1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 class BiasedLockingCounters;
  26 
  27 // Contains all the definitions needed for x86 assembly code generation.
  28 
  29 // Calling convention
  30 class Argument VALUE_OBJ_CLASS_SPEC {
  31  public:
  32   enum {
  33 #ifdef _LP64
  34 #ifdef _WIN64
  35     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
  36     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
  37 #else
  38     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
  39     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
  40 #endif // _WIN64
  41     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
  42     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
  43 #else
  44     n_register_parameters = 0   // 0 registers used to pass arguments
  45 #endif // _LP64
  46   };
  47 };
  48 
  49 
  50 #ifdef _LP64
  51 // Symbolically name the register arguments used by the c calling convention.
  52 // Windows is different from linux/solaris. So much for standards...
  53 
  54 #ifdef _WIN64
  55 
  56 REGISTER_DECLARATION(Register, c_rarg0, rcx);
  57 REGISTER_DECLARATION(Register, c_rarg1, rdx);
  58 REGISTER_DECLARATION(Register, c_rarg2, r8);
  59 REGISTER_DECLARATION(Register, c_rarg3, r9);
  60 
  61 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  62 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  63 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  64 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  65 
  66 #else
  67 
  68 REGISTER_DECLARATION(Register, c_rarg0, rdi);
  69 REGISTER_DECLARATION(Register, c_rarg1, rsi);
  70 REGISTER_DECLARATION(Register, c_rarg2, rdx);
  71 REGISTER_DECLARATION(Register, c_rarg3, rcx);
  72 REGISTER_DECLARATION(Register, c_rarg4, r8);
  73 REGISTER_DECLARATION(Register, c_rarg5, r9);
  74 
  75 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  76 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  77 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  78 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  79 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
  80 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
  81 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
  82 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
  83 
  84 #endif // _WIN64
  85 
  86 // Symbolically name the register arguments used by the Java calling convention.
  87 // We have control over the convention for java so we can do what we please.
  88 // What pleases us is to offset the java calling convention so that when
  89 // we call a suitable jni method the arguments are lined up and we don't
  90 // have to do little shuffling. A suitable jni method is non-static and a
  91 // small number of arguments (two fewer args on windows)
  92 //
  93 //        |-------------------------------------------------------|
  94 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
  95 //        |-------------------------------------------------------|
  96 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
  97 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
  98 //        |-------------------------------------------------------|
  99 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
 100 //        |-------------------------------------------------------|
 101 
 102 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
 103 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
 104 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
 105 // Windows runs out of register args here
 106 #ifdef _WIN64
 107 REGISTER_DECLARATION(Register, j_rarg3, rdi);
 108 REGISTER_DECLARATION(Register, j_rarg4, rsi);
 109 #else
 110 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
 111 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
 112 #endif /* _WIN64 */
 113 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
 114 
 115 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
 116 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
 117 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
 118 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
 119 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
 120 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
 121 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
 122 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
 123 
 124 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
 125 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
 126 
 127 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
 128 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
 129 
 130 #else
 131 // rscratch1 will apear in 32bit code that is dead but of course must compile
 132 // Using noreg ensures if the dead code is incorrectly live and executed it
 133 // will cause an assertion failure
 134 #define rscratch1 noreg
 135 
 136 #endif // _LP64
 137 
 138 // Address is an abstraction used to represent a memory location
 139 // using any of the amd64 addressing modes with one object.
 140 //
 141 // Note: A register location is represented via a Register, not
 142 //       via an address for efficiency & simplicity reasons.
 143 
 144 class ArrayAddress;
 145 
 146 class Address VALUE_OBJ_CLASS_SPEC {
 147  public:
 148   enum ScaleFactor {
 149     no_scale = -1,
 150     times_1  =  0,
 151     times_2  =  1,
 152     times_4  =  2,
 153     times_8  =  3,
 154     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
 155   };
 156   static ScaleFactor times(int size) {
 157     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
 158     if (size == 8)  return times_8;
 159     if (size == 4)  return times_4;
 160     if (size == 2)  return times_2;
 161     return times_1;
 162   }
 163   static int scale_size(ScaleFactor scale) {
 164     assert(scale != no_scale, "");
 165     assert(((1 << (int)times_1) == 1 &&
 166             (1 << (int)times_2) == 2 &&
 167             (1 << (int)times_4) == 4 &&
 168             (1 << (int)times_8) == 8), "");
 169     return (1 << (int)scale);
 170   }
 171 
 172  private:
 173   Register         _base;
 174   Register         _index;
 175   ScaleFactor      _scale;
 176   int              _disp;
 177   RelocationHolder _rspec;
 178 
 179   // Easily misused constructors make them private
 180   // %%% can we make these go away?
 181   NOT_LP64(Address(address loc, RelocationHolder spec);)
 182   Address(int disp, address loc, relocInfo::relocType rtype);
 183   Address(int disp, address loc, RelocationHolder spec);
 184 
 185  public:
 186 
 187  int disp() { return _disp; }
 188   // creation
 189   Address()
 190     : _base(noreg),
 191       _index(noreg),
 192       _scale(no_scale),
 193       _disp(0) {
 194   }
 195 
 196   // No default displacement otherwise Register can be implicitly
 197   // converted to 0(Register) which is quite a different animal.
 198 
 199   Address(Register base, int disp)
 200     : _base(base),
 201       _index(noreg),
 202       _scale(no_scale),
 203       _disp(disp) {
 204   }
 205 
 206   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
 207     : _base (base),
 208       _index(index),
 209       _scale(scale),
 210       _disp (disp) {
 211     assert(!index->is_valid() == (scale == Address::no_scale),
 212            "inconsistent address");
 213   }
 214 
 215   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
 216     : _base (base),
 217       _index(index.register_or_noreg()),
 218       _scale(scale),
 219       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
 220     if (!index.is_register())  scale = Address::no_scale;
 221     assert(!_index->is_valid() == (scale == Address::no_scale),
 222            "inconsistent address");
 223   }
 224 
 225   Address plus_disp(int disp) const {
 226     Address a = (*this);
 227     a._disp += disp;
 228     return a;
 229   }
 230 
 231   // The following two overloads are used in connection with the
 232   // ByteSize type (see sizes.hpp).  They simplify the use of
 233   // ByteSize'd arguments in assembly code. Note that their equivalent
 234   // for the optimized build are the member functions with int disp
 235   // argument since ByteSize is mapped to an int type in that case.
 236   //
 237   // Note: DO NOT introduce similar overloaded functions for WordSize
 238   // arguments as in the optimized mode, both ByteSize and WordSize
 239   // are mapped to the same type and thus the compiler cannot make a
 240   // distinction anymore (=> compiler errors).
 241 
 242 #ifdef ASSERT
 243   Address(Register base, ByteSize disp)
 244     : _base(base),
 245       _index(noreg),
 246       _scale(no_scale),
 247       _disp(in_bytes(disp)) {
 248   }
 249 
 250   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
 251     : _base(base),
 252       _index(index),
 253       _scale(scale),
 254       _disp(in_bytes(disp)) {
 255     assert(!index->is_valid() == (scale == Address::no_scale),
 256            "inconsistent address");
 257   }
 258 
 259   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
 260     : _base (base),
 261       _index(index.register_or_noreg()),
 262       _scale(scale),
 263       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
 264     if (!index.is_register())  scale = Address::no_scale;
 265     assert(!_index->is_valid() == (scale == Address::no_scale),
 266            "inconsistent address");
 267   }
 268 
 269 #endif // ASSERT
 270 
 271   // accessors
 272   bool        uses(Register reg) const { return _base == reg || _index == reg; }
 273   Register    base()             const { return _base;  }
 274   Register    index()            const { return _index; }
 275   ScaleFactor scale()            const { return _scale; }
 276   int         disp()             const { return _disp;  }
 277 
 278   // Convert the raw encoding form into the form expected by the constructor for
 279   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 280   // that to noreg for the Address constructor.
 281   static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
 282 
 283   static Address make_array(ArrayAddress);
 284 
 285  private:
 286   bool base_needs_rex() const {
 287     return _base != noreg && _base->encoding() >= 8;
 288   }
 289 
 290   bool index_needs_rex() const {
 291     return _index != noreg &&_index->encoding() >= 8;
 292   }
 293 
 294   relocInfo::relocType reloc() const { return _rspec.type(); }
 295 
 296   friend class Assembler;
 297   friend class MacroAssembler;
 298   friend class LIR_Assembler; // base/index/scale/disp
 299 };
 300 
 301 //
 302 // AddressLiteral has been split out from Address because operands of this type
 303 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
 304 // the few instructions that need to deal with address literals are unique and the
 305 // MacroAssembler does not have to implement every instruction in the Assembler
 306 // in order to search for address literals that may need special handling depending
 307 // on the instruction and the platform. As small step on the way to merging i486/amd64
 308 // directories.
 309 //
 310 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
 311   friend class ArrayAddress;
 312   RelocationHolder _rspec;
 313   // Typically we use AddressLiterals we want to use their rval
 314   // However in some situations we want the lval (effect address) of the item.
 315   // We provide a special factory for making those lvals.
 316   bool _is_lval;
 317 
 318   // If the target is far we'll need to load the ea of this to
 319   // a register to reach it. Otherwise if near we can do rip
 320   // relative addressing.
 321 
 322   address          _target;
 323 
 324  protected:
 325   // creation
 326   AddressLiteral()
 327     : _is_lval(false),
 328       _target(NULL)
 329   {}
 330 
 331   public:
 332 
 333 
 334   AddressLiteral(address target, relocInfo::relocType rtype);
 335 
 336   AddressLiteral(address target, RelocationHolder const& rspec)
 337     : _rspec(rspec),
 338       _is_lval(false),
 339       _target(target)
 340   {}
 341 
 342   AddressLiteral addr() {
 343     AddressLiteral ret = *this;
 344     ret._is_lval = true;
 345     return ret;
 346   }
 347 
 348 
 349  private:
 350 
 351   address target() { return _target; }
 352   bool is_lval() { return _is_lval; }
 353 
 354   relocInfo::relocType reloc() const { return _rspec.type(); }
 355   const RelocationHolder& rspec() const { return _rspec; }
 356 
 357   friend class Assembler;
 358   friend class MacroAssembler;
 359   friend class Address;
 360   friend class LIR_Assembler;
 361 };
 362 
 363 // Convience classes
 364 class RuntimeAddress: public AddressLiteral {
 365 
 366   public:
 367 
 368   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
 369 
 370 };
 371 
 372 class OopAddress: public AddressLiteral {
 373 
 374   public:
 375 
 376   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
 377 
 378 };
 379 
 380 class ExternalAddress: public AddressLiteral {
 381 
 382   public:
 383 
 384   ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
 385 
 386 };
 387 
 388 class InternalAddress: public AddressLiteral {
 389 
 390   public:
 391 
 392   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
 393 
 394 };
 395 
 396 // x86 can do array addressing as a single operation since disp can be an absolute
 397 // address amd64 can't. We create a class that expresses the concept but does extra
 398 // magic on amd64 to get the final result
 399 
 400 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
 401   private:
 402 
 403   AddressLiteral _base;
 404   Address        _index;
 405 
 406   public:
 407 
 408   ArrayAddress() {};
 409   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
 410   AddressLiteral base() { return _base; }
 411   Address index() { return _index; }
 412 
 413 };
 414 
 415 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
 416 
 417 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
 418 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
 419 // is what you get. The Assembler is generating code into a CodeBuffer.
 420 
 421 class Assembler : public AbstractAssembler  {
 422   friend class AbstractAssembler; // for the non-virtual hack
 423   friend class LIR_Assembler; // as_Address()
 424   friend class StubGenerator;
 425 
 426  public:
 427   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
 428     zero          = 0x4,
 429     notZero       = 0x5,
 430     equal         = 0x4,
 431     notEqual      = 0x5,
 432     less          = 0xc,
 433     lessEqual     = 0xe,
 434     greater       = 0xf,
 435     greaterEqual  = 0xd,
 436     below         = 0x2,
 437     belowEqual    = 0x6,
 438     above         = 0x7,
 439     aboveEqual    = 0x3,
 440     overflow      = 0x0,
 441     noOverflow    = 0x1,
 442     carrySet      = 0x2,
 443     carryClear    = 0x3,
 444     negative      = 0x8,
 445     positive      = 0x9,
 446     parity        = 0xa,
 447     noParity      = 0xb
 448   };
 449 
 450   enum Prefix {
 451     // segment overrides
 452     CS_segment = 0x2e,
 453     SS_segment = 0x36,
 454     DS_segment = 0x3e,
 455     ES_segment = 0x26,
 456     FS_segment = 0x64,
 457     GS_segment = 0x65,
 458 
 459     REX        = 0x40,
 460 
 461     REX_B      = 0x41,
 462     REX_X      = 0x42,
 463     REX_XB     = 0x43,
 464     REX_R      = 0x44,
 465     REX_RB     = 0x45,
 466     REX_RX     = 0x46,
 467     REX_RXB    = 0x47,
 468 
 469     REX_W      = 0x48,
 470 
 471     REX_WB     = 0x49,
 472     REX_WX     = 0x4A,
 473     REX_WXB    = 0x4B,
 474     REX_WR     = 0x4C,
 475     REX_WRB    = 0x4D,
 476     REX_WRX    = 0x4E,
 477     REX_WRXB   = 0x4F
 478   };
 479 
 480   enum WhichOperand {
 481     // input to locate_operand, and format code for relocations
 482     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
 483     disp32_operand = 1,          // embedded 32-bit displacement or address
 484     call32_operand = 2,          // embedded 32-bit self-relative displacement
 485 #ifndef _LP64
 486     _WhichOperand_limit = 3
 487 #else
 488      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
 489     _WhichOperand_limit = 4
 490 #endif
 491   };
 492 
 493 
 494 
 495   // NOTE: The general philopsophy of the declarations here is that 64bit versions
 496   // of instructions are freely declared without the need for wrapping them an ifdef.
 497   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
 498   // In the .cpp file the implementations are wrapped so that they are dropped out
 499   // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
 500   // to the size it was prior to merging up the 32bit and 64bit assemblers.
 501   //
 502   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
 503   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
 504 
 505 private:
 506 
 507 
 508   // 64bit prefixes
 509   int prefix_and_encode(int reg_enc, bool byteinst = false);
 510   int prefixq_and_encode(int reg_enc);
 511 
 512   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
 513   int prefixq_and_encode(int dst_enc, int src_enc);
 514 
 515   void prefix(Register reg);
 516   void prefix(Address adr);
 517   void prefixq(Address adr);
 518 
 519   void prefix(Address adr, Register reg,  bool byteinst = false);
 520   void prefixq(Address adr, Register reg);
 521 
 522   void prefix(Address adr, XMMRegister reg);
 523 
 524   void prefetch_prefix(Address src);
 525 
 526   // Helper functions for groups of instructions
 527   void emit_arith_b(int op1, int op2, Register dst, int imm8);
 528 
 529   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
 530   // only 32bit??
 531   void emit_arith(int op1, int op2, Register dst, jobject obj);
 532   void emit_arith(int op1, int op2, Register dst, Register src);
 533 
 534   void emit_operand(Register reg,
 535                     Register base, Register index, Address::ScaleFactor scale,
 536                     int disp,
 537                     RelocationHolder const& rspec,
 538                     int rip_relative_correction = 0);
 539 
 540   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
 541 
 542   // operands that only take the original 32bit registers
 543   void emit_operand32(Register reg, Address adr);
 544 
 545   void emit_operand(XMMRegister reg,
 546                     Register base, Register index, Address::ScaleFactor scale,
 547                     int disp,
 548                     RelocationHolder const& rspec);
 549 
 550   void emit_operand(XMMRegister reg, Address adr);
 551 
 552   void emit_operand(MMXRegister reg, Address adr);
 553 
 554   // workaround gcc (3.2.1-7) bug
 555   void emit_operand(Address adr, MMXRegister reg);
 556 
 557 
 558   // Immediate-to-memory forms
 559   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
 560 
 561   void emit_farith(int b1, int b2, int i);
 562 
 563 
 564  protected:
 565   #ifdef ASSERT
 566   void check_relocation(RelocationHolder const& rspec, int format);
 567   #endif
 568 
 569   inline void emit_long64(jlong x);
 570 
 571   void emit_data(jint data, relocInfo::relocType    rtype, int format);
 572   void emit_data(jint data, RelocationHolder const& rspec, int format);
 573   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
 574   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
 575 
 576 
 577   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
 578 
 579   // These are all easily abused and hence protected
 580 
 581   // 32BIT ONLY SECTION
 582 #ifndef _LP64
 583   // Make these disappear in 64bit mode since they would never be correct
 584   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
 585   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 586 
 587   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 588   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
 589 
 590   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
 591 #else
 592   // 64BIT ONLY SECTION
 593   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
 594 
 595   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
 596   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
 597 
 598   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
 599   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
 600 #endif // _LP64
 601 
 602   // These are unique in that we are ensured by the caller that the 32bit
 603   // relative in these instructions will always be able to reach the potentially
 604   // 64bit address described by entry. Since they can take a 64bit address they
 605   // don't have the 32 suffix like the other instructions in this class.
 606 
 607   void call_literal(address entry, RelocationHolder const& rspec);
 608   void jmp_literal(address entry, RelocationHolder const& rspec);
 609 
 610   // Avoid using directly section
 611   // Instructions in this section are actually usable by anyone without danger
 612   // of failure but have performance issues that are addressed my enhanced
 613   // instructions which will do the proper thing base on the particular cpu.
 614   // We protect them because we don't trust you...
 615 
 616   // Don't use next inc() and dec() methods directly. INC & DEC instructions
 617   // could cause a partial flag stall since they don't set CF flag.
 618   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
 619   // which call inc() & dec() or add() & sub() in accordance with
 620   // the product flag UseIncDec value.
 621 
 622   void decl(Register dst);
 623   void decl(Address dst);
 624   void decq(Register dst);
 625   void decq(Address dst);
 626 
 627   void incl(Register dst);
 628   void incl(Address dst);
 629   void incq(Register dst);
 630   void incq(Address dst);
 631 
 632   // New cpus require use of movsd and movss to avoid partial register stall
 633   // when loading from memory. But for old Opteron use movlpd instead of movsd.
 634   // The selection is done in MacroAssembler::movdbl() and movflt().
 635 
 636   // Move Scalar Single-Precision Floating-Point Values
 637   void movss(XMMRegister dst, Address src);
 638   void movss(XMMRegister dst, XMMRegister src);
 639   void movss(Address dst, XMMRegister src);
 640 
 641   // Move Scalar Double-Precision Floating-Point Values
 642   void movsd(XMMRegister dst, Address src);
 643   void movsd(XMMRegister dst, XMMRegister src);
 644   void movsd(Address dst, XMMRegister src);
 645   void movlpd(XMMRegister dst, Address src);
 646 
 647   // New cpus require use of movaps and movapd to avoid partial register stall
 648   // when moving between registers.
 649   void movaps(XMMRegister dst, XMMRegister src);
 650   void movapd(XMMRegister dst, XMMRegister src);
 651 
 652   // End avoid using directly
 653 
 654 
 655   // Instruction prefixes
 656   void prefix(Prefix p);
 657 
 658   public:
 659 
 660   // Creation
 661   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
 662 
 663   // Decoding
 664   static address locate_operand(address inst, WhichOperand which);
 665   static address locate_next_instruction(address inst);
 666 
 667   // Utilities
 668 
 669 #ifdef _LP64
 670  static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) )  <= x   &&   x  <  ( CONST64(1) << (nbits-1) ); }
 671  static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
 672 #else
 673  static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) )  <= x   &&   x  <  ( 1 << (nbits-1) ); }
 674  static bool is_simm32(int32_t x) { return true; }
 675 #endif // LP64
 676 
 677   // Generic instructions
 678   // Does 32bit or 64bit as needed for the platform. In some sense these
 679   // belong in macro assembler but there is no need for both varieties to exist
 680 
 681   void lea(Register dst, Address src);
 682 
 683   void mov(Register dst, Register src);
 684 
 685   void pusha();
 686   void popa();
 687 
 688   void pushf();
 689   void popf();
 690 
 691   void push(int32_t imm32);
 692 
 693   void push(Register src);
 694 
 695   void pop(Register dst);
 696 
 697   // These are dummies to prevent surprise implicit conversions to Register
 698   void push(void* v);
 699   void pop(void* v);
 700 
 701 
 702   // These do register sized moves/scans
 703   void rep_mov();
 704   void rep_set();
 705   void repne_scan();
 706 #ifdef _LP64
 707   void repne_scanl();
 708 #endif
 709 
 710   // Vanilla instructions in lexical order
 711 
 712   void adcl(Register dst, int32_t imm32);
 713   void adcl(Register dst, Address src);
 714   void adcl(Register dst, Register src);
 715 
 716   void adcq(Register dst, int32_t imm32);
 717   void adcq(Register dst, Address src);
 718   void adcq(Register dst, Register src);
 719 
 720 
 721   void addl(Address dst, int32_t imm32);
 722   void addl(Address dst, Register src);
 723   void addl(Register dst, int32_t imm32);
 724   void addl(Register dst, Address src);
 725   void addl(Register dst, Register src);
 726 
 727   void addq(Address dst, int32_t imm32);
 728   void addq(Address dst, Register src);
 729   void addq(Register dst, int32_t imm32);
 730   void addq(Register dst, Address src);
 731   void addq(Register dst, Register src);
 732 
 733 
 734   void addr_nop_4();
 735   void addr_nop_5();
 736   void addr_nop_7();
 737   void addr_nop_8();
 738 
 739   // Add Scalar Double-Precision Floating-Point Values
 740   void addsd(XMMRegister dst, Address src);
 741   void addsd(XMMRegister dst, XMMRegister src);
 742 
 743   // Add Scalar Single-Precision Floating-Point Values
 744   void addss(XMMRegister dst, Address src);
 745   void addss(XMMRegister dst, XMMRegister src);
 746 
 747   void andl(Register dst, int32_t imm32);
 748   void andl(Register dst, Address src);
 749   void andl(Register dst, Register src);
 750 
 751   void andq(Register dst, int32_t imm32);
 752   void andq(Register dst, Address src);
 753   void andq(Register dst, Register src);
 754 
 755 
 756   // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
 757   void andpd(XMMRegister dst, Address src);
 758   void andpd(XMMRegister dst, XMMRegister src);
 759 
 760   void bswapl(Register reg);
 761 
 762   void bswapq(Register reg);
 763 
 764   void call(Label& L, relocInfo::relocType rtype);
 765   void call(Register reg);  // push pc; pc <- reg
 766   void call(Address adr);   // push pc; pc <- adr
 767 
 768   void cdql();
 769 
 770   void cdqq();
 771 
 772   void cld() { emit_byte(0xfc); }
 773 
 774   void clflush(Address adr);
 775 
 776   void cmovl(Condition cc, Register dst, Register src);
 777   void cmovl(Condition cc, Register dst, Address src);
 778 
 779   void cmovq(Condition cc, Register dst, Register src);
 780   void cmovq(Condition cc, Register dst, Address src);
 781 
 782 
 783   void cmpb(Address dst, int imm8);
 784 
 785   void cmpl(Address dst, int32_t imm32);
 786 
 787   void cmpl(Register dst, int32_t imm32);
 788   void cmpl(Register dst, Register src);
 789   void cmpl(Register dst, Address src);
 790 
 791   void cmpq(Address dst, int32_t imm32);
 792   void cmpq(Address dst, Register src);
 793 
 794   void cmpq(Register dst, int32_t imm32);
 795   void cmpq(Register dst, Register src);
 796   void cmpq(Register dst, Address src);
 797 
 798   // these are dummies used to catch attempting to convert NULL to Register
 799   void cmpl(Register dst, void* junk); // dummy
 800   void cmpq(Register dst, void* junk); // dummy
 801 
 802   void cmpw(Address dst, int imm16);
 803 
 804   void cmpxchg8 (Address adr);
 805 
 806   void cmpxchgl(Register reg, Address adr);
 807 
 808   void cmpxchgq(Register reg, Address adr);
 809 
 810   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
 811   void comisd(XMMRegister dst, Address src);
 812 
 813   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
 814   void comiss(XMMRegister dst, Address src);
 815 
 816   // Identify processor type and features
 817   void cpuid() {
 818     emit_byte(0x0F);
 819     emit_byte(0xA2);
 820   }
 821 
 822   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
 823   void cvtsd2ss(XMMRegister dst, XMMRegister src);
 824 
 825   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
 826   void cvtsi2sdl(XMMRegister dst, Register src);
 827   void cvtsi2sdq(XMMRegister dst, Register src);
 828 
 829   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
 830   void cvtsi2ssl(XMMRegister dst, Register src);
 831   void cvtsi2ssq(XMMRegister dst, Register src);
 832 
 833   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
 834   void cvtdq2pd(XMMRegister dst, XMMRegister src);
 835 
 836   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
 837   void cvtdq2ps(XMMRegister dst, XMMRegister src);
 838 
 839   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
 840   void cvtss2sd(XMMRegister dst, XMMRegister src);
 841 
 842   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
 843   void cvttsd2sil(Register dst, Address src);
 844   void cvttsd2sil(Register dst, XMMRegister src);
 845   void cvttsd2siq(Register dst, XMMRegister src);
 846 
 847   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
 848   void cvttss2sil(Register dst, XMMRegister src);
 849   void cvttss2siq(Register dst, XMMRegister src);
 850 
 851   // Divide Scalar Double-Precision Floating-Point Values
 852   void divsd(XMMRegister dst, Address src);
 853   void divsd(XMMRegister dst, XMMRegister src);
 854 
 855   // Divide Scalar Single-Precision Floating-Point Values
 856   void divss(XMMRegister dst, Address src);
 857   void divss(XMMRegister dst, XMMRegister src);
 858 
 859   void emms();
 860 
 861   void fabs();
 862 
 863   void fadd(int i);
 864 
 865   void fadd_d(Address src);
 866   void fadd_s(Address src);
 867 
 868   // "Alternate" versions of x87 instructions place result down in FPU
 869   // stack instead of on TOS
 870 
 871   void fadda(int i); // "alternate" fadd
 872   void faddp(int i = 1);
 873 
 874   void fchs();
 875 
 876   void fcom(int i);
 877 
 878   void fcomp(int i = 1);
 879   void fcomp_d(Address src);
 880   void fcomp_s(Address src);
 881 
 882   void fcompp();
 883 
 884   void fcos();
 885 
 886   void fdecstp();
 887 
 888   void fdiv(int i);
 889   void fdiv_d(Address src);
 890   void fdivr_s(Address src);
 891   void fdiva(int i);  // "alternate" fdiv
 892   void fdivp(int i = 1);
 893 
 894   void fdivr(int i);
 895   void fdivr_d(Address src);
 896   void fdiv_s(Address src);
 897 
 898   void fdivra(int i); // "alternate" reversed fdiv
 899 
 900   void fdivrp(int i = 1);
 901 
 902   void ffree(int i = 0);
 903 
 904   void fild_d(Address adr);
 905   void fild_s(Address adr);
 906 
 907   void fincstp();
 908 
 909   void finit();
 910 
 911   void fist_s (Address adr);
 912   void fistp_d(Address adr);
 913   void fistp_s(Address adr);
 914 
 915   void fld1();
 916 
 917   void fld_d(Address adr);
 918   void fld_s(Address adr);
 919   void fld_s(int index);
 920   void fld_x(Address adr);  // extended-precision (80-bit) format
 921 
 922   void fldcw(Address src);
 923 
 924   void fldenv(Address src);
 925 
 926   void fldlg2();
 927 
 928   void fldln2();
 929 
 930   void fldz();
 931 
 932   void flog();
 933   void flog10();
 934 
 935   void fmul(int i);
 936 
 937   void fmul_d(Address src);
 938   void fmul_s(Address src);
 939 
 940   void fmula(int i);  // "alternate" fmul
 941 
 942   void fmulp(int i = 1);
 943 
 944   void fnsave(Address dst);
 945 
 946   void fnstcw(Address src);
 947 
 948   void fnstsw_ax();
 949 
 950   void fprem();
 951   void fprem1();
 952 
 953   void frstor(Address src);
 954 
 955   void fsin();
 956 
 957   void fsqrt();
 958 
 959   void fst_d(Address adr);
 960   void fst_s(Address adr);
 961 
 962   void fstp_d(Address adr);
 963   void fstp_d(int index);
 964   void fstp_s(Address adr);
 965   void fstp_x(Address adr); // extended-precision (80-bit) format
 966 
 967   void fsub(int i);
 968   void fsub_d(Address src);
 969   void fsub_s(Address src);
 970 
 971   void fsuba(int i);  // "alternate" fsub
 972 
 973   void fsubp(int i = 1);
 974 
 975   void fsubr(int i);
 976   void fsubr_d(Address src);
 977   void fsubr_s(Address src);
 978 
 979   void fsubra(int i); // "alternate" reversed fsub
 980 
 981   void fsubrp(int i = 1);
 982 
 983   void ftan();
 984 
 985   void ftst();
 986 
 987   void fucomi(int i = 1);
 988   void fucomip(int i = 1);
 989 
 990   void fwait();
 991 
 992   void fxch(int i = 1);
 993 
 994   void fxrstor(Address src);
 995 
 996   void fxsave(Address dst);
 997 
 998   void fyl2x();
 999 
1000   void hlt();
1001 
1002   void idivl(Register src);
1003 
1004   void idivq(Register src);
1005 
1006   void imull(Register dst, Register src);
1007   void imull(Register dst, Register src, int value);
1008 
1009   void imulq(Register dst, Register src);
1010   void imulq(Register dst, Register src, int value);
1011 
1012 
1013   // jcc is the generic conditional branch generator to run-
1014   // time routines, jcc is used for branches to labels. jcc
1015   // takes a branch opcode (cc) and a label (L) and generates
1016   // either a backward branch or a forward branch and links it
1017   // to the label fixup chain. Usage:
1018   //
1019   // Label L;      // unbound label
1020   // jcc(cc, L);   // forward branch to unbound label
1021   // bind(L);      // bind label to the current pc
1022   // jcc(cc, L);   // backward branch to bound label
1023   // bind(L);      // illegal: a label may be bound only once
1024   //
1025   // Note: The same Label can be used for forward and backward branches
1026   // but it may be bound only once.
1027 
1028   void jcc(Condition cc, Label& L,
1029            relocInfo::relocType rtype = relocInfo::none);
1030 
1031   // Conditional jump to a 8-bit offset to L.
1032   // WARNING: be very careful using this for forward jumps.  If the label is
1033   // not bound within an 8-bit offset of this instruction, a run-time error
1034   // will occur.
1035   void jccb(Condition cc, Label& L);
1036 
1037   void jmp(Address entry);    // pc <- entry
1038 
1039   // Label operations & relative jumps (PPUM Appendix D)
1040   void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
1041 
1042   void jmp(Register entry); // pc <- entry
1043 
1044   // Unconditional 8-bit offset jump to L.
1045   // WARNING: be very careful using this for forward jumps.  If the label is
1046   // not bound within an 8-bit offset of this instruction, a run-time error
1047   // will occur.
1048   void jmpb(Label& L);
1049 
1050   void ldmxcsr( Address src );
1051 
1052   void leal(Register dst, Address src);
1053 
1054   void leaq(Register dst, Address src);
1055 
1056   void lfence() {
1057     emit_byte(0x0F);
1058     emit_byte(0xAE);
1059     emit_byte(0xE8);
1060   }
1061 
1062   void lock();
1063 
1064   enum Membar_mask_bits {
1065     StoreStore = 1 << 3,
1066     LoadStore  = 1 << 2,
1067     StoreLoad  = 1 << 1,
1068     LoadLoad   = 1 << 0
1069   };
1070 
1071   // Serializes memory and blows flags
1072   void membar(Membar_mask_bits order_constraint) {
1073     if (os::is_MP()) {
1074       // We only have to handle StoreLoad
1075       if (order_constraint & StoreLoad) {
1076         // All usable chips support "locked" instructions which suffice
1077         // as barriers, and are much faster than the alternative of
1078         // using cpuid instruction. We use here a locked add [esp],0.
1079         // This is conveniently otherwise a no-op except for blowing
1080         // flags.
1081         // Any change to this code may need to revisit other places in
1082         // the code where this idiom is used, in particular the
1083         // orderAccess code.
1084         lock();
1085         addl(Address(rsp, 0), 0);// Assert the lock# signal here
1086       }
1087     }
1088   }
1089 
1090   void mfence();
1091 
1092   // Moves
1093 
1094   void mov64(Register dst, int64_t imm64);
1095 
1096   void movb(Address dst, Register src);
1097   void movb(Address dst, int imm8);
1098   void movb(Register dst, Address src);
1099 
1100   void movdl(XMMRegister dst, Register src);
1101   void movdl(Register dst, XMMRegister src);
1102 
1103   // Move Double Quadword
1104   void movdq(XMMRegister dst, Register src);
1105   void movdq(Register dst, XMMRegister src);
1106 
1107   // Move Aligned Double Quadword
1108   void movdqa(Address     dst, XMMRegister src);
1109   void movdqa(XMMRegister dst, Address src);
1110   void movdqa(XMMRegister dst, XMMRegister src);
1111 
1112   // Move Unaligned Double Quadword
1113   void movdqu(Address     dst, XMMRegister src);
1114   void movdqu(XMMRegister dst, Address src);
1115   void movdqu(XMMRegister dst, XMMRegister src);
1116 
1117   void movl(Register dst, int32_t imm32);
1118   void movl(Address dst, int32_t imm32);
1119   void movl(Register dst, Register src);
1120   void movl(Register dst, Address src);
1121   void movl(Address dst, Register src);
1122 
1123   // These dummies prevent using movl from converting a zero (like NULL) into Register
1124   // by giving the compiler two choices it can't resolve
1125 
1126   void movl(Address  dst, void* junk);
1127   void movl(Register dst, void* junk);
1128 
1129 #ifdef _LP64
1130   void movq(Register dst, Register src);
1131   void movq(Register dst, Address src);
1132   void movq(Address dst, Register src);
1133 #endif
1134 
1135   void movq(Address     dst, MMXRegister src );
1136   void movq(MMXRegister dst, Address src );
1137 
1138 #ifdef _LP64
1139   // These dummies prevent using movq from converting a zero (like NULL) into Register
1140   // by giving the compiler two choices it can't resolve
1141 
1142   void movq(Address  dst, void* dummy);
1143   void movq(Register dst, void* dummy);
1144 #endif
1145 
1146   // Move Quadword
1147   void movq(Address     dst, XMMRegister src);
1148   void movq(XMMRegister dst, Address src);
1149 
1150   void movsbl(Register dst, Address src);
1151   void movsbl(Register dst, Register src);
1152 
1153 #ifdef _LP64
1154   void movsbq(Register dst, Address src);
1155   void movsbq(Register dst, Register src);
1156 
1157   // Move signed 32bit immediate to 64bit extending sign
1158   void movslq(Address dst, int32_t imm64);
1159   void movslq(Register dst, int32_t imm64);
1160 
1161   void movslq(Register dst, Address src);
1162   void movslq(Register dst, Register src);
1163   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1164 #endif
1165 
1166   void movswl(Register dst, Address src);
1167   void movswl(Register dst, Register src);
1168 
1169 #ifdef _LP64
1170   void movswq(Register dst, Address src);
1171   void movswq(Register dst, Register src);
1172 #endif
1173 
1174   void movw(Address dst, int imm16);
1175   void movw(Register dst, Address src);
1176   void movw(Address dst, Register src);
1177 
1178   void movzbl(Register dst, Address src);
1179   void movzbl(Register dst, Register src);
1180 
1181 #ifdef _LP64
1182   void movzbq(Register dst, Address src);
1183   void movzbq(Register dst, Register src);
1184 #endif
1185 
1186   void movzwl(Register dst, Address src);
1187   void movzwl(Register dst, Register src);
1188 
1189 #ifdef _LP64
1190   void movzwq(Register dst, Address src);
1191   void movzwq(Register dst, Register src);
1192 #endif
1193 
1194   void mull(Address src);
1195   void mull(Register src);
1196 
1197   // Multiply Scalar Double-Precision Floating-Point Values
1198   void mulsd(XMMRegister dst, Address src);
1199   void mulsd(XMMRegister dst, XMMRegister src);
1200 
1201   // Multiply Scalar Single-Precision Floating-Point Values
1202   void mulss(XMMRegister dst, Address src);
1203   void mulss(XMMRegister dst, XMMRegister src);
1204 
1205   void negl(Register dst);
1206 
1207 #ifdef _LP64
1208   void negq(Register dst);
1209 #endif
1210 
1211   void nop(int i = 1);
1212 
1213   void notl(Register dst);
1214 
1215 #ifdef _LP64
1216   void notq(Register dst);
1217 #endif
1218 
1219   void orl(Address dst, int32_t imm32);
1220   void orl(Register dst, int32_t imm32);
1221   void orl(Register dst, Address src);
1222   void orl(Register dst, Register src);
1223 
1224   void orq(Address dst, int32_t imm32);
1225   void orq(Register dst, int32_t imm32);
1226   void orq(Register dst, Address src);
1227   void orq(Register dst, Register src);
1228 
1229   // SSE4.2 string instructions
1230   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1231   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1232 
1233   void popl(Address dst);
1234 
1235 #ifdef _LP64
1236   void popq(Address dst);
1237 #endif
1238 
1239   void popcntl(Register dst, Address src);
1240   void popcntl(Register dst, Register src);
1241 
1242 #ifdef _LP64
1243   void popcntq(Register dst, Address src);
1244   void popcntq(Register dst, Register src);
1245 #endif
1246 
1247   // Prefetches (SSE, SSE2, 3DNOW only)
1248 
1249   void prefetchnta(Address src);
1250   void prefetchr(Address src);
1251   void prefetcht0(Address src);
1252   void prefetcht1(Address src);
1253   void prefetcht2(Address src);
1254   void prefetchw(Address src);
1255 
1256   // Shuffle Packed Doublewords
1257   void pshufd(XMMRegister dst, XMMRegister src, int mode);
1258   void pshufd(XMMRegister dst, Address src,     int mode);
1259 
1260   // Shuffle Packed Low Words
1261   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1262   void pshuflw(XMMRegister dst, Address src,     int mode);
1263 
1264   // Shift Right Logical Quadword Immediate
1265   void psrlq(XMMRegister dst, int shift);
1266 
1267   // Logical Compare Double Quadword
1268   void ptest(XMMRegister dst, XMMRegister src);
1269   void ptest(XMMRegister dst, Address src);
1270 
1271   // Interleave Low Bytes
1272   void punpcklbw(XMMRegister dst, XMMRegister src);
1273 
1274   void pushl(Address src);
1275 
1276   void pushq(Address src);
1277 
1278   // Xor Packed Byte Integer Values
1279   void pxor(XMMRegister dst, Address src);
1280   void pxor(XMMRegister dst, XMMRegister src);
1281 
1282   void rcll(Register dst, int imm8);
1283 
1284   void rclq(Register dst, int imm8);
1285 
1286   void ret(int imm16);
1287 
1288   void sahf();
1289 
1290   void sarl(Register dst, int imm8);
1291   void sarl(Register dst);
1292 
1293   void sarq(Register dst, int imm8);
1294   void sarq(Register dst);
1295 
1296   void sbbl(Address dst, int32_t imm32);
1297   void sbbl(Register dst, int32_t imm32);
1298   void sbbl(Register dst, Address src);
1299   void sbbl(Register dst, Register src);
1300 
1301   void sbbq(Address dst, int32_t imm32);
1302   void sbbq(Register dst, int32_t imm32);
1303   void sbbq(Register dst, Address src);
1304   void sbbq(Register dst, Register src);
1305 
1306   void setb(Condition cc, Register dst);
1307 
1308   void shldl(Register dst, Register src);
1309 
1310   void shll(Register dst, int imm8);
1311   void shll(Register dst);
1312 
1313   void shlq(Register dst, int imm8);
1314   void shlq(Register dst);
1315 
1316   void shrdl(Register dst, Register src);
1317 
1318   void shrl(Register dst, int imm8);
1319   void shrl(Register dst);
1320 
1321   void shrq(Register dst, int imm8);
1322   void shrq(Register dst);
1323 
1324   void smovl(); // QQQ generic?
1325 
1326   // Compute Square Root of Scalar Double-Precision Floating-Point Value
1327   void sqrtsd(XMMRegister dst, Address src);
1328   void sqrtsd(XMMRegister dst, XMMRegister src);
1329 
1330   void std() { emit_byte(0xfd); }
1331 
1332   void stmxcsr( Address dst );
1333 
1334   void subl(Address dst, int32_t imm32);
1335   void subl(Address dst, Register src);
1336   void subl(Register dst, int32_t imm32);
1337   void subl(Register dst, Address src);
1338   void subl(Register dst, Register src);
1339 
1340   void subq(Address dst, int32_t imm32);
1341   void subq(Address dst, Register src);
1342   void subq(Register dst, int32_t imm32);
1343   void subq(Register dst, Address src);
1344   void subq(Register dst, Register src);
1345 
1346 
1347   // Subtract Scalar Double-Precision Floating-Point Values
1348   void subsd(XMMRegister dst, Address src);
1349   void subsd(XMMRegister dst, XMMRegister src);
1350 
1351   // Subtract Scalar Single-Precision Floating-Point Values
1352   void subss(XMMRegister dst, Address src);
1353   void subss(XMMRegister dst, XMMRegister src);
1354 
1355   void testb(Register dst, int imm8);
1356 
1357   void testl(Register dst, int32_t imm32);
1358   void testl(Register dst, Register src);
1359   void testl(Register dst, Address src);
1360 
1361   void testq(Register dst, int32_t imm32);
1362   void testq(Register dst, Register src);
1363 
1364 
1365   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1366   void ucomisd(XMMRegister dst, Address src);
1367   void ucomisd(XMMRegister dst, XMMRegister src);
1368 
1369   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1370   void ucomiss(XMMRegister dst, Address src);
1371   void ucomiss(XMMRegister dst, XMMRegister src);
1372 
1373   void xaddl(Address dst, Register src);
1374 
1375   void xaddq(Address dst, Register src);
1376 
1377   void xchgl(Register reg, Address adr);
1378   void xchgl(Register dst, Register src);
1379 
1380   void xchgq(Register reg, Address adr);
1381   void xchgq(Register dst, Register src);
1382 
1383   void xorl(Register dst, int32_t imm32);
1384   void xorl(Register dst, Address src);
1385   void xorl(Register dst, Register src);
1386 
1387   void xorq(Register dst, Address src);
1388   void xorq(Register dst, Register src);
1389 
1390   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1391   void xorpd(XMMRegister dst, Address src);
1392   void xorpd(XMMRegister dst, XMMRegister src);
1393 
1394   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1395   void xorps(XMMRegister dst, Address src);
1396   void xorps(XMMRegister dst, XMMRegister src);
1397 
1398   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1399 };
1400 
1401 
1402 // MacroAssembler extends Assembler by frequently used macros.
1403 //
1404 // Instructions for which a 'better' code sequence exists depending
1405 // on arguments should also go in here.
1406 
1407 class MacroAssembler: public Assembler {
1408   friend class LIR_Assembler;
1409   friend class Runtime1;      // as_Address()
1410  protected:
1411 
1412   Address as_Address(AddressLiteral adr);
1413   Address as_Address(ArrayAddress adr);
1414 
1415   // Support for VM calls
1416   //
1417   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1418   // may customize this version by overriding it for its purposes (e.g., to save/restore
1419   // additional registers when doing a VM call).
1420 #ifdef CC_INTERP
1421   // c++ interpreter never wants to use interp_masm version of call_VM
1422   #define VIRTUAL
1423 #else
1424   #define VIRTUAL virtual
1425 #endif
1426 
1427   VIRTUAL void call_VM_leaf_base(
1428     address entry_point,               // the entry point
1429     int     number_of_arguments        // the number of arguments to pop after the call
1430   );
1431 
1432   // This is the base routine called by the different versions of call_VM. The interpreter
1433   // may customize this version by overriding it for its purposes (e.g., to save/restore
1434   // additional registers when doing a VM call).
1435   //
1436   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
1437   // returns the register which contains the thread upon return. If a thread register has been
1438   // specified, the return value will correspond to that register. If no last_java_sp is specified
1439   // (noreg) than rsp will be used instead.
1440   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
1441     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
1442     Register java_thread,              // the thread if computed before     ; use noreg otherwise
1443     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
1444     address  entry_point,              // the entry point
1445     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
1446     bool     check_exceptions          // whether to check for pending exceptions after return
1447   );
1448 
1449   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1450   // The implementation is only non-empty for the InterpreterMacroAssembler,
1451   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
1452   virtual void check_and_handle_popframe(Register java_thread);
1453   virtual void check_and_handle_earlyret(Register java_thread);
1454 
1455   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
1456 
1457   // helpers for FPU flag access
1458   // tmp is a temporary register, if none is available use noreg
1459   void save_rax   (Register tmp);
1460   void restore_rax(Register tmp);
1461 
1462  public:
1463   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1464 
1465   // Support for NULL-checks
1466   //
1467   // Generates code that causes a NULL OS exception if the content of reg is NULL.
1468   // If the accessed location is M[reg + offset] and the offset is known, provide the
1469   // offset. No explicit code generation is needed if the offset is within a certain
1470   // range (0 <= offset <= page_size).
1471 
1472   void null_check(Register reg, int offset = -1);
1473   static bool needs_explicit_null_check(intptr_t offset);
1474 
1475   // Required platform-specific helpers for Label::patch_instructions.
1476   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
1477   void pd_patch_instruction(address branch, address target);
1478 #ifndef PRODUCT
1479   static void pd_print_patched_instruction(address branch);
1480 #endif
1481 
1482   // The following 4 methods return the offset of the appropriate move instruction
1483 
1484   // Support for fast byte/short loading with zero extension (depending on particular CPU)
1485   int load_unsigned_byte(Register dst, Address src);
1486   int load_unsigned_short(Register dst, Address src);
1487 
1488   // Support for fast byte/short loading with sign extension (depending on particular CPU)
1489   int load_signed_byte(Register dst, Address src);
1490   int load_signed_short(Register dst, Address src);
1491 
1492   // Support for sign-extension (hi:lo = extend_sign(lo))
1493   void extend_sign(Register hi, Register lo);
1494 
1495   // Loading values by size and signed-ness
1496   void load_sized_value(Register dst, Address src, int size_in_bytes, bool is_signed);
1497 
1498   // Support for inc/dec with optimal instruction selection depending on value
1499 
1500   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
1501   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
1502 
1503   void decrementl(Address dst, int value = 1);
1504   void decrementl(Register reg, int value = 1);
1505 
1506   void decrementq(Register reg, int value = 1);
1507   void decrementq(Address dst, int value = 1);
1508 
1509   void incrementl(Address dst, int value = 1);
1510   void incrementl(Register reg, int value = 1);
1511 
1512   void incrementq(Register reg, int value = 1);
1513   void incrementq(Address dst, int value = 1);
1514 
1515 
1516   // Support optimal SSE move instructions.
1517   void movflt(XMMRegister dst, XMMRegister src) {
1518     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
1519     else                       { movss (dst, src); return; }
1520   }
1521   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
1522   void movflt(XMMRegister dst, AddressLiteral src);
1523   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
1524 
1525   void movdbl(XMMRegister dst, XMMRegister src) {
1526     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
1527     else                       { movsd (dst, src); return; }
1528   }
1529 
1530   void movdbl(XMMRegister dst, AddressLiteral src);
1531 
1532   void movdbl(XMMRegister dst, Address src) {
1533     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
1534     else                         { movlpd(dst, src); return; }
1535   }
1536   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
1537 
1538   void incrementl(AddressLiteral dst);
1539   void incrementl(ArrayAddress dst);
1540 
1541   // Alignment
1542   void align(int modulus);
1543 
1544   // Misc
1545   void fat_nop(); // 5 byte nop
1546 
1547   // Stack frame creation/removal
1548   void enter();
1549   void leave();
1550 
1551   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
1552   // The pointer will be loaded into the thread register.
1553   void get_thread(Register thread);
1554 
1555 
1556   // Support for VM calls
1557   //
1558   // It is imperative that all calls into the VM are handled via the call_VM macros.
1559   // They make sure that the stack linkage is setup correctly. call_VM's correspond
1560   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1561 
1562 
1563   void call_VM(Register oop_result,
1564                address entry_point,
1565                bool check_exceptions = true);
1566   void call_VM(Register oop_result,
1567                address entry_point,
1568                Register arg_1,
1569                bool check_exceptions = true);
1570   void call_VM(Register oop_result,
1571                address entry_point,
1572                Register arg_1, Register arg_2,
1573                bool check_exceptions = true);
1574   void call_VM(Register oop_result,
1575                address entry_point,
1576                Register arg_1, Register arg_2, Register arg_3,
1577                bool check_exceptions = true);
1578 
1579   // Overloadings with last_Java_sp
1580   void call_VM(Register oop_result,
1581                Register last_java_sp,
1582                address entry_point,
1583                int number_of_arguments = 0,
1584                bool check_exceptions = true);
1585   void call_VM(Register oop_result,
1586                Register last_java_sp,
1587                address entry_point,
1588                Register arg_1, bool
1589                check_exceptions = true);
1590   void call_VM(Register oop_result,
1591                Register last_java_sp,
1592                address entry_point,
1593                Register arg_1, Register arg_2,
1594                bool check_exceptions = true);
1595   void call_VM(Register oop_result,
1596                Register last_java_sp,
1597                address entry_point,
1598                Register arg_1, Register arg_2, Register arg_3,
1599                bool check_exceptions = true);
1600 
1601   void call_VM_leaf(address entry_point,
1602                     int number_of_arguments = 0);
1603   void call_VM_leaf(address entry_point,
1604                     Register arg_1);
1605   void call_VM_leaf(address entry_point,
1606                     Register arg_1, Register arg_2);
1607   void call_VM_leaf(address entry_point,
1608                     Register arg_1, Register arg_2, Register arg_3);
1609 
1610   // last Java Frame (fills frame anchor)
1611   void set_last_Java_frame(Register thread,
1612                            Register last_java_sp,
1613                            Register last_java_fp,
1614                            address last_java_pc);
1615 
1616   // thread in the default location (r15_thread on 64bit)
1617   void set_last_Java_frame(Register last_java_sp,
1618                            Register last_java_fp,
1619                            address last_java_pc);
1620 
1621   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
1622 
1623   // thread in the default location (r15_thread on 64bit)
1624   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
1625 
1626   // Stores
1627   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
1628   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
1629 
1630   void g1_write_barrier_pre(Register obj,
1631 #ifndef _LP64
1632                             Register thread,
1633 #endif
1634                             Register tmp,
1635                             Register tmp2,
1636                             bool     tosca_live);
1637   void g1_write_barrier_post(Register store_addr,
1638                              Register new_val,
1639 #ifndef _LP64
1640                              Register thread,
1641 #endif
1642                              Register tmp,
1643                              Register tmp2);
1644 
1645 
1646   // split store_check(Register obj) to enhance instruction interleaving
1647   void store_check_part_1(Register obj);
1648   void store_check_part_2(Register obj);
1649 
1650   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
1651   void c2bool(Register x);
1652 
1653   // C++ bool manipulation
1654 
1655   void movbool(Register dst, Address src);
1656   void movbool(Address dst, bool boolconst);
1657   void movbool(Address dst, Register src);
1658   void testbool(Register dst);
1659 
1660   // oop manipulations
1661   void load_klass(Register dst, Register src);
1662   void store_klass(Register dst, Register src);
1663 
1664   void load_prototype_header(Register dst, Register src);
1665 
1666 #ifdef _LP64
1667   void store_klass_gap(Register dst, Register src);
1668 
1669   void load_heap_oop(Register dst, Address src);
1670   void store_heap_oop(Address dst, Register src);
1671   void encode_heap_oop(Register r);
1672   void decode_heap_oop(Register r);
1673   void encode_heap_oop_not_null(Register r);
1674   void decode_heap_oop_not_null(Register r);
1675   void encode_heap_oop_not_null(Register dst, Register src);
1676   void decode_heap_oop_not_null(Register dst, Register src);
1677 
1678   void set_narrow_oop(Register dst, jobject obj);
1679   void set_narrow_oop(Address dst, jobject obj);
1680   void cmp_narrow_oop(Register dst, jobject obj);
1681   void cmp_narrow_oop(Address dst, jobject obj);
1682 
1683   // if heap base register is used - reinit it with the correct value
1684   void reinit_heapbase();
1685 #endif // _LP64
1686 
1687   // Int division/remainder for Java
1688   // (as idivl, but checks for special case as described in JVM spec.)
1689   // returns idivl instruction offset for implicit exception handling
1690   int corrected_idivl(Register reg);
1691 
1692   // Long division/remainder for Java
1693   // (as idivq, but checks for special case as described in JVM spec.)
1694   // returns idivq instruction offset for implicit exception handling
1695   int corrected_idivq(Register reg);
1696 
1697   void int3();
1698 
1699   // Long operation macros for a 32bit cpu
1700   // Long negation for Java
1701   void lneg(Register hi, Register lo);
1702 
1703   // Long multiplication for Java
1704   // (destroys contents of eax, ebx, ecx and edx)
1705   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
1706 
1707   // Long shifts for Java
1708   // (semantics as described in JVM spec.)
1709   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
1710   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
1711 
1712   // Long compare for Java
1713   // (semantics as described in JVM spec.)
1714   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
1715 
1716 
1717   // misc
1718 
1719   // Sign extension
1720   void sign_extend_short(Register reg);
1721   void sign_extend_byte(Register reg);
1722 
1723   // Division by power of 2, rounding towards 0
1724   void division_with_shift(Register reg, int shift_value);
1725 
1726   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
1727   //
1728   // CF (corresponds to C0) if x < y
1729   // PF (corresponds to C2) if unordered
1730   // ZF (corresponds to C3) if x = y
1731   //
1732   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1733   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
1734   void fcmp(Register tmp);
1735   // Variant of the above which allows y to be further down the stack
1736   // and which only pops x and y if specified. If pop_right is
1737   // specified then pop_left must also be specified.
1738   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
1739 
1740   // Floating-point comparison for Java
1741   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
1742   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1743   // (semantics as described in JVM spec.)
1744   void fcmp2int(Register dst, bool unordered_is_less);
1745   // Variant of the above which allows y to be further down the stack
1746   // and which only pops x and y if specified. If pop_right is
1747   // specified then pop_left must also be specified.
1748   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
1749 
1750   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
1751   // tmp is a temporary register, if none is available use noreg
1752   void fremr(Register tmp);
1753 
1754 
1755   // same as fcmp2int, but using SSE2
1756   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
1757   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
1758 
1759   // Inlined sin/cos generator for Java; must not use CPU instruction
1760   // directly on Intel as it does not have high enough precision
1761   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
1762   // number of FPU stack slots in use; all but the topmost will
1763   // require saving if a slow case is necessary. Assumes argument is
1764   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
1765   // this code.
1766   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
1767 
1768   // branch to L if FPU flag C2 is set/not set
1769   // tmp is a temporary register, if none is available use noreg
1770   void jC2 (Register tmp, Label& L);
1771   void jnC2(Register tmp, Label& L);
1772 
1773   // Pop ST (ffree & fincstp combined)
1774   void fpop();
1775 
1776   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1777   void push_fTOS();
1778 
1779   // pops double TOS element from CPU stack and pushes on FPU stack
1780   void pop_fTOS();
1781 
1782   void empty_FPU_stack();
1783 
1784   void push_IU_state();
1785   void pop_IU_state();
1786 
1787   void push_FPU_state();
1788   void pop_FPU_state();
1789 
1790   void push_CPU_state();
1791   void pop_CPU_state();
1792 
1793   // Round up to a power of two
1794   void round_to(Register reg, int modulus);
1795 
1796   // Callee saved registers handling
1797   void push_callee_saved_registers();
1798   void pop_callee_saved_registers();
1799 
1800   // allocation
1801   void eden_allocate(
1802     Register obj,                      // result: pointer to object after successful allocation
1803     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1804     int      con_size_in_bytes,        // object size in bytes if   known at compile time
1805     Register t1,                       // temp register
1806     Label&   slow_case                 // continuation point if fast allocation fails
1807   );
1808   void tlab_allocate(
1809     Register obj,                      // result: pointer to object after successful allocation
1810     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1811     int      con_size_in_bytes,        // object size in bytes if   known at compile time
1812     Register t1,                       // temp register
1813     Register t2,                       // temp register
1814     Label&   slow_case                 // continuation point if fast allocation fails
1815   );
1816   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
1817 
1818   // interface method calling
1819   void lookup_interface_method(Register recv_klass,
1820                                Register intf_klass,
1821                                RegisterOrConstant itable_index,
1822                                Register method_result,
1823                                Register scan_temp,
1824                                Label& no_such_interface);
1825 
1826   // Test sub_klass against super_klass, with fast and slow paths.
1827 
1828   // The fast path produces a tri-state answer: yes / no / maybe-slow.
1829   // One of the three labels can be NULL, meaning take the fall-through.
1830   // If super_check_offset is -1, the value is loaded up from super_klass.
1831   // No registers are killed, except temp_reg.
1832   void check_klass_subtype_fast_path(Register sub_klass,
1833                                      Register super_klass,
1834                                      Register temp_reg,
1835                                      Label* L_success,
1836                                      Label* L_failure,
1837                                      Label* L_slow_path,
1838                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
1839 
1840   // The rest of the type check; must be wired to a corresponding fast path.
1841   // It does not repeat the fast path logic, so don't use it standalone.
1842   // The temp_reg and temp2_reg can be noreg, if no temps are available.
1843   // Updates the sub's secondary super cache as necessary.
1844   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
1845   void check_klass_subtype_slow_path(Register sub_klass,
1846                                      Register super_klass,
1847                                      Register temp_reg,
1848                                      Register temp2_reg,
1849                                      Label* L_success,
1850                                      Label* L_failure,
1851                                      bool set_cond_codes = false);
1852 
1853   // Simplified, combined version, good for typical uses.
1854   // Falls through on failure.
1855   void check_klass_subtype(Register sub_klass,
1856                            Register super_klass,
1857                            Register temp_reg,
1858                            Label& L_success);
1859 
1860   // method handles (JSR 292)
1861   void check_method_handle_type(Register mtype_reg, Register mh_reg,
1862                                 Register temp_reg,
1863                                 Label& wrong_method_type);
1864   void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
1865                                   Register temp_reg);
1866   void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
1867   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1868 
1869 
1870   //----
1871   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
1872 
1873   // Debugging
1874 
1875   // only if +VerifyOops
1876   void verify_oop(Register reg, const char* s = "broken oop");
1877   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
1878 
1879   // only if +VerifyFPU
1880   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
1881 
1882   // prints msg, dumps registers and stops execution
1883   void stop(const char* msg);
1884 
1885   // prints msg and continues
1886   void warn(const char* msg);
1887 
1888   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
1889   static void debug64(char* msg, int64_t pc, int64_t regs[]);
1890 
1891   void os_breakpoint();
1892 
1893   void untested()                                { stop("untested"); }
1894 
1895   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, sizeof(b), "unimplemented: %s", what);  stop(b); }
1896 
1897   void should_not_reach_here()                   { stop("should not reach here"); }
1898 
1899   void print_CPU_state();
1900 
1901   // Stack overflow checking
1902   void bang_stack_with_offset(int offset) {
1903     // stack grows down, caller passes positive offset
1904     assert(offset > 0, "must bang with negative offset");
1905     movl(Address(rsp, (-offset)), rax);
1906   }
1907 
1908   // Writes to stack successive pages until offset reached to check for
1909   // stack overflow + shadow pages.  Also, clobbers tmp
1910   void bang_stack_size(Register size, Register tmp);
1911 
1912   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
1913                                                 Register tmp,
1914                                                 int offset);
1915 
1916   // Support for serializing memory accesses between threads
1917   void serialize_memory(Register thread, Register tmp);
1918 
1919   void verify_tlab();
1920 
1921   // Biased locking support
1922   // lock_reg and obj_reg must be loaded up with the appropriate values.
1923   // swap_reg must be rax, and is killed.
1924   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
1925   // be killed; if not supplied, push/pop will be used internally to
1926   // allocate a temporary (inefficient, avoid if possible).
1927   // Optional slow case is for implementations (interpreter and C1) which branch to
1928   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
1929   // Returns offset of first potentially-faulting instruction for null
1930   // check info (currently consumed only by C1). If
1931   // swap_reg_contains_mark is true then returns -1 as it is assumed
1932   // the calling code has already passed any potential faults.
1933   int biased_locking_enter(Register lock_reg, Register obj_reg,
1934                            Register swap_reg, Register tmp_reg,
1935                            bool swap_reg_contains_mark,
1936                            Label& done, Label* slow_case = NULL,
1937                            BiasedLockingCounters* counters = NULL);
1938   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
1939 
1940 
1941   Condition negate_condition(Condition cond);
1942 
1943   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
1944   // operands. In general the names are modified to avoid hiding the instruction in Assembler
1945   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
1946   // here in MacroAssembler. The major exception to this rule is call
1947 
1948   // Arithmetics
1949 
1950 
1951   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
1952   void addptr(Address dst, Register src);
1953 
1954   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
1955   void addptr(Register dst, int32_t src);
1956   void addptr(Register dst, Register src);
1957 
1958   void andptr(Register dst, int32_t src);
1959   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
1960 
1961   void cmp8(AddressLiteral src1, int imm);
1962 
1963   // renamed to drag out the casting of address to int32_t/intptr_t
1964   void cmp32(Register src1, int32_t imm);
1965 
1966   void cmp32(AddressLiteral src1, int32_t imm);
1967   // compare reg - mem, or reg - &mem
1968   void cmp32(Register src1, AddressLiteral src2);
1969 
1970   void cmp32(Register src1, Address src2);
1971 
1972 #ifndef _LP64
1973   void cmpoop(Address dst, jobject obj);
1974   void cmpoop(Register dst, jobject obj);
1975 #endif // _LP64
1976 
1977   // NOTE src2 must be the lval. This is NOT an mem-mem compare
1978   void cmpptr(Address src1, AddressLiteral src2);
1979 
1980   void cmpptr(Register src1, AddressLiteral src2);
1981 
1982   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
1983   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
1984   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
1985 
1986   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
1987   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
1988 
1989   // cmp64 to avoild hiding cmpq
1990   void cmp64(Register src1, AddressLiteral src);
1991 
1992   void cmpxchgptr(Register reg, Address adr);
1993 
1994   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
1995 
1996 
1997   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
1998 
1999 
2000   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
2001 
2002   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
2003 
2004   void shlptr(Register dst, int32_t shift);
2005   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
2006 
2007   void shrptr(Register dst, int32_t shift);
2008   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
2009 
2010   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
2011   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
2012 
2013   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2014 
2015   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2016   void subptr(Register dst, int32_t src);
2017   void subptr(Register dst, Register src);
2018 
2019 
2020   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2021   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2022 
2023   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2024   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2025 
2026   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
2027 
2028 
2029 
2030   // Helper functions for statistics gathering.
2031   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
2032   void cond_inc32(Condition cond, AddressLiteral counter_addr);
2033   // Unconditional atomic increment.
2034   void atomic_incl(AddressLiteral counter_addr);
2035 
2036   void lea(Register dst, AddressLiteral adr);
2037   void lea(Address dst, AddressLiteral adr);
2038   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
2039 
2040   void leal32(Register dst, Address src) { leal(dst, src); }
2041 
2042   void test32(Register src1, AddressLiteral src2);
2043 
2044   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2045   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2046   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2047 
2048   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
2049   void testptr(Register src1, Register src2);
2050 
2051   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2052   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2053 
2054   // Calls
2055 
2056   void call(Label& L, relocInfo::relocType rtype);
2057   void call(Register entry);
2058 
2059   // NOTE: this call tranfers to the effective address of entry NOT
2060   // the address contained by entry. This is because this is more natural
2061   // for jumps/calls.
2062   void call(AddressLiteral entry);
2063 
2064   // Jumps
2065 
2066   // NOTE: these jumps tranfer to the effective address of dst NOT
2067   // the address contained by dst. This is because this is more natural
2068   // for jumps/calls.
2069   void jump(AddressLiteral dst);
2070   void jump_cc(Condition cc, AddressLiteral dst);
2071 
2072   // 32bit can do a case table jump in one instruction but we no longer allow the base
2073   // to be installed in the Address class. This jump will tranfers to the address
2074   // contained in the location described by entry (not the address of entry)
2075   void jump(ArrayAddress entry);
2076 
2077   // Floating
2078 
2079   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
2080   void andpd(XMMRegister dst, AddressLiteral src);
2081 
2082   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
2083   void comiss(XMMRegister dst, AddressLiteral src);
2084 
2085   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
2086   void comisd(XMMRegister dst, AddressLiteral src);
2087 
2088   void fldcw(Address src) { Assembler::fldcw(src); }
2089   void fldcw(AddressLiteral src);
2090 
2091   void fld_s(int index)   { Assembler::fld_s(index); }
2092   void fld_s(Address src) { Assembler::fld_s(src); }
2093   void fld_s(AddressLiteral src);
2094 
2095   void fld_d(Address src) { Assembler::fld_d(src); }
2096   void fld_d(AddressLiteral src);
2097 
2098   void fld_x(Address src) { Assembler::fld_x(src); }
2099   void fld_x(AddressLiteral src);
2100 
2101   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
2102   void ldmxcsr(AddressLiteral src);
2103 
2104 private:
2105   // these are private because users should be doing movflt/movdbl
2106 
2107   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
2108   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
2109   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
2110   void movss(XMMRegister dst, AddressLiteral src);
2111 
2112   void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
2113   void movlpd(XMMRegister dst, AddressLiteral src);
2114 
2115 public:
2116 
2117   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
2118   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
2119   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
2120   void movsd(XMMRegister dst, AddressLiteral src);
2121 
2122   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
2123   void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
2124   void ucomiss(XMMRegister dst, AddressLiteral src);
2125 
2126   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
2127   void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
2128   void ucomisd(XMMRegister dst, AddressLiteral src);
2129 
2130   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
2131   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
2132   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
2133   void xorpd(XMMRegister dst, AddressLiteral src);
2134 
2135   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
2136   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
2137   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
2138   void xorps(XMMRegister dst, AddressLiteral src);
2139 
2140   // Data
2141 
2142   void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2143 
2144   void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2145   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2146 
2147   void movoop(Register dst, jobject obj);
2148   void movoop(Address dst, jobject obj);
2149 
2150   void movptr(ArrayAddress dst, Register src);
2151   // can this do an lea?
2152   void movptr(Register dst, ArrayAddress src);
2153 
2154   void movptr(Register dst, Address src);
2155 
2156   void movptr(Register dst, AddressLiteral src);
2157 
2158   void movptr(Register dst, intptr_t src);
2159   void movptr(Register dst, Register src);
2160   void movptr(Address dst, intptr_t src);
2161 
2162   void movptr(Address dst, Register src);
2163 
2164 #ifdef _LP64
2165   // Generally the next two are only used for moving NULL
2166   // Although there are situations in initializing the mark word where
2167   // they could be used. They are dangerous.
2168 
2169   // They only exist on LP64 so that int32_t and intptr_t are not the same
2170   // and we have ambiguous declarations.
2171 
2172   void movptr(Address dst, int32_t imm32);
2173   void movptr(Register dst, int32_t imm32);
2174 #endif // _LP64
2175 
2176   // to avoid hiding movl
2177   void mov32(AddressLiteral dst, Register src);
2178   void mov32(Register dst, AddressLiteral src);
2179 
2180   // to avoid hiding movb
2181   void movbyte(ArrayAddress dst, int src);
2182 
2183   // Can push value or effective address
2184   void pushptr(AddressLiteral src);
2185 
2186   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
2187   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
2188 
2189   void pushoop(jobject obj);
2190 
2191   // sign extend as need a l to ptr sized element
2192   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
2193   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
2194 
2195 
2196 #undef VIRTUAL
2197 
2198 };
2199 
2200 /**
2201  * class SkipIfEqual:
2202  *
2203  * Instantiating this class will result in assembly code being output that will
2204  * jump around any code emitted between the creation of the instance and it's
2205  * automatic destruction at the end of a scope block, depending on the value of
2206  * the flag passed to the constructor, which will be checked at run-time.
2207  */
2208 class SkipIfEqual {
2209  private:
2210   MacroAssembler* _masm;
2211   Label _label;
2212 
2213  public:
2214    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
2215    ~SkipIfEqual();
2216 };
2217 
2218 #ifdef ASSERT
2219 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
2220 #endif