg);
2713     Register Rnew = reg_to_register_object($new$$reg);
2714 
2715     // casx_under_lock picks 1 of 3 encodings:
2716     // For 32-bit pointers you get a 32-bit CAS
2717     // For 64-bit pointers you get a 64-bit CASX
2718     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2719     __ cmp( Rold, Rnew );
2720   %}
2721 
2722   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2723     Register Rmem = reg_to_register_object($mem$$reg);
2724     Register Rold = reg_to_register_object($old$$reg);
2725     Register Rnew = reg_to_register_object($new$$reg);
2726 
2727     MacroAssembler _masm(&cbuf);
2728     __ mov(Rnew, O7);
2729     __ casx(Rmem, Rold, O7);
2730     __ cmp( Rold, O7 );
2731   %}
2732 
2733   // raw int cas, used for compareAndSwap
2734   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2735     Register Rmem = reg_to_register_object($mem$$reg);
2736     Register Rold = reg_to_register_object($old$$reg);
2737     Register Rnew = reg_to_register_object($new$$reg);
2738 
2739     MacroAssembler _masm(&cbuf);
2740     __ mov(Rnew, O7);
2741     __ cas(Rmem, Rold, O7);
2742     __ cmp( Rold, O7 );
2743   %}
2744 
2745   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2746     Register Rres = reg_to_register_object($res$$reg);
2747 
2748     MacroAssembler _masm(&cbuf);
2749     __ mov(1, Rres);
2750     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2751   %}
2752 
2753   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2754     Register Rres = reg_to_register_object($res$$reg);
2755 
2756     MacroAssembler _masm(&cbuf);
2757     __ mov(1, Rres);
2758     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2759   %}
2760 
2761   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2762     MacroAssembler _masm(&cbuf);
2763     Register Rdst = reg_to_register_object($dst$$reg);
2764     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2765                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2766     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2767                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2768 
2769     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2770     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2771   %}
2772 
2773   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
2774     MacroAssembler _masm(&cbuf);
2775     Register dest = reg_to_register_object($dst$$reg);
2776     Register temp = reg_to_register_object($tmp$$reg);
2777     __ set64( $src$$constant, dest, temp );
2778   %}
2779 
2780   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
2781     // Load a constant replicated "count" times with width "width"
2782     int bit_width = $width$$constant * 8;
2783     jlong elt_val = $src$$constant;
2784     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
2785     jlong val = elt_val;
2786     for (int i = 0; i < $count$$constant - 1; i++) {
2787         val <<= bit_width;
2788         val |= elt_val;
2789     }
2790     jdouble dval = *(jdouble*)&val; // coerce to double type
2791     MacroAssembler _masm(&cbuf);
2792     address double_address = __ double_constant(dval);
2793     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
2794     AddressLiteral addrlit(double_address, rspec);
2795 
2796     __ sethi(addrlit, $tmp$$Register);
2797     // XXX This is a quick fix for 6833573.
2798     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
2799     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
2800   %}
2801 
2802   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2803   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2804     MacroAssembler _masm(&cbuf);
2805     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
2806     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
2807     Register    base_pointer_arg = reg_to_register_object($base$$reg);
2808 
2809     Label loop;
2810     __ mov(nof_bytes_arg, nof_bytes_tmp);
2811 
2812     // Loop and clear, walking backwards through the array.
2813     // nof_bytes_tmp (if >0) is always the number of bytes to zero
2814     __ bind(loop);
2815     __ deccc(nof_bytes_tmp, 8);
2816     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2817     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2818     // %%%% this mini-loop must not cross a cache boundary!
2819   %}
2820 
2821 
2822   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
2823     Label Ldone, Lloop;
2824     MacroAssembler _masm(&cbuf);
2825 
2826     Register   str1_reg = reg_to_register_object($str1$$reg);
2827     Register   str2_reg = reg_to_register_object($str2$$reg);
2828     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
2829     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
2830     Register result_reg = reg_to_register_object($result$$reg);
2831 
2832     // Get the first character position in both strings
2833     //         [8] char array, [12] offset, [16] count
2834     int  value_offset = java_lang_String:: value_offset_in_bytes();
2835     int offset_offset = java_lang_String::offset_offset_in_bytes();
2836     int  count_offset = java_lang_String:: count_offset_in_bytes();
2837 
2838     // load str1 (jchar*) base address into tmp1_reg
2839     __ load_heap_oop(str1_reg, value_offset, tmp1_reg);
2840     __ ld(str1_reg, offset_offset, result_reg);
2841     __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
2842     __   ld(str1_reg, count_offset, str1_reg); // hoisted
2843     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2844     __   load_heap_oop(str2_reg, value_offset, tmp2_reg); // hoisted
2845     __ add(result_reg, tmp1_reg, tmp1_reg);
2846 
2847     // load str2 (jchar*) base address into tmp2_reg
2848     // __ ld_ptr(str2_reg, value_offset, tmp2_reg); // hoisted
2849     __ ld(str2_reg, offset_offset, result_reg);
2850     __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
2851     __   ld(str2_reg, count_offset, str2_reg); // hoisted
2852     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2853     __   subcc(str1_reg, str2_reg, O7); // hoisted
2854     __ add(result_reg, tmp2_reg, tmp2_reg);
2855 
2856     // Compute the minimum of the string lengths(str1_reg) and the
2857     // difference of the string lengths (stack)
2858 
2859     // discard string base pointers, after loading up the lengths
2860     // __ ld(str1_reg, count_offset, str1_reg); // hoisted
2861     // __ ld(str2_reg, count_offset, str2_reg); // hoisted
2862 
2863     // See if the lengths are different, and calculate min in str1_reg.
2864     // Stash diff in O7 in case we need it for a tie-breaker.
2865     Label Lskip;
2866     // __ subcc(str1_reg, str2_reg, O7); // hoisted
2867     __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
2868     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2869     // str2 is shorter, so use its count:
2870     __ delayed()->sll(str2_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
2871     __ bind(Lskip);
2872 
2873     // reallocate str1_reg, str2_reg, result_reg
2874     // Note:  limit_reg holds the string length pre-scaled by 2
2875     Register limit_reg =   str1_reg;
2876     Register  chr2_reg =   str2_reg;
2877     Register  chr1_reg = result_reg;
2878     // tmp{12} are the base pointers
2879 
2880     // Is the minimum length zero?
2881     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2882     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2883     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2884 
2885     // Load first characters
2886     __ lduh(tmp1_reg, 0, chr1_reg);
2887     __ lduh(tmp2_reg, 0, chr2_reg);
2888 
2889     // Compare first characters
2890     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2891     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2892     assert(chr1_reg == result_reg, "result must be pre-placed");
2893     __ delayed()->nop();
2894 
2895     {
2896       // Check after comparing first character to see if strings are equivalent
2897       Label LSkip2;
2898       // Check if the strings start at same location
2899       __ cmp(tmp1_reg, tmp2_reg);
2900       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2901       __ delayed()->nop();
2902 
2903       // Check if the length difference is zero (in O7)
2904       __ cmp(G0, O7);
2905       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2906       __ delayed()->mov(G0, result_reg);  // result is zero
2907 
2908       // Strings might not be equal
2909       __ bind(LSkip2);
2910     }
2911 
2912     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2913     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2914     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2915 
2916     // Shift tmp1_reg and tmp2_reg to the end of the arrays, negate limit
2917     __ add(tmp1_reg, limit_reg, tmp1_reg);
2918     __ add(tmp2_reg, limit_reg, tmp2_reg);
2919     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2920 
2921     // Compare the rest of the characters
2922     __ lduh(tmp1_reg, limit_reg, chr1_reg);
2923     __ bind(Lloop);
2924     // __ lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
2925     __ lduh(tmp2_reg, limit_reg, chr2_reg);
2926     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2927     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2928     assert(chr1_reg == result_reg, "result must be pre-placed");
2929     __ delayed()->inccc(limit_reg, sizeof(jchar));
2930     // annul LDUH if branch is not taken to prevent access past end of string
2931     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2932     __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
2933 
2934     // If strings are equal up to min length, return the length difference.
2935     __ mov(O7, result_reg);
2936 
2937     // Otherwise, return the difference between the first mismatched chars.
2938     __ bind(Ldone);
2939   %}
2940 
2941 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
2942     Label Lword, Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2943     MacroAssembler _masm(&cbuf);
2944 
2945     Register   str1_reg = reg_to_register_object($str1$$reg);
2946     Register   str2_reg = reg_to_register_object($str2$$reg);
2947     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
2948     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
2949     Register result_reg = reg_to_register_object($result$$reg);
2950 
2951     // Get the first character position in both strings
2952     //         [8] char array, [12] offset, [16] count
2953     int  value_offset = java_lang_String:: value_offset_in_bytes();
2954     int offset_offset = java_lang_String::offset_offset_in_bytes();
2955     int  count_offset = java_lang_String:: count_offset_in_bytes();
2956 
2957     // load str1 (jchar*) base address into tmp1_reg
2958     __ load_heap_oop(Address(str1_reg, value_offset), tmp1_reg);
2959     __ ld(Address(str1_reg, offset_offset), result_reg);
2960     __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
2961     __    ld(Address(str1_reg, count_offset), str1_reg); // hoisted
2962     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2963     __    load_heap_oop(Address(str2_reg, value_offset), tmp2_reg); // hoisted
2964     __ add(result_reg, tmp1_reg, tmp1_reg);
2965 
2966     // load str2 (jchar*) base address into tmp2_reg
2967     // __ ld_ptr(Address(str2_reg, value_offset), tmp2_reg); // hoisted
2968     __ ld(Address(str2_reg, offset_offset), result_reg);
2969     __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
2970     __    ld(Address(str2_reg, count_offset), str2_reg); // hoisted
2971     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2972     __   cmp(str1_reg, str2_reg); // hoisted
2973     __ add(result_reg, tmp2_reg, tmp2_reg);
2974 
2975     __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg);
2976     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
2977     __ delayed()->mov(G0, result_reg);    // not equal
2978 
2979     __ br_zero(Assembler::equal, true, Assembler::pn, str1_reg, Ldone);
2980     __ delayed()->add(G0, 1, result_reg); //equals
2981 
2982     __ cmp(tmp1_reg, tmp2_reg); //same string ?
2983     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2984     __ delayed()->add(G0, 1, result_reg);
2985 
2986     //rename registers
2987     Register limit_reg =   str1_reg;
2988     Register  chr2_reg =   str2_reg;
2989     Register  chr1_reg = result_reg;
2990     // tmp{12} are the base pointers
2991 
2992     //check for alignment and position the pointers to the ends
2993     __ or3(tmp1_reg, tmp2_reg, chr1_reg);
2994     __ andcc(chr1_reg, 0x3, chr1_reg); // notZero means at least one not 4-byte aligned
2995     __ br(Assembler::notZero, false, Assembler::pn, Lchar);
2996     __ delayed()->nop();
2997 
2998     __ bind(Lword);
2999     __ and3(limit_reg, 0x2, O7); //remember the remainder (either 0 or 2)
3000     __ andn(limit_reg, 0x3, limit_reg);
3001     __ br_zero(Assembler::zero, false, Assembler::pn, limit_reg, Lpost_word);
3002     __ delayed()->nop();
3003 
3004     __ add(tmp1_reg, limit_reg, tmp1_reg);
3005     __ add(tmp2_reg, limit_reg, tmp2_reg);
3006     __ neg(limit_reg);
3007 
3008     __ lduw(tmp1_reg, limit_reg, chr1_reg);
3009     __ bind(Lword_loop);
3010     __ lduw(tmp2_reg, limit_reg, chr2_reg);
3011     __ cmp(chr1_reg, chr2_reg);
3012     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3013     __ delayed()->mov(G0, result_reg);
3014     __ inccc(limit_reg, 2*sizeof(jchar));
3015     // annul LDUW if branch i  s not taken to prevent access past end of string
3016     __ br(Assembler::notZero, true, Assembler::pt, Lword_loop); //annul on taken
3017     __ delayed()->lduw(tmp1_reg, limit_reg, chr1_reg); // hoisted
3018 
3019     __ bind(Lpost_word);
3020     __ br_zero(Assembler::zero, true, Assembler::pt, O7, Ldone);
3021     __ delayed()->add(G0, 1, result_reg);
3022 
3023     __ lduh(tmp1_reg, 0, chr1_reg);
3024     __ lduh(tmp2_reg, 0, chr2_reg);
3025     __ cmp (chr1_reg, chr2_reg);
3026     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3027     __ delayed()->mov(G0, result_reg);
3028     __ ba(false,Ldone);
3029     __ delayed()->add(G0, 1, result_reg);
3030 
3031     __ bind(Lchar);
3032     __ add(tmp1_reg, limit_reg, tmp1_reg);
3033     __ add(tmp2_reg, limit_reg, tmp2_reg);
3034     __ neg(limit_reg); //negate count
3035 
3036     __ lduh(tmp1_reg, limit_reg, chr1_reg);
3037     __ bind(Lchar_loop);
3038     __ lduh(tmp2_reg, limit_reg, chr2_reg);
3039     __ cmp(chr1_reg, chr2_reg);
3040     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3041     __ delayed()->mov(G0, result_reg); //not equal
3042     __ inccc(limit_reg, sizeof(jchar));
3043     // annul LDUH if branch is not taken to prevent access past end of string
3044     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop); //annul on taken
3045     __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
3046 
3047     __ add(G0, 1, result_reg);  //equal
3048 
3049     __ bind(Ldone);
3050   %}
3051 
3052 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
3053     Label Lvector, Ldone, Lloop;
3054     MacroAssembler _masm(&cbuf);
3055 
3056     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3057     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3058     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3059     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
3060     Register result_reg = reg_to_register_object($result$$reg);
3061 
3062     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3063     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3064 
3065     // return true if the same array
3066     __ cmp(ary1_reg, ary2_reg);
3067     __ br(Assembler::equal, true, Assembler::pn, Ldone);
3068     __ delayed()->add(G0, 1, result_reg); // equal
3069 
3070     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3071     __ delayed()->mov(G0, result_reg);    // not equal
3072 
3073     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3074     __ delayed()->mov(G0, result_reg);    // not equal
3075 
3076     //load the lengths of arrays
3077     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3078     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3079 
3080     // return false if the two arrays are not equal length
3081     __ cmp(tmp1_reg, tmp2_reg);
3082     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3083     __ delayed()->mov(G0, result_reg);     // not equal
3084 
3085     __ br_zero(Assembler::zero, true, Assembler::pn, tmp1_reg, Ldone);
3086     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3087 
3088     // load array addresses
3089     __ add(ary1_reg, base_offset, ary1_reg);
3090     __ add(ary2_reg, base_offset, ary2_reg);
3091 
3092     // renaming registers
3093     Register chr1_reg  =  tmp2_reg;   // for characters in ary1
3094     Register chr2_reg  =  result_reg; // for characters in ary2
3095     Register limit_reg =  tmp1_reg;   // length
3096 
3097     // set byte count
3098     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3099     __ andcc(limit_reg, 0x2, chr1_reg); //trailing character ?
3100     __ br(Assembler::zero, false, Assembler::pt, Lvector);
3101     __ delayed()->nop();
3102 
3103     //compare the trailing char
3104     __ sub(limit_reg, sizeof(jchar), limit_reg);
3105     __ lduh(ary1_reg, limit_reg, chr1_reg);
3106     __ lduh(ary2_reg, limit_reg, chr2_reg);
3107     __ cmp(chr1_reg, chr2_reg);
3108     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3109     __ delayed()->mov(G0, result_reg);     // not equal
3110 
3111     // only one char ?
3112     __ br_zero(Assembler::zero, true, Assembler::pn, limit_reg, Ldone);
3113     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3114 
3115     __ bind(Lvector);
3116     // Shift ary1_reg and ary2_reg to the end of the arrays, negate limit
3117     __ add(ary1_reg, limit_reg, ary1_reg);
3118     __ add(ary2_reg, limit_reg, ary2_reg);
3119     __ neg(limit_reg, limit_reg);
3120 
3121     __ lduw(ary1_reg, limit_reg, chr1_reg);
3122     __ bind(Lloop);
3123     __ lduw(ary2_reg, limit_reg, chr2_reg);
3124     __ cmp(chr1_reg, chr2_reg);
3125     __ br(Assembler::notEqual, false, Assembler::pt, Ldone);
3126     __ delayed()->mov(G0, result_reg);     // not equal
3127     __ inccc(limit_reg, 2*sizeof(jchar));
3128     // annul LDUW if branch is not taken to prevent access past end of string
3129     __ br(Assembler::notZero, true, Assembler::pt, Lloop); //annul on taken
3130     __ delayed()->lduw(ary1_reg, limit_reg, chr1_reg); // hoisted
3131 
3132     __ add(G0, 1, result_reg); // equals
3133 
3134     __ bind(Ldone);
3135   %}
3136 
3137   enc_class enc_rethrow() %{
3138     cbuf.set_inst_mark();
3139     Register temp_reg = G3;
3140     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3141     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3142     MacroAssembler _masm(&cbuf);
3143 #ifdef ASSERT
3144     __ save_frame(0);
3145     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3146     __ sethi(last_rethrow_addrlit, L1);
3147     Address addr(L1, last_rethrow_addrlit.low10());
3148     __ get_pc(L2);
3149     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3150     __ st_ptr(L2, addr);
3151     __ restore();
3152 #endif
3153     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3154     __ delayed()->nop();
3155   %}
3156 
3157   enc_class emit_mem_nop() %{
3158     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3159     unsigned int *code = (unsigned int*)cbuf.code_end();
3160     *code = (unsigned int)0xc0839040;
3161     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3162   %}
3163 
3164   enc_class emit_fadd_nop() %{
3165     // Generates the instruction FMOVS f31,f31
3166     unsigned int *code = (unsigned int*)cbuf.code_end();
3167     *code = (unsigned int)0xbfa0003f;
3168     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3169   %}
3170 
3171   enc_class emit_br_nop() %{
3172     // Generates the instruction BPN,PN .
3173     unsigned int *code = (unsigned int*)cbuf.code_end();
3174     *code = (unsigned int)0x00400000;
3175     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3176   %}
3177 
3178   enc_class enc_membar_acquire %{
3179     MacroAssembler _masm(&cbuf);
3180     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3181   %}
3182 
3183   enc_class enc_membar_release %{
3184     MacroAssembler _masm(&cbuf);
3185     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3186   %}
3187 
3188   enc_class enc_membar_volatile %{
3189     MacroAssembler _masm(&cbuf);
3190     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3191   %}
3192 
3193   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3194     MacroAssembler _masm(&cbuf);
3195     Register src_reg = reg_to_register_object($src$$reg);
3196     Register dst_reg = reg_to_register_object($dst$$reg);
3197     __ sllx(src_reg, 56, dst_reg);
3198     __ srlx(dst_reg,  8, O7);
3199     __ or3 (dst_reg, O7, dst_reg);
3200     __ srlx(dst_reg, 16, O7);
3201     __ or3 (dst_reg, O7, dst_reg);
3202     __ srlx(dst_reg, 32, O7);
3203     __ or3 (dst_reg, O7, dst_reg);
3204   %}
3205 
3206   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3207     MacroAssembler _masm(&cbuf);
3208     Register src_reg = reg_to_register_object($src$$reg);
3209     Register dst_reg = reg_to_register_object($dst$$reg);
3210     __ sll(src_reg, 24, dst_reg);
3211     __ srl(dst_reg,  8, O7);
3212     __ or3(dst_reg, O7, dst_reg);
3213     __ srl(dst_reg, 16, O7);
3214     __ or3(dst_reg, O7, dst_reg);
3215   %}
3216 
3217   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3218     MacroAssembler _masm(&cbuf);
3219     Register src_reg = reg_to_register_object($src$$reg);
3220     Register dst_reg = reg_to_register_object($dst$$reg);
3221     __ sllx(src_reg, 48, dst_reg);
3222     __ srlx(dst_reg, 16, O7);
3223     __ or3 (dst_reg, O7, dst_reg);
3224     __ srlx(dst_reg, 32, O7);
3225     __ or3 (dst_reg, O7, dst_reg);
3226   %}
3227 
3228   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3229     MacroAssembler _masm(&cbuf);
3230     Register src_reg = reg_to_register_object($src$$reg);
3231     Register dst_reg = reg_to_register_object($dst$$reg);
3232     __ sllx(src_reg, 32, dst_reg);
3233     __ srlx(dst_reg, 32, O7);
3234     __ or3 (dst_reg, O7, dst_reg);
3235   %}
3236 
3237 %}
3238 
3239 //----------FRAME--------------------------------------------------------------
3240 // Definition of frame structure and management information.
3241 //
3242 //  S T A C K   L A Y O U T    Allocators stack-slot number
3243 //                             |   (to get allocators register number
3244 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3245 //  r   CALLER     |        |
3246 //  o     |        +--------+      pad to even-align allocators stack-slot
3247 //  w     V        |  pad0  |        numbers; owned by CALLER
3248 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3249 //  h     ^        |   in   |  5
3250 //        |        |  args  |  4   Holes in incoming args owned by SELF
3251 //  |     |        |        |  3
3252 //  |     |        +--------+
3253 //  V     |        | old out|      Empty on Intel, window on Sparc
3254 //        |    old |preserve|      Must be even aligned.
3255 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3256 //        |        |   in   |  3   area for Intel ret address
3257 //     Owned by    |preserve|      Empty on Sparc.
3258 //       SELF      +--------+
3259 //        |        |  pad2  |  2   pad to align old SP
3260 //        |        +--------+  1
3261 //        |        | locks  |  0
3262 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3263 //        |        |  pad1  | 11   pad to align new SP
3264 //        |        +--------+
3265 //        |        |        | 10
3266 //        |        | spills |  9   spills
3267 //        V        |        |  8   (pad0 slot for callee)
3268 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3269 //        ^        |  out   |  7
3270 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3271 //     Owned by    +--------+
3272 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3273 //        |    new |preserve|      Must be even-aligned.
3274 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3275 //        |        |        |
3276 //
3277 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3278 //         known from SELF's arguments and the Java calling convention.
3279 //         Region 6-7 is determined per call site.
3280 // Note 2: If the calling convention leaves holes in the incoming argument
3281 //         area, those holes are owned by SELF.  Holes in the outgoing area
3282 //         are owned by the CALLEE.  Holes should not be nessecary in the
3283 //         incoming area, as the Java calling convention is completely under
3284 //         the control of the AD file.  Doubles can be sorted and packed to
3285 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3286 //         varargs C calling conventions.
3287 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3288 //         even aligned with pad0 as needed.
3289 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3290 //         region 6-11 is even aligned; it may be padded out more so that
3291 //         the region from SP to FP meets the minimum stack alignment.
3292 
3293 frame %{
3294   // What direction does stack grow in (assumed to be same for native & Java)
3295   stack_direction(TOWARDS_LOW);
3296 
3297   // These two registers define part of the calling convention
3298   // between compiled code and the interpreter.
3299   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3300   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3301 
3302   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3303   cisc_spilling_operand_name(indOffset);
3304 
3305   // Number of stack slots consumed by a Monitor enter
3306 #ifdef _LP64
3307   sync_stack_slots(2);
3308 #else
3309   sync_stack_slots(1);
3310 #endif
3311 
3312   // Compiled code's Frame Pointer
3313   frame_pointer(R_SP);
3314 
3315   // Stack alignment requirement
3316   stack_alignment(StackAlignmentInBytes);
3317   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3318   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3319 
3320   // Number of stack slots between incoming argument block and the start of
3321   // a new frame.  The PROLOG must add this many slots to the stack.  The
3322   // EPILOG must remove this many slots.
3323   in_preserve_stack_slots(0);
3324 
3325   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3326   // for calls to C.  Supports the var-args backing area for register parms.
3327   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3328 #ifdef _LP64
3329   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3330   varargs_C_out_slots_killed(12);
3331 #else
3332   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3333   varargs_C_out_slots_killed( 7);
3334 #endif
3335 
3336   // The after-PROLOG location of the return address.  Location of
3337   // return address specifies a type (REG or STACK) and a number
3338   // representing the register number (i.e. - use a register name) or
3339   // stack slot.
3340   return_addr(REG R_I7);          // Ret Addr is in register I7
3341 
3342   // Body of function which returns an OptoRegs array locating
3343   // arguments either in registers or in stack slots for calling
3344   // java
3345   calling_convention %{
3346     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3347 
3348   %}
3349 
3350   // Body of function which returns an OptoRegs array locating
3351   // arguments either in registers or in stack slots for callin
3352   // C.
3353   c_calling_convention %{
3354     // This is obviously always outgoing
3355     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3356   %}
3357 
3358   // Location of native (C/C++) and interpreter return values.  This is specified to
3359   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3360   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3361   // to and from the register pairs is done by the appropriate call and epilog
3362   // opcodes.  This simplifies the register allocator.
3363   c_return_value %{
3364     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3365 #ifdef     _LP64
3366     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3367     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3368     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3369     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3370 #else  // !_LP64
3371     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3372     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3373     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3374     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3375 #endif
3376     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3377                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3378   %}
3379 
3380   // Location of compiled Java return values.  Same as C
3381   return_value %{
3382     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3383 #ifdef     _LP64
3384     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3385     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3386     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3387     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3388 #else  // !_LP64
3389     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3390     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3391     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3392     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3393 #endif
3394     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3395                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3396   %}
3397 
3398 %}
3399 
3400 
3401 //----------ATTRIBUTES---------------------------------------------------------
3402 //----------Operand Attributes-------------------------------------------------
3403 op_attrib op_cost(1);          // Required cost attribute
3404 
3405 //----------Instruction Attributes---------------------------------------------
3406 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3407 ins_attrib ins_size(32);       // Required size attribute (in bits)
3408 ins_attrib ins_pc_relative(0); // Required PC Relative flag
3409 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3410                                 // non-matching short branch variant of some
3411                                                             // long branch?
3412 
3413 //----------OPERANDS-----------------------------------------------------------
3414 // Operand definitions must precede instruction definitions for correct parsing
3415 // in the ADLC because operands constitute user defined types which are used in
3416 // instruction definitions.
3417 
3418 //----------Simple Operands----------------------------------------------------
3419 // Immediate Operands
3420 // Integer Immediate: 32-bit
3421 operand immI() %{
3422   match(ConI);
3423 
3424   op_cost(0);
3425   // formats are generated automatically for constants and base registers
3426   format %{ %}
3427   interface(CONST_INTER);
3428 %}
3429 
3430 // Integer Immediate: 13-bit
3431 operand immI13() %{
3432   predicate(Assembler::is_simm13(n->get_int()));
3433   match(ConI);
3434   op_cost(0);
3435 
3436   format %{ %}
3437   interface(CONST_INTER);
3438 %}
3439 
3440 // Unsigned (positive) Integer Immediate: 13-bit
3441 operand immU13() %{
3442   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3443   match(ConI);
3444   op_cost(0);
3445 
3446   format %{ %}
3447   interface(CONST_INTER);
3448 %}
3449 
3450 // Integer Immediate: 6-bit
3451 operand immU6() %{
3452   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3453   match(ConI);
3454   op_cost(0);
3455   format %{ %}
3456   interface(CONST_INTER);
3457 %}
3458 
3459 // Integer Immediate: 11-bit
3460 operand immI11() %{
3461   predicate(Assembler::is_simm(n->get_int(),11));
3462   match(ConI);
3463   op_cost(0);
3464   format %{ %}
3465   interface(CONST_INTER);
3466 %}
3467 
3468 // Integer Immediate: 0-bit
3469 operand immI0() %{
3470   predicate(n->get_int() == 0);
3471   match(ConI);
3472   op_cost(0);
3473 
3474   format %{ %}
3475   interface(CONST_INTER);
3476 %}
3477 
3478 // Integer Immediate: the value 10
3479 operand immI10() %{
3480   predicate(n->get_int() == 10);
3481   match(ConI);
3482   op_cost(0);
3483 
3484   format %{ %}
3485   interface(CONST_INTER);
3486 %}
3487 
3488 // Integer Immediate: the values 0-31
3489 operand immU5() %{
3490   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3491   match(ConI);
3492   op_cost(0);
3493 
3494   format %{ %}
3495   interface(CONST_INTER);
3496 %}
3497 
3498 // Integer Immediate: the values 1-31
3499 operand immI_1_31() %{
3500   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3501   match(ConI);
3502   op_cost(0);
3503 
3504   format %{ %}
3505   interface(CONST_INTER);
3506 %}
3507 
3508 // Integer Immediate: the values 32-63
3509 operand immI_32_63() %{
3510   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3511   match(ConI);
3512   op_cost(0);
3513 
3514   format %{ %}
3515   interface(CONST_INTER);
3516 %}
3517 
3518 // Integer Immediate: the value 255
3519 operand immI_255() %{
3520   predicate( n->get_int() == 255 );
3521   match(ConI);
3522   op_cost(0);
3523 
3524   format %{ %}
3525   interface(CONST_INTER);
3526 %}
3527 
3528 // Long Immediate: the value FF
3529 operand immL_FF() %{
3530   predicate( n->get_long() == 0xFFL );
3531   match(ConL);
3532   op_cost(0);
3533 
3534   format %{ %}
3535   interface(CONST_INTER);
3536 %}
3537 
3538 // Long Immediate: the value FFFF
3539 operand immL_FFFF() %{
3540   predicate( n->get_long() == 0xFFFFL );
3541   match(ConL);
3542   op_cost(0);
3543 
3544   format %{ %}
3545   interface(CONST_INTER);
3546 %}
3547 
3548 // Pointer Immediate: 32 or 64-bit
3549 operand immP() %{
3550   match(ConP);
3551 
3552   op_cost(5);
3553   // formats are generated automatically for constants and base registers
3554   format %{ %}
3555   interface(CONST_INTER);
3556 %}
3557 
3558 operand immP13() %{
3559   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3560   match(ConP);
3561   op_cost(0);
3562 
3563   format %{ %}
3564   interface(CONST_INTER);
3565 %}
3566 
3567 operand immP0() %{
3568   predicate(n->get_ptr() == 0);
3569   match(ConP);
3570   op_cost(0);
3571 
3572   format %{ %}
3573   interface(CONST_INTER);
3574 %}
3575 
3576 operand immP_poll() %{
3577   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3578   match(ConP);
3579 
3580   // formats are generated automatically for constants and base registers
3581   format %{ %}
3582   interface(CONST_INTER);
3583 %}
3584 
3585 // Pointer Immediate
3586 operand immN()
3587 %{
3588   match(ConN);
3589 
3590   op_cost(10);
3591   format %{ %}
3592   interface(CONST_INTER);
3593 %}
3594 
3595 // NULL Pointer Immediate
3596 operand immN0()
3597 %{
3598   predicate(n->get_narrowcon() == 0);
3599   match(ConN);
3600 
3601   op_cost(0);
3602   format %{ %}
3603   interface(CONST_INTER);
3604 %}
3605 
3606 operand immL() %{
3607   match(ConL);
3608   op_cost(40);
3609   // formats are generated automatically for constants and base registers
3610   format %{ %}
3611   interface(CONST_INTER);
3612 %}
3613 
3614 operand immL0() %{
3615   predicate(n->get_long() == 0L);
3616   match(ConL);
3617   op_cost(0);
3618   // formats are generated automatically for constants and base registers
3619   format %{ %}
3620   interface(CONST_INTER);
3621 %}
3622 
3623 // Long Immediate: 13-bit
3624 operand immL13() %{
3625   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3626   match(ConL);
3627   op_cost(0);
3628 
3629   format %{ %}
3630   interface(CONST_INTER);
3631 %}
3632 
3633 // Long Immediate: low 32-bit mask
3634 operand immL_32bits() %{
3635   predicate(n->get_long() == 0xFFFFFFFFL);
3636   match(ConL);
3637   op_cost(0);
3638 
3639   format %{ %}
3640   interface(CONST_INTER);
3641 %}
3642 
3643 // Double Immediate
3644 operand immD() %{
3645   match(ConD);
3646 
3647   op_cost(40);
3648   format %{ %}
3649   interface(CONST_INTER);
3650 %}
3651 
3652 operand immD0() %{
3653 #ifdef _LP64
3654   // on 64-bit architectures this comparision is faster
3655   predicate(jlong_cast(n->getd()) == 0);
3656 #else
3657   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3658 #endif
3659   match(ConD);
3660 
3661   op_cost(0);
3662   format %{ %}
3663   interface(CONST_INTER);
3664 %}
3665 
3666 // Float Immediate
3667 operand immF() %{
3668   match(ConF);
3669 
3670   op_cost(20);
3671   format %{ %}
3672   interface(CONST_INTER);
3673 %}
3674 
3675 // Float Immediate: 0
3676 operand immF0() %{
3677   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3678   match(ConF);
3679 
3680   op_cost(0);
3681   format %{ %}
3682   interface(CONST_INTER);
3683 %}
3684 
3685 // Integer Register Operands
3686 // Integer Register
3687 operand iRegI() %{
3688   constraint(ALLOC_IN_RC(int_reg));
3689   match(RegI);
3690 
3691   match(notemp_iRegI);
3692   match(g1RegI);
3693   match(o0RegI);
3694   match(iRegIsafe);
3695 
3696   format %{ %}
3697   interface(REG_INTER);
3698 %}
3699 
3700 operand notemp_iRegI() %{
3701   constraint(ALLOC_IN_RC(notemp_int_reg));
3702   match(RegI);
3703 
3704   match(o0RegI);
3705 
3706   format %{ %}
3707   interface(REG_INTER);
3708 %}
3709 
3710 operand o0RegI() %{
3711   constraint(ALLOC_IN_RC(o0_regI));
3712   match(iRegI);
3713 
3714   format %{ %}
3715   interface(REG_INTER);
3716 %}
3717 
3718 // Pointer Register
3719 operand iRegP() %{
3720   constraint(ALLOC_IN_RC(ptr_reg));
3721   match(RegP);
3722 
3723   match(lock_ptr_RegP);
3724   match(g1RegP);
3725   match(g2RegP);
3726   match(g3RegP);
3727   match(g4RegP);
3728   match(i0RegP);
3729   match(o0RegP);
3730   match(o1RegP);
3731   match(l7RegP);
3732 
3733   format %{ %}
3734   interface(REG_INTER);
3735 %}
3736 
3737 operand sp_ptr_RegP() %{
3738   constraint(ALLOC_IN_RC(sp_ptr_reg));
3739   match(RegP);
3740   match(iRegP);
3741 
3742   format %{ %}
3743   interface(REG_INTER);
3744 %}
3745 
3746 operand lock_ptr_RegP() %{
3747   constraint(ALLOC_IN_RC(lock_ptr_reg));
3748   match(RegP);
3749   match(i0RegP);
3750   match(o0RegP);
3751   match(o1RegP);
3752   match(l7RegP);
3753 
3754   format %{ %}
3755   interface(REG_INTER);
3756 %}
3757 
3758 operand g1RegP() %{
3759   constraint(ALLOC_IN_RC(g1_regP));
3760   match(iRegP);
3761 
3762   format %{ %}
3763   interface(REG_INTER);
3764 %}
3765 
3766 operand g2RegP() %{
3767   constraint(ALLOC_IN_RC(g2_regP));
3768   match(iRegP);
3769 
3770   format %{ %}
3771   interface(REG_INTER);
3772 %}
3773 
3774 operand g3RegP() %{
3775   constraint(ALLOC_IN_RC(g3_regP));
3776   match(iRegP);
3777 
3778   format %{ %}
3779   interface(REG_INTER);
3780 %}
3781 
3782 operand g1RegI() %{
3783   constraint(ALLOC_IN_RC(g1_regI));
3784   match(iRegI);
3785 
3786   format %{ %}
3787   interface(REG_INTER);
3788 %}
3789 
3790 operand g3RegI() %{
3791   constraint(ALLOC_IN_RC(g3_regI));
3792   match(iRegI);
3793 
3794   format %{ %}
3795   interface(REG_INTER);
3796 %}
3797 
3798 operand g4RegI() %{
3799   constraint(ALLOC_IN_RC(g4_regI));
3800   match(iRegI);
3801 
3802   format %{ %}
3803   interface(REG_INTER);
3804 %}
3805 
3806 operand g4RegP() %{
3807   constraint(ALLOC_IN_RC(g4_regP));
3808   match(iRegP);
3809 
3810   format %{ %}
3811   interface(REG_INTER);
3812 %}
3813 
3814 operand i0RegP() %{
3815   constraint(ALLOC_IN_RC(i0_regP));
3816   match(iRegP);
3817 
3818   format %{ %}
3819   interface(REG_INTER);
3820 %}
3821 
3822 operand o0RegP() %{
3823   constraint(ALLOC_IN_RC(o0_regP));
3824   match(iRegP);
3825 
3826   format %{ %}
3827   interface(REG_INTER);
3828 %}
3829 
3830 operand o1RegP() %{
3831   constraint(ALLOC_IN_RC(o1_regP));
3832   match(iRegP);
3833 
3834   format %{ %}
3835   interface(REG_INTER);
3836 %}
3837 
3838 operand o2RegP() %{
3839   constraint(ALLOC_IN_RC(o2_regP));
3840   match(iRegP);
3841 
3842   format %{ %}
3843   interface(REG_INTER);
3844 %}
3845 
3846 operand o7RegP() %{
3847   constraint(ALLOC_IN_RC(o7_regP));
3848   match(iRegP);
3849 
3850   format %{ %}
3851   interface(REG_INTER);
3852 %}
3853 
3854 operand l7RegP() %{
3855   constraint(ALLOC_IN_RC(l7_regP));
3856   match(iRegP);
3857 
3858   format %{ %}
3859   interface(REG_INTER);
3860 %}
3861 
3862 operand o7RegI() %{
3863   constraint(ALLOC_IN_RC(o7_regI));
3864   match(iRegI);
3865 
3866   format %{ %}
3867   interface(REG_INTER);
3868 %}
3869 
3870 operand iRegN() %{
3871   constraint(ALLOC_IN_RC(int_reg));
3872   match(RegN);
3873 
3874   format %{ %}
3875   interface(REG_INTER);
3876 %}
3877 
3878 // Long Register
3879 operand iRegL() %{
3880   constraint(ALLOC_IN_RC(long_reg));
3881   match(RegL);
3882 
3883   format %{ %}
3884   interface(REG_INTER);
3885 %}
3886 
3887 operand o2RegL() %{
3888   constraint(ALLOC_IN_RC(o2_regL));
3889   match(iRegL);
3890 
3891   format %{ %}
3892   interface(REG_INTER);
3893 %}
3894 
3895 operand o7RegL() %{
3896   constraint(ALLOC_IN_RC(o7_regL));
3897   match(iRegL);
3898 
3899   format %{ %}
3900   interface(REG_INTER);
3901 %}
3902 
3903 operand g1RegL() %{
3904   constraint(ALLOC_IN_RC(g1_regL));
3905   match(iRegL);
3906 
3907   format %{ %}
3908   interface(REG_INTER);
3909 %}
3910 
3911 operand g3RegL() %{
3912   constraint(ALLOC_IN_RC(g3_regL));
3913   match(iRegL);
3914 
3915   format %{ %}
3916   interface(REG_INTER);
3917 %}
3918 
3919 // Int Register safe
3920 // This is 64bit safe
3921 operand iRegIsafe() %{
3922   constraint(ALLOC_IN_RC(long_reg));
3923 
3924   match(iRegI);
3925 
3926   format %{ %}
3927   interface(REG_INTER);
3928 %}
3929 
3930 // Condition Code Flag Register
3931 operand flagsReg() %{
3932   constraint(ALLOC_IN_RC(int_flags));
3933   match(RegFlags);
3934 
3935   format %{ "ccr" %} // both ICC and XCC
3936   interface(REG_INTER);
3937 %}
3938 
3939 // Condition Code Register, unsigned comparisons.
3940 operand flagsRegU() %{
3941   constraint(ALLOC_IN_RC(int_flags));
3942   match(RegFlags);
3943 
3944   format %{ "icc_U" %}
3945   interface(REG_INTER);
3946 %}
3947 
3948 // Condition Code Register, pointer comparisons.
3949 operand flagsRegP() %{
3950   constraint(ALLOC_IN_RC(int_flags));
3951   match(RegFlags);
3952 
3953 #ifdef _LP64
3954   format %{ "xcc_P" %}
3955 #else
3956   format %{ "icc_P" %}
3957 #endif
3958   interface(REG_INTER);
3959 %}
3960 
3961 // Condition Code Register, long comparisons.
3962 operand flagsRegL() %{
3963   constraint(ALLOC_IN_RC(int_flags));
3964   match(RegFlags);
3965 
3966   format %{ "xcc_L" %}
3967   interface(REG_INTER);
3968 %}
3969 
3970 // Condition Code Register, floating comparisons, unordered same as "less".
3971 operand flagsRegF() %{
3972   constraint(ALLOC_IN_RC(float_flags));
3973   match(RegFlags);
3974   match(flagsRegF0);
3975 
3976   format %{ %}
3977   interface(REG_INTER);
3978 %}
3979 
3980 operand flagsRegF0() %{
3981   constraint(ALLOC_IN_RC(float_flag0));
3982   match(RegFlags);
3983 
3984   format %{ %}
3985   interface(REG_INTER);
3986 %}
3987 
3988 
3989 // Condition Code Flag Register used by long compare
3990 operand flagsReg_long_LTGE() %{
3991   constraint(ALLOC_IN_RC(int_flags));
3992   match(RegFlags);
3993   format %{ "icc_LTGE" %}
3994   interface(REG_INTER);
3995 %}
3996 operand flagsReg_long_EQNE() %{
3997   constraint(ALLOC_IN_RC(int_flags));
3998   match(RegFlags);
3999   format %{ "icc_EQNE" %}
4000   interface(REG_INTER);
4001 %}
4002 operand flagsReg_long_LEGT() %{
4003   constraint(ALLOC_IN_RC(int_flags));
4004   match(RegFlags);
4005   format %{ "icc_LEGT" %}
4006   interface(REG_INTER);
4007 %}
4008 
4009 
4010 operand regD() %{
4011   constraint(ALLOC_IN_RC(dflt_reg));
4012   match(RegD);
4013 
4014   match(regD_low);
4015 
4016   format %{ %}
4017   interface(REG_INTER);
4018 %}
4019 
4020 operand regF() %{
4021   constraint(ALLOC_IN_RC(sflt_reg));
4022   match(RegF);
4023 
4024   format %{ %}
4025   interface(REG_INTER);
4026 %}
4027 
4028 operand regD_low() %{
4029   constraint(ALLOC_IN_RC(dflt_low_reg));
4030   match(regD);
4031 
4032   format %{ %}
4033   interface(REG_INTER);
4034 %}
4035 
4036 // Special Registers
4037 
4038 // Method Register
4039 operand inline_cache_regP(iRegP reg) %{
4040   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4041   match(reg);
4042   format %{ %}
4043   interface(REG_INTER);
4044 %}
4045 
4046 operand interpreter_method_oop_regP(iRegP reg) %{
4047   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4048   match(reg);
4049   format %{ %}
4050   interface(REG_INTER);
4051 %}
4052 
4053 
4054 //----------Complex Operands---------------------------------------------------
4055 // Indirect Memory Reference
4056 operand indirect(sp_ptr_RegP reg) %{
4057   constraint(ALLOC_IN_RC(sp_ptr_reg));
4058   match(reg);
4059 
4060   op_cost(100);
4061   format %{ "[$reg]" %}
4062   interface(MEMORY_INTER) %{
4063     base($reg);
4064     index(0x0);
4065     scale(0x0);
4066     disp(0x0);
4067   %}
4068 %}
4069 
4070 // Indirect with Offset
4071 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4072   constraint(ALLOC_IN_RC(sp_ptr_reg));
4073   match(AddP reg offset);
4074 
4075   op_cost(100);
4076   format %{ "[$reg + $offset]" %}
4077   interface(MEMORY_INTER) %{
4078     base($reg);
4079     index(0x0);
4080     scale(0x0);
4081     disp($offset);
4082   %}
4083 %}
4084 
4085 // Note:  Intel has a swapped version also, like this:
4086 //operand indOffsetX(iRegI reg, immP offset) %{
4087 //  constraint(ALLOC_IN_RC(int_reg));
4088 //  match(AddP offset reg);
4089 //
4090 //  op_cost(100);
4091 //  format %{ "[$reg + $offset]" %}
4092 //  interface(MEMORY_INTER) %{
4093 //    base($reg);
4094 //    index(0x0);
4095 //    scale(0x0);
4096 //    disp($offset);
4097 //  %}
4098 //%}
4099 //// However, it doesn't make sense for SPARC, since
4100 // we have no particularly good way to embed oops in
4101 // single instructions.
4102 
4103 // Indirect with Register Index
4104 operand indIndex(iRegP addr, iRegX index) %{
4105   constraint(ALLOC_IN_RC(ptr_reg));
4106   match(AddP addr index);
4107 
4108   op_cost(100);
4109   format %{ "[$addr + $index]" %}
4110   interface(MEMORY_INTER) %{
4111     base($addr);
4112     index($index);
4113     scale(0x0);
4114     disp(0x0);
4115   %}
4116 %}
4117 
4118 //----------Special Memory Operands--------------------------------------------
4119 // Stack Slot Operand - This operand is used for loading and storing temporary
4120 //                      values on the stack where a match requires a value to
4121 //                      flow through memory.
4122 operand stackSlotI(sRegI reg) %{
4123   constraint(ALLOC_IN_RC(stack_slots));
4124   op_cost(100);
4125   //match(RegI);
4126   format %{ "[$reg]" %}
4127   interface(MEMORY_INTER) %{
4128     base(0xE);   // R_SP
4129     index(0x0);
4130     scale(0x0);
4131     disp($reg);  // Stack Offset
4132   %}
4133 %}
4134 
4135 operand stackSlotP(sRegP reg) %{
4136   constraint(ALLOC_IN_RC(stack_slots));
4137   op_cost(100);
4138   //match(RegP);
4139   format %{ "[$reg]" %}
4140   interface(MEMORY_INTER) %{
4141     base(0xE);   // R_SP
4142     index(0x0);
4143     scale(0x0);
4144     disp($reg);  // Stack Offset
4145   %}
4146 %}
4147 
4148 operand stackSlotF(sRegF reg) %{
4149   constraint(ALLOC_IN_RC(stack_slots));
4150   op_cost(100);
4151   //match(RegF);
4152   format %{ "[$reg]" %}
4153   interface(MEMORY_INTER) %{
4154     base(0xE);   // R_SP
4155     index(0x0);
4156     scale(0x0);
4157     disp($reg);  // Stack Offset
4158   %}
4159 %}
4160 operand stackSlotD(sRegD reg) %{
4161   constraint(ALLOC_IN_RC(stack_slots));
4162   op_cost(100);
4163   //match(RegD);
4164   format %{ "[$reg]" %}
4165   interface(MEMORY_INTER) %{
4166     base(0xE);   // R_SP
4167     index(0x0);
4168     scale(0x0);
4169     disp($reg);  // Stack Offset
4170   %}
4171 %}
4172 operand stackSlotL(sRegL reg) %{
4173   constraint(ALLOC_IN_RC(stack_slots));
4174   op_cost(100);
4175   //match(RegL);
4176   format %{ "[$reg]" %}
4177   interface(MEMORY_INTER) %{
4178     base(0xE);   // R_SP
4179     index(0x0);
4180     scale(0x0);
4181     disp($reg);  // Stack Offset
4182   %}
4183 %}
4184 
4185 // Operands for expressing Control Flow
4186 // NOTE:  Label is a predefined operand which should not be redefined in
4187 //        the AD file.  It is generically handled within the ADLC.
4188 
4189 //----------Conditional Branch Operands----------------------------------------
4190 // Comparison Op  - This is the operation of the comparison, and is limited to
4191 //                  the following set of codes:
4192 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4193 //
4194 // Other attributes of the comparison, such as unsignedness, are specified
4195 // by the comparison instruction that sets a condition code flags register.
4196 // That result is represented by a flags operand whose subtype is appropriate
4197 // to the unsignedness (etc.) of the comparison.
4198 //
4199 // Later, the instruction which matches both the Comparison Op (a Bool) and
4200 // the flags (produced by the Cmp) specifies the coding of the comparison op
4201 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4202 
4203 operand cmpOp() %{
4204   match(Bool);
4205 
4206   format %{ "" %}
4207   interface(COND_INTER) %{
4208     equal(0x1);
4209     not_equal(0x9);
4210     less(0x3);
4211     greater_equal(0xB);
4212     less_equal(0x2);
4213     greater(0xA);
4214   %}
4215 %}
4216 
4217 // Comparison Op, unsigned
4218 operand cmpOpU() %{
4219   match(Bool);
4220 
4221   format %{ "u" %}
4222   interface(COND_INTER) %{
4223     equal(0x1);
4224     not_equal(0x9);
4225     less(0x5);
4226     greater_equal(0xD);
4227     less_equal(0x4);
4228     greater(0xC);
4229   %}
4230 %}
4231 
4232 // Comparison Op, pointer (same as unsigned)
4233 operand cmpOpP() %{
4234   match(Bool);
4235 
4236   format %{ "p" %}
4237   interface(COND_INTER) %{
4238     equal(0x1);
4239     not_equal(0x9);
4240     less(0x5);
4241     greater_equal(0xD);
4242     less_equal(0x4);
4243     greater(0xC);
4244   %}
4245 %}
4246 
4247 // Comparison Op, branch-register encoding
4248 operand cmpOp_reg() %{
4249   match(Bool);
4250 
4251   format %{ "" %}
4252   interface(COND_INTER) %{
4253     equal        (0x1);
4254     not_equal    (0x5);
4255     less         (0x3);
4256     greater_equal(0x7);
4257     less_equal   (0x2);
4258     greater      (0x6);
4259   %}
4260 %}
4261 
4262 // Comparison Code, floating, unordered same as less
4263 operand cmpOpF() %{
4264   match(Bool);
4265 
4266   format %{ "fl" %}
4267   interface(COND_INTER) %{
4268     equal(0x9);
4269     not_equal(0x1);
4270     less(0x3);
4271     greater_equal(0xB);
4272     less_equal(0xE);
4273     greater(0x6);
4274   %}
4275 %}
4276 
4277 // Used by long compare
4278 operand cmpOp_commute() %{
4279   match(Bool);
4280 
4281   format %{ "" %}
4282   interface(COND_INTER) %{
4283     equal(0x1);
4284     not_equal(0x9);
4285     less(0xA);
4286     greater_equal(0x2);
4287     less_equal(0xB);
4288     greater(0x3);
4289   %}
4290 %}
4291 
4292 //----------OPERAND CLASSES----------------------------------------------------
4293 // Operand Classes are groups of operands that are used to simplify
4294 // instruction definitions by not requiring the AD writer to specify separate
4295 // instructions for every form of operand when the instruction accepts
4296 // multiple operand types with the same basic encoding and format.  The classic
4297 // case of this is memory operands.
4298 // Indirect is not included since its use is limited to Compare & Swap
4299 opclass memory( indirect, indOffset13, indIndex );
4300 
4301 //----------PIPELINE-----------------------------------------------------------
4302 pipeline %{
4303 
4304 //----------ATTRIBUTES---------------------------------------------------------
4305 attributes %{
4306   fixed_size_instructions;           // Fixed size instructions
4307   branch_has_delay_slot;             // Branch has delay slot following
4308   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4309   instruction_unit_size = 4;         // An instruction is 4 bytes long
4310   instruction_fetch_unit_size = 16;  // The processor fetches one line
4311   instruction_fetch_units = 1;       // of 16 bytes
4312 
4313   // List of nop instructions
4314   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4315 %}
4316 
4317 //----------RESOURCES----------------------------------------------------------
4318 // Resources are the functional units available to the machine
4319 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4320 
4321 //----------PIPELINE DESCRIPTION-----------------------------------------------
4322 // Pipeline Description specifies the stages in the machine's pipeline
4323 
4324 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4325 
4326 //----------PIPELINE CLASSES---------------------------------------------------
4327 // Pipeline Classes describe the stages in which input and output are
4328 // referenced by the hardware pipeline.
4329 
4330 // Integer ALU reg-reg operation
4331 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4332     single_instruction;
4333     dst   : E(write);
4334     src1  : R(read);
4335     src2  : R(read);
4336     IALU  : R;
4337 %}
4338 
4339 // Integer ALU reg-reg long operation
4340 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4341     instruction_count(2);
4342     dst   : E(write);
4343     src1  : R(read);
4344     src2  : R(read);
4345     IALU  : R;
4346     IALU  : R;
4347 %}
4348 
4349 // Integer ALU reg-reg long dependent operation
4350 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4351     instruction_count(1); multiple_bundles;
4352     dst   : E(write);
4353     src1  : R(read);
4354     src2  : R(read);
4355     cr    : E(write);
4356     IALU  : R(2);
4357 %}
4358 
4359 // Integer ALU reg-imm operaion
4360 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4361     single_instruction;
4362     dst   : E(write);
4363     src1  : R(read);
4364     IALU  : R;
4365 %}
4366 
4367 // Integer ALU reg-reg operation with condition code
4368 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4369     single_instruction;
4370     dst   : E(write);
4371     cr    : E(write);
4372     src1  : R(read);
4373     src2  : R(read);
4374     IALU  : R;
4375 %}
4376 
4377 // Integer ALU reg-imm operation with condition code
4378 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4379     single_instruction;
4380     dst   : E(write);
4381     cr    : E(write);
4382     src1  : R(read);
4383     IALU  : R;
4384 %}
4385 
4386 // Integer ALU zero-reg operation
4387 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4388     single_instruction;
4389     dst   : E(write);
4390     src2  : R(read);
4391     IALU  : R;
4392 %}
4393 
4394 // Integer ALU zero-reg operation with condition code only
4395 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4396     single_instruction;
4397     cr    : E(write);
4398     src   : R(read);
4399     IALU  : R;
4400 %}
4401 
4402 // Integer ALU reg-reg operation with condition code only
4403 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4404     single_instruction;
4405     cr    : E(write);
4406     src1  : R(read);
4407     src2  : R(read);
4408     IALU  : R;
4409 %}
4410 
4411 // Integer ALU reg-imm operation with condition code only
4412 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4413     single_instruction;
4414     cr    : E(write);
4415     src1  : R(read);
4416     IALU  : R;
4417 %}
4418 
4419 // Integer ALU reg-reg-zero operation with condition code only
4420 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4421     single_instruction;
4422     cr    : E(write);
4423     src1  : R(read);
4424     src2  : R(read);
4425     IALU  : R;
4426 %}
4427 
4428 // Integer ALU reg-imm-zero operation with condition code only
4429 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4430     single_instruction;
4431     cr    : E(write);
4432     src1  : R(read);
4433     IALU  : R;
4434 %}
4435 
4436 // Integer ALU reg-reg operation with condition code, src1 modified
4437 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4438     single_instruction;
4439     cr    : E(write);
4440     src1  : E(write);
4441     src1  : R(read);
4442     src2  : R(read);
4443     IALU  : R;
4444 %}
4445 
4446 // Integer ALU reg-imm operation with condition code, src1 modified
4447 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4448     single_instruction;
4449     cr    : E(write);
4450     src1  : E(write);
4451     src1  : R(read);
4452     IALU  : R;
4453 %}
4454 
4455 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4456     multiple_bundles;
4457     dst   : E(write)+4;
4458     cr    : E(write);
4459     src1  : R(read);
4460     src2  : R(read);
4461     IALU  : R(3);
4462     BR    : R(2);
4463 %}
4464 
4465 // Integer ALU operation
4466 pipe_class ialu_none(iRegI dst) %{
4467     single_instruction;
4468     dst   : E(write);
4469     IALU  : R;
4470 %}
4471 
4472 // Integer ALU reg operation
4473 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4474     single_instruction; may_have_no_code;
4475     dst   : E(write);
4476     src   : R(read);
4477     IALU  : R;
4478 %}
4479 
4480 // Integer ALU reg conditional operation
4481 // This instruction has a 1 cycle stall, and cannot execute
4482 // in the same cycle as the instruction setting the condition
4483 // code. We kludge this by pretending to read the condition code
4484 // 1 cycle earlier, and by marking the functional units as busy
4485 // for 2 cycles with the result available 1 cycle later than
4486 // is really the case.
4487 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4488     single_instruction;
4489     op2_out : C(write);
4490     op1     : R(read);
4491     cr      : R(read);       // This is really E, with a 1 cycle stall
4492     BR      : R(2);
4493     MS      : R(2);
4494 %}
4495 
4496 #ifdef _LP64
4497 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4498     instruction_count(1); multiple_bundles;
4499     dst     : C(write)+1;
4500     src     : R(read)+1;
4501     IALU    : R(1);
4502     BR      : E(2);
4503     MS      : E(2);
4504 %}
4505 #endif
4506 
4507 // Integer ALU reg operation
4508 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4509     single_instruction; may_have_no_code;
4510     dst   : E(write);
4511     src   : R(read);
4512     IALU  : R;
4513 %}
4514 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4515     single_instruction; may_have_no_code;
4516     dst   : E(write);
4517     src   : R(read);
4518     IALU  : R;
4519 %}
4520 
4521 // Two integer ALU reg operations
4522 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4523     instruction_count(2);
4524     dst   : E(write);
4525     src   : R(read);
4526     A0    : R;
4527     A1    : R;
4528 %}
4529 
4530 // Two integer ALU reg operations
4531 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4532     instruction_count(2); may_have_no_code;
4533     dst   : E(write);
4534     src   : R(read);
4535     A0    : R;
4536     A1    : R;
4537 %}
4538 
4539 // Integer ALU imm operation
4540 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4541     single_instruction;
4542     dst   : E(write);
4543     IALU  : R;
4544 %}
4545 
4546 // Integer ALU reg-reg with carry operation
4547 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4548     single_instruction;
4549     dst   : E(write);
4550     src1  : R(read);
4551     src2  : R(read);
4552     IALU  : R;
4553 %}
4554 
4555 // Integer ALU cc operation
4556 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4557     single_instruction;
4558     dst   : E(write);
4559     cc    : R(read);
4560     IALU  : R;
4561 %}
4562 
4563 // Integer ALU cc / second IALU operation
4564 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4565     instruction_count(1); multiple_bundles;
4566     dst   : E(write)+1;
4567     src   : R(read);
4568     IALU  : R;
4569 %}
4570 
4571 // Integer ALU cc / second IALU operation
4572 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4573     instruction_count(1); multiple_bundles;
4574     dst   : E(write)+1;
4575     p     : R(read);
4576     q     : R(read);
4577     IALU  : R;
4578 %}
4579 
4580 // Integer ALU hi-lo-reg operation
4581 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4582     instruction_count(1); multiple_bundles;
4583     dst   : E(write)+1;
4584     IALU  : R(2);
4585 %}
4586 
4587 // Float ALU hi-lo-reg operation (with temp)
4588 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4589     instruction_count(1); multiple_bundles;
4590     dst   : E(write)+1;
4591     IALU  : R(2);
4592 %}
4593 
4594 // Long Constant
4595 pipe_class loadConL( iRegL dst, immL src ) %{
4596     instruction_count(2); multiple_bundles;
4597     dst   : E(write)+1;
4598     IALU  : R(2);
4599     IALU  : R(2);
4600 %}
4601 
4602 // Pointer Constant
4603 pipe_class loadConP( iRegP dst, immP src ) %{
4604     instruction_count(0); multiple_bundles;
4605     fixed_latency(6);
4606 %}
4607 
4608 // Polling Address
4609 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4610 #ifdef _LP64
4611     instruction_count(0); multiple_bundles;
4612     fixed_latency(6);
4613 #else
4614     dst   : E(write);
4615     IALU  : R;
4616 #endif
4617 %}
4618 
4619 // Long Constant small
4620 pipe_class loadConLlo( iRegL dst, immL src ) %{
4621     instruction_count(2);
4622     dst   : E(write);
4623     IALU  : R;
4624     IALU  : R;
4625 %}
4626 
4627 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4628 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4629     instruction_count(1); multiple_bundles;
4630     src   : R(read);
4631     dst   : M(write)+1;
4632     IALU  : R;
4633     MS    : E;
4634 %}
4635 
4636 // Integer ALU nop operation
4637 pipe_class ialu_nop() %{
4638     single_instruction;
4639     IALU  : R;
4640 %}
4641 
4642 // Integer ALU nop operation
4643 pipe_class ialu_nop_A0() %{
4644     single_instruction;
4645     A0    : R;
4646 %}
4647 
4648 // Integer ALU nop operation
4649 pipe_class ialu_nop_A1() %{
4650     single_instruction;
4651     A1    : R;
4652 %}
4653 
4654 // Integer Multiply reg-reg operation
4655 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4656     single_instruction;
4657     dst   : E(write);
4658     src1  : R(read);
4659     src2  : R(read);
4660     MS    : R(5);
4661 %}
4662 
4663 // Integer Multiply reg-imm operation
4664 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4665     single_instruction;
4666     dst   : E(write);
4667     src1  : R(read);
4668     MS    : R(5);
4669 %}
4670 
4671 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4672     single_instruction;
4673     dst   : E(write)+4;
4674     src1  : R(read);
4675     src2  : R(read);
4676     MS    : R(6);
4677 %}
4678 
4679 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4680     single_instruction;
4681     dst   : E(write)+4;
4682     src1  : R(read);
4683     MS    : R(6);
4684 %}
4685 
4686 // Integer Divide reg-reg
4687 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4688     instruction_count(1); multiple_bundles;
4689     dst   : E(write);
4690     temp  : E(write);
4691     src1  : R(read);
4692     src2  : R(read);
4693     temp  : R(read);
4694     MS    : R(38);
4695 %}
4696 
4697 // Integer Divide reg-imm
4698 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4699     instruction_count(1); multiple_bundles;
4700     dst   : E(write);
4701     temp  : E(write);
4702     src1  : R(read);
4703     temp  : R(read);
4704     MS    : R(38);
4705 %}
4706 
4707 // Long Divide
4708 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4709     dst  : E(write)+71;
4710     src1 : R(read);
4711     src2 : R(read)+1;
4712     MS   : R(70);
4713 %}
4714 
4715 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4716     dst  : E(write)+71;
4717     src1 : R(read);
4718     MS   : R(70);
4719 %}
4720 
4721 // Floating Point Add Float
4722 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4723     single_instruction;
4724     dst   : X(write);
4725     src1  : E(read);
4726     src2  : E(read);
4727     FA    : R;
4728 %}
4729 
4730 // Floating Point Add Double
4731 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4732     single_instruction;
4733     dst   : X(write);
4734     src1  : E(read);
4735     src2  : E(read);
4736     FA    : R;
4737 %}
4738 
4739 // Floating Point Conditional Move based on integer flags
4740 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4741     single_instruction;
4742     dst   : X(write);
4743     src   : E(read);
4744     cr    : R(read);
4745     FA    : R(2);
4746     BR    : R(2);
4747 %}
4748 
4749 // Floating Point Conditional Move based on integer flags
4750 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4751     single_instruction;
4752     dst   : X(write);
4753     src   : E(read);
4754     cr    : R(read);
4755     FA    : R(2);
4756     BR    : R(2);
4757 %}
4758 
4759 // Floating Point Multiply Float
4760 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4761     single_instruction;
4762     dst   : X(write);
4763     src1  : E(read);
4764     src2  : E(read);
4765     FM    : R;
4766 %}
4767 
4768 // Floating Point Multiply Double
4769 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4770     single_instruction;
4771     dst   : X(write);
4772     src1  : E(read);
4773     src2  : E(read);
4774     FM    : R;
4775 %}
4776 
4777 // Floating Point Divide Float
4778 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4779     single_instruction;
4780     dst   : X(write);
4781     src1  : E(read);
4782     src2  : E(read);
4783     FM    : R;
4784     FDIV  : C(14);
4785 %}
4786 
4787 // Floating Point Divide Double
4788 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4789     single_instruction;
4790     dst   : X(write);
4791     src1  : E(read);
4792     src2  : E(read);
4793     FM    : R;
4794     FDIV  : C(17);
4795 %}
4796 
4797 // Floating Point Move/Negate/Abs Float
4798 pipe_class faddF_reg(regF dst, regF src) %{
4799     single_instruction;
4800     dst   : W(write);
4801     src   : E(read);
4802     FA    : R(1);
4803 %}
4804 
4805 // Floating Point Move/Negate/Abs Double
4806 pipe_class faddD_reg(regD dst, regD src) %{
4807     single_instruction;
4808     dst   : W(write);
4809     src   : E(read);
4810     FA    : R;
4811 %}
4812 
4813 // Floating Point Convert F->D
4814 pipe_class fcvtF2D(regD dst, regF src) %{
4815     single_instruction;
4816     dst   : X(write);
4817     src   : E(read);
4818     FA    : R;
4819 %}
4820 
4821 // Floating Point Convert I->D
4822 pipe_class fcvtI2D(regD dst, regF src) %{
4823     single_instruction;
4824     dst   : X(write);
4825     src   : E(read);
4826     FA    : R;
4827 %}
4828 
4829 // Floating Point Convert LHi->D
4830 pipe_class fcvtLHi2D(regD dst, regD src) %{
4831     single_instruction;
4832     dst   : X(write);
4833     src   : E(read);
4834     FA    : R;
4835 %}
4836 
4837 // Floating Point Convert L->D
4838 pipe_class fcvtL2D(regD dst, regF src) %{
4839     single_instruction;
4840     dst   : X(write);
4841     src   : E(read);
4842     FA    : R;
4843 %}
4844 
4845 // Floating Point Convert L->F
4846 pipe_class fcvtL2F(regD dst, regF src) %{
4847     single_instruction;
4848     dst   : X(write);
4849     src   : E(read);
4850     FA    : R;
4851 %}
4852 
4853 // Floating Point Convert D->F
4854 pipe_class fcvtD2F(regD dst, regF src) %{
4855     single_instruction;
4856     dst   : X(write);
4857     src   : E(read);
4858     FA    : R;
4859 %}
4860 
4861 // Floating Point Convert I->L
4862 pipe_class fcvtI2L(regD dst, regF src) %{
4863     single_instruction;
4864     dst   : X(write);
4865     src   : E(read);
4866     FA    : R;
4867 %}
4868 
4869 // Floating Point Convert D->F
4870 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4871     instruction_count(1); multiple_bundles;
4872     dst   : X(write)+6;
4873     src   : E(read);
4874     FA    : R;
4875 %}
4876 
4877 // Floating Point Convert D->L
4878 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4879     instruction_count(1); multiple_bundles;
4880     dst   : X(write)+6;
4881     src   : E(read);
4882     FA    : R;
4883 %}
4884 
4885 // Floating Point Convert F->I
4886 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4887     instruction_count(1); multiple_bundles;
4888     dst   : X(write)+6;
4889     src   : E(read);
4890     FA    : R;
4891 %}
4892 
4893 // Floating Point Convert F->L
4894 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4895     instruction_count(1); multiple_bundles;
4896     dst   : X(write)+6;
4897     src   : E(read);
4898     FA    : R;
4899 %}
4900 
4901 // Floating Point Convert I->F
4902 pipe_class fcvtI2F(regF dst, regF src) %{
4903     single_instruction;
4904     dst   : X(write);
4905     src   : E(read);
4906     FA    : R;
4907 %}
4908 
4909 // Floating Point Compare
4910 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4911     single_instruction;
4912     cr    : X(write);
4913     src1  : E(read);
4914     src2  : E(read);
4915     FA    : R;
4916 %}
4917 
4918 // Floating Point Compare
4919 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4920     single_instruction;
4921     cr    : X(write);
4922     src1  : E(read);
4923     src2  : E(read);
4924     FA    : R;
4925 %}
4926 
4927 // Floating Add Nop
4928 pipe_class fadd_nop() %{
4929     single_instruction;
4930     FA  : R;
4931 %}
4932 
4933 // Integer Store to Memory
4934 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4935     single_instruction;
4936     mem   : R(read);
4937     src   : C(read);
4938     MS    : R;
4939 %}
4940 
4941 // Integer Store to Memory
4942 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4943     single_instruction;
4944     mem   : R(read);
4945     src   : C(read);
4946     MS    : R;
4947 %}
4948 
4949 // Integer Store Zero to Memory
4950 pipe_class istore_mem_zero(memory mem, immI0 src) %{
4951     single_instruction;
4952     mem   : R(read);
4953     MS    : R;
4954 %}
4955 
4956 // Special Stack Slot Store
4957 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4958     single_instruction;
4959     stkSlot : R(read);
4960     src     : C(read);
4961     MS      : R;
4962 %}
4963 
4964 // Special Stack Slot Store
4965 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
4966     instruction_count(2); multiple_bundles;
4967     stkSlot : R(read);
4968     src     : C(read);
4969     MS      : R(2);
4970 %}
4971 
4972 // Float Store
4973 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
4974     single_instruction;
4975     mem : R(read);
4976     src : C(read);
4977     MS  : R;
4978 %}
4979 
4980 // Float Store
4981 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
4982     single_instruction;
4983     mem : R(read);
4984     MS  : R;
4985 %}
4986 
4987 // Double Store
4988 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
4989     instruction_count(1);
4990     mem : R(read);
4991     src : C(read);
4992     MS  : R;
4993 %}
4994 
4995 // Double Store
4996 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
4997     single_instruction;
4998     mem : R(read);
4999     MS  : R;
5000 %}
5001 
5002 // Special Stack Slot Float Store
5003 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5004     single_instruction;
5005     stkSlot : R(read);
5006     src     : C(read);
5007     MS      : R;
5008 %}
5009 
5010 // Special Stack Slot Double Store
5011 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5012     single_instruction;
5013     stkSlot : R(read);
5014     src     : C(read);
5015     MS      : R;
5016 %}
5017 
5018 // Integer Load (when sign bit propagation not needed)
5019 pipe_class iload_mem(iRegI dst, memory mem) %{
5020     single_instruction;
5021     mem : R(read);
5022     dst : C(write);
5023     MS  : R;
5024 %}
5025 
5026 // Integer Load from stack operand
5027 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5028     single_instruction;
5029     mem : R(read);
5030     dst : C(write);
5031     MS  : R;
5032 %}
5033 
5034 // Integer Load (when sign bit propagation or masking is needed)
5035 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5036     single_instruction;
5037     mem : R(read);
5038     dst : M(write);
5039     MS  : R;
5040 %}
5041 
5042 // Float Load
5043 pipe_class floadF_mem(regF dst, memory mem) %{
5044     single_instruction;
5045     mem : R(read);
5046     dst : M(write);
5047     MS  : R;
5048 %}
5049 
5050 // Float Load
5051 pipe_class floadD_mem(regD dst, memory mem) %{
5052     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5053     mem : R(read);
5054     dst : M(write);
5055     MS  : R;
5056 %}
5057 
5058 // Float Load
5059 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5060     single_instruction;
5061     stkSlot : R(read);
5062     dst : M(write);
5063     MS  : R;
5064 %}
5065 
5066 // Float Load
5067 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5068     single_instruction;
5069     stkSlot : R(read);
5070     dst : M(write);
5071     MS  : R;
5072 %}
5073 
5074 // Memory Nop
5075 pipe_class mem_nop() %{
5076     single_instruction;
5077     MS  : R;
5078 %}
5079 
5080 pipe_class sethi(iRegP dst, immI src) %{
5081     single_instruction;
5082     dst  : E(write);
5083     IALU : R;
5084 %}
5085 
5086 pipe_class loadPollP(iRegP poll) %{
5087     single_instruction;
5088     poll : R(read);
5089     MS   : R;
5090 %}
5091 
5092 pipe_class br(Universe br, label labl) %{
5093     single_instruction_with_delay_slot;
5094     BR  : R;
5095 %}
5096 
5097 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5098     single_instruction_with_delay_slot;
5099     cr    : E(read);
5100     BR    : R;
5101 %}
5102 
5103 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5104     single_instruction_with_delay_slot;
5105     op1 : E(read);
5106     BR  : R;
5107     MS  : R;
5108 %}
5109 
5110 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5111     single_instruction_with_delay_slot;
5112     cr    : E(read);
5113     BR    : R;
5114 %}
5115 
5116 pipe_class br_nop() %{
5117     single_instruction;
5118     BR  : R;
5119 %}
5120 
5121 pipe_class simple_call(method meth) %{
5122     instruction_count(2); multiple_bundles; force_serialization;
5123     fixed_latency(100);
5124     BR  : R(1);
5125     MS  : R(1);
5126     A0  : R(1);
5127 %}
5128 
5129 pipe_class compiled_call(method meth) %{
5130     instruction_count(1); multiple_bundles; force_serialization;
5131     fixed_latency(100);
5132     MS  : R(1);
5133 %}
5134 
5135 pipe_class call(method meth) %{
5136     instruction_count(0); multiple_bundles; force_serialization;
5137     fixed_latency(100);
5138 %}
5139 
5140 pipe_class tail_call(Universe ignore, label labl) %{
5141     single_instruction; has_delay_slot;
5142     fixed_latency(100);
5143     BR  : R(1);
5144     MS  : R(1);
5145 %}
5146 
5147 pipe_class ret(Universe ignore) %{
5148     single_instruction; has_delay_slot;
5149     BR  : R(1);
5150     MS  : R(1);
5151 %}
5152 
5153 pipe_class ret_poll(g3RegP poll) %{
5154     instruction_count(3); has_delay_slot;
5155     poll : E(read);
5156     MS   : R;
5157 %}
5158 
5159 // The real do-nothing guy
5160 pipe_class empty( ) %{
5161     instruction_count(0);
5162 %}
5163 
5164 pipe_class long_memory_op() %{
5165     instruction_count(0); multiple_bundles; force_serialization;
5166     fixed_latency(25);
5167     MS  : R(1);
5168 %}
5169 
5170 // Check-cast
5171 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5172     array : R(read);
5173     match  : R(read);
5174     IALU   : R(2);
5175     BR     : R(2);
5176     MS     : R;
5177 %}
5178 
5179 // Convert FPU flags into +1,0,-1
5180 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5181     src1  : E(read);
5182     src2  : E(read);
5183     dst   : E(write);
5184     FA    : R;
5185     MS    : R(2);
5186     BR    : R(2);
5187 %}
5188 
5189 // Compare for p < q, and conditionally add y
5190 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5191     p     : E(read);
5192     q     : E(read);
5193     y     : E(read);
5194     IALU  : R(3)
5195 %}
5196 
5197 // Perform a compare, then move conditionally in a branch delay slot.
5198 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5199     src2   : E(read);
5200     srcdst : E(read);
5201     IALU   : R;
5202     BR     : R;
5203 %}
5204 
5205 // Define the class for the Nop node
5206 define %{
5207    MachNop = ialu_nop;
5208 %}
5209 
5210 %}
5211 
5212 //----------INSTRUCTIONS-------------------------------------------------------
5213 
5214 //------------Special Stack Slot instructions - no match rules-----------------
5215 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5216   // No match rule to avoid chain rule match.
5217   effect(DEF dst, USE src);
5218   ins_cost(MEMORY_REF_COST);
5219   size(4);
5220   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5221   opcode(Assembler::ldf_op3);
5222   ins_encode(simple_form3_mem_reg(src, dst));
5223   ins_pipe(floadF_stk);
5224 %}
5225 
5226 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5227   // No match rule to avoid chain rule match.
5228   effect(DEF dst, USE src);
5229   ins_cost(MEMORY_REF_COST);
5230   size(4);
5231   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5232   opcode(Assembler::lddf_op3);
5233   ins_encode(simple_form3_mem_reg(src, dst));
5234   ins_pipe(floadD_stk);
5235 %}
5236 
5237 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5238   // No match rule to avoid chain rule match.
5239   effect(DEF dst, USE src);
5240   ins_cost(MEMORY_REF_COST);
5241   size(4);
5242   format %{ "STF    $src,$dst\t! regF to stkI" %}
5243   opcode(Assembler::stf_op3);
5244   ins_encode(simple_form3_mem_reg(dst, src));
5245   ins_pipe(fstoreF_stk_reg);
5246 %}
5247 
5248 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5249   // No match rule to avoid chain rule match.
5250   effect(DEF dst, USE src);
5251   ins_cost(MEMORY_REF_COST);
5252   size(4);
5253   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5254   opcode(Assembler::stdf_op3);
5255   ins_encode(simple_form3_mem_reg(dst, src));
5256   ins_pipe(fstoreD_stk_reg);
5257 %}
5258 
5259 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5260   effect(DEF dst, USE src);
5261   ins_cost(MEMORY_REF_COST*2);
5262   size(8);
5263   format %{ "STW    $src,$dst.hi\t! long\n\t"
5264             "STW    R_G0,$dst.lo" %}
5265   opcode(Assembler::stw_op3);
5266   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5267   ins_pipe(lstoreI_stk_reg);
5268 %}
5269 
5270 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5271   // No match rule to avoid chain rule match.
5272   effect(DEF dst, USE src);
5273   ins_cost(MEMORY_REF_COST);
5274   size(4);
5275   format %{ "STX    $src,$dst\t! regL to stkD" %}
5276   opcode(Assembler::stx_op3);
5277   ins_encode(simple_form3_mem_reg( dst, src ) );
5278   ins_pipe(istore_stk_reg);
5279 %}
5280 
5281 //---------- Chain stack slots between similar types --------
5282 
5283 // Load integer from stack slot
5284 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5285   match(Set dst src);
5286   ins_cost(MEMORY_REF_COST);
5287 
5288   size(4);
5289   format %{ "LDUW   $src,$dst\t!stk" %}
5290   opcode(Assembler::lduw_op3);
5291   ins_encode(simple_form3_mem_reg( src, dst ) );
5292   ins_pipe(iload_mem);
5293 %}
5294 
5295 // Store integer to stack slot
5296 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5297   match(Set dst src);
5298   ins_cost(MEMORY_REF_COST);
5299 
5300   size(4);
5301   format %{ "STW    $src,$dst\t!stk" %}
5302   opcode(Assembler::stw_op3);
5303   ins_encode(simple_form3_mem_reg( dst, src ) );
5304   ins_pipe(istore_mem_reg);
5305 %}
5306 
5307 // Load long from stack slot
5308 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5309   match(Set dst src);
5310 
5311   ins_cost(MEMORY_REF_COST);
5312   size(4);
5313   format %{ "LDX    $src,$dst\t! long" %}
5314   opcode(Assembler::ldx_op3);
5315   ins_encode(simple_form3_mem_reg( src, dst ) );
5316   ins_pipe(iload_mem);
5317 %}
5318 
5319 // Store long to stack slot
5320 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5321   match(Set dst src);
5322 
5323   ins_cost(MEMORY_REF_COST);
5324   size(4);
5325   format %{ "STX    $src,$dst\t! long" %}
5326   opcode(Assembler::stx_op3);
5327   ins_encode(simple_form3_mem_reg( dst, src ) );
5328   ins_pipe(istore_mem_reg);
5329 %}
5330 
5331 #ifdef _LP64
5332 // Load pointer from stack slot, 64-bit encoding
5333 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5334   match(Set dst src);
5335   ins_cost(MEMORY_REF_COST);
5336   size(4);
5337   format %{ "LDX    $src,$dst\t!ptr" %}
5338   opcode(Assembler::ldx_op3);
5339   ins_encode(simple_form3_mem_reg( src, dst ) );
5340   ins_pipe(iload_mem);
5341 %}
5342 
5343 // Store pointer to stack slot
5344 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5345   match(Set dst src);
5346   ins_cost(MEMORY_REF_COST);
5347   size(4);
5348   format %{ "STX    $src,$dst\t!ptr" %}
5349   opcode(Assembler::stx_op3);
5350   ins_encode(simple_form3_mem_reg( dst, src ) );
5351   ins_pipe(istore_mem_reg);
5352 %}
5353 #else // _LP64
5354 // Load pointer from stack slot, 32-bit encoding
5355 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5356   match(Set dst src);
5357   ins_cost(MEMORY_REF_COST);
5358   format %{ "LDUW   $src,$dst\t!ptr" %}
5359   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5360   ins_encode(simple_form3_mem_reg( src, dst ) );
5361   ins_pipe(iload_mem);
5362 %}
5363 
5364 // Store pointer to stack slot
5365 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5366   match(Set dst src);
5367   ins_cost(MEMORY_REF_COST);
5368   format %{ "STW    $src,$dst\t!ptr" %}
5369   opcode(Assembler::stw_op3, Assembler::ldst_op);
5370   ins_encode(simple_form3_mem_reg( dst, src ) );
5371   ins_pipe(istore_mem_reg);
5372 %}
5373 #endif // _LP64
5374 
5375 //------------Special Nop instructions for bundling - no match rules-----------
5376 // Nop using the A0 functional unit
5377 instruct Nop_A0() %{
5378   ins_cost(0);
5379 
5380   format %{ "NOP    ! Alu Pipeline" %}
5381   opcode(Assembler::or_op3, Assembler::arith_op);
5382   ins_encode( form2_nop() );
5383   ins_pipe(ialu_nop_A0);
5384 %}
5385 
5386 // Nop using the A1 functional unit
5387 instruct Nop_A1( ) %{
5388   ins_cost(0);
5389 
5390   format %{ "NOP    ! Alu Pipeline" %}
5391   opcode(Assembler::or_op3, Assembler::arith_op);
5392   ins_encode( form2_nop() );
5393   ins_pipe(ialu_nop_A1);
5394 %}
5395 
5396 // Nop using the memory functional unit
5397 instruct Nop_MS( ) %{
5398   ins_cost(0);
5399 
5400   format %{ "NOP    ! Memory Pipeline" %}
5401   ins_encode( emit_mem_nop );
5402   ins_pipe(mem_nop);
5403 %}
5404 
5405 // Nop using the floating add functional unit
5406 instruct Nop_FA( ) %{
5407   ins_cost(0);
5408 
5409   format %{ "NOP    ! Floating Add Pipeline" %}
5410   ins_encode( emit_fadd_nop );
5411   ins_pipe(fadd_nop);
5412 %}
5413 
5414 // Nop using the branch functional unit
5415 instruct Nop_BR( ) %{
5416   ins_cost(0);
5417 
5418   format %{ "NOP    ! Branch Pipeline" %}
5419   ins_encode( emit_br_nop );
5420   ins_pipe(br_nop);
5421 %}
5422 
5423 //----------Load/Store/Move Instructions---------------------------------------
5424 //----------Load Instructions--------------------------------------------------
5425 // Load Byte (8bit signed)
5426 instruct loadB(iRegI dst, memory mem) %{
5427   match(Set dst (LoadB mem));
5428   ins_cost(MEMORY_REF_COST);
5429 
5430   size(4);
5431   format %{ "LDSB   $mem,$dst\t! byte" %}
5432   ins_encode %{
5433     __ ldsb($mem$$Address, $dst$$Register);
5434   %}
5435   ins_pipe(iload_mask_mem);
5436 %}
5437 
5438 // Load Byte (8bit signed) into a Long Register
5439 instruct loadB2L(iRegL dst, memory mem) %{
5440   match(Set dst (ConvI2L (LoadB mem)));
5441   ins_cost(MEMORY_REF_COST);
5442 
5443   size(4);
5444   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5445   ins_encode %{
5446     __ ldsb($mem$$Address, $dst$$Register);
5447   %}
5448   ins_pipe(iload_mask_mem);
5449 %}
5450 
5451 // Load Unsigned Byte (8bit UNsigned) into an int reg
5452 instruct loadUB(iRegI dst, memory mem) %{
5453   match(Set dst (LoadUB mem));
5454   ins_cost(MEMORY_REF_COST);
5455 
5456   size(4);
5457   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5458   ins_encode %{
5459     __ ldub($mem$$Address, $dst$$Register);
5460   %}
5461   ins_pipe(iload_mask_mem);
5462 %}
5463 
5464 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5465 instruct loadUB2L(iRegL dst, memory mem) %{
5466   match(Set dst (ConvI2L (LoadUB mem)));
5467   ins_cost(MEMORY_REF_COST);
5468 
5469   size(4);
5470   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5471   ins_encode %{
5472     __ ldub($mem$$Address, $dst$$Register);
5473   %}
5474   ins_pipe(iload_mask_mem);
5475 %}
5476 
5477 // Load Short (16bit signed)
5478 instruct loadS(iRegI dst, memory mem) %{
5479   match(Set dst (LoadS mem));
5480   ins_cost(MEMORY_REF_COST);
5481 
5482   size(4);
5483   format %{ "LDSH   $mem,$dst\t! short" %}
5484   ins_encode %{
5485     __ ldsh($mem$$Address, $dst$$Register);
5486   %}
5487   ins_pipe(iload_mask_mem);
5488 %}
5489 
5490 // Load Short (16bit signed) into a Long Register
5491 instruct loadS2L(iRegL dst, memory mem) %{
5492   match(Set dst (ConvI2L (LoadS mem)));
5493   ins_cost(MEMORY_REF_COST);
5494 
5495   size(4);
5496   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5497   ins_encode %{
5498     __ ldsh($mem$$Address, $dst$$Register);
5499   %}
5500   ins_pipe(iload_mask_mem);
5501 %}
5502 
5503 // Load Unsigned Short/Char (16bit UNsigned)
5504 instruct loadUS(iRegI dst, memory mem) %{
5505   match(Set dst (LoadUS mem));
5506   ins_cost(MEMORY_REF_COST);
5507 
5508   size(4);
5509   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5510   ins_encode %{
5511     __ lduh($mem$$Address, $dst$$Register);
5512   %}
5513   ins_pipe(iload_mask_mem);
5514 %}
5515 
5516 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5517 instruct loadUS2L(iRegL dst, memory mem) %{
5518   match(Set dst (ConvI2L (LoadUS mem)));
5519   ins_cost(MEMORY_REF_COST);
5520 
5521   size(4);
5522   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5523   ins_encode %{
5524     __ lduh($mem$$Address, $dst$$Register);
5525   %}
5526   ins_pipe(iload_mask_mem);
5527 %}
5528 
5529 // Load Integer
5530 instruct loadI(iRegI dst, memory mem) %{
5531   match(Set dst (LoadI mem));
5532   ins_cost(MEMORY_REF_COST);
5533 
5534   size(4);
5535   format %{ "LDUW   $mem,$dst\t! int" %}
5536   ins_encode %{
5537     __ lduw($mem$$Address, $dst$$Register);
5538   %}
5539   ins_pipe(iload_mem);
5540 %}
5541 
5542 // Load Integer into a Long Register
5543 instruct loadI2L(iRegL dst, memory mem) %{
5544   match(Set dst (ConvI2L (LoadI mem)));
5545   ins_cost(MEMORY_REF_COST);
5546 
5547   size(4);
5548   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5549   ins_encode %{
5550     __ ldsw($mem$$Address, $dst$$Register);
5551   %}
5552   ins_pipe(iload_mem);
5553 %}
5554 
5555 // Load Unsigned Integer into a Long Register
5556 instruct loadUI2L(iRegL dst, memory mem) %{
5557   match(Set dst (LoadUI2L mem));
5558   ins_cost(MEMORY_REF_COST);
5559 
5560   size(4);
5561   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5562   ins_encode %{
5563     __ lduw($mem$$Address, $dst$$Register);
5564   %}
5565   ins_pipe(iload_mem);
5566 %}
5567 
5568 // Load Long - aligned
5569 instruct loadL(iRegL dst, memory mem ) %{
5570   match(Set dst (LoadL mem));
5571   ins_cost(MEMORY_REF_COST);
5572 
5573   size(4);
5574   format %{ "LDX    $mem,$dst\t! long" %}
5575   ins_encode %{
5576     __ ldx($mem$$Address, $dst$$Register);
5577   %}
5578   ins_pipe(iload_mem);
5579 %}
5580 
5581 // Load Long - UNaligned
5582 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5583   match(Set dst (LoadL_unaligned mem));
5584   effect(KILL tmp);
5585   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5586   size(16);
5587   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5588           "\tLDUW   $mem  ,$dst\n"
5589           "\tSLLX   #32, $dst, $dst\n"
5590           "\tOR     $dst, R_O7, $dst" %}
5591   opcode(Assembler::lduw_op3);
5592   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5593   ins_pipe(iload_mem);
5594 %}
5595 
5596 // Load Aligned Packed Byte into a Double Register
5597 instruct loadA8B(regD dst, memory mem) %{
5598   match(Set dst (Load8B mem));
5599   ins_cost(MEMORY_REF_COST);
5600   size(4);
5601   format %{ "LDDF   $mem,$dst\t! packed8B" %}
5602   opcode(Assembler::lddf_op3);
5603   ins_encode(simple_form3_mem_reg( mem, dst ) );
5604   ins_pipe(floadD_mem);
5605 %}
5606 
5607 // Load Aligned Packed Char into a Double Register
5608 instruct loadA4C(regD dst, memory mem) %{
5609   match(Set dst (Load4C mem));
5610   ins_cost(MEMORY_REF_COST);
5611   size(4);
5612   format %{ "LDDF   $mem,$dst\t! packed4C" %}
5613   opcode(Assembler::lddf_op3);
5614   ins_encode(simple_form3_mem_reg( mem, dst ) );
5615   ins_pipe(floadD_mem);
5616 %}
5617 
5618 // Load Aligned Packed Short into a Double Register
5619 instruct loadA4S(regD dst, memory mem) %{
5620   match(Set dst (Load4S mem));
5621   ins_cost(MEMORY_REF_COST);
5622   size(4);
5623   format %{ "LDDF   $mem,$dst\t! packed4S" %}
5624   opcode(Assembler::lddf_op3);
5625   ins_encode(simple_form3_mem_reg( mem, dst ) );
5626   ins_pipe(floadD_mem);
5627 %}
5628 
5629 // Load Aligned Packed Int into a Double Register
5630 instruct loadA2I(regD dst, memory mem) %{
5631   match(Set dst (Load2I mem));
5632   ins_cost(MEMORY_REF_COST);
5633   size(4);
5634   format %{ "LDDF   $mem,$dst\t! packed2I" %}
5635   opcode(Assembler::lddf_op3);
5636   ins_encode(simple_form3_mem_reg( mem, dst ) );
5637   ins_pipe(floadD_mem);
5638 %}
5639 
5640 // Load Range
5641 instruct loadRange(iRegI dst, memory mem) %{
5642   match(Set dst (LoadRange mem));
5643   ins_cost(MEMORY_REF_COST);
5644 
5645   size(4);
5646   format %{ "LDUW   $mem,$dst\t! range" %}
5647   opcode(Assembler::lduw_op3);
5648   ins_encode(simple_form3_mem_reg( mem, dst ) );
5649   ins_pipe(iload_mem);
5650 %}
5651 
5652 // Load Integer into %f register (for fitos/fitod)
5653 instruct loadI_freg(regF dst, memory mem) %{
5654   match(Set dst (LoadI mem));
5655   ins_cost(MEMORY_REF_COST);
5656   size(4);
5657 
5658   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5659   opcode(Assembler::ldf_op3);
5660   ins_encode(simple_form3_mem_reg( mem, dst ) );
5661   ins_pipe(floadF_mem);
5662 %}
5663 
5664 // Load Pointer
5665 instruct loadP(iRegP dst, memory mem) %{
5666   match(Set dst (LoadP mem));
5667   ins_cost(MEMORY_REF_COST);
5668   size(4);
5669 
5670 #ifndef _LP64
5671   format %{ "LDUW   $mem,$dst\t! ptr" %}
5672   ins_encode %{
5673     __ lduw($mem$$Address, $dst$$Register);
5674   %}
5675 #else
5676   format %{ "LDX    $mem,$dst\t! ptr" %}
5677   ins_encode %{
5678     __ ldx($mem$$Address, $dst$$Register);
5679   %}
5680 #endif
5681   ins_pipe(iload_mem);
5682 %}
5683 
5684 // Load Compressed Pointer
5685 instruct loadN(iRegN dst, memory mem) %{
5686   match(Set dst (LoadN mem));
5687   ins_cost(MEMORY_REF_COST);
5688   size(4);
5689 
5690   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5691   ins_encode %{
5692     __ lduw($mem$$Address, $dst$$Register);
5693   %}
5694   ins_pipe(iload_mem);
5695 %}
5696 
5697 // Load Klass Pointer
5698 instruct loadKlass(iRegP dst, memory mem) %{
5699   match(Set dst (LoadKlass mem));
5700   ins_cost(MEMORY_REF_COST);
5701   size(4);
5702 
5703 #ifndef _LP64
5704   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5705   ins_encode %{
5706     __ lduw($mem$$Address, $dst$$Register);
5707   %}
5708 #else
5709   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5710   ins_encode %{
5711     __ ldx($mem$$Address, $dst$$Register);
5712   %}
5713 #endif
5714   ins_pipe(iload_mem);
5715 %}
5716 
5717 // Load narrow Klass Pointer
5718 instruct loadNKlass(iRegN dst, memory mem) %{
5719   match(Set dst (LoadNKlass mem));
5720   ins_cost(MEMORY_REF_COST);
5721   size(4);
5722 
5723   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5724   ins_encode %{
5725     __ lduw($mem$$Address, $dst$$Register);
5726   %}
5727   ins_pipe(iload_mem);
5728 %}
5729 
5730 // Load Double
5731 instruct loadD(regD dst, memory mem) %{
5732   match(Set dst (LoadD mem));
5733   ins_cost(MEMORY_REF_COST);
5734 
5735   size(4);
5736   format %{ "LDDF   $mem,$dst" %}
5737   opcode(Assembler::lddf_op3);
5738   ins_encode(simple_form3_mem_reg( mem, dst ) );
5739   ins_pipe(floadD_mem);
5740 %}
5741 
5742 // Load Double - UNaligned
5743 instruct loadD_unaligned(regD_low dst, memory mem ) %{
5744   match(Set dst (LoadD_unaligned mem));
5745   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5746   size(8);
5747   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5748           "\tLDF    $mem+4,$dst.lo\t!" %}
5749   opcode(Assembler::ldf_op3);
5750   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5751   ins_pipe(iload_mem);
5752 %}
5753 
5754 // Load Float
5755 instruct loadF(regF dst, memory mem) %{
5756   match(Set dst (LoadF mem));
5757   ins_cost(MEMORY_REF_COST);
5758 
5759   size(4);
5760   format %{ "LDF    $mem,$dst" %}
5761   opcode(Assembler::ldf_op3);
5762   ins_encode(simple_form3_mem_reg( mem, dst ) );
5763   ins_pipe(floadF_mem);
5764 %}
5765 
5766 // Load Constant
5767 instruct loadConI( iRegI dst, immI src ) %{
5768   match(Set dst src);
5769   ins_cost(DEFAULT_COST * 3/2);
5770   format %{ "SET    $src,$dst" %}
5771   ins_encode( Set32(src, dst) );
5772   ins_pipe(ialu_hi_lo_reg);
5773 %}
5774 
5775 instruct loadConI13( iRegI dst, immI13 src ) %{
5776   match(Set dst src);
5777 
5778   size(4);
5779   format %{ "MOV    $src,$dst" %}
5780   ins_encode( Set13( src, dst ) );
5781   ins_pipe(ialu_imm);
5782 %}
5783 
5784 instruct loadConP(iRegP dst, immP src) %{
5785   match(Set dst src);
5786   ins_cost(DEFAULT_COST * 3/2);
5787   format %{ "SET    $src,$dst\t!ptr" %}
5788   // This rule does not use "expand" unlike loadConI because then
5789   // the result type is not known to be an Oop.  An ADLC
5790   // enhancement will be needed to make that work - not worth it!
5791 
5792   ins_encode( SetPtr( src, dst ) );
5793   ins_pipe(loadConP);
5794 
5795 %}
5796 
5797 instruct loadConP0(iRegP dst, immP0 src) %{
5798   match(Set dst src);
5799 
5800   size(4);
5801   format %{ "CLR    $dst\t!ptr" %}
5802   ins_encode( SetNull( dst ) );
5803   ins_pipe(ialu_imm);
5804 %}
5805 
5806 instruct loadConP_poll(iRegP dst, immP_poll src) %{
5807   match(Set dst src);
5808   ins_cost(DEFAULT_COST);
5809   format %{ "SET    $src,$dst\t!ptr" %}
5810   ins_encode %{
5811     AddressLiteral polling_page(os::get_polling_page());
5812     __ sethi(polling_page, reg_to_register_object($dst$$reg));
5813   %}
5814   ins_pipe(loadConP_poll);
5815 %}
5816 
5817 instruct loadConN0(iRegN dst, immN0 src) %{
5818   match(Set dst src);
5819 
5820   size(4);
5821   format %{ "CLR    $dst\t! compressed NULL ptr" %}
5822   ins_encode( SetNull( dst ) );
5823   ins_pipe(ialu_imm);
5824 %}
5825 
5826 instruct loadConN(iRegN dst, immN src) %{
5827   match(Set dst src);
5828   ins_cost(DEFAULT_COST * 3/2);
5829   format %{ "SET    $src,$dst\t! compressed ptr" %}
5830   ins_encode %{
5831     Register dst = $dst$$Register;
5832     __ set_narrow_oop((jobject)$src$$constant, dst);
5833   %}
5834   ins_pipe(ialu_hi_lo_reg);
5835 %}
5836 
5837 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
5838   // %%% maybe this should work like loadConD
5839   match(Set dst src);
5840   effect(KILL tmp);
5841   ins_cost(DEFAULT_COST * 4);
5842   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
5843   ins_encode( LdImmL(src, dst, tmp) );
5844   ins_pipe(loadConL);
5845 %}
5846 
5847 instruct loadConL0( iRegL dst, immL0 src ) %{
5848   match(Set dst src);
5849   ins_cost(DEFAULT_COST);
5850   size(4);
5851   format %{ "CLR    $dst\t! long" %}
5852   ins_encode( Set13( src, dst ) );
5853   ins_pipe(ialu_imm);
5854 %}
5855 
5856 instruct loadConL13( iRegL dst, immL13 src ) %{
5857   match(Set dst src);
5858   ins_cost(DEFAULT_COST * 2);
5859 
5860   size(4);
5861   format %{ "MOV    $src,$dst\t! long" %}
5862   ins_encode( Set13( src, dst ) );
5863   ins_pipe(ialu_imm);
5864 %}
5865 
5866 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
5867   match(Set dst src);
5868   effect(KILL tmp);
5869 
5870 #ifdef _LP64
5871   size(8*4);
5872 #else
5873   size(2*4);
5874 #endif
5875 
5876   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
5877             "LDF    [$tmp+lo(&$src)],$dst" %}
5878   ins_encode %{
5879     address float_address = __ float_constant($src$$constant);
5880     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
5881     AddressLiteral addrlit(float_address, rspec);
5882 
5883     __ sethi(addrlit, $tmp$$Register);
5884     __ ldf(FloatRegisterImpl::S, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
5885   %}
5886   ins_pipe(loadConFD);
5887 %}
5888 
5889 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
5890   match(Set dst src);
5891   effect(KILL tmp);
5892 
5893 #ifdef _LP64
5894   size(8*4);
5895 #else
5896   size(2*4);
5897 #endif
5898 
5899   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
5900             "LDDF   [$tmp+lo(&$src)],$dst" %}
5901   ins_encode %{
5902     address double_address = __ double_constant($src$$constant);
5903     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
5904     AddressLiteral addrlit(double_address, rspec);
5905 
5906     __ sethi(addrlit, $tmp$$Register);
5907     // XXX This is a quick fix for 6833573.
5908     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
5909     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
5910   %}
5911   ins_pipe(loadConFD);
5912 %}
5913 
5914 // Prefetch instructions.
5915 // Must be safe to execute with invalid address (cannot fault).
5916 
5917 instruct prefetchr( memory mem ) %{
5918   match( PrefetchRead mem );
5919   ins_cost(MEMORY_REF_COST);
5920 
5921   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
5922   opcode(Assembler::prefetch_op3);
5923   ins_encode( form3_mem_prefetch_read( mem ) );
5924   ins_pipe(iload_mem);
5925 %}
5926 
5927 instruct prefetchw( memory mem ) %{
5928   match( PrefetchWrite mem );
5929   ins_cost(MEMORY_REF_COST);
5930 
5931   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
5932   opcode(Assembler::prefetch_op3);
5933   ins_encode( form3_mem_prefetch_write( mem ) );
5934   ins_pipe(iload_mem);
5935 %}
5936 
5937 
5938 //----------Store Instructions-------------------------------------------------
5939 // Store Byte
5940 instruct storeB(memory mem, iRegI src) %{
5941   match(Set mem (StoreB mem src));
5942   ins_cost(MEMORY_REF_COST);
5943 
5944   size(4);
5945   format %{ "STB    $src,$mem\t! byte" %}
5946   opcode(Assembler::stb_op3);
5947   ins_encode(simple_form3_mem_reg( mem, src ) );
5948   ins_pipe(istore_mem_reg);
5949 %}
5950 
5951 instruct storeB0(memory mem, immI0 src) %{
5952   match(Set mem (StoreB mem src));
5953   ins_cost(MEMORY_REF_COST);
5954 
5955   size(4);
5956   format %{ "STB    $src,$mem\t! byte" %}
5957   opcode(Assembler::stb_op3);
5958   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
5959   ins_pipe(istore_mem_zero);
5960 %}
5961 
5962 instruct storeCM0(memory mem, immI0 src) %{
5963   match(Set mem (StoreCM mem src));
5964   ins_cost(MEMORY_REF_COST);
5965 
5966   size(4);
5967   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
5968   opcode(Assembler::stb_op3);
5969   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
5970   ins_pipe(istore_mem_zero);
5971 %}
5972 
5973 // Store Char/Short
5974 instruct storeC(memory mem, iRegI src) %{
5975   match(Set mem (StoreC mem src));
5976   ins_cost(MEMORY_REF_COST);
5977 
5978   size(4);
5979   format %{ "STH    $src,$mem\t! short" %}
5980   opcode(Assembler::sth_op3);
5981   ins_encode(simple_form3_mem_reg( mem, src ) );
5982   ins_pipe(istore_mem_reg);
5983 %}
5984 
5985 instruct storeC0(memory mem, immI0 src) %{
5986   match(Set mem (StoreC mem src));
5987   ins_cost(MEMORY_REF_COST);
5988 
5989   size(4);
5990   format %{ "STH    $src,$mem\t! short" %}
5991   opcode(Assembler::sth_op3);
5992   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
5993   ins_pipe(istore_mem_zero);
5994 %}
5995 
5996 // Store Integer
5997 instruct storeI(memory mem, iRegI src) %{
5998   match(Set mem (StoreI mem src));
5999   ins_cost(MEMORY_REF_COST);
6000 
6001   size(4);
6002   format %{ "STW    $src,$mem" %}
6003   opcode(Assembler::stw_op3);
6004   ins_encode(simple_form3_mem_reg( mem, src ) );
6005   ins_pipe(istore_mem_reg);
6006 %}
6007 
6008 // Store Long
6009 instruct storeL(memory mem, iRegL src) %{
6010   match(Set mem (StoreL mem src));
6011   ins_cost(MEMORY_REF_COST);
6012   size(4);
6013   format %{ "STX    $src,$mem\t! long" %}
6014   opcode(Assembler::stx_op3);
6015   ins_encode(simple_form3_mem_reg( mem, src ) );
6016   ins_pipe(istore_mem_reg);
6017 %}
6018 
6019 instruct storeI0(memory mem, immI0 src) %{
6020   match(Set mem (StoreI mem src));
6021   ins_cost(MEMORY_REF_COST);
6022 
6023   size(4);
6024   format %{ "STW    $src,$mem" %}
6025   opcode(Assembler::stw_op3);
6026   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6027   ins_pipe(istore_mem_zero);
6028 %}
6029 
6030 instruct storeL0(memory mem, immL0 src) %{
6031   match(Set mem (StoreL mem src));
6032   ins_cost(MEMORY_REF_COST);
6033 
6034   size(4);
6035   format %{ "STX    $src,$mem" %}
6036   opcode(Assembler::stx_op3);
6037   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6038   ins_pipe(istore_mem_zero);
6039 %}
6040 
6041 // Store Integer from float register (used after fstoi)
6042 instruct storeI_Freg(memory mem, regF src) %{
6043   match(Set mem (StoreI mem src));
6044   ins_cost(MEMORY_REF_COST);
6045 
6046   size(4);
6047   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6048   opcode(Assembler::stf_op3);
6049   ins_encode(simple_form3_mem_reg( mem, src ) );
6050   ins_pipe(fstoreF_mem_reg);
6051 %}
6052 
6053 // Store Pointer
6054 instruct storeP(memory dst, sp_ptr_RegP src) %{
6055   match(Set dst (StoreP dst src));
6056   ins_cost(MEMORY_REF_COST);
6057   size(4);
6058 
6059 #ifndef _LP64
6060   format %{ "STW    $src,$dst\t! ptr" %}
6061   opcode(Assembler::stw_op3, 0, REGP_OP);
6062 #else
6063   format %{ "STX    $src,$dst\t! ptr" %}
6064   opcode(Assembler::stx_op3, 0, REGP_OP);
6065 #endif
6066   ins_encode( form3_mem_reg( dst, src ) );
6067   ins_pipe(istore_mem_spORreg);
6068 %}
6069 
6070 instruct storeP0(memory dst, immP0 src) %{
6071   match(Set dst (StoreP dst src));
6072   ins_cost(MEMORY_REF_COST);
6073   size(4);
6074 
6075 #ifndef _LP64
6076   format %{ "STW    $src,$dst\t! ptr" %}
6077   opcode(Assembler::stw_op3, 0, REGP_OP);
6078 #else
6079   format %{ "STX    $src,$dst\t! ptr" %}
6080   opcode(Assembler::stx_op3, 0, REGP_OP);
6081 #endif
6082   ins_encode( form3_mem_reg( dst, R_G0 ) );
6083   ins_pipe(istore_mem_zero);
6084 %}
6085 
6086 // Store Compressed Pointer
6087 instruct storeN(memory dst, iRegN src) %{
6088    match(Set dst (StoreN dst src));
6089    ins_cost(MEMORY_REF_COST);
6090    size(4);
6091 
6092    format %{ "STW    $src,$dst\t! compressed ptr" %}
6093    ins_encode %{
6094      Register base = as_Register($dst$$base);
6095      Register index = as_Register($dst$$index);
6096      Register src = $src$$Register;
6097      if (index != G0) {
6098        __ stw(src, base, index);
6099      } else {
6100        __ stw(src, base, $dst$$disp);
6101      }
6102    %}
6103    ins_pipe(istore_mem_spORreg);
6104 %}
6105 
6106 instruct storeN0(memory dst, immN0 src) %{
6107    match(Set dst (StoreN dst src));
6108    ins_cost(MEMORY_REF_COST);
6109    size(4);
6110 
6111    format %{ "STW    $src,$dst\t! compressed ptr" %}
6112    ins_encode %{
6113      Register base = as_Register($dst$$base);
6114      Register index = as_Register($dst$$index);
6115      if (index != G0) {
6116        __ stw(0, base, index);
6117      } else {
6118        __ stw(0, base, $dst$$disp);
6119      }
6120    %}
6121    ins_pipe(istore_mem_zero);
6122 %}
6123 
6124 // Store Double
6125 instruct storeD( memory mem, regD src) %{
6126   match(Set mem (StoreD mem src));
6127   ins_cost(MEMORY_REF_COST);
6128 
6129   size(4);
6130   format %{ "STDF   $src,$mem" %}
6131   opcode(Assembler::stdf_op3);
6132   ins_encode(simple_form3_mem_reg( mem, src ) );
6133   ins_pipe(fstoreD_mem_reg);
6134 %}
6135 
6136 instruct storeD0( memory mem, immD0 src) %{
6137   match(Set mem (StoreD mem src));
6138   ins_cost(MEMORY_REF_COST);
6139 
6140   size(4);
6141   format %{ "STX    $src,$mem" %}
6142   opcode(Assembler::stx_op3);
6143   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6144   ins_pipe(fstoreD_mem_zero);
6145 %}
6146 
6147 // Store Float
6148 instruct storeF( memory mem, regF src) %{
6149   match(Set mem (StoreF mem src));
6150   ins_cost(MEMORY_REF_COST);
6151 
6152   size(4);
6153   format %{ "STF    $src,$mem" %}
6154   opcode(Assembler::stf_op3);
6155   ins_encode(simple_form3_mem_reg( mem, src ) );
6156   ins_pipe(fstoreF_mem_reg);
6157 %}
6158 
6159 instruct storeF0( memory mem, immF0 src) %{
6160   match(Set mem (StoreF mem src));
6161   ins_cost(MEMORY_REF_COST);
6162 
6163   size(4);
6164   format %{ "STW    $src,$mem\t! storeF0" %}
6165   opcode(Assembler::stw_op3);
6166   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6167   ins_pipe(fstoreF_mem_zero);
6168 %}
6169 
6170 // Store Aligned Packed Bytes in Double register to memory
6171 instruct storeA8B(memory mem, regD src) %{
6172   match(Set mem (Store8B mem src));
6173   ins_cost(MEMORY_REF_COST);
6174   size(4);
6175   format %{ "STDF   $src,$mem\t! packed8B" %}
6176   opcode(Assembler::stdf_op3);
6177   ins_encode(simple_form3_mem_reg( mem, src ) );
6178   ins_pipe(fstoreD_mem_reg);
6179 %}
6180 
6181 // Convert oop pointer into compressed form
6182 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6183   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6184   match(Set dst (EncodeP src));
6185   format %{ "encode_heap_oop $src, $dst" %}
6186   ins_encode %{
6187     __ encode_heap_oop($src$$Register, $dst$$Register);
6188   %}
6189   ins_pipe(ialu_reg);
6190 %}
6191 
6192 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6193   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6194   match(Set dst (EncodeP src));
6195   format %{ "encode_heap_oop_not_null $src, $dst" %}
6196   ins_encode %{
6197     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6198   %}
6199   ins_pipe(ialu_reg);
6200 %}
6201 
6202 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6203   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6204             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6205   match(Set dst (DecodeN src));
6206   format %{ "decode_heap_oop $src, $dst" %}
6207   ins_encode %{
6208     __ decode_heap_oop($src$$Register, $dst$$Register);
6209   %}
6210   ins_pipe(ialu_reg);
6211 %}
6212 
6213 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6214   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6215             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6216   match(Set dst (DecodeN src));
6217   format %{ "decode_heap_oop_not_null $src, $dst" %}
6218   ins_encode %{
6219     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6220   %}
6221   ins_pipe(ialu_reg);
6222 %}
6223 
6224 
6225 // Store Zero into Aligned Packed Bytes
6226 instruct storeA8B0(memory mem, immI0 zero) %{
6227   match(Set mem (Store8B mem zero));
6228   ins_cost(MEMORY_REF_COST);
6229   size(4);
6230   format %{ "STX    $zero,$mem\t! packed8B" %}
6231   opcode(Assembler::stx_op3);
6232   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6233   ins_pipe(fstoreD_mem_zero);
6234 %}
6235 
6236 // Store Aligned Packed Chars/Shorts in Double register to memory
6237 instruct storeA4C(memory mem, regD src) %{
6238   match(Set mem (Store4C mem src));
6239   ins_cost(MEMORY_REF_COST);
6240   size(4);
6241   format %{ "STDF   $src,$mem\t! packed4C" %}
6242   opcode(Assembler::stdf_op3);
6243   ins_encode(simple_form3_mem_reg( mem, src ) );
6244   ins_pipe(fstoreD_mem_reg);
6245 %}
6246 
6247 // Store Zero into Aligned Packed Chars/Shorts
6248 instruct storeA4C0(memory mem, immI0 zero) %{
6249   match(Set mem (Store4C mem (Replicate4C zero)));
6250   ins_cost(MEMORY_REF_COST);
6251   size(4);
6252   format %{ "STX    $zero,$mem\t! packed4C" %}
6253   opcode(Assembler::stx_op3);
6254   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6255   ins_pipe(fstoreD_mem_zero);
6256 %}
6257 
6258 // Store Aligned Packed Ints in Double register to memory
6259 instruct storeA2I(memory mem, regD src) %{
6260   match(Set mem (Store2I mem src));
6261   ins_cost(MEMORY_REF_COST);
6262   size(4);
6263   format %{ "STDF   $src,$mem\t! packed2I" %}
6264   opcode(Assembler::stdf_op3);
6265   ins_encode(simple_form3_mem_reg( mem, src ) );
6266   ins_pipe(fstoreD_mem_reg);
6267 %}
6268 
6269 // Store Zero into Aligned Packed Ints
6270 instruct storeA2I0(memory mem, immI0 zero) %{
6271   match(Set mem (Store2I mem zero));
6272   ins_cost(MEMORY_REF_COST);
6273   size(4);
6274   format %{ "STX    $zero,$mem\t! packed2I" %}
6275   opcode(Assembler::stx_op3);
6276   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6277   ins_pipe(fstoreD_mem_zero);
6278 %}
6279 
6280 
6281 //----------MemBar Instructions-----------------------------------------------
6282 // Memory barrier flavors
6283 
6284 instruct membar_acquire() %{
6285   match(MemBarAcquire);
6286   ins_cost(4*MEMORY_REF_COST);
6287 
6288   size(0);
6289   format %{ "MEMBAR-acquire" %}
6290   ins_encode( enc_membar_acquire );
6291   ins_pipe(long_memory_op);
6292 %}
6293 
6294 instruct membar_acquire_lock() %{
6295   match(MemBarAcquire);
6296   predicate(Matcher::prior_fast_lock(n));
6297   ins_cost(0);
6298 
6299   size(0);
6300   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6301   ins_encode( );
6302   ins_pipe(empty);
6303 %}
6304 
6305 instruct membar_release() %{
6306   match(MemBarRelease);
6307   ins_cost(4*MEMORY_REF_COST);
6308 
6309   size(0);
6310   format %{ "MEMBAR-release" %}
6311   ins_encode( enc_membar_release );
6312   ins_pipe(long_memory_op);
6313 %}
6314 
6315 instruct membar_release_lock() %{
6316   match(MemBarRelease);
6317   predicate(Matcher::post_fast_unlock(n));
6318   ins_cost(0);
6319 
6320   size(0);
6321   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6322   ins_encode( );
6323   ins_pipe(empty);
6324 %}
6325 
6326 instruct membar_volatile() %{
6327   match(MemBarVolatile);
6328   ins_cost(4*MEMORY_REF_COST);
6329 
6330   size(4);
6331   format %{ "MEMBAR-volatile" %}
6332   ins_encode( enc_membar_volatile );
6333   ins_pipe(long_memory_op);
6334 %}
6335 
6336 instruct unnecessary_membar_volatile() %{
6337   match(MemBarVolatile);
6338   predicate(Matcher::post_store_load_barrier(n));
6339   ins_cost(0);
6340 
6341   size(0);
6342   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6343   ins_encode( );
6344   ins_pipe(empty);
6345 %}
6346 
6347 //----------Register Move Instructions-----------------------------------------
6348 instruct roundDouble_nop(regD dst) %{
6349   match(Set dst (RoundDouble dst));
6350   ins_cost(0);
6351   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6352   ins_encode( );
6353   ins_pipe(empty);
6354 %}
6355 
6356 
6357 instruct roundFloat_nop(regF dst) %{
6358   match(Set dst (RoundFloat dst));
6359   ins_cost(0);
6360   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6361   ins_encode( );
6362   ins_pipe(empty);
6363 %}
6364 
6365 
6366 // Cast Index to Pointer for unsafe natives
6367 instruct castX2P(iRegX src, iRegP dst) %{
6368   match(Set dst (CastX2P src));
6369 
6370   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6371   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6372   ins_pipe(ialu_reg);
6373 %}
6374 
6375 // Cast Pointer to Index for unsafe natives
6376 instruct castP2X(iRegP src, iRegX dst) %{
6377   match(Set dst (CastP2X src));
6378 
6379   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6380   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6381   ins_pipe(ialu_reg);
6382 %}
6383 
6384 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6385   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6386   match(Set stkSlot src);   // chain rule
6387   ins_cost(MEMORY_REF_COST);
6388   format %{ "STDF   $src,$stkSlot\t!stk" %}
6389   opcode(Assembler::stdf_op3);
6390   ins_encode(simple_form3_mem_reg(stkSlot, src));
6391   ins_pipe(fstoreD_stk_reg);
6392 %}
6393 
6394 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6395   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6396   match(Set dst stkSlot);   // chain rule
6397   ins_cost(MEMORY_REF_COST);
6398   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6399   opcode(Assembler::lddf_op3);
6400   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6401   ins_pipe(floadD_stk);
6402 %}
6403 
6404 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6405   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6406   match(Set stkSlot src);   // chain rule
6407   ins_cost(MEMORY_REF_COST);
6408   format %{ "STF   $src,$stkSlot\t!stk" %}
6409   opcode(Assembler::stf_op3);
6410   ins_encode(simple_form3_mem_reg(stkSlot, src));
6411   ins_pipe(fstoreF_stk_reg);
6412 %}
6413 
6414 //----------Conditional Move---------------------------------------------------
6415 // Conditional move
6416 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6417   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6418   ins_cost(150);
6419   format %{ "MOV$cmp $pcc,$src,$dst" %}
6420   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6421   ins_pipe(ialu_reg);
6422 %}
6423 
6424 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6425   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6426   ins_cost(140);
6427   format %{ "MOV$cmp $pcc,$src,$dst" %}
6428   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6429   ins_pipe(ialu_imm);
6430 %}
6431 
6432 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6433   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6434   ins_cost(150);
6435   size(4);
6436   format %{ "MOV$cmp  $icc,$src,$dst" %}
6437   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6438   ins_pipe(ialu_reg);
6439 %}
6440 
6441 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6442   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6443   ins_cost(140);
6444   size(4);
6445   format %{ "MOV$cmp  $icc,$src,$dst" %}
6446   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6447   ins_pipe(ialu_imm);
6448 %}
6449 
6450 instruct cmovII_U_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6451   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6452   ins_cost(150);
6453   size(4);
6454   format %{ "MOV$cmp  $icc,$src,$dst" %}
6455   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6456   ins_pipe(ialu_reg);
6457 %}
6458 
6459 instruct cmovII_U_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6460   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6461   ins_cost(140);
6462   size(4);
6463   format %{ "MOV$cmp  $icc,$src,$dst" %}
6464   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6465   ins_pipe(ialu_imm);
6466 %}
6467 
6468 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6469   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6470   ins_cost(150);
6471   size(4);
6472   format %{ "MOV$cmp $fcc,$src,$dst" %}
6473   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6474   ins_pipe(ialu_reg);
6475 %}
6476 
6477 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6478   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6479   ins_cost(140);
6480   size(4);
6481   format %{ "MOV$cmp $fcc,$src,$dst" %}
6482   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6483   ins_pipe(ialu_imm);
6484 %}
6485 
6486 // Conditional move for RegN. Only cmov(reg,reg).
6487 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6488   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6489   ins_cost(150);
6490   format %{ "MOV$cmp $pcc,$src,$dst" %}
6491   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6492   ins_pipe(ialu_reg);
6493 %}
6494 
6495 // This instruction also works with CmpN so we don't need cmovNN_reg.
6496 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6497   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6498   ins_cost(150);
6499   size(4);
6500   format %{ "MOV$cmp  $icc,$src,$dst" %}
6501   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6502   ins_pipe(ialu_reg);
6503 %}
6504 
6505 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6506   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6507   ins_cost(150);
6508   size(4);
6509   format %{ "MOV$cmp $fcc,$src,$dst" %}
6510   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6511   ins_pipe(ialu_reg);
6512 %}
6513 
6514 // Conditional move
6515 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6516   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6517   ins_cost(150);
6518   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6519   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6520   ins_pipe(ialu_reg);
6521 %}
6522 
6523 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6524   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6525   ins_cost(140);
6526   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6527   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6528   ins_pipe(ialu_imm);
6529 %}
6530 
6531 // This instruction also works with CmpN so we don't need cmovPN_reg.
6532 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6533   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6534   ins_cost(150);
6535 
6536   size(4);
6537   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6538   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6539   ins_pipe(ialu_reg);
6540 %}
6541 
6542 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6543   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6544   ins_cost(140);
6545 
6546   size(4);
6547   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6548   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6549   ins_pipe(ialu_imm);
6550 %}
6551 
6552 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6553   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6554   ins_cost(150);
6555   size(4);
6556   format %{ "MOV$cmp $fcc,$src,$dst" %}
6557   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6558   ins_pipe(ialu_imm);
6559 %}
6560 
6561 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6562   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6563   ins_cost(140);
6564   size(4);
6565   format %{ "MOV$cmp $fcc,$src,$dst" %}
6566   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6567   ins_pipe(ialu_imm);
6568 %}
6569 
6570 // Conditional move
6571 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6572   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6573   ins_cost(150);
6574   opcode(0x101);
6575   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6576   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6577   ins_pipe(int_conditional_float_move);
6578 %}
6579 
6580 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6581   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6582   ins_cost(150);
6583 
6584   size(4);
6585   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6586   opcode(0x101);
6587   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6588   ins_pipe(int_conditional_float_move);
6589 %}
6590 
6591 // Conditional move,
6592 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6593   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6594   ins_cost(150);
6595   size(4);
6596   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6597   opcode(0x1);
6598   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6599   ins_pipe(int_conditional_double_move);
6600 %}
6601 
6602 // Conditional move
6603 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6604   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6605   ins_cost(150);
6606   size(4);
6607   opcode(0x102);
6608   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6609   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6610   ins_pipe(int_conditional_double_move);
6611 %}
6612 
6613 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6614   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6615   ins_cost(150);
6616 
6617   size(4);
6618   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6619   opcode(0x102);
6620   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6621   ins_pipe(int_conditional_double_move);
6622 %}
6623 
6624 // Conditional move,
6625 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6626   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6627   ins_cost(150);
6628   size(4);
6629   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6630   opcode(0x2);
6631   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6632   ins_pipe(int_conditional_double_move);
6633 %}
6634 
6635 // Conditional move
6636 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6637   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6638   ins_cost(150);
6639   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6640   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6641   ins_pipe(ialu_reg);
6642 %}
6643 
6644 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6645   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6646   ins_cost(140);
6647   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6648   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6649   ins_pipe(ialu_imm);
6650 %}
6651 
6652 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6653   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6654   ins_cost(150);
6655 
6656   size(4);
6657   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6658   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6659   ins_pipe(ialu_reg);
6660 %}
6661 
6662 
6663 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6664   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6665   ins_cost(150);
6666 
6667   size(4);
6668   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
6669   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6670   ins_pipe(ialu_reg);
6671 %}
6672 
6673 
6674 
6675 //----------OS and Locking Instructions----------------------------------------
6676 
6677 // This name is KNOWN by the ADLC and cannot be changed.
6678 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6679 // for this guy.
6680 instruct tlsLoadP(g2RegP dst) %{
6681   match(Set dst (ThreadLocal));
6682 
6683   size(0);
6684   ins_cost(0);
6685   format %{ "# TLS is in G2" %}
6686   ins_encode( /*empty encoding*/ );
6687   ins_pipe(ialu_none);
6688 %}
6689 
6690 instruct checkCastPP( iRegP dst ) %{
6691   match(Set dst (CheckCastPP dst));
6692 
6693   size(0);
6694   format %{ "# checkcastPP of $dst" %}
6695   ins_encode( /*empty encoding*/ );
6696   ins_pipe(empty);
6697 %}
6698 
6699 
6700 instruct castPP( iRegP dst ) %{
6701   match(Set dst (CastPP dst));
6702   format %{ "# castPP of $dst" %}
6703   ins_encode( /*empty encoding*/ );
6704   ins_pipe(empty);
6705 %}
6706 
6707 instruct castII( iRegI dst ) %{
6708   match(Set dst (CastII dst));
6709   format %{ "# castII of $dst" %}
6710   ins_encode( /*empty encoding*/ );
6711   ins_cost(0);
6712   ins_pipe(empty);
6713 %}
6714 
6715 //----------Arithmetic Instructions--------------------------------------------
6716 // Addition Instructions
6717 // Register Addition
6718 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6719   match(Set dst (AddI src1 src2));
6720 
6721   size(4);
6722   format %{ "ADD    $src1,$src2,$dst" %}
6723   ins_encode %{
6724     __ add($src1$$Register, $src2$$Register, $dst$$Register);
6725   %}
6726   ins_pipe(ialu_reg_reg);
6727 %}
6728 
6729 // Immediate Addition
6730 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6731   match(Set dst (AddI src1 src2));
6732 
6733   size(4);
6734   format %{ "ADD    $src1,$src2,$dst" %}
6735   opcode(Assembler::add_op3, Assembler::arith_op);
6736   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6737   ins_pipe(ialu_reg_imm);
6738 %}
6739 
6740 // Pointer Register Addition
6741 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
6742   match(Set dst (AddP src1 src2));
6743 
6744   size(4);
6745   format %{ "ADD    $src1,$src2,$dst" %}
6746   opcode(Assembler::add_op3, Assembler::arith_op);
6747   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6748   ins_pipe(ialu_reg_reg);
6749 %}
6750 
6751 // Pointer Immediate Addition
6752 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
6753   match(Set dst (AddP src1 src2));
6754 
6755   size(4);
6756   format %{ "ADD    $src1,$src2,$dst" %}
6757   opcode(Assembler::add_op3, Assembler::arith_op);
6758   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6759   ins_pipe(ialu_reg_imm);
6760 %}
6761 
6762 // Long Addition
6763 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6764   match(Set dst (AddL src1 src2));
6765 
6766   size(4);
6767   format %{ "ADD    $src1,$src2,$dst\t! long" %}
6768   opcode(Assembler::add_op3, Assembler::arith_op);
6769   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6770   ins_pipe(ialu_reg_reg);
6771 %}
6772 
6773 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
6774   match(Set dst (AddL src1 con));
6775 
6776   size(4);
6777   format %{ "ADD    $src1,$con,$dst" %}
6778   opcode(Assembler::add_op3, Assembler::arith_op);
6779   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
6780   ins_pipe(ialu_reg_imm);
6781 %}
6782 
6783 //----------Conditional_store--------------------------------------------------
6784 // Conditional-store of the updated heap-top.
6785 // Used during allocation of the shared heap.
6786 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
6787 
6788 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
6789 instruct loadPLocked(iRegP dst, memory mem) %{
6790   match(Set dst (LoadPLocked mem));
6791   ins_cost(MEMORY_REF_COST);
6792 
6793 #ifndef _LP64
6794   size(4);
6795   format %{ "LDUW   $mem,$dst\t! ptr" %}
6796   opcode(Assembler::lduw_op3, 0, REGP_OP);
6797 #else
6798   format %{ "LDX    $mem,$dst\t! ptr" %}
6799   opcode(Assembler::ldx_op3, 0, REGP_OP);
6800 #endif
6801   ins_encode( form3_mem_reg( mem, dst ) );
6802   ins_pipe(iload_mem);
6803 %}
6804 
6805 // LoadL-locked.  Same as a regular long load when used with a compare-swap
6806 instruct loadLLocked(iRegL dst, memory mem) %{
6807   match(Set dst (LoadLLocked mem));
6808   ins_cost(MEMORY_REF_COST);
6809   size(4);
6810   format %{ "LDX    $mem,$dst\t! long" %}
6811   opcode(Assembler::ldx_op3);
6812   ins_encode(simple_form3_mem_reg( mem, dst ) );
6813   ins_pipe(iload_mem);
6814 %}
6815 
6816 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
6817   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
6818   effect( KILL newval );
6819   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
6820             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
6821   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
6822   ins_pipe( long_memory_op );
6823 %}
6824 
6825 // Conditional-store of an int value.
6826 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
6827   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
6828   effect( KILL newval );
6829   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
6830             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
6831   ins_encode( enc_cas(mem_ptr,oldval,newval) );
6832   ins_pipe( long_memory_op );
6833 %}
6834 
6835 // Conditional-store of a long value.
6836 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
6837   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
6838   effect( KILL newval );
6839   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
6840             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
6841   ins_encode( enc_cas(mem_ptr,oldval,newval) );
6842   ins_pipe( long_memory_op );
6843 %}
6844 
6845 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
6846 
6847 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6848   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
6849   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6850   format %{
6851             "MOV    $newval,O7\n\t"
6852             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6853             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6854             "MOV    1,$res\n\t"
6855             "MOVne  xcc,R_G0,$res"
6856   %}
6857   ins_encode( enc_casx(mem_ptr, oldval, newval),
6858               enc_lflags_ne_to_boolean(res) );
6859   ins_pipe( long_memory_op );
6860 %}
6861 
6862 
6863 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6864   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
6865   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6866   format %{
6867             "MOV    $newval,O7\n\t"
6868             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6869             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6870             "MOV    1,$res\n\t"
6871             "MOVne  icc,R_G0,$res"
6872   %}
6873   ins_encode( enc_casi(mem_ptr, oldval, newval),
6874               enc_iflags_ne_to_boolean(res) );
6875   ins_pipe( long_memory_op );
6876 %}
6877 
6878 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6879   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
6880   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6881   format %{
6882             "MOV    $newval,O7\n\t"
6883             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6884             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6885             "MOV    1,$res\n\t"
6886             "MOVne  xcc,R_G0,$res"
6887   %}
6888 #ifdef _LP64
6889   ins_encode( enc_casx(mem_ptr, oldval, newval),
6890               enc_lflags_ne_to_boolean(res) );
6891 #else
6892   ins_encode( enc_casi(mem_ptr, oldval, newval),
6893               enc_iflags_ne_to_boolean(res) );
6894 #endif
6895   ins_pipe( long_memory_op );
6896 %}
6897 
6898 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6899   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
6900   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6901   format %{
6902             "MOV    $newval,O7\n\t"
6903             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6904             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6905             "MOV    1,$res\n\t"
6906             "MOVne  icc,R_G0,$res"
6907   %}
6908   ins_encode( enc_casi(mem_ptr, oldval, newval),
6909               enc_iflags_ne_to_boolean(res) );
6910   ins_pipe( long_memory_op );
6911 %}
6912 
6913 //---------------------
6914 // Subtraction Instructions
6915 // Register Subtraction
6916 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6917   match(Set dst (SubI src1 src2));
6918 
6919   size(4);
6920   format %{ "SUB    $src1,$src2,$dst" %}
6921   opcode(Assembler::sub_op3, Assembler::arith_op);
6922   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6923   ins_pipe(ialu_reg_reg);
6924 %}
6925 
6926 // Immediate Subtraction
6927 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6928   match(Set dst (SubI src1 src2));
6929 
6930   size(4);
6931   format %{ "SUB    $src1,$src2,$dst" %}
6932   opcode(Assembler::sub_op3, Assembler::arith_op);
6933   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6934   ins_pipe(ialu_reg_imm);
6935 %}
6936 
6937 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
6938   match(Set dst (SubI zero src2));
6939 
6940   size(4);
6941   format %{ "NEG    $src2,$dst" %}
6942   opcode(Assembler::sub_op3, Assembler::arith_op);
6943   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
6944   ins_pipe(ialu_zero_reg);
6945 %}
6946 
6947 // Long subtraction
6948 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6949   match(Set dst (SubL src1 src2));
6950 
6951   size(4);
6952   format %{ "SUB    $src1,$src2,$dst\t! long" %}
6953   opcode(Assembler::sub_op3, Assembler::arith_op);
6954   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6955   ins_pipe(ialu_reg_reg);
6956 %}
6957 
6958 // Immediate Subtraction
6959 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
6960   match(Set dst (SubL src1 con));
6961 
6962   size(4);
6963   format %{ "SUB    $src1,$con,$dst\t! long" %}
6964   opcode(Assembler::sub_op3, Assembler::arith_op);
6965   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
6966   ins_pipe(ialu_reg_imm);
6967 %}
6968 
6969 // Long negation
6970 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
6971   match(Set dst (SubL zero src2));
6972 
6973   size(4);
6974   format %{ "NEG    $src2,$dst\t! long" %}
6975   opcode(Assembler::sub_op3, Assembler::arith_op);
6976   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
6977   ins_pipe(ialu_zero_reg);
6978 %}
6979 
6980 // Multiplication Instructions
6981 // Integer Multiplication
6982 // Register Multiplication
6983 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6984   match(Set dst (MulI src1 src2));
6985 
6986   size(4);
6987   format %{ "MULX   $src1,$src2,$dst" %}
6988   opcode(Assembler::mulx_op3, Assembler::arith_op);
6989   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6990   ins_pipe(imul_reg_reg);
6991 %}
6992 
6993 // Immediate Multiplication
6994 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6995   match(Set dst (MulI src1 src2));
6996 
6997   size(4);
6998   format %{ "MULX   $src1,$src2,$dst" %}
6999   opcode(Assembler::mulx_op3, Assembler::arith_op);
7000   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7001   ins_pipe(imul_reg_imm);
7002 %}
7003 
7004 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7005   match(Set dst (MulL src1 src2));
7006   ins_cost(DEFAULT_COST * 5);
7007   size(4);
7008   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7009   opcode(Assembler::mulx_op3, Assembler::arith_op);
7010   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7011   ins_pipe(mulL_reg_reg);
7012 %}
7013 
7014 // Immediate Multiplication
7015 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7016   match(Set dst (MulL src1 src2));
7017   ins_cost(DEFAULT_COST * 5);
7018   size(4);
7019   format %{ "MULX   $src1,$src2,$dst" %}
7020   opcode(Assembler::mulx_op3, Assembler::arith_op);
7021   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7022   ins_pipe(mulL_reg_imm);
7023 %}
7024 
7025 // Integer Division
7026 // Register Division
7027 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7028   match(Set dst (DivI src1 src2));
7029   ins_cost((2+71)*DEFAULT_COST);
7030 
7031   format %{ "SRA     $src2,0,$src2\n\t"
7032             "SRA     $src1,0,$src1\n\t"
7033             "SDIVX   $src1,$src2,$dst" %}
7034   ins_encode( idiv_reg( src1, src2, dst ) );
7035   ins_pipe(sdiv_reg_reg);
7036 %}
7037 
7038 // Immediate Division
7039 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7040   match(Set dst (DivI src1 src2));
7041   ins_cost((2+71)*DEFAULT_COST);
7042 
7043   format %{ "SRA     $src1,0,$src1\n\t"
7044             "SDIVX   $src1,$src2,$dst" %}
7045   ins_encode( idiv_imm( src1, src2, dst ) );
7046   ins_pipe(sdiv_reg_imm);
7047 %}
7048 
7049 //----------Div-By-10-Expansion------------------------------------------------
7050 // Extract hi bits of a 32x32->64 bit multiply.
7051 // Expand rule only, not matched
7052 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7053   effect( DEF dst, USE src1, USE src2 );
7054   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7055             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7056   ins_encode( enc_mul_hi(dst,src1,src2));
7057   ins_pipe(sdiv_reg_reg);
7058 %}
7059 
7060 // Magic constant, reciprocal of 10
7061 instruct loadConI_x66666667(iRegIsafe dst) %{
7062   effect( DEF dst );
7063 
7064   size(8);
7065   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7066   ins_encode( Set32(0x66666667, dst) );
7067   ins_pipe(ialu_hi_lo_reg);
7068 %}
7069 
7070 // Register Shift Right Arithmetic Long by 32-63
7071 instruct sra_31( iRegI dst, iRegI src ) %{
7072   effect( DEF dst, USE src );
7073   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7074   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7075   ins_pipe(ialu_reg_reg);
7076 %}
7077 
7078 // Arithmetic Shift Right by 8-bit immediate
7079 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7080   effect( DEF dst, USE src );
7081   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7082   opcode(Assembler::sra_op3, Assembler::arith_op);
7083   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7084   ins_pipe(ialu_reg_imm);
7085 %}
7086 
7087 // Integer DIV with 10
7088 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7089   match(Set dst (DivI src div));
7090   ins_cost((6+6)*DEFAULT_COST);
7091   expand %{
7092     iRegIsafe tmp1;               // Killed temps;
7093     iRegIsafe tmp2;               // Killed temps;
7094     iRegI tmp3;                   // Killed temps;
7095     iRegI tmp4;                   // Killed temps;
7096     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7097     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7098     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7099     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7100     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7101   %}
7102 %}
7103 
7104 // Register Long Division
7105 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7106   match(Set dst (DivL src1 src2));
7107   ins_cost(DEFAULT_COST*71);
7108   size(4);
7109   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7110   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7111   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7112   ins_pipe(divL_reg_reg);
7113 %}
7114 
7115 // Register Long Division
7116 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7117   match(Set dst (DivL src1 src2));
7118   ins_cost(DEFAULT_COST*71);
7119   size(4);
7120   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7121   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7122   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7123   ins_pipe(divL_reg_imm);
7124 %}
7125 
7126 // Integer Remainder
7127 // Register Remainder
7128 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7129   match(Set dst (ModI src1 src2));
7130   effect( KILL ccr, KILL temp);
7131 
7132   format %{ "SREM   $src1,$src2,$dst" %}
7133   ins_encode( irem_reg(src1, src2, dst, temp) );
7134   ins_pipe(sdiv_reg_reg);
7135 %}
7136 
7137 // Immediate Remainder
7138 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7139   match(Set dst (ModI src1 src2));
7140   effect( KILL ccr, KILL temp);
7141 
7142   format %{ "SREM   $src1,$src2,$dst" %}
7143   ins_encode( irem_imm(src1, src2, dst, temp) );
7144   ins_pipe(sdiv_reg_imm);
7145 %}
7146 
7147 // Register Long Remainder
7148 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7149   effect(DEF dst, USE src1, USE src2);
7150   size(4);
7151   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7152   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7153   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7154   ins_pipe(divL_reg_reg);
7155 %}
7156 
7157 // Register Long Division
7158 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7159   effect(DEF dst, USE src1, USE src2);
7160   size(4);
7161   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7162   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7163   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7164   ins_pipe(divL_reg_imm);
7165 %}
7166 
7167 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7168   effect(DEF dst, USE src1, USE src2);
7169   size(4);
7170   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7171   opcode(Assembler::mulx_op3, Assembler::arith_op);
7172   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7173   ins_pipe(mulL_reg_reg);
7174 %}
7175 
7176 // Immediate Multiplication
7177 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7178   effect(DEF dst, USE src1, USE src2);
7179   size(4);
7180   format %{ "MULX   $src1,$src2,$dst" %}
7181   opcode(Assembler::mulx_op3, Assembler::arith_op);
7182   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7183   ins_pipe(mulL_reg_imm);
7184 %}
7185 
7186 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7187   effect(DEF dst, USE src1, USE src2);
7188   size(4);
7189   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7190   opcode(Assembler::sub_op3, Assembler::arith_op);
7191   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7192   ins_pipe(ialu_reg_reg);
7193 %}
7194 
7195 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7196   effect(DEF dst, USE src1, USE src2);
7197   size(4);
7198   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7199   opcode(Assembler::sub_op3, Assembler::arith_op);
7200   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7201   ins_pipe(ialu_reg_reg);
7202 %}
7203 
7204 // Register Long Remainder
7205 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7206   match(Set dst (ModL src1 src2));
7207   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7208   expand %{
7209     iRegL tmp1;
7210     iRegL tmp2;
7211     divL_reg_reg_1(tmp1, src1, src2);
7212     mulL_reg_reg_1(tmp2, tmp1, src2);
7213     subL_reg_reg_1(dst,  src1, tmp2);
7214   %}
7215 %}
7216 
7217 // Register Long Remainder
7218 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7219   match(Set dst (ModL src1 src2));
7220   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7221   expand %{
7222     iRegL tmp1;
7223     iRegL tmp2;
7224     divL_reg_imm13_1(tmp1, src1, src2);
7225     mulL_reg_imm13_1(tmp2, tmp1, src2);
7226     subL_reg_reg_2  (dst,  src1, tmp2);
7227   %}
7228 %}
7229 
7230 // Integer Shift Instructions
7231 // Register Shift Left
7232 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7233   match(Set dst (LShiftI src1 src2));
7234 
7235   size(4);
7236   format %{ "SLL    $src1,$src2,$dst" %}
7237   opcode(Assembler::sll_op3, Assembler::arith_op);
7238   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7239   ins_pipe(ialu_reg_reg);
7240 %}
7241 
7242 // Register Shift Left Immediate
7243 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7244   match(Set dst (LShiftI src1 src2));
7245 
7246   size(4);
7247   format %{ "SLL    $src1,$src2,$dst" %}
7248   opcode(Assembler::sll_op3, Assembler::arith_op);
7249   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7250   ins_pipe(ialu_reg_imm);
7251 %}
7252 
7253 // Register Shift Left
7254 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7255   match(Set dst (LShiftL src1 src2));
7256 
7257   size(4);
7258   format %{ "SLLX   $src1,$src2,$dst" %}
7259   opcode(Assembler::sllx_op3, Assembler::arith_op);
7260   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7261   ins_pipe(ialu_reg_reg);
7262 %}
7263 
7264 // Register Shift Left Immediate
7265 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7266   match(Set dst (LShiftL src1 src2));
7267 
7268   size(4);
7269   format %{ "SLLX   $src1,$src2,$dst" %}
7270   opcode(Assembler::sllx_op3, Assembler::arith_op);
7271   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7272   ins_pipe(ialu_reg_imm);
7273 %}
7274 
7275 // Register Arithmetic Shift Right
7276 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7277   match(Set dst (RShiftI src1 src2));
7278   size(4);
7279   format %{ "SRA    $src1,$src2,$dst" %}
7280   opcode(Assembler::sra_op3, Assembler::arith_op);
7281   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7282   ins_pipe(ialu_reg_reg);
7283 %}
7284 
7285 // Register Arithmetic Shift Right Immediate
7286 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7287   match(Set dst (RShiftI src1 src2));
7288 
7289   size(4);
7290   format %{ "SRA    $src1,$src2,$dst" %}
7291   opcode(Assembler::sra_op3, Assembler::arith_op);
7292   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7293   ins_pipe(ialu_reg_imm);
7294 %}
7295 
7296 // Register Shift Right Arithmatic Long
7297 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7298   match(Set dst (RShiftL src1 src2));
7299 
7300   size(4);
7301   format %{ "SRAX   $src1,$src2,$dst" %}
7302   opcode(Assembler::srax_op3, Assembler::arith_op);
7303   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7304   ins_pipe(ialu_reg_reg);
7305 %}
7306 
7307 // Register Shift Left Immediate
7308 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7309   match(Set dst (RShiftL src1 src2));
7310 
7311   size(4);
7312   format %{ "SRAX   $src1,$src2,$dst" %}
7313   opcode(Assembler::srax_op3, Assembler::arith_op);
7314   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7315   ins_pipe(ialu_reg_imm);
7316 %}
7317 
7318 // Register Shift Right
7319 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7320   match(Set dst (URShiftI src1 src2));
7321 
7322   size(4);
7323   format %{ "SRL    $src1,$src2,$dst" %}
7324   opcode(Assembler::srl_op3, Assembler::arith_op);
7325   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7326   ins_pipe(ialu_reg_reg);
7327 %}
7328 
7329 // Register Shift Right Immediate
7330 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7331   match(Set dst (URShiftI src1 src2));
7332 
7333   size(4);
7334   format %{ "SRL    $src1,$src2,$dst" %}
7335   opcode(Assembler::srl_op3, Assembler::arith_op);
7336   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7337   ins_pipe(ialu_reg_imm);
7338 %}
7339 
7340 // Register Shift Right
7341 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7342   match(Set dst (URShiftL src1 src2));
7343 
7344   size(4);
7345   format %{ "SRLX   $src1,$src2,$dst" %}
7346   opcode(Assembler::srlx_op3, Assembler::arith_op);
7347   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7348   ins_pipe(ialu_reg_reg);
7349 %}
7350 
7351 // Register Shift Right Immediate
7352 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7353   match(Set dst (URShiftL src1 src2));
7354 
7355   size(4);
7356   format %{ "SRLX   $src1,$src2,$dst" %}
7357   opcode(Assembler::srlx_op3, Assembler::arith_op);
7358   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7359   ins_pipe(ialu_reg_imm);
7360 %}
7361 
7362 // Register Shift Right Immediate with a CastP2X
7363 #ifdef _LP64
7364 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7365   match(Set dst (URShiftL (CastP2X src1) src2));
7366   size(4);
7367   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7368   opcode(Assembler::srlx_op3, Assembler::arith_op);
7369   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7370   ins_pipe(ialu_reg_imm);
7371 %}
7372 #else
7373 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7374   match(Set dst (URShiftI (CastP2X src1) src2));
7375   size(4);
7376   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7377   opcode(Assembler::srl_op3, Assembler::arith_op);
7378   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7379   ins_pipe(ialu_reg_imm);
7380 %}
7381 #endif
7382 
7383 
7384 //----------Floating Point Arithmetic Instructions-----------------------------
7385 
7386 //  Add float single precision
7387 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7388   match(Set dst (AddF src1 src2));
7389 
7390   size(4);
7391   format %{ "FADDS  $src1,$src2,$dst" %}
7392   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7393   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7394   ins_pipe(faddF_reg_reg);
7395 %}
7396 
7397 //  Add float double precision
7398 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7399   match(Set dst (AddD src1 src2));
7400 
7401   size(4);
7402   format %{ "FADDD  $src1,$src2,$dst" %}
7403   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7404   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7405   ins_pipe(faddD_reg_reg);
7406 %}
7407 
7408 //  Sub float single precision
7409 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7410   match(Set dst (SubF src1 src2));
7411 
7412   size(4);
7413   format %{ "FSUBS  $src1,$src2,$dst" %}
7414   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7415   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7416   ins_pipe(faddF_reg_reg);
7417 %}
7418 
7419 //  Sub float double precision
7420 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7421   match(Set dst (SubD src1 src2));
7422 
7423   size(4);
7424   format %{ "FSUBD  $src1,$src2,$dst" %}
7425   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7426   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7427   ins_pipe(faddD_reg_reg);
7428 %}
7429 
7430 //  Mul float single precision
7431 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7432   match(Set dst (MulF src1 src2));
7433 
7434   size(4);
7435   format %{ "FMULS  $src1,$src2,$dst" %}
7436   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7437   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7438   ins_pipe(fmulF_reg_reg);
7439 %}
7440 
7441 //  Mul float double precision
7442 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7443   match(Set dst (MulD src1 src2));
7444 
7445   size(4);
7446   format %{ "FMULD  $src1,$src2,$dst" %}
7447   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7448   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7449   ins_pipe(fmulD_reg_reg);
7450 %}
7451 
7452 //  Div float single precision
7453 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7454   match(Set dst (DivF src1 src2));
7455 
7456   size(4);
7457   format %{ "FDIVS  $src1,$src2,$dst" %}
7458   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7459   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7460   ins_pipe(fdivF_reg_reg);
7461 %}
7462 
7463 //  Div float double precision
7464 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7465   match(Set dst (DivD src1 src2));
7466 
7467   size(4);
7468   format %{ "FDIVD  $src1,$src2,$dst" %}
7469   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7470   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7471   ins_pipe(fdivD_reg_reg);
7472 %}
7473 
7474 //  Absolute float double precision
7475 instruct absD_reg(regD dst, regD src) %{
7476   match(Set dst (AbsD src));
7477 
7478   format %{ "FABSd  $src,$dst" %}
7479   ins_encode(fabsd(dst, src));
7480   ins_pipe(faddD_reg);
7481 %}
7482 
7483 //  Absolute float single precision
7484 instruct absF_reg(regF dst, regF src) %{
7485   match(Set dst (AbsF src));
7486 
7487   format %{ "FABSs  $src,$dst" %}
7488   ins_encode(fabss(dst, src));
7489   ins_pipe(faddF_reg);
7490 %}
7491 
7492 instruct negF_reg(regF dst, regF src) %{
7493   match(Set dst (NegF src));
7494 
7495   size(4);
7496   format %{ "FNEGs  $src,$dst" %}
7497   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7498   ins_encode(form3_opf_rs2F_rdF(src, dst));
7499   ins_pipe(faddF_reg);
7500 %}
7501 
7502 instruct negD_reg(regD dst, regD src) %{
7503   match(Set dst (NegD src));
7504 
7505   format %{ "FNEGd  $src,$dst" %}
7506   ins_encode(fnegd(dst, src));
7507   ins_pipe(faddD_reg);
7508 %}
7509 
7510 //  Sqrt float double precision
7511 instruct sqrtF_reg_reg(regF dst, regF src) %{
7512   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7513 
7514   size(4);
7515   format %{ "FSQRTS $src,$dst" %}
7516   ins_encode(fsqrts(dst, src));
7517   ins_pipe(fdivF_reg_reg);
7518 %}
7519 
7520 //  Sqrt float double precision
7521 instruct sqrtD_reg_reg(regD dst, regD src) %{
7522   match(Set dst (SqrtD src));
7523 
7524   size(4);
7525   format %{ "FSQRTD $src,$dst" %}
7526   ins_encode(fsqrtd(dst, src));
7527   ins_pipe(fdivD_reg_reg);
7528 %}
7529 
7530 //----------Logical Instructions-----------------------------------------------
7531 // And Instructions
7532 // Register And
7533 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7534   match(Set dst (AndI src1 src2));
7535 
7536   size(4);
7537   format %{ "AND    $src1,$src2,$dst" %}
7538   opcode(Assembler::and_op3, Assembler::arith_op);
7539   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7540   ins_pipe(ialu_reg_reg);
7541 %}
7542 
7543 // Immediate And
7544 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7545   match(Set dst (AndI src1 src2));
7546 
7547   size(4);
7548   format %{ "AND    $src1,$src2,$dst" %}
7549   opcode(Assembler::and_op3, Assembler::arith_op);
7550   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7551   ins_pipe(ialu_reg_imm);
7552 %}
7553 
7554 // Register And Long
7555 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7556   match(Set dst (AndL src1 src2));
7557 
7558   ins_cost(DEFAULT_COST);
7559   size(4);
7560   format %{ "AND    $src1,$src2,$dst\t! long" %}
7561   opcode(Assembler::and_op3, Assembler::arith_op);
7562   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7563   ins_pipe(ialu_reg_reg);
7564 %}
7565 
7566 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7567   match(Set dst (AndL src1 con));
7568 
7569   ins_cost(DEFAULT_COST);
7570   size(4);
7571   format %{ "AND    $src1,$con,$dst\t! long" %}
7572   opcode(Assembler::and_op3, Assembler::arith_op);
7573   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7574   ins_pipe(ialu_reg_imm);
7575 %}
7576 
7577 // Or Instructions
7578 // Register Or
7579 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7580   match(Set dst (OrI src1 src2));
7581 
7582   size(4);
7583   format %{ "OR     $src1,$src2,$dst" %}
7584   opcode(Assembler::or_op3, Assembler::arith_op);
7585   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7586   ins_pipe(ialu_reg_reg);
7587 %}
7588 
7589 // Immediate Or
7590 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7591   match(Set dst (OrI src1 src2));
7592 
7593   size(4);
7594   format %{ "OR     $src1,$src2,$dst" %}
7595   opcode(Assembler::or_op3, Assembler::arith_op);
7596   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7597   ins_pipe(ialu_reg_imm);
7598 %}
7599 
7600 // Register Or Long
7601 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7602   match(Set dst (OrL src1 src2));
7603 
7604   ins_cost(DEFAULT_COST);
7605   size(4);
7606   format %{ "OR     $src1,$src2,$dst\t! long" %}
7607   opcode(Assembler::or_op3, Assembler::arith_op);
7608   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7609   ins_pipe(ialu_reg_reg);
7610 %}
7611 
7612 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7613   match(Set dst (OrL src1 con));
7614   ins_cost(DEFAULT_COST*2);
7615 
7616   ins_cost(DEFAULT_COST);
7617   size(4);
7618   format %{ "OR     $src1,$con,$dst\t! long" %}
7619   opcode(Assembler::or_op3, Assembler::arith_op);
7620   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7621   ins_pipe(ialu_reg_imm);
7622 %}
7623 
7624 #ifndef _LP64
7625 
7626 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
7627 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
7628   match(Set dst (OrI src1 (CastP2X src2)));
7629 
7630   size(4);
7631   format %{ "OR     $src1,$src2,$dst" %}
7632   opcode(Assembler::or_op3, Assembler::arith_op);
7633   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7634   ins_pipe(ialu_reg_reg);
7635 %}
7636 
7637 #else
7638 
7639 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
7640   match(Set dst (OrL src1 (CastP2X src2)));
7641 
7642   ins_cost(DEFAULT_COST);
7643   size(4);
7644   format %{ "OR     $src1,$src2,$dst\t! long" %}
7645   opcode(Assembler::or_op3, Assembler::arith_op);
7646   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7647   ins_pipe(ialu_reg_reg);
7648 %}
7649 
7650 #endif
7651 
7652 // Xor Instructions
7653 // Register Xor
7654 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7655   match(Set dst (XorI src1 src2));
7656 
7657   size(4);
7658   format %{ "XOR    $src1,$src2,$dst" %}
7659   opcode(Assembler::xor_op3, Assembler::arith_op);
7660   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7661   ins_pipe(ialu_reg_reg);
7662 %}
7663 
7664 // Immediate Xor
7665 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7666   match(Set dst (XorI src1 src2));
7667 
7668   size(4);
7669   format %{ "XOR    $src1,$src2,$dst" %}
7670   opcode(Assembler::xor_op3, Assembler::arith_op);
7671   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7672   ins_pipe(ialu_reg_imm);
7673 %}
7674 
7675 // Register Xor Long
7676 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7677   match(Set dst (XorL src1 src2));
7678 
7679   ins_cost(DEFAULT_COST);
7680   size(4);
7681   format %{ "XOR    $src1,$src2,$dst\t! long" %}
7682   opcode(Assembler::xor_op3, Assembler::arith_op);
7683   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7684   ins_pipe(ialu_reg_reg);
7685 %}
7686 
7687 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7688   match(Set dst (XorL src1 con));
7689 
7690   ins_cost(DEFAULT_COST);
7691   size(4);
7692   format %{ "XOR    $src1,$con,$dst\t! long" %}
7693   opcode(Assembler::xor_op3, Assembler::arith_op);
7694   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7695   ins_pipe(ialu_reg_imm);
7696 %}
7697 
7698 //----------Convert to Boolean-------------------------------------------------
7699 // Nice hack for 32-bit tests but doesn't work for
7700 // 64-bit pointers.
7701 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
7702   match(Set dst (Conv2B src));
7703   effect( KILL ccr );
7704   ins_cost(DEFAULT_COST*2);
7705   format %{ "CMP    R_G0,$src\n\t"
7706             "ADDX   R_G0,0,$dst" %}
7707   ins_encode( enc_to_bool( src, dst ) );
7708   ins_pipe(ialu_reg_ialu);
7709 %}
7710 
7711 #ifndef _LP64
7712 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
7713   match(Set dst (Conv2B src));
7714   effect( KILL ccr );
7715   ins_cost(DEFAULT_COST*2);
7716   format %{ "CMP    R_G0,$src\n\t"
7717             "ADDX   R_G0,0,$dst" %}
7718   ins_encode( enc_to_bool( src, dst ) );
7719   ins_pipe(ialu_reg_ialu);
7720 %}
7721 #else
7722 instruct convP2B( iRegI dst, iRegP src ) %{
7723   match(Set dst (Conv2B src));
7724   ins_cost(DEFAULT_COST*2);
7725   format %{ "MOV    $src,$dst\n\t"
7726             "MOVRNZ $src,1,$dst" %}
7727   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
7728   ins_pipe(ialu_clr_and_mover);
7729 %}
7730 #endif
7731 
7732 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
7733   match(Set dst (CmpLTMask p q));
7734   effect( KILL ccr );
7735   ins_cost(DEFAULT_COST*4);
7736   format %{ "CMP    $p,$q\n\t"
7737             "MOV    #0,$dst\n\t"
7738             "BLT,a  .+8\n\t"
7739             "MOV    #-1,$dst" %}
7740   ins_encode( enc_ltmask(p,q,dst) );
7741   ins_pipe(ialu_reg_reg_ialu);
7742 %}
7743 
7744 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7745   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
7746   effect(KILL ccr, TEMP tmp);
7747   ins_cost(DEFAULT_COST*3);
7748 
7749   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
7750             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
7751             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7752   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
7753   ins_pipe( cadd_cmpltmask );
7754 %}
7755 
7756 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7757   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
7758   effect( KILL ccr, TEMP tmp);
7759   ins_cost(DEFAULT_COST*3);
7760 
7761   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
7762             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
7763             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7764   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
7765   ins_pipe( cadd_cmpltmask );
7766 %}
7767 
7768 //----------Arithmetic Conversion Instructions---------------------------------
7769 // The conversions operations are all Alpha sorted.  Please keep it that way!
7770 
7771 instruct convD2F_reg(regF dst, regD src) %{
7772   match(Set dst (ConvD2F src));
7773   size(4);
7774   format %{ "FDTOS  $src,$dst" %}
7775   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
7776   ins_encode(form3_opf_rs2D_rdF(src, dst));
7777   ins_pipe(fcvtD2F);
7778 %}
7779 
7780 
7781 // Convert a double to an int in a float register.
7782 // If the double is a NAN, stuff a zero in instead.
7783 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
7784   effect(DEF dst, USE src, KILL fcc0);
7785   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
7786             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7787             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
7788             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
7789             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
7790       "skip:" %}
7791   ins_encode(form_d2i_helper(src,dst));
7792   ins_pipe(fcvtD2I);
7793 %}
7794 
7795 instruct convD2I_reg(stackSlotI dst, regD src) %{
7796   match(Set dst (ConvD2I src));
7797   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7798   expand %{
7799     regF tmp;
7800     convD2I_helper(tmp, src);
7801     regF_to_stkI(dst, tmp);
7802   %}
7803 %}
7804 
7805 // Convert a double to a long in a double register.
7806 // If the double is a NAN, stuff a zero in instead.
7807 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
7808   effect(DEF dst, USE src, KILL fcc0);
7809   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
7810             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7811             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
7812             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
7813             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
7814       "skip:" %}
7815   ins_encode(form_d2l_helper(src,dst));
7816   ins_pipe(fcvtD2L);
7817 %}
7818 
7819 
7820 // Double to Long conversion
7821 instruct convD2L_reg(stackSlotL dst, regD src) %{
7822   match(Set dst (ConvD2L src));
7823   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7824   expand %{
7825     regD tmp;
7826     convD2L_helper(tmp, src);
7827     regD_to_stkL(dst, tmp);
7828   %}
7829 %}
7830 
7831 
7832 instruct convF2D_reg(regD dst, regF src) %{
7833   match(Set dst (ConvF2D src));
7834   format %{ "FSTOD  $src,$dst" %}
7835   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
7836   ins_encode(form3_opf_rs2F_rdD(src, dst));
7837   ins_pipe(fcvtF2D);
7838 %}
7839 
7840 
7841 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
7842   effect(DEF dst, USE src, KILL fcc0);
7843   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
7844             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7845             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
7846             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
7847             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
7848       "skip:" %}
7849   ins_encode(form_f2i_helper(src,dst));
7850   ins_pipe(fcvtF2I);
7851 %}
7852 
7853 instruct convF2I_reg(stackSlotI dst, regF src) %{
7854   match(Set dst (ConvF2I src));
7855   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7856   expand %{
7857     regF tmp;
7858     convF2I_helper(tmp, src);
7859     regF_to_stkI(dst, tmp);
7860   %}
7861 %}
7862 
7863 
7864 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
7865   effect(DEF dst, USE src, KILL fcc0);
7866   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
7867             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7868             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
7869             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
7870             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
7871       "skip:" %}
7872   ins_encode(form_f2l_helper(src,dst));
7873   ins_pipe(fcvtF2L);
7874 %}
7875 
7876 // Float to Long conversion
7877 instruct convF2L_reg(stackSlotL dst, regF src) %{
7878   match(Set dst (ConvF2L src));
7879   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7880   expand %{
7881     regD tmp;
7882     convF2L_helper(tmp, src);
7883     regD_to_stkL(dst, tmp);
7884   %}
7885 %}
7886 
7887 
7888 instruct convI2D_helper(regD dst, regF tmp) %{
7889   effect(USE tmp, DEF dst);
7890   format %{ "FITOD  $tmp,$dst" %}
7891   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
7892   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
7893   ins_pipe(fcvtI2D);
7894 %}
7895 
7896 instruct convI2D_reg(stackSlotI src, regD dst) %{
7897   match(Set dst (ConvI2D src));
7898   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7899   expand %{
7900     regF tmp;
7901     stkI_to_regF( tmp, src);
7902     convI2D_helper( dst, tmp);
7903   %}
7904 %}
7905 
7906 instruct convI2D_mem( regD_low dst, memory mem ) %{
7907   match(Set dst (ConvI2D (LoadI mem)));
7908   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7909   size(8);
7910   format %{ "LDF    $mem,$dst\n\t"
7911             "FITOD  $dst,$dst" %}
7912   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
7913   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
7914   ins_pipe(floadF_mem);
7915 %}
7916 
7917 
7918 instruct convI2F_helper(regF dst, regF tmp) %{
7919   effect(DEF dst, USE tmp);
7920   format %{ "FITOS  $tmp,$dst" %}
7921   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
7922   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
7923   ins_pipe(fcvtI2F);
7924 %}
7925 
7926 instruct convI2F_reg( regF dst, stackSlotI src ) %{
7927   match(Set dst (ConvI2F src));
7928   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7929   expand %{
7930     regF tmp;
7931     stkI_to_regF(tmp,src);
7932     convI2F_helper(dst, tmp);
7933   %}
7934 %}
7935 
7936 instruct convI2F_mem( regF dst, memory mem ) %{
7937   match(Set dst (ConvI2F (LoadI mem)));
7938   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7939   size(8);
7940   format %{ "LDF    $mem,$dst\n\t"
7941             "FITOS  $dst,$dst" %}
7942   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
7943   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
7944   ins_pipe(floadF_mem);
7945 %}
7946 
7947 
7948 instruct convI2L_reg(iRegL dst, iRegI src) %{
7949   match(Set dst (ConvI2L src));
7950   size(4);
7951   format %{ "SRA    $src,0,$dst\t! int->long" %}
7952   opcode(Assembler::sra_op3, Assembler::arith_op);
7953   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
7954   ins_pipe(ialu_reg_reg);
7955 %}
7956 
7957 // Zero-extend convert int to long
7958 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
7959   match(Set dst (AndL (ConvI2L src) mask) );
7960   size(4);
7961   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
7962   opcode(Assembler::srl_op3, Assembler::arith_op);
7963   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
7964   ins_pipe(ialu_reg_reg);
7965 %}
7966 
7967 // Zero-extend long
7968 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
7969   match(Set dst (AndL src mask) );
7970   size(4);
7971   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
7972   opcode(Assembler::srl_op3, Assembler::arith_op);
7973   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
7974   ins_pipe(ialu_reg_reg);
7975 %}
7976 
7977 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
7978   match(Set dst (MoveF2I src));
7979   effect(DEF dst, USE src);
7980   ins_cost(MEMORY_REF_COST);
7981 
7982   size(4);
7983   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
7984   opcode(Assembler::lduw_op3);
7985   ins_encode(simple_form3_mem_reg( src, dst ) );
7986   ins_pipe(iload_mem);
7987 %}
7988 
7989 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
7990   match(Set dst (MoveI2F src));
7991   effect(DEF dst, USE src);
7992   ins_cost(MEMORY_REF_COST);
7993 
7994   size(4);
7995   format %{ "LDF    $src,$dst\t! MoveI2F" %}
7996   opcode(Assembler::ldf_op3);
7997   ins_encode(simple_form3_mem_reg(src, dst));
7998   ins_pipe(floadF_stk);
7999 %}
8000 
8001 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8002   match(Set dst (MoveD2L src));
8003   effect(DEF dst, USE src);
8004   ins_cost(MEMORY_REF_COST);
8005 
8006   size(4);
8007   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8008   opcode(Assembler::ldx_op3);
8009   ins_encode(simple_form3_mem_reg( src, dst ) );
8010   ins_pipe(iload_mem);
8011 %}
8012 
8013 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8014   match(Set dst (MoveL2D src));
8015   effect(DEF dst, USE src);
8016   ins_cost(MEMORY_REF_COST);
8017 
8018   size(4);
8019   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8020   opcode(Assembler::lddf_op3);
8021   ins_encode(simple_form3_mem_reg(src, dst));
8022   ins_pipe(floadD_stk);
8023 %}
8024 
8025 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8026   match(Set dst (MoveF2I src));
8027   effect(DEF dst, USE src);
8028   ins_cost(MEMORY_REF_COST);
8029 
8030   size(4);
8031   format %{ "STF   $src,$dst\t!MoveF2I" %}
8032   opcode(Assembler::stf_op3);
8033   ins_encode(simple_form3_mem_reg(dst, src));
8034   ins_pipe(fstoreF_stk_reg);
8035 %}
8036 
8037 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8038   match(Set dst (MoveI2F src));
8039   effect(DEF dst, USE src);
8040   ins_cost(MEMORY_REF_COST);
8041 
8042   size(4);
8043   format %{ "STW    $src,$dst\t!MoveI2F" %}
8044   opcode(Assembler::stw_op3);
8045   ins_encode(simple_form3_mem_reg( dst, src ) );
8046   ins_pipe(istore_mem_reg);
8047 %}
8048 
8049 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8050   match(Set dst (MoveD2L src));
8051   effect(DEF dst, USE src);
8052   ins_cost(MEMORY_REF_COST);
8053 
8054   size(4);
8055   format %{ "STDF   $src,$dst\t!MoveD2L" %}
8056   opcode(Assembler::stdf_op3);
8057   ins_encode(simple_form3_mem_reg(dst, src));
8058   ins_pipe(fstoreD_stk_reg);
8059 %}
8060 
8061 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8062   match(Set dst (MoveL2D src));
8063   effect(DEF dst, USE src);
8064   ins_cost(MEMORY_REF_COST);
8065 
8066   size(4);
8067   format %{ "STX    $src,$dst\t!MoveL2D" %}
8068   opcode(Assembler::stx_op3);
8069   ins_encode(simple_form3_mem_reg( dst, src ) );
8070   ins_pipe(istore_mem_reg);
8071 %}
8072 
8073 
8074 //-----------
8075 // Long to Double conversion using V8 opcodes.
8076 // Still useful because cheetah traps and becomes
8077 // amazingly slow for some common numbers.
8078 
8079 // Magic constant, 0x43300000
8080 instruct loadConI_x43300000(iRegI dst) %{
8081   effect(DEF dst);
8082   size(4);
8083   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8084   ins_encode(SetHi22(0x43300000, dst));
8085   ins_pipe(ialu_none);
8086 %}
8087 
8088 // Magic constant, 0x41f00000
8089 instruct loadConI_x41f00000(iRegI dst) %{
8090   effect(DEF dst);
8091   size(4);
8092   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8093   ins_encode(SetHi22(0x41f00000, dst));
8094   ins_pipe(ialu_none);
8095 %}
8096 
8097 // Construct a double from two float halves
8098 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8099   effect(DEF dst, USE src1, USE src2);
8100   size(8);
8101   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8102             "FMOVS  $src2.lo,$dst.lo" %}
8103   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8104   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8105   ins_pipe(faddD_reg_reg);
8106 %}
8107 
8108 // Convert integer in high half of a double register (in the lower half of
8109 // the double register file) to double
8110 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8111   effect(DEF dst, USE src);
8112   size(4);
8113   format %{ "FITOD  $src,$dst" %}
8114   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8115   ins_encode(form3_opf_rs2D_rdD(src, dst));
8116   ins_pipe(fcvtLHi2D);
8117 %}
8118 
8119 // Add float double precision
8120 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8121   effect(DEF dst, USE src1, USE src2);
8122   size(4);
8123   format %{ "FADDD  $src1,$src2,$dst" %}
8124   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8125   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8126   ins_pipe(faddD_reg_reg);
8127 %}
8128 
8129 // Sub float double precision
8130 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8131   effect(DEF dst, USE src1, USE src2);
8132   size(4);
8133   format %{ "FSUBD  $src1,$src2,$dst" %}
8134   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8135   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8136   ins_pipe(faddD_reg_reg);
8137 %}
8138 
8139 // Mul float double precision
8140 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8141   effect(DEF dst, USE src1, USE src2);
8142   size(4);
8143   format %{ "FMULD  $src1,$src2,$dst" %}
8144   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8145   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8146   ins_pipe(fmulD_reg_reg);
8147 %}
8148 
8149 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8150   match(Set dst (ConvL2D src));
8151   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8152 
8153   expand %{
8154     regD_low   tmpsrc;
8155     iRegI      ix43300000;
8156     iRegI      ix41f00000;
8157     stackSlotL lx43300000;
8158     stackSlotL lx41f00000;
8159     regD_low   dx43300000;
8160     regD       dx41f00000;
8161     regD       tmp1;
8162     regD_low   tmp2;
8163     regD       tmp3;
8164     regD       tmp4;
8165 
8166     stkL_to_regD(tmpsrc, src);
8167 
8168     loadConI_x43300000(ix43300000);
8169     loadConI_x41f00000(ix41f00000);
8170     regI_to_stkLHi(lx43300000, ix43300000);
8171     regI_to_stkLHi(lx41f00000, ix41f00000);
8172     stkL_to_regD(dx43300000, lx43300000);
8173     stkL_to_regD(dx41f00000, lx41f00000);
8174 
8175     convI2D_regDHi_regD(tmp1, tmpsrc);
8176     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8177     subD_regD_regD(tmp3, tmp2, dx43300000);
8178     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8179     addD_regD_regD(dst, tmp3, tmp4);
8180   %}
8181 %}
8182 
8183 // Long to Double conversion using fast fxtof
8184 instruct convL2D_helper(regD dst, regD tmp) %{
8185   effect(DEF dst, USE tmp);
8186   size(4);
8187   format %{ "FXTOD  $tmp,$dst" %}
8188   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8189   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8190   ins_pipe(fcvtL2D);
8191 %}
8192 
8193 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
8194   predicate(VM_Version::has_fast_fxtof());
8195   match(Set dst (ConvL2D src));
8196   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8197   expand %{
8198     regD tmp;
8199     stkL_to_regD(tmp, src);
8200     convL2D_helper(dst, tmp);
8201   %}
8202 %}
8203 
8204 //-----------
8205 // Long to Float conversion using V8 opcodes.
8206 // Still useful because cheetah traps and becomes
8207 // amazingly slow for some common numbers.
8208 
8209 // Long to Float conversion using fast fxtof
8210 instruct convL2F_helper(regF dst, regD tmp) %{
8211   effect(DEF dst, USE tmp);
8212   size(4);
8213   format %{ "FXTOS  $tmp,$dst" %}
8214   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8215   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8216   ins_pipe(fcvtL2F);
8217 %}
8218 
8219 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
8220   match(Set dst (ConvL2F src));
8221   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8222   expand %{
8223     regD tmp;
8224     stkL_to_regD(tmp, src);
8225     convL2F_helper(dst, tmp);
8226   %}
8227 %}
8228 //-----------
8229 
8230 instruct convL2I_reg(iRegI dst, iRegL src) %{
8231   match(Set dst (ConvL2I src));
8232 #ifndef _LP64
8233   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8234   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8235   ins_pipe(ialu_move_reg_I_to_L);
8236 #else
8237   size(4);
8238   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8239   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8240   ins_pipe(ialu_reg);
8241 #endif
8242 %}
8243 
8244 // Register Shift Right Immediate
8245 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8246   match(Set dst (ConvL2I (RShiftL src cnt)));
8247 
8248   size(4);
8249   format %{ "SRAX   $src,$cnt,$dst" %}
8250   opcode(Assembler::srax_op3, Assembler::arith_op);
8251   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8252   ins_pipe(ialu_reg_imm);
8253 %}
8254 
8255 // Replicate scalar to packed byte values in Double register
8256 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8257   effect(DEF dst, USE src);
8258   format %{ "SLLX  $src,56,$dst\n\t"
8259             "SRLX  $dst, 8,O7\n\t"
8260             "OR    $dst,O7,$dst\n\t"
8261             "SRLX  $dst,16,O7\n\t"
8262             "OR    $dst,O7,$dst\n\t"
8263             "SRLX  $dst,32,O7\n\t"
8264             "OR    $dst,O7,$dst\t! replicate8B" %}
8265   ins_encode( enc_repl8b(src, dst));
8266   ins_pipe(ialu_reg);
8267 %}
8268 
8269 // Replicate scalar to packed byte values in Double register
8270 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8271   match(Set dst (Replicate8B src));
8272   expand %{
8273     iRegL tmp;
8274     Repl8B_reg_helper(tmp, src);
8275     regL_to_stkD(dst, tmp);
8276   %}
8277 %}
8278 
8279 // Replicate scalar constant to packed byte values in Double register
8280 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
8281   match(Set dst (Replicate8B src));
8282 #ifdef _LP64
8283   size(36);
8284 #else
8285   size(8);
8286 #endif
8287   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
8288             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
8289   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
8290   ins_pipe(loadConFD);
8291 %}
8292 
8293 // Replicate scalar to packed char values into stack slot
8294 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8295   effect(DEF dst, USE src);
8296   format %{ "SLLX  $src,48,$dst\n\t"
8297             "SRLX  $dst,16,O7\n\t"
8298             "OR    $dst,O7,$dst\n\t"
8299             "SRLX  $dst,32,O7\n\t"
8300             "OR    $dst,O7,$dst\t! replicate4C" %}
8301   ins_encode( enc_repl4s(src, dst) );
8302   ins_pipe(ialu_reg);
8303 %}
8304 
8305 // Replicate scalar to packed char values into stack slot
8306 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8307   match(Set dst (Replicate4C src));
8308   expand %{
8309     iRegL tmp;
8310     Repl4C_reg_helper(tmp, src);
8311     regL_to_stkD(dst, tmp);
8312   %}
8313 %}
8314 
8315 // Replicate scalar constant to packed char values in Double register
8316 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
8317   match(Set dst (Replicate4C src));
8318 #ifdef _LP64
8319   size(36);
8320 #else
8321   size(8);
8322 #endif
8323   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
8324             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8325   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8326   ins_pipe(loadConFD);
8327 %}
8328 
8329 // Replicate scalar to packed short values into stack slot
8330 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8331   effect(DEF dst, USE src);
8332   format %{ "SLLX  $src,48,$dst\n\t"
8333             "SRLX  $dst,16,O7\n\t"
8334             "OR    $dst,O7,$dst\n\t"
8335             "SRLX  $dst,32,O7\n\t"
8336             "OR    $dst,O7,$dst\t! replicate4S" %}
8337   ins_encode( enc_repl4s(src, dst) );
8338   ins_pipe(ialu_reg);
8339 %}
8340 
8341 // Replicate scalar to packed short values into stack slot
8342 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8343   match(Set dst (Replicate4S src));
8344   expand %{
8345     iRegL tmp;
8346     Repl4S_reg_helper(tmp, src);
8347     regL_to_stkD(dst, tmp);
8348   %}
8349 %}
8350 
8351 // Replicate scalar constant to packed short values in Double register
8352 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
8353   match(Set dst (Replicate4S src));
8354 #ifdef _LP64
8355   size(36);
8356 #else
8357   size(8);
8358 #endif
8359   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
8360             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8361   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8362   ins_pipe(loadConFD);
8363 %}
8364 
8365 // Replicate scalar to packed int values in Double register
8366 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
8367   effect(DEF dst, USE src);
8368   format %{ "SLLX  $src,32,$dst\n\t"
8369             "SRLX  $dst,32,O7\n\t"
8370             "OR    $dst,O7,$dst\t! replicate2I" %}
8371   ins_encode( enc_repl2i(src, dst));
8372   ins_pipe(ialu_reg);
8373 %}
8374 
8375 // Replicate scalar to packed int values in Double register
8376 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
8377   match(Set dst (Replicate2I src));
8378   expand %{
8379     iRegL tmp;
8380     Repl2I_reg_helper(tmp, src);
8381     regL_to_stkD(dst, tmp);
8382   %}
8383 %}
8384 
8385 // Replicate scalar zero constant to packed int values in Double register
8386 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
8387   match(Set dst (Replicate2I src));
8388 #ifdef _LP64
8389   size(36);
8390 #else
8391   size(8);
8392 #endif
8393   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
8394             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
8395   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
8396   ins_pipe(loadConFD);
8397 %}
8398 
8399 //----------Control Flow Instructions------------------------------------------
8400 // Compare Instructions
8401 // Compare Integers
8402 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8403   match(Set icc (CmpI op1 op2));
8404   effect( DEF icc, USE op1, USE op2 );
8405 
8406   size(4);
8407   format %{ "CMP    $op1,$op2" %}
8408   opcode(Assembler::subcc_op3, Assembler::arith_op);
8409   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8410   ins_pipe(ialu_cconly_reg_reg);
8411 %}
8412 
8413 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8414   match(Set icc (CmpU op1 op2));
8415 
8416   size(4);
8417   format %{ "CMP    $op1,$op2\t! unsigned" %}
8418   opcode(Assembler::subcc_op3, Assembler::arith_op);
8419   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8420   ins_pipe(ialu_cconly_reg_reg);
8421 %}
8422 
8423 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8424   match(Set icc (CmpI op1 op2));
8425   effect( DEF icc, USE op1 );
8426 
8427   size(4);
8428   format %{ "CMP    $op1,$op2" %}
8429   opcode(Assembler::subcc_op3, Assembler::arith_op);
8430   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8431   ins_pipe(ialu_cconly_reg_imm);
8432 %}
8433 
8434 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8435   match(Set icc (CmpI (AndI op1 op2) zero));
8436 
8437   size(4);
8438   format %{ "BTST   $op2,$op1" %}
8439   opcode(Assembler::andcc_op3, Assembler::arith_op);
8440   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8441   ins_pipe(ialu_cconly_reg_reg_zero);
8442 %}
8443 
8444 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8445   match(Set icc (CmpI (AndI op1 op2) zero));
8446 
8447   size(4);
8448   format %{ "BTST   $op2,$op1" %}
8449   opcode(Assembler::andcc_op3, Assembler::arith_op);
8450   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8451   ins_pipe(ialu_cconly_reg_imm_zero);
8452 %}
8453 
8454 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8455   match(Set xcc (CmpL op1 op2));
8456   effect( DEF xcc, USE op1, USE op2 );
8457 
8458   size(4);
8459   format %{ "CMP    $op1,$op2\t\t! long" %}
8460   opcode(Assembler::subcc_op3, Assembler::arith_op);
8461   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8462   ins_pipe(ialu_cconly_reg_reg);
8463 %}
8464 
8465 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8466   match(Set xcc (CmpL op1 con));
8467   effect( DEF xcc, USE op1, USE con );
8468 
8469   size(4);
8470   format %{ "CMP    $op1,$con\t\t! long" %}
8471   opcode(Assembler::subcc_op3, Assembler::arith_op);
8472   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8473   ins_pipe(ialu_cconly_reg_reg);
8474 %}
8475 
8476 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8477   match(Set xcc (CmpL (AndL op1 op2) zero));
8478   effect( DEF xcc, USE op1, USE op2 );
8479 
8480   size(4);
8481   format %{ "BTST   $op1,$op2\t\t! long" %}
8482   opcode(Assembler::andcc_op3, Assembler::arith_op);
8483   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8484   ins_pipe(ialu_cconly_reg_reg);
8485 %}
8486 
8487 // useful for checking the alignment of a pointer:
8488 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8489   match(Set xcc (CmpL (AndL op1 con) zero));
8490   effect( DEF xcc, USE op1, USE con );
8491 
8492   size(4);
8493   format %{ "BTST   $op1,$con\t\t! long" %}
8494   opcode(Assembler::andcc_op3, Assembler::arith_op);
8495   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8496   ins_pipe(ialu_cconly_reg_reg);
8497 %}
8498 
8499 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8500   match(Set icc (CmpU op1 op2));
8501 
8502   size(4);
8503   format %{ "CMP    $op1,$op2\t! unsigned" %}
8504   opcode(Assembler::subcc_op3, Assembler::arith_op);
8505   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8506   ins_pipe(ialu_cconly_reg_imm);
8507 %}
8508 
8509 // Compare Pointers
8510 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8511   match(Set pcc (CmpP op1 op2));
8512 
8513   size(4);
8514   format %{ "CMP    $op1,$op2\t! ptr" %}
8515   opcode(Assembler::subcc_op3, Assembler::arith_op);
8516   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8517   ins_pipe(ialu_cconly_reg_reg);
8518 %}
8519 
8520 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8521   match(Set pcc (CmpP op1 op2));
8522 
8523   size(4);
8524   format %{ "CMP    $op1,$op2\t! ptr" %}
8525   opcode(Assembler::subcc_op3, Assembler::arith_op);
8526   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8527   ins_pipe(ialu_cconly_reg_imm);
8528 %}
8529 
8530 // Compare Narrow oops
8531 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8532   match(Set icc (CmpN op1 op2));
8533 
8534   size(4);
8535   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8536   opcode(Assembler::subcc_op3, Assembler::arith_op);
8537   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8538   ins_pipe(ialu_cconly_reg_reg);
8539 %}
8540 
8541 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8542   match(Set icc (CmpN op1 op2));
8543 
8544   size(4);
8545   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8546   opcode(Assembler::subcc_op3, Assembler::arith_op);
8547   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8548   ins_pipe(ialu_cconly_reg_imm);
8549 %}
8550 
8551 //----------Max and Min--------------------------------------------------------
8552 // Min Instructions
8553 // Conditional move for min
8554 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8555   effect( USE_DEF op2, USE op1, USE icc );
8556 
8557   size(4);
8558   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8559   opcode(Assembler::less);
8560   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8561   ins_pipe(ialu_reg_flags);
8562 %}
8563 
8564 // Min Register with Register.
8565 instruct minI_eReg(iRegI op1, iRegI op2) %{
8566   match(Set op2 (MinI op1 op2));
8567   ins_cost(DEFAULT_COST*2);
8568   expand %{
8569     flagsReg icc;
8570     compI_iReg(icc,op1,op2);
8571     cmovI_reg_lt(op2,op1,icc);
8572   %}
8573 %}
8574 
8575 // Max Instructions
8576 // Conditional move for max
8577 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8578   effect( USE_DEF op2, USE op1, USE icc );
8579   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8580   opcode(Assembler::greater);
8581   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8582   ins_pipe(ialu_reg_flags);
8583 %}
8584 
8585 // Max Register with Register
8586 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8587   match(Set op2 (MaxI op1 op2));
8588   ins_cost(DEFAULT_COST*2);
8589   expand %{
8590     flagsReg icc;
8591     compI_iReg(icc,op1,op2);
8592     cmovI_reg_gt(op2,op1,icc);
8593   %}
8594 %}
8595 
8596 
8597 //----------Float Compares----------------------------------------------------
8598 // Compare floating, generate condition code
8599 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8600   match(Set fcc (CmpF src1 src2));
8601 
8602   size(4);
8603   format %{ "FCMPs  $fcc,$src1,$src2" %}
8604   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8605   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8606   ins_pipe(faddF_fcc_reg_reg_zero);
8607 %}
8608 
8609 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8610   match(Set fcc (CmpD src1 src2));
8611 
8612   size(4);
8613   format %{ "FCMPd  $fcc,$src1,$src2" %}
8614   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8615   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8616   ins_pipe(faddD_fcc_reg_reg_zero);
8617 %}
8618 
8619 
8620 // Compare floating, generate -1,0,1
8621 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8622   match(Set dst (CmpF3 src1 src2));
8623   effect(KILL fcc0);
8624   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8625   format %{ "fcmpl  $dst,$src1,$src2" %}
8626   // Primary = float
8627   opcode( true );
8628   ins_encode( floating_cmp( dst, src1, src2 ) );
8629   ins_pipe( floating_cmp );
8630 %}
8631 
8632 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8633   match(Set dst (CmpD3 src1 src2));
8634   effect(KILL fcc0);
8635   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8636   format %{ "dcmpl  $dst,$src1,$src2" %}
8637   // Primary = double (not float)
8638   opcode( false );
8639   ins_encode( floating_cmp( dst, src1, src2 ) );
8640   ins_pipe( floating_cmp );
8641 %}
8642 
8643 //----------Branches---------------------------------------------------------
8644 // Jump
8645 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8646 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8647   match(Jump switch_val);
8648 
8649   ins_cost(350);
8650 
8651   format %{  "SETHI  [hi(table_base)],O7\n\t"
8652              "ADD    O7, lo(table_base), O7\n\t"
8653              "LD     [O7+$switch_val], O7\n\t"
8654              "JUMP   O7"
8655          %}
8656   ins_encode( jump_enc( switch_val, table) );
8657   ins_pc_relative(1);
8658   ins_pipe(ialu_reg_reg);
8659 %}
8660 
8661 // Direct Branch.  Use V8 version with longer range.
8662 instruct branch(label labl) %{
8663   match(Goto);
8664   effect(USE labl);
8665 
8666   size(8);
8667   ins_cost(BRANCH_COST);
8668   format %{ "BA     $labl" %}
8669   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
8670   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
8671   ins_encode( enc_ba( labl ) );
8672   ins_pc_relative(1);
8673   ins_pipe(br);
8674 %}
8675 
8676 // Conditional Direct Branch
8677 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
8678   match(If cmp icc);
8679   effect(USE labl);
8680 
8681   size(8);
8682   ins_cost(BRANCH_COST);
8683   format %{ "BP$cmp   $icc,$labl" %}
8684   // Prim = bits 24-22, Secnd = bits 31-30
8685   ins_encode( enc_bp( labl, cmp, icc ) );
8686   ins_pc_relative(1);
8687   ins_pipe(br_cc);
8688 %}
8689 
8690 // Branch-on-register tests all 64 bits.  We assume that values
8691 // in 64-bit registers always remains zero or sign extended
8692 // unless our code munges the high bits.  Interrupts can chop
8693 // the high order bits to zero or sign at any time.
8694 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
8695   match(If cmp (CmpI op1 zero));
8696   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8697   effect(USE labl);
8698 
8699   size(8);
8700   ins_cost(BRANCH_COST);
8701   format %{ "BR$cmp   $op1,$labl" %}
8702   ins_encode( enc_bpr( labl, cmp, op1 ) );
8703   ins_pc_relative(1);
8704   ins_pipe(br_reg);
8705 %}
8706 
8707 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
8708   match(If cmp (CmpP op1 null));
8709   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8710   effect(USE labl);
8711 
8712   size(8);
8713   ins_cost(BRANCH_COST);
8714   format %{ "BR$cmp   $op1,$labl" %}
8715   ins_encode( enc_bpr( labl, cmp, op1 ) );
8716   ins_pc_relative(1);
8717   ins_pipe(br_reg);
8718 %}
8719 
8720 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
8721   match(If cmp (CmpL op1 zero));
8722   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8723   effect(USE labl);
8724 
8725   size(8);
8726   ins_cost(BRANCH_COST);
8727   format %{ "BR$cmp   $op1,$labl" %}
8728   ins_encode( enc_bpr( labl, cmp, op1 ) );
8729   ins_pc_relative(1);
8730   ins_pipe(br_reg);
8731 %}
8732 
8733 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
8734   match(If cmp icc);
8735   effect(USE labl);
8736 
8737   format %{ "BP$cmp  $icc,$labl" %}
8738   // Prim = bits 24-22, Secnd = bits 31-30
8739   ins_encode( enc_bp( labl, cmp, icc ) );
8740   ins_pc_relative(1);
8741   ins_pipe(br_cc);
8742 %}
8743 
8744 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
8745   match(If cmp pcc);
8746   effect(USE labl);
8747 
8748   size(8);
8749   ins_cost(BRANCH_COST);
8750   format %{ "BP$cmp  $pcc,$labl" %}
8751   // Prim = bits 24-22, Secnd = bits 31-30
8752   ins_encode( enc_bpx( labl, cmp, pcc ) );
8753   ins_pc_relative(1);
8754   ins_pipe(br_cc);
8755 %}
8756 
8757 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
8758   match(If cmp fcc);
8759   effect(USE labl);
8760 
8761   size(8);
8762   ins_cost(BRANCH_COST);
8763   format %{ "FBP$cmp $fcc,$labl" %}
8764   // Prim = bits 24-22, Secnd = bits 31-30
8765   ins_encode( enc_fbp( labl, cmp, fcc ) );
8766   ins_pc_relative(1);
8767   ins_pipe(br_fcc);
8768 %}
8769 
8770 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
8771   match(CountedLoopEnd cmp icc);
8772   effect(USE labl);
8773 
8774   size(8);
8775   ins_cost(BRANCH_COST);
8776   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
8777   // Prim = bits 24-22, Secnd = bits 31-30
8778   ins_encode( enc_bp( labl, cmp, icc ) );
8779   ins_pc_relative(1);
8780   ins_pipe(br_cc);
8781 %}
8782 
8783 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
8784   match(CountedLoopEnd cmp icc);
8785   effect(USE labl);
8786 
8787   size(8);
8788   ins_cost(BRANCH_COST);
8789   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
8790   // Prim = bits 24-22, Secnd = bits 31-30
8791   ins_encode( enc_bp( labl, cmp, icc ) );
8792   ins_pc_relative(1);
8793   ins_pipe(br_cc);
8794 %}
8795 
8796 // ============================================================================
8797 // Long Compare
8798 //
8799 // Currently we hold longs in 2 registers.  Comparing such values efficiently
8800 // is tricky.  The flavor of compare used depends on whether we are testing
8801 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
8802 // The GE test is the negated LT test.  The LE test can be had by commuting
8803 // the operands (yielding a GE test) and then negating; negate again for the
8804 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
8805 // NE test is negated from that.
8806 
8807 // Due to a shortcoming in the ADLC, it mixes up expressions like:
8808 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
8809 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
8810 // are collapsed internally in the ADLC's dfa-gen code.  The match for
8811 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
8812 // foo match ends up with the wrong leaf.  One fix is to not match both
8813 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
8814 // both forms beat the trinary form of long-compare and both are very useful
8815 // on Intel which has so few registers.
8816 
8817 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
8818   match(If cmp xcc);
8819   effect(USE labl);
8820 
8821   size(8);
8822   ins_cost(BRANCH_COST);
8823   format %{ "BP$cmp   $xcc,$labl" %}
8824   // Prim = bits 24-22, Secnd = bits 31-30
8825   ins_encode( enc_bpl( labl, cmp, xcc ) );
8826   ins_pc_relative(1);
8827   ins_pipe(br_cc);
8828 %}
8829 
8830 // Manifest a CmpL3 result in an integer register.  Very painful.
8831 // This is the test to avoid.
8832 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
8833   match(Set dst (CmpL3 src1 src2) );
8834   effect( KILL ccr );
8835   ins_cost(6*DEFAULT_COST);
8836   size(24);
8837   format %{ "CMP    $src1,$src2\t\t! long\n"
8838           "\tBLT,a,pn done\n"
8839           "\tMOV    -1,$dst\t! delay slot\n"
8840           "\tBGT,a,pn done\n"
8841           "\tMOV    1,$dst\t! delay slot\n"
8842           "\tCLR    $dst\n"
8843     "done:"     %}
8844   ins_encode( cmpl_flag(src1,src2,dst) );
8845   ins_pipe(cmpL_reg);
8846 %}
8847 
8848 // Conditional move
8849 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
8850   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
8851   ins_cost(150);
8852   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
8853   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8854   ins_pipe(ialu_reg);
8855 %}
8856 
8857 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
8858   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
8859   ins_cost(140);
8860   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
8861   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
8862   ins_pipe(ialu_imm);
8863 %}
8864 
8865 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
8866   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
8867   ins_cost(150);
8868   format %{ "MOV$cmp  $xcc,$src,$dst" %}
8869   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8870   ins_pipe(ialu_reg);
8871 %}
8872 
8873 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
8874   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
8875   ins_cost(140);
8876   format %{ "MOV$cmp  $xcc,$src,$dst" %}
8877   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
8878   ins_pipe(ialu_imm);
8879 %}
8880 
8881 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
8882   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
8883   ins_cost(150);
8884   format %{ "MOV$cmp  $xcc,$src,$dst" %}
8885   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8886   ins_pipe(ialu_reg);
8887 %}
8888 
8889 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
8890   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
8891   ins_cost(150);
8892   format %{ "MOV$cmp  $xcc,$src,$dst" %}
8893   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8894   ins_pipe(ialu_reg);
8895 %}
8896 
8897 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
8898   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
8899   ins_cost(140);
8900   format %{ "MOV$cmp  $xcc,$src,$dst" %}
8901   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
8902   ins_pipe(ialu_imm);
8903 %}
8904 
8905 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
8906   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
8907   ins_cost(150);
8908   opcode(0x101);
8909   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
8910   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
8911   ins_pipe(int_conditional_float_move);
8912 %}
8913 
8914 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
8915   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
8916   ins_cost(150);
8917   opcode(0x102);
8918   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
8919   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
8920   ins_pipe(int_conditional_float_move);
8921 %}
8922 
8923 // ============================================================================
8924 // Safepoint Instruction
8925 instruct safePoint_poll(iRegP poll) %{
8926   match(SafePoint poll);
8927   effect(USE poll);
8928 
8929   size(4);
8930 #ifdef _LP64
8931   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
8932 #else
8933   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
8934 #endif
8935   ins_encode %{
8936     __ relocate(relocInfo::poll_type);
8937     __ ld_ptr($poll$$Register, 0, G0);
8938   %}
8939   ins_pipe(loadPollP);
8940 %}
8941 
8942 // ============================================================================
8943 // Call Instructions
8944 // Call Java Static Instruction
8945 instruct CallStaticJavaDirect( method meth ) %{
8946   match(CallStaticJava);
8947   effect(USE meth);
8948 
8949   size(8);
8950   ins_cost(CALL_COST);
8951   format %{ "CALL,static  ; NOP ==> " %}
8952   ins_encode( Java_Static_Call( meth ), call_epilog );
8953   ins_pc_relative(1);
8954   ins_pipe(simple_call);
8955 %}
8956 
8957 // Call Java Dynamic Instruction
8958 instruct CallDynamicJavaDirect( method meth ) %{
8959   match(CallDynamicJava);
8960   effect(USE meth);
8961 
8962   ins_cost(CALL_COST);
8963   format %{ "SET    (empty),R_G5\n\t"
8964             "CALL,dynamic  ; NOP ==> " %}
8965   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
8966   ins_pc_relative(1);
8967   ins_pipe(call);
8968 %}
8969 
8970 // Call Runtime Instruction
8971 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
8972   match(CallRuntime);
8973   effect(USE meth, KILL l7);
8974   ins_cost(CALL_COST);
8975   format %{ "CALL,runtime" %}
8976   ins_encode( Java_To_Runtime( meth ),
8977               call_epilog, adjust_long_from_native_call );
8978   ins_pc_relative(1);
8979   ins_pipe(simple_call);
8980 %}
8981 
8982 // Call runtime without safepoint - same as CallRuntime
8983 instruct CallLeafDirect(method meth, l7RegP l7) %{
8984   match(CallLeaf);
8985   effect(USE meth, KILL l7);
8986   ins_cost(CALL_COST);
8987   format %{ "CALL,runtime leaf" %}
8988   ins_encode( Java_To_Runtime( meth ),
8989               call_epilog,
8990               adjust_long_from_native_call );
8991   ins_pc_relative(1);
8992   ins_pipe(simple_call);
8993 %}
8994 
8995 // Call runtime without safepoint - same as CallLeaf
8996 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
8997   match(CallLeafNoFP);
8998   effect(USE meth, KILL l7);
8999   ins_cost(CALL_COST);
9000   format %{ "CALL,runtime leaf nofp" %}
9001   ins_encode( Java_To_Runtime( meth ),
9002               call_epilog,
9003               adjust_long_from_native_call );
9004   ins_pc_relative(1);
9005   ins_pipe(simple_call);
9006 %}
9007 
9008 // Tail Call; Jump from runtime stub to Java code.
9009 // Also known as an 'interprocedural jump'.
9010 // Target of jump will eventually return to caller.
9011 // TailJump below removes the return address.
9012 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9013   match(TailCall jump_target method_oop );
9014 
9015   ins_cost(CALL_COST);
9016   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9017   ins_encode(form_jmpl(jump_target));
9018   ins_pipe(tail_call);
9019 %}
9020 
9021 
9022 // Return Instruction
9023 instruct Ret() %{
9024   match(Return);
9025 
9026   // The epilogue node did the ret already.
9027   size(0);
9028   format %{ "! return" %}
9029   ins_encode();
9030   ins_pipe(empty);
9031 %}
9032 
9033 
9034 // Tail Jump; remove the return address; jump to target.
9035 // TailCall above leaves the return address around.
9036 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9037 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9038 // "restore" before this instruction (in Epilogue), we need to materialize it
9039 // in %i0.
9040 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9041   match( TailJump jump_target ex_oop );
9042   ins_cost(CALL_COST);
9043   format %{ "! discard R_O7\n\t"
9044             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9045   ins_encode(form_jmpl_set_exception_pc(jump_target));
9046   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9047   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9048   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9049   ins_pipe(tail_call);
9050 %}
9051 
9052 // Create exception oop: created by stack-crawling runtime code.
9053 // Created exception is now available to this handler, and is setup
9054 // just prior to jumping to this handler.  No code emitted.
9055 instruct CreateException( o0RegP ex_oop )
9056 %{
9057   match(Set ex_oop (CreateEx));
9058   ins_cost(0);
9059 
9060   size(0);
9061   // use the following format syntax
9062   format %{ "! exception oop is in R_O0; no code emitted" %}
9063   ins_encode();
9064   ins_pipe(empty);
9065 %}
9066 
9067 
9068 // Rethrow exception:
9069 // The exception oop will come in the first argument position.
9070 // Then JUMP (not call) to the rethrow stub code.
9071 instruct RethrowException()
9072 %{
9073   match(Rethrow);
9074   ins_cost(CALL_COST);
9075 
9076   // use the following format syntax
9077   format %{ "Jmp    rethrow_stub" %}
9078   ins_encode(enc_rethrow);
9079   ins_pipe(tail_call);
9080 %}
9081 
9082 
9083 // Die now
9084 instruct ShouldNotReachHere( )
9085 %{
9086   match(Halt);
9087   ins_cost(CALL_COST);
9088 
9089   size(4);
9090   // Use the following format syntax
9091   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9092   ins_encode( form2_illtrap() );
9093   ins_pipe(tail_call);
9094 %}
9095 
9096 // ============================================================================
9097 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9098 // array for an instance of the superklass.  Set a hidden internal cache on a
9099 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9100 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9101 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9102   match(Set index (PartialSubtypeCheck sub super));
9103   effect( KILL pcc, KILL o7 );
9104   ins_cost(DEFAULT_COST*10);
9105   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9106   ins_encode( enc_PartialSubtypeCheck() );
9107   ins_pipe(partial_subtype_check_pipe);
9108 %}
9109 
9110 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9111   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9112   effect( KILL idx, KILL o7 );
9113   ins_cost(DEFAULT_COST*10);
9114   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9115   ins_encode( enc_PartialSubtypeCheck() );
9116   ins_pipe(partial_subtype_check_pipe);
9117 %}
9118 
9119 
9120 // ============================================================================
9121 // inlined locking and unlocking
9122 
9123 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9124   match(Set pcc (FastLock object box));
9125 
9126   effect(KILL scratch, TEMP scratch2);
9127   ins_cost(100);
9128 
9129   size(4*112);       // conservative overestimation ...
9130   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9131   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9132   ins_pipe(long_memory_op);
9133 %}
9134 
9135 
9136 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9137   match(Set pcc (FastUnlock object box));
9138   effect(KILL scratch, TEMP scratch2);
9139   ins_cost(100);
9140 
9141   size(4*120);       // conservative overestimation ...
9142   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9143   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9144   ins_pipe(long_memory_op);
9145 %}
9146 
9147 // Count and Base registers are fixed because the allocator cannot
9148 // kill unknown registers.  The encodings are generic.
9149 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9150   match(Set dummy (ClearArray cnt base));
9151   effect(TEMP temp, KILL ccr);
9152   ins_cost(300);
9153   format %{ "MOV    $cnt,$temp\n"
9154     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9155     "        BRge   loop\t\t! Clearing loop\n"
9156     "        STX    G0,[$base+$temp]\t! delay slot" %}
9157   ins_encode( enc_Clear_Array(cnt, base, temp) );
9158   ins_pipe(long_memory_op);
9159 %}
9160 
9161 instruct string_compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
9162                         o7RegI tmp3, flagsReg ccr) %{
9163   match(Set result (StrComp str1 str2));
9164   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr, KILL tmp3);
9165   ins_cost(300);
9166   format %{ "String Compare $str1,$str2 -> $result" %}
9167   ins_encode( enc_String_Compare(str1, str2, tmp1, tmp2, result) );
9168   ins_pipe(long_memory_op);
9169 %}
9170 
9171 instruct string_equals(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
9172                        o7RegI tmp3, flagsReg ccr) %{
9173   match(Set result (StrEquals str1 str2));
9174   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr, KILL tmp3);
9175   ins_cost(300);
9176   format %{ "String Equals $str1,$str2 -> $result" %}
9177   ins_encode( enc_String_Equals(str1, str2, tmp1, tmp2, result) );
9178   ins_pipe(long_memory_op);
9179 %}
9180 
9181 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
9182                         flagsReg ccr) %{
9183   match(Set result (AryEq ary1 ary2));
9184   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
9185   ins_cost(300);
9186   format %{ "Array Equals $ary1,$ary2 -> $result" %}
9187   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, tmp2, result));
9188   ins_pipe(long_memory_op);
9189 %}
9190 
9191 //---------- Population Count Instructions -------------------------------------
9192 
9193 instruct popCountI(iRegI dst, iRegI src) %{
9194   predicate(UsePopCountInstruction);
9195   match(Set dst (PopCountI src));
9196 
9197   format %{ "POPC   $src, $dst" %}
9198   ins_encode %{
9199     __ popc($src$$Register, $dst$$Register);
9200   %}
9201   ins_pipe(ialu_reg);
9202 %}
9203 
9204 // Note: Long.bitCount(long) returns an int.
9205 instruct popCountL(iRegI dst, iRegL src) %{
9206   predicate(UsePopCountInstruction);
9207   match(Set dst (PopCountL src));
9208 
9209   format %{ "POPC   $src, $dst" %}
9210   ins_encode %{
9211     __ popc($src$$Register, $dst$$Register);
9212   %}
9213   ins_pipe(ialu_reg);
9214 %}
9215 
9216 
9217 // ============================================================================
9218 //------------Bytes reverse--------------------------------------------------
9219 
9220 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
9221   match(Set dst (ReverseBytesI src));
9222   effect(DEF dst, USE src);
9223 
9224   // Op cost is artificially doubled to make sure that load or store
9225   // instructions are preferred over this one which requires a spill
9226   // onto a stack slot.
9227   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9228   size(8);
9229   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9230   opcode(Assembler::lduwa_op3);
9231   ins_encode( form3_mem_reg_little(src, dst) );
9232   ins_pipe( iload_mem );
9233 %}
9234 
9235 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
9236   match(Set dst (ReverseBytesL src));
9237   effect(DEF dst, USE src);
9238 
9239   // Op cost is artificially doubled to make sure that load or store
9240   // instructions are preferred over this one which requires a spill
9241   // onto a stack slot.
9242   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9243   size(8);
9244   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9245 
9246   opcode(Assembler::ldxa_op3);
9247   ins_encode( form3_mem_reg_little(src, dst) );
9248   ins_pipe( iload_mem );
9249 %}
9250 
9251 // Load Integer reversed byte order
9252 instruct loadI_reversed(iRegI dst, memory src) %{
9253   match(Set dst (ReverseBytesI (LoadI src)));
9254 
9255   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9256   size(8);
9257   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9258 
9259   opcode(Assembler::lduwa_op3);
9260   ins_encode( form3_mem_reg_little( src, dst) );
9261   ins_pipe(iload_mem);
9262 %}
9263 
9264 // Load Long - aligned and reversed
9265 instruct loadL_reversed(iRegL dst, memory src) %{
9266   match(Set dst (ReverseBytesL (LoadL src)));
9267 
9268   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9269   size(8);
9270   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9271 
9272   opcode(Assembler::ldxa_op3);
9273   ins_encode( form3_mem_reg_little( src, dst ) );
9274   ins_pipe(iload_mem);
9275 %}
9276 
9277 // Store Integer reversed byte order
9278 instruct storeI_reversed(memory dst, iRegI src) %{
9279   match(Set dst (StoreI dst (ReverseBytesI src)));
9280 
9281   ins_cost(MEMORY_REF_COST);
9282   size(8);
9283   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
9284 
9285   opcode(Assembler::stwa_op3);
9286   ins_encode( form3_mem_reg_little( dst, src) );
9287   ins_pipe(istore_mem_reg);
9288 %}
9289 
9290 // Store Long reversed byte order
9291 instruct storeL_reversed(memory dst, iRegL src) %{
9292   match(Set dst (StoreL dst (ReverseBytesL src)));
9293 
9294   ins_cost(MEMORY_REF_COST);
9295   size(8);
9296   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
9297 
9298   opcode(Assembler::stxa_op3);
9299   ins_encode( form3_mem_reg_little( dst, src) );
9300   ins_pipe(istore_mem_reg);
9301 %}
9302 
9303 //----------PEEPHOLE RULES-----------------------------------------------------
9304 // These must follow all instruction definitions as they use the names
9305 // defined in the instructions definitions.
9306 //
9307 // peepmatch ( root_instr_name [preceding_instruction]* );
9308 //
9309 // peepconstraint %{
9310 // (instruction_number.operand_name relational_op instruction_number.operand_name
9311 //  [, ...] );
9312 // // instruction numbers are zero-based using left to right order in peepmatch
9313 //
9314 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
9315 // // provide an instruction_number.operand_name for each operand that appears
9316 // // in the replacement instruction's match rule
9317 //
9318 // ---------VM FLAGS---------------------------------------------------------
9319 //
9320 // All peephole optimizations can be turned off using -XX:-OptoPeephole
9321 //
9322 // Each peephole rule is given an identifying number starting with zero and
9323 // increasing by one in the order seen by the parser.  An individual peephole
9324 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
9325 // on the command-line.
9326 //
9327 // ---------CURRENT LIMITATIONS----------------------------------------------
9328 //
9329 // Only match adjacent instructions in same basic block
9330 // Only equality constraints
9331 // Only constraints between operands, not (0.dest_reg == EAX_enc)
9332 // Only one replacement instruction
9333 //
9334 // ---------EXAMPLE----------------------------------------------------------
9335 //
9336 // // pertinent parts of existing instructions in architecture description
9337 // instruct movI(eRegI dst, eRegI src) %{
9338 //   match(Set dst (CopyI src));
9339 // %}
9340 //
9341 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
9342 //   match(Set dst (AddI dst src));
9343 //   effect(KILL cr);
9344 // %}
9345 //
9346 // // Change (inc mov) to lea
9347 // peephole %{
9348 //   // increment preceeded by register-register move
9349 //   peepmatch ( incI_eReg movI );
9350 //   // require that the destination register of the increment
9351 //   // match the destination register of the move
9352 //   peepconstraint ( 0.dst == 1.dst );
9353 //   // construct a replacement instruction that sets
9354 //   // the destination to ( move's source register + one )
9355 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
9356 // %}
9357 //
9358 
9359 // // Change load of spilled value to only a spill
9360 // instruct storeI(memory mem, eRegI src) %{
9361 //   match(Set mem (StoreI mem src));
9362 // %}
9363 //
9364 // instruct loadI(eRegI dst, memory mem) %{
9365 //   match(Set dst (LoadI mem));
9366 // %}
9367 //
9368 // peephole %{
9369 //   peepmatch ( loadI storeI );
9370 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
9371 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
9372 // %}
9373 
9374 //----------SMARTSPILL RULES---------------------------------------------------
9375 // These must follow all instruction definitions as they use the names
9376 // defined in the instructions definitions.
9377 //
9378 // SPARC will probably not have any of these rules due to RISC instruction set.
9379 
9380 //----------PIPELINE-----------------------------------------------------------
9381 // Rules which define the behavior of the target architectures pipeline.