1 //
   2 // Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20 // CA 95054 USA or visit www.sun.com if you need additional information or
  21 // have any questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg());
 197 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg()->next());
 198 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg());
 199 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg()->next());
 200 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg());
 201 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg()->next());
 202 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg());
 203 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg()->next());
 204 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg());
 205 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg()->next());
 206 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg());
 207 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg()->next());
 208 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg());
 209 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg()->next());
 210 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg());
 211 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg()->next());
 212 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg());
 213 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg()->next());
 214 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg());
 215 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg()->next());
 216 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg());
 217 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg()->next());
 218 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg());
 219 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg()->next());
 220 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg());
 221 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg()->next());
 222 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg());
 223 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg()->next());
 224 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg());
 225 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg()->next());
 226 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg());
 227 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 // Macros to extract hi & lo halves from a long pair.
 464 // G0 is not part of any long pair, so assert on that.
 465 // Prevents accidentally using G1 instead of G0.
 466 #define LONG_HI_REG(x) (x)
 467 #define LONG_LO_REG(x) (x)
 468 
 469 %}
 470 
 471 source %{
 472 #define __ _masm.
 473 
 474 // tertiary op of a LoadP or StoreP encoding
 475 #define REGP_OP true
 476 
 477 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 478 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 479 static Register reg_to_register_object(int register_encoding);
 480 
 481 // Used by the DFA in dfa_sparc.cpp.
 482 // Check for being able to use a V9 branch-on-register.  Requires a
 483 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 484 // extended.  Doesn't work following an integer ADD, for example, because of
 485 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 486 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 487 // replace them with zero, which could become sign-extension in a different OS
 488 // release.  There's no obvious reason why an interrupt will ever fill these
 489 // bits with non-zero junk (the registers are reloaded with standard LD
 490 // instructions which either zero-fill or sign-fill).
 491 bool can_branch_register( Node *bol, Node *cmp ) {
 492   if( !BranchOnRegister ) return false;
 493 #ifdef _LP64
 494   if( cmp->Opcode() == Op_CmpP )
 495     return true;  // No problems with pointer compares
 496 #endif
 497   if( cmp->Opcode() == Op_CmpL )
 498     return true;  // No problems with long compares
 499 
 500   if( !SparcV9RegsHiBitsZero ) return false;
 501   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 502       bol->as_Bool()->_test._test != BoolTest::eq )
 503      return false;
 504 
 505   // Check for comparing against a 'safe' value.  Any operation which
 506   // clears out the high word is safe.  Thus, loads and certain shifts
 507   // are safe, as are non-negative constants.  Any operation which
 508   // preserves zero bits in the high word is safe as long as each of its
 509   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 510   // inputs are safe.  At present, the only important case to recognize
 511   // seems to be loads.  Constants should fold away, and shifts &
 512   // logicals can use the 'cc' forms.
 513   Node *x = cmp->in(1);
 514   if( x->is_Load() ) return true;
 515   if( x->is_Phi() ) {
 516     for( uint i = 1; i < x->req(); i++ )
 517       if( !x->in(i)->is_Load() )
 518         return false;
 519     return true;
 520   }
 521   return false;
 522 }
 523 
 524 // ****************************************************************************
 525 
 526 // REQUIRED FUNCTIONALITY
 527 
 528 // !!!!! Special hack to get all type of calls to specify the byte offset
 529 //       from the start of the call to the point where the return address
 530 //       will point.
 531 //       The "return address" is the address of the call instruction, plus 8.
 532 
 533 int MachCallStaticJavaNode::ret_addr_offset() {
 534   return NativeCall::instruction_size;  // call; delay slot
 535 }
 536 
 537 int MachCallDynamicJavaNode::ret_addr_offset() {
 538   int vtable_index = this->_vtable_index;
 539   if (vtable_index < 0) {
 540     // must be invalid_vtable_index, not nonvirtual_vtable_index
 541     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 542     return (NativeMovConstReg::instruction_size +
 543            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 544   } else {
 545     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 546     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 547     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 548     int klass_load_size;
 549     if (UseCompressedOops) {
 550       assert(Universe::heap() != NULL, "java heap should be initialized");
 551       if (Universe::narrow_oop_base() == NULL)
 552         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 553       else
 554         klass_load_size = 3*BytesPerInstWord;
 555     } else {
 556       klass_load_size = 1*BytesPerInstWord;
 557     }
 558     if( Assembler::is_simm13(v_off) ) {
 559       return klass_load_size +
 560              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 561              NativeCall::instruction_size);  // call; delay slot
 562     } else {
 563       return klass_load_size +
 564              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 565              NativeCall::instruction_size);  // call; delay slot
 566     }
 567   }
 568 }
 569 
 570 int MachCallRuntimeNode::ret_addr_offset() {
 571 #ifdef _LP64
 572   return NativeFarCall::instruction_size;  // farcall; delay slot
 573 #else
 574   return NativeCall::instruction_size;  // call; delay slot
 575 #endif
 576 }
 577 
 578 // Indicate if the safepoint node needs the polling page as an input.
 579 // Since Sparc does not have absolute addressing, it does.
 580 bool SafePointNode::needs_polling_address_input() {
 581   return true;
 582 }
 583 
 584 // emit an interrupt that is caught by the debugger (for debugging compiler)
 585 void emit_break(CodeBuffer &cbuf) {
 586   MacroAssembler _masm(&cbuf);
 587   __ breakpoint_trap();
 588 }
 589 
 590 #ifndef PRODUCT
 591 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 592   st->print("TA");
 593 }
 594 #endif
 595 
 596 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 597   emit_break(cbuf);
 598 }
 599 
 600 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 601   return MachNode::size(ra_);
 602 }
 603 
 604 // Traceable jump
 605 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 606   MacroAssembler _masm(&cbuf);
 607   Register rdest = reg_to_register_object(jump_target);
 608   __ JMP(rdest, 0);
 609   __ delayed()->nop();
 610 }
 611 
 612 // Traceable jump and set exception pc
 613 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 614   MacroAssembler _masm(&cbuf);
 615   Register rdest = reg_to_register_object(jump_target);
 616   __ JMP(rdest, 0);
 617   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 618 }
 619 
 620 void emit_nop(CodeBuffer &cbuf) {
 621   MacroAssembler _masm(&cbuf);
 622   __ nop();
 623 }
 624 
 625 void emit_illtrap(CodeBuffer &cbuf) {
 626   MacroAssembler _masm(&cbuf);
 627   __ illtrap(0);
 628 }
 629 
 630 
 631 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 632   assert(n->rule() != loadUB_rule, "");
 633 
 634   intptr_t offset = 0;
 635   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 636   const Node* addr = n->get_base_and_disp(offset, adr_type);
 637   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 638   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 639   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 640   atype = atype->add_offset(offset);
 641   assert(disp32 == offset, "wrong disp32");
 642   return atype->_offset;
 643 }
 644 
 645 
 646 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 647   assert(n->rule() != loadUB_rule, "");
 648 
 649   intptr_t offset = 0;
 650   Node* addr = n->in(2);
 651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 652   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 653     Node* a = addr->in(2/*AddPNode::Address*/);
 654     Node* o = addr->in(3/*AddPNode::Offset*/);
 655     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 656     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 657     assert(atype->isa_oop_ptr(), "still an oop");
 658   }
 659   offset = atype->is_ptr()->_offset;
 660   if (offset != Type::OffsetBot)  offset += disp32;
 661   return offset;
 662 }
 663 
 664 // Standard Sparc opcode form2 field breakdown
 665 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 666   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 667   int op = (f30 << 30) |
 668            (f29 << 29) |
 669            (f25 << 25) |
 670            (f22 << 22) |
 671            (f20 << 20) |
 672            (f19 << 19) |
 673            (f0  <<  0);
 674   *((int*)(cbuf.code_end())) = op;
 675   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 676 }
 677 
 678 // Standard Sparc opcode form2 field breakdown
 679 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 680   f0 >>= 10;           // Drop 10 bits
 681   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 682   int op = (f30 << 30) |
 683            (f25 << 25) |
 684            (f22 << 22) |
 685            (f0  <<  0);
 686   *((int*)(cbuf.code_end())) = op;
 687   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 688 }
 689 
 690 // Standard Sparc opcode form3 field breakdown
 691 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 692   int op = (f30 << 30) |
 693            (f25 << 25) |
 694            (f19 << 19) |
 695            (f14 << 14) |
 696            (f5  <<  5) |
 697            (f0  <<  0);
 698   *((int*)(cbuf.code_end())) = op;
 699   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 700 }
 701 
 702 // Standard Sparc opcode form3 field breakdown
 703 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 704   simm13 &= (1<<13)-1; // Mask to 13 bits
 705   int op = (f30 << 30) |
 706            (f25 << 25) |
 707            (f19 << 19) |
 708            (f14 << 14) |
 709            (1   << 13) | // bit to indicate immediate-mode
 710            (simm13<<0);
 711   *((int*)(cbuf.code_end())) = op;
 712   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 713 }
 714 
 715 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 716   simm10 &= (1<<10)-1; // Mask to 10 bits
 717   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 718 }
 719 
 720 #ifdef ASSERT
 721 // Helper function for VerifyOops in emit_form3_mem_reg
 722 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 723   warning("VerifyOops encountered unexpected instruction:");
 724   n->dump(2);
 725   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 726 }
 727 #endif
 728 
 729 
 730 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 731                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 732 
 733 #ifdef ASSERT
 734   // The following code implements the +VerifyOops feature.
 735   // It verifies oop values which are loaded into or stored out of
 736   // the current method activation.  +VerifyOops complements techniques
 737   // like ScavengeALot, because it eagerly inspects oops in transit,
 738   // as they enter or leave the stack, as opposed to ScavengeALot,
 739   // which inspects oops "at rest", in the stack or heap, at safepoints.
 740   // For this reason, +VerifyOops can sometimes detect bugs very close
 741   // to their point of creation.  It can also serve as a cross-check
 742   // on the validity of oop maps, when used toegether with ScavengeALot.
 743 
 744   // It would be good to verify oops at other points, especially
 745   // when an oop is used as a base pointer for a load or store.
 746   // This is presently difficult, because it is hard to know when
 747   // a base address is biased or not.  (If we had such information,
 748   // it would be easy and useful to make a two-argument version of
 749   // verify_oop which unbiases the base, and performs verification.)
 750 
 751   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 752   bool is_verified_oop_base  = false;
 753   bool is_verified_oop_load  = false;
 754   bool is_verified_oop_store = false;
 755   int tmp_enc = -1;
 756   if (VerifyOops && src1_enc != R_SP_enc) {
 757     // classify the op, mainly for an assert check
 758     int st_op = 0, ld_op = 0;
 759     switch (primary) {
 760     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 761     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 762     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 763     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 764     case Assembler::std_op3:  st_op = Op_StoreL; break;
 765     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 766     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 767 
 768     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 769     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 770     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 771     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 772     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 773     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 774     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 775     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 776     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 777     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
 778     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 779 
 780     default: ShouldNotReachHere();
 781     }
 782     if (tertiary == REGP_OP) {
 783       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 784       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 785       else                          ShouldNotReachHere();
 786       if (st_op) {
 787         // a store
 788         // inputs are (0:control, 1:memory, 2:address, 3:value)
 789         Node* n2 = n->in(3);
 790         if (n2 != NULL) {
 791           const Type* t = n2->bottom_type();
 792           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 793         }
 794       } else {
 795         // a load
 796         const Type* t = n->bottom_type();
 797         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 798       }
 799     }
 800 
 801     if (ld_op) {
 802       // a Load
 803       // inputs are (0:control, 1:memory, 2:address)
 804       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 805           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
 806           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 807           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 808           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 809           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 810           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 811           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 812           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 813           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 814           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 815           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 816           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 817           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 818           !(n->rule() == loadUB_rule)) {
 819         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 820       }
 821     } else if (st_op) {
 822       // a Store
 823       // inputs are (0:control, 1:memory, 2:address, 3:value)
 824       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 825           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 826           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 827           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 828           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 829           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 830         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 831       }
 832     }
 833 
 834     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 835       Node* addr = n->in(2);
 836       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 837         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 838         if (atype != NULL) {
 839           intptr_t offset = get_offset_from_base(n, atype, disp32);
 840           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 841           if (offset != offset_2) {
 842             get_offset_from_base(n, atype, disp32);
 843             get_offset_from_base_2(n, atype, disp32);
 844           }
 845           assert(offset == offset_2, "different offsets");
 846           if (offset == disp32) {
 847             // we now know that src1 is a true oop pointer
 848             is_verified_oop_base = true;
 849             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 850               if( primary == Assembler::ldd_op3 ) {
 851                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 852               } else {
 853                 tmp_enc = dst_enc;
 854                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 855                 assert(src1_enc != dst_enc, "");
 856               }
 857             }
 858           }
 859           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 860                        || offset == oopDesc::mark_offset_in_bytes())) {
 861                       // loading the mark should not be allowed either, but
 862                       // we don't check this since it conflicts with InlineObjectHash
 863                       // usage of LoadINode to get the mark. We could keep the
 864                       // check if we create a new LoadMarkNode
 865             // but do not verify the object before its header is initialized
 866             ShouldNotReachHere();
 867           }
 868         }
 869       }
 870     }
 871   }
 872 #endif
 873 
 874   uint instr;
 875   instr = (Assembler::ldst_op << 30)
 876         | (dst_enc        << 25)
 877         | (primary        << 19)
 878         | (src1_enc       << 14);
 879 
 880   uint index = src2_enc;
 881   int disp = disp32;
 882 
 883   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 884     disp += STACK_BIAS;
 885 
 886   // We should have a compiler bailout here rather than a guarantee.
 887   // Better yet would be some mechanism to handle variable-size matches correctly.
 888   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 889 
 890   if( disp == 0 ) {
 891     // use reg-reg form
 892     // bit 13 is already zero
 893     instr |= index;
 894   } else {
 895     // use reg-imm form
 896     instr |= 0x00002000;          // set bit 13 to one
 897     instr |= disp & 0x1FFF;
 898   }
 899 
 900   uint *code = (uint*)cbuf.code_end();
 901   *code = instr;
 902   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 903 
 904 #ifdef ASSERT
 905   {
 906     MacroAssembler _masm(&cbuf);
 907     if (is_verified_oop_base) {
 908       __ verify_oop(reg_to_register_object(src1_enc));
 909     }
 910     if (is_verified_oop_store) {
 911       __ verify_oop(reg_to_register_object(dst_enc));
 912     }
 913     if (tmp_enc != -1) {
 914       __ mov(O7, reg_to_register_object(tmp_enc));
 915     }
 916     if (is_verified_oop_load) {
 917       __ verify_oop(reg_to_register_object(dst_enc));
 918     }
 919   }
 920 #endif
 921 }
 922 
 923 void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 924                         int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) {
 925 
 926   uint instr;
 927   instr = (Assembler::ldst_op << 30)
 928         | (dst_enc        << 25)
 929         | (primary        << 19)
 930         | (src1_enc       << 14);
 931 
 932   int disp = disp32;
 933   int index    = src2_enc;
 934 
 935   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 936     disp += STACK_BIAS;
 937 
 938   // We should have a compiler bailout here rather than a guarantee.
 939   // Better yet would be some mechanism to handle variable-size matches correctly.
 940   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 941 
 942   if( disp != 0 ) {
 943     // use reg-reg form
 944     // set src2=R_O7 contains offset
 945     index = R_O7_enc;
 946     emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp);
 947   }
 948   instr |= (asi << 5);
 949   instr |= index;
 950   uint *code = (uint*)cbuf.code_end();
 951   *code = instr;
 952   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 953 }
 954 
 955 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
 956   // The method which records debug information at every safepoint
 957   // expects the call to be the first instruction in the snippet as
 958   // it creates a PcDesc structure which tracks the offset of a call
 959   // from the start of the codeBlob. This offset is computed as
 960   // code_end() - code_begin() of the code which has been emitted
 961   // so far.
 962   // In this particular case we have skirted around the problem by
 963   // putting the "mov" instruction in the delay slot but the problem
 964   // may bite us again at some other point and a cleaner/generic
 965   // solution using relocations would be needed.
 966   MacroAssembler _masm(&cbuf);
 967   __ set_inst_mark();
 968 
 969   // We flush the current window just so that there is a valid stack copy
 970   // the fact that the current window becomes active again instantly is
 971   // not a problem there is nothing live in it.
 972 
 973 #ifdef ASSERT
 974   int startpos = __ offset();
 975 #endif /* ASSERT */
 976 
 977 #ifdef _LP64
 978   // Calls to the runtime or native may not be reachable from compiled code,
 979   // so we generate the far call sequence on 64 bit sparc.
 980   // This code sequence is relocatable to any address, even on LP64.
 981   if ( force_far_call ) {
 982     __ relocate(rtype);
 983     AddressLiteral dest(entry_point);
 984     __ jumpl_to(dest, O7, O7);
 985   }
 986   else
 987 #endif
 988   {
 989      __ call((address)entry_point, rtype);
 990   }
 991 
 992   if (preserve_g2)   __ delayed()->mov(G2, L7);
 993   else __ delayed()->nop();
 994 
 995   if (preserve_g2)   __ mov(L7, G2);
 996 
 997 #ifdef ASSERT
 998   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 999 #ifdef _LP64
1000     // Trash argument dump slots.
1001     __ set(0xb0b8ac0db0b8ac0d, G1);
1002     __ mov(G1, G5);
1003     __ stx(G1, SP, STACK_BIAS + 0x80);
1004     __ stx(G1, SP, STACK_BIAS + 0x88);
1005     __ stx(G1, SP, STACK_BIAS + 0x90);
1006     __ stx(G1, SP, STACK_BIAS + 0x98);
1007     __ stx(G1, SP, STACK_BIAS + 0xA0);
1008     __ stx(G1, SP, STACK_BIAS + 0xA8);
1009 #else // _LP64
1010     // this is also a native call, so smash the first 7 stack locations,
1011     // and the various registers
1012 
1013     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1014     // while [SP+0x44..0x58] are the argument dump slots.
1015     __ set((intptr_t)0xbaadf00d, G1);
1016     __ mov(G1, G5);
1017     __ sllx(G1, 32, G1);
1018     __ or3(G1, G5, G1);
1019     __ mov(G1, G5);
1020     __ stx(G1, SP, 0x40);
1021     __ stx(G1, SP, 0x48);
1022     __ stx(G1, SP, 0x50);
1023     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1024 #endif // _LP64
1025   }
1026 #endif /*ASSERT*/
1027 }
1028 
1029 //=============================================================================
1030 // REQUIRED FUNCTIONALITY for encoding
1031 void emit_lo(CodeBuffer &cbuf, int val) {  }
1032 void emit_hi(CodeBuffer &cbuf, int val) {  }
1033 
1034 
1035 //=============================================================================
1036 
1037 #ifndef PRODUCT
1038 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1039   Compile* C = ra_->C;
1040 
1041   for (int i = 0; i < OptoPrologueNops; i++) {
1042     st->print_cr("NOP"); st->print("\t");
1043   }
1044 
1045   if( VerifyThread ) {
1046     st->print_cr("Verify_Thread"); st->print("\t");
1047   }
1048 
1049   size_t framesize = C->frame_slots() << LogBytesPerInt;
1050 
1051   // Calls to C2R adapters often do not accept exceptional returns.
1052   // We require that their callers must bang for them.  But be careful, because
1053   // some VM calls (such as call site linkage) can use several kilobytes of
1054   // stack.  But the stack safety zone should account for that.
1055   // See bugs 4446381, 4468289, 4497237.
1056   if (C->need_stack_bang(framesize)) {
1057     st->print_cr("! stack bang"); st->print("\t");
1058   }
1059 
1060   if (Assembler::is_simm13(-framesize)) {
1061     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1062   } else {
1063     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1064     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1065     st->print   ("SAVE   R_SP,R_G3,R_SP");
1066   }
1067 
1068 }
1069 #endif
1070 
1071 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1072   Compile* C = ra_->C;
1073   MacroAssembler _masm(&cbuf);
1074 
1075   for (int i = 0; i < OptoPrologueNops; i++) {
1076     __ nop();
1077   }
1078 
1079   __ verify_thread();
1080 
1081   size_t framesize = C->frame_slots() << LogBytesPerInt;
1082   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1083   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1084 
1085   // Calls to C2R adapters often do not accept exceptional returns.
1086   // We require that their callers must bang for them.  But be careful, because
1087   // some VM calls (such as call site linkage) can use several kilobytes of
1088   // stack.  But the stack safety zone should account for that.
1089   // See bugs 4446381, 4468289, 4497237.
1090   if (C->need_stack_bang(framesize)) {
1091     __ generate_stack_overflow_check(framesize);
1092   }
1093 
1094   if (Assembler::is_simm13(-framesize)) {
1095     __ save(SP, -framesize, SP);
1096   } else {
1097     __ sethi(-framesize & ~0x3ff, G3);
1098     __ add(G3, -framesize & 0x3ff, G3);
1099     __ save(SP, G3, SP);
1100   }
1101   C->set_frame_complete( __ offset() );
1102 }
1103 
1104 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1105   return MachNode::size(ra_);
1106 }
1107 
1108 int MachPrologNode::reloc() const {
1109   return 10; // a large enough number
1110 }
1111 
1112 //=============================================================================
1113 #ifndef PRODUCT
1114 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1115   Compile* C = ra_->C;
1116 
1117   if( do_polling() && ra_->C->is_method_compilation() ) {
1118     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1119 #ifdef _LP64
1120     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1121 #else
1122     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1123 #endif
1124   }
1125 
1126   if( do_polling() )
1127     st->print("RET\n\t");
1128 
1129   st->print("RESTORE");
1130 }
1131 #endif
1132 
1133 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1134   MacroAssembler _masm(&cbuf);
1135   Compile* C = ra_->C;
1136 
1137   __ verify_thread();
1138 
1139   // If this does safepoint polling, then do it here
1140   if( do_polling() && ra_->C->is_method_compilation() ) {
1141     AddressLiteral polling_page(os::get_polling_page());
1142     __ sethi(polling_page, L0);
1143     __ relocate(relocInfo::poll_return_type);
1144     __ ld_ptr( L0, 0, G0 );
1145   }
1146 
1147   // If this is a return, then stuff the restore in the delay slot
1148   if( do_polling() ) {
1149     __ ret();
1150     __ delayed()->restore();
1151   } else {
1152     __ restore();
1153   }
1154 }
1155 
1156 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1157   return MachNode::size(ra_);
1158 }
1159 
1160 int MachEpilogNode::reloc() const {
1161   return 16; // a large enough number
1162 }
1163 
1164 const Pipeline * MachEpilogNode::pipeline() const {
1165   return MachNode::pipeline_class();
1166 }
1167 
1168 int MachEpilogNode::safepoint_offset() const {
1169   assert( do_polling(), "no return for this epilog node");
1170   return MacroAssembler::size_of_sethi(os::get_polling_page());
1171 }
1172 
1173 //=============================================================================
1174 
1175 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1176 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1177 static enum RC rc_class( OptoReg::Name reg ) {
1178   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1179   if (OptoReg::is_stack(reg)) return rc_stack;
1180   VMReg r = OptoReg::as_VMReg(reg);
1181   if (r->is_Register()) return rc_int;
1182   assert(r->is_FloatRegister(), "must be");
1183   return rc_float;
1184 }
1185 
1186 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1187   if( cbuf ) {
1188     // Better yet would be some mechanism to handle variable-size matches correctly
1189     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1190       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1191     } else {
1192       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1193     }
1194   }
1195 #ifndef PRODUCT
1196   else if( !do_size ) {
1197     if( size != 0 ) st->print("\n\t");
1198     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1199     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1200   }
1201 #endif
1202   return size+4;
1203 }
1204 
1205 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1206   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1207 #ifndef PRODUCT
1208   else if( !do_size ) {
1209     if( size != 0 ) st->print("\n\t");
1210     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1211   }
1212 #endif
1213   return size+4;
1214 }
1215 
1216 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1217                                         PhaseRegAlloc *ra_,
1218                                         bool do_size,
1219                                         outputStream* st ) const {
1220   // Get registers to move
1221   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1222   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1223   OptoReg::Name dst_second = ra_->get_reg_second(this );
1224   OptoReg::Name dst_first = ra_->get_reg_first(this );
1225 
1226   enum RC src_second_rc = rc_class(src_second);
1227   enum RC src_first_rc = rc_class(src_first);
1228   enum RC dst_second_rc = rc_class(dst_second);
1229   enum RC dst_first_rc = rc_class(dst_first);
1230 
1231   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1232 
1233   // Generate spill code!
1234   int size = 0;
1235 
1236   if( src_first == dst_first && src_second == dst_second )
1237     return size;            // Self copy, no move
1238 
1239   // --------------------------------------
1240   // Check for mem-mem move.  Load into unused float registers and fall into
1241   // the float-store case.
1242   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1243     int offset = ra_->reg2offset(src_first);
1244     // Further check for aligned-adjacent pair, so we can use a double load
1245     if( (src_first&1)==0 && src_first+1 == src_second ) {
1246       src_second    = OptoReg::Name(R_F31_num);
1247       src_second_rc = rc_float;
1248       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1249     } else {
1250       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1251     }
1252     src_first    = OptoReg::Name(R_F30_num);
1253     src_first_rc = rc_float;
1254   }
1255 
1256   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1257     int offset = ra_->reg2offset(src_second);
1258     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1259     src_second    = OptoReg::Name(R_F31_num);
1260     src_second_rc = rc_float;
1261   }
1262 
1263   // --------------------------------------
1264   // Check for float->int copy; requires a trip through memory
1265   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
1266     int offset = frame::register_save_words*wordSize;
1267     if( cbuf ) {
1268       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1269       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1270       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1271       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1272     }
1273 #ifndef PRODUCT
1274     else if( !do_size ) {
1275       if( size != 0 ) st->print("\n\t");
1276       st->print(  "SUB    R_SP,16,R_SP\n");
1277       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1278       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1279       st->print("\tADD    R_SP,16,R_SP\n");
1280     }
1281 #endif
1282     size += 16;
1283   }
1284 
1285   // --------------------------------------
1286   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1287   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1288   // hardware does the flop for me.  Doubles are always aligned, so no problem
1289   // there.  Misaligned sources only come from native-long-returns (handled
1290   // special below).
1291 #ifndef _LP64
1292   if( src_first_rc == rc_int &&     // source is already big-endian
1293       src_second_rc != rc_bad &&    // 64-bit move
1294       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1295     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1296     // Do the big-endian flop.
1297     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1298     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1299   }
1300 #endif
1301 
1302   // --------------------------------------
1303   // Check for integer reg-reg copy
1304   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1305 #ifndef _LP64
1306     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1307       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1308       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1309       //       operand contains the least significant word of the 64-bit value and vice versa.
1310       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1311       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1312       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1313       if( cbuf ) {
1314         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1315         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1316         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1317 #ifndef PRODUCT
1318       } else if( !do_size ) {
1319         if( size != 0 ) st->print("\n\t");
1320         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1321         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1322         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1323 #endif
1324       }
1325       return size+12;
1326     }
1327     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1328       // returning a long value in I0/I1
1329       // a SpillCopy must be able to target a return instruction's reg_class
1330       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1331       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1332       //       operand contains the least significant word of the 64-bit value and vice versa.
1333       OptoReg::Name tdest = dst_first;
1334 
1335       if (src_first == dst_first) {
1336         tdest = OptoReg::Name(R_O7_num);
1337         size += 4;
1338       }
1339 
1340       if( cbuf ) {
1341         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1342         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1343         // ShrL_reg_imm6
1344         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1345         // ShrR_reg_imm6  src, 0, dst
1346         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1347         if (tdest != dst_first) {
1348           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1349         }
1350       }
1351 #ifndef PRODUCT
1352       else if( !do_size ) {
1353         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1354         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1355         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1356         if (tdest != dst_first) {
1357           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1358         }
1359       }
1360 #endif // PRODUCT
1361       return size+8;
1362     }
1363 #endif // !_LP64
1364     // Else normal reg-reg copy
1365     assert( src_second != dst_first, "smashed second before evacuating it" );
1366     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1367     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1368     // This moves an aligned adjacent pair.
1369     // See if we are done.
1370     if( src_first+1 == src_second && dst_first+1 == dst_second )
1371       return size;
1372   }
1373 
1374   // Check for integer store
1375   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1376     int offset = ra_->reg2offset(dst_first);
1377     // Further check for aligned-adjacent pair, so we can use a double store
1378     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1379       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1380     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1381   }
1382 
1383   // Check for integer load
1384   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1385     int offset = ra_->reg2offset(src_first);
1386     // Further check for aligned-adjacent pair, so we can use a double load
1387     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1388       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1389     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1390   }
1391 
1392   // Check for float reg-reg copy
1393   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1394     // Further check for aligned-adjacent pair, so we can use a double move
1395     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1396       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1397     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1398   }
1399 
1400   // Check for float store
1401   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1402     int offset = ra_->reg2offset(dst_first);
1403     // Further check for aligned-adjacent pair, so we can use a double store
1404     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1405       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1406     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1407   }
1408 
1409   // Check for float load
1410   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1411     int offset = ra_->reg2offset(src_first);
1412     // Further check for aligned-adjacent pair, so we can use a double load
1413     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1414       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1415     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1416   }
1417 
1418   // --------------------------------------------------------------------
1419   // Check for hi bits still needing moving.  Only happens for misaligned
1420   // arguments to native calls.
1421   if( src_second == dst_second )
1422     return size;               // Self copy; no move
1423   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1424 
1425 #ifndef _LP64
1426   // In the LP64 build, all registers can be moved as aligned/adjacent
1427   // pairs, so there's never any need to move the high bits separately.
1428   // The 32-bit builds have to deal with the 32-bit ABI which can force
1429   // all sorts of silly alignment problems.
1430 
1431   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1432   // 32-bits of a 64-bit register, but are needed in low bits of another
1433   // register (else it's a hi-bits-to-hi-bits copy which should have
1434   // happened already as part of a 64-bit move)
1435   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1436     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1437     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1438     // Shift src_second down to dst_second's low bits.
1439     if( cbuf ) {
1440       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1441 #ifndef PRODUCT
1442     } else if( !do_size ) {
1443       if( size != 0 ) st->print("\n\t");
1444       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1445 #endif
1446     }
1447     return size+4;
1448   }
1449 
1450   // Check for high word integer store.  Must down-shift the hi bits
1451   // into a temp register, then fall into the case of storing int bits.
1452   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1453     // Shift src_second down to dst_second's low bits.
1454     if( cbuf ) {
1455       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1456 #ifndef PRODUCT
1457     } else if( !do_size ) {
1458       if( size != 0 ) st->print("\n\t");
1459       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1460 #endif
1461     }
1462     size+=4;
1463     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1464   }
1465 
1466   // Check for high word integer load
1467   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1468     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1469 
1470   // Check for high word integer store
1471   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1472     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1473 
1474   // Check for high word float store
1475   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1476     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1477 
1478 #endif // !_LP64
1479 
1480   Unimplemented();
1481 }
1482 
1483 #ifndef PRODUCT
1484 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1485   implementation( NULL, ra_, false, st );
1486 }
1487 #endif
1488 
1489 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1490   implementation( &cbuf, ra_, false, NULL );
1491 }
1492 
1493 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1494   return implementation( NULL, ra_, true, NULL );
1495 }
1496 
1497 //=============================================================================
1498 #ifndef PRODUCT
1499 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1500   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1501 }
1502 #endif
1503 
1504 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1505   MacroAssembler _masm(&cbuf);
1506   for(int i = 0; i < _count; i += 1) {
1507     __ nop();
1508   }
1509 }
1510 
1511 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1512   return 4 * _count;
1513 }
1514 
1515 
1516 //=============================================================================
1517 #ifndef PRODUCT
1518 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1519   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1520   int reg = ra_->get_reg_first(this);
1521   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1522 }
1523 #endif
1524 
1525 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1526   MacroAssembler _masm(&cbuf);
1527   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1528   int reg = ra_->get_encode(this);
1529 
1530   if (Assembler::is_simm13(offset)) {
1531      __ add(SP, offset, reg_to_register_object(reg));
1532   } else {
1533      __ set(offset, O7);
1534      __ add(SP, O7, reg_to_register_object(reg));
1535   }
1536 }
1537 
1538 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1539   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1540   assert(ra_ == ra_->C->regalloc(), "sanity");
1541   return ra_->C->scratch_emit_size(this);
1542 }
1543 
1544 //=============================================================================
1545 
1546 // emit call stub, compiled java to interpretor
1547 void emit_java_to_interp(CodeBuffer &cbuf ) {
1548 
1549   // Stub is fixed up when the corresponding call is converted from calling
1550   // compiled code to calling interpreted code.
1551   // set (empty), G5
1552   // jmp -1
1553 
1554   address mark = cbuf.inst_mark();  // get mark within main instrs section
1555 
1556   MacroAssembler _masm(&cbuf);
1557 
1558   address base =
1559   __ start_a_stub(Compile::MAX_stubs_size);
1560   if (base == NULL)  return;  // CodeBuffer::expand failed
1561 
1562   // static stub relocation stores the instruction address of the call
1563   __ relocate(static_stub_Relocation::spec(mark));
1564 
1565   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1566 
1567   __ set_inst_mark();
1568   AddressLiteral addrlit(-1);
1569   __ JUMP(addrlit, G3, 0);
1570 
1571   __ delayed()->nop();
1572 
1573   // Update current stubs pointer and restore code_end.
1574   __ end_a_stub();
1575 }
1576 
1577 // size of call stub, compiled java to interpretor
1578 uint size_java_to_interp() {
1579   // This doesn't need to be accurate but it must be larger or equal to
1580   // the real size of the stub.
1581   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1582           NativeJump::instruction_size + // sethi; jmp; nop
1583           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1584 }
1585 // relocation entries for call stub, compiled java to interpretor
1586 uint reloc_java_to_interp() {
1587   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1588 }
1589 
1590 
1591 //=============================================================================
1592 #ifndef PRODUCT
1593 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1594   st->print_cr("\nUEP:");
1595 #ifdef    _LP64
1596   if (UseCompressedOops) {
1597     assert(Universe::heap() != NULL, "java heap should be initialized");
1598     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1599     st->print_cr("\tSLL    R_G5,3,R_G5");
1600     if (Universe::narrow_oop_base() != NULL)
1601       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1602   } else {
1603     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1604   }
1605   st->print_cr("\tCMP    R_G5,R_G3" );
1606   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1607 #else  // _LP64
1608   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1609   st->print_cr("\tCMP    R_G5,R_G3" );
1610   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1611 #endif // _LP64
1612 }
1613 #endif
1614 
1615 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1616   MacroAssembler _masm(&cbuf);
1617   Label L;
1618   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1619   Register temp_reg   = G3;
1620   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1621 
1622   // Load klass from receiver
1623   __ load_klass(O0, temp_reg);
1624   // Compare against expected klass
1625   __ cmp(temp_reg, G5_ic_reg);
1626   // Branch to miss code, checks xcc or icc depending
1627   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1628 }
1629 
1630 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1631   return MachNode::size(ra_);
1632 }
1633 
1634 
1635 //=============================================================================
1636 
1637 uint size_exception_handler() {
1638   if (TraceJumps) {
1639     return (400); // just a guess
1640   }
1641   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1642 }
1643 
1644 uint size_deopt_handler() {
1645   if (TraceJumps) {
1646     return (400); // just a guess
1647   }
1648   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1649 }
1650 
1651 // Emit exception handler code.
1652 int emit_exception_handler(CodeBuffer& cbuf) {
1653   Register temp_reg = G3;
1654   AddressLiteral exception_blob(OptoRuntime::exception_blob()->instructions_begin());
1655   MacroAssembler _masm(&cbuf);
1656 
1657   address base =
1658   __ start_a_stub(size_exception_handler());
1659   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1660 
1661   int offset = __ offset();
1662 
1663   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1664   __ delayed()->nop();
1665 
1666   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1667 
1668   __ end_a_stub();
1669 
1670   return offset;
1671 }
1672 
1673 int emit_deopt_handler(CodeBuffer& cbuf) {
1674   // Can't use any of the current frame's registers as we may have deopted
1675   // at a poll and everything (including G3) can be live.
1676   Register temp_reg = L0;
1677   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1678   MacroAssembler _masm(&cbuf);
1679 
1680   address base =
1681   __ start_a_stub(size_deopt_handler());
1682   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1683 
1684   int offset = __ offset();
1685   __ save_frame(0);
1686   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1687   __ delayed()->restore();
1688 
1689   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1690 
1691   __ end_a_stub();
1692   return offset;
1693 
1694 }
1695 
1696 // Given a register encoding, produce a Integer Register object
1697 static Register reg_to_register_object(int register_encoding) {
1698   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1699   return as_Register(register_encoding);
1700 }
1701 
1702 // Given a register encoding, produce a single-precision Float Register object
1703 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1704   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1705   return as_SingleFloatRegister(register_encoding);
1706 }
1707 
1708 // Given a register encoding, produce a double-precision Float Register object
1709 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1710   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1711   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1712   return as_DoubleFloatRegister(register_encoding);
1713 }
1714 
1715 const bool Matcher::match_rule_supported(int opcode) {
1716   if (!has_match_rule(opcode))
1717     return false;
1718 
1719   switch (opcode) {
1720   case Op_CountLeadingZerosI:
1721   case Op_CountLeadingZerosL:
1722   case Op_CountTrailingZerosI:
1723   case Op_CountTrailingZerosL:
1724     if (!UsePopCountInstruction)
1725       return false;
1726     break;
1727   }
1728 
1729   return true;  // Per default match rules are supported.
1730 }
1731 
1732 int Matcher::regnum_to_fpu_offset(int regnum) {
1733   return regnum - 32; // The FP registers are in the second chunk
1734 }
1735 
1736 #ifdef ASSERT
1737 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1738 #endif
1739 
1740 // Vector width in bytes
1741 const uint Matcher::vector_width_in_bytes(void) {
1742   return 8;
1743 }
1744 
1745 // Vector ideal reg
1746 const uint Matcher::vector_ideal_reg(void) {
1747   return Op_RegD;
1748 }
1749 
1750 // USII supports fxtof through the whole range of number, USIII doesn't
1751 const bool Matcher::convL2FSupported(void) {
1752   return VM_Version::has_fast_fxtof();
1753 }
1754 
1755 // Is this branch offset short enough that a short branch can be used?
1756 //
1757 // NOTE: If the platform does not provide any short branch variants, then
1758 //       this method should return false for offset 0.
1759 bool Matcher::is_short_branch_offset(int rule, int offset) {
1760   return false;
1761 }
1762 
1763 const bool Matcher::isSimpleConstant64(jlong value) {
1764   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1765   // Depends on optimizations in MacroAssembler::setx.
1766   int hi = (int)(value >> 32);
1767   int lo = (int)(value & ~0);
1768   return (hi == 0) || (hi == -1) || (lo == 0);
1769 }
1770 
1771 // No scaling for the parameter the ClearArray node.
1772 const bool Matcher::init_array_count_is_in_bytes = true;
1773 
1774 // Threshold size for cleararray.
1775 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1776 
1777 // Should the Matcher clone shifts on addressing modes, expecting them to
1778 // be subsumed into complex addressing expressions or compute them into
1779 // registers?  True for Intel but false for most RISCs
1780 const bool Matcher::clone_shift_expressions = false;
1781 
1782 // Is it better to copy float constants, or load them directly from memory?
1783 // Intel can load a float constant from a direct address, requiring no
1784 // extra registers.  Most RISCs will have to materialize an address into a
1785 // register first, so they would do better to copy the constant from stack.
1786 const bool Matcher::rematerialize_float_constants = false;
1787 
1788 // If CPU can load and store mis-aligned doubles directly then no fixup is
1789 // needed.  Else we split the double into 2 integer pieces and move it
1790 // piece-by-piece.  Only happens when passing doubles into C code as the
1791 // Java calling convention forces doubles to be aligned.
1792 #ifdef _LP64
1793 const bool Matcher::misaligned_doubles_ok = true;
1794 #else
1795 const bool Matcher::misaligned_doubles_ok = false;
1796 #endif
1797 
1798 // No-op on SPARC.
1799 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1800 }
1801 
1802 // Advertise here if the CPU requires explicit rounding operations
1803 // to implement the UseStrictFP mode.
1804 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1805 
1806 // Do floats take an entire double register or just half?
1807 const bool Matcher::float_in_double = false;
1808 
1809 // Do ints take an entire long register or just half?
1810 // Note that we if-def off of _LP64.
1811 // The relevant question is how the int is callee-saved.  In _LP64
1812 // the whole long is written but de-opt'ing will have to extract
1813 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1814 #ifdef _LP64
1815 const bool Matcher::int_in_long = true;
1816 #else
1817 const bool Matcher::int_in_long = false;
1818 #endif
1819 
1820 // Return whether or not this register is ever used as an argument.  This
1821 // function is used on startup to build the trampoline stubs in generateOptoStub.
1822 // Registers not mentioned will be killed by the VM call in the trampoline, and
1823 // arguments in those registers not be available to the callee.
1824 bool Matcher::can_be_java_arg( int reg ) {
1825   // Standard sparc 6 args in registers
1826   if( reg == R_I0_num ||
1827       reg == R_I1_num ||
1828       reg == R_I2_num ||
1829       reg == R_I3_num ||
1830       reg == R_I4_num ||
1831       reg == R_I5_num ) return true;
1832 #ifdef _LP64
1833   // 64-bit builds can pass 64-bit pointers and longs in
1834   // the high I registers
1835   if( reg == R_I0H_num ||
1836       reg == R_I1H_num ||
1837       reg == R_I2H_num ||
1838       reg == R_I3H_num ||
1839       reg == R_I4H_num ||
1840       reg == R_I5H_num ) return true;
1841 
1842   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1843     return true;
1844   }
1845 
1846 #else
1847   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1848   // Longs cannot be passed in O regs, because O regs become I regs
1849   // after a 'save' and I regs get their high bits chopped off on
1850   // interrupt.
1851   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1852   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1853 #endif
1854   // A few float args in registers
1855   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1856 
1857   return false;
1858 }
1859 
1860 bool Matcher::is_spillable_arg( int reg ) {
1861   return can_be_java_arg(reg);
1862 }
1863 
1864 // Register for DIVI projection of divmodI
1865 RegMask Matcher::divI_proj_mask() {
1866   ShouldNotReachHere();
1867   return RegMask();
1868 }
1869 
1870 // Register for MODI projection of divmodI
1871 RegMask Matcher::modI_proj_mask() {
1872   ShouldNotReachHere();
1873   return RegMask();
1874 }
1875 
1876 // Register for DIVL projection of divmodL
1877 RegMask Matcher::divL_proj_mask() {
1878   ShouldNotReachHere();
1879   return RegMask();
1880 }
1881 
1882 // Register for MODL projection of divmodL
1883 RegMask Matcher::modL_proj_mask() {
1884   ShouldNotReachHere();
1885   return RegMask();
1886 }
1887 
1888 %}
1889 
1890 
1891 // The intptr_t operand types, defined by textual substitution.
1892 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1893 #ifdef _LP64
1894 #define immX    immL
1895 #define immX13  immL13
1896 #define iRegX   iRegL
1897 #define g1RegX  g1RegL
1898 #else
1899 #define immX    immI
1900 #define immX13  immI13
1901 #define iRegX   iRegI
1902 #define g1RegX  g1RegI
1903 #endif
1904 
1905 //----------ENCODING BLOCK-----------------------------------------------------
1906 // This block specifies the encoding classes used by the compiler to output
1907 // byte streams.  Encoding classes are parameterized macros used by
1908 // Machine Instruction Nodes in order to generate the bit encoding of the
1909 // instruction.  Operands specify their base encoding interface with the
1910 // interface keyword.  There are currently supported four interfaces,
1911 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1912 // operand to generate a function which returns its register number when
1913 // queried.   CONST_INTER causes an operand to generate a function which
1914 // returns the value of the constant when queried.  MEMORY_INTER causes an
1915 // operand to generate four functions which return the Base Register, the
1916 // Index Register, the Scale Value, and the Offset Value of the operand when
1917 // queried.  COND_INTER causes an operand to generate six functions which
1918 // return the encoding code (ie - encoding bits for the instruction)
1919 // associated with each basic boolean condition for a conditional instruction.
1920 //
1921 // Instructions specify two basic values for encoding.  Again, a function
1922 // is available to check if the constant displacement is an oop. They use the
1923 // ins_encode keyword to specify their encoding classes (which must be
1924 // a sequence of enc_class names, and their parameters, specified in
1925 // the encoding block), and they use the
1926 // opcode keyword to specify, in order, their primary, secondary, and
1927 // tertiary opcode.  Only the opcode sections which a particular instruction
1928 // needs for encoding need to be specified.
1929 encode %{
1930   enc_class enc_untested %{
1931 #ifdef ASSERT
1932     MacroAssembler _masm(&cbuf);
1933     __ untested("encoding");
1934 #endif
1935   %}
1936 
1937   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
1938     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
1939                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1940   %}
1941 
1942   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
1943     emit_form3_mem_reg(cbuf, this, $primary, -1,
1944                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1945   %}
1946 
1947   enc_class form3_mem_reg_little( memory mem, iRegI dst) %{
1948     emit_form3_mem_reg_asi(cbuf, this, $primary, -1,
1949                      $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE);
1950   %}
1951 
1952   enc_class form3_mem_prefetch_read( memory mem ) %{
1953     emit_form3_mem_reg(cbuf, this, $primary, -1,
1954                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
1955   %}
1956 
1957   enc_class form3_mem_prefetch_write( memory mem ) %{
1958     emit_form3_mem_reg(cbuf, this, $primary, -1,
1959                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
1960   %}
1961 
1962   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
1963     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1964     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1965     guarantee($mem$$index == R_G0_enc, "double index?");
1966     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
1967     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
1968     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
1969     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
1970   %}
1971 
1972   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
1973     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1974     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1975     guarantee($mem$$index == R_G0_enc, "double index?");
1976     // Load long with 2 instructions
1977     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
1978     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
1979   %}
1980 
1981   //%%% form3_mem_plus_4_reg is a hack--get rid of it
1982   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
1983     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
1984     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
1985   %}
1986 
1987   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
1988     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1989     if( $rs2$$reg != $rd$$reg )
1990       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
1991   %}
1992 
1993   // Target lo half of long
1994   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
1995     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1996     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
1997       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
1998   %}
1999 
2000   // Source lo half of long
2001   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2002     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2003     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2004       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2005   %}
2006 
2007   // Target hi half of long
2008   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2009     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2010   %}
2011 
2012   // Source lo half of long, and leave it sign extended.
2013   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2014     // Sign extend low half
2015     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2016   %}
2017 
2018   // Source hi half of long, and leave it sign extended.
2019   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2020     // Shift high half to low half
2021     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2022   %}
2023 
2024   // Source hi half of long
2025   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2026     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2027     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2028       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2029   %}
2030 
2031   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2032     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2033   %}
2034 
2035   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2036     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2037     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2038   %}
2039 
2040   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2041     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2042     // clear if nothing else is happening
2043     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2044     // blt,a,pn done
2045     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2046     // mov dst,-1 in delay slot
2047     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2048   %}
2049 
2050   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2051     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2052   %}
2053 
2054   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2055     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2056   %}
2057 
2058   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2059     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2060   %}
2061 
2062   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2063     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2064   %}
2065 
2066   enc_class move_return_pc_to_o1() %{
2067     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2068   %}
2069 
2070 #ifdef _LP64
2071   /* %%% merge with enc_to_bool */
2072   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2073     MacroAssembler _masm(&cbuf);
2074 
2075     Register   src_reg = reg_to_register_object($src$$reg);
2076     Register   dst_reg = reg_to_register_object($dst$$reg);
2077     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2078   %}
2079 #endif
2080 
2081   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2082     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2083     MacroAssembler _masm(&cbuf);
2084 
2085     Register   p_reg = reg_to_register_object($p$$reg);
2086     Register   q_reg = reg_to_register_object($q$$reg);
2087     Register   y_reg = reg_to_register_object($y$$reg);
2088     Register tmp_reg = reg_to_register_object($tmp$$reg);
2089 
2090     __ subcc( p_reg, q_reg,   p_reg );
2091     __ add  ( p_reg, y_reg, tmp_reg );
2092     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2093   %}
2094 
2095   enc_class form_d2i_helper(regD src, regF dst) %{
2096     // fcmp %fcc0,$src,$src
2097     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2098     // branch %fcc0 not-nan, predict taken
2099     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2100     // fdtoi $src,$dst
2101     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2102     // fitos $dst,$dst (if nan)
2103     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2104     // clear $dst (if nan)
2105     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2106     // carry on here...
2107   %}
2108 
2109   enc_class form_d2l_helper(regD src, regD dst) %{
2110     // fcmp %fcc0,$src,$src  check for NAN
2111     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2112     // branch %fcc0 not-nan, predict taken
2113     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2114     // fdtox $src,$dst   convert in delay slot
2115     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2116     // fxtod $dst,$dst  (if nan)
2117     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2118     // clear $dst (if nan)
2119     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2120     // carry on here...
2121   %}
2122 
2123   enc_class form_f2i_helper(regF src, regF dst) %{
2124     // fcmps %fcc0,$src,$src
2125     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2126     // branch %fcc0 not-nan, predict taken
2127     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2128     // fstoi $src,$dst
2129     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2130     // fitos $dst,$dst (if nan)
2131     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2132     // clear $dst (if nan)
2133     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2134     // carry on here...
2135   %}
2136 
2137   enc_class form_f2l_helper(regF src, regD dst) %{
2138     // fcmps %fcc0,$src,$src
2139     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2140     // branch %fcc0 not-nan, predict taken
2141     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2142     // fstox $src,$dst
2143     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2144     // fxtod $dst,$dst (if nan)
2145     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2146     // clear $dst (if nan)
2147     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2148     // carry on here...
2149   %}
2150 
2151   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2152   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2153   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2154   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2155 
2156   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2157 
2158   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2159   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2160 
2161   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2162     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2163   %}
2164 
2165   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2166     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2167   %}
2168 
2169   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2170     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2171   %}
2172 
2173   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2174     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2175   %}
2176 
2177   enc_class form3_convI2F(regF rs2, regF rd) %{
2178     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2179   %}
2180 
2181   // Encloding class for traceable jumps
2182   enc_class form_jmpl(g3RegP dest) %{
2183     emit_jmpl(cbuf, $dest$$reg);
2184   %}
2185 
2186   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2187     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2188   %}
2189 
2190   enc_class form2_nop() %{
2191     emit_nop(cbuf);
2192   %}
2193 
2194   enc_class form2_illtrap() %{
2195     emit_illtrap(cbuf);
2196   %}
2197 
2198 
2199   // Compare longs and convert into -1, 0, 1.
2200   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2201     // CMP $src1,$src2
2202     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2203     // blt,a,pn done
2204     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2205     // mov dst,-1 in delay slot
2206     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2207     // bgt,a,pn done
2208     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2209     // mov dst,1 in delay slot
2210     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2211     // CLR    $dst
2212     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2213   %}
2214 
2215   enc_class enc_PartialSubtypeCheck() %{
2216     MacroAssembler _masm(&cbuf);
2217     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2218     __ delayed()->nop();
2219   %}
2220 
2221   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
2222     MacroAssembler _masm(&cbuf);
2223     Label &L = *($labl$$label);
2224     Assembler::Predict predict_taken =
2225       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2226 
2227     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
2228     __ delayed()->nop();
2229   %}
2230 
2231   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
2232     MacroAssembler _masm(&cbuf);
2233     Label &L = *($labl$$label);
2234     Assembler::Predict predict_taken =
2235       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2236 
2237     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
2238     __ delayed()->nop();
2239   %}
2240 
2241   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
2242     MacroAssembler _masm(&cbuf);
2243     Label &L = *($labl$$label);
2244     Assembler::Predict predict_taken =
2245       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2246 
2247     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
2248     __ delayed()->nop();
2249   %}
2250 
2251   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
2252     MacroAssembler _masm(&cbuf);
2253     Label &L = *($labl$$label);
2254     Assembler::Predict predict_taken =
2255       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2256 
2257     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
2258     __ delayed()->nop();
2259   %}
2260 
2261   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
2262     MacroAssembler _masm(&cbuf);
2263 
2264     Register switch_reg       = as_Register($switch_val$$reg);
2265     Register table_reg        = O7;
2266 
2267     address table_base = __ address_table_constant(_index2label);
2268     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
2269 
2270     // Move table address into a register.
2271     __ set(table_base, table_reg, rspec);
2272 
2273     // Jump to base address + switch value
2274     __ ld_ptr(table_reg, switch_reg, table_reg);
2275     __ jmp(table_reg, G0);
2276     __ delayed()->nop();
2277 
2278   %}
2279 
2280   enc_class enc_ba( Label labl ) %{
2281     MacroAssembler _masm(&cbuf);
2282     Label &L = *($labl$$label);
2283     __ ba(false, L);
2284     __ delayed()->nop();
2285   %}
2286 
2287   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
2288     MacroAssembler _masm(&cbuf);
2289     Label &L = *$labl$$label;
2290     Assembler::Predict predict_taken =
2291       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2292 
2293     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
2294     __ delayed()->nop();
2295   %}
2296 
2297   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2298     int op = (Assembler::arith_op << 30) |
2299              ($dst$$reg << 25) |
2300              (Assembler::movcc_op3 << 19) |
2301              (1 << 18) |                    // cc2 bit for 'icc'
2302              ($cmp$$cmpcode << 14) |
2303              (0 << 13) |                    // select register move
2304              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2305              ($src$$reg << 0);
2306     *((int*)(cbuf.code_end())) = op;
2307     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2308   %}
2309 
2310   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2311     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2312     int op = (Assembler::arith_op << 30) |
2313              ($dst$$reg << 25) |
2314              (Assembler::movcc_op3 << 19) |
2315              (1 << 18) |                    // cc2 bit for 'icc'
2316              ($cmp$$cmpcode << 14) |
2317              (1 << 13) |                    // select immediate move
2318              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2319              (simm11 << 0);
2320     *((int*)(cbuf.code_end())) = op;
2321     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2322   %}
2323 
2324   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2325     int op = (Assembler::arith_op << 30) |
2326              ($dst$$reg << 25) |
2327              (Assembler::movcc_op3 << 19) |
2328              (0 << 18) |                    // cc2 bit for 'fccX'
2329              ($cmp$$cmpcode << 14) |
2330              (0 << 13) |                    // select register move
2331              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2332              ($src$$reg << 0);
2333     *((int*)(cbuf.code_end())) = op;
2334     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2335   %}
2336 
2337   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2338     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2339     int op = (Assembler::arith_op << 30) |
2340              ($dst$$reg << 25) |
2341              (Assembler::movcc_op3 << 19) |
2342              (0 << 18) |                    // cc2 bit for 'fccX'
2343              ($cmp$$cmpcode << 14) |
2344              (1 << 13) |                    // select immediate move
2345              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2346              (simm11 << 0);
2347     *((int*)(cbuf.code_end())) = op;
2348     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2349   %}
2350 
2351   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2352     int op = (Assembler::arith_op << 30) |
2353              ($dst$$reg << 25) |
2354              (Assembler::fpop2_op3 << 19) |
2355              (0 << 18) |
2356              ($cmp$$cmpcode << 14) |
2357              (1 << 13) |                    // select register move
2358              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2359              ($primary << 5) |              // select single, double or quad
2360              ($src$$reg << 0);
2361     *((int*)(cbuf.code_end())) = op;
2362     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2363   %}
2364 
2365   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2366     int op = (Assembler::arith_op << 30) |
2367              ($dst$$reg << 25) |
2368              (Assembler::fpop2_op3 << 19) |
2369              (0 << 18) |
2370              ($cmp$$cmpcode << 14) |
2371              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2372              ($primary << 5) |              // select single, double or quad
2373              ($src$$reg << 0);
2374     *((int*)(cbuf.code_end())) = op;
2375     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2376   %}
2377 
2378   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2379   // the condition comes from opcode-field instead of an argument.
2380   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2381     int op = (Assembler::arith_op << 30) |
2382              ($dst$$reg << 25) |
2383              (Assembler::movcc_op3 << 19) |
2384              (1 << 18) |                    // cc2 bit for 'icc'
2385              ($primary << 14) |
2386              (0 << 13) |                    // select register move
2387              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2388              ($src$$reg << 0);
2389     *((int*)(cbuf.code_end())) = op;
2390     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2391   %}
2392 
2393   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2394     int op = (Assembler::arith_op << 30) |
2395              ($dst$$reg << 25) |
2396              (Assembler::movcc_op3 << 19) |
2397              (6 << 16) |                    // cc2 bit for 'xcc'
2398              ($primary << 14) |
2399              (0 << 13) |                    // select register move
2400              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2401              ($src$$reg << 0);
2402     *((int*)(cbuf.code_end())) = op;
2403     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2404   %}
2405 
2406   // Utility encoding for loading a 64 bit Pointer into a register
2407   // The 64 bit pointer is stored in the generated code stream
2408   enc_class SetPtr( immP src, iRegP rd ) %{
2409     Register dest = reg_to_register_object($rd$$reg);
2410     MacroAssembler _masm(&cbuf);
2411     // [RGV] This next line should be generated from ADLC
2412     if ( _opnds[1]->constant_is_oop() ) {
2413       intptr_t val = $src$$constant;
2414       __ set_oop_constant((jobject)val, dest);
2415     } else {          // non-oop pointers, e.g. card mark base, heap top
2416       __ set($src$$constant, dest);
2417     }
2418   %}
2419 
2420   enc_class Set13( immI13 src, iRegI rd ) %{
2421     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2422   %}
2423 
2424   enc_class SetHi22( immI src, iRegI rd ) %{
2425     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2426   %}
2427 
2428   enc_class Set32( immI src, iRegI rd ) %{
2429     MacroAssembler _masm(&cbuf);
2430     __ set($src$$constant, reg_to_register_object($rd$$reg));
2431   %}
2432 
2433   enc_class SetNull( iRegI rd ) %{
2434     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
2435   %}
2436 
2437   enc_class call_epilog %{
2438     if( VerifyStackAtCalls ) {
2439       MacroAssembler _masm(&cbuf);
2440       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2441       Register temp_reg = G3;
2442       __ add(SP, framesize, temp_reg);
2443       __ cmp(temp_reg, FP);
2444       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2445     }
2446   %}
2447 
2448   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2449   // to G1 so the register allocator will not have to deal with the misaligned register
2450   // pair.
2451   enc_class adjust_long_from_native_call %{
2452 #ifndef _LP64
2453     if (returns_long()) {
2454       //    sllx  O0,32,O0
2455       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2456       //    srl   O1,0,O1
2457       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2458       //    or    O0,O1,G1
2459       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2460     }
2461 #endif
2462   %}
2463 
2464   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2465     // CALL directly to the runtime
2466     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2467     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2468                     /*preserve_g2=*/true, /*force far call*/true);
2469   %}
2470 
2471   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2472     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2473     // who we intended to call.
2474     if ( !_method ) {
2475       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2476     } else if (_optimized_virtual) {
2477       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2478     } else {
2479       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2480     }
2481     if( _method ) {  // Emit stub for static call
2482       emit_java_to_interp(cbuf);
2483     }
2484   %}
2485 
2486   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2487     MacroAssembler _masm(&cbuf);
2488     __ set_inst_mark();
2489     int vtable_index = this->_vtable_index;
2490     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2491     if (vtable_index < 0) {
2492       // must be invalid_vtable_index, not nonvirtual_vtable_index
2493       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2494       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2495       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2496       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2497       // !!!!!
2498       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2499       // emit_call_dynamic_prologue( cbuf );
2500       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2501 
2502       address  virtual_call_oop_addr = __ inst_mark();
2503       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2504       // who we intended to call.
2505       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2506       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2507     } else {
2508       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2509       // Just go thru the vtable
2510       // get receiver klass (receiver already checked for non-null)
2511       // If we end up going thru a c2i adapter interpreter expects method in G5
2512       int off = __ offset();
2513       __ load_klass(O0, G3_scratch);
2514       int klass_load_size;
2515       if (UseCompressedOops) {
2516         assert(Universe::heap() != NULL, "java heap should be initialized");
2517         if (Universe::narrow_oop_base() == NULL)
2518           klass_load_size = 2*BytesPerInstWord;
2519         else
2520           klass_load_size = 3*BytesPerInstWord;
2521       } else {
2522         klass_load_size = 1*BytesPerInstWord;
2523       }
2524       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2525       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2526       if( __ is_simm13(v_off) ) {
2527         __ ld_ptr(G3, v_off, G5_method);
2528       } else {
2529         // Generate 2 instructions
2530         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2531         __ or3(G5_method, v_off & 0x3ff, G5_method);
2532         // ld_ptr, set_hi, set
2533         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2534                "Unexpected instruction size(s)");
2535         __ ld_ptr(G3, G5_method, G5_method);
2536       }
2537       // NOTE: for vtable dispatches, the vtable entry will never be null.
2538       // However it may very well end up in handle_wrong_method if the
2539       // method is abstract for the particular class.
2540       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2541       // jump to target (either compiled code or c2iadapter)
2542       __ jmpl(G3_scratch, G0, O7);
2543       __ delayed()->nop();
2544     }
2545   %}
2546 
2547   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2548     MacroAssembler _masm(&cbuf);
2549 
2550     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2551     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2552                               // we might be calling a C2I adapter which needs it.
2553 
2554     assert(temp_reg != G5_ic_reg, "conflicting registers");
2555     // Load nmethod
2556     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2557 
2558     // CALL to compiled java, indirect the contents of G3
2559     __ set_inst_mark();
2560     __ callr(temp_reg, G0);
2561     __ delayed()->nop();
2562   %}
2563 
2564 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2565     MacroAssembler _masm(&cbuf);
2566     Register Rdividend = reg_to_register_object($src1$$reg);
2567     Register Rdivisor = reg_to_register_object($src2$$reg);
2568     Register Rresult = reg_to_register_object($dst$$reg);
2569 
2570     __ sra(Rdivisor, 0, Rdivisor);
2571     __ sra(Rdividend, 0, Rdividend);
2572     __ sdivx(Rdividend, Rdivisor, Rresult);
2573 %}
2574 
2575 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2576     MacroAssembler _masm(&cbuf);
2577 
2578     Register Rdividend = reg_to_register_object($src1$$reg);
2579     int divisor = $imm$$constant;
2580     Register Rresult = reg_to_register_object($dst$$reg);
2581 
2582     __ sra(Rdividend, 0, Rdividend);
2583     __ sdivx(Rdividend, divisor, Rresult);
2584 %}
2585 
2586 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2587     MacroAssembler _masm(&cbuf);
2588     Register Rsrc1 = reg_to_register_object($src1$$reg);
2589     Register Rsrc2 = reg_to_register_object($src2$$reg);
2590     Register Rdst  = reg_to_register_object($dst$$reg);
2591 
2592     __ sra( Rsrc1, 0, Rsrc1 );
2593     __ sra( Rsrc2, 0, Rsrc2 );
2594     __ mulx( Rsrc1, Rsrc2, Rdst );
2595     __ srlx( Rdst, 32, Rdst );
2596 %}
2597 
2598 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2599     MacroAssembler _masm(&cbuf);
2600     Register Rdividend = reg_to_register_object($src1$$reg);
2601     Register Rdivisor = reg_to_register_object($src2$$reg);
2602     Register Rresult = reg_to_register_object($dst$$reg);
2603     Register Rscratch = reg_to_register_object($scratch$$reg);
2604 
2605     assert(Rdividend != Rscratch, "");
2606     assert(Rdivisor  != Rscratch, "");
2607 
2608     __ sra(Rdividend, 0, Rdividend);
2609     __ sra(Rdivisor, 0, Rdivisor);
2610     __ sdivx(Rdividend, Rdivisor, Rscratch);
2611     __ mulx(Rscratch, Rdivisor, Rscratch);
2612     __ sub(Rdividend, Rscratch, Rresult);
2613 %}
2614 
2615 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2616     MacroAssembler _masm(&cbuf);
2617 
2618     Register Rdividend = reg_to_register_object($src1$$reg);
2619     int divisor = $imm$$constant;
2620     Register Rresult = reg_to_register_object($dst$$reg);
2621     Register Rscratch = reg_to_register_object($scratch$$reg);
2622 
2623     assert(Rdividend != Rscratch, "");
2624 
2625     __ sra(Rdividend, 0, Rdividend);
2626     __ sdivx(Rdividend, divisor, Rscratch);
2627     __ mulx(Rscratch, divisor, Rscratch);
2628     __ sub(Rdividend, Rscratch, Rresult);
2629 %}
2630 
2631 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2632     MacroAssembler _masm(&cbuf);
2633 
2634     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2635     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2636 
2637     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2638 %}
2639 
2640 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2641     MacroAssembler _masm(&cbuf);
2642 
2643     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2644     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2645 
2646     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2647 %}
2648 
2649 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2650     MacroAssembler _masm(&cbuf);
2651 
2652     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2653     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2654 
2655     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2656 %}
2657 
2658 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2659     MacroAssembler _masm(&cbuf);
2660 
2661     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2662     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2663 
2664     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2665 %}
2666 
2667 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2668     MacroAssembler _masm(&cbuf);
2669 
2670     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2671     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2672 
2673     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2674 %}
2675 
2676 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2677     MacroAssembler _masm(&cbuf);
2678 
2679     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2680     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2681 
2682     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2683 %}
2684 
2685 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2686     MacroAssembler _masm(&cbuf);
2687 
2688     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2689     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2690 
2691     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2692 %}
2693 
2694 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2695     MacroAssembler _masm(&cbuf);
2696 
2697     Register Roop  = reg_to_register_object($oop$$reg);
2698     Register Rbox  = reg_to_register_object($box$$reg);
2699     Register Rscratch = reg_to_register_object($scratch$$reg);
2700     Register Rmark =    reg_to_register_object($scratch2$$reg);
2701 
2702     assert(Roop  != Rscratch, "");
2703     assert(Roop  != Rmark, "");
2704     assert(Rbox  != Rscratch, "");
2705     assert(Rbox  != Rmark, "");
2706 
2707     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2708 %}
2709 
2710 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2711     MacroAssembler _masm(&cbuf);
2712 
2713     Register Roop  = reg_to_register_object($oop$$reg);
2714     Register Rbox  = reg_to_register_object($box$$reg);
2715     Register Rscratch = reg_to_register_object($scratch$$reg);
2716     Register Rmark =    reg_to_register_object($scratch2$$reg);
2717 
2718     assert(Roop  != Rscratch, "");
2719     assert(Roop  != Rmark, "");
2720     assert(Rbox  != Rscratch, "");
2721     assert(Rbox  != Rmark, "");
2722 
2723     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2724   %}
2725 
2726   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2727     MacroAssembler _masm(&cbuf);
2728     Register Rmem = reg_to_register_object($mem$$reg);
2729     Register Rold = reg_to_register_object($old$$reg);
2730     Register Rnew = reg_to_register_object($new$$reg);
2731 
2732     // casx_under_lock picks 1 of 3 encodings:
2733     // For 32-bit pointers you get a 32-bit CAS
2734     // For 64-bit pointers you get a 64-bit CASX
2735     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2736     __ cmp( Rold, Rnew );
2737   %}
2738 
2739   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2740     Register Rmem = reg_to_register_object($mem$$reg);
2741     Register Rold = reg_to_register_object($old$$reg);
2742     Register Rnew = reg_to_register_object($new$$reg);
2743 
2744     MacroAssembler _masm(&cbuf);
2745     __ mov(Rnew, O7);
2746     __ casx(Rmem, Rold, O7);
2747     __ cmp( Rold, O7 );
2748   %}
2749 
2750   // raw int cas, used for compareAndSwap
2751   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2752     Register Rmem = reg_to_register_object($mem$$reg);
2753     Register Rold = reg_to_register_object($old$$reg);
2754     Register Rnew = reg_to_register_object($new$$reg);
2755 
2756     MacroAssembler _masm(&cbuf);
2757     __ mov(Rnew, O7);
2758     __ cas(Rmem, Rold, O7);
2759     __ cmp( Rold, O7 );
2760   %}
2761 
2762   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2763     Register Rres = reg_to_register_object($res$$reg);
2764 
2765     MacroAssembler _masm(&cbuf);
2766     __ mov(1, Rres);
2767     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2768   %}
2769 
2770   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2771     Register Rres = reg_to_register_object($res$$reg);
2772 
2773     MacroAssembler _masm(&cbuf);
2774     __ mov(1, Rres);
2775     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2776   %}
2777 
2778   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2779     MacroAssembler _masm(&cbuf);
2780     Register Rdst = reg_to_register_object($dst$$reg);
2781     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2782                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2783     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2784                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2785 
2786     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2787     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2788   %}
2789 
2790   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
2791     MacroAssembler _masm(&cbuf);
2792     Register dest = reg_to_register_object($dst$$reg);
2793     Register temp = reg_to_register_object($tmp$$reg);
2794     __ set64( $src$$constant, dest, temp );
2795   %}
2796 
2797   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
2798     // Load a constant replicated "count" times with width "width"
2799     int bit_width = $width$$constant * 8;
2800     jlong elt_val = $src$$constant;
2801     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
2802     jlong val = elt_val;
2803     for (int i = 0; i < $count$$constant - 1; i++) {
2804         val <<= bit_width;
2805         val |= elt_val;
2806     }
2807     jdouble dval = *(jdouble*)&val; // coerce to double type
2808     MacroAssembler _masm(&cbuf);
2809     address double_address = __ double_constant(dval);
2810     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
2811     AddressLiteral addrlit(double_address, rspec);
2812 
2813     __ sethi(addrlit, $tmp$$Register);
2814     // XXX This is a quick fix for 6833573.
2815     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
2816     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
2817   %}
2818 
2819   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2820   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2821     MacroAssembler _masm(&cbuf);
2822     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
2823     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
2824     Register    base_pointer_arg = reg_to_register_object($base$$reg);
2825 
2826     Label loop;
2827     __ mov(nof_bytes_arg, nof_bytes_tmp);
2828 
2829     // Loop and clear, walking backwards through the array.
2830     // nof_bytes_tmp (if >0) is always the number of bytes to zero
2831     __ bind(loop);
2832     __ deccc(nof_bytes_tmp, 8);
2833     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2834     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2835     // %%%% this mini-loop must not cross a cache boundary!
2836   %}
2837 
2838 
2839   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
2840     Label Ldone, Lloop;
2841     MacroAssembler _masm(&cbuf);
2842 
2843     Register   str1_reg = reg_to_register_object($str1$$reg);
2844     Register   str2_reg = reg_to_register_object($str2$$reg);
2845     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
2846     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
2847     Register result_reg = reg_to_register_object($result$$reg);
2848 
2849     // Get the first character position in both strings
2850     //         [8] char array, [12] offset, [16] count
2851     int  value_offset = java_lang_String:: value_offset_in_bytes();
2852     int offset_offset = java_lang_String::offset_offset_in_bytes();
2853     int  count_offset = java_lang_String:: count_offset_in_bytes();
2854 
2855     // load str1 (jchar*) base address into tmp1_reg
2856     __ load_heap_oop(str1_reg, value_offset, tmp1_reg);
2857     __ ld(str1_reg, offset_offset, result_reg);
2858     __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
2859     __   ld(str1_reg, count_offset, str1_reg); // hoisted
2860     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2861     __   load_heap_oop(str2_reg, value_offset, tmp2_reg); // hoisted
2862     __ add(result_reg, tmp1_reg, tmp1_reg);
2863 
2864     // load str2 (jchar*) base address into tmp2_reg
2865     // __ ld_ptr(str2_reg, value_offset, tmp2_reg); // hoisted
2866     __ ld(str2_reg, offset_offset, result_reg);
2867     __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
2868     __   ld(str2_reg, count_offset, str2_reg); // hoisted
2869     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2870     __   subcc(str1_reg, str2_reg, O7); // hoisted
2871     __ add(result_reg, tmp2_reg, tmp2_reg);
2872 
2873     // Compute the minimum of the string lengths(str1_reg) and the
2874     // difference of the string lengths (stack)
2875 
2876     // discard string base pointers, after loading up the lengths
2877     // __ ld(str1_reg, count_offset, str1_reg); // hoisted
2878     // __ ld(str2_reg, count_offset, str2_reg); // hoisted
2879 
2880     // See if the lengths are different, and calculate min in str1_reg.
2881     // Stash diff in O7 in case we need it for a tie-breaker.
2882     Label Lskip;
2883     // __ subcc(str1_reg, str2_reg, O7); // hoisted
2884     __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
2885     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2886     // str2 is shorter, so use its count:
2887     __ delayed()->sll(str2_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
2888     __ bind(Lskip);
2889 
2890     // reallocate str1_reg, str2_reg, result_reg
2891     // Note:  limit_reg holds the string length pre-scaled by 2
2892     Register limit_reg =   str1_reg;
2893     Register  chr2_reg =   str2_reg;
2894     Register  chr1_reg = result_reg;
2895     // tmp{12} are the base pointers
2896 
2897     // Is the minimum length zero?
2898     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2899     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2900     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2901 
2902     // Load first characters
2903     __ lduh(tmp1_reg, 0, chr1_reg);
2904     __ lduh(tmp2_reg, 0, chr2_reg);
2905 
2906     // Compare first characters
2907     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2908     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2909     assert(chr1_reg == result_reg, "result must be pre-placed");
2910     __ delayed()->nop();
2911 
2912     {
2913       // Check after comparing first character to see if strings are equivalent
2914       Label LSkip2;
2915       // Check if the strings start at same location
2916       __ cmp(tmp1_reg, tmp2_reg);
2917       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2918       __ delayed()->nop();
2919 
2920       // Check if the length difference is zero (in O7)
2921       __ cmp(G0, O7);
2922       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2923       __ delayed()->mov(G0, result_reg);  // result is zero
2924 
2925       // Strings might not be equal
2926       __ bind(LSkip2);
2927     }
2928 
2929     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2930     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2931     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2932 
2933     // Shift tmp1_reg and tmp2_reg to the end of the arrays, negate limit
2934     __ add(tmp1_reg, limit_reg, tmp1_reg);
2935     __ add(tmp2_reg, limit_reg, tmp2_reg);
2936     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2937 
2938     // Compare the rest of the characters
2939     __ lduh(tmp1_reg, limit_reg, chr1_reg);
2940     __ bind(Lloop);
2941     // __ lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
2942     __ lduh(tmp2_reg, limit_reg, chr2_reg);
2943     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2944     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2945     assert(chr1_reg == result_reg, "result must be pre-placed");
2946     __ delayed()->inccc(limit_reg, sizeof(jchar));
2947     // annul LDUH if branch is not taken to prevent access past end of string
2948     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2949     __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
2950 
2951     // If strings are equal up to min length, return the length difference.
2952     __ mov(O7, result_reg);
2953 
2954     // Otherwise, return the difference between the first mismatched chars.
2955     __ bind(Ldone);
2956   %}
2957 
2958 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
2959     Label Lword, Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2960     MacroAssembler _masm(&cbuf);
2961 
2962     Register   str1_reg = reg_to_register_object($str1$$reg);
2963     Register   str2_reg = reg_to_register_object($str2$$reg);
2964     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
2965     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
2966     Register result_reg = reg_to_register_object($result$$reg);
2967 
2968     // Get the first character position in both strings
2969     //         [8] char array, [12] offset, [16] count
2970     int  value_offset = java_lang_String:: value_offset_in_bytes();
2971     int offset_offset = java_lang_String::offset_offset_in_bytes();
2972     int  count_offset = java_lang_String:: count_offset_in_bytes();
2973 
2974     // load str1 (jchar*) base address into tmp1_reg
2975     __ load_heap_oop(Address(str1_reg, value_offset), tmp1_reg);
2976     __ ld(Address(str1_reg, offset_offset), result_reg);
2977     __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
2978     __    ld(Address(str1_reg, count_offset), str1_reg); // hoisted
2979     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2980     __    load_heap_oop(Address(str2_reg, value_offset), tmp2_reg); // hoisted
2981     __ add(result_reg, tmp1_reg, tmp1_reg);
2982 
2983     // load str2 (jchar*) base address into tmp2_reg
2984     // __ ld_ptr(Address(str2_reg, value_offset), tmp2_reg); // hoisted
2985     __ ld(Address(str2_reg, offset_offset), result_reg);
2986     __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
2987     __    ld(Address(str2_reg, count_offset), str2_reg); // hoisted
2988     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
2989     __   cmp(str1_reg, str2_reg); // hoisted
2990     __ add(result_reg, tmp2_reg, tmp2_reg);
2991 
2992     __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg);
2993     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
2994     __ delayed()->mov(G0, result_reg);    // not equal
2995 
2996     __ br_zero(Assembler::equal, true, Assembler::pn, str1_reg, Ldone);
2997     __ delayed()->add(G0, 1, result_reg); //equals
2998 
2999     __ cmp(tmp1_reg, tmp2_reg); //same string ?
3000     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3001     __ delayed()->add(G0, 1, result_reg);
3002 
3003     //rename registers
3004     Register limit_reg =   str1_reg;
3005     Register  chr2_reg =   str2_reg;
3006     Register  chr1_reg = result_reg;
3007     // tmp{12} are the base pointers
3008 
3009     //check for alignment and position the pointers to the ends
3010     __ or3(tmp1_reg, tmp2_reg, chr1_reg);
3011     __ andcc(chr1_reg, 0x3, chr1_reg); // notZero means at least one not 4-byte aligned
3012     __ br(Assembler::notZero, false, Assembler::pn, Lchar);
3013     __ delayed()->nop();
3014 
3015     __ bind(Lword);
3016     __ and3(limit_reg, 0x2, O7); //remember the remainder (either 0 or 2)
3017     __ andn(limit_reg, 0x3, limit_reg);
3018     __ br_zero(Assembler::zero, false, Assembler::pn, limit_reg, Lpost_word);
3019     __ delayed()->nop();
3020 
3021     __ add(tmp1_reg, limit_reg, tmp1_reg);
3022     __ add(tmp2_reg, limit_reg, tmp2_reg);
3023     __ neg(limit_reg);
3024 
3025     __ lduw(tmp1_reg, limit_reg, chr1_reg);
3026     __ bind(Lword_loop);
3027     __ lduw(tmp2_reg, limit_reg, chr2_reg);
3028     __ cmp(chr1_reg, chr2_reg);
3029     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3030     __ delayed()->mov(G0, result_reg);
3031     __ inccc(limit_reg, 2*sizeof(jchar));
3032     // annul LDUW if branch i  s not taken to prevent access past end of string
3033     __ br(Assembler::notZero, true, Assembler::pt, Lword_loop); //annul on taken
3034     __ delayed()->lduw(tmp1_reg, limit_reg, chr1_reg); // hoisted
3035 
3036     __ bind(Lpost_word);
3037     __ br_zero(Assembler::zero, true, Assembler::pt, O7, Ldone);
3038     __ delayed()->add(G0, 1, result_reg);
3039 
3040     __ lduh(tmp1_reg, 0, chr1_reg);
3041     __ lduh(tmp2_reg, 0, chr2_reg);
3042     __ cmp (chr1_reg, chr2_reg);
3043     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3044     __ delayed()->mov(G0, result_reg);
3045     __ ba(false,Ldone);
3046     __ delayed()->add(G0, 1, result_reg);
3047 
3048     __ bind(Lchar);
3049     __ add(tmp1_reg, limit_reg, tmp1_reg);
3050     __ add(tmp2_reg, limit_reg, tmp2_reg);
3051     __ neg(limit_reg); //negate count
3052 
3053     __ lduh(tmp1_reg, limit_reg, chr1_reg);
3054     __ bind(Lchar_loop);
3055     __ lduh(tmp2_reg, limit_reg, chr2_reg);
3056     __ cmp(chr1_reg, chr2_reg);
3057     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3058     __ delayed()->mov(G0, result_reg); //not equal
3059     __ inccc(limit_reg, sizeof(jchar));
3060     // annul LDUH if branch is not taken to prevent access past end of string
3061     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop); //annul on taken
3062     __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
3063 
3064     __ add(G0, 1, result_reg);  //equal
3065 
3066     __ bind(Ldone);
3067   %}
3068 
3069 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
3070     Label Lvector, Ldone, Lloop;
3071     MacroAssembler _masm(&cbuf);
3072 
3073     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3074     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3075     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3076     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
3077     Register result_reg = reg_to_register_object($result$$reg);
3078 
3079     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3080     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3081 
3082     // return true if the same array
3083     __ cmp(ary1_reg, ary2_reg);
3084     __ br(Assembler::equal, true, Assembler::pn, Ldone);
3085     __ delayed()->add(G0, 1, result_reg); // equal
3086 
3087     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3088     __ delayed()->mov(G0, result_reg);    // not equal
3089 
3090     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3091     __ delayed()->mov(G0, result_reg);    // not equal
3092 
3093     //load the lengths of arrays
3094     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3095     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3096 
3097     // return false if the two arrays are not equal length
3098     __ cmp(tmp1_reg, tmp2_reg);
3099     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3100     __ delayed()->mov(G0, result_reg);     // not equal
3101 
3102     __ br_zero(Assembler::zero, true, Assembler::pn, tmp1_reg, Ldone);
3103     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3104 
3105     // load array addresses
3106     __ add(ary1_reg, base_offset, ary1_reg);
3107     __ add(ary2_reg, base_offset, ary2_reg);
3108 
3109     // renaming registers
3110     Register chr1_reg  =  tmp2_reg;   // for characters in ary1
3111     Register chr2_reg  =  result_reg; // for characters in ary2
3112     Register limit_reg =  tmp1_reg;   // length
3113 
3114     // set byte count
3115     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3116     __ andcc(limit_reg, 0x2, chr1_reg); //trailing character ?
3117     __ br(Assembler::zero, false, Assembler::pt, Lvector);
3118     __ delayed()->nop();
3119 
3120     //compare the trailing char
3121     __ sub(limit_reg, sizeof(jchar), limit_reg);
3122     __ lduh(ary1_reg, limit_reg, chr1_reg);
3123     __ lduh(ary2_reg, limit_reg, chr2_reg);
3124     __ cmp(chr1_reg, chr2_reg);
3125     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3126     __ delayed()->mov(G0, result_reg);     // not equal
3127 
3128     // only one char ?
3129     __ br_zero(Assembler::zero, true, Assembler::pn, limit_reg, Ldone);
3130     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3131 
3132     __ bind(Lvector);
3133     // Shift ary1_reg and ary2_reg to the end of the arrays, negate limit
3134     __ add(ary1_reg, limit_reg, ary1_reg);
3135     __ add(ary2_reg, limit_reg, ary2_reg);
3136     __ neg(limit_reg, limit_reg);
3137 
3138     __ lduw(ary1_reg, limit_reg, chr1_reg);
3139     __ bind(Lloop);
3140     __ lduw(ary2_reg, limit_reg, chr2_reg);
3141     __ cmp(chr1_reg, chr2_reg);
3142     __ br(Assembler::notEqual, false, Assembler::pt, Ldone);
3143     __ delayed()->mov(G0, result_reg);     // not equal
3144     __ inccc(limit_reg, 2*sizeof(jchar));
3145     // annul LDUW if branch is not taken to prevent access past end of string
3146     __ br(Assembler::notZero, true, Assembler::pt, Lloop); //annul on taken
3147     __ delayed()->lduw(ary1_reg, limit_reg, chr1_reg); // hoisted
3148 
3149     __ add(G0, 1, result_reg); // equals
3150 
3151     __ bind(Ldone);
3152   %}
3153 
3154   enc_class enc_rethrow() %{
3155     cbuf.set_inst_mark();
3156     Register temp_reg = G3;
3157     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3158     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3159     MacroAssembler _masm(&cbuf);
3160 #ifdef ASSERT
3161     __ save_frame(0);
3162     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3163     __ sethi(last_rethrow_addrlit, L1);
3164     Address addr(L1, last_rethrow_addrlit.low10());
3165     __ get_pc(L2);
3166     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3167     __ st_ptr(L2, addr);
3168     __ restore();
3169 #endif
3170     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3171     __ delayed()->nop();
3172   %}
3173 
3174   enc_class emit_mem_nop() %{
3175     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3176     unsigned int *code = (unsigned int*)cbuf.code_end();
3177     *code = (unsigned int)0xc0839040;
3178     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3179   %}
3180 
3181   enc_class emit_fadd_nop() %{
3182     // Generates the instruction FMOVS f31,f31
3183     unsigned int *code = (unsigned int*)cbuf.code_end();
3184     *code = (unsigned int)0xbfa0003f;
3185     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3186   %}
3187 
3188   enc_class emit_br_nop() %{
3189     // Generates the instruction BPN,PN .
3190     unsigned int *code = (unsigned int*)cbuf.code_end();
3191     *code = (unsigned int)0x00400000;
3192     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3193   %}
3194 
3195   enc_class enc_membar_acquire %{
3196     MacroAssembler _masm(&cbuf);
3197     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3198   %}
3199 
3200   enc_class enc_membar_release %{
3201     MacroAssembler _masm(&cbuf);
3202     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3203   %}
3204 
3205   enc_class enc_membar_volatile %{
3206     MacroAssembler _masm(&cbuf);
3207     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3208   %}
3209 
3210   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3211     MacroAssembler _masm(&cbuf);
3212     Register src_reg = reg_to_register_object($src$$reg);
3213     Register dst_reg = reg_to_register_object($dst$$reg);
3214     __ sllx(src_reg, 56, dst_reg);
3215     __ srlx(dst_reg,  8, O7);
3216     __ or3 (dst_reg, O7, dst_reg);
3217     __ srlx(dst_reg, 16, O7);
3218     __ or3 (dst_reg, O7, dst_reg);
3219     __ srlx(dst_reg, 32, O7);
3220     __ or3 (dst_reg, O7, dst_reg);
3221   %}
3222 
3223   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3224     MacroAssembler _masm(&cbuf);
3225     Register src_reg = reg_to_register_object($src$$reg);
3226     Register dst_reg = reg_to_register_object($dst$$reg);
3227     __ sll(src_reg, 24, dst_reg);
3228     __ srl(dst_reg,  8, O7);
3229     __ or3(dst_reg, O7, dst_reg);
3230     __ srl(dst_reg, 16, O7);
3231     __ or3(dst_reg, O7, dst_reg);
3232   %}
3233 
3234   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3235     MacroAssembler _masm(&cbuf);
3236     Register src_reg = reg_to_register_object($src$$reg);
3237     Register dst_reg = reg_to_register_object($dst$$reg);
3238     __ sllx(src_reg, 48, dst_reg);
3239     __ srlx(dst_reg, 16, O7);
3240     __ or3 (dst_reg, O7, dst_reg);
3241     __ srlx(dst_reg, 32, O7);
3242     __ or3 (dst_reg, O7, dst_reg);
3243   %}
3244 
3245   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3246     MacroAssembler _masm(&cbuf);
3247     Register src_reg = reg_to_register_object($src$$reg);
3248     Register dst_reg = reg_to_register_object($dst$$reg);
3249     __ sllx(src_reg, 32, dst_reg);
3250     __ srlx(dst_reg, 32, O7);
3251     __ or3 (dst_reg, O7, dst_reg);
3252   %}
3253 
3254 %}
3255 
3256 //----------FRAME--------------------------------------------------------------
3257 // Definition of frame structure and management information.
3258 //
3259 //  S T A C K   L A Y O U T    Allocators stack-slot number
3260 //                             |   (to get allocators register number
3261 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3262 //  r   CALLER     |        |
3263 //  o     |        +--------+      pad to even-align allocators stack-slot
3264 //  w     V        |  pad0  |        numbers; owned by CALLER
3265 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3266 //  h     ^        |   in   |  5
3267 //        |        |  args  |  4   Holes in incoming args owned by SELF
3268 //  |     |        |        |  3
3269 //  |     |        +--------+
3270 //  V     |        | old out|      Empty on Intel, window on Sparc
3271 //        |    old |preserve|      Must be even aligned.
3272 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3273 //        |        |   in   |  3   area for Intel ret address
3274 //     Owned by    |preserve|      Empty on Sparc.
3275 //       SELF      +--------+
3276 //        |        |  pad2  |  2   pad to align old SP
3277 //        |        +--------+  1
3278 //        |        | locks  |  0
3279 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3280 //        |        |  pad1  | 11   pad to align new SP
3281 //        |        +--------+
3282 //        |        |        | 10
3283 //        |        | spills |  9   spills
3284 //        V        |        |  8   (pad0 slot for callee)
3285 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3286 //        ^        |  out   |  7
3287 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3288 //     Owned by    +--------+
3289 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3290 //        |    new |preserve|      Must be even-aligned.
3291 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3292 //        |        |        |
3293 //
3294 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3295 //         known from SELF's arguments and the Java calling convention.
3296 //         Region 6-7 is determined per call site.
3297 // Note 2: If the calling convention leaves holes in the incoming argument
3298 //         area, those holes are owned by SELF.  Holes in the outgoing area
3299 //         are owned by the CALLEE.  Holes should not be nessecary in the
3300 //         incoming area, as the Java calling convention is completely under
3301 //         the control of the AD file.  Doubles can be sorted and packed to
3302 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3303 //         varargs C calling conventions.
3304 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3305 //         even aligned with pad0 as needed.
3306 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3307 //         region 6-11 is even aligned; it may be padded out more so that
3308 //         the region from SP to FP meets the minimum stack alignment.
3309 
3310 frame %{
3311   // What direction does stack grow in (assumed to be same for native & Java)
3312   stack_direction(TOWARDS_LOW);
3313 
3314   // These two registers define part of the calling convention
3315   // between compiled code and the interpreter.
3316   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3317   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3318 
3319   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3320   cisc_spilling_operand_name(indOffset);
3321 
3322   // Number of stack slots consumed by a Monitor enter
3323 #ifdef _LP64
3324   sync_stack_slots(2);
3325 #else
3326   sync_stack_slots(1);
3327 #endif
3328 
3329   // Compiled code's Frame Pointer
3330   frame_pointer(R_SP);
3331 
3332   // Stack alignment requirement
3333   stack_alignment(StackAlignmentInBytes);
3334   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3335   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3336 
3337   // Number of stack slots between incoming argument block and the start of
3338   // a new frame.  The PROLOG must add this many slots to the stack.  The
3339   // EPILOG must remove this many slots.
3340   in_preserve_stack_slots(0);
3341 
3342   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3343   // for calls to C.  Supports the var-args backing area for register parms.
3344   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3345 #ifdef _LP64
3346   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3347   varargs_C_out_slots_killed(12);
3348 #else
3349   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3350   varargs_C_out_slots_killed( 7);
3351 #endif
3352 
3353   // The after-PROLOG location of the return address.  Location of
3354   // return address specifies a type (REG or STACK) and a number
3355   // representing the register number (i.e. - use a register name) or
3356   // stack slot.
3357   return_addr(REG R_I7);          // Ret Addr is in register I7
3358 
3359   // Body of function which returns an OptoRegs array locating
3360   // arguments either in registers or in stack slots for calling
3361   // java
3362   calling_convention %{
3363     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3364 
3365   %}
3366 
3367   // Body of function which returns an OptoRegs array locating
3368   // arguments either in registers or in stack slots for callin
3369   // C.
3370   c_calling_convention %{
3371     // This is obviously always outgoing
3372     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3373   %}
3374 
3375   // Location of native (C/C++) and interpreter return values.  This is specified to
3376   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3377   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3378   // to and from the register pairs is done by the appropriate call and epilog
3379   // opcodes.  This simplifies the register allocator.
3380   c_return_value %{
3381     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3382 #ifdef     _LP64
3383     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3384     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3385     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3386     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3387 #else  // !_LP64
3388     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3389     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3390     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3391     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3392 #endif
3393     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3394                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3395   %}
3396 
3397   // Location of compiled Java return values.  Same as C
3398   return_value %{
3399     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3400 #ifdef     _LP64
3401     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3402     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3403     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3404     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3405 #else  // !_LP64
3406     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3407     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3408     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3409     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3410 #endif
3411     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3412                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3413   %}
3414 
3415 %}
3416 
3417 
3418 //----------ATTRIBUTES---------------------------------------------------------
3419 //----------Operand Attributes-------------------------------------------------
3420 op_attrib op_cost(1);          // Required cost attribute
3421 
3422 //----------Instruction Attributes---------------------------------------------
3423 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3424 ins_attrib ins_size(32);       // Required size attribute (in bits)
3425 ins_attrib ins_pc_relative(0); // Required PC Relative flag
3426 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3427                                 // non-matching short branch variant of some
3428                                                             // long branch?
3429 
3430 //----------OPERANDS-----------------------------------------------------------
3431 // Operand definitions must precede instruction definitions for correct parsing
3432 // in the ADLC because operands constitute user defined types which are used in
3433 // instruction definitions.
3434 
3435 //----------Simple Operands----------------------------------------------------
3436 // Immediate Operands
3437 // Integer Immediate: 32-bit
3438 operand immI() %{
3439   match(ConI);
3440 
3441   op_cost(0);
3442   // formats are generated automatically for constants and base registers
3443   format %{ %}
3444   interface(CONST_INTER);
3445 %}
3446 
3447 // Integer Immediate: 13-bit
3448 operand immI13() %{
3449   predicate(Assembler::is_simm13(n->get_int()));
3450   match(ConI);
3451   op_cost(0);
3452 
3453   format %{ %}
3454   interface(CONST_INTER);
3455 %}
3456 
3457 // Unsigned (positive) Integer Immediate: 13-bit
3458 operand immU13() %{
3459   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3460   match(ConI);
3461   op_cost(0);
3462 
3463   format %{ %}
3464   interface(CONST_INTER);
3465 %}
3466 
3467 // Integer Immediate: 6-bit
3468 operand immU6() %{
3469   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3470   match(ConI);
3471   op_cost(0);
3472   format %{ %}
3473   interface(CONST_INTER);
3474 %}
3475 
3476 // Integer Immediate: 11-bit
3477 operand immI11() %{
3478   predicate(Assembler::is_simm(n->get_int(),11));
3479   match(ConI);
3480   op_cost(0);
3481   format %{ %}
3482   interface(CONST_INTER);
3483 %}
3484 
3485 // Integer Immediate: 0-bit
3486 operand immI0() %{
3487   predicate(n->get_int() == 0);
3488   match(ConI);
3489   op_cost(0);
3490 
3491   format %{ %}
3492   interface(CONST_INTER);
3493 %}
3494 
3495 // Integer Immediate: the value 10
3496 operand immI10() %{
3497   predicate(n->get_int() == 10);
3498   match(ConI);
3499   op_cost(0);
3500 
3501   format %{ %}
3502   interface(CONST_INTER);
3503 %}
3504 
3505 // Integer Immediate: the values 0-31
3506 operand immU5() %{
3507   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3508   match(ConI);
3509   op_cost(0);
3510 
3511   format %{ %}
3512   interface(CONST_INTER);
3513 %}
3514 
3515 // Integer Immediate: the values 1-31
3516 operand immI_1_31() %{
3517   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3518   match(ConI);
3519   op_cost(0);
3520 
3521   format %{ %}
3522   interface(CONST_INTER);
3523 %}
3524 
3525 // Integer Immediate: the values 32-63
3526 operand immI_32_63() %{
3527   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3528   match(ConI);
3529   op_cost(0);
3530 
3531   format %{ %}
3532   interface(CONST_INTER);
3533 %}
3534 
3535 // Integer Immediate: the value 255
3536 operand immI_255() %{
3537   predicate( n->get_int() == 255 );
3538   match(ConI);
3539   op_cost(0);
3540 
3541   format %{ %}
3542   interface(CONST_INTER);
3543 %}
3544 
3545 // Long Immediate: the value FF
3546 operand immL_FF() %{
3547   predicate( n->get_long() == 0xFFL );
3548   match(ConL);
3549   op_cost(0);
3550 
3551   format %{ %}
3552   interface(CONST_INTER);
3553 %}
3554 
3555 // Long Immediate: the value FFFF
3556 operand immL_FFFF() %{
3557   predicate( n->get_long() == 0xFFFFL );
3558   match(ConL);
3559   op_cost(0);
3560 
3561   format %{ %}
3562   interface(CONST_INTER);
3563 %}
3564 
3565 // Pointer Immediate: 32 or 64-bit
3566 operand immP() %{
3567   match(ConP);
3568 
3569   op_cost(5);
3570   // formats are generated automatically for constants and base registers
3571   format %{ %}
3572   interface(CONST_INTER);
3573 %}
3574 
3575 operand immP13() %{
3576   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3577   match(ConP);
3578   op_cost(0);
3579 
3580   format %{ %}
3581   interface(CONST_INTER);
3582 %}
3583 
3584 operand immP0() %{
3585   predicate(n->get_ptr() == 0);
3586   match(ConP);
3587   op_cost(0);
3588 
3589   format %{ %}
3590   interface(CONST_INTER);
3591 %}
3592 
3593 operand immP_poll() %{
3594   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3595   match(ConP);
3596 
3597   // formats are generated automatically for constants and base registers
3598   format %{ %}
3599   interface(CONST_INTER);
3600 %}
3601 
3602 // Pointer Immediate
3603 operand immN()
3604 %{
3605   match(ConN);
3606 
3607   op_cost(10);
3608   format %{ %}
3609   interface(CONST_INTER);
3610 %}
3611 
3612 // NULL Pointer Immediate
3613 operand immN0()
3614 %{
3615   predicate(n->get_narrowcon() == 0);
3616   match(ConN);
3617 
3618   op_cost(0);
3619   format %{ %}
3620   interface(CONST_INTER);
3621 %}
3622 
3623 operand immL() %{
3624   match(ConL);
3625   op_cost(40);
3626   // formats are generated automatically for constants and base registers
3627   format %{ %}
3628   interface(CONST_INTER);
3629 %}
3630 
3631 operand immL0() %{
3632   predicate(n->get_long() == 0L);
3633   match(ConL);
3634   op_cost(0);
3635   // formats are generated automatically for constants and base registers
3636   format %{ %}
3637   interface(CONST_INTER);
3638 %}
3639 
3640 // Long Immediate: 13-bit
3641 operand immL13() %{
3642   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3643   match(ConL);
3644   op_cost(0);
3645 
3646   format %{ %}
3647   interface(CONST_INTER);
3648 %}
3649 
3650 // Long Immediate: low 32-bit mask
3651 operand immL_32bits() %{
3652   predicate(n->get_long() == 0xFFFFFFFFL);
3653   match(ConL);
3654   op_cost(0);
3655 
3656   format %{ %}
3657   interface(CONST_INTER);
3658 %}
3659 
3660 // Double Immediate
3661 operand immD() %{
3662   match(ConD);
3663 
3664   op_cost(40);
3665   format %{ %}
3666   interface(CONST_INTER);
3667 %}
3668 
3669 operand immD0() %{
3670 #ifdef _LP64
3671   // on 64-bit architectures this comparision is faster
3672   predicate(jlong_cast(n->getd()) == 0);
3673 #else
3674   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3675 #endif
3676   match(ConD);
3677 
3678   op_cost(0);
3679   format %{ %}
3680   interface(CONST_INTER);
3681 %}
3682 
3683 // Float Immediate
3684 operand immF() %{
3685   match(ConF);
3686 
3687   op_cost(20);
3688   format %{ %}
3689   interface(CONST_INTER);
3690 %}
3691 
3692 // Float Immediate: 0
3693 operand immF0() %{
3694   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3695   match(ConF);
3696 
3697   op_cost(0);
3698   format %{ %}
3699   interface(CONST_INTER);
3700 %}
3701 
3702 // Integer Register Operands
3703 // Integer Register
3704 operand iRegI() %{
3705   constraint(ALLOC_IN_RC(int_reg));
3706   match(RegI);
3707 
3708   match(notemp_iRegI);
3709   match(g1RegI);
3710   match(o0RegI);
3711   match(iRegIsafe);
3712 
3713   format %{ %}
3714   interface(REG_INTER);
3715 %}
3716 
3717 operand notemp_iRegI() %{
3718   constraint(ALLOC_IN_RC(notemp_int_reg));
3719   match(RegI);
3720 
3721   match(o0RegI);
3722 
3723   format %{ %}
3724   interface(REG_INTER);
3725 %}
3726 
3727 operand o0RegI() %{
3728   constraint(ALLOC_IN_RC(o0_regI));
3729   match(iRegI);
3730 
3731   format %{ %}
3732   interface(REG_INTER);
3733 %}
3734 
3735 // Pointer Register
3736 operand iRegP() %{
3737   constraint(ALLOC_IN_RC(ptr_reg));
3738   match(RegP);
3739 
3740   match(lock_ptr_RegP);
3741   match(g1RegP);
3742   match(g2RegP);
3743   match(g3RegP);
3744   match(g4RegP);
3745   match(i0RegP);
3746   match(o0RegP);
3747   match(o1RegP);
3748   match(l7RegP);
3749 
3750   format %{ %}
3751   interface(REG_INTER);
3752 %}
3753 
3754 operand sp_ptr_RegP() %{
3755   constraint(ALLOC_IN_RC(sp_ptr_reg));
3756   match(RegP);
3757   match(iRegP);
3758 
3759   format %{ %}
3760   interface(REG_INTER);
3761 %}
3762 
3763 operand lock_ptr_RegP() %{
3764   constraint(ALLOC_IN_RC(lock_ptr_reg));
3765   match(RegP);
3766   match(i0RegP);
3767   match(o0RegP);
3768   match(o1RegP);
3769   match(l7RegP);
3770 
3771   format %{ %}
3772   interface(REG_INTER);
3773 %}
3774 
3775 operand g1RegP() %{
3776   constraint(ALLOC_IN_RC(g1_regP));
3777   match(iRegP);
3778 
3779   format %{ %}
3780   interface(REG_INTER);
3781 %}
3782 
3783 operand g2RegP() %{
3784   constraint(ALLOC_IN_RC(g2_regP));
3785   match(iRegP);
3786 
3787   format %{ %}
3788   interface(REG_INTER);
3789 %}
3790 
3791 operand g3RegP() %{
3792   constraint(ALLOC_IN_RC(g3_regP));
3793   match(iRegP);
3794 
3795   format %{ %}
3796   interface(REG_INTER);
3797 %}
3798 
3799 operand g1RegI() %{
3800   constraint(ALLOC_IN_RC(g1_regI));
3801   match(iRegI);
3802 
3803   format %{ %}
3804   interface(REG_INTER);
3805 %}
3806 
3807 operand g3RegI() %{
3808   constraint(ALLOC_IN_RC(g3_regI));
3809   match(iRegI);
3810 
3811   format %{ %}
3812   interface(REG_INTER);
3813 %}
3814 
3815 operand g4RegI() %{
3816   constraint(ALLOC_IN_RC(g4_regI));
3817   match(iRegI);
3818 
3819   format %{ %}
3820   interface(REG_INTER);
3821 %}
3822 
3823 operand g4RegP() %{
3824   constraint(ALLOC_IN_RC(g4_regP));
3825   match(iRegP);
3826 
3827   format %{ %}
3828   interface(REG_INTER);
3829 %}
3830 
3831 operand i0RegP() %{
3832   constraint(ALLOC_IN_RC(i0_regP));
3833   match(iRegP);
3834 
3835   format %{ %}
3836   interface(REG_INTER);
3837 %}
3838 
3839 operand o0RegP() %{
3840   constraint(ALLOC_IN_RC(o0_regP));
3841   match(iRegP);
3842 
3843   format %{ %}
3844   interface(REG_INTER);
3845 %}
3846 
3847 operand o1RegP() %{
3848   constraint(ALLOC_IN_RC(o1_regP));
3849   match(iRegP);
3850 
3851   format %{ %}
3852   interface(REG_INTER);
3853 %}
3854 
3855 operand o2RegP() %{
3856   constraint(ALLOC_IN_RC(o2_regP));
3857   match(iRegP);
3858 
3859   format %{ %}
3860   interface(REG_INTER);
3861 %}
3862 
3863 operand o7RegP() %{
3864   constraint(ALLOC_IN_RC(o7_regP));
3865   match(iRegP);
3866 
3867   format %{ %}
3868   interface(REG_INTER);
3869 %}
3870 
3871 operand l7RegP() %{
3872   constraint(ALLOC_IN_RC(l7_regP));
3873   match(iRegP);
3874 
3875   format %{ %}
3876   interface(REG_INTER);
3877 %}
3878 
3879 operand o7RegI() %{
3880   constraint(ALLOC_IN_RC(o7_regI));
3881   match(iRegI);
3882 
3883   format %{ %}
3884   interface(REG_INTER);
3885 %}
3886 
3887 operand iRegN() %{
3888   constraint(ALLOC_IN_RC(int_reg));
3889   match(RegN);
3890 
3891   format %{ %}
3892   interface(REG_INTER);
3893 %}
3894 
3895 // Long Register
3896 operand iRegL() %{
3897   constraint(ALLOC_IN_RC(long_reg));
3898   match(RegL);
3899 
3900   format %{ %}
3901   interface(REG_INTER);
3902 %}
3903 
3904 operand o2RegL() %{
3905   constraint(ALLOC_IN_RC(o2_regL));
3906   match(iRegL);
3907 
3908   format %{ %}
3909   interface(REG_INTER);
3910 %}
3911 
3912 operand o7RegL() %{
3913   constraint(ALLOC_IN_RC(o7_regL));
3914   match(iRegL);
3915 
3916   format %{ %}
3917   interface(REG_INTER);
3918 %}
3919 
3920 operand g1RegL() %{
3921   constraint(ALLOC_IN_RC(g1_regL));
3922   match(iRegL);
3923 
3924   format %{ %}
3925   interface(REG_INTER);
3926 %}
3927 
3928 operand g3RegL() %{
3929   constraint(ALLOC_IN_RC(g3_regL));
3930   match(iRegL);
3931 
3932   format %{ %}
3933   interface(REG_INTER);
3934 %}
3935 
3936 // Int Register safe
3937 // This is 64bit safe
3938 operand iRegIsafe() %{
3939   constraint(ALLOC_IN_RC(long_reg));
3940 
3941   match(iRegI);
3942 
3943   format %{ %}
3944   interface(REG_INTER);
3945 %}
3946 
3947 // Condition Code Flag Register
3948 operand flagsReg() %{
3949   constraint(ALLOC_IN_RC(int_flags));
3950   match(RegFlags);
3951 
3952   format %{ "ccr" %} // both ICC and XCC
3953   interface(REG_INTER);
3954 %}
3955 
3956 // Condition Code Register, unsigned comparisons.
3957 operand flagsRegU() %{
3958   constraint(ALLOC_IN_RC(int_flags));
3959   match(RegFlags);
3960 
3961   format %{ "icc_U" %}
3962   interface(REG_INTER);
3963 %}
3964 
3965 // Condition Code Register, pointer comparisons.
3966 operand flagsRegP() %{
3967   constraint(ALLOC_IN_RC(int_flags));
3968   match(RegFlags);
3969 
3970 #ifdef _LP64
3971   format %{ "xcc_P" %}
3972 #else
3973   format %{ "icc_P" %}
3974 #endif
3975   interface(REG_INTER);
3976 %}
3977 
3978 // Condition Code Register, long comparisons.
3979 operand flagsRegL() %{
3980   constraint(ALLOC_IN_RC(int_flags));
3981   match(RegFlags);
3982 
3983   format %{ "xcc_L" %}
3984   interface(REG_INTER);
3985 %}
3986 
3987 // Condition Code Register, floating comparisons, unordered same as "less".
3988 operand flagsRegF() %{
3989   constraint(ALLOC_IN_RC(float_flags));
3990   match(RegFlags);
3991   match(flagsRegF0);
3992 
3993   format %{ %}
3994   interface(REG_INTER);
3995 %}
3996 
3997 operand flagsRegF0() %{
3998   constraint(ALLOC_IN_RC(float_flag0));
3999   match(RegFlags);
4000 
4001   format %{ %}
4002   interface(REG_INTER);
4003 %}
4004 
4005 
4006 // Condition Code Flag Register used by long compare
4007 operand flagsReg_long_LTGE() %{
4008   constraint(ALLOC_IN_RC(int_flags));
4009   match(RegFlags);
4010   format %{ "icc_LTGE" %}
4011   interface(REG_INTER);
4012 %}
4013 operand flagsReg_long_EQNE() %{
4014   constraint(ALLOC_IN_RC(int_flags));
4015   match(RegFlags);
4016   format %{ "icc_EQNE" %}
4017   interface(REG_INTER);
4018 %}
4019 operand flagsReg_long_LEGT() %{
4020   constraint(ALLOC_IN_RC(int_flags));
4021   match(RegFlags);
4022   format %{ "icc_LEGT" %}
4023   interface(REG_INTER);
4024 %}
4025 
4026 
4027 operand regD() %{
4028   constraint(ALLOC_IN_RC(dflt_reg));
4029   match(RegD);
4030 
4031   match(regD_low);
4032 
4033   format %{ %}
4034   interface(REG_INTER);
4035 %}
4036 
4037 operand regF() %{
4038   constraint(ALLOC_IN_RC(sflt_reg));
4039   match(RegF);
4040 
4041   format %{ %}
4042   interface(REG_INTER);
4043 %}
4044 
4045 operand regD_low() %{
4046   constraint(ALLOC_IN_RC(dflt_low_reg));
4047   match(regD);
4048 
4049   format %{ %}
4050   interface(REG_INTER);
4051 %}
4052 
4053 // Special Registers
4054 
4055 // Method Register
4056 operand inline_cache_regP(iRegP reg) %{
4057   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4058   match(reg);
4059   format %{ %}
4060   interface(REG_INTER);
4061 %}
4062 
4063 operand interpreter_method_oop_regP(iRegP reg) %{
4064   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4065   match(reg);
4066   format %{ %}
4067   interface(REG_INTER);
4068 %}
4069 
4070 
4071 //----------Complex Operands---------------------------------------------------
4072 // Indirect Memory Reference
4073 operand indirect(sp_ptr_RegP reg) %{
4074   constraint(ALLOC_IN_RC(sp_ptr_reg));
4075   match(reg);
4076 
4077   op_cost(100);
4078   format %{ "[$reg]" %}
4079   interface(MEMORY_INTER) %{
4080     base($reg);
4081     index(0x0);
4082     scale(0x0);
4083     disp(0x0);
4084   %}
4085 %}
4086 
4087 // Indirect with Offset
4088 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4089   constraint(ALLOC_IN_RC(sp_ptr_reg));
4090   match(AddP reg offset);
4091 
4092   op_cost(100);
4093   format %{ "[$reg + $offset]" %}
4094   interface(MEMORY_INTER) %{
4095     base($reg);
4096     index(0x0);
4097     scale(0x0);
4098     disp($offset);
4099   %}
4100 %}
4101 
4102 // Note:  Intel has a swapped version also, like this:
4103 //operand indOffsetX(iRegI reg, immP offset) %{
4104 //  constraint(ALLOC_IN_RC(int_reg));
4105 //  match(AddP offset reg);
4106 //
4107 //  op_cost(100);
4108 //  format %{ "[$reg + $offset]" %}
4109 //  interface(MEMORY_INTER) %{
4110 //    base($reg);
4111 //    index(0x0);
4112 //    scale(0x0);
4113 //    disp($offset);
4114 //  %}
4115 //%}
4116 //// However, it doesn't make sense for SPARC, since
4117 // we have no particularly good way to embed oops in
4118 // single instructions.
4119 
4120 // Indirect with Register Index
4121 operand indIndex(iRegP addr, iRegX index) %{
4122   constraint(ALLOC_IN_RC(ptr_reg));
4123   match(AddP addr index);
4124 
4125   op_cost(100);
4126   format %{ "[$addr + $index]" %}
4127   interface(MEMORY_INTER) %{
4128     base($addr);
4129     index($index);
4130     scale(0x0);
4131     disp(0x0);
4132   %}
4133 %}
4134 
4135 //----------Special Memory Operands--------------------------------------------
4136 // Stack Slot Operand - This operand is used for loading and storing temporary
4137 //                      values on the stack where a match requires a value to
4138 //                      flow through memory.
4139 operand stackSlotI(sRegI reg) %{
4140   constraint(ALLOC_IN_RC(stack_slots));
4141   op_cost(100);
4142   //match(RegI);
4143   format %{ "[$reg]" %}
4144   interface(MEMORY_INTER) %{
4145     base(0xE);   // R_SP
4146     index(0x0);
4147     scale(0x0);
4148     disp($reg);  // Stack Offset
4149   %}
4150 %}
4151 
4152 operand stackSlotP(sRegP reg) %{
4153   constraint(ALLOC_IN_RC(stack_slots));
4154   op_cost(100);
4155   //match(RegP);
4156   format %{ "[$reg]" %}
4157   interface(MEMORY_INTER) %{
4158     base(0xE);   // R_SP
4159     index(0x0);
4160     scale(0x0);
4161     disp($reg);  // Stack Offset
4162   %}
4163 %}
4164 
4165 operand stackSlotF(sRegF reg) %{
4166   constraint(ALLOC_IN_RC(stack_slots));
4167   op_cost(100);
4168   //match(RegF);
4169   format %{ "[$reg]" %}
4170   interface(MEMORY_INTER) %{
4171     base(0xE);   // R_SP
4172     index(0x0);
4173     scale(0x0);
4174     disp($reg);  // Stack Offset
4175   %}
4176 %}
4177 operand stackSlotD(sRegD reg) %{
4178   constraint(ALLOC_IN_RC(stack_slots));
4179   op_cost(100);
4180   //match(RegD);
4181   format %{ "[$reg]" %}
4182   interface(MEMORY_INTER) %{
4183     base(0xE);   // R_SP
4184     index(0x0);
4185     scale(0x0);
4186     disp($reg);  // Stack Offset
4187   %}
4188 %}
4189 operand stackSlotL(sRegL reg) %{
4190   constraint(ALLOC_IN_RC(stack_slots));
4191   op_cost(100);
4192   //match(RegL);
4193   format %{ "[$reg]" %}
4194   interface(MEMORY_INTER) %{
4195     base(0xE);   // R_SP
4196     index(0x0);
4197     scale(0x0);
4198     disp($reg);  // Stack Offset
4199   %}
4200 %}
4201 
4202 // Operands for expressing Control Flow
4203 // NOTE:  Label is a predefined operand which should not be redefined in
4204 //        the AD file.  It is generically handled within the ADLC.
4205 
4206 //----------Conditional Branch Operands----------------------------------------
4207 // Comparison Op  - This is the operation of the comparison, and is limited to
4208 //                  the following set of codes:
4209 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4210 //
4211 // Other attributes of the comparison, such as unsignedness, are specified
4212 // by the comparison instruction that sets a condition code flags register.
4213 // That result is represented by a flags operand whose subtype is appropriate
4214 // to the unsignedness (etc.) of the comparison.
4215 //
4216 // Later, the instruction which matches both the Comparison Op (a Bool) and
4217 // the flags (produced by the Cmp) specifies the coding of the comparison op
4218 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4219 
4220 operand cmpOp() %{
4221   match(Bool);
4222 
4223   format %{ "" %}
4224   interface(COND_INTER) %{
4225     equal(0x1);
4226     not_equal(0x9);
4227     less(0x3);
4228     greater_equal(0xB);
4229     less_equal(0x2);
4230     greater(0xA);
4231   %}
4232 %}
4233 
4234 // Comparison Op, unsigned
4235 operand cmpOpU() %{
4236   match(Bool);
4237 
4238   format %{ "u" %}
4239   interface(COND_INTER) %{
4240     equal(0x1);
4241     not_equal(0x9);
4242     less(0x5);
4243     greater_equal(0xD);
4244     less_equal(0x4);
4245     greater(0xC);
4246   %}
4247 %}
4248 
4249 // Comparison Op, pointer (same as unsigned)
4250 operand cmpOpP() %{
4251   match(Bool);
4252 
4253   format %{ "p" %}
4254   interface(COND_INTER) %{
4255     equal(0x1);
4256     not_equal(0x9);
4257     less(0x5);
4258     greater_equal(0xD);
4259     less_equal(0x4);
4260     greater(0xC);
4261   %}
4262 %}
4263 
4264 // Comparison Op, branch-register encoding
4265 operand cmpOp_reg() %{
4266   match(Bool);
4267 
4268   format %{ "" %}
4269   interface(COND_INTER) %{
4270     equal        (0x1);
4271     not_equal    (0x5);
4272     less         (0x3);
4273     greater_equal(0x7);
4274     less_equal   (0x2);
4275     greater      (0x6);
4276   %}
4277 %}
4278 
4279 // Comparison Code, floating, unordered same as less
4280 operand cmpOpF() %{
4281   match(Bool);
4282 
4283   format %{ "fl" %}
4284   interface(COND_INTER) %{
4285     equal(0x9);
4286     not_equal(0x1);
4287     less(0x3);
4288     greater_equal(0xB);
4289     less_equal(0xE);
4290     greater(0x6);
4291   %}
4292 %}
4293 
4294 // Used by long compare
4295 operand cmpOp_commute() %{
4296   match(Bool);
4297 
4298   format %{ "" %}
4299   interface(COND_INTER) %{
4300     equal(0x1);
4301     not_equal(0x9);
4302     less(0xA);
4303     greater_equal(0x2);
4304     less_equal(0xB);
4305     greater(0x3);
4306   %}
4307 %}
4308 
4309 //----------OPERAND CLASSES----------------------------------------------------
4310 // Operand Classes are groups of operands that are used to simplify
4311 // instruction definitions by not requiring the AD writer to specify separate
4312 // instructions for every form of operand when the instruction accepts
4313 // multiple operand types with the same basic encoding and format.  The classic
4314 // case of this is memory operands.
4315 // Indirect is not included since its use is limited to Compare & Swap
4316 opclass memory( indirect, indOffset13, indIndex );
4317 
4318 //----------PIPELINE-----------------------------------------------------------
4319 pipeline %{
4320 
4321 //----------ATTRIBUTES---------------------------------------------------------
4322 attributes %{
4323   fixed_size_instructions;           // Fixed size instructions
4324   branch_has_delay_slot;             // Branch has delay slot following
4325   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4326   instruction_unit_size = 4;         // An instruction is 4 bytes long
4327   instruction_fetch_unit_size = 16;  // The processor fetches one line
4328   instruction_fetch_units = 1;       // of 16 bytes
4329 
4330   // List of nop instructions
4331   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4332 %}
4333 
4334 //----------RESOURCES----------------------------------------------------------
4335 // Resources are the functional units available to the machine
4336 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4337 
4338 //----------PIPELINE DESCRIPTION-----------------------------------------------
4339 // Pipeline Description specifies the stages in the machine's pipeline
4340 
4341 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4342 
4343 //----------PIPELINE CLASSES---------------------------------------------------
4344 // Pipeline Classes describe the stages in which input and output are
4345 // referenced by the hardware pipeline.
4346 
4347 // Integer ALU reg-reg operation
4348 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4349     single_instruction;
4350     dst   : E(write);
4351     src1  : R(read);
4352     src2  : R(read);
4353     IALU  : R;
4354 %}
4355 
4356 // Integer ALU reg-reg long operation
4357 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4358     instruction_count(2);
4359     dst   : E(write);
4360     src1  : R(read);
4361     src2  : R(read);
4362     IALU  : R;
4363     IALU  : R;
4364 %}
4365 
4366 // Integer ALU reg-reg long dependent operation
4367 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4368     instruction_count(1); multiple_bundles;
4369     dst   : E(write);
4370     src1  : R(read);
4371     src2  : R(read);
4372     cr    : E(write);
4373     IALU  : R(2);
4374 %}
4375 
4376 // Integer ALU reg-imm operaion
4377 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4378     single_instruction;
4379     dst   : E(write);
4380     src1  : R(read);
4381     IALU  : R;
4382 %}
4383 
4384 // Integer ALU reg-reg operation with condition code
4385 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4386     single_instruction;
4387     dst   : E(write);
4388     cr    : E(write);
4389     src1  : R(read);
4390     src2  : R(read);
4391     IALU  : R;
4392 %}
4393 
4394 // Integer ALU reg-imm operation with condition code
4395 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4396     single_instruction;
4397     dst   : E(write);
4398     cr    : E(write);
4399     src1  : R(read);
4400     IALU  : R;
4401 %}
4402 
4403 // Integer ALU zero-reg operation
4404 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4405     single_instruction;
4406     dst   : E(write);
4407     src2  : R(read);
4408     IALU  : R;
4409 %}
4410 
4411 // Integer ALU zero-reg operation with condition code only
4412 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4413     single_instruction;
4414     cr    : E(write);
4415     src   : R(read);
4416     IALU  : R;
4417 %}
4418 
4419 // Integer ALU reg-reg operation with condition code only
4420 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4421     single_instruction;
4422     cr    : E(write);
4423     src1  : R(read);
4424     src2  : R(read);
4425     IALU  : R;
4426 %}
4427 
4428 // Integer ALU reg-imm operation with condition code only
4429 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4430     single_instruction;
4431     cr    : E(write);
4432     src1  : R(read);
4433     IALU  : R;
4434 %}
4435 
4436 // Integer ALU reg-reg-zero operation with condition code only
4437 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4438     single_instruction;
4439     cr    : E(write);
4440     src1  : R(read);
4441     src2  : R(read);
4442     IALU  : R;
4443 %}
4444 
4445 // Integer ALU reg-imm-zero operation with condition code only
4446 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4447     single_instruction;
4448     cr    : E(write);
4449     src1  : R(read);
4450     IALU  : R;
4451 %}
4452 
4453 // Integer ALU reg-reg operation with condition code, src1 modified
4454 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4455     single_instruction;
4456     cr    : E(write);
4457     src1  : E(write);
4458     src1  : R(read);
4459     src2  : R(read);
4460     IALU  : R;
4461 %}
4462 
4463 // Integer ALU reg-imm operation with condition code, src1 modified
4464 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4465     single_instruction;
4466     cr    : E(write);
4467     src1  : E(write);
4468     src1  : R(read);
4469     IALU  : R;
4470 %}
4471 
4472 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4473     multiple_bundles;
4474     dst   : E(write)+4;
4475     cr    : E(write);
4476     src1  : R(read);
4477     src2  : R(read);
4478     IALU  : R(3);
4479     BR    : R(2);
4480 %}
4481 
4482 // Integer ALU operation
4483 pipe_class ialu_none(iRegI dst) %{
4484     single_instruction;
4485     dst   : E(write);
4486     IALU  : R;
4487 %}
4488 
4489 // Integer ALU reg operation
4490 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4491     single_instruction; may_have_no_code;
4492     dst   : E(write);
4493     src   : R(read);
4494     IALU  : R;
4495 %}
4496 
4497 // Integer ALU reg conditional operation
4498 // This instruction has a 1 cycle stall, and cannot execute
4499 // in the same cycle as the instruction setting the condition
4500 // code. We kludge this by pretending to read the condition code
4501 // 1 cycle earlier, and by marking the functional units as busy
4502 // for 2 cycles with the result available 1 cycle later than
4503 // is really the case.
4504 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4505     single_instruction;
4506     op2_out : C(write);
4507     op1     : R(read);
4508     cr      : R(read);       // This is really E, with a 1 cycle stall
4509     BR      : R(2);
4510     MS      : R(2);
4511 %}
4512 
4513 #ifdef _LP64
4514 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4515     instruction_count(1); multiple_bundles;
4516     dst     : C(write)+1;
4517     src     : R(read)+1;
4518     IALU    : R(1);
4519     BR      : E(2);
4520     MS      : E(2);
4521 %}
4522 #endif
4523 
4524 // Integer ALU reg operation
4525 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4526     single_instruction; may_have_no_code;
4527     dst   : E(write);
4528     src   : R(read);
4529     IALU  : R;
4530 %}
4531 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4532     single_instruction; may_have_no_code;
4533     dst   : E(write);
4534     src   : R(read);
4535     IALU  : R;
4536 %}
4537 
4538 // Two integer ALU reg operations
4539 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4540     instruction_count(2);
4541     dst   : E(write);
4542     src   : R(read);
4543     A0    : R;
4544     A1    : R;
4545 %}
4546 
4547 // Two integer ALU reg operations
4548 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4549     instruction_count(2); may_have_no_code;
4550     dst   : E(write);
4551     src   : R(read);
4552     A0    : R;
4553     A1    : R;
4554 %}
4555 
4556 // Integer ALU imm operation
4557 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4558     single_instruction;
4559     dst   : E(write);
4560     IALU  : R;
4561 %}
4562 
4563 // Integer ALU reg-reg with carry operation
4564 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4565     single_instruction;
4566     dst   : E(write);
4567     src1  : R(read);
4568     src2  : R(read);
4569     IALU  : R;
4570 %}
4571 
4572 // Integer ALU cc operation
4573 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4574     single_instruction;
4575     dst   : E(write);
4576     cc    : R(read);
4577     IALU  : R;
4578 %}
4579 
4580 // Integer ALU cc / second IALU operation
4581 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4582     instruction_count(1); multiple_bundles;
4583     dst   : E(write)+1;
4584     src   : R(read);
4585     IALU  : R;
4586 %}
4587 
4588 // Integer ALU cc / second IALU operation
4589 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4590     instruction_count(1); multiple_bundles;
4591     dst   : E(write)+1;
4592     p     : R(read);
4593     q     : R(read);
4594     IALU  : R;
4595 %}
4596 
4597 // Integer ALU hi-lo-reg operation
4598 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4599     instruction_count(1); multiple_bundles;
4600     dst   : E(write)+1;
4601     IALU  : R(2);
4602 %}
4603 
4604 // Float ALU hi-lo-reg operation (with temp)
4605 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4606     instruction_count(1); multiple_bundles;
4607     dst   : E(write)+1;
4608     IALU  : R(2);
4609 %}
4610 
4611 // Long Constant
4612 pipe_class loadConL( iRegL dst, immL src ) %{
4613     instruction_count(2); multiple_bundles;
4614     dst   : E(write)+1;
4615     IALU  : R(2);
4616     IALU  : R(2);
4617 %}
4618 
4619 // Pointer Constant
4620 pipe_class loadConP( iRegP dst, immP src ) %{
4621     instruction_count(0); multiple_bundles;
4622     fixed_latency(6);
4623 %}
4624 
4625 // Polling Address
4626 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4627 #ifdef _LP64
4628     instruction_count(0); multiple_bundles;
4629     fixed_latency(6);
4630 #else
4631     dst   : E(write);
4632     IALU  : R;
4633 #endif
4634 %}
4635 
4636 // Long Constant small
4637 pipe_class loadConLlo( iRegL dst, immL src ) %{
4638     instruction_count(2);
4639     dst   : E(write);
4640     IALU  : R;
4641     IALU  : R;
4642 %}
4643 
4644 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4645 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4646     instruction_count(1); multiple_bundles;
4647     src   : R(read);
4648     dst   : M(write)+1;
4649     IALU  : R;
4650     MS    : E;
4651 %}
4652 
4653 // Integer ALU nop operation
4654 pipe_class ialu_nop() %{
4655     single_instruction;
4656     IALU  : R;
4657 %}
4658 
4659 // Integer ALU nop operation
4660 pipe_class ialu_nop_A0() %{
4661     single_instruction;
4662     A0    : R;
4663 %}
4664 
4665 // Integer ALU nop operation
4666 pipe_class ialu_nop_A1() %{
4667     single_instruction;
4668     A1    : R;
4669 %}
4670 
4671 // Integer Multiply reg-reg operation
4672 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4673     single_instruction;
4674     dst   : E(write);
4675     src1  : R(read);
4676     src2  : R(read);
4677     MS    : R(5);
4678 %}
4679 
4680 // Integer Multiply reg-imm operation
4681 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4682     single_instruction;
4683     dst   : E(write);
4684     src1  : R(read);
4685     MS    : R(5);
4686 %}
4687 
4688 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4689     single_instruction;
4690     dst   : E(write)+4;
4691     src1  : R(read);
4692     src2  : R(read);
4693     MS    : R(6);
4694 %}
4695 
4696 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4697     single_instruction;
4698     dst   : E(write)+4;
4699     src1  : R(read);
4700     MS    : R(6);
4701 %}
4702 
4703 // Integer Divide reg-reg
4704 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4705     instruction_count(1); multiple_bundles;
4706     dst   : E(write);
4707     temp  : E(write);
4708     src1  : R(read);
4709     src2  : R(read);
4710     temp  : R(read);
4711     MS    : R(38);
4712 %}
4713 
4714 // Integer Divide reg-imm
4715 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4716     instruction_count(1); multiple_bundles;
4717     dst   : E(write);
4718     temp  : E(write);
4719     src1  : R(read);
4720     temp  : R(read);
4721     MS    : R(38);
4722 %}
4723 
4724 // Long Divide
4725 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4726     dst  : E(write)+71;
4727     src1 : R(read);
4728     src2 : R(read)+1;
4729     MS   : R(70);
4730 %}
4731 
4732 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4733     dst  : E(write)+71;
4734     src1 : R(read);
4735     MS   : R(70);
4736 %}
4737 
4738 // Floating Point Add Float
4739 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4740     single_instruction;
4741     dst   : X(write);
4742     src1  : E(read);
4743     src2  : E(read);
4744     FA    : R;
4745 %}
4746 
4747 // Floating Point Add Double
4748 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4749     single_instruction;
4750     dst   : X(write);
4751     src1  : E(read);
4752     src2  : E(read);
4753     FA    : R;
4754 %}
4755 
4756 // Floating Point Conditional Move based on integer flags
4757 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4758     single_instruction;
4759     dst   : X(write);
4760     src   : E(read);
4761     cr    : R(read);
4762     FA    : R(2);
4763     BR    : R(2);
4764 %}
4765 
4766 // Floating Point Conditional Move based on integer flags
4767 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4768     single_instruction;
4769     dst   : X(write);
4770     src   : E(read);
4771     cr    : R(read);
4772     FA    : R(2);
4773     BR    : R(2);
4774 %}
4775 
4776 // Floating Point Multiply Float
4777 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4778     single_instruction;
4779     dst   : X(write);
4780     src1  : E(read);
4781     src2  : E(read);
4782     FM    : R;
4783 %}
4784 
4785 // Floating Point Multiply Double
4786 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4787     single_instruction;
4788     dst   : X(write);
4789     src1  : E(read);
4790     src2  : E(read);
4791     FM    : R;
4792 %}
4793 
4794 // Floating Point Divide Float
4795 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4796     single_instruction;
4797     dst   : X(write);
4798     src1  : E(read);
4799     src2  : E(read);
4800     FM    : R;
4801     FDIV  : C(14);
4802 %}
4803 
4804 // Floating Point Divide Double
4805 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4806     single_instruction;
4807     dst   : X(write);
4808     src1  : E(read);
4809     src2  : E(read);
4810     FM    : R;
4811     FDIV  : C(17);
4812 %}
4813 
4814 // Floating Point Move/Negate/Abs Float
4815 pipe_class faddF_reg(regF dst, regF src) %{
4816     single_instruction;
4817     dst   : W(write);
4818     src   : E(read);
4819     FA    : R(1);
4820 %}
4821 
4822 // Floating Point Move/Negate/Abs Double
4823 pipe_class faddD_reg(regD dst, regD src) %{
4824     single_instruction;
4825     dst   : W(write);
4826     src   : E(read);
4827     FA    : R;
4828 %}
4829 
4830 // Floating Point Convert F->D
4831 pipe_class fcvtF2D(regD dst, regF src) %{
4832     single_instruction;
4833     dst   : X(write);
4834     src   : E(read);
4835     FA    : R;
4836 %}
4837 
4838 // Floating Point Convert I->D
4839 pipe_class fcvtI2D(regD dst, regF src) %{
4840     single_instruction;
4841     dst   : X(write);
4842     src   : E(read);
4843     FA    : R;
4844 %}
4845 
4846 // Floating Point Convert LHi->D
4847 pipe_class fcvtLHi2D(regD dst, regD src) %{
4848     single_instruction;
4849     dst   : X(write);
4850     src   : E(read);
4851     FA    : R;
4852 %}
4853 
4854 // Floating Point Convert L->D
4855 pipe_class fcvtL2D(regD dst, regF src) %{
4856     single_instruction;
4857     dst   : X(write);
4858     src   : E(read);
4859     FA    : R;
4860 %}
4861 
4862 // Floating Point Convert L->F
4863 pipe_class fcvtL2F(regD dst, regF src) %{
4864     single_instruction;
4865     dst   : X(write);
4866     src   : E(read);
4867     FA    : R;
4868 %}
4869 
4870 // Floating Point Convert D->F
4871 pipe_class fcvtD2F(regD dst, regF src) %{
4872     single_instruction;
4873     dst   : X(write);
4874     src   : E(read);
4875     FA    : R;
4876 %}
4877 
4878 // Floating Point Convert I->L
4879 pipe_class fcvtI2L(regD dst, regF src) %{
4880     single_instruction;
4881     dst   : X(write);
4882     src   : E(read);
4883     FA    : R;
4884 %}
4885 
4886 // Floating Point Convert D->F
4887 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4888     instruction_count(1); multiple_bundles;
4889     dst   : X(write)+6;
4890     src   : E(read);
4891     FA    : R;
4892 %}
4893 
4894 // Floating Point Convert D->L
4895 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4896     instruction_count(1); multiple_bundles;
4897     dst   : X(write)+6;
4898     src   : E(read);
4899     FA    : R;
4900 %}
4901 
4902 // Floating Point Convert F->I
4903 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4904     instruction_count(1); multiple_bundles;
4905     dst   : X(write)+6;
4906     src   : E(read);
4907     FA    : R;
4908 %}
4909 
4910 // Floating Point Convert F->L
4911 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4912     instruction_count(1); multiple_bundles;
4913     dst   : X(write)+6;
4914     src   : E(read);
4915     FA    : R;
4916 %}
4917 
4918 // Floating Point Convert I->F
4919 pipe_class fcvtI2F(regF dst, regF src) %{
4920     single_instruction;
4921     dst   : X(write);
4922     src   : E(read);
4923     FA    : R;
4924 %}
4925 
4926 // Floating Point Compare
4927 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4928     single_instruction;
4929     cr    : X(write);
4930     src1  : E(read);
4931     src2  : E(read);
4932     FA    : R;
4933 %}
4934 
4935 // Floating Point Compare
4936 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4937     single_instruction;
4938     cr    : X(write);
4939     src1  : E(read);
4940     src2  : E(read);
4941     FA    : R;
4942 %}
4943 
4944 // Floating Add Nop
4945 pipe_class fadd_nop() %{
4946     single_instruction;
4947     FA  : R;
4948 %}
4949 
4950 // Integer Store to Memory
4951 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4952     single_instruction;
4953     mem   : R(read);
4954     src   : C(read);
4955     MS    : R;
4956 %}
4957 
4958 // Integer Store to Memory
4959 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4960     single_instruction;
4961     mem   : R(read);
4962     src   : C(read);
4963     MS    : R;
4964 %}
4965 
4966 // Integer Store Zero to Memory
4967 pipe_class istore_mem_zero(memory mem, immI0 src) %{
4968     single_instruction;
4969     mem   : R(read);
4970     MS    : R;
4971 %}
4972 
4973 // Special Stack Slot Store
4974 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4975     single_instruction;
4976     stkSlot : R(read);
4977     src     : C(read);
4978     MS      : R;
4979 %}
4980 
4981 // Special Stack Slot Store
4982 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
4983     instruction_count(2); multiple_bundles;
4984     stkSlot : R(read);
4985     src     : C(read);
4986     MS      : R(2);
4987 %}
4988 
4989 // Float Store
4990 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
4991     single_instruction;
4992     mem : R(read);
4993     src : C(read);
4994     MS  : R;
4995 %}
4996 
4997 // Float Store
4998 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
4999     single_instruction;
5000     mem : R(read);
5001     MS  : R;
5002 %}
5003 
5004 // Double Store
5005 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5006     instruction_count(1);
5007     mem : R(read);
5008     src : C(read);
5009     MS  : R;
5010 %}
5011 
5012 // Double Store
5013 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5014     single_instruction;
5015     mem : R(read);
5016     MS  : R;
5017 %}
5018 
5019 // Special Stack Slot Float Store
5020 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5021     single_instruction;
5022     stkSlot : R(read);
5023     src     : C(read);
5024     MS      : R;
5025 %}
5026 
5027 // Special Stack Slot Double Store
5028 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5029     single_instruction;
5030     stkSlot : R(read);
5031     src     : C(read);
5032     MS      : R;
5033 %}
5034 
5035 // Integer Load (when sign bit propagation not needed)
5036 pipe_class iload_mem(iRegI dst, memory mem) %{
5037     single_instruction;
5038     mem : R(read);
5039     dst : C(write);
5040     MS  : R;
5041 %}
5042 
5043 // Integer Load from stack operand
5044 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5045     single_instruction;
5046     mem : R(read);
5047     dst : C(write);
5048     MS  : R;
5049 %}
5050 
5051 // Integer Load (when sign bit propagation or masking is needed)
5052 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5053     single_instruction;
5054     mem : R(read);
5055     dst : M(write);
5056     MS  : R;
5057 %}
5058 
5059 // Float Load
5060 pipe_class floadF_mem(regF dst, memory mem) %{
5061     single_instruction;
5062     mem : R(read);
5063     dst : M(write);
5064     MS  : R;
5065 %}
5066 
5067 // Float Load
5068 pipe_class floadD_mem(regD dst, memory mem) %{
5069     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5070     mem : R(read);
5071     dst : M(write);
5072     MS  : R;
5073 %}
5074 
5075 // Float Load
5076 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5077     single_instruction;
5078     stkSlot : R(read);
5079     dst : M(write);
5080     MS  : R;
5081 %}
5082 
5083 // Float Load
5084 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5085     single_instruction;
5086     stkSlot : R(read);
5087     dst : M(write);
5088     MS  : R;
5089 %}
5090 
5091 // Memory Nop
5092 pipe_class mem_nop() %{
5093     single_instruction;
5094     MS  : R;
5095 %}
5096 
5097 pipe_class sethi(iRegP dst, immI src) %{
5098     single_instruction;
5099     dst  : E(write);
5100     IALU : R;
5101 %}
5102 
5103 pipe_class loadPollP(iRegP poll) %{
5104     single_instruction;
5105     poll : R(read);
5106     MS   : R;
5107 %}
5108 
5109 pipe_class br(Universe br, label labl) %{
5110     single_instruction_with_delay_slot;
5111     BR  : R;
5112 %}
5113 
5114 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5115     single_instruction_with_delay_slot;
5116     cr    : E(read);
5117     BR    : R;
5118 %}
5119 
5120 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5121     single_instruction_with_delay_slot;
5122     op1 : E(read);
5123     BR  : R;
5124     MS  : R;
5125 %}
5126 
5127 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5128     single_instruction_with_delay_slot;
5129     cr    : E(read);
5130     BR    : R;
5131 %}
5132 
5133 pipe_class br_nop() %{
5134     single_instruction;
5135     BR  : R;
5136 %}
5137 
5138 pipe_class simple_call(method meth) %{
5139     instruction_count(2); multiple_bundles; force_serialization;
5140     fixed_latency(100);
5141     BR  : R(1);
5142     MS  : R(1);
5143     A0  : R(1);
5144 %}
5145 
5146 pipe_class compiled_call(method meth) %{
5147     instruction_count(1); multiple_bundles; force_serialization;
5148     fixed_latency(100);
5149     MS  : R(1);
5150 %}
5151 
5152 pipe_class call(method meth) %{
5153     instruction_count(0); multiple_bundles; force_serialization;
5154     fixed_latency(100);
5155 %}
5156 
5157 pipe_class tail_call(Universe ignore, label labl) %{
5158     single_instruction; has_delay_slot;
5159     fixed_latency(100);
5160     BR  : R(1);
5161     MS  : R(1);
5162 %}
5163 
5164 pipe_class ret(Universe ignore) %{
5165     single_instruction; has_delay_slot;
5166     BR  : R(1);
5167     MS  : R(1);
5168 %}
5169 
5170 pipe_class ret_poll(g3RegP poll) %{
5171     instruction_count(3); has_delay_slot;
5172     poll : E(read);
5173     MS   : R;
5174 %}
5175 
5176 // The real do-nothing guy
5177 pipe_class empty( ) %{
5178     instruction_count(0);
5179 %}
5180 
5181 pipe_class long_memory_op() %{
5182     instruction_count(0); multiple_bundles; force_serialization;
5183     fixed_latency(25);
5184     MS  : R(1);
5185 %}
5186 
5187 // Check-cast
5188 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5189     array : R(read);
5190     match  : R(read);
5191     IALU   : R(2);
5192     BR     : R(2);
5193     MS     : R;
5194 %}
5195 
5196 // Convert FPU flags into +1,0,-1
5197 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5198     src1  : E(read);
5199     src2  : E(read);
5200     dst   : E(write);
5201     FA    : R;
5202     MS    : R(2);
5203     BR    : R(2);
5204 %}
5205 
5206 // Compare for p < q, and conditionally add y
5207 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5208     p     : E(read);
5209     q     : E(read);
5210     y     : E(read);
5211     IALU  : R(3)
5212 %}
5213 
5214 // Perform a compare, then move conditionally in a branch delay slot.
5215 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5216     src2   : E(read);
5217     srcdst : E(read);
5218     IALU   : R;
5219     BR     : R;
5220 %}
5221 
5222 // Define the class for the Nop node
5223 define %{
5224    MachNop = ialu_nop;
5225 %}
5226 
5227 %}
5228 
5229 //----------INSTRUCTIONS-------------------------------------------------------
5230 
5231 //------------Special Stack Slot instructions - no match rules-----------------
5232 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5233   // No match rule to avoid chain rule match.
5234   effect(DEF dst, USE src);
5235   ins_cost(MEMORY_REF_COST);
5236   size(4);
5237   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5238   opcode(Assembler::ldf_op3);
5239   ins_encode(simple_form3_mem_reg(src, dst));
5240   ins_pipe(floadF_stk);
5241 %}
5242 
5243 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5244   // No match rule to avoid chain rule match.
5245   effect(DEF dst, USE src);
5246   ins_cost(MEMORY_REF_COST);
5247   size(4);
5248   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5249   opcode(Assembler::lddf_op3);
5250   ins_encode(simple_form3_mem_reg(src, dst));
5251   ins_pipe(floadD_stk);
5252 %}
5253 
5254 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5255   // No match rule to avoid chain rule match.
5256   effect(DEF dst, USE src);
5257   ins_cost(MEMORY_REF_COST);
5258   size(4);
5259   format %{ "STF    $src,$dst\t! regF to stkI" %}
5260   opcode(Assembler::stf_op3);
5261   ins_encode(simple_form3_mem_reg(dst, src));
5262   ins_pipe(fstoreF_stk_reg);
5263 %}
5264 
5265 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5266   // No match rule to avoid chain rule match.
5267   effect(DEF dst, USE src);
5268   ins_cost(MEMORY_REF_COST);
5269   size(4);
5270   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5271   opcode(Assembler::stdf_op3);
5272   ins_encode(simple_form3_mem_reg(dst, src));
5273   ins_pipe(fstoreD_stk_reg);
5274 %}
5275 
5276 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5277   effect(DEF dst, USE src);
5278   ins_cost(MEMORY_REF_COST*2);
5279   size(8);
5280   format %{ "STW    $src,$dst.hi\t! long\n\t"
5281             "STW    R_G0,$dst.lo" %}
5282   opcode(Assembler::stw_op3);
5283   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5284   ins_pipe(lstoreI_stk_reg);
5285 %}
5286 
5287 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5288   // No match rule to avoid chain rule match.
5289   effect(DEF dst, USE src);
5290   ins_cost(MEMORY_REF_COST);
5291   size(4);
5292   format %{ "STX    $src,$dst\t! regL to stkD" %}
5293   opcode(Assembler::stx_op3);
5294   ins_encode(simple_form3_mem_reg( dst, src ) );
5295   ins_pipe(istore_stk_reg);
5296 %}
5297 
5298 //---------- Chain stack slots between similar types --------
5299 
5300 // Load integer from stack slot
5301 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5302   match(Set dst src);
5303   ins_cost(MEMORY_REF_COST);
5304 
5305   size(4);
5306   format %{ "LDUW   $src,$dst\t!stk" %}
5307   opcode(Assembler::lduw_op3);
5308   ins_encode(simple_form3_mem_reg( src, dst ) );
5309   ins_pipe(iload_mem);
5310 %}
5311 
5312 // Store integer to stack slot
5313 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5314   match(Set dst src);
5315   ins_cost(MEMORY_REF_COST);
5316 
5317   size(4);
5318   format %{ "STW    $src,$dst\t!stk" %}
5319   opcode(Assembler::stw_op3);
5320   ins_encode(simple_form3_mem_reg( dst, src ) );
5321   ins_pipe(istore_mem_reg);
5322 %}
5323 
5324 // Load long from stack slot
5325 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5326   match(Set dst src);
5327 
5328   ins_cost(MEMORY_REF_COST);
5329   size(4);
5330   format %{ "LDX    $src,$dst\t! long" %}
5331   opcode(Assembler::ldx_op3);
5332   ins_encode(simple_form3_mem_reg( src, dst ) );
5333   ins_pipe(iload_mem);
5334 %}
5335 
5336 // Store long to stack slot
5337 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5338   match(Set dst src);
5339 
5340   ins_cost(MEMORY_REF_COST);
5341   size(4);
5342   format %{ "STX    $src,$dst\t! long" %}
5343   opcode(Assembler::stx_op3);
5344   ins_encode(simple_form3_mem_reg( dst, src ) );
5345   ins_pipe(istore_mem_reg);
5346 %}
5347 
5348 #ifdef _LP64
5349 // Load pointer from stack slot, 64-bit encoding
5350 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5351   match(Set dst src);
5352   ins_cost(MEMORY_REF_COST);
5353   size(4);
5354   format %{ "LDX    $src,$dst\t!ptr" %}
5355   opcode(Assembler::ldx_op3);
5356   ins_encode(simple_form3_mem_reg( src, dst ) );
5357   ins_pipe(iload_mem);
5358 %}
5359 
5360 // Store pointer to stack slot
5361 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5362   match(Set dst src);
5363   ins_cost(MEMORY_REF_COST);
5364   size(4);
5365   format %{ "STX    $src,$dst\t!ptr" %}
5366   opcode(Assembler::stx_op3);
5367   ins_encode(simple_form3_mem_reg( dst, src ) );
5368   ins_pipe(istore_mem_reg);
5369 %}
5370 #else // _LP64
5371 // Load pointer from stack slot, 32-bit encoding
5372 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5373   match(Set dst src);
5374   ins_cost(MEMORY_REF_COST);
5375   format %{ "LDUW   $src,$dst\t!ptr" %}
5376   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5377   ins_encode(simple_form3_mem_reg( src, dst ) );
5378   ins_pipe(iload_mem);
5379 %}
5380 
5381 // Store pointer to stack slot
5382 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5383   match(Set dst src);
5384   ins_cost(MEMORY_REF_COST);
5385   format %{ "STW    $src,$dst\t!ptr" %}
5386   opcode(Assembler::stw_op3, Assembler::ldst_op);
5387   ins_encode(simple_form3_mem_reg( dst, src ) );
5388   ins_pipe(istore_mem_reg);
5389 %}
5390 #endif // _LP64
5391 
5392 //------------Special Nop instructions for bundling - no match rules-----------
5393 // Nop using the A0 functional unit
5394 instruct Nop_A0() %{
5395   ins_cost(0);
5396 
5397   format %{ "NOP    ! Alu Pipeline" %}
5398   opcode(Assembler::or_op3, Assembler::arith_op);
5399   ins_encode( form2_nop() );
5400   ins_pipe(ialu_nop_A0);
5401 %}
5402 
5403 // Nop using the A1 functional unit
5404 instruct Nop_A1( ) %{
5405   ins_cost(0);
5406 
5407   format %{ "NOP    ! Alu Pipeline" %}
5408   opcode(Assembler::or_op3, Assembler::arith_op);
5409   ins_encode( form2_nop() );
5410   ins_pipe(ialu_nop_A1);
5411 %}
5412 
5413 // Nop using the memory functional unit
5414 instruct Nop_MS( ) %{
5415   ins_cost(0);
5416 
5417   format %{ "NOP    ! Memory Pipeline" %}
5418   ins_encode( emit_mem_nop );
5419   ins_pipe(mem_nop);
5420 %}
5421 
5422 // Nop using the floating add functional unit
5423 instruct Nop_FA( ) %{
5424   ins_cost(0);
5425 
5426   format %{ "NOP    ! Floating Add Pipeline" %}
5427   ins_encode( emit_fadd_nop );
5428   ins_pipe(fadd_nop);
5429 %}
5430 
5431 // Nop using the branch functional unit
5432 instruct Nop_BR( ) %{
5433   ins_cost(0);
5434 
5435   format %{ "NOP    ! Branch Pipeline" %}
5436   ins_encode( emit_br_nop );
5437   ins_pipe(br_nop);
5438 %}
5439 
5440 //----------Load/Store/Move Instructions---------------------------------------
5441 //----------Load Instructions--------------------------------------------------
5442 // Load Byte (8bit signed)
5443 instruct loadB(iRegI dst, memory mem) %{
5444   match(Set dst (LoadB mem));
5445   ins_cost(MEMORY_REF_COST);
5446 
5447   size(4);
5448   format %{ "LDSB   $mem,$dst\t! byte" %}
5449   ins_encode %{
5450     __ ldsb($mem$$Address, $dst$$Register);
5451   %}
5452   ins_pipe(iload_mask_mem);
5453 %}
5454 
5455 // Load Byte (8bit signed) into a Long Register
5456 instruct loadB2L(iRegL dst, memory mem) %{
5457   match(Set dst (ConvI2L (LoadB mem)));
5458   ins_cost(MEMORY_REF_COST);
5459 
5460   size(4);
5461   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5462   ins_encode %{
5463     __ ldsb($mem$$Address, $dst$$Register);
5464   %}
5465   ins_pipe(iload_mask_mem);
5466 %}
5467 
5468 // Load Unsigned Byte (8bit UNsigned) into an int reg
5469 instruct loadUB(iRegI dst, memory mem) %{
5470   match(Set dst (LoadUB mem));
5471   ins_cost(MEMORY_REF_COST);
5472 
5473   size(4);
5474   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5475   ins_encode %{
5476     __ ldub($mem$$Address, $dst$$Register);
5477   %}
5478   ins_pipe(iload_mask_mem);
5479 %}
5480 
5481 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5482 instruct loadUB2L(iRegL dst, memory mem) %{
5483   match(Set dst (ConvI2L (LoadUB mem)));
5484   ins_cost(MEMORY_REF_COST);
5485 
5486   size(4);
5487   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5488   ins_encode %{
5489     __ ldub($mem$$Address, $dst$$Register);
5490   %}
5491   ins_pipe(iload_mask_mem);
5492 %}
5493 
5494 // Load Short (16bit signed)
5495 instruct loadS(iRegI dst, memory mem) %{
5496   match(Set dst (LoadS mem));
5497   ins_cost(MEMORY_REF_COST);
5498 
5499   size(4);
5500   format %{ "LDSH   $mem,$dst\t! short" %}
5501   ins_encode %{
5502     __ ldsh($mem$$Address, $dst$$Register);
5503   %}
5504   ins_pipe(iload_mask_mem);
5505 %}
5506 
5507 // Load Short (16bit signed) into a Long Register
5508 instruct loadS2L(iRegL dst, memory mem) %{
5509   match(Set dst (ConvI2L (LoadS mem)));
5510   ins_cost(MEMORY_REF_COST);
5511 
5512   size(4);
5513   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5514   ins_encode %{
5515     __ ldsh($mem$$Address, $dst$$Register);
5516   %}
5517   ins_pipe(iload_mask_mem);
5518 %}
5519 
5520 // Load Unsigned Short/Char (16bit UNsigned)
5521 instruct loadUS(iRegI dst, memory mem) %{
5522   match(Set dst (LoadUS mem));
5523   ins_cost(MEMORY_REF_COST);
5524 
5525   size(4);
5526   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5527   ins_encode %{
5528     __ lduh($mem$$Address, $dst$$Register);
5529   %}
5530   ins_pipe(iload_mask_mem);
5531 %}
5532 
5533 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5534 instruct loadUS2L(iRegL dst, memory mem) %{
5535   match(Set dst (ConvI2L (LoadUS mem)));
5536   ins_cost(MEMORY_REF_COST);
5537 
5538   size(4);
5539   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5540   ins_encode %{
5541     __ lduh($mem$$Address, $dst$$Register);
5542   %}
5543   ins_pipe(iload_mask_mem);
5544 %}
5545 
5546 // Load Integer
5547 instruct loadI(iRegI dst, memory mem) %{
5548   match(Set dst (LoadI mem));
5549   ins_cost(MEMORY_REF_COST);
5550 
5551   size(4);
5552   format %{ "LDUW   $mem,$dst\t! int" %}
5553   ins_encode %{
5554     __ lduw($mem$$Address, $dst$$Register);
5555   %}
5556   ins_pipe(iload_mem);
5557 %}
5558 
5559 // Load Integer into a Long Register
5560 instruct loadI2L(iRegL dst, memory mem) %{
5561   match(Set dst (ConvI2L (LoadI mem)));
5562   ins_cost(MEMORY_REF_COST);
5563 
5564   size(4);
5565   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5566   ins_encode %{
5567     __ ldsw($mem$$Address, $dst$$Register);
5568   %}
5569   ins_pipe(iload_mem);
5570 %}
5571 
5572 // Load Unsigned Integer into a Long Register
5573 instruct loadUI2L(iRegL dst, memory mem) %{
5574   match(Set dst (LoadUI2L mem));
5575   ins_cost(MEMORY_REF_COST);
5576 
5577   size(4);
5578   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5579   ins_encode %{
5580     __ lduw($mem$$Address, $dst$$Register);
5581   %}
5582   ins_pipe(iload_mem);
5583 %}
5584 
5585 // Load Long - aligned
5586 instruct loadL(iRegL dst, memory mem ) %{
5587   match(Set dst (LoadL mem));
5588   ins_cost(MEMORY_REF_COST);
5589 
5590   size(4);
5591   format %{ "LDX    $mem,$dst\t! long" %}
5592   ins_encode %{
5593     __ ldx($mem$$Address, $dst$$Register);
5594   %}
5595   ins_pipe(iload_mem);
5596 %}
5597 
5598 // Load Long - UNaligned
5599 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5600   match(Set dst (LoadL_unaligned mem));
5601   effect(KILL tmp);
5602   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5603   size(16);
5604   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5605           "\tLDUW   $mem  ,$dst\n"
5606           "\tSLLX   #32, $dst, $dst\n"
5607           "\tOR     $dst, R_O7, $dst" %}
5608   opcode(Assembler::lduw_op3);
5609   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5610   ins_pipe(iload_mem);
5611 %}
5612 
5613 // Load Aligned Packed Byte into a Double Register
5614 instruct loadA8B(regD dst, memory mem) %{
5615   match(Set dst (Load8B mem));
5616   ins_cost(MEMORY_REF_COST);
5617   size(4);
5618   format %{ "LDDF   $mem,$dst\t! packed8B" %}
5619   opcode(Assembler::lddf_op3);
5620   ins_encode(simple_form3_mem_reg( mem, dst ) );
5621   ins_pipe(floadD_mem);
5622 %}
5623 
5624 // Load Aligned Packed Char into a Double Register
5625 instruct loadA4C(regD dst, memory mem) %{
5626   match(Set dst (Load4C mem));
5627   ins_cost(MEMORY_REF_COST);
5628   size(4);
5629   format %{ "LDDF   $mem,$dst\t! packed4C" %}
5630   opcode(Assembler::lddf_op3);
5631   ins_encode(simple_form3_mem_reg( mem, dst ) );
5632   ins_pipe(floadD_mem);
5633 %}
5634 
5635 // Load Aligned Packed Short into a Double Register
5636 instruct loadA4S(regD dst, memory mem) %{
5637   match(Set dst (Load4S mem));
5638   ins_cost(MEMORY_REF_COST);
5639   size(4);
5640   format %{ "LDDF   $mem,$dst\t! packed4S" %}
5641   opcode(Assembler::lddf_op3);
5642   ins_encode(simple_form3_mem_reg( mem, dst ) );
5643   ins_pipe(floadD_mem);
5644 %}
5645 
5646 // Load Aligned Packed Int into a Double Register
5647 instruct loadA2I(regD dst, memory mem) %{
5648   match(Set dst (Load2I mem));
5649   ins_cost(MEMORY_REF_COST);
5650   size(4);
5651   format %{ "LDDF   $mem,$dst\t! packed2I" %}
5652   opcode(Assembler::lddf_op3);
5653   ins_encode(simple_form3_mem_reg( mem, dst ) );
5654   ins_pipe(floadD_mem);
5655 %}
5656 
5657 // Load Range
5658 instruct loadRange(iRegI dst, memory mem) %{
5659   match(Set dst (LoadRange mem));
5660   ins_cost(MEMORY_REF_COST);
5661 
5662   size(4);
5663   format %{ "LDUW   $mem,$dst\t! range" %}
5664   opcode(Assembler::lduw_op3);
5665   ins_encode(simple_form3_mem_reg( mem, dst ) );
5666   ins_pipe(iload_mem);
5667 %}
5668 
5669 // Load Integer into %f register (for fitos/fitod)
5670 instruct loadI_freg(regF dst, memory mem) %{
5671   match(Set dst (LoadI mem));
5672   ins_cost(MEMORY_REF_COST);
5673   size(4);
5674 
5675   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5676   opcode(Assembler::ldf_op3);
5677   ins_encode(simple_form3_mem_reg( mem, dst ) );
5678   ins_pipe(floadF_mem);
5679 %}
5680 
5681 // Load Pointer
5682 instruct loadP(iRegP dst, memory mem) %{
5683   match(Set dst (LoadP mem));
5684   ins_cost(MEMORY_REF_COST);
5685   size(4);
5686 
5687 #ifndef _LP64
5688   format %{ "LDUW   $mem,$dst\t! ptr" %}
5689   ins_encode %{
5690     __ lduw($mem$$Address, $dst$$Register);
5691   %}
5692 #else
5693   format %{ "LDX    $mem,$dst\t! ptr" %}
5694   ins_encode %{
5695     __ ldx($mem$$Address, $dst$$Register);
5696   %}
5697 #endif
5698   ins_pipe(iload_mem);
5699 %}
5700 
5701 // Load Compressed Pointer
5702 instruct loadN(iRegN dst, memory mem) %{
5703   match(Set dst (LoadN mem));
5704   ins_cost(MEMORY_REF_COST);
5705   size(4);
5706 
5707   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5708   ins_encode %{
5709     __ lduw($mem$$Address, $dst$$Register);
5710   %}
5711   ins_pipe(iload_mem);
5712 %}
5713 
5714 // Load Klass Pointer
5715 instruct loadKlass(iRegP dst, memory mem) %{
5716   match(Set dst (LoadKlass mem));
5717   ins_cost(MEMORY_REF_COST);
5718   size(4);
5719 
5720 #ifndef _LP64
5721   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5722   ins_encode %{
5723     __ lduw($mem$$Address, $dst$$Register);
5724   %}
5725 #else
5726   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5727   ins_encode %{
5728     __ ldx($mem$$Address, $dst$$Register);
5729   %}
5730 #endif
5731   ins_pipe(iload_mem);
5732 %}
5733 
5734 // Load narrow Klass Pointer
5735 instruct loadNKlass(iRegN dst, memory mem) %{
5736   match(Set dst (LoadNKlass mem));
5737   ins_cost(MEMORY_REF_COST);
5738   size(4);
5739 
5740   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5741   ins_encode %{
5742     __ lduw($mem$$Address, $dst$$Register);
5743   %}
5744   ins_pipe(iload_mem);
5745 %}
5746 
5747 // Load Double
5748 instruct loadD(regD dst, memory mem) %{
5749   match(Set dst (LoadD mem));
5750   ins_cost(MEMORY_REF_COST);
5751 
5752   size(4);
5753   format %{ "LDDF   $mem,$dst" %}
5754   opcode(Assembler::lddf_op3);
5755   ins_encode(simple_form3_mem_reg( mem, dst ) );
5756   ins_pipe(floadD_mem);
5757 %}
5758 
5759 // Load Double - UNaligned
5760 instruct loadD_unaligned(regD_low dst, memory mem ) %{
5761   match(Set dst (LoadD_unaligned mem));
5762   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5763   size(8);
5764   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5765           "\tLDF    $mem+4,$dst.lo\t!" %}
5766   opcode(Assembler::ldf_op3);
5767   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5768   ins_pipe(iload_mem);
5769 %}
5770 
5771 // Load Float
5772 instruct loadF(regF dst, memory mem) %{
5773   match(Set dst (LoadF mem));
5774   ins_cost(MEMORY_REF_COST);
5775 
5776   size(4);
5777   format %{ "LDF    $mem,$dst" %}
5778   opcode(Assembler::ldf_op3);
5779   ins_encode(simple_form3_mem_reg( mem, dst ) );
5780   ins_pipe(floadF_mem);
5781 %}
5782 
5783 // Load Constant
5784 instruct loadConI( iRegI dst, immI src ) %{
5785   match(Set dst src);
5786   ins_cost(DEFAULT_COST * 3/2);
5787   format %{ "SET    $src,$dst" %}
5788   ins_encode( Set32(src, dst) );
5789   ins_pipe(ialu_hi_lo_reg);
5790 %}
5791 
5792 instruct loadConI13( iRegI dst, immI13 src ) %{
5793   match(Set dst src);
5794 
5795   size(4);
5796   format %{ "MOV    $src,$dst" %}
5797   ins_encode( Set13( src, dst ) );
5798   ins_pipe(ialu_imm);
5799 %}
5800 
5801 instruct loadConP(iRegP dst, immP src) %{
5802   match(Set dst src);
5803   ins_cost(DEFAULT_COST * 3/2);
5804   format %{ "SET    $src,$dst\t!ptr" %}
5805   // This rule does not use "expand" unlike loadConI because then
5806   // the result type is not known to be an Oop.  An ADLC
5807   // enhancement will be needed to make that work - not worth it!
5808 
5809   ins_encode( SetPtr( src, dst ) );
5810   ins_pipe(loadConP);
5811 
5812 %}
5813 
5814 instruct loadConP0(iRegP dst, immP0 src) %{
5815   match(Set dst src);
5816 
5817   size(4);
5818   format %{ "CLR    $dst\t!ptr" %}
5819   ins_encode( SetNull( dst ) );
5820   ins_pipe(ialu_imm);
5821 %}
5822 
5823 instruct loadConP_poll(iRegP dst, immP_poll src) %{
5824   match(Set dst src);
5825   ins_cost(DEFAULT_COST);
5826   format %{ "SET    $src,$dst\t!ptr" %}
5827   ins_encode %{
5828     AddressLiteral polling_page(os::get_polling_page());
5829     __ sethi(polling_page, reg_to_register_object($dst$$reg));
5830   %}
5831   ins_pipe(loadConP_poll);
5832 %}
5833 
5834 instruct loadConN0(iRegN dst, immN0 src) %{
5835   match(Set dst src);
5836 
5837   size(4);
5838   format %{ "CLR    $dst\t! compressed NULL ptr" %}
5839   ins_encode( SetNull( dst ) );
5840   ins_pipe(ialu_imm);
5841 %}
5842 
5843 instruct loadConN(iRegN dst, immN src) %{
5844   match(Set dst src);
5845   ins_cost(DEFAULT_COST * 3/2);
5846   format %{ "SET    $src,$dst\t! compressed ptr" %}
5847   ins_encode %{
5848     Register dst = $dst$$Register;
5849     __ set_narrow_oop((jobject)$src$$constant, dst);
5850   %}
5851   ins_pipe(ialu_hi_lo_reg);
5852 %}
5853 
5854 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
5855   // %%% maybe this should work like loadConD
5856   match(Set dst src);
5857   effect(KILL tmp);
5858   ins_cost(DEFAULT_COST * 4);
5859   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
5860   ins_encode( LdImmL(src, dst, tmp) );
5861   ins_pipe(loadConL);
5862 %}
5863 
5864 instruct loadConL0( iRegL dst, immL0 src ) %{
5865   match(Set dst src);
5866   ins_cost(DEFAULT_COST);
5867   size(4);
5868   format %{ "CLR    $dst\t! long" %}
5869   ins_encode( Set13( src, dst ) );
5870   ins_pipe(ialu_imm);
5871 %}
5872 
5873 instruct loadConL13( iRegL dst, immL13 src ) %{
5874   match(Set dst src);
5875   ins_cost(DEFAULT_COST * 2);
5876 
5877   size(4);
5878   format %{ "MOV    $src,$dst\t! long" %}
5879   ins_encode( Set13( src, dst ) );
5880   ins_pipe(ialu_imm);
5881 %}
5882 
5883 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
5884   match(Set dst src);
5885   effect(KILL tmp);
5886 
5887 #ifdef _LP64
5888   size(8*4);
5889 #else
5890   size(2*4);
5891 #endif
5892 
5893   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
5894             "LDF    [$tmp+lo(&$src)],$dst" %}
5895   ins_encode %{
5896     address float_address = __ float_constant($src$$constant);
5897     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
5898     AddressLiteral addrlit(float_address, rspec);
5899 
5900     __ sethi(addrlit, $tmp$$Register);
5901     __ ldf(FloatRegisterImpl::S, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
5902   %}
5903   ins_pipe(loadConFD);
5904 %}
5905 
5906 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
5907   match(Set dst src);
5908   effect(KILL tmp);
5909 
5910 #ifdef _LP64
5911   size(8*4);
5912 #else
5913   size(2*4);
5914 #endif
5915 
5916   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
5917             "LDDF   [$tmp+lo(&$src)],$dst" %}
5918   ins_encode %{
5919     address double_address = __ double_constant($src$$constant);
5920     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
5921     AddressLiteral addrlit(double_address, rspec);
5922 
5923     __ sethi(addrlit, $tmp$$Register);
5924     // XXX This is a quick fix for 6833573.
5925     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
5926     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
5927   %}
5928   ins_pipe(loadConFD);
5929 %}
5930 
5931 // Prefetch instructions.
5932 // Must be safe to execute with invalid address (cannot fault).
5933 
5934 instruct prefetchr( memory mem ) %{
5935   match( PrefetchRead mem );
5936   ins_cost(MEMORY_REF_COST);
5937 
5938   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
5939   opcode(Assembler::prefetch_op3);
5940   ins_encode( form3_mem_prefetch_read( mem ) );
5941   ins_pipe(iload_mem);
5942 %}
5943 
5944 instruct prefetchw( memory mem ) %{
5945   match( PrefetchWrite mem );
5946   ins_cost(MEMORY_REF_COST);
5947 
5948   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
5949   opcode(Assembler::prefetch_op3);
5950   ins_encode( form3_mem_prefetch_write( mem ) );
5951   ins_pipe(iload_mem);
5952 %}
5953 
5954 
5955 //----------Store Instructions-------------------------------------------------
5956 // Store Byte
5957 instruct storeB(memory mem, iRegI src) %{
5958   match(Set mem (StoreB mem src));
5959   ins_cost(MEMORY_REF_COST);
5960 
5961   size(4);
5962   format %{ "STB    $src,$mem\t! byte" %}
5963   opcode(Assembler::stb_op3);
5964   ins_encode(simple_form3_mem_reg( mem, src ) );
5965   ins_pipe(istore_mem_reg);
5966 %}
5967 
5968 instruct storeB0(memory mem, immI0 src) %{
5969   match(Set mem (StoreB mem src));
5970   ins_cost(MEMORY_REF_COST);
5971 
5972   size(4);
5973   format %{ "STB    $src,$mem\t! byte" %}
5974   opcode(Assembler::stb_op3);
5975   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
5976   ins_pipe(istore_mem_zero);
5977 %}
5978 
5979 instruct storeCM0(memory mem, immI0 src) %{
5980   match(Set mem (StoreCM mem src));
5981   ins_cost(MEMORY_REF_COST);
5982 
5983   size(4);
5984   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
5985   opcode(Assembler::stb_op3);
5986   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
5987   ins_pipe(istore_mem_zero);
5988 %}
5989 
5990 // Store Char/Short
5991 instruct storeC(memory mem, iRegI src) %{
5992   match(Set mem (StoreC mem src));
5993   ins_cost(MEMORY_REF_COST);
5994 
5995   size(4);
5996   format %{ "STH    $src,$mem\t! short" %}
5997   opcode(Assembler::sth_op3);
5998   ins_encode(simple_form3_mem_reg( mem, src ) );
5999   ins_pipe(istore_mem_reg);
6000 %}
6001 
6002 instruct storeC0(memory mem, immI0 src) %{
6003   match(Set mem (StoreC mem src));
6004   ins_cost(MEMORY_REF_COST);
6005 
6006   size(4);
6007   format %{ "STH    $src,$mem\t! short" %}
6008   opcode(Assembler::sth_op3);
6009   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6010   ins_pipe(istore_mem_zero);
6011 %}
6012 
6013 // Store Integer
6014 instruct storeI(memory mem, iRegI src) %{
6015   match(Set mem (StoreI mem src));
6016   ins_cost(MEMORY_REF_COST);
6017 
6018   size(4);
6019   format %{ "STW    $src,$mem" %}
6020   opcode(Assembler::stw_op3);
6021   ins_encode(simple_form3_mem_reg( mem, src ) );
6022   ins_pipe(istore_mem_reg);
6023 %}
6024 
6025 // Store Long
6026 instruct storeL(memory mem, iRegL src) %{
6027   match(Set mem (StoreL mem src));
6028   ins_cost(MEMORY_REF_COST);
6029   size(4);
6030   format %{ "STX    $src,$mem\t! long" %}
6031   opcode(Assembler::stx_op3);
6032   ins_encode(simple_form3_mem_reg( mem, src ) );
6033   ins_pipe(istore_mem_reg);
6034 %}
6035 
6036 instruct storeI0(memory mem, immI0 src) %{
6037   match(Set mem (StoreI mem src));
6038   ins_cost(MEMORY_REF_COST);
6039 
6040   size(4);
6041   format %{ "STW    $src,$mem" %}
6042   opcode(Assembler::stw_op3);
6043   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6044   ins_pipe(istore_mem_zero);
6045 %}
6046 
6047 instruct storeL0(memory mem, immL0 src) %{
6048   match(Set mem (StoreL mem src));
6049   ins_cost(MEMORY_REF_COST);
6050 
6051   size(4);
6052   format %{ "STX    $src,$mem" %}
6053   opcode(Assembler::stx_op3);
6054   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6055   ins_pipe(istore_mem_zero);
6056 %}
6057 
6058 // Store Integer from float register (used after fstoi)
6059 instruct storeI_Freg(memory mem, regF src) %{
6060   match(Set mem (StoreI mem src));
6061   ins_cost(MEMORY_REF_COST);
6062 
6063   size(4);
6064   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6065   opcode(Assembler::stf_op3);
6066   ins_encode(simple_form3_mem_reg( mem, src ) );
6067   ins_pipe(fstoreF_mem_reg);
6068 %}
6069 
6070 // Store Pointer
6071 instruct storeP(memory dst, sp_ptr_RegP src) %{
6072   match(Set dst (StoreP dst src));
6073   ins_cost(MEMORY_REF_COST);
6074   size(4);
6075 
6076 #ifndef _LP64
6077   format %{ "STW    $src,$dst\t! ptr" %}
6078   opcode(Assembler::stw_op3, 0, REGP_OP);
6079 #else
6080   format %{ "STX    $src,$dst\t! ptr" %}
6081   opcode(Assembler::stx_op3, 0, REGP_OP);
6082 #endif
6083   ins_encode( form3_mem_reg( dst, src ) );
6084   ins_pipe(istore_mem_spORreg);
6085 %}
6086 
6087 instruct storeP0(memory dst, immP0 src) %{
6088   match(Set dst (StoreP dst src));
6089   ins_cost(MEMORY_REF_COST);
6090   size(4);
6091 
6092 #ifndef _LP64
6093   format %{ "STW    $src,$dst\t! ptr" %}
6094   opcode(Assembler::stw_op3, 0, REGP_OP);
6095 #else
6096   format %{ "STX    $src,$dst\t! ptr" %}
6097   opcode(Assembler::stx_op3, 0, REGP_OP);
6098 #endif
6099   ins_encode( form3_mem_reg( dst, R_G0 ) );
6100   ins_pipe(istore_mem_zero);
6101 %}
6102 
6103 // Store Compressed Pointer
6104 instruct storeN(memory dst, iRegN src) %{
6105    match(Set dst (StoreN dst src));
6106    ins_cost(MEMORY_REF_COST);
6107    size(4);
6108 
6109    format %{ "STW    $src,$dst\t! compressed ptr" %}
6110    ins_encode %{
6111      Register base = as_Register($dst$$base);
6112      Register index = as_Register($dst$$index);
6113      Register src = $src$$Register;
6114      if (index != G0) {
6115        __ stw(src, base, index);
6116      } else {
6117        __ stw(src, base, $dst$$disp);
6118      }
6119    %}
6120    ins_pipe(istore_mem_spORreg);
6121 %}
6122 
6123 instruct storeN0(memory dst, immN0 src) %{
6124    match(Set dst (StoreN dst src));
6125    ins_cost(MEMORY_REF_COST);
6126    size(4);
6127 
6128    format %{ "STW    $src,$dst\t! compressed ptr" %}
6129    ins_encode %{
6130      Register base = as_Register($dst$$base);
6131      Register index = as_Register($dst$$index);
6132      if (index != G0) {
6133        __ stw(0, base, index);
6134      } else {
6135        __ stw(0, base, $dst$$disp);
6136      }
6137    %}
6138    ins_pipe(istore_mem_zero);
6139 %}
6140 
6141 // Store Double
6142 instruct storeD( memory mem, regD src) %{
6143   match(Set mem (StoreD mem src));
6144   ins_cost(MEMORY_REF_COST);
6145 
6146   size(4);
6147   format %{ "STDF   $src,$mem" %}
6148   opcode(Assembler::stdf_op3);
6149   ins_encode(simple_form3_mem_reg( mem, src ) );
6150   ins_pipe(fstoreD_mem_reg);
6151 %}
6152 
6153 instruct storeD0( memory mem, immD0 src) %{
6154   match(Set mem (StoreD mem src));
6155   ins_cost(MEMORY_REF_COST);
6156 
6157   size(4);
6158   format %{ "STX    $src,$mem" %}
6159   opcode(Assembler::stx_op3);
6160   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6161   ins_pipe(fstoreD_mem_zero);
6162 %}
6163 
6164 // Store Float
6165 instruct storeF( memory mem, regF src) %{
6166   match(Set mem (StoreF mem src));
6167   ins_cost(MEMORY_REF_COST);
6168 
6169   size(4);
6170   format %{ "STF    $src,$mem" %}
6171   opcode(Assembler::stf_op3);
6172   ins_encode(simple_form3_mem_reg( mem, src ) );
6173   ins_pipe(fstoreF_mem_reg);
6174 %}
6175 
6176 instruct storeF0( memory mem, immF0 src) %{
6177   match(Set mem (StoreF mem src));
6178   ins_cost(MEMORY_REF_COST);
6179 
6180   size(4);
6181   format %{ "STW    $src,$mem\t! storeF0" %}
6182   opcode(Assembler::stw_op3);
6183   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6184   ins_pipe(fstoreF_mem_zero);
6185 %}
6186 
6187 // Store Aligned Packed Bytes in Double register to memory
6188 instruct storeA8B(memory mem, regD src) %{
6189   match(Set mem (Store8B mem src));
6190   ins_cost(MEMORY_REF_COST);
6191   size(4);
6192   format %{ "STDF   $src,$mem\t! packed8B" %}
6193   opcode(Assembler::stdf_op3);
6194   ins_encode(simple_form3_mem_reg( mem, src ) );
6195   ins_pipe(fstoreD_mem_reg);
6196 %}
6197 
6198 // Convert oop pointer into compressed form
6199 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6200   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6201   match(Set dst (EncodeP src));
6202   format %{ "encode_heap_oop $src, $dst" %}
6203   ins_encode %{
6204     __ encode_heap_oop($src$$Register, $dst$$Register);
6205   %}
6206   ins_pipe(ialu_reg);
6207 %}
6208 
6209 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6210   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6211   match(Set dst (EncodeP src));
6212   format %{ "encode_heap_oop_not_null $src, $dst" %}
6213   ins_encode %{
6214     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6215   %}
6216   ins_pipe(ialu_reg);
6217 %}
6218 
6219 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6220   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6221             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6222   match(Set dst (DecodeN src));
6223   format %{ "decode_heap_oop $src, $dst" %}
6224   ins_encode %{
6225     __ decode_heap_oop($src$$Register, $dst$$Register);
6226   %}
6227   ins_pipe(ialu_reg);
6228 %}
6229 
6230 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6231   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6232             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6233   match(Set dst (DecodeN src));
6234   format %{ "decode_heap_oop_not_null $src, $dst" %}
6235   ins_encode %{
6236     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6237   %}
6238   ins_pipe(ialu_reg);
6239 %}
6240 
6241 
6242 // Store Zero into Aligned Packed Bytes
6243 instruct storeA8B0(memory mem, immI0 zero) %{
6244   match(Set mem (Store8B mem zero));
6245   ins_cost(MEMORY_REF_COST);
6246   size(4);
6247   format %{ "STX    $zero,$mem\t! packed8B" %}
6248   opcode(Assembler::stx_op3);
6249   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6250   ins_pipe(fstoreD_mem_zero);
6251 %}
6252 
6253 // Store Aligned Packed Chars/Shorts in Double register to memory
6254 instruct storeA4C(memory mem, regD src) %{
6255   match(Set mem (Store4C mem src));
6256   ins_cost(MEMORY_REF_COST);
6257   size(4);
6258   format %{ "STDF   $src,$mem\t! packed4C" %}
6259   opcode(Assembler::stdf_op3);
6260   ins_encode(simple_form3_mem_reg( mem, src ) );
6261   ins_pipe(fstoreD_mem_reg);
6262 %}
6263 
6264 // Store Zero into Aligned Packed Chars/Shorts
6265 instruct storeA4C0(memory mem, immI0 zero) %{
6266   match(Set mem (Store4C mem (Replicate4C zero)));
6267   ins_cost(MEMORY_REF_COST);
6268   size(4);
6269   format %{ "STX    $zero,$mem\t! packed4C" %}
6270   opcode(Assembler::stx_op3);
6271   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6272   ins_pipe(fstoreD_mem_zero);
6273 %}
6274 
6275 // Store Aligned Packed Ints in Double register to memory
6276 instruct storeA2I(memory mem, regD src) %{
6277   match(Set mem (Store2I mem src));
6278   ins_cost(MEMORY_REF_COST);
6279   size(4);
6280   format %{ "STDF   $src,$mem\t! packed2I" %}
6281   opcode(Assembler::stdf_op3);
6282   ins_encode(simple_form3_mem_reg( mem, src ) );
6283   ins_pipe(fstoreD_mem_reg);
6284 %}
6285 
6286 // Store Zero into Aligned Packed Ints
6287 instruct storeA2I0(memory mem, immI0 zero) %{
6288   match(Set mem (Store2I mem zero));
6289   ins_cost(MEMORY_REF_COST);
6290   size(4);
6291   format %{ "STX    $zero,$mem\t! packed2I" %}
6292   opcode(Assembler::stx_op3);
6293   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6294   ins_pipe(fstoreD_mem_zero);
6295 %}
6296 
6297 
6298 //----------MemBar Instructions-----------------------------------------------
6299 // Memory barrier flavors
6300 
6301 instruct membar_acquire() %{
6302   match(MemBarAcquire);
6303   ins_cost(4*MEMORY_REF_COST);
6304 
6305   size(0);
6306   format %{ "MEMBAR-acquire" %}
6307   ins_encode( enc_membar_acquire );
6308   ins_pipe(long_memory_op);
6309 %}
6310 
6311 instruct membar_acquire_lock() %{
6312   match(MemBarAcquire);
6313   predicate(Matcher::prior_fast_lock(n));
6314   ins_cost(0);
6315 
6316   size(0);
6317   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6318   ins_encode( );
6319   ins_pipe(empty);
6320 %}
6321 
6322 instruct membar_release() %{
6323   match(MemBarRelease);
6324   ins_cost(4*MEMORY_REF_COST);
6325 
6326   size(0);
6327   format %{ "MEMBAR-release" %}
6328   ins_encode( enc_membar_release );
6329   ins_pipe(long_memory_op);
6330 %}
6331 
6332 instruct membar_release_lock() %{
6333   match(MemBarRelease);
6334   predicate(Matcher::post_fast_unlock(n));
6335   ins_cost(0);
6336 
6337   size(0);
6338   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6339   ins_encode( );
6340   ins_pipe(empty);
6341 %}
6342 
6343 instruct membar_volatile() %{
6344   match(MemBarVolatile);
6345   ins_cost(4*MEMORY_REF_COST);
6346 
6347   size(4);
6348   format %{ "MEMBAR-volatile" %}
6349   ins_encode( enc_membar_volatile );
6350   ins_pipe(long_memory_op);
6351 %}
6352 
6353 instruct unnecessary_membar_volatile() %{
6354   match(MemBarVolatile);
6355   predicate(Matcher::post_store_load_barrier(n));
6356   ins_cost(0);
6357 
6358   size(0);
6359   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6360   ins_encode( );
6361   ins_pipe(empty);
6362 %}
6363 
6364 //----------Register Move Instructions-----------------------------------------
6365 instruct roundDouble_nop(regD dst) %{
6366   match(Set dst (RoundDouble dst));
6367   ins_cost(0);
6368   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6369   ins_encode( );
6370   ins_pipe(empty);
6371 %}
6372 
6373 
6374 instruct roundFloat_nop(regF dst) %{
6375   match(Set dst (RoundFloat dst));
6376   ins_cost(0);
6377   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6378   ins_encode( );
6379   ins_pipe(empty);
6380 %}
6381 
6382 
6383 // Cast Index to Pointer for unsafe natives
6384 instruct castX2P(iRegX src, iRegP dst) %{
6385   match(Set dst (CastX2P src));
6386 
6387   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6388   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6389   ins_pipe(ialu_reg);
6390 %}
6391 
6392 // Cast Pointer to Index for unsafe natives
6393 instruct castP2X(iRegP src, iRegX dst) %{
6394   match(Set dst (CastP2X src));
6395 
6396   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6397   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6398   ins_pipe(ialu_reg);
6399 %}
6400 
6401 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6402   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6403   match(Set stkSlot src);   // chain rule
6404   ins_cost(MEMORY_REF_COST);
6405   format %{ "STDF   $src,$stkSlot\t!stk" %}
6406   opcode(Assembler::stdf_op3);
6407   ins_encode(simple_form3_mem_reg(stkSlot, src));
6408   ins_pipe(fstoreD_stk_reg);
6409 %}
6410 
6411 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6412   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6413   match(Set dst stkSlot);   // chain rule
6414   ins_cost(MEMORY_REF_COST);
6415   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6416   opcode(Assembler::lddf_op3);
6417   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6418   ins_pipe(floadD_stk);
6419 %}
6420 
6421 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6422   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6423   match(Set stkSlot src);   // chain rule
6424   ins_cost(MEMORY_REF_COST);
6425   format %{ "STF   $src,$stkSlot\t!stk" %}
6426   opcode(Assembler::stf_op3);
6427   ins_encode(simple_form3_mem_reg(stkSlot, src));
6428   ins_pipe(fstoreF_stk_reg);
6429 %}
6430 
6431 //----------Conditional Move---------------------------------------------------
6432 // Conditional move
6433 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6434   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6435   ins_cost(150);
6436   format %{ "MOV$cmp $pcc,$src,$dst" %}
6437   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6438   ins_pipe(ialu_reg);
6439 %}
6440 
6441 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6442   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6443   ins_cost(140);
6444   format %{ "MOV$cmp $pcc,$src,$dst" %}
6445   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6446   ins_pipe(ialu_imm);
6447 %}
6448 
6449 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6450   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6451   ins_cost(150);
6452   size(4);
6453   format %{ "MOV$cmp  $icc,$src,$dst" %}
6454   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6455   ins_pipe(ialu_reg);
6456 %}
6457 
6458 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6459   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6460   ins_cost(140);
6461   size(4);
6462   format %{ "MOV$cmp  $icc,$src,$dst" %}
6463   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6464   ins_pipe(ialu_imm);
6465 %}
6466 
6467 instruct cmovII_U_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6468   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6469   ins_cost(150);
6470   size(4);
6471   format %{ "MOV$cmp  $icc,$src,$dst" %}
6472   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6473   ins_pipe(ialu_reg);
6474 %}
6475 
6476 instruct cmovII_U_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6477   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6478   ins_cost(140);
6479   size(4);
6480   format %{ "MOV$cmp  $icc,$src,$dst" %}
6481   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6482   ins_pipe(ialu_imm);
6483 %}
6484 
6485 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6486   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6487   ins_cost(150);
6488   size(4);
6489   format %{ "MOV$cmp $fcc,$src,$dst" %}
6490   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6491   ins_pipe(ialu_reg);
6492 %}
6493 
6494 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6495   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6496   ins_cost(140);
6497   size(4);
6498   format %{ "MOV$cmp $fcc,$src,$dst" %}
6499   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6500   ins_pipe(ialu_imm);
6501 %}
6502 
6503 // Conditional move for RegN. Only cmov(reg,reg).
6504 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6505   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6506   ins_cost(150);
6507   format %{ "MOV$cmp $pcc,$src,$dst" %}
6508   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6509   ins_pipe(ialu_reg);
6510 %}
6511 
6512 // This instruction also works with CmpN so we don't need cmovNN_reg.
6513 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6514   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6515   ins_cost(150);
6516   size(4);
6517   format %{ "MOV$cmp  $icc,$src,$dst" %}
6518   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6519   ins_pipe(ialu_reg);
6520 %}
6521 
6522 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6523   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6524   ins_cost(150);
6525   size(4);
6526   format %{ "MOV$cmp $fcc,$src,$dst" %}
6527   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6528   ins_pipe(ialu_reg);
6529 %}
6530 
6531 // Conditional move
6532 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6533   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6534   ins_cost(150);
6535   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6536   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6537   ins_pipe(ialu_reg);
6538 %}
6539 
6540 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6541   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6542   ins_cost(140);
6543   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6544   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6545   ins_pipe(ialu_imm);
6546 %}
6547 
6548 // This instruction also works with CmpN so we don't need cmovPN_reg.
6549 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6550   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6551   ins_cost(150);
6552 
6553   size(4);
6554   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6555   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6556   ins_pipe(ialu_reg);
6557 %}
6558 
6559 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6560   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6561   ins_cost(140);
6562 
6563   size(4);
6564   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6565   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6566   ins_pipe(ialu_imm);
6567 %}
6568 
6569 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6570   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6571   ins_cost(150);
6572   size(4);
6573   format %{ "MOV$cmp $fcc,$src,$dst" %}
6574   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6575   ins_pipe(ialu_imm);
6576 %}
6577 
6578 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6579   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6580   ins_cost(140);
6581   size(4);
6582   format %{ "MOV$cmp $fcc,$src,$dst" %}
6583   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6584   ins_pipe(ialu_imm);
6585 %}
6586 
6587 // Conditional move
6588 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6589   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6590   ins_cost(150);
6591   opcode(0x101);
6592   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6593   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6594   ins_pipe(int_conditional_float_move);
6595 %}
6596 
6597 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6598   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6599   ins_cost(150);
6600 
6601   size(4);
6602   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6603   opcode(0x101);
6604   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6605   ins_pipe(int_conditional_float_move);
6606 %}
6607 
6608 // Conditional move,
6609 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6610   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6611   ins_cost(150);
6612   size(4);
6613   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6614   opcode(0x1);
6615   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6616   ins_pipe(int_conditional_double_move);
6617 %}
6618 
6619 // Conditional move
6620 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6621   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6622   ins_cost(150);
6623   size(4);
6624   opcode(0x102);
6625   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6626   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6627   ins_pipe(int_conditional_double_move);
6628 %}
6629 
6630 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6631   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6632   ins_cost(150);
6633 
6634   size(4);
6635   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6636   opcode(0x102);
6637   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6638   ins_pipe(int_conditional_double_move);
6639 %}
6640 
6641 // Conditional move,
6642 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6643   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6644   ins_cost(150);
6645   size(4);
6646   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6647   opcode(0x2);
6648   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6649   ins_pipe(int_conditional_double_move);
6650 %}
6651 
6652 // Conditional move
6653 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6654   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6655   ins_cost(150);
6656   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6657   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6658   ins_pipe(ialu_reg);
6659 %}
6660 
6661 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6662   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6663   ins_cost(140);
6664   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6665   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6666   ins_pipe(ialu_imm);
6667 %}
6668 
6669 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6670   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6671   ins_cost(150);
6672 
6673   size(4);
6674   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6675   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6676   ins_pipe(ialu_reg);
6677 %}
6678 
6679 
6680 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6681   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6682   ins_cost(150);
6683 
6684   size(4);
6685   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
6686   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6687   ins_pipe(ialu_reg);
6688 %}
6689 
6690 
6691 
6692 //----------OS and Locking Instructions----------------------------------------
6693 
6694 // This name is KNOWN by the ADLC and cannot be changed.
6695 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6696 // for this guy.
6697 instruct tlsLoadP(g2RegP dst) %{
6698   match(Set dst (ThreadLocal));
6699 
6700   size(0);
6701   ins_cost(0);
6702   format %{ "# TLS is in G2" %}
6703   ins_encode( /*empty encoding*/ );
6704   ins_pipe(ialu_none);
6705 %}
6706 
6707 instruct checkCastPP( iRegP dst ) %{
6708   match(Set dst (CheckCastPP dst));
6709 
6710   size(0);
6711   format %{ "# checkcastPP of $dst" %}
6712   ins_encode( /*empty encoding*/ );
6713   ins_pipe(empty);
6714 %}
6715 
6716 
6717 instruct castPP( iRegP dst ) %{
6718   match(Set dst (CastPP dst));
6719   format %{ "# castPP of $dst" %}
6720   ins_encode( /*empty encoding*/ );
6721   ins_pipe(empty);
6722 %}
6723 
6724 instruct castII( iRegI dst ) %{
6725   match(Set dst (CastII dst));
6726   format %{ "# castII of $dst" %}
6727   ins_encode( /*empty encoding*/ );
6728   ins_cost(0);
6729   ins_pipe(empty);
6730 %}
6731 
6732 //----------Arithmetic Instructions--------------------------------------------
6733 // Addition Instructions
6734 // Register Addition
6735 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6736   match(Set dst (AddI src1 src2));
6737 
6738   size(4);
6739   format %{ "ADD    $src1,$src2,$dst" %}
6740   ins_encode %{
6741     __ add($src1$$Register, $src2$$Register, $dst$$Register);
6742   %}
6743   ins_pipe(ialu_reg_reg);
6744 %}
6745 
6746 // Immediate Addition
6747 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6748   match(Set dst (AddI src1 src2));
6749 
6750   size(4);
6751   format %{ "ADD    $src1,$src2,$dst" %}
6752   opcode(Assembler::add_op3, Assembler::arith_op);
6753   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6754   ins_pipe(ialu_reg_imm);
6755 %}
6756 
6757 // Pointer Register Addition
6758 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
6759   match(Set dst (AddP src1 src2));
6760 
6761   size(4);
6762   format %{ "ADD    $src1,$src2,$dst" %}
6763   opcode(Assembler::add_op3, Assembler::arith_op);
6764   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6765   ins_pipe(ialu_reg_reg);
6766 %}
6767 
6768 // Pointer Immediate Addition
6769 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
6770   match(Set dst (AddP src1 src2));
6771 
6772   size(4);
6773   format %{ "ADD    $src1,$src2,$dst" %}
6774   opcode(Assembler::add_op3, Assembler::arith_op);
6775   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6776   ins_pipe(ialu_reg_imm);
6777 %}
6778 
6779 // Long Addition
6780 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6781   match(Set dst (AddL src1 src2));
6782 
6783   size(4);
6784   format %{ "ADD    $src1,$src2,$dst\t! long" %}
6785   opcode(Assembler::add_op3, Assembler::arith_op);
6786   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6787   ins_pipe(ialu_reg_reg);
6788 %}
6789 
6790 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
6791   match(Set dst (AddL src1 con));
6792 
6793   size(4);
6794   format %{ "ADD    $src1,$con,$dst" %}
6795   opcode(Assembler::add_op3, Assembler::arith_op);
6796   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
6797   ins_pipe(ialu_reg_imm);
6798 %}
6799 
6800 //----------Conditional_store--------------------------------------------------
6801 // Conditional-store of the updated heap-top.
6802 // Used during allocation of the shared heap.
6803 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
6804 
6805 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
6806 instruct loadPLocked(iRegP dst, memory mem) %{
6807   match(Set dst (LoadPLocked mem));
6808   ins_cost(MEMORY_REF_COST);
6809 
6810 #ifndef _LP64
6811   size(4);
6812   format %{ "LDUW   $mem,$dst\t! ptr" %}
6813   opcode(Assembler::lduw_op3, 0, REGP_OP);
6814 #else
6815   format %{ "LDX    $mem,$dst\t! ptr" %}
6816   opcode(Assembler::ldx_op3, 0, REGP_OP);
6817 #endif
6818   ins_encode( form3_mem_reg( mem, dst ) );
6819   ins_pipe(iload_mem);
6820 %}
6821 
6822 // LoadL-locked.  Same as a regular long load when used with a compare-swap
6823 instruct loadLLocked(iRegL dst, memory mem) %{
6824   match(Set dst (LoadLLocked mem));
6825   ins_cost(MEMORY_REF_COST);
6826   size(4);
6827   format %{ "LDX    $mem,$dst\t! long" %}
6828   opcode(Assembler::ldx_op3);
6829   ins_encode(simple_form3_mem_reg( mem, dst ) );
6830   ins_pipe(iload_mem);
6831 %}
6832 
6833 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
6834   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
6835   effect( KILL newval );
6836   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
6837             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
6838   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
6839   ins_pipe( long_memory_op );
6840 %}
6841 
6842 // Conditional-store of an int value.
6843 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
6844   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
6845   effect( KILL newval );
6846   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
6847             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
6848   ins_encode( enc_cas(mem_ptr,oldval,newval) );
6849   ins_pipe( long_memory_op );
6850 %}
6851 
6852 // Conditional-store of a long value.
6853 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
6854   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
6855   effect( KILL newval );
6856   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
6857             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
6858   ins_encode( enc_cas(mem_ptr,oldval,newval) );
6859   ins_pipe( long_memory_op );
6860 %}
6861 
6862 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
6863 
6864 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6865   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
6866   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6867   format %{
6868             "MOV    $newval,O7\n\t"
6869             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6870             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6871             "MOV    1,$res\n\t"
6872             "MOVne  xcc,R_G0,$res"
6873   %}
6874   ins_encode( enc_casx(mem_ptr, oldval, newval),
6875               enc_lflags_ne_to_boolean(res) );
6876   ins_pipe( long_memory_op );
6877 %}
6878 
6879 
6880 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6881   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
6882   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6883   format %{
6884             "MOV    $newval,O7\n\t"
6885             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6886             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6887             "MOV    1,$res\n\t"
6888             "MOVne  icc,R_G0,$res"
6889   %}
6890   ins_encode( enc_casi(mem_ptr, oldval, newval),
6891               enc_iflags_ne_to_boolean(res) );
6892   ins_pipe( long_memory_op );
6893 %}
6894 
6895 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6896   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
6897   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6898   format %{
6899             "MOV    $newval,O7\n\t"
6900             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6901             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6902             "MOV    1,$res\n\t"
6903             "MOVne  xcc,R_G0,$res"
6904   %}
6905 #ifdef _LP64
6906   ins_encode( enc_casx(mem_ptr, oldval, newval),
6907               enc_lflags_ne_to_boolean(res) );
6908 #else
6909   ins_encode( enc_casi(mem_ptr, oldval, newval),
6910               enc_iflags_ne_to_boolean(res) );
6911 #endif
6912   ins_pipe( long_memory_op );
6913 %}
6914 
6915 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6916   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
6917   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6918   format %{
6919             "MOV    $newval,O7\n\t"
6920             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6921             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6922             "MOV    1,$res\n\t"
6923             "MOVne  icc,R_G0,$res"
6924   %}
6925   ins_encode( enc_casi(mem_ptr, oldval, newval),
6926               enc_iflags_ne_to_boolean(res) );
6927   ins_pipe( long_memory_op );
6928 %}
6929 
6930 //---------------------
6931 // Subtraction Instructions
6932 // Register Subtraction
6933 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6934   match(Set dst (SubI src1 src2));
6935 
6936   size(4);
6937   format %{ "SUB    $src1,$src2,$dst" %}
6938   opcode(Assembler::sub_op3, Assembler::arith_op);
6939   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6940   ins_pipe(ialu_reg_reg);
6941 %}
6942 
6943 // Immediate Subtraction
6944 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6945   match(Set dst (SubI src1 src2));
6946 
6947   size(4);
6948   format %{ "SUB    $src1,$src2,$dst" %}
6949   opcode(Assembler::sub_op3, Assembler::arith_op);
6950   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6951   ins_pipe(ialu_reg_imm);
6952 %}
6953 
6954 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
6955   match(Set dst (SubI zero src2));
6956 
6957   size(4);
6958   format %{ "NEG    $src2,$dst" %}
6959   opcode(Assembler::sub_op3, Assembler::arith_op);
6960   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
6961   ins_pipe(ialu_zero_reg);
6962 %}
6963 
6964 // Long subtraction
6965 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6966   match(Set dst (SubL src1 src2));
6967 
6968   size(4);
6969   format %{ "SUB    $src1,$src2,$dst\t! long" %}
6970   opcode(Assembler::sub_op3, Assembler::arith_op);
6971   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6972   ins_pipe(ialu_reg_reg);
6973 %}
6974 
6975 // Immediate Subtraction
6976 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
6977   match(Set dst (SubL src1 con));
6978 
6979   size(4);
6980   format %{ "SUB    $src1,$con,$dst\t! long" %}
6981   opcode(Assembler::sub_op3, Assembler::arith_op);
6982   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
6983   ins_pipe(ialu_reg_imm);
6984 %}
6985 
6986 // Long negation
6987 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
6988   match(Set dst (SubL zero src2));
6989 
6990   size(4);
6991   format %{ "NEG    $src2,$dst\t! long" %}
6992   opcode(Assembler::sub_op3, Assembler::arith_op);
6993   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
6994   ins_pipe(ialu_zero_reg);
6995 %}
6996 
6997 // Multiplication Instructions
6998 // Integer Multiplication
6999 // Register Multiplication
7000 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7001   match(Set dst (MulI src1 src2));
7002 
7003   size(4);
7004   format %{ "MULX   $src1,$src2,$dst" %}
7005   opcode(Assembler::mulx_op3, Assembler::arith_op);
7006   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7007   ins_pipe(imul_reg_reg);
7008 %}
7009 
7010 // Immediate Multiplication
7011 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7012   match(Set dst (MulI src1 src2));
7013 
7014   size(4);
7015   format %{ "MULX   $src1,$src2,$dst" %}
7016   opcode(Assembler::mulx_op3, Assembler::arith_op);
7017   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7018   ins_pipe(imul_reg_imm);
7019 %}
7020 
7021 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7022   match(Set dst (MulL src1 src2));
7023   ins_cost(DEFAULT_COST * 5);
7024   size(4);
7025   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7026   opcode(Assembler::mulx_op3, Assembler::arith_op);
7027   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7028   ins_pipe(mulL_reg_reg);
7029 %}
7030 
7031 // Immediate Multiplication
7032 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7033   match(Set dst (MulL src1 src2));
7034   ins_cost(DEFAULT_COST * 5);
7035   size(4);
7036   format %{ "MULX   $src1,$src2,$dst" %}
7037   opcode(Assembler::mulx_op3, Assembler::arith_op);
7038   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7039   ins_pipe(mulL_reg_imm);
7040 %}
7041 
7042 // Integer Division
7043 // Register Division
7044 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7045   match(Set dst (DivI src1 src2));
7046   ins_cost((2+71)*DEFAULT_COST);
7047 
7048   format %{ "SRA     $src2,0,$src2\n\t"
7049             "SRA     $src1,0,$src1\n\t"
7050             "SDIVX   $src1,$src2,$dst" %}
7051   ins_encode( idiv_reg( src1, src2, dst ) );
7052   ins_pipe(sdiv_reg_reg);
7053 %}
7054 
7055 // Immediate Division
7056 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7057   match(Set dst (DivI src1 src2));
7058   ins_cost((2+71)*DEFAULT_COST);
7059 
7060   format %{ "SRA     $src1,0,$src1\n\t"
7061             "SDIVX   $src1,$src2,$dst" %}
7062   ins_encode( idiv_imm( src1, src2, dst ) );
7063   ins_pipe(sdiv_reg_imm);
7064 %}
7065 
7066 //----------Div-By-10-Expansion------------------------------------------------
7067 // Extract hi bits of a 32x32->64 bit multiply.
7068 // Expand rule only, not matched
7069 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7070   effect( DEF dst, USE src1, USE src2 );
7071   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7072             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7073   ins_encode( enc_mul_hi(dst,src1,src2));
7074   ins_pipe(sdiv_reg_reg);
7075 %}
7076 
7077 // Magic constant, reciprocal of 10
7078 instruct loadConI_x66666667(iRegIsafe dst) %{
7079   effect( DEF dst );
7080 
7081   size(8);
7082   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7083   ins_encode( Set32(0x66666667, dst) );
7084   ins_pipe(ialu_hi_lo_reg);
7085 %}
7086 
7087 // Register Shift Right Arithmetic Long by 32-63
7088 instruct sra_31( iRegI dst, iRegI src ) %{
7089   effect( DEF dst, USE src );
7090   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7091   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7092   ins_pipe(ialu_reg_reg);
7093 %}
7094 
7095 // Arithmetic Shift Right by 8-bit immediate
7096 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7097   effect( DEF dst, USE src );
7098   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7099   opcode(Assembler::sra_op3, Assembler::arith_op);
7100   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7101   ins_pipe(ialu_reg_imm);
7102 %}
7103 
7104 // Integer DIV with 10
7105 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7106   match(Set dst (DivI src div));
7107   ins_cost((6+6)*DEFAULT_COST);
7108   expand %{
7109     iRegIsafe tmp1;               // Killed temps;
7110     iRegIsafe tmp2;               // Killed temps;
7111     iRegI tmp3;                   // Killed temps;
7112     iRegI tmp4;                   // Killed temps;
7113     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7114     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7115     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7116     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7117     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7118   %}
7119 %}
7120 
7121 // Register Long Division
7122 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7123   match(Set dst (DivL src1 src2));
7124   ins_cost(DEFAULT_COST*71);
7125   size(4);
7126   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7127   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7128   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7129   ins_pipe(divL_reg_reg);
7130 %}
7131 
7132 // Register Long Division
7133 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7134   match(Set dst (DivL src1 src2));
7135   ins_cost(DEFAULT_COST*71);
7136   size(4);
7137   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7138   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7139   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7140   ins_pipe(divL_reg_imm);
7141 %}
7142 
7143 // Integer Remainder
7144 // Register Remainder
7145 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7146   match(Set dst (ModI src1 src2));
7147   effect( KILL ccr, KILL temp);
7148 
7149   format %{ "SREM   $src1,$src2,$dst" %}
7150   ins_encode( irem_reg(src1, src2, dst, temp) );
7151   ins_pipe(sdiv_reg_reg);
7152 %}
7153 
7154 // Immediate Remainder
7155 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7156   match(Set dst (ModI src1 src2));
7157   effect( KILL ccr, KILL temp);
7158 
7159   format %{ "SREM   $src1,$src2,$dst" %}
7160   ins_encode( irem_imm(src1, src2, dst, temp) );
7161   ins_pipe(sdiv_reg_imm);
7162 %}
7163 
7164 // Register Long Remainder
7165 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7166   effect(DEF dst, USE src1, USE src2);
7167   size(4);
7168   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7169   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7170   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7171   ins_pipe(divL_reg_reg);
7172 %}
7173 
7174 // Register Long Division
7175 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7176   effect(DEF dst, USE src1, USE src2);
7177   size(4);
7178   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7179   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7180   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7181   ins_pipe(divL_reg_imm);
7182 %}
7183 
7184 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7185   effect(DEF dst, USE src1, USE src2);
7186   size(4);
7187   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7188   opcode(Assembler::mulx_op3, Assembler::arith_op);
7189   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7190   ins_pipe(mulL_reg_reg);
7191 %}
7192 
7193 // Immediate Multiplication
7194 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7195   effect(DEF dst, USE src1, USE src2);
7196   size(4);
7197   format %{ "MULX   $src1,$src2,$dst" %}
7198   opcode(Assembler::mulx_op3, Assembler::arith_op);
7199   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7200   ins_pipe(mulL_reg_imm);
7201 %}
7202 
7203 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7204   effect(DEF dst, USE src1, USE src2);
7205   size(4);
7206   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7207   opcode(Assembler::sub_op3, Assembler::arith_op);
7208   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7209   ins_pipe(ialu_reg_reg);
7210 %}
7211 
7212 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7213   effect(DEF dst, USE src1, USE src2);
7214   size(4);
7215   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7216   opcode(Assembler::sub_op3, Assembler::arith_op);
7217   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7218   ins_pipe(ialu_reg_reg);
7219 %}
7220 
7221 // Register Long Remainder
7222 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7223   match(Set dst (ModL src1 src2));
7224   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7225   expand %{
7226     iRegL tmp1;
7227     iRegL tmp2;
7228     divL_reg_reg_1(tmp1, src1, src2);
7229     mulL_reg_reg_1(tmp2, tmp1, src2);
7230     subL_reg_reg_1(dst,  src1, tmp2);
7231   %}
7232 %}
7233 
7234 // Register Long Remainder
7235 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7236   match(Set dst (ModL src1 src2));
7237   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7238   expand %{
7239     iRegL tmp1;
7240     iRegL tmp2;
7241     divL_reg_imm13_1(tmp1, src1, src2);
7242     mulL_reg_imm13_1(tmp2, tmp1, src2);
7243     subL_reg_reg_2  (dst,  src1, tmp2);
7244   %}
7245 %}
7246 
7247 // Integer Shift Instructions
7248 // Register Shift Left
7249 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7250   match(Set dst (LShiftI src1 src2));
7251 
7252   size(4);
7253   format %{ "SLL    $src1,$src2,$dst" %}
7254   opcode(Assembler::sll_op3, Assembler::arith_op);
7255   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7256   ins_pipe(ialu_reg_reg);
7257 %}
7258 
7259 // Register Shift Left Immediate
7260 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7261   match(Set dst (LShiftI src1 src2));
7262 
7263   size(4);
7264   format %{ "SLL    $src1,$src2,$dst" %}
7265   opcode(Assembler::sll_op3, Assembler::arith_op);
7266   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7267   ins_pipe(ialu_reg_imm);
7268 %}
7269 
7270 // Register Shift Left
7271 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7272   match(Set dst (LShiftL src1 src2));
7273 
7274   size(4);
7275   format %{ "SLLX   $src1,$src2,$dst" %}
7276   opcode(Assembler::sllx_op3, Assembler::arith_op);
7277   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7278   ins_pipe(ialu_reg_reg);
7279 %}
7280 
7281 // Register Shift Left Immediate
7282 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7283   match(Set dst (LShiftL src1 src2));
7284 
7285   size(4);
7286   format %{ "SLLX   $src1,$src2,$dst" %}
7287   opcode(Assembler::sllx_op3, Assembler::arith_op);
7288   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7289   ins_pipe(ialu_reg_imm);
7290 %}
7291 
7292 // Register Arithmetic Shift Right
7293 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7294   match(Set dst (RShiftI src1 src2));
7295   size(4);
7296   format %{ "SRA    $src1,$src2,$dst" %}
7297   opcode(Assembler::sra_op3, Assembler::arith_op);
7298   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7299   ins_pipe(ialu_reg_reg);
7300 %}
7301 
7302 // Register Arithmetic Shift Right Immediate
7303 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7304   match(Set dst (RShiftI src1 src2));
7305 
7306   size(4);
7307   format %{ "SRA    $src1,$src2,$dst" %}
7308   opcode(Assembler::sra_op3, Assembler::arith_op);
7309   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7310   ins_pipe(ialu_reg_imm);
7311 %}
7312 
7313 // Register Shift Right Arithmatic Long
7314 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7315   match(Set dst (RShiftL src1 src2));
7316 
7317   size(4);
7318   format %{ "SRAX   $src1,$src2,$dst" %}
7319   opcode(Assembler::srax_op3, Assembler::arith_op);
7320   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7321   ins_pipe(ialu_reg_reg);
7322 %}
7323 
7324 // Register Shift Left Immediate
7325 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7326   match(Set dst (RShiftL src1 src2));
7327 
7328   size(4);
7329   format %{ "SRAX   $src1,$src2,$dst" %}
7330   opcode(Assembler::srax_op3, Assembler::arith_op);
7331   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7332   ins_pipe(ialu_reg_imm);
7333 %}
7334 
7335 // Register Shift Right
7336 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7337   match(Set dst (URShiftI src1 src2));
7338 
7339   size(4);
7340   format %{ "SRL    $src1,$src2,$dst" %}
7341   opcode(Assembler::srl_op3, Assembler::arith_op);
7342   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7343   ins_pipe(ialu_reg_reg);
7344 %}
7345 
7346 // Register Shift Right Immediate
7347 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7348   match(Set dst (URShiftI src1 src2));
7349 
7350   size(4);
7351   format %{ "SRL    $src1,$src2,$dst" %}
7352   opcode(Assembler::srl_op3, Assembler::arith_op);
7353   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7354   ins_pipe(ialu_reg_imm);
7355 %}
7356 
7357 // Register Shift Right
7358 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7359   match(Set dst (URShiftL src1 src2));
7360 
7361   size(4);
7362   format %{ "SRLX   $src1,$src2,$dst" %}
7363   opcode(Assembler::srlx_op3, Assembler::arith_op);
7364   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7365   ins_pipe(ialu_reg_reg);
7366 %}
7367 
7368 // Register Shift Right Immediate
7369 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7370   match(Set dst (URShiftL src1 src2));
7371 
7372   size(4);
7373   format %{ "SRLX   $src1,$src2,$dst" %}
7374   opcode(Assembler::srlx_op3, Assembler::arith_op);
7375   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7376   ins_pipe(ialu_reg_imm);
7377 %}
7378 
7379 // Register Shift Right Immediate with a CastP2X
7380 #ifdef _LP64
7381 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7382   match(Set dst (URShiftL (CastP2X src1) src2));
7383   size(4);
7384   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7385   opcode(Assembler::srlx_op3, Assembler::arith_op);
7386   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7387   ins_pipe(ialu_reg_imm);
7388 %}
7389 #else
7390 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7391   match(Set dst (URShiftI (CastP2X src1) src2));
7392   size(4);
7393   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7394   opcode(Assembler::srl_op3, Assembler::arith_op);
7395   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7396   ins_pipe(ialu_reg_imm);
7397 %}
7398 #endif
7399 
7400 
7401 //----------Floating Point Arithmetic Instructions-----------------------------
7402 
7403 //  Add float single precision
7404 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7405   match(Set dst (AddF src1 src2));
7406 
7407   size(4);
7408   format %{ "FADDS  $src1,$src2,$dst" %}
7409   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7410   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7411   ins_pipe(faddF_reg_reg);
7412 %}
7413 
7414 //  Add float double precision
7415 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7416   match(Set dst (AddD src1 src2));
7417 
7418   size(4);
7419   format %{ "FADDD  $src1,$src2,$dst" %}
7420   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7421   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7422   ins_pipe(faddD_reg_reg);
7423 %}
7424 
7425 //  Sub float single precision
7426 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7427   match(Set dst (SubF src1 src2));
7428 
7429   size(4);
7430   format %{ "FSUBS  $src1,$src2,$dst" %}
7431   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7432   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7433   ins_pipe(faddF_reg_reg);
7434 %}
7435 
7436 //  Sub float double precision
7437 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7438   match(Set dst (SubD src1 src2));
7439 
7440   size(4);
7441   format %{ "FSUBD  $src1,$src2,$dst" %}
7442   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7443   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7444   ins_pipe(faddD_reg_reg);
7445 %}
7446 
7447 //  Mul float single precision
7448 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7449   match(Set dst (MulF src1 src2));
7450 
7451   size(4);
7452   format %{ "FMULS  $src1,$src2,$dst" %}
7453   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7454   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7455   ins_pipe(fmulF_reg_reg);
7456 %}
7457 
7458 //  Mul float double precision
7459 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7460   match(Set dst (MulD src1 src2));
7461 
7462   size(4);
7463   format %{ "FMULD  $src1,$src2,$dst" %}
7464   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7465   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7466   ins_pipe(fmulD_reg_reg);
7467 %}
7468 
7469 //  Div float single precision
7470 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7471   match(Set dst (DivF src1 src2));
7472 
7473   size(4);
7474   format %{ "FDIVS  $src1,$src2,$dst" %}
7475   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7476   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7477   ins_pipe(fdivF_reg_reg);
7478 %}
7479 
7480 //  Div float double precision
7481 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7482   match(Set dst (DivD src1 src2));
7483 
7484   size(4);
7485   format %{ "FDIVD  $src1,$src2,$dst" %}
7486   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7487   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7488   ins_pipe(fdivD_reg_reg);
7489 %}
7490 
7491 //  Absolute float double precision
7492 instruct absD_reg(regD dst, regD src) %{
7493   match(Set dst (AbsD src));
7494 
7495   format %{ "FABSd  $src,$dst" %}
7496   ins_encode(fabsd(dst, src));
7497   ins_pipe(faddD_reg);
7498 %}
7499 
7500 //  Absolute float single precision
7501 instruct absF_reg(regF dst, regF src) %{
7502   match(Set dst (AbsF src));
7503 
7504   format %{ "FABSs  $src,$dst" %}
7505   ins_encode(fabss(dst, src));
7506   ins_pipe(faddF_reg);
7507 %}
7508 
7509 instruct negF_reg(regF dst, regF src) %{
7510   match(Set dst (NegF src));
7511 
7512   size(4);
7513   format %{ "FNEGs  $src,$dst" %}
7514   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7515   ins_encode(form3_opf_rs2F_rdF(src, dst));
7516   ins_pipe(faddF_reg);
7517 %}
7518 
7519 instruct negD_reg(regD dst, regD src) %{
7520   match(Set dst (NegD src));
7521 
7522   format %{ "FNEGd  $src,$dst" %}
7523   ins_encode(fnegd(dst, src));
7524   ins_pipe(faddD_reg);
7525 %}
7526 
7527 //  Sqrt float double precision
7528 instruct sqrtF_reg_reg(regF dst, regF src) %{
7529   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7530 
7531   size(4);
7532   format %{ "FSQRTS $src,$dst" %}
7533   ins_encode(fsqrts(dst, src));
7534   ins_pipe(fdivF_reg_reg);
7535 %}
7536 
7537 //  Sqrt float double precision
7538 instruct sqrtD_reg_reg(regD dst, regD src) %{
7539   match(Set dst (SqrtD src));
7540 
7541   size(4);
7542   format %{ "FSQRTD $src,$dst" %}
7543   ins_encode(fsqrtd(dst, src));
7544   ins_pipe(fdivD_reg_reg);
7545 %}
7546 
7547 //----------Logical Instructions-----------------------------------------------
7548 // And Instructions
7549 // Register And
7550 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7551   match(Set dst (AndI src1 src2));
7552 
7553   size(4);
7554   format %{ "AND    $src1,$src2,$dst" %}
7555   opcode(Assembler::and_op3, Assembler::arith_op);
7556   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7557   ins_pipe(ialu_reg_reg);
7558 %}
7559 
7560 // Immediate And
7561 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7562   match(Set dst (AndI src1 src2));
7563 
7564   size(4);
7565   format %{ "AND    $src1,$src2,$dst" %}
7566   opcode(Assembler::and_op3, Assembler::arith_op);
7567   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7568   ins_pipe(ialu_reg_imm);
7569 %}
7570 
7571 // Register And Long
7572 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7573   match(Set dst (AndL src1 src2));
7574 
7575   ins_cost(DEFAULT_COST);
7576   size(4);
7577   format %{ "AND    $src1,$src2,$dst\t! long" %}
7578   opcode(Assembler::and_op3, Assembler::arith_op);
7579   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7580   ins_pipe(ialu_reg_reg);
7581 %}
7582 
7583 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7584   match(Set dst (AndL src1 con));
7585 
7586   ins_cost(DEFAULT_COST);
7587   size(4);
7588   format %{ "AND    $src1,$con,$dst\t! long" %}
7589   opcode(Assembler::and_op3, Assembler::arith_op);
7590   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7591   ins_pipe(ialu_reg_imm);
7592 %}
7593 
7594 // Or Instructions
7595 // Register Or
7596 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7597   match(Set dst (OrI src1 src2));
7598 
7599   size(4);
7600   format %{ "OR     $src1,$src2,$dst" %}
7601   opcode(Assembler::or_op3, Assembler::arith_op);
7602   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7603   ins_pipe(ialu_reg_reg);
7604 %}
7605 
7606 // Immediate Or
7607 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7608   match(Set dst (OrI src1 src2));
7609 
7610   size(4);
7611   format %{ "OR     $src1,$src2,$dst" %}
7612   opcode(Assembler::or_op3, Assembler::arith_op);
7613   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7614   ins_pipe(ialu_reg_imm);
7615 %}
7616 
7617 // Register Or Long
7618 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7619   match(Set dst (OrL src1 src2));
7620 
7621   ins_cost(DEFAULT_COST);
7622   size(4);
7623   format %{ "OR     $src1,$src2,$dst\t! long" %}
7624   opcode(Assembler::or_op3, Assembler::arith_op);
7625   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7626   ins_pipe(ialu_reg_reg);
7627 %}
7628 
7629 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7630   match(Set dst (OrL src1 con));
7631   ins_cost(DEFAULT_COST*2);
7632 
7633   ins_cost(DEFAULT_COST);
7634   size(4);
7635   format %{ "OR     $src1,$con,$dst\t! long" %}
7636   opcode(Assembler::or_op3, Assembler::arith_op);
7637   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7638   ins_pipe(ialu_reg_imm);
7639 %}
7640 
7641 #ifndef _LP64
7642 
7643 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
7644 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
7645   match(Set dst (OrI src1 (CastP2X src2)));
7646 
7647   size(4);
7648   format %{ "OR     $src1,$src2,$dst" %}
7649   opcode(Assembler::or_op3, Assembler::arith_op);
7650   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7651   ins_pipe(ialu_reg_reg);
7652 %}
7653 
7654 #else
7655 
7656 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
7657   match(Set dst (OrL src1 (CastP2X src2)));
7658 
7659   ins_cost(DEFAULT_COST);
7660   size(4);
7661   format %{ "OR     $src1,$src2,$dst\t! long" %}
7662   opcode(Assembler::or_op3, Assembler::arith_op);
7663   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7664   ins_pipe(ialu_reg_reg);
7665 %}
7666 
7667 #endif
7668 
7669 // Xor Instructions
7670 // Register Xor
7671 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7672   match(Set dst (XorI src1 src2));
7673 
7674   size(4);
7675   format %{ "XOR    $src1,$src2,$dst" %}
7676   opcode(Assembler::xor_op3, Assembler::arith_op);
7677   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7678   ins_pipe(ialu_reg_reg);
7679 %}
7680 
7681 // Immediate Xor
7682 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7683   match(Set dst (XorI src1 src2));
7684 
7685   size(4);
7686   format %{ "XOR    $src1,$src2,$dst" %}
7687   opcode(Assembler::xor_op3, Assembler::arith_op);
7688   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7689   ins_pipe(ialu_reg_imm);
7690 %}
7691 
7692 // Register Xor Long
7693 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7694   match(Set dst (XorL src1 src2));
7695 
7696   ins_cost(DEFAULT_COST);
7697   size(4);
7698   format %{ "XOR    $src1,$src2,$dst\t! long" %}
7699   opcode(Assembler::xor_op3, Assembler::arith_op);
7700   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7701   ins_pipe(ialu_reg_reg);
7702 %}
7703 
7704 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7705   match(Set dst (XorL src1 con));
7706 
7707   ins_cost(DEFAULT_COST);
7708   size(4);
7709   format %{ "XOR    $src1,$con,$dst\t! long" %}
7710   opcode(Assembler::xor_op3, Assembler::arith_op);
7711   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7712   ins_pipe(ialu_reg_imm);
7713 %}
7714 
7715 //----------Convert to Boolean-------------------------------------------------
7716 // Nice hack for 32-bit tests but doesn't work for
7717 // 64-bit pointers.
7718 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
7719   match(Set dst (Conv2B src));
7720   effect( KILL ccr );
7721   ins_cost(DEFAULT_COST*2);
7722   format %{ "CMP    R_G0,$src\n\t"
7723             "ADDX   R_G0,0,$dst" %}
7724   ins_encode( enc_to_bool( src, dst ) );
7725   ins_pipe(ialu_reg_ialu);
7726 %}
7727 
7728 #ifndef _LP64
7729 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
7730   match(Set dst (Conv2B src));
7731   effect( KILL ccr );
7732   ins_cost(DEFAULT_COST*2);
7733   format %{ "CMP    R_G0,$src\n\t"
7734             "ADDX   R_G0,0,$dst" %}
7735   ins_encode( enc_to_bool( src, dst ) );
7736   ins_pipe(ialu_reg_ialu);
7737 %}
7738 #else
7739 instruct convP2B( iRegI dst, iRegP src ) %{
7740   match(Set dst (Conv2B src));
7741   ins_cost(DEFAULT_COST*2);
7742   format %{ "MOV    $src,$dst\n\t"
7743             "MOVRNZ $src,1,$dst" %}
7744   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
7745   ins_pipe(ialu_clr_and_mover);
7746 %}
7747 #endif
7748 
7749 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
7750   match(Set dst (CmpLTMask p q));
7751   effect( KILL ccr );
7752   ins_cost(DEFAULT_COST*4);
7753   format %{ "CMP    $p,$q\n\t"
7754             "MOV    #0,$dst\n\t"
7755             "BLT,a  .+8\n\t"
7756             "MOV    #-1,$dst" %}
7757   ins_encode( enc_ltmask(p,q,dst) );
7758   ins_pipe(ialu_reg_reg_ialu);
7759 %}
7760 
7761 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7762   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
7763   effect(KILL ccr, TEMP tmp);
7764   ins_cost(DEFAULT_COST*3);
7765 
7766   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
7767             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
7768             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7769   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
7770   ins_pipe( cadd_cmpltmask );
7771 %}
7772 
7773 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7774   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
7775   effect( KILL ccr, TEMP tmp);
7776   ins_cost(DEFAULT_COST*3);
7777 
7778   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
7779             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
7780             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7781   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
7782   ins_pipe( cadd_cmpltmask );
7783 %}
7784 
7785 //----------Arithmetic Conversion Instructions---------------------------------
7786 // The conversions operations are all Alpha sorted.  Please keep it that way!
7787 
7788 instruct convD2F_reg(regF dst, regD src) %{
7789   match(Set dst (ConvD2F src));
7790   size(4);
7791   format %{ "FDTOS  $src,$dst" %}
7792   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
7793   ins_encode(form3_opf_rs2D_rdF(src, dst));
7794   ins_pipe(fcvtD2F);
7795 %}
7796 
7797 
7798 // Convert a double to an int in a float register.
7799 // If the double is a NAN, stuff a zero in instead.
7800 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
7801   effect(DEF dst, USE src, KILL fcc0);
7802   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
7803             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7804             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
7805             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
7806             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
7807       "skip:" %}
7808   ins_encode(form_d2i_helper(src,dst));
7809   ins_pipe(fcvtD2I);
7810 %}
7811 
7812 instruct convD2I_reg(stackSlotI dst, regD src) %{
7813   match(Set dst (ConvD2I src));
7814   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7815   expand %{
7816     regF tmp;
7817     convD2I_helper(tmp, src);
7818     regF_to_stkI(dst, tmp);
7819   %}
7820 %}
7821 
7822 // Convert a double to a long in a double register.
7823 // If the double is a NAN, stuff a zero in instead.
7824 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
7825   effect(DEF dst, USE src, KILL fcc0);
7826   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
7827             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7828             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
7829             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
7830             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
7831       "skip:" %}
7832   ins_encode(form_d2l_helper(src,dst));
7833   ins_pipe(fcvtD2L);
7834 %}
7835 
7836 
7837 // Double to Long conversion
7838 instruct convD2L_reg(stackSlotL dst, regD src) %{
7839   match(Set dst (ConvD2L src));
7840   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7841   expand %{
7842     regD tmp;
7843     convD2L_helper(tmp, src);
7844     regD_to_stkL(dst, tmp);
7845   %}
7846 %}
7847 
7848 
7849 instruct convF2D_reg(regD dst, regF src) %{
7850   match(Set dst (ConvF2D src));
7851   format %{ "FSTOD  $src,$dst" %}
7852   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
7853   ins_encode(form3_opf_rs2F_rdD(src, dst));
7854   ins_pipe(fcvtF2D);
7855 %}
7856 
7857 
7858 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
7859   effect(DEF dst, USE src, KILL fcc0);
7860   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
7861             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7862             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
7863             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
7864             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
7865       "skip:" %}
7866   ins_encode(form_f2i_helper(src,dst));
7867   ins_pipe(fcvtF2I);
7868 %}
7869 
7870 instruct convF2I_reg(stackSlotI dst, regF src) %{
7871   match(Set dst (ConvF2I src));
7872   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7873   expand %{
7874     regF tmp;
7875     convF2I_helper(tmp, src);
7876     regF_to_stkI(dst, tmp);
7877   %}
7878 %}
7879 
7880 
7881 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
7882   effect(DEF dst, USE src, KILL fcc0);
7883   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
7884             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7885             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
7886             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
7887             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
7888       "skip:" %}
7889   ins_encode(form_f2l_helper(src,dst));
7890   ins_pipe(fcvtF2L);
7891 %}
7892 
7893 // Float to Long conversion
7894 instruct convF2L_reg(stackSlotL dst, regF src) %{
7895   match(Set dst (ConvF2L src));
7896   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7897   expand %{
7898     regD tmp;
7899     convF2L_helper(tmp, src);
7900     regD_to_stkL(dst, tmp);
7901   %}
7902 %}
7903 
7904 
7905 instruct convI2D_helper(regD dst, regF tmp) %{
7906   effect(USE tmp, DEF dst);
7907   format %{ "FITOD  $tmp,$dst" %}
7908   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
7909   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
7910   ins_pipe(fcvtI2D);
7911 %}
7912 
7913 instruct convI2D_reg(stackSlotI src, regD dst) %{
7914   match(Set dst (ConvI2D src));
7915   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7916   expand %{
7917     regF tmp;
7918     stkI_to_regF( tmp, src);
7919     convI2D_helper( dst, tmp);
7920   %}
7921 %}
7922 
7923 instruct convI2D_mem( regD_low dst, memory mem ) %{
7924   match(Set dst (ConvI2D (LoadI mem)));
7925   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7926   size(8);
7927   format %{ "LDF    $mem,$dst\n\t"
7928             "FITOD  $dst,$dst" %}
7929   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
7930   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
7931   ins_pipe(floadF_mem);
7932 %}
7933 
7934 
7935 instruct convI2F_helper(regF dst, regF tmp) %{
7936   effect(DEF dst, USE tmp);
7937   format %{ "FITOS  $tmp,$dst" %}
7938   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
7939   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
7940   ins_pipe(fcvtI2F);
7941 %}
7942 
7943 instruct convI2F_reg( regF dst, stackSlotI src ) %{
7944   match(Set dst (ConvI2F src));
7945   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7946   expand %{
7947     regF tmp;
7948     stkI_to_regF(tmp,src);
7949     convI2F_helper(dst, tmp);
7950   %}
7951 %}
7952 
7953 instruct convI2F_mem( regF dst, memory mem ) %{
7954   match(Set dst (ConvI2F (LoadI mem)));
7955   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
7956   size(8);
7957   format %{ "LDF    $mem,$dst\n\t"
7958             "FITOS  $dst,$dst" %}
7959   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
7960   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
7961   ins_pipe(floadF_mem);
7962 %}
7963 
7964 
7965 instruct convI2L_reg(iRegL dst, iRegI src) %{
7966   match(Set dst (ConvI2L src));
7967   size(4);
7968   format %{ "SRA    $src,0,$dst\t! int->long" %}
7969   opcode(Assembler::sra_op3, Assembler::arith_op);
7970   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
7971   ins_pipe(ialu_reg_reg);
7972 %}
7973 
7974 // Zero-extend convert int to long
7975 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
7976   match(Set dst (AndL (ConvI2L src) mask) );
7977   size(4);
7978   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
7979   opcode(Assembler::srl_op3, Assembler::arith_op);
7980   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
7981   ins_pipe(ialu_reg_reg);
7982 %}
7983 
7984 // Zero-extend long
7985 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
7986   match(Set dst (AndL src mask) );
7987   size(4);
7988   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
7989   opcode(Assembler::srl_op3, Assembler::arith_op);
7990   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
7991   ins_pipe(ialu_reg_reg);
7992 %}
7993 
7994 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
7995   match(Set dst (MoveF2I src));
7996   effect(DEF dst, USE src);
7997   ins_cost(MEMORY_REF_COST);
7998 
7999   size(4);
8000   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8001   opcode(Assembler::lduw_op3);
8002   ins_encode(simple_form3_mem_reg( src, dst ) );
8003   ins_pipe(iload_mem);
8004 %}
8005 
8006 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8007   match(Set dst (MoveI2F src));
8008   effect(DEF dst, USE src);
8009   ins_cost(MEMORY_REF_COST);
8010 
8011   size(4);
8012   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8013   opcode(Assembler::ldf_op3);
8014   ins_encode(simple_form3_mem_reg(src, dst));
8015   ins_pipe(floadF_stk);
8016 %}
8017 
8018 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8019   match(Set dst (MoveD2L src));
8020   effect(DEF dst, USE src);
8021   ins_cost(MEMORY_REF_COST);
8022 
8023   size(4);
8024   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8025   opcode(Assembler::ldx_op3);
8026   ins_encode(simple_form3_mem_reg( src, dst ) );
8027   ins_pipe(iload_mem);
8028 %}
8029 
8030 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8031   match(Set dst (MoveL2D src));
8032   effect(DEF dst, USE src);
8033   ins_cost(MEMORY_REF_COST);
8034 
8035   size(4);
8036   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8037   opcode(Assembler::lddf_op3);
8038   ins_encode(simple_form3_mem_reg(src, dst));
8039   ins_pipe(floadD_stk);
8040 %}
8041 
8042 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8043   match(Set dst (MoveF2I src));
8044   effect(DEF dst, USE src);
8045   ins_cost(MEMORY_REF_COST);
8046 
8047   size(4);
8048   format %{ "STF   $src,$dst\t!MoveF2I" %}
8049   opcode(Assembler::stf_op3);
8050   ins_encode(simple_form3_mem_reg(dst, src));
8051   ins_pipe(fstoreF_stk_reg);
8052 %}
8053 
8054 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8055   match(Set dst (MoveI2F src));
8056   effect(DEF dst, USE src);
8057   ins_cost(MEMORY_REF_COST);
8058 
8059   size(4);
8060   format %{ "STW    $src,$dst\t!MoveI2F" %}
8061   opcode(Assembler::stw_op3);
8062   ins_encode(simple_form3_mem_reg( dst, src ) );
8063   ins_pipe(istore_mem_reg);
8064 %}
8065 
8066 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8067   match(Set dst (MoveD2L src));
8068   effect(DEF dst, USE src);
8069   ins_cost(MEMORY_REF_COST);
8070 
8071   size(4);
8072   format %{ "STDF   $src,$dst\t!MoveD2L" %}
8073   opcode(Assembler::stdf_op3);
8074   ins_encode(simple_form3_mem_reg(dst, src));
8075   ins_pipe(fstoreD_stk_reg);
8076 %}
8077 
8078 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8079   match(Set dst (MoveL2D src));
8080   effect(DEF dst, USE src);
8081   ins_cost(MEMORY_REF_COST);
8082 
8083   size(4);
8084   format %{ "STX    $src,$dst\t!MoveL2D" %}
8085   opcode(Assembler::stx_op3);
8086   ins_encode(simple_form3_mem_reg( dst, src ) );
8087   ins_pipe(istore_mem_reg);
8088 %}
8089 
8090 
8091 //-----------
8092 // Long to Double conversion using V8 opcodes.
8093 // Still useful because cheetah traps and becomes
8094 // amazingly slow for some common numbers.
8095 
8096 // Magic constant, 0x43300000
8097 instruct loadConI_x43300000(iRegI dst) %{
8098   effect(DEF dst);
8099   size(4);
8100   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8101   ins_encode(SetHi22(0x43300000, dst));
8102   ins_pipe(ialu_none);
8103 %}
8104 
8105 // Magic constant, 0x41f00000
8106 instruct loadConI_x41f00000(iRegI dst) %{
8107   effect(DEF dst);
8108   size(4);
8109   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8110   ins_encode(SetHi22(0x41f00000, dst));
8111   ins_pipe(ialu_none);
8112 %}
8113 
8114 // Construct a double from two float halves
8115 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8116   effect(DEF dst, USE src1, USE src2);
8117   size(8);
8118   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8119             "FMOVS  $src2.lo,$dst.lo" %}
8120   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8121   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8122   ins_pipe(faddD_reg_reg);
8123 %}
8124 
8125 // Convert integer in high half of a double register (in the lower half of
8126 // the double register file) to double
8127 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8128   effect(DEF dst, USE src);
8129   size(4);
8130   format %{ "FITOD  $src,$dst" %}
8131   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8132   ins_encode(form3_opf_rs2D_rdD(src, dst));
8133   ins_pipe(fcvtLHi2D);
8134 %}
8135 
8136 // Add float double precision
8137 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8138   effect(DEF dst, USE src1, USE src2);
8139   size(4);
8140   format %{ "FADDD  $src1,$src2,$dst" %}
8141   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8142   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8143   ins_pipe(faddD_reg_reg);
8144 %}
8145 
8146 // Sub float double precision
8147 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8148   effect(DEF dst, USE src1, USE src2);
8149   size(4);
8150   format %{ "FSUBD  $src1,$src2,$dst" %}
8151   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8152   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8153   ins_pipe(faddD_reg_reg);
8154 %}
8155 
8156 // Mul float double precision
8157 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8158   effect(DEF dst, USE src1, USE src2);
8159   size(4);
8160   format %{ "FMULD  $src1,$src2,$dst" %}
8161   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8162   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8163   ins_pipe(fmulD_reg_reg);
8164 %}
8165 
8166 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8167   match(Set dst (ConvL2D src));
8168   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8169 
8170   expand %{
8171     regD_low   tmpsrc;
8172     iRegI      ix43300000;
8173     iRegI      ix41f00000;
8174     stackSlotL lx43300000;
8175     stackSlotL lx41f00000;
8176     regD_low   dx43300000;
8177     regD       dx41f00000;
8178     regD       tmp1;
8179     regD_low   tmp2;
8180     regD       tmp3;
8181     regD       tmp4;
8182 
8183     stkL_to_regD(tmpsrc, src);
8184 
8185     loadConI_x43300000(ix43300000);
8186     loadConI_x41f00000(ix41f00000);
8187     regI_to_stkLHi(lx43300000, ix43300000);
8188     regI_to_stkLHi(lx41f00000, ix41f00000);
8189     stkL_to_regD(dx43300000, lx43300000);
8190     stkL_to_regD(dx41f00000, lx41f00000);
8191 
8192     convI2D_regDHi_regD(tmp1, tmpsrc);
8193     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8194     subD_regD_regD(tmp3, tmp2, dx43300000);
8195     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8196     addD_regD_regD(dst, tmp3, tmp4);
8197   %}
8198 %}
8199 
8200 // Long to Double conversion using fast fxtof
8201 instruct convL2D_helper(regD dst, regD tmp) %{
8202   effect(DEF dst, USE tmp);
8203   size(4);
8204   format %{ "FXTOD  $tmp,$dst" %}
8205   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8206   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8207   ins_pipe(fcvtL2D);
8208 %}
8209 
8210 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
8211   predicate(VM_Version::has_fast_fxtof());
8212   match(Set dst (ConvL2D src));
8213   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8214   expand %{
8215     regD tmp;
8216     stkL_to_regD(tmp, src);
8217     convL2D_helper(dst, tmp);
8218   %}
8219 %}
8220 
8221 //-----------
8222 // Long to Float conversion using V8 opcodes.
8223 // Still useful because cheetah traps and becomes
8224 // amazingly slow for some common numbers.
8225 
8226 // Long to Float conversion using fast fxtof
8227 instruct convL2F_helper(regF dst, regD tmp) %{
8228   effect(DEF dst, USE tmp);
8229   size(4);
8230   format %{ "FXTOS  $tmp,$dst" %}
8231   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8232   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8233   ins_pipe(fcvtL2F);
8234 %}
8235 
8236 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
8237   match(Set dst (ConvL2F src));
8238   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8239   expand %{
8240     regD tmp;
8241     stkL_to_regD(tmp, src);
8242     convL2F_helper(dst, tmp);
8243   %}
8244 %}
8245 //-----------
8246 
8247 instruct convL2I_reg(iRegI dst, iRegL src) %{
8248   match(Set dst (ConvL2I src));
8249 #ifndef _LP64
8250   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8251   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8252   ins_pipe(ialu_move_reg_I_to_L);
8253 #else
8254   size(4);
8255   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8256   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8257   ins_pipe(ialu_reg);
8258 #endif
8259 %}
8260 
8261 // Register Shift Right Immediate
8262 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8263   match(Set dst (ConvL2I (RShiftL src cnt)));
8264 
8265   size(4);
8266   format %{ "SRAX   $src,$cnt,$dst" %}
8267   opcode(Assembler::srax_op3, Assembler::arith_op);
8268   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8269   ins_pipe(ialu_reg_imm);
8270 %}
8271 
8272 // Replicate scalar to packed byte values in Double register
8273 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8274   effect(DEF dst, USE src);
8275   format %{ "SLLX  $src,56,$dst\n\t"
8276             "SRLX  $dst, 8,O7\n\t"
8277             "OR    $dst,O7,$dst\n\t"
8278             "SRLX  $dst,16,O7\n\t"
8279             "OR    $dst,O7,$dst\n\t"
8280             "SRLX  $dst,32,O7\n\t"
8281             "OR    $dst,O7,$dst\t! replicate8B" %}
8282   ins_encode( enc_repl8b(src, dst));
8283   ins_pipe(ialu_reg);
8284 %}
8285 
8286 // Replicate scalar to packed byte values in Double register
8287 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8288   match(Set dst (Replicate8B src));
8289   expand %{
8290     iRegL tmp;
8291     Repl8B_reg_helper(tmp, src);
8292     regL_to_stkD(dst, tmp);
8293   %}
8294 %}
8295 
8296 // Replicate scalar constant to packed byte values in Double register
8297 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
8298   match(Set dst (Replicate8B src));
8299 #ifdef _LP64
8300   size(36);
8301 #else
8302   size(8);
8303 #endif
8304   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
8305             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
8306   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
8307   ins_pipe(loadConFD);
8308 %}
8309 
8310 // Replicate scalar to packed char values into stack slot
8311 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8312   effect(DEF dst, USE src);
8313   format %{ "SLLX  $src,48,$dst\n\t"
8314             "SRLX  $dst,16,O7\n\t"
8315             "OR    $dst,O7,$dst\n\t"
8316             "SRLX  $dst,32,O7\n\t"
8317             "OR    $dst,O7,$dst\t! replicate4C" %}
8318   ins_encode( enc_repl4s(src, dst) );
8319   ins_pipe(ialu_reg);
8320 %}
8321 
8322 // Replicate scalar to packed char values into stack slot
8323 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8324   match(Set dst (Replicate4C src));
8325   expand %{
8326     iRegL tmp;
8327     Repl4C_reg_helper(tmp, src);
8328     regL_to_stkD(dst, tmp);
8329   %}
8330 %}
8331 
8332 // Replicate scalar constant to packed char values in Double register
8333 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
8334   match(Set dst (Replicate4C src));
8335 #ifdef _LP64
8336   size(36);
8337 #else
8338   size(8);
8339 #endif
8340   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
8341             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8342   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8343   ins_pipe(loadConFD);
8344 %}
8345 
8346 // Replicate scalar to packed short values into stack slot
8347 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8348   effect(DEF dst, USE src);
8349   format %{ "SLLX  $src,48,$dst\n\t"
8350             "SRLX  $dst,16,O7\n\t"
8351             "OR    $dst,O7,$dst\n\t"
8352             "SRLX  $dst,32,O7\n\t"
8353             "OR    $dst,O7,$dst\t! replicate4S" %}
8354   ins_encode( enc_repl4s(src, dst) );
8355   ins_pipe(ialu_reg);
8356 %}
8357 
8358 // Replicate scalar to packed short values into stack slot
8359 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8360   match(Set dst (Replicate4S src));
8361   expand %{
8362     iRegL tmp;
8363     Repl4S_reg_helper(tmp, src);
8364     regL_to_stkD(dst, tmp);
8365   %}
8366 %}
8367 
8368 // Replicate scalar constant to packed short values in Double register
8369 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
8370   match(Set dst (Replicate4S src));
8371 #ifdef _LP64
8372   size(36);
8373 #else
8374   size(8);
8375 #endif
8376   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
8377             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8378   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8379   ins_pipe(loadConFD);
8380 %}
8381 
8382 // Replicate scalar to packed int values in Double register
8383 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
8384   effect(DEF dst, USE src);
8385   format %{ "SLLX  $src,32,$dst\n\t"
8386             "SRLX  $dst,32,O7\n\t"
8387             "OR    $dst,O7,$dst\t! replicate2I" %}
8388   ins_encode( enc_repl2i(src, dst));
8389   ins_pipe(ialu_reg);
8390 %}
8391 
8392 // Replicate scalar to packed int values in Double register
8393 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
8394   match(Set dst (Replicate2I src));
8395   expand %{
8396     iRegL tmp;
8397     Repl2I_reg_helper(tmp, src);
8398     regL_to_stkD(dst, tmp);
8399   %}
8400 %}
8401 
8402 // Replicate scalar zero constant to packed int values in Double register
8403 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
8404   match(Set dst (Replicate2I src));
8405 #ifdef _LP64
8406   size(36);
8407 #else
8408   size(8);
8409 #endif
8410   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
8411             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
8412   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
8413   ins_pipe(loadConFD);
8414 %}
8415 
8416 //----------Control Flow Instructions------------------------------------------
8417 // Compare Instructions
8418 // Compare Integers
8419 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8420   match(Set icc (CmpI op1 op2));
8421   effect( DEF icc, USE op1, USE op2 );
8422 
8423   size(4);
8424   format %{ "CMP    $op1,$op2" %}
8425   opcode(Assembler::subcc_op3, Assembler::arith_op);
8426   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8427   ins_pipe(ialu_cconly_reg_reg);
8428 %}
8429 
8430 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8431   match(Set icc (CmpU op1 op2));
8432 
8433   size(4);
8434   format %{ "CMP    $op1,$op2\t! unsigned" %}
8435   opcode(Assembler::subcc_op3, Assembler::arith_op);
8436   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8437   ins_pipe(ialu_cconly_reg_reg);
8438 %}
8439 
8440 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8441   match(Set icc (CmpI op1 op2));
8442   effect( DEF icc, USE op1 );
8443 
8444   size(4);
8445   format %{ "CMP    $op1,$op2" %}
8446   opcode(Assembler::subcc_op3, Assembler::arith_op);
8447   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8448   ins_pipe(ialu_cconly_reg_imm);
8449 %}
8450 
8451 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8452   match(Set icc (CmpI (AndI op1 op2) zero));
8453 
8454   size(4);
8455   format %{ "BTST   $op2,$op1" %}
8456   opcode(Assembler::andcc_op3, Assembler::arith_op);
8457   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8458   ins_pipe(ialu_cconly_reg_reg_zero);
8459 %}
8460 
8461 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8462   match(Set icc (CmpI (AndI op1 op2) zero));
8463 
8464   size(4);
8465   format %{ "BTST   $op2,$op1" %}
8466   opcode(Assembler::andcc_op3, Assembler::arith_op);
8467   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8468   ins_pipe(ialu_cconly_reg_imm_zero);
8469 %}
8470 
8471 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8472   match(Set xcc (CmpL op1 op2));
8473   effect( DEF xcc, USE op1, USE op2 );
8474 
8475   size(4);
8476   format %{ "CMP    $op1,$op2\t\t! long" %}
8477   opcode(Assembler::subcc_op3, Assembler::arith_op);
8478   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8479   ins_pipe(ialu_cconly_reg_reg);
8480 %}
8481 
8482 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8483   match(Set xcc (CmpL op1 con));
8484   effect( DEF xcc, USE op1, USE con );
8485 
8486   size(4);
8487   format %{ "CMP    $op1,$con\t\t! long" %}
8488   opcode(Assembler::subcc_op3, Assembler::arith_op);
8489   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8490   ins_pipe(ialu_cconly_reg_reg);
8491 %}
8492 
8493 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8494   match(Set xcc (CmpL (AndL op1 op2) zero));
8495   effect( DEF xcc, USE op1, USE op2 );
8496 
8497   size(4);
8498   format %{ "BTST   $op1,$op2\t\t! long" %}
8499   opcode(Assembler::andcc_op3, Assembler::arith_op);
8500   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8501   ins_pipe(ialu_cconly_reg_reg);
8502 %}
8503 
8504 // useful for checking the alignment of a pointer:
8505 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8506   match(Set xcc (CmpL (AndL op1 con) zero));
8507   effect( DEF xcc, USE op1, USE con );
8508 
8509   size(4);
8510   format %{ "BTST   $op1,$con\t\t! long" %}
8511   opcode(Assembler::andcc_op3, Assembler::arith_op);
8512   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8513   ins_pipe(ialu_cconly_reg_reg);
8514 %}
8515 
8516 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8517   match(Set icc (CmpU op1 op2));
8518 
8519   size(4);
8520   format %{ "CMP    $op1,$op2\t! unsigned" %}
8521   opcode(Assembler::subcc_op3, Assembler::arith_op);
8522   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8523   ins_pipe(ialu_cconly_reg_imm);
8524 %}
8525 
8526 // Compare Pointers
8527 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8528   match(Set pcc (CmpP op1 op2));
8529 
8530   size(4);
8531   format %{ "CMP    $op1,$op2\t! ptr" %}
8532   opcode(Assembler::subcc_op3, Assembler::arith_op);
8533   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8534   ins_pipe(ialu_cconly_reg_reg);
8535 %}
8536 
8537 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8538   match(Set pcc (CmpP op1 op2));
8539 
8540   size(4);
8541   format %{ "CMP    $op1,$op2\t! ptr" %}
8542   opcode(Assembler::subcc_op3, Assembler::arith_op);
8543   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8544   ins_pipe(ialu_cconly_reg_imm);
8545 %}
8546 
8547 // Compare Narrow oops
8548 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8549   match(Set icc (CmpN op1 op2));
8550 
8551   size(4);
8552   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8553   opcode(Assembler::subcc_op3, Assembler::arith_op);
8554   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8555   ins_pipe(ialu_cconly_reg_reg);
8556 %}
8557 
8558 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8559   match(Set icc (CmpN op1 op2));
8560 
8561   size(4);
8562   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8563   opcode(Assembler::subcc_op3, Assembler::arith_op);
8564   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8565   ins_pipe(ialu_cconly_reg_imm);
8566 %}
8567 
8568 //----------Max and Min--------------------------------------------------------
8569 // Min Instructions
8570 // Conditional move for min
8571 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8572   effect( USE_DEF op2, USE op1, USE icc );
8573 
8574   size(4);
8575   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8576   opcode(Assembler::less);
8577   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8578   ins_pipe(ialu_reg_flags);
8579 %}
8580 
8581 // Min Register with Register.
8582 instruct minI_eReg(iRegI op1, iRegI op2) %{
8583   match(Set op2 (MinI op1 op2));
8584   ins_cost(DEFAULT_COST*2);
8585   expand %{
8586     flagsReg icc;
8587     compI_iReg(icc,op1,op2);
8588     cmovI_reg_lt(op2,op1,icc);
8589   %}
8590 %}
8591 
8592 // Max Instructions
8593 // Conditional move for max
8594 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8595   effect( USE_DEF op2, USE op1, USE icc );
8596   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8597   opcode(Assembler::greater);
8598   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8599   ins_pipe(ialu_reg_flags);
8600 %}
8601 
8602 // Max Register with Register
8603 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8604   match(Set op2 (MaxI op1 op2));
8605   ins_cost(DEFAULT_COST*2);
8606   expand %{
8607     flagsReg icc;
8608     compI_iReg(icc,op1,op2);
8609     cmovI_reg_gt(op2,op1,icc);
8610   %}
8611 %}
8612 
8613 
8614 //----------Float Compares----------------------------------------------------
8615 // Compare floating, generate condition code
8616 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8617   match(Set fcc (CmpF src1 src2));
8618 
8619   size(4);
8620   format %{ "FCMPs  $fcc,$src1,$src2" %}
8621   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8622   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8623   ins_pipe(faddF_fcc_reg_reg_zero);
8624 %}
8625 
8626 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8627   match(Set fcc (CmpD src1 src2));
8628 
8629   size(4);
8630   format %{ "FCMPd  $fcc,$src1,$src2" %}
8631   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8632   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8633   ins_pipe(faddD_fcc_reg_reg_zero);
8634 %}
8635 
8636 
8637 // Compare floating, generate -1,0,1
8638 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8639   match(Set dst (CmpF3 src1 src2));
8640   effect(KILL fcc0);
8641   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8642   format %{ "fcmpl  $dst,$src1,$src2" %}
8643   // Primary = float
8644   opcode( true );
8645   ins_encode( floating_cmp( dst, src1, src2 ) );
8646   ins_pipe( floating_cmp );
8647 %}
8648 
8649 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8650   match(Set dst (CmpD3 src1 src2));
8651   effect(KILL fcc0);
8652   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8653   format %{ "dcmpl  $dst,$src1,$src2" %}
8654   // Primary = double (not float)
8655   opcode( false );
8656   ins_encode( floating_cmp( dst, src1, src2 ) );
8657   ins_pipe( floating_cmp );
8658 %}
8659 
8660 //----------Branches---------------------------------------------------------
8661 // Jump
8662 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8663 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8664   match(Jump switch_val);
8665 
8666   ins_cost(350);
8667 
8668   format %{  "SETHI  [hi(table_base)],O7\n\t"
8669              "ADD    O7, lo(table_base), O7\n\t"
8670              "LD     [O7+$switch_val], O7\n\t"
8671              "JUMP   O7"
8672          %}
8673   ins_encode( jump_enc( switch_val, table) );
8674   ins_pc_relative(1);
8675   ins_pipe(ialu_reg_reg);
8676 %}
8677 
8678 // Direct Branch.  Use V8 version with longer range.
8679 instruct branch(label labl) %{
8680   match(Goto);
8681   effect(USE labl);
8682 
8683   size(8);
8684   ins_cost(BRANCH_COST);
8685   format %{ "BA     $labl" %}
8686   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
8687   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
8688   ins_encode( enc_ba( labl ) );
8689   ins_pc_relative(1);
8690   ins_pipe(br);
8691 %}
8692 
8693 // Conditional Direct Branch
8694 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
8695   match(If cmp icc);
8696   effect(USE labl);
8697 
8698   size(8);
8699   ins_cost(BRANCH_COST);
8700   format %{ "BP$cmp   $icc,$labl" %}
8701   // Prim = bits 24-22, Secnd = bits 31-30
8702   ins_encode( enc_bp( labl, cmp, icc ) );
8703   ins_pc_relative(1);
8704   ins_pipe(br_cc);
8705 %}
8706 
8707 // Branch-on-register tests all 64 bits.  We assume that values
8708 // in 64-bit registers always remains zero or sign extended
8709 // unless our code munges the high bits.  Interrupts can chop
8710 // the high order bits to zero or sign at any time.
8711 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
8712   match(If cmp (CmpI op1 zero));
8713   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8714   effect(USE labl);
8715 
8716   size(8);
8717   ins_cost(BRANCH_COST);
8718   format %{ "BR$cmp   $op1,$labl" %}
8719   ins_encode( enc_bpr( labl, cmp, op1 ) );
8720   ins_pc_relative(1);
8721   ins_pipe(br_reg);
8722 %}
8723 
8724 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
8725   match(If cmp (CmpP op1 null));
8726   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8727   effect(USE labl);
8728 
8729   size(8);
8730   ins_cost(BRANCH_COST);
8731   format %{ "BR$cmp   $op1,$labl" %}
8732   ins_encode( enc_bpr( labl, cmp, op1 ) );
8733   ins_pc_relative(1);
8734   ins_pipe(br_reg);
8735 %}
8736 
8737 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
8738   match(If cmp (CmpL op1 zero));
8739   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8740   effect(USE labl);
8741 
8742   size(8);
8743   ins_cost(BRANCH_COST);
8744   format %{ "BR$cmp   $op1,$labl" %}
8745   ins_encode( enc_bpr( labl, cmp, op1 ) );
8746   ins_pc_relative(1);
8747   ins_pipe(br_reg);
8748 %}
8749 
8750 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
8751   match(If cmp icc);
8752   effect(USE labl);
8753 
8754   format %{ "BP$cmp  $icc,$labl" %}
8755   // Prim = bits 24-22, Secnd = bits 31-30
8756   ins_encode( enc_bp( labl, cmp, icc ) );
8757   ins_pc_relative(1);
8758   ins_pipe(br_cc);
8759 %}
8760 
8761 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
8762   match(If cmp pcc);
8763   effect(USE labl);
8764 
8765   size(8);
8766   ins_cost(BRANCH_COST);
8767   format %{ "BP$cmp  $pcc,$labl" %}
8768   // Prim = bits 24-22, Secnd = bits 31-30
8769   ins_encode( enc_bpx( labl, cmp, pcc ) );
8770   ins_pc_relative(1);
8771   ins_pipe(br_cc);
8772 %}
8773 
8774 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
8775   match(If cmp fcc);
8776   effect(USE labl);
8777 
8778   size(8);
8779   ins_cost(BRANCH_COST);
8780   format %{ "FBP$cmp $fcc,$labl" %}
8781   // Prim = bits 24-22, Secnd = bits 31-30
8782   ins_encode( enc_fbp( labl, cmp, fcc ) );
8783   ins_pc_relative(1);
8784   ins_pipe(br_fcc);
8785 %}
8786 
8787 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
8788   match(CountedLoopEnd cmp icc);
8789   effect(USE labl);
8790 
8791   size(8);
8792   ins_cost(BRANCH_COST);
8793   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
8794   // Prim = bits 24-22, Secnd = bits 31-30
8795   ins_encode( enc_bp( labl, cmp, icc ) );
8796   ins_pc_relative(1);
8797   ins_pipe(br_cc);
8798 %}
8799 
8800 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
8801   match(CountedLoopEnd cmp icc);
8802   effect(USE labl);
8803 
8804   size(8);
8805   ins_cost(BRANCH_COST);
8806   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
8807   // Prim = bits 24-22, Secnd = bits 31-30
8808   ins_encode( enc_bp( labl, cmp, icc ) );
8809   ins_pc_relative(1);
8810   ins_pipe(br_cc);
8811 %}
8812 
8813 // ============================================================================
8814 // Long Compare
8815 //
8816 // Currently we hold longs in 2 registers.  Comparing such values efficiently
8817 // is tricky.  The flavor of compare used depends on whether we are testing
8818 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
8819 // The GE test is the negated LT test.  The LE test can be had by commuting
8820 // the operands (yielding a GE test) and then negating; negate again for the
8821 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
8822 // NE test is negated from that.
8823 
8824 // Due to a shortcoming in the ADLC, it mixes up expressions like:
8825 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
8826 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
8827 // are collapsed internally in the ADLC's dfa-gen code.  The match for
8828 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
8829 // foo match ends up with the wrong leaf.  One fix is to not match both
8830 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
8831 // both forms beat the trinary form of long-compare and both are very useful
8832 // on Intel which has so few registers.
8833 
8834 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
8835   match(If cmp xcc);
8836   effect(USE labl);
8837 
8838   size(8);
8839   ins_cost(BRANCH_COST);
8840   format %{ "BP$cmp   $xcc,$labl" %}
8841   // Prim = bits 24-22, Secnd = bits 31-30
8842   ins_encode( enc_bpl( labl, cmp, xcc ) );
8843   ins_pc_relative(1);
8844   ins_pipe(br_cc);
8845 %}
8846 
8847 // Manifest a CmpL3 result in an integer register.  Very painful.
8848 // This is the test to avoid.
8849 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
8850   match(Set dst (CmpL3 src1 src2) );
8851   effect( KILL ccr );
8852   ins_cost(6*DEFAULT_COST);
8853   size(24);
8854   format %{ "CMP    $src1,$src2\t\t! long\n"
8855           "\tBLT,a,pn done\n"
8856           "\tMOV    -1,$dst\t! delay slot\n"
8857           "\tBGT,a,pn done\n"
8858           "\tMOV    1,$dst\t! delay slot\n"
8859           "\tCLR    $dst\n"
8860     "done:"     %}
8861   ins_encode( cmpl_flag(src1,src2,dst) );
8862   ins_pipe(cmpL_reg);
8863 %}
8864 
8865 // Conditional move
8866 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
8867   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
8868   ins_cost(150);
8869   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
8870   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8871   ins_pipe(ialu_reg);
8872 %}
8873 
8874 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
8875   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
8876   ins_cost(140);
8877   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
8878   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
8879   ins_pipe(ialu_imm);
8880 %}
8881 
8882 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
8883   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
8884   ins_cost(150);
8885   format %{ "MOV$cmp  $xcc,$src,$dst" %}
8886   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8887   ins_pipe(ialu_reg);
8888 %}
8889 
8890 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
8891   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
8892   ins_cost(140);
8893   format %{ "MOV$cmp  $xcc,$src,$dst" %}
8894   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
8895   ins_pipe(ialu_imm);
8896 %}
8897 
8898 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
8899   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
8900   ins_cost(150);
8901   format %{ "MOV$cmp  $xcc,$src,$dst" %}
8902   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8903   ins_pipe(ialu_reg);
8904 %}
8905 
8906 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
8907   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
8908   ins_cost(150);
8909   format %{ "MOV$cmp  $xcc,$src,$dst" %}
8910   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
8911   ins_pipe(ialu_reg);
8912 %}
8913 
8914 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
8915   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
8916   ins_cost(140);
8917   format %{ "MOV$cmp  $xcc,$src,$dst" %}
8918   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
8919   ins_pipe(ialu_imm);
8920 %}
8921 
8922 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
8923   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
8924   ins_cost(150);
8925   opcode(0x101);
8926   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
8927   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
8928   ins_pipe(int_conditional_float_move);
8929 %}
8930 
8931 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
8932   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
8933   ins_cost(150);
8934   opcode(0x102);
8935   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
8936   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
8937   ins_pipe(int_conditional_float_move);
8938 %}
8939 
8940 // ============================================================================
8941 // Safepoint Instruction
8942 instruct safePoint_poll(iRegP poll) %{
8943   match(SafePoint poll);
8944   effect(USE poll);
8945 
8946   size(4);
8947 #ifdef _LP64
8948   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
8949 #else
8950   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
8951 #endif
8952   ins_encode %{
8953     __ relocate(relocInfo::poll_type);
8954     __ ld_ptr($poll$$Register, 0, G0);
8955   %}
8956   ins_pipe(loadPollP);
8957 %}
8958 
8959 // ============================================================================
8960 // Call Instructions
8961 // Call Java Static Instruction
8962 instruct CallStaticJavaDirect( method meth ) %{
8963   match(CallStaticJava);
8964   effect(USE meth);
8965 
8966   size(8);
8967   ins_cost(CALL_COST);
8968   format %{ "CALL,static  ; NOP ==> " %}
8969   ins_encode( Java_Static_Call( meth ), call_epilog );
8970   ins_pc_relative(1);
8971   ins_pipe(simple_call);
8972 %}
8973 
8974 // Call Java Dynamic Instruction
8975 instruct CallDynamicJavaDirect( method meth ) %{
8976   match(CallDynamicJava);
8977   effect(USE meth);
8978 
8979   ins_cost(CALL_COST);
8980   format %{ "SET    (empty),R_G5\n\t"
8981             "CALL,dynamic  ; NOP ==> " %}
8982   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
8983   ins_pc_relative(1);
8984   ins_pipe(call);
8985 %}
8986 
8987 // Call Runtime Instruction
8988 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
8989   match(CallRuntime);
8990   effect(USE meth, KILL l7);
8991   ins_cost(CALL_COST);
8992   format %{ "CALL,runtime" %}
8993   ins_encode( Java_To_Runtime( meth ),
8994               call_epilog, adjust_long_from_native_call );
8995   ins_pc_relative(1);
8996   ins_pipe(simple_call);
8997 %}
8998 
8999 // Call runtime without safepoint - same as CallRuntime
9000 instruct CallLeafDirect(method meth, l7RegP l7) %{
9001   match(CallLeaf);
9002   effect(USE meth, KILL l7);
9003   ins_cost(CALL_COST);
9004   format %{ "CALL,runtime leaf" %}
9005   ins_encode( Java_To_Runtime( meth ),
9006               call_epilog,
9007               adjust_long_from_native_call );
9008   ins_pc_relative(1);
9009   ins_pipe(simple_call);
9010 %}
9011 
9012 // Call runtime without safepoint - same as CallLeaf
9013 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9014   match(CallLeafNoFP);
9015   effect(USE meth, KILL l7);
9016   ins_cost(CALL_COST);
9017   format %{ "CALL,runtime leaf nofp" %}
9018   ins_encode( Java_To_Runtime( meth ),
9019               call_epilog,
9020               adjust_long_from_native_call );
9021   ins_pc_relative(1);
9022   ins_pipe(simple_call);
9023 %}
9024 
9025 // Tail Call; Jump from runtime stub to Java code.
9026 // Also known as an 'interprocedural jump'.
9027 // Target of jump will eventually return to caller.
9028 // TailJump below removes the return address.
9029 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9030   match(TailCall jump_target method_oop );
9031 
9032   ins_cost(CALL_COST);
9033   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9034   ins_encode(form_jmpl(jump_target));
9035   ins_pipe(tail_call);
9036 %}
9037 
9038 
9039 // Return Instruction
9040 instruct Ret() %{
9041   match(Return);
9042 
9043   // The epilogue node did the ret already.
9044   size(0);
9045   format %{ "! return" %}
9046   ins_encode();
9047   ins_pipe(empty);
9048 %}
9049 
9050 
9051 // Tail Jump; remove the return address; jump to target.
9052 // TailCall above leaves the return address around.
9053 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9054 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9055 // "restore" before this instruction (in Epilogue), we need to materialize it
9056 // in %i0.
9057 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9058   match( TailJump jump_target ex_oop );
9059   ins_cost(CALL_COST);
9060   format %{ "! discard R_O7\n\t"
9061             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9062   ins_encode(form_jmpl_set_exception_pc(jump_target));
9063   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9064   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9065   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9066   ins_pipe(tail_call);
9067 %}
9068 
9069 // Create exception oop: created by stack-crawling runtime code.
9070 // Created exception is now available to this handler, and is setup
9071 // just prior to jumping to this handler.  No code emitted.
9072 instruct CreateException( o0RegP ex_oop )
9073 %{
9074   match(Set ex_oop (CreateEx));
9075   ins_cost(0);
9076 
9077   size(0);
9078   // use the following format syntax
9079   format %{ "! exception oop is in R_O0; no code emitted" %}
9080   ins_encode();
9081   ins_pipe(empty);
9082 %}
9083 
9084 
9085 // Rethrow exception:
9086 // The exception oop will come in the first argument position.
9087 // Then JUMP (not call) to the rethrow stub code.
9088 instruct RethrowException()
9089 %{
9090   match(Rethrow);
9091   ins_cost(CALL_COST);
9092 
9093   // use the following format syntax
9094   format %{ "Jmp    rethrow_stub" %}
9095   ins_encode(enc_rethrow);
9096   ins_pipe(tail_call);
9097 %}
9098 
9099 
9100 // Die now
9101 instruct ShouldNotReachHere( )
9102 %{
9103   match(Halt);
9104   ins_cost(CALL_COST);
9105 
9106   size(4);
9107   // Use the following format syntax
9108   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9109   ins_encode( form2_illtrap() );
9110   ins_pipe(tail_call);
9111 %}
9112 
9113 // ============================================================================
9114 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9115 // array for an instance of the superklass.  Set a hidden internal cache on a
9116 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9117 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9118 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9119   match(Set index (PartialSubtypeCheck sub super));
9120   effect( KILL pcc, KILL o7 );
9121   ins_cost(DEFAULT_COST*10);
9122   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9123   ins_encode( enc_PartialSubtypeCheck() );
9124   ins_pipe(partial_subtype_check_pipe);
9125 %}
9126 
9127 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9128   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9129   effect( KILL idx, KILL o7 );
9130   ins_cost(DEFAULT_COST*10);
9131   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9132   ins_encode( enc_PartialSubtypeCheck() );
9133   ins_pipe(partial_subtype_check_pipe);
9134 %}
9135 
9136 
9137 // ============================================================================
9138 // inlined locking and unlocking
9139 
9140 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9141   match(Set pcc (FastLock object box));
9142 
9143   effect(KILL scratch, TEMP scratch2);
9144   ins_cost(100);
9145 
9146   size(4*112);       // conservative overestimation ...
9147   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9148   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9149   ins_pipe(long_memory_op);
9150 %}
9151 
9152 
9153 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9154   match(Set pcc (FastUnlock object box));
9155   effect(KILL scratch, TEMP scratch2);
9156   ins_cost(100);
9157 
9158   size(4*120);       // conservative overestimation ...
9159   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9160   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9161   ins_pipe(long_memory_op);
9162 %}
9163 
9164 // Count and Base registers are fixed because the allocator cannot
9165 // kill unknown registers.  The encodings are generic.
9166 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9167   match(Set dummy (ClearArray cnt base));
9168   effect(TEMP temp, KILL ccr);
9169   ins_cost(300);
9170   format %{ "MOV    $cnt,$temp\n"
9171     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9172     "        BRge   loop\t\t! Clearing loop\n"
9173     "        STX    G0,[$base+$temp]\t! delay slot" %}
9174   ins_encode( enc_Clear_Array(cnt, base, temp) );
9175   ins_pipe(long_memory_op);
9176 %}
9177 
9178 instruct string_compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
9179                         o7RegI tmp3, flagsReg ccr) %{
9180   match(Set result (StrComp str1 str2));
9181   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr, KILL tmp3);
9182   ins_cost(300);
9183   format %{ "String Compare $str1,$str2 -> $result" %}
9184   ins_encode( enc_String_Compare(str1, str2, tmp1, tmp2, result) );
9185   ins_pipe(long_memory_op);
9186 %}
9187 
9188 instruct string_equals(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
9189                        o7RegI tmp3, flagsReg ccr) %{
9190   match(Set result (StrEquals str1 str2));
9191   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr, KILL tmp3);
9192   ins_cost(300);
9193   format %{ "String Equals $str1,$str2 -> $result" %}
9194   ins_encode( enc_String_Equals(str1, str2, tmp1, tmp2, result) );
9195   ins_pipe(long_memory_op);
9196 %}
9197 
9198 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
9199                         flagsReg ccr) %{
9200   match(Set result (AryEq ary1 ary2));
9201   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
9202   ins_cost(300);
9203   format %{ "Array Equals $ary1,$ary2 -> $result" %}
9204   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, tmp2, result));
9205   ins_pipe(long_memory_op);
9206 %}
9207 
9208 
9209 //---------- Zeros Count Instructions ------------------------------------------
9210 
9211 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
9212   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9213   match(Set dst (CountLeadingZerosI src));
9214   effect(TEMP dst, TEMP tmp, KILL cr);
9215 
9216   // x |= (x >> 1);
9217   // x |= (x >> 2);
9218   // x |= (x >> 4);
9219   // x |= (x >> 8);
9220   // x |= (x >> 16);
9221   // return (WORDBITS - popc(x));
9222   format %{ "SRL     $src,1,$dst\t! count leading zeros (int)\n\t"
9223             "OR      $src,$tmp,$dst\n\t"
9224             "SRL     $dst,2,$tmp\n\t"
9225             "OR      $dst,$tmp,$dst\n\t"
9226             "SRL     $dst,4,$tmp\n\t"
9227             "OR      $dst,$tmp,$dst\n\t"
9228             "SRL     $dst,8,$tmp\n\t"
9229             "OR      $dst,$tmp,$dst\n\t"
9230             "SRL     $dst,16,$tmp\n\t"
9231             "OR      $dst,$tmp,$dst\n\t"
9232             "POPC    $dst,$dst\n\t"
9233             "MOV     32,$tmp\n\t"
9234             "SUB     $tmp,$dst,$dst" %}
9235   ins_encode %{
9236     Register Rdst = $dst$$Register;
9237     Register Rsrc = $src$$Register;
9238     Register Rtmp = $tmp$$Register;
9239     __ srl(Rsrc, 1, Rtmp);
9240     __ or3(Rsrc, Rtmp, Rdst);
9241     __ srl(Rdst, 2, Rtmp);
9242     __ or3(Rdst, Rtmp, Rdst);
9243     __ srl(Rdst, 4, Rtmp);
9244     __ or3(Rdst, Rtmp, Rdst);
9245     __ srl(Rdst, 8, Rtmp);
9246     __ or3(Rdst, Rtmp, Rdst);
9247     __ srl(Rdst, 16, Rtmp);
9248     __ or3(Rdst, Rtmp, Rdst);
9249     __ popc(Rdst, Rdst);
9250     __ mov(BitsPerInt, Rtmp);
9251     __ sub(Rtmp, Rdst, Rdst);
9252   %}
9253   ins_pipe(ialu_reg);
9254 %}
9255 
9256 instruct countLeadingZerosL(iRegI dst, iRegL src, iRegL tmp, flagsReg cr) %{
9257   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9258   match(Set dst (CountLeadingZerosL src));
9259   effect(TEMP dst, TEMP tmp, KILL cr);
9260 
9261   // x |= (x >> 1);
9262   // x |= (x >> 2);
9263   // x |= (x >> 4);
9264   // x |= (x >> 8);
9265   // x |= (x >> 16);
9266   // x |= (x >> 32);
9267   // return (WORDBITS - popc(x));
9268   format %{ "SRLX    $src,1,$dst\t! count leading zeros (long)\n\t"
9269             "OR      $src,$tmp,$dst\n\t"
9270             "SRLX    $dst,2,$tmp\n\t"
9271             "OR      $dst,$tmp,$dst\n\t"
9272             "SRLX    $dst,4,$tmp\n\t"
9273             "OR      $dst,$tmp,$dst\n\t"
9274             "SRLX    $dst,8,$tmp\n\t"
9275             "OR      $dst,$tmp,$dst\n\t"
9276             "SRLX    $dst,16,$tmp\n\t"
9277             "OR      $dst,$tmp,$dst\n\t"
9278             "SRLX    $dst,32,$tmp\n\t"
9279             "OR      $dst,$tmp,$dst\n\t"
9280             "POPC    $dst,$dst\n\t"
9281             "MOV     64,$tmp\n\t"
9282             "SUB     $tmp,$dst,$dst" %}
9283   ins_encode %{
9284     Register Rdst = $dst$$Register;
9285     Register Rsrc = $src$$Register;
9286     Register Rtmp = $tmp$$Register;
9287     __ srlx(Rsrc, 1, Rtmp);
9288     __ or3(Rsrc, Rtmp, Rdst);
9289     __ srlx(Rdst, 2, Rtmp);
9290     __ or3(Rdst, Rtmp, Rdst);
9291     __ srlx(Rdst, 4, Rtmp);
9292     __ or3(Rdst, Rtmp, Rdst);
9293     __ srlx(Rdst, 8, Rtmp);
9294     __ or3(Rdst, Rtmp, Rdst);
9295     __ srlx(Rdst, 16, Rtmp);
9296     __ or3(Rdst, Rtmp, Rdst);
9297     __ srlx(Rdst, 32, Rtmp);
9298     __ or3(Rdst, Rtmp, Rdst);
9299     __ popc(Rdst, Rdst);
9300     __ mov(BitsPerLong, Rtmp);
9301     __ sub(Rtmp, Rdst, Rdst);
9302   %}
9303   ins_pipe(ialu_reg);
9304 %}
9305 
9306 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
9307   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9308   match(Set dst (CountTrailingZerosI src));
9309   effect(TEMP dst, KILL cr);
9310 
9311   // return popc(~x & (x - 1));
9312   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
9313             "ANDN    $dst,$src,$dst\n\t"
9314             "SRL     $dst,R_G0,$dst\n\t"
9315             "POPC    $dst,$dst" %}
9316   ins_encode %{
9317     Register Rdst = $dst$$Register;
9318     Register Rsrc = $src$$Register;
9319     __ sub(Rsrc, 1, Rdst);
9320     __ andn(Rdst, Rsrc, Rdst);
9321     __ srl(Rdst, G0, Rdst);
9322     __ popc(Rdst, Rdst);
9323   %}
9324   ins_pipe(ialu_reg);
9325 %}
9326 
9327 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
9328   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9329   match(Set dst (CountTrailingZerosL src));
9330   effect(TEMP dst, KILL cr);
9331 
9332   // return popc(~x & (x - 1));
9333   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
9334             "ANDN    $dst,$src,$dst\n\t"
9335             "POPC    $dst,$dst" %}
9336   ins_encode %{
9337     Register Rdst = $dst$$Register;
9338     Register Rsrc = $src$$Register;
9339     __ sub(Rsrc, 1, Rdst);
9340     __ andn(Rdst, Rsrc, Rdst);
9341     __ popc(Rdst, Rdst);
9342   %}
9343   ins_pipe(ialu_reg);
9344 %}
9345 
9346 
9347 //---------- Population Count Instructions -------------------------------------
9348 
9349 instruct popCountI(iRegI dst, iRegI src) %{
9350   predicate(UsePopCountInstruction);
9351   match(Set dst (PopCountI src));
9352 
9353   format %{ "POPC   $src, $dst" %}
9354   ins_encode %{
9355     __ popc($src$$Register, $dst$$Register);
9356   %}
9357   ins_pipe(ialu_reg);
9358 %}
9359 
9360 // Note: Long.bitCount(long) returns an int.
9361 instruct popCountL(iRegI dst, iRegL src) %{
9362   predicate(UsePopCountInstruction);
9363   match(Set dst (PopCountL src));
9364 
9365   format %{ "POPC   $src, $dst" %}
9366   ins_encode %{
9367     __ popc($src$$Register, $dst$$Register);
9368   %}
9369   ins_pipe(ialu_reg);
9370 %}
9371 
9372 
9373 // ============================================================================
9374 //------------Bytes reverse--------------------------------------------------
9375 
9376 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
9377   match(Set dst (ReverseBytesI src));
9378   effect(DEF dst, USE src);
9379 
9380   // Op cost is artificially doubled to make sure that load or store
9381   // instructions are preferred over this one which requires a spill
9382   // onto a stack slot.
9383   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9384   size(8);
9385   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9386   opcode(Assembler::lduwa_op3);
9387   ins_encode( form3_mem_reg_little(src, dst) );
9388   ins_pipe( iload_mem );
9389 %}
9390 
9391 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
9392   match(Set dst (ReverseBytesL src));
9393   effect(DEF dst, USE src);
9394 
9395   // Op cost is artificially doubled to make sure that load or store
9396   // instructions are preferred over this one which requires a spill
9397   // onto a stack slot.
9398   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9399   size(8);
9400   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9401 
9402   opcode(Assembler::ldxa_op3);
9403   ins_encode( form3_mem_reg_little(src, dst) );
9404   ins_pipe( iload_mem );
9405 %}
9406 
9407 // Load Integer reversed byte order
9408 instruct loadI_reversed(iRegI dst, memory src) %{
9409   match(Set dst (ReverseBytesI (LoadI src)));
9410 
9411   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9412   size(8);
9413   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9414 
9415   opcode(Assembler::lduwa_op3);
9416   ins_encode( form3_mem_reg_little( src, dst) );
9417   ins_pipe(iload_mem);
9418 %}
9419 
9420 // Load Long - aligned and reversed
9421 instruct loadL_reversed(iRegL dst, memory src) %{
9422   match(Set dst (ReverseBytesL (LoadL src)));
9423 
9424   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9425   size(8);
9426   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9427 
9428   opcode(Assembler::ldxa_op3);
9429   ins_encode( form3_mem_reg_little( src, dst ) );
9430   ins_pipe(iload_mem);
9431 %}
9432 
9433 // Store Integer reversed byte order
9434 instruct storeI_reversed(memory dst, iRegI src) %{
9435   match(Set dst (StoreI dst (ReverseBytesI src)));
9436 
9437   ins_cost(MEMORY_REF_COST);
9438   size(8);
9439   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
9440 
9441   opcode(Assembler::stwa_op3);
9442   ins_encode( form3_mem_reg_little( dst, src) );
9443   ins_pipe(istore_mem_reg);
9444 %}
9445 
9446 // Store Long reversed byte order
9447 instruct storeL_reversed(memory dst, iRegL src) %{
9448   match(Set dst (StoreL dst (ReverseBytesL src)));
9449 
9450   ins_cost(MEMORY_REF_COST);
9451   size(8);
9452   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
9453 
9454   opcode(Assembler::stxa_op3);
9455   ins_encode( form3_mem_reg_little( dst, src) );
9456   ins_pipe(istore_mem_reg);
9457 %}
9458 
9459 //----------PEEPHOLE RULES-----------------------------------------------------
9460 // These must follow all instruction definitions as they use the names
9461 // defined in the instructions definitions.
9462 //
9463 // peepmatch ( root_instr_name [preceding_instruction]* );
9464 //
9465 // peepconstraint %{
9466 // (instruction_number.operand_name relational_op instruction_number.operand_name
9467 //  [, ...] );
9468 // // instruction numbers are zero-based using left to right order in peepmatch
9469 //
9470 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
9471 // // provide an instruction_number.operand_name for each operand that appears
9472 // // in the replacement instruction's match rule
9473 //
9474 // ---------VM FLAGS---------------------------------------------------------
9475 //
9476 // All peephole optimizations can be turned off using -XX:-OptoPeephole
9477 //
9478 // Each peephole rule is given an identifying number starting with zero and
9479 // increasing by one in the order seen by the parser.  An individual peephole
9480 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
9481 // on the command-line.
9482 //
9483 // ---------CURRENT LIMITATIONS----------------------------------------------
9484 //
9485 // Only match adjacent instructions in same basic block
9486 // Only equality constraints
9487 // Only constraints between operands, not (0.dest_reg == EAX_enc)
9488 // Only one replacement instruction
9489 //
9490 // ---------EXAMPLE----------------------------------------------------------
9491 //
9492 // // pertinent parts of existing instructions in architecture description
9493 // instruct movI(eRegI dst, eRegI src) %{
9494 //   match(Set dst (CopyI src));
9495 // %}
9496 //
9497 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
9498 //   match(Set dst (AddI dst src));
9499 //   effect(KILL cr);
9500 // %}
9501 //
9502 // // Change (inc mov) to lea
9503 // peephole %{
9504 //   // increment preceeded by register-register move
9505 //   peepmatch ( incI_eReg movI );
9506 //   // require that the destination register of the increment
9507 //   // match the destination register of the move
9508 //   peepconstraint ( 0.dst == 1.dst );
9509 //   // construct a replacement instruction that sets
9510 //   // the destination to ( move's source register + one )
9511 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
9512 // %}
9513 //
9514 
9515 // // Change load of spilled value to only a spill
9516 // instruct storeI(memory mem, eRegI src) %{
9517 //   match(Set mem (StoreI mem src));
9518 // %}
9519 //
9520 // instruct loadI(eRegI dst, memory mem) %{
9521 //   match(Set dst (LoadI mem));
9522 // %}
9523 //
9524 // peephole %{
9525 //   peepmatch ( loadI storeI );
9526 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
9527 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
9528 // %}
9529 
9530 //----------SMARTSPILL RULES---------------------------------------------------
9531 // These must follow all instruction definitions as they use the names
9532 // defined in the instructions definitions.
9533 //
9534 // SPARC will probably not have any of these rules due to RISC instruction set.
9535 
9536 //----------PIPELINE-----------------------------------------------------------
9537 // Rules which define the behavior of the target architectures pipeline.